eeprom_def.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static void ath9k_get_txgain_index(struct ath_hw *ah,
  18. struct ath9k_channel *chan,
  19. struct calDataPerFreqOpLoop *rawDatasetOpLoop,
  20. u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
  21. {
  22. u8 pcdac, i = 0;
  23. u16 idxL = 0, idxR = 0, numPiers;
  24. bool match;
  25. struct chan_centers centers;
  26. ath9k_hw_get_channel_centers(ah, chan, &centers);
  27. for (numPiers = 0; numPiers < availPiers; numPiers++)
  28. if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
  29. break;
  30. match = ath9k_hw_get_lower_upper_index(
  31. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  32. calChans, numPiers, &idxL, &idxR);
  33. if (match) {
  34. pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
  35. *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
  36. } else {
  37. pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
  38. *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
  39. rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  40. }
  41. while (pcdac > ah->originalGain[i] &&
  42. i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
  43. i++;
  44. *pcdacIdx = i;
  45. return;
  46. }
  47. static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
  48. u32 initTxGain,
  49. int txPower,
  50. u8 *pPDADCValues)
  51. {
  52. u32 i;
  53. u32 offset;
  54. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
  55. AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  56. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
  57. AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  58. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
  59. AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
  60. offset = txPower;
  61. for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
  62. if (i < offset)
  63. pPDADCValues[i] = 0x0;
  64. else
  65. pPDADCValues[i] = 0xFF;
  66. }
  67. static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
  68. {
  69. return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
  70. }
  71. static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
  72. {
  73. return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
  74. }
  75. static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
  76. {
  77. #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
  78. u16 *eep_data = (u16 *)&ah->eeprom.def;
  79. int addr, ar5416_eep_start_loc = 0x100;
  80. for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
  81. if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
  82. eep_data)) {
  83. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  84. "Unable to read eeprom region\n");
  85. return false;
  86. }
  87. eep_data++;
  88. }
  89. return true;
  90. #undef SIZE_EEPROM_DEF
  91. }
  92. static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
  93. {
  94. struct ar5416_eeprom_def *eep =
  95. (struct ar5416_eeprom_def *) &ah->eeprom.def;
  96. u16 *eepdata, temp, magic, magic2;
  97. u32 sum = 0, el;
  98. bool need_swap = false;
  99. int i, addr, size;
  100. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
  101. DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Reading Magic # failed\n");
  102. return false;
  103. }
  104. if (!ath9k_hw_use_flash(ah)) {
  105. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  106. "Read Magic = 0x%04X\n", magic);
  107. if (magic != AR5416_EEPROM_MAGIC) {
  108. magic2 = swab16(magic);
  109. if (magic2 == AR5416_EEPROM_MAGIC) {
  110. size = sizeof(struct ar5416_eeprom_def);
  111. need_swap = true;
  112. eepdata = (u16 *) (&ah->eeprom);
  113. for (addr = 0; addr < size / sizeof(u16); addr++) {
  114. temp = swab16(*eepdata);
  115. *eepdata = temp;
  116. eepdata++;
  117. }
  118. } else {
  119. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  120. "Invalid EEPROM Magic. "
  121. "Endianness mismatch.\n");
  122. return -EINVAL;
  123. }
  124. }
  125. }
  126. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  127. need_swap ? "True" : "False");
  128. if (need_swap)
  129. el = swab16(ah->eeprom.def.baseEepHeader.length);
  130. else
  131. el = ah->eeprom.def.baseEepHeader.length;
  132. if (el > sizeof(struct ar5416_eeprom_def))
  133. el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
  134. else
  135. el = el / sizeof(u16);
  136. eepdata = (u16 *)(&ah->eeprom);
  137. for (i = 0; i < el; i++)
  138. sum ^= *eepdata++;
  139. if (need_swap) {
  140. u32 integer, j;
  141. u16 word;
  142. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  143. "EEPROM Endianness is not native.. Changing.\n");
  144. word = swab16(eep->baseEepHeader.length);
  145. eep->baseEepHeader.length = word;
  146. word = swab16(eep->baseEepHeader.checksum);
  147. eep->baseEepHeader.checksum = word;
  148. word = swab16(eep->baseEepHeader.version);
  149. eep->baseEepHeader.version = word;
  150. word = swab16(eep->baseEepHeader.regDmn[0]);
  151. eep->baseEepHeader.regDmn[0] = word;
  152. word = swab16(eep->baseEepHeader.regDmn[1]);
  153. eep->baseEepHeader.regDmn[1] = word;
  154. word = swab16(eep->baseEepHeader.rfSilent);
  155. eep->baseEepHeader.rfSilent = word;
  156. word = swab16(eep->baseEepHeader.blueToothOptions);
  157. eep->baseEepHeader.blueToothOptions = word;
  158. word = swab16(eep->baseEepHeader.deviceCap);
  159. eep->baseEepHeader.deviceCap = word;
  160. for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
  161. struct modal_eep_header *pModal =
  162. &eep->modalHeader[j];
  163. integer = swab32(pModal->antCtrlCommon);
  164. pModal->antCtrlCommon = integer;
  165. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  166. integer = swab32(pModal->antCtrlChain[i]);
  167. pModal->antCtrlChain[i] = integer;
  168. }
  169. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  170. word = swab16(pModal->spurChans[i].spurChan);
  171. pModal->spurChans[i].spurChan = word;
  172. }
  173. }
  174. }
  175. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  176. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  177. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  178. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  179. sum, ah->eep_ops->get_eeprom_ver(ah));
  180. return -EINVAL;
  181. }
  182. return 0;
  183. }
  184. static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
  185. enum eeprom_param param)
  186. {
  187. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  188. struct modal_eep_header *pModal = eep->modalHeader;
  189. struct base_eep_header *pBase = &eep->baseEepHeader;
  190. switch (param) {
  191. case EEP_NFTHRESH_5:
  192. return pModal[0].noiseFloorThreshCh[0];
  193. case EEP_NFTHRESH_2:
  194. return pModal[1].noiseFloorThreshCh[0];
  195. case AR_EEPROM_MAC(0):
  196. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  197. case AR_EEPROM_MAC(1):
  198. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  199. case AR_EEPROM_MAC(2):
  200. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  201. case EEP_REG_0:
  202. return pBase->regDmn[0];
  203. case EEP_REG_1:
  204. return pBase->regDmn[1];
  205. case EEP_OP_CAP:
  206. return pBase->deviceCap;
  207. case EEP_OP_MODE:
  208. return pBase->opCapFlags;
  209. case EEP_RF_SILENT:
  210. return pBase->rfSilent;
  211. case EEP_OB_5:
  212. return pModal[0].ob;
  213. case EEP_DB_5:
  214. return pModal[0].db;
  215. case EEP_OB_2:
  216. return pModal[1].ob;
  217. case EEP_DB_2:
  218. return pModal[1].db;
  219. case EEP_MINOR_REV:
  220. return AR5416_VER_MASK;
  221. case EEP_TX_MASK:
  222. return pBase->txMask;
  223. case EEP_RX_MASK:
  224. return pBase->rxMask;
  225. case EEP_RXGAIN_TYPE:
  226. return pBase->rxGainType;
  227. case EEP_TXGAIN_TYPE:
  228. return pBase->txGainType;
  229. case EEP_OL_PWRCTRL:
  230. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  231. return pBase->openLoopPwrCntl ? true : false;
  232. else
  233. return false;
  234. case EEP_RC_CHAIN_MASK:
  235. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  236. return pBase->rcChainMask;
  237. else
  238. return 0;
  239. case EEP_DAC_HPWR_5G:
  240. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
  241. return pBase->dacHiPwrMode_5G;
  242. else
  243. return 0;
  244. case EEP_FRAC_N_5G:
  245. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
  246. return pBase->frac_n_5g;
  247. else
  248. return 0;
  249. default:
  250. return 0;
  251. }
  252. }
  253. static void ath9k_hw_def_set_gain(struct ath_hw *ah,
  254. struct modal_eep_header *pModal,
  255. struct ar5416_eeprom_def *eep,
  256. u8 txRxAttenLocal, int regChainOffset, int i)
  257. {
  258. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  259. txRxAttenLocal = pModal->txRxAttenCh[i];
  260. if (AR_SREV_9280_10_OR_LATER(ah)) {
  261. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  262. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  263. pModal->bswMargin[i]);
  264. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  265. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  266. pModal->bswAtten[i]);
  267. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  268. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  269. pModal->xatten2Margin[i]);
  270. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  271. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  272. pModal->xatten2Db[i]);
  273. } else {
  274. REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  275. (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
  276. ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
  277. | SM(pModal-> bswMargin[i],
  278. AR_PHY_GAIN_2GHZ_BSW_MARGIN));
  279. REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  280. (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
  281. ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
  282. | SM(pModal->bswAtten[i],
  283. AR_PHY_GAIN_2GHZ_BSW_ATTEN));
  284. }
  285. }
  286. if (AR_SREV_9280_10_OR_LATER(ah)) {
  287. REG_RMW_FIELD(ah,
  288. AR_PHY_RXGAIN + regChainOffset,
  289. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  290. REG_RMW_FIELD(ah,
  291. AR_PHY_RXGAIN + regChainOffset,
  292. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
  293. } else {
  294. REG_WRITE(ah,
  295. AR_PHY_RXGAIN + regChainOffset,
  296. (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
  297. ~AR_PHY_RXGAIN_TXRX_ATTEN)
  298. | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
  299. REG_WRITE(ah,
  300. AR_PHY_GAIN_2GHZ + regChainOffset,
  301. (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
  302. ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
  303. SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
  304. }
  305. }
  306. static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
  307. struct ath9k_channel *chan)
  308. {
  309. struct modal_eep_header *pModal;
  310. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  311. int i, regChainOffset;
  312. u8 txRxAttenLocal;
  313. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  314. txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
  315. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  316. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  317. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  318. if (AR_SREV_9280(ah)) {
  319. if (i >= 2)
  320. break;
  321. }
  322. if (AR_SREV_5416_20_OR_LATER(ah) &&
  323. (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
  324. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  325. else
  326. regChainOffset = i * 0x1000;
  327. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  328. pModal->antCtrlChain[i]);
  329. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  330. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
  331. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  332. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  333. SM(pModal->iqCalICh[i],
  334. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  335. SM(pModal->iqCalQCh[i],
  336. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  337. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
  338. ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
  339. regChainOffset, i);
  340. }
  341. if (AR_SREV_9280_10_OR_LATER(ah)) {
  342. if (IS_CHAN_2GHZ(chan)) {
  343. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  344. AR_AN_RF2G1_CH0_OB,
  345. AR_AN_RF2G1_CH0_OB_S,
  346. pModal->ob);
  347. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  348. AR_AN_RF2G1_CH0_DB,
  349. AR_AN_RF2G1_CH0_DB_S,
  350. pModal->db);
  351. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  352. AR_AN_RF2G1_CH1_OB,
  353. AR_AN_RF2G1_CH1_OB_S,
  354. pModal->ob_ch1);
  355. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  356. AR_AN_RF2G1_CH1_DB,
  357. AR_AN_RF2G1_CH1_DB_S,
  358. pModal->db_ch1);
  359. } else {
  360. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  361. AR_AN_RF5G1_CH0_OB5,
  362. AR_AN_RF5G1_CH0_OB5_S,
  363. pModal->ob);
  364. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  365. AR_AN_RF5G1_CH0_DB5,
  366. AR_AN_RF5G1_CH0_DB5_S,
  367. pModal->db);
  368. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  369. AR_AN_RF5G1_CH1_OB5,
  370. AR_AN_RF5G1_CH1_OB5_S,
  371. pModal->ob_ch1);
  372. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  373. AR_AN_RF5G1_CH1_DB5,
  374. AR_AN_RF5G1_CH1_DB5_S,
  375. pModal->db_ch1);
  376. }
  377. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  378. AR_AN_TOP2_XPABIAS_LVL,
  379. AR_AN_TOP2_XPABIAS_LVL_S,
  380. pModal->xpaBiasLvl);
  381. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  382. AR_AN_TOP2_LOCALBIAS,
  383. AR_AN_TOP2_LOCALBIAS_S,
  384. pModal->local_bias);
  385. REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
  386. pModal->force_xpaon);
  387. }
  388. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  389. pModal->switchSettling);
  390. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  391. pModal->adcDesiredSize);
  392. if (!AR_SREV_9280_10_OR_LATER(ah))
  393. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  394. AR_PHY_DESIRED_SZ_PGA,
  395. pModal->pgaDesiredSize);
  396. REG_WRITE(ah, AR_PHY_RF_CTL4,
  397. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  398. | SM(pModal->txEndToXpaOff,
  399. AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  400. | SM(pModal->txFrameToXpaOn,
  401. AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  402. | SM(pModal->txFrameToXpaOn,
  403. AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  404. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  405. pModal->txEndToRxOn);
  406. if (AR_SREV_9280_10_OR_LATER(ah)) {
  407. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  408. pModal->thresh62);
  409. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  410. AR_PHY_EXT_CCA0_THRESH62,
  411. pModal->thresh62);
  412. } else {
  413. REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
  414. pModal->thresh62);
  415. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  416. AR_PHY_EXT_CCA_THRESH62,
  417. pModal->thresh62);
  418. }
  419. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
  420. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  421. AR_PHY_TX_END_DATA_START,
  422. pModal->txFrameToDataStart);
  423. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  424. pModal->txFrameToPaOn);
  425. }
  426. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  427. if (IS_CHAN_HT40(chan))
  428. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  429. AR_PHY_SETTLING_SWITCH,
  430. pModal->swSettleHt40);
  431. }
  432. if (AR_SREV_9280_20_OR_LATER(ah) &&
  433. AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  434. REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
  435. AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
  436. pModal->miscBits);
  437. if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
  438. if (IS_CHAN_2GHZ(chan))
  439. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  440. eep->baseEepHeader.dacLpMode);
  441. else if (eep->baseEepHeader.dacHiPwrMode_5G)
  442. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
  443. else
  444. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  445. eep->baseEepHeader.dacLpMode);
  446. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
  447. pModal->miscBits >> 2);
  448. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
  449. AR_PHY_TX_DESIRED_SCALE_CCK,
  450. eep->baseEepHeader.desiredScaleCCK);
  451. }
  452. }
  453. static void ath9k_hw_def_set_addac(struct ath_hw *ah,
  454. struct ath9k_channel *chan)
  455. {
  456. #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
  457. struct modal_eep_header *pModal;
  458. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  459. u8 biaslevel;
  460. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  461. return;
  462. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  463. return;
  464. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  465. if (pModal->xpaBiasLvl != 0xff) {
  466. biaslevel = pModal->xpaBiasLvl;
  467. } else {
  468. u16 resetFreqBin, freqBin, freqCount = 0;
  469. struct chan_centers centers;
  470. ath9k_hw_get_channel_centers(ah, chan, &centers);
  471. resetFreqBin = FREQ2FBIN(centers.synth_center,
  472. IS_CHAN_2GHZ(chan));
  473. freqBin = XPA_LVL_FREQ(0) & 0xff;
  474. biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
  475. freqCount++;
  476. while (freqCount < 3) {
  477. if (XPA_LVL_FREQ(freqCount) == 0x0)
  478. break;
  479. freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
  480. if (resetFreqBin >= freqBin)
  481. biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
  482. else
  483. break;
  484. freqCount++;
  485. }
  486. }
  487. if (IS_CHAN_2GHZ(chan)) {
  488. INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
  489. 7, 1) & (~0x18)) | biaslevel << 3;
  490. } else {
  491. INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
  492. 6, 1) & (~0xc0)) | biaslevel << 6;
  493. }
  494. #undef XPA_LVL_FREQ
  495. }
  496. static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
  497. struct ath9k_channel *chan,
  498. struct cal_data_per_freq *pRawDataSet,
  499. u8 *bChans, u16 availPiers,
  500. u16 tPdGainOverlap, int16_t *pMinCalPower,
  501. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  502. u16 numXpdGains)
  503. {
  504. int i, j, k;
  505. int16_t ss;
  506. u16 idxL = 0, idxR = 0, numPiers;
  507. static u8 vpdTableL[AR5416_NUM_PD_GAINS]
  508. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  509. static u8 vpdTableR[AR5416_NUM_PD_GAINS]
  510. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  511. static u8 vpdTableI[AR5416_NUM_PD_GAINS]
  512. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  513. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  514. u8 minPwrT4[AR5416_NUM_PD_GAINS];
  515. u8 maxPwrT4[AR5416_NUM_PD_GAINS];
  516. int16_t vpdStep;
  517. int16_t tmpVal;
  518. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  519. bool match;
  520. int16_t minDelta = 0;
  521. struct chan_centers centers;
  522. ath9k_hw_get_channel_centers(ah, chan, &centers);
  523. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  524. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  525. break;
  526. }
  527. match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
  528. IS_CHAN_2GHZ(chan)),
  529. bChans, numPiers, &idxL, &idxR);
  530. if (match) {
  531. for (i = 0; i < numXpdGains; i++) {
  532. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  533. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  534. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  535. pRawDataSet[idxL].pwrPdg[i],
  536. pRawDataSet[idxL].vpdPdg[i],
  537. AR5416_PD_GAIN_ICEPTS,
  538. vpdTableI[i]);
  539. }
  540. } else {
  541. for (i = 0; i < numXpdGains; i++) {
  542. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  543. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  544. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  545. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  546. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  547. maxPwrT4[i] =
  548. min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
  549. pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
  550. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  551. pPwrL, pVpdL,
  552. AR5416_PD_GAIN_ICEPTS,
  553. vpdTableL[i]);
  554. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  555. pPwrR, pVpdR,
  556. AR5416_PD_GAIN_ICEPTS,
  557. vpdTableR[i]);
  558. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  559. vpdTableI[i][j] =
  560. (u8)(ath9k_hw_interpolate((u16)
  561. FREQ2FBIN(centers.
  562. synth_center,
  563. IS_CHAN_2GHZ
  564. (chan)),
  565. bChans[idxL], bChans[idxR],
  566. vpdTableL[i][j], vpdTableR[i][j]));
  567. }
  568. }
  569. }
  570. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  571. k = 0;
  572. for (i = 0; i < numXpdGains; i++) {
  573. if (i == (numXpdGains - 1))
  574. pPdGainBoundaries[i] =
  575. (u16)(maxPwrT4[i] / 2);
  576. else
  577. pPdGainBoundaries[i] =
  578. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  579. pPdGainBoundaries[i] =
  580. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  581. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  582. minDelta = pPdGainBoundaries[0] - 23;
  583. pPdGainBoundaries[0] = 23;
  584. } else {
  585. minDelta = 0;
  586. }
  587. if (i == 0) {
  588. if (AR_SREV_9280_10_OR_LATER(ah))
  589. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  590. else
  591. ss = 0;
  592. } else {
  593. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  594. (minPwrT4[i] / 2)) -
  595. tPdGainOverlap + 1 + minDelta);
  596. }
  597. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  598. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  599. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  600. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  601. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  602. ss++;
  603. }
  604. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  605. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  606. (minPwrT4[i] / 2));
  607. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  608. tgtIndex : sizeCurrVpdTable;
  609. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  610. pPDADCValues[k++] = vpdTableI[i][ss++];
  611. }
  612. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  613. vpdTableI[i][sizeCurrVpdTable - 2]);
  614. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  615. if (tgtIndex > maxIndex) {
  616. while ((ss <= tgtIndex) &&
  617. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  618. tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
  619. (ss - maxIndex + 1) * vpdStep));
  620. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  621. 255 : tmpVal);
  622. ss++;
  623. }
  624. }
  625. }
  626. while (i < AR5416_PD_GAINS_IN_MASK) {
  627. pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
  628. i++;
  629. }
  630. while (k < AR5416_NUM_PDADC_VALUES) {
  631. pPDADCValues[k] = pPDADCValues[k - 1];
  632. k++;
  633. }
  634. return;
  635. }
  636. static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
  637. struct ath9k_channel *chan,
  638. int16_t *pTxPowerIndexOffset)
  639. {
  640. #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
  641. #define SM_PDGAIN_B(x, y) \
  642. SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
  643. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  644. struct cal_data_per_freq *pRawDataset;
  645. u8 *pCalBChans = NULL;
  646. u16 pdGainOverlap_t2;
  647. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  648. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  649. u16 numPiers, i, j;
  650. int16_t tMinCalPower;
  651. u16 numXpdGain, xpdMask;
  652. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  653. u32 reg32, regOffset, regChainOffset;
  654. int16_t modalIdx;
  655. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  656. xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
  657. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  658. AR5416_EEP_MINOR_VER_2) {
  659. pdGainOverlap_t2 =
  660. pEepData->modalHeader[modalIdx].pdGainOverlap;
  661. } else {
  662. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  663. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  664. }
  665. if (IS_CHAN_2GHZ(chan)) {
  666. pCalBChans = pEepData->calFreqPier2G;
  667. numPiers = AR5416_NUM_2G_CAL_PIERS;
  668. } else {
  669. pCalBChans = pEepData->calFreqPier5G;
  670. numPiers = AR5416_NUM_5G_CAL_PIERS;
  671. }
  672. if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
  673. pRawDataset = pEepData->calPierData2G[0];
  674. ah->initPDADC = ((struct calDataPerFreqOpLoop *)
  675. pRawDataset)->vpdPdg[0][0];
  676. }
  677. numXpdGain = 0;
  678. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  679. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  680. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  681. break;
  682. xpdGainValues[numXpdGain] =
  683. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  684. numXpdGain++;
  685. }
  686. }
  687. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  688. (numXpdGain - 1) & 0x3);
  689. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  690. xpdGainValues[0]);
  691. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  692. xpdGainValues[1]);
  693. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  694. xpdGainValues[2]);
  695. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  696. if (AR_SREV_5416_20_OR_LATER(ah) &&
  697. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  698. (i != 0)) {
  699. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  700. } else
  701. regChainOffset = i * 0x1000;
  702. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  703. if (IS_CHAN_2GHZ(chan))
  704. pRawDataset = pEepData->calPierData2G[i];
  705. else
  706. pRawDataset = pEepData->calPierData5G[i];
  707. if (OLC_FOR_AR9280_20_LATER) {
  708. u8 pcdacIdx;
  709. u8 txPower;
  710. ath9k_get_txgain_index(ah, chan,
  711. (struct calDataPerFreqOpLoop *)pRawDataset,
  712. pCalBChans, numPiers, &txPower, &pcdacIdx);
  713. ath9k_olc_get_pdadcs(ah, pcdacIdx,
  714. txPower/2, pdadcValues);
  715. } else {
  716. ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
  717. chan, pRawDataset,
  718. pCalBChans, numPiers,
  719. pdGainOverlap_t2,
  720. &tMinCalPower,
  721. gainBoundaries,
  722. pdadcValues,
  723. numXpdGain);
  724. }
  725. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  726. if (OLC_FOR_AR9280_20_LATER) {
  727. REG_WRITE(ah,
  728. AR_PHY_TPCRG5 + regChainOffset,
  729. SM(0x6,
  730. AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
  731. SM_PD_GAIN(1) | SM_PD_GAIN(2) |
  732. SM_PD_GAIN(3) | SM_PD_GAIN(4));
  733. } else {
  734. REG_WRITE(ah,
  735. AR_PHY_TPCRG5 + regChainOffset,
  736. SM(pdGainOverlap_t2,
  737. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
  738. SM_PDGAIN_B(0, 1) |
  739. SM_PDGAIN_B(1, 2) |
  740. SM_PDGAIN_B(2, 3) |
  741. SM_PDGAIN_B(3, 4));
  742. }
  743. }
  744. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  745. for (j = 0; j < 32; j++) {
  746. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  747. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  748. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  749. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  750. REG_WRITE(ah, regOffset, reg32);
  751. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  752. "PDADC (%d,%4x): %4.4x %8.8x\n",
  753. i, regChainOffset, regOffset,
  754. reg32);
  755. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  756. "PDADC: Chain %d | PDADC %3d "
  757. "Value %3d | PDADC %3d Value %3d | "
  758. "PDADC %3d Value %3d | PDADC %3d "
  759. "Value %3d |\n",
  760. i, 4 * j, pdadcValues[4 * j],
  761. 4 * j + 1, pdadcValues[4 * j + 1],
  762. 4 * j + 2, pdadcValues[4 * j + 2],
  763. 4 * j + 3,
  764. pdadcValues[4 * j + 3]);
  765. regOffset += 4;
  766. }
  767. }
  768. }
  769. *pTxPowerIndexOffset = 0;
  770. #undef SM_PD_GAIN
  771. #undef SM_PDGAIN_B
  772. }
  773. static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
  774. struct ath9k_channel *chan,
  775. int16_t *ratesArray,
  776. u16 cfgCtl,
  777. u16 AntennaReduction,
  778. u16 twiceMaxRegulatoryPower,
  779. u16 powerLimit)
  780. {
  781. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
  782. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
  783. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  784. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  785. static const u16 tpScaleReductionTable[5] =
  786. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  787. int i;
  788. int16_t twiceLargestAntenna;
  789. struct cal_ctl_data *rep;
  790. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  791. 0, { 0, 0, 0, 0}
  792. };
  793. struct cal_target_power_leg targetPowerOfdmExt = {
  794. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  795. 0, { 0, 0, 0, 0 }
  796. };
  797. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  798. 0, {0, 0, 0, 0}
  799. };
  800. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  801. u16 ctlModesFor11a[] =
  802. { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
  803. u16 ctlModesFor11g[] =
  804. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  805. CTL_2GHT40
  806. };
  807. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  808. struct chan_centers centers;
  809. int tx_chainmask;
  810. u16 twiceMinEdgePower;
  811. tx_chainmask = ah->txchainmask;
  812. ath9k_hw_get_channel_centers(ah, chan, &centers);
  813. twiceLargestAntenna = max(
  814. pEepData->modalHeader
  815. [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
  816. pEepData->modalHeader
  817. [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
  818. twiceLargestAntenna = max((u8)twiceLargestAntenna,
  819. pEepData->modalHeader
  820. [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
  821. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  822. twiceLargestAntenna, 0);
  823. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  824. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  825. maxRegAllowedPower -=
  826. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  827. }
  828. scaledPower = min(powerLimit, maxRegAllowedPower);
  829. switch (ar5416_get_ntxchains(tx_chainmask)) {
  830. case 1:
  831. break;
  832. case 2:
  833. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  834. break;
  835. case 3:
  836. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  837. break;
  838. }
  839. scaledPower = max((u16)0, scaledPower);
  840. if (IS_CHAN_2GHZ(chan)) {
  841. numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
  842. SUB_NUM_CTL_MODES_AT_2G_40;
  843. pCtlMode = ctlModesFor11g;
  844. ath9k_hw_get_legacy_target_powers(ah, chan,
  845. pEepData->calTargetPowerCck,
  846. AR5416_NUM_2G_CCK_TARGET_POWERS,
  847. &targetPowerCck, 4, false);
  848. ath9k_hw_get_legacy_target_powers(ah, chan,
  849. pEepData->calTargetPower2G,
  850. AR5416_NUM_2G_20_TARGET_POWERS,
  851. &targetPowerOfdm, 4, false);
  852. ath9k_hw_get_target_powers(ah, chan,
  853. pEepData->calTargetPower2GHT20,
  854. AR5416_NUM_2G_20_TARGET_POWERS,
  855. &targetPowerHt20, 8, false);
  856. if (IS_CHAN_HT40(chan)) {
  857. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  858. ath9k_hw_get_target_powers(ah, chan,
  859. pEepData->calTargetPower2GHT40,
  860. AR5416_NUM_2G_40_TARGET_POWERS,
  861. &targetPowerHt40, 8, true);
  862. ath9k_hw_get_legacy_target_powers(ah, chan,
  863. pEepData->calTargetPowerCck,
  864. AR5416_NUM_2G_CCK_TARGET_POWERS,
  865. &targetPowerCckExt, 4, true);
  866. ath9k_hw_get_legacy_target_powers(ah, chan,
  867. pEepData->calTargetPower2G,
  868. AR5416_NUM_2G_20_TARGET_POWERS,
  869. &targetPowerOfdmExt, 4, true);
  870. }
  871. } else {
  872. numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
  873. SUB_NUM_CTL_MODES_AT_5G_40;
  874. pCtlMode = ctlModesFor11a;
  875. ath9k_hw_get_legacy_target_powers(ah, chan,
  876. pEepData->calTargetPower5G,
  877. AR5416_NUM_5G_20_TARGET_POWERS,
  878. &targetPowerOfdm, 4, false);
  879. ath9k_hw_get_target_powers(ah, chan,
  880. pEepData->calTargetPower5GHT20,
  881. AR5416_NUM_5G_20_TARGET_POWERS,
  882. &targetPowerHt20, 8, false);
  883. if (IS_CHAN_HT40(chan)) {
  884. numCtlModes = ARRAY_SIZE(ctlModesFor11a);
  885. ath9k_hw_get_target_powers(ah, chan,
  886. pEepData->calTargetPower5GHT40,
  887. AR5416_NUM_5G_40_TARGET_POWERS,
  888. &targetPowerHt40, 8, true);
  889. ath9k_hw_get_legacy_target_powers(ah, chan,
  890. pEepData->calTargetPower5G,
  891. AR5416_NUM_5G_20_TARGET_POWERS,
  892. &targetPowerOfdmExt, 4, true);
  893. }
  894. }
  895. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  896. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  897. (pCtlMode[ctlMode] == CTL_2GHT40);
  898. if (isHt40CtlMode)
  899. freq = centers.synth_center;
  900. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  901. freq = centers.ext_center;
  902. else
  903. freq = centers.ctl_center;
  904. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  905. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  906. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  907. for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  908. if ((((cfgCtl & ~CTL_MODE_M) |
  909. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  910. pEepData->ctlIndex[i]) ||
  911. (((cfgCtl & ~CTL_MODE_M) |
  912. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  913. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  914. rep = &(pEepData->ctlData[i]);
  915. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  916. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
  917. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  918. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  919. twiceMaxEdgePower = min(twiceMaxEdgePower,
  920. twiceMinEdgePower);
  921. } else {
  922. twiceMaxEdgePower = twiceMinEdgePower;
  923. break;
  924. }
  925. }
  926. }
  927. minCtlPower = min(twiceMaxEdgePower, scaledPower);
  928. switch (pCtlMode[ctlMode]) {
  929. case CTL_11B:
  930. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  931. targetPowerCck.tPow2x[i] =
  932. min((u16)targetPowerCck.tPow2x[i],
  933. minCtlPower);
  934. }
  935. break;
  936. case CTL_11A:
  937. case CTL_11G:
  938. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  939. targetPowerOfdm.tPow2x[i] =
  940. min((u16)targetPowerOfdm.tPow2x[i],
  941. minCtlPower);
  942. }
  943. break;
  944. case CTL_5GHT20:
  945. case CTL_2GHT20:
  946. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  947. targetPowerHt20.tPow2x[i] =
  948. min((u16)targetPowerHt20.tPow2x[i],
  949. minCtlPower);
  950. }
  951. break;
  952. case CTL_11B_EXT:
  953. targetPowerCckExt.tPow2x[0] = min((u16)
  954. targetPowerCckExt.tPow2x[0],
  955. minCtlPower);
  956. break;
  957. case CTL_11A_EXT:
  958. case CTL_11G_EXT:
  959. targetPowerOfdmExt.tPow2x[0] = min((u16)
  960. targetPowerOfdmExt.tPow2x[0],
  961. minCtlPower);
  962. break;
  963. case CTL_5GHT40:
  964. case CTL_2GHT40:
  965. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  966. targetPowerHt40.tPow2x[i] =
  967. min((u16)targetPowerHt40.tPow2x[i],
  968. minCtlPower);
  969. }
  970. break;
  971. default:
  972. break;
  973. }
  974. }
  975. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  976. ratesArray[rate18mb] = ratesArray[rate24mb] =
  977. targetPowerOfdm.tPow2x[0];
  978. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  979. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  980. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  981. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  982. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  983. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  984. if (IS_CHAN_2GHZ(chan)) {
  985. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  986. ratesArray[rate2s] = ratesArray[rate2l] =
  987. targetPowerCck.tPow2x[1];
  988. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  989. targetPowerCck.tPow2x[2];
  990. ratesArray[rate11s] = ratesArray[rate11l] =
  991. targetPowerCck.tPow2x[3];
  992. }
  993. if (IS_CHAN_HT40(chan)) {
  994. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  995. ratesArray[rateHt40_0 + i] =
  996. targetPowerHt40.tPow2x[i];
  997. }
  998. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  999. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  1000. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  1001. if (IS_CHAN_2GHZ(chan)) {
  1002. ratesArray[rateExtCck] =
  1003. targetPowerCckExt.tPow2x[0];
  1004. }
  1005. }
  1006. }
  1007. static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
  1008. struct ath9k_channel *chan,
  1009. u16 cfgCtl,
  1010. u8 twiceAntennaReduction,
  1011. u8 twiceMaxRegulatoryPower,
  1012. u8 powerLimit)
  1013. {
  1014. #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
  1015. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  1016. struct modal_eep_header *pModal =
  1017. &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
  1018. int16_t ratesArray[Ar5416RateSize];
  1019. int16_t txPowerIndexOffset = 0;
  1020. u8 ht40PowerIncForPdadc = 2;
  1021. int i, cck_ofdm_delta = 0;
  1022. memset(ratesArray, 0, sizeof(ratesArray));
  1023. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1024. AR5416_EEP_MINOR_VER_2) {
  1025. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  1026. }
  1027. ath9k_hw_set_def_power_per_rate_table(ah, chan,
  1028. &ratesArray[0], cfgCtl,
  1029. twiceAntennaReduction,
  1030. twiceMaxRegulatoryPower,
  1031. powerLimit);
  1032. ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
  1033. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  1034. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  1035. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  1036. ratesArray[i] = AR5416_MAX_RATE_POWER;
  1037. }
  1038. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1039. for (i = 0; i < Ar5416RateSize; i++)
  1040. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  1041. }
  1042. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  1043. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  1044. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  1045. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  1046. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  1047. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  1048. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  1049. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  1050. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  1051. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  1052. if (IS_CHAN_2GHZ(chan)) {
  1053. if (OLC_FOR_AR9280_20_LATER) {
  1054. cck_ofdm_delta = 2;
  1055. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  1056. ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
  1057. | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
  1058. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  1059. | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
  1060. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  1061. ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
  1062. | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
  1063. | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
  1064. | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
  1065. } else {
  1066. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  1067. ATH9K_POW_SM(ratesArray[rate2s], 24)
  1068. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  1069. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  1070. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  1071. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  1072. ATH9K_POW_SM(ratesArray[rate11s], 24)
  1073. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  1074. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  1075. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  1076. }
  1077. }
  1078. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  1079. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  1080. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  1081. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  1082. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  1083. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  1084. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  1085. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  1086. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  1087. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  1088. if (IS_CHAN_HT40(chan)) {
  1089. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  1090. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  1091. ht40PowerIncForPdadc, 24)
  1092. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  1093. ht40PowerIncForPdadc, 16)
  1094. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  1095. ht40PowerIncForPdadc, 8)
  1096. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  1097. ht40PowerIncForPdadc, 0));
  1098. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  1099. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  1100. ht40PowerIncForPdadc, 24)
  1101. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  1102. ht40PowerIncForPdadc, 16)
  1103. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  1104. ht40PowerIncForPdadc, 8)
  1105. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  1106. ht40PowerIncForPdadc, 0));
  1107. if (OLC_FOR_AR9280_20_LATER) {
  1108. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  1109. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  1110. | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
  1111. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  1112. | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
  1113. } else {
  1114. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  1115. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  1116. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  1117. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  1118. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  1119. }
  1120. }
  1121. REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
  1122. ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
  1123. | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
  1124. i = rate6mb;
  1125. if (IS_CHAN_HT40(chan))
  1126. i = rateHt40_0;
  1127. else if (IS_CHAN_HT20(chan))
  1128. i = rateHt20_0;
  1129. if (AR_SREV_9280_10_OR_LATER(ah))
  1130. ah->regulatory.max_power_level =
  1131. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  1132. else
  1133. ah->regulatory.max_power_level = ratesArray[i];
  1134. switch(ar5416_get_ntxchains(ah->txchainmask)) {
  1135. case 1:
  1136. break;
  1137. case 2:
  1138. ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
  1139. break;
  1140. case 3:
  1141. ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
  1142. break;
  1143. default:
  1144. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1145. "Invalid chainmask configuration\n");
  1146. break;
  1147. }
  1148. }
  1149. static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
  1150. enum ieee80211_band freq_band)
  1151. {
  1152. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1153. struct modal_eep_header *pModal =
  1154. &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
  1155. struct base_eep_header *pBase = &eep->baseEepHeader;
  1156. u8 num_ant_config;
  1157. num_ant_config = 1;
  1158. if (pBase->version >= 0x0E0D)
  1159. if (pModal->useAnt1)
  1160. num_ant_config += 1;
  1161. return num_ant_config;
  1162. }
  1163. static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
  1164. struct ath9k_channel *chan)
  1165. {
  1166. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1167. struct modal_eep_header *pModal =
  1168. &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1169. return pModal->antCtrlCommon & 0xFFFF;
  1170. }
  1171. static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  1172. {
  1173. #define EEP_DEF_SPURCHAN \
  1174. (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
  1175. u16 spur_val = AR_NO_SPUR;
  1176. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1177. "Getting spur idx %d is2Ghz. %d val %x\n",
  1178. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1179. switch (ah->config.spurmode) {
  1180. case SPUR_DISABLE:
  1181. break;
  1182. case SPUR_ENABLE_IOCTL:
  1183. spur_val = ah->config.spurchans[i][is2GHz];
  1184. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1185. "Getting spur val from new loc. %d\n", spur_val);
  1186. break;
  1187. case SPUR_ENABLE_EEPROM:
  1188. spur_val = EEP_DEF_SPURCHAN;
  1189. break;
  1190. }
  1191. return spur_val;
  1192. #undef EEP_DEF_SPURCHAN
  1193. }
  1194. const struct eeprom_ops eep_def_ops = {
  1195. .check_eeprom = ath9k_hw_def_check_eeprom,
  1196. .get_eeprom = ath9k_hw_def_get_eeprom,
  1197. .fill_eeprom = ath9k_hw_def_fill_eeprom,
  1198. .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
  1199. .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
  1200. .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
  1201. .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
  1202. .set_board_values = ath9k_hw_def_set_board_values,
  1203. .set_addac = ath9k_hw_def_set_addac,
  1204. .set_txpower = ath9k_hw_def_set_txpower,
  1205. .get_spur_channel = ath9k_hw_def_get_spur_channel
  1206. };