eeprom_9287.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static int ath9k_hw_AR9287_get_eeprom_ver(struct ath_hw *ah)
  18. {
  19. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  20. }
  21. static int ath9k_hw_AR9287_get_eeprom_rev(struct ath_hw *ah)
  22. {
  23. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  24. }
  25. static bool ath9k_hw_AR9287_fill_eeprom(struct ath_hw *ah)
  26. {
  27. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  28. u16 *eep_data;
  29. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  30. eep_data = (u16 *)eep;
  31. if (!ath9k_hw_use_flash(ah)) {
  32. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  33. "Reading from EEPROM, not flash\n");
  34. }
  35. for (addr = 0; addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
  36. addr++) {
  37. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
  38. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  39. "Unable to read eeprom region \n");
  40. return false;
  41. }
  42. eep_data++;
  43. }
  44. return true;
  45. }
  46. static int ath9k_hw_AR9287_check_eeprom(struct ath_hw *ah)
  47. {
  48. u32 sum = 0, el, integer;
  49. u16 temp, word, magic, magic2, *eepdata;
  50. int i, addr;
  51. bool need_swap = false;
  52. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  53. if (!ath9k_hw_use_flash(ah)) {
  54. if (!ath9k_hw_nvram_read
  55. (ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
  56. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  57. "Reading Magic # failed\n");
  58. return false;
  59. }
  60. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  61. "Read Magic = 0x%04X\n", magic);
  62. if (magic != AR5416_EEPROM_MAGIC) {
  63. magic2 = swab16(magic);
  64. if (magic2 == AR5416_EEPROM_MAGIC) {
  65. need_swap = true;
  66. eepdata = (u16 *)(&ah->eeprom);
  67. for (addr = 0;
  68. addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
  69. addr++) {
  70. temp = swab16(*eepdata);
  71. *eepdata = temp;
  72. eepdata++;
  73. }
  74. } else {
  75. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  76. "Invalid EEPROM Magic. "
  77. "endianness mismatch.\n");
  78. return -EINVAL;
  79. }
  80. }
  81. }
  82. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ?
  83. "True" : "False");
  84. if (need_swap)
  85. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  86. else
  87. el = ah->eeprom.map9287.baseEepHeader.length;
  88. if (el > sizeof(struct ar9287_eeprom))
  89. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  90. else
  91. el = el / sizeof(u16);
  92. eepdata = (u16 *)(&ah->eeprom);
  93. for (i = 0; i < el; i++)
  94. sum ^= *eepdata++;
  95. if (need_swap) {
  96. word = swab16(eep->baseEepHeader.length);
  97. eep->baseEepHeader.length = word;
  98. word = swab16(eep->baseEepHeader.checksum);
  99. eep->baseEepHeader.checksum = word;
  100. word = swab16(eep->baseEepHeader.version);
  101. eep->baseEepHeader.version = word;
  102. word = swab16(eep->baseEepHeader.regDmn[0]);
  103. eep->baseEepHeader.regDmn[0] = word;
  104. word = swab16(eep->baseEepHeader.regDmn[1]);
  105. eep->baseEepHeader.regDmn[1] = word;
  106. word = swab16(eep->baseEepHeader.rfSilent);
  107. eep->baseEepHeader.rfSilent = word;
  108. word = swab16(eep->baseEepHeader.blueToothOptions);
  109. eep->baseEepHeader.blueToothOptions = word;
  110. word = swab16(eep->baseEepHeader.deviceCap);
  111. eep->baseEepHeader.deviceCap = word;
  112. integer = swab32(eep->modalHeader.antCtrlCommon);
  113. eep->modalHeader.antCtrlCommon = integer;
  114. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  115. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  116. eep->modalHeader.antCtrlChain[i] = integer;
  117. }
  118. for (i = 0; i < AR9287_EEPROM_MODAL_SPURS; i++) {
  119. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  120. eep->modalHeader.spurChans[i].spurChan = word;
  121. }
  122. }
  123. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  124. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  125. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  126. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  127. sum, ah->eep_ops->get_eeprom_ver(ah));
  128. return -EINVAL;
  129. }
  130. return 0;
  131. }
  132. static u32 ath9k_hw_AR9287_get_eeprom(struct ath_hw *ah,
  133. enum eeprom_param param)
  134. {
  135. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  136. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  137. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  138. u16 ver_minor;
  139. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  140. switch (param) {
  141. case EEP_NFTHRESH_2:
  142. return pModal->noiseFloorThreshCh[0];
  143. case AR_EEPROM_MAC(0):
  144. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  145. case AR_EEPROM_MAC(1):
  146. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  147. case AR_EEPROM_MAC(2):
  148. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  149. case EEP_REG_0:
  150. return pBase->regDmn[0];
  151. case EEP_REG_1:
  152. return pBase->regDmn[1];
  153. case EEP_OP_CAP:
  154. return pBase->deviceCap;
  155. case EEP_OP_MODE:
  156. return pBase->opCapFlags;
  157. case EEP_RF_SILENT:
  158. return pBase->rfSilent;
  159. case EEP_MINOR_REV:
  160. return ver_minor;
  161. case EEP_TX_MASK:
  162. return pBase->txMask;
  163. case EEP_RX_MASK:
  164. return pBase->rxMask;
  165. case EEP_DEV_TYPE:
  166. return pBase->deviceType;
  167. case EEP_OL_PWRCTRL:
  168. return pBase->openLoopPwrCntl;
  169. case EEP_TEMPSENSE_SLOPE:
  170. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  171. return pBase->tempSensSlope;
  172. else
  173. return 0;
  174. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  175. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  176. return pBase->tempSensSlopePalOn;
  177. else
  178. return 0;
  179. default:
  180. return 0;
  181. }
  182. }
  183. static void ath9k_hw_get_AR9287_gain_boundaries_pdadcs(struct ath_hw *ah,
  184. struct ath9k_channel *chan,
  185. struct cal_data_per_freq_ar9287 *pRawDataSet,
  186. u8 *bChans, u16 availPiers,
  187. u16 tPdGainOverlap, int16_t *pMinCalPower,
  188. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  189. u16 numXpdGains)
  190. {
  191. #define TMP_VAL_VPD_TABLE \
  192. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  193. int i, j, k;
  194. int16_t ss;
  195. u16 idxL = 0, idxR = 0, numPiers;
  196. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  197. u8 minPwrT4[AR9287_NUM_PD_GAINS];
  198. u8 maxPwrT4[AR9287_NUM_PD_GAINS];
  199. int16_t vpdStep;
  200. int16_t tmpVal;
  201. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  202. bool match;
  203. int16_t minDelta = 0;
  204. struct chan_centers centers;
  205. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  206. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  207. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  208. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  209. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  210. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  211. ath9k_hw_get_channel_centers(ah, chan, &centers);
  212. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  213. if (bChans[numPiers] == AR9287_BCHAN_UNUSED)
  214. break;
  215. }
  216. match = ath9k_hw_get_lower_upper_index(
  217. (u8)FREQ2FBIN(centers.synth_center,
  218. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  219. &idxL, &idxR);
  220. if (match) {
  221. for (i = 0; i < numXpdGains; i++) {
  222. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  223. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  224. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  225. pRawDataSet[idxL].pwrPdg[i],
  226. pRawDataSet[idxL].vpdPdg[i],
  227. AR9287_PD_GAIN_ICEPTS, vpdTableI[i]);
  228. }
  229. } else {
  230. for (i = 0; i < numXpdGains; i++) {
  231. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  232. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  233. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  234. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  235. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  236. maxPwrT4[i] =
  237. min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
  238. pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);
  239. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  240. pPwrL, pVpdL,
  241. AR9287_PD_GAIN_ICEPTS,
  242. vpdTableL[i]);
  243. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  244. pPwrR, pVpdR,
  245. AR9287_PD_GAIN_ICEPTS,
  246. vpdTableR[i]);
  247. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  248. vpdTableI[i][j] =
  249. (u8)(ath9k_hw_interpolate((u16)
  250. FREQ2FBIN(centers. synth_center,
  251. IS_CHAN_2GHZ(chan)),
  252. bChans[idxL], bChans[idxR],
  253. vpdTableL[i][j], vpdTableR[i][j]));
  254. }
  255. }
  256. }
  257. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  258. k = 0;
  259. for (i = 0; i < numXpdGains; i++) {
  260. if (i == (numXpdGains - 1))
  261. pPdGainBoundaries[i] = (u16)(maxPwrT4[i] / 2);
  262. else
  263. pPdGainBoundaries[i] = (u16)((maxPwrT4[i] +
  264. minPwrT4[i+1]) / 4);
  265. pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER,
  266. pPdGainBoundaries[i]);
  267. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  268. minDelta = pPdGainBoundaries[0] - 23;
  269. pPdGainBoundaries[0] = 23;
  270. } else
  271. minDelta = 0;
  272. if (i == 0) {
  273. if (AR_SREV_9280_10_OR_LATER(ah))
  274. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  275. else
  276. ss = 0;
  277. } else
  278. ss = (int16_t)((pPdGainBoundaries[i-1] -
  279. (minPwrT4[i] / 2)) -
  280. tPdGainOverlap + 1 + minDelta);
  281. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  282. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  283. while ((ss < 0) && (k < (AR9287_NUM_PDADC_VALUES - 1))) {
  284. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  285. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  286. ss++;
  287. }
  288. sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  289. tgtIndex = (u8)(pPdGainBoundaries[i] +
  290. tPdGainOverlap - (minPwrT4[i] / 2));
  291. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  292. tgtIndex : sizeCurrVpdTable;
  293. while ((ss < maxIndex) && (k < (AR9287_NUM_PDADC_VALUES - 1)))
  294. pPDADCValues[k++] = vpdTableI[i][ss++];
  295. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  296. vpdTableI[i][sizeCurrVpdTable - 2]);
  297. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  298. if (tgtIndex > maxIndex) {
  299. while ((ss <= tgtIndex) &&
  300. (k < (AR9287_NUM_PDADC_VALUES - 1))) {
  301. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  302. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  303. 255 : tmpVal);
  304. ss++;
  305. }
  306. }
  307. }
  308. while (i < AR9287_PD_GAINS_IN_MASK) {
  309. pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
  310. i++;
  311. }
  312. while (k < AR9287_NUM_PDADC_VALUES) {
  313. pPDADCValues[k] = pPDADCValues[k-1];
  314. k++;
  315. }
  316. #undef TMP_VAL_VPD_TABLE
  317. }
  318. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  319. struct ath9k_channel *chan,
  320. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  321. u8 *pCalChans, u16 availPiers,
  322. int8_t *pPwr)
  323. {
  324. u8 pcdac, i = 0;
  325. u16 idxL = 0, idxR = 0, numPiers;
  326. bool match;
  327. struct chan_centers centers;
  328. ath9k_hw_get_channel_centers(ah, chan, &centers);
  329. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  330. if (pCalChans[numPiers] == AR9287_BCHAN_UNUSED)
  331. break;
  332. }
  333. match = ath9k_hw_get_lower_upper_index(
  334. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  335. pCalChans, numPiers,
  336. &idxL, &idxR);
  337. if (match) {
  338. pcdac = pRawDatasetOpLoop[idxL].pcdac[0][0];
  339. *pPwr = pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  340. } else {
  341. pcdac = pRawDatasetOpLoop[idxR].pcdac[0][0];
  342. *pPwr = (pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  343. pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  344. }
  345. while ((pcdac > ah->originalGain[i]) &&
  346. (i < (AR9280_TX_GAIN_TABLE_SIZE - 1)))
  347. i++;
  348. }
  349. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  350. int32_t txPower, u16 chain)
  351. {
  352. u32 tmpVal;
  353. u32 a;
  354. tmpVal = REG_READ(ah, 0xa270);
  355. tmpVal = tmpVal & 0xFCFFFFFF;
  356. tmpVal = tmpVal | (0x3 << 24);
  357. REG_WRITE(ah, 0xa270, tmpVal);
  358. tmpVal = REG_READ(ah, 0xb270);
  359. tmpVal = tmpVal & 0xFCFFFFFF;
  360. tmpVal = tmpVal | (0x3 << 24);
  361. REG_WRITE(ah, 0xb270, tmpVal);
  362. if (chain == 0) {
  363. tmpVal = REG_READ(ah, 0xa398);
  364. tmpVal = tmpVal & 0xff00ffff;
  365. a = (txPower)&0xff;
  366. tmpVal = tmpVal | (a << 16);
  367. REG_WRITE(ah, 0xa398, tmpVal);
  368. }
  369. if (chain == 1) {
  370. tmpVal = REG_READ(ah, 0xb398);
  371. tmpVal = tmpVal & 0xff00ffff;
  372. a = (txPower)&0xff;
  373. tmpVal = tmpVal | (a << 16);
  374. REG_WRITE(ah, 0xb398, tmpVal);
  375. }
  376. }
  377. static void ath9k_hw_set_AR9287_power_cal_table(struct ath_hw *ah,
  378. struct ath9k_channel *chan,
  379. int16_t *pTxPowerIndexOffset)
  380. {
  381. struct cal_data_per_freq_ar9287 *pRawDataset;
  382. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  383. u8 *pCalBChans = NULL;
  384. u16 pdGainOverlap_t2;
  385. u8 pdadcValues[AR9287_NUM_PDADC_VALUES];
  386. u16 gainBoundaries[AR9287_PD_GAINS_IN_MASK];
  387. u16 numPiers = 0, i, j;
  388. int16_t tMinCalPower;
  389. u16 numXpdGain, xpdMask;
  390. u16 xpdGainValues[AR9287_NUM_PD_GAINS] = {0, 0, 0, 0};
  391. u32 reg32, regOffset, regChainOffset;
  392. int16_t modalIdx, diff = 0;
  393. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  394. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  395. xpdMask = pEepData->modalHeader.xpdGain;
  396. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  397. AR9287_EEP_MINOR_VER_2)
  398. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  399. else
  400. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  401. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  402. if (IS_CHAN_2GHZ(chan)) {
  403. pCalBChans = pEepData->calFreqPier2G;
  404. numPiers = AR9287_NUM_2G_CAL_PIERS;
  405. if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  406. pRawDatasetOpenLoop =
  407. (struct cal_data_op_loop_ar9287 *)
  408. pEepData->calPierData2G[0];
  409. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  410. }
  411. }
  412. numXpdGain = 0;
  413. for (i = 1; i <= AR9287_PD_GAINS_IN_MASK; i++) {
  414. if ((xpdMask >> (AR9287_PD_GAINS_IN_MASK - i)) & 1) {
  415. if (numXpdGain >= AR9287_NUM_PD_GAINS)
  416. break;
  417. xpdGainValues[numXpdGain] =
  418. (u16)(AR9287_PD_GAINS_IN_MASK-i);
  419. numXpdGain++;
  420. }
  421. }
  422. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  423. (numXpdGain - 1) & 0x3);
  424. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  425. xpdGainValues[0]);
  426. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  427. xpdGainValues[1]);
  428. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  429. xpdGainValues[2]);
  430. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  431. regChainOffset = i * 0x1000;
  432. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  433. pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)
  434. pEepData->calPierData2G[i];
  435. if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  436. int8_t txPower;
  437. ar9287_eeprom_get_tx_gain_index(ah, chan,
  438. pRawDatasetOpenLoop,
  439. pCalBChans, numPiers,
  440. &txPower);
  441. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  442. } else {
  443. pRawDataset =
  444. (struct cal_data_per_freq_ar9287 *)
  445. pEepData->calPierData2G[i];
  446. ath9k_hw_get_AR9287_gain_boundaries_pdadcs(
  447. ah, chan, pRawDataset,
  448. pCalBChans, numPiers,
  449. pdGainOverlap_t2,
  450. &tMinCalPower, gainBoundaries,
  451. pdadcValues, numXpdGain);
  452. }
  453. if (i == 0) {
  454. if (!ath9k_hw_AR9287_get_eeprom(
  455. ah, EEP_OL_PWRCTRL)) {
  456. REG_WRITE(ah, AR_PHY_TPCRG5 +
  457. regChainOffset,
  458. SM(pdGainOverlap_t2,
  459. AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
  460. SM(gainBoundaries[0],
  461. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  462. | SM(gainBoundaries[1],
  463. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  464. | SM(gainBoundaries[2],
  465. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  466. | SM(gainBoundaries[3],
  467. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  468. }
  469. }
  470. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  471. pEepData->baseEepHeader.pwrTableOffset) {
  472. diff = (u16)
  473. (pEepData->baseEepHeader.pwrTableOffset
  474. - (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  475. diff *= 2;
  476. for (j = 0;
  477. j < ((u16)AR9287_NUM_PDADC_VALUES-diff);
  478. j++)
  479. pdadcValues[j] = pdadcValues[j+diff];
  480. for (j = (u16)(AR9287_NUM_PDADC_VALUES-diff);
  481. j < AR9287_NUM_PDADC_VALUES; j++)
  482. pdadcValues[j] =
  483. pdadcValues[
  484. AR9287_NUM_PDADC_VALUES-diff];
  485. }
  486. if (!ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  487. regOffset = AR_PHY_BASE + (672 << 2) +
  488. regChainOffset;
  489. for (j = 0; j < 32; j++) {
  490. reg32 = ((pdadcValues[4*j + 0]
  491. & 0xFF) << 0) |
  492. ((pdadcValues[4*j + 1]
  493. & 0xFF) << 8) |
  494. ((pdadcValues[4*j + 2]
  495. & 0xFF) << 16) |
  496. ((pdadcValues[4*j + 3]
  497. & 0xFF) << 24) ;
  498. REG_WRITE(ah, regOffset, reg32);
  499. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  500. "PDADC (%d,%4x): %4.4x %8.8x\n",
  501. i, regChainOffset, regOffset,
  502. reg32);
  503. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  504. "PDADC: Chain %d | "
  505. "PDADC %3d Value %3d | "
  506. "PDADC %3d Value %3d | "
  507. "PDADC %3d Value %3d | "
  508. "PDADC %3d Value %3d |\n",
  509. i, 4 * j, pdadcValues[4 * j],
  510. 4 * j + 1,
  511. pdadcValues[4 * j + 1],
  512. 4 * j + 2,
  513. pdadcValues[4 * j + 2],
  514. 4 * j + 3,
  515. pdadcValues[4 * j + 3]);
  516. regOffset += 4;
  517. }
  518. }
  519. }
  520. }
  521. *pTxPowerIndexOffset = 0;
  522. }
  523. static void ath9k_hw_set_AR9287_power_per_rate_table(struct ath_hw *ah,
  524. struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl,
  525. u16 AntennaReduction, u16 twiceMaxRegulatoryPower,
  526. u16 powerLimit)
  527. {
  528. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
  529. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
  530. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  531. static const u16 tpScaleReductionTable[5] =
  532. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  533. int i;
  534. int16_t twiceLargestAntenna;
  535. struct cal_ctl_data_ar9287 *rep;
  536. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  537. targetPowerCck = {0, {0, 0, 0, 0} };
  538. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  539. targetPowerCckExt = {0, {0, 0, 0, 0} };
  540. struct cal_target_power_ht targetPowerHt20,
  541. targetPowerHt40 = {0, {0, 0, 0, 0} };
  542. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  543. u16 ctlModesFor11g[] =
  544. {CTL_11B, CTL_11G, CTL_2GHT20,
  545. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
  546. u16 numCtlModes = 0, *pCtlMode = NULL, ctlMode, freq;
  547. struct chan_centers centers;
  548. int tx_chainmask;
  549. u16 twiceMinEdgePower;
  550. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  551. tx_chainmask = ah->txchainmask;
  552. ath9k_hw_get_channel_centers(ah, chan, &centers);
  553. twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
  554. pEepData->modalHeader.antennaGainCh[1]);
  555. twiceLargestAntenna = (int16_t)min((AntennaReduction) -
  556. twiceLargestAntenna, 0);
  557. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  558. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX)
  559. maxRegAllowedPower -=
  560. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  561. scaledPower = min(powerLimit, maxRegAllowedPower);
  562. switch (ar5416_get_ntxchains(tx_chainmask)) {
  563. case 1:
  564. break;
  565. case 2:
  566. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  567. break;
  568. case 3:
  569. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  570. break;
  571. }
  572. scaledPower = max((u16)0, scaledPower);
  573. if (IS_CHAN_2GHZ(chan)) {
  574. numCtlModes =
  575. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  576. pCtlMode = ctlModesFor11g;
  577. ath9k_hw_get_legacy_target_powers(ah, chan,
  578. pEepData->calTargetPowerCck,
  579. AR9287_NUM_2G_CCK_TARGET_POWERS,
  580. &targetPowerCck, 4, false);
  581. ath9k_hw_get_legacy_target_powers(ah, chan,
  582. pEepData->calTargetPower2G,
  583. AR9287_NUM_2G_20_TARGET_POWERS,
  584. &targetPowerOfdm, 4, false);
  585. ath9k_hw_get_target_powers(ah, chan,
  586. pEepData->calTargetPower2GHT20,
  587. AR9287_NUM_2G_20_TARGET_POWERS,
  588. &targetPowerHt20, 8, false);
  589. if (IS_CHAN_HT40(chan)) {
  590. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  591. ath9k_hw_get_target_powers(ah, chan,
  592. pEepData->calTargetPower2GHT40,
  593. AR9287_NUM_2G_40_TARGET_POWERS,
  594. &targetPowerHt40, 8, true);
  595. ath9k_hw_get_legacy_target_powers(ah, chan,
  596. pEepData->calTargetPowerCck,
  597. AR9287_NUM_2G_CCK_TARGET_POWERS,
  598. &targetPowerCckExt, 4, true);
  599. ath9k_hw_get_legacy_target_powers(ah, chan,
  600. pEepData->calTargetPower2G,
  601. AR9287_NUM_2G_20_TARGET_POWERS,
  602. &targetPowerOfdmExt, 4, true);
  603. }
  604. }
  605. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  606. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  607. (pCtlMode[ctlMode] == CTL_2GHT40);
  608. if (isHt40CtlMode)
  609. freq = centers.synth_center;
  610. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  611. freq = centers.ext_center;
  612. else
  613. freq = centers.ctl_center;
  614. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  615. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  616. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  617. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  618. if ((((cfgCtl & ~CTL_MODE_M) |
  619. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  620. pEepData->ctlIndex[i]) ||
  621. (((cfgCtl & ~CTL_MODE_M) |
  622. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  623. ((pEepData->ctlIndex[i] &
  624. CTL_MODE_M) | SD_NO_CTL))) {
  625. rep = &(pEepData->ctlData[i]);
  626. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  627. freq,
  628. rep->ctlEdges[ar5416_get_ntxchains(
  629. tx_chainmask) - 1],
  630. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  631. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
  632. twiceMaxEdgePower = min(
  633. twiceMaxEdgePower,
  634. twiceMinEdgePower);
  635. else {
  636. twiceMaxEdgePower = twiceMinEdgePower;
  637. break;
  638. }
  639. }
  640. }
  641. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  642. switch (pCtlMode[ctlMode]) {
  643. case CTL_11B:
  644. for (i = 0;
  645. i < ARRAY_SIZE(targetPowerCck.tPow2x);
  646. i++) {
  647. targetPowerCck.tPow2x[i] = (u8)min(
  648. (u16)targetPowerCck.tPow2x[i],
  649. minCtlPower);
  650. }
  651. break;
  652. case CTL_11A:
  653. case CTL_11G:
  654. for (i = 0;
  655. i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  656. i++) {
  657. targetPowerOfdm.tPow2x[i] = (u8)min(
  658. (u16)targetPowerOfdm.tPow2x[i],
  659. minCtlPower);
  660. }
  661. break;
  662. case CTL_5GHT20:
  663. case CTL_2GHT20:
  664. for (i = 0;
  665. i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  666. i++) {
  667. targetPowerHt20.tPow2x[i] = (u8)min(
  668. (u16)targetPowerHt20.tPow2x[i],
  669. minCtlPower);
  670. }
  671. break;
  672. case CTL_11B_EXT:
  673. targetPowerCckExt.tPow2x[0] = (u8)min(
  674. (u16)targetPowerCckExt.tPow2x[0],
  675. minCtlPower);
  676. break;
  677. case CTL_11A_EXT:
  678. case CTL_11G_EXT:
  679. targetPowerOfdmExt.tPow2x[0] = (u8)min(
  680. (u16)targetPowerOfdmExt.tPow2x[0],
  681. minCtlPower);
  682. break;
  683. case CTL_5GHT40:
  684. case CTL_2GHT40:
  685. for (i = 0;
  686. i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  687. i++) {
  688. targetPowerHt40.tPow2x[i] = (u8)min(
  689. (u16)targetPowerHt40.tPow2x[i],
  690. minCtlPower);
  691. }
  692. break;
  693. default:
  694. break;
  695. }
  696. }
  697. ratesArray[rate6mb] =
  698. ratesArray[rate9mb] =
  699. ratesArray[rate12mb] =
  700. ratesArray[rate18mb] =
  701. ratesArray[rate24mb] =
  702. targetPowerOfdm.tPow2x[0];
  703. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  704. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  705. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  706. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  707. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  708. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  709. if (IS_CHAN_2GHZ(chan)) {
  710. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  711. ratesArray[rate2s] = ratesArray[rate2l] =
  712. targetPowerCck.tPow2x[1];
  713. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  714. targetPowerCck.tPow2x[2];
  715. ratesArray[rate11s] = ratesArray[rate11l] =
  716. targetPowerCck.tPow2x[3];
  717. }
  718. if (IS_CHAN_HT40(chan)) {
  719. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  720. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  721. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  722. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  723. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  724. if (IS_CHAN_2GHZ(chan))
  725. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  726. }
  727. #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
  728. #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
  729. }
  730. static void ath9k_hw_AR9287_set_txpower(struct ath_hw *ah,
  731. struct ath9k_channel *chan, u16 cfgCtl,
  732. u8 twiceAntennaReduction,
  733. u8 twiceMaxRegulatoryPower,
  734. u8 powerLimit)
  735. {
  736. #define INCREASE_MAXPOW_BY_TWO_CHAIN 6
  737. #define INCREASE_MAXPOW_BY_THREE_CHAIN 10
  738. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  739. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  740. int16_t ratesArray[Ar5416RateSize];
  741. int16_t txPowerIndexOffset = 0;
  742. u8 ht40PowerIncForPdadc = 2;
  743. int i;
  744. memset(ratesArray, 0, sizeof(ratesArray));
  745. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  746. AR9287_EEP_MINOR_VER_2)
  747. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  748. ath9k_hw_set_AR9287_power_per_rate_table(ah, chan,
  749. &ratesArray[0], cfgCtl,
  750. twiceAntennaReduction,
  751. twiceMaxRegulatoryPower,
  752. powerLimit);
  753. ath9k_hw_set_AR9287_power_cal_table(ah, chan, &txPowerIndexOffset);
  754. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  755. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  756. if (ratesArray[i] > AR9287_MAX_RATE_POWER)
  757. ratesArray[i] = AR9287_MAX_RATE_POWER;
  758. }
  759. if (AR_SREV_9280_10_OR_LATER(ah)) {
  760. for (i = 0; i < Ar5416RateSize; i++)
  761. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  762. }
  763. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  764. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  765. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  766. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  767. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  768. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  769. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  770. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  771. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  772. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  773. if (IS_CHAN_2GHZ(chan)) {
  774. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  775. ATH9K_POW_SM(ratesArray[rate2s], 24)
  776. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  777. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  778. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  779. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  780. ATH9K_POW_SM(ratesArray[rate11s], 24)
  781. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  782. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  783. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  784. }
  785. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  786. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  787. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  788. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  789. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  790. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  791. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  792. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  793. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  794. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  795. if (IS_CHAN_HT40(chan)) {
  796. if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  797. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  798. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  799. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  800. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  801. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  802. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  803. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  804. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  805. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  806. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  807. } else {
  808. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  809. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  810. ht40PowerIncForPdadc, 24)
  811. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  812. ht40PowerIncForPdadc, 16)
  813. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  814. ht40PowerIncForPdadc, 8)
  815. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  816. ht40PowerIncForPdadc, 0));
  817. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  818. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  819. ht40PowerIncForPdadc, 24)
  820. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  821. ht40PowerIncForPdadc, 16)
  822. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  823. ht40PowerIncForPdadc, 8)
  824. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  825. ht40PowerIncForPdadc, 0));
  826. }
  827. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  828. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  829. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  830. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  831. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  832. }
  833. if (IS_CHAN_2GHZ(chan))
  834. i = rate1l;
  835. else
  836. i = rate6mb;
  837. if (AR_SREV_9280_10_OR_LATER(ah))
  838. ah->regulatory.max_power_level =
  839. ratesArray[i] + AR9287_PWR_TABLE_OFFSET_DB * 2;
  840. else
  841. ah->regulatory.max_power_level = ratesArray[i];
  842. switch (ar5416_get_ntxchains(ah->txchainmask)) {
  843. case 1:
  844. break;
  845. case 2:
  846. ah->regulatory.max_power_level +=
  847. INCREASE_MAXPOW_BY_TWO_CHAIN;
  848. break;
  849. case 3:
  850. ah->regulatory.max_power_level +=
  851. INCREASE_MAXPOW_BY_THREE_CHAIN;
  852. break;
  853. default:
  854. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  855. "Invalid chainmask configuration\n");
  856. break;
  857. }
  858. }
  859. static void ath9k_hw_AR9287_set_addac(struct ath_hw *ah,
  860. struct ath9k_channel *chan)
  861. {
  862. }
  863. static void ath9k_hw_AR9287_set_board_values(struct ath_hw *ah,
  864. struct ath9k_channel *chan)
  865. {
  866. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  867. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  868. u16 antWrites[AR9287_ANT_16S];
  869. u32 regChainOffset;
  870. u8 txRxAttenLocal;
  871. int i, j, offset_num;
  872. pModal = &eep->modalHeader;
  873. antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
  874. antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
  875. antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
  876. antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
  877. antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
  878. antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
  879. antWrites[6] = (u16)((pModal->antCtrlCommon >> 4) & 0xF);
  880. antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
  881. offset_num = 8;
  882. for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
  883. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
  884. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
  885. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
  886. antWrites[j++] = 0;
  887. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
  888. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
  889. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
  890. antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
  891. }
  892. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  893. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  894. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  895. regChainOffset = i * 0x1000;
  896. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  897. pModal->antCtrlChain[i]);
  898. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  899. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  900. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  901. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  902. SM(pModal->iqCalICh[i],
  903. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  904. SM(pModal->iqCalQCh[i],
  905. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  906. txRxAttenLocal = pModal->txRxAttenCh[i];
  907. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  908. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  909. pModal->bswMargin[i]);
  910. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  911. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  912. pModal->bswAtten[i]);
  913. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  914. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  915. txRxAttenLocal);
  916. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  917. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  918. pModal->rxTxMarginCh[i]);
  919. }
  920. if (IS_CHAN_HT40(chan))
  921. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  922. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  923. else
  924. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  925. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  926. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  927. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  928. REG_WRITE(ah, AR_PHY_RF_CTL4,
  929. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  930. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  931. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  932. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  933. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  934. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  935. REG_RMW_FIELD(ah, AR_PHY_CCA,
  936. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  937. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  938. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  939. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB1,
  940. AR9287_AN_RF2G3_DB1_S, pModal->db1);
  941. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB2,
  942. AR9287_AN_RF2G3_DB2_S, pModal->db2);
  943. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  944. AR9287_AN_RF2G3_OB_CCK,
  945. AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
  946. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  947. AR9287_AN_RF2G3_OB_PSK,
  948. AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
  949. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  950. AR9287_AN_RF2G3_OB_QAM,
  951. AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
  952. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  953. AR9287_AN_RF2G3_OB_PAL_OFF,
  954. AR9287_AN_RF2G3_OB_PAL_OFF_S,
  955. pModal->ob_pal_off);
  956. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  957. AR9287_AN_RF2G3_DB1, AR9287_AN_RF2G3_DB1_S,
  958. pModal->db1);
  959. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1, AR9287_AN_RF2G3_DB2,
  960. AR9287_AN_RF2G3_DB2_S, pModal->db2);
  961. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  962. AR9287_AN_RF2G3_OB_CCK,
  963. AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
  964. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  965. AR9287_AN_RF2G3_OB_PSK,
  966. AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
  967. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  968. AR9287_AN_RF2G3_OB_QAM,
  969. AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
  970. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  971. AR9287_AN_RF2G3_OB_PAL_OFF,
  972. AR9287_AN_RF2G3_OB_PAL_OFF_S,
  973. pModal->ob_pal_off);
  974. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  975. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  976. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  977. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  978. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  979. AR9287_AN_TOP2_XPABIAS_LVL,
  980. AR9287_AN_TOP2_XPABIAS_LVL_S,
  981. pModal->xpaBiasLvl);
  982. }
  983. static u8 ath9k_hw_AR9287_get_num_ant_config(struct ath_hw *ah,
  984. enum ieee80211_band freq_band)
  985. {
  986. return 1;
  987. }
  988. static u16 ath9k_hw_AR9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
  989. struct ath9k_channel *chan)
  990. {
  991. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  992. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  993. return pModal->antCtrlCommon & 0xFFFF;
  994. }
  995. static u16 ath9k_hw_AR9287_get_spur_channel(struct ath_hw *ah,
  996. u16 i, bool is2GHz)
  997. {
  998. #define EEP_MAP9287_SPURCHAN \
  999. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  1000. u16 spur_val = AR_NO_SPUR;
  1001. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1002. "Getting spur idx %d is2Ghz. %d val %x\n",
  1003. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1004. switch (ah->config.spurmode) {
  1005. case SPUR_DISABLE:
  1006. break;
  1007. case SPUR_ENABLE_IOCTL:
  1008. spur_val = ah->config.spurchans[i][is2GHz];
  1009. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1010. "Getting spur val from new loc. %d\n", spur_val);
  1011. break;
  1012. case SPUR_ENABLE_EEPROM:
  1013. spur_val = EEP_MAP9287_SPURCHAN;
  1014. break;
  1015. }
  1016. return spur_val;
  1017. #undef EEP_MAP9287_SPURCHAN
  1018. }
  1019. const struct eeprom_ops eep_AR9287_ops = {
  1020. .check_eeprom = ath9k_hw_AR9287_check_eeprom,
  1021. .get_eeprom = ath9k_hw_AR9287_get_eeprom,
  1022. .fill_eeprom = ath9k_hw_AR9287_fill_eeprom,
  1023. .get_eeprom_ver = ath9k_hw_AR9287_get_eeprom_ver,
  1024. .get_eeprom_rev = ath9k_hw_AR9287_get_eeprom_rev,
  1025. .get_num_ant_config = ath9k_hw_AR9287_get_num_ant_config,
  1026. .get_eeprom_antenna_cfg = ath9k_hw_AR9287_get_eeprom_antenna_cfg,
  1027. .set_board_values = ath9k_hw_AR9287_set_board_values,
  1028. .set_addac = ath9k_hw_AR9287_set_addac,
  1029. .set_txpower = ath9k_hw_AR9287_set_txpower,
  1030. .get_spur_channel = ath9k_hw_AR9287_get_spur_channel
  1031. };