eeprom_4k.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  18. {
  19. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  20. }
  21. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  22. {
  23. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  24. }
  25. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  26. {
  27. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  28. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  29. int addr, eep_start_loc = 0;
  30. eep_start_loc = 64;
  31. if (!ath9k_hw_use_flash(ah)) {
  32. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  33. "Reading from EEPROM, not flash\n");
  34. }
  35. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  36. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
  37. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  38. "Unable to read eeprom region \n");
  39. return false;
  40. }
  41. eep_data++;
  42. }
  43. return true;
  44. #undef SIZE_EEPROM_4K
  45. }
  46. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  47. {
  48. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  49. struct ar5416_eeprom_4k *eep =
  50. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  51. u16 *eepdata, temp, magic, magic2;
  52. u32 sum = 0, el;
  53. bool need_swap = false;
  54. int i, addr;
  55. if (!ath9k_hw_use_flash(ah)) {
  56. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  57. &magic)) {
  58. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  59. "Reading Magic # failed\n");
  60. return false;
  61. }
  62. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  63. "Read Magic = 0x%04X\n", magic);
  64. if (magic != AR5416_EEPROM_MAGIC) {
  65. magic2 = swab16(magic);
  66. if (magic2 == AR5416_EEPROM_MAGIC) {
  67. need_swap = true;
  68. eepdata = (u16 *) (&ah->eeprom);
  69. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  70. temp = swab16(*eepdata);
  71. *eepdata = temp;
  72. eepdata++;
  73. }
  74. } else {
  75. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  76. "Invalid EEPROM Magic. "
  77. "endianness mismatch.\n");
  78. return -EINVAL;
  79. }
  80. }
  81. }
  82. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  83. need_swap ? "True" : "False");
  84. if (need_swap)
  85. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  86. else
  87. el = ah->eeprom.map4k.baseEepHeader.length;
  88. if (el > sizeof(struct ar5416_eeprom_4k))
  89. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  90. else
  91. el = el / sizeof(u16);
  92. eepdata = (u16 *)(&ah->eeprom);
  93. for (i = 0; i < el; i++)
  94. sum ^= *eepdata++;
  95. if (need_swap) {
  96. u32 integer;
  97. u16 word;
  98. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  99. "EEPROM Endianness is not native.. Changing\n");
  100. word = swab16(eep->baseEepHeader.length);
  101. eep->baseEepHeader.length = word;
  102. word = swab16(eep->baseEepHeader.checksum);
  103. eep->baseEepHeader.checksum = word;
  104. word = swab16(eep->baseEepHeader.version);
  105. eep->baseEepHeader.version = word;
  106. word = swab16(eep->baseEepHeader.regDmn[0]);
  107. eep->baseEepHeader.regDmn[0] = word;
  108. word = swab16(eep->baseEepHeader.regDmn[1]);
  109. eep->baseEepHeader.regDmn[1] = word;
  110. word = swab16(eep->baseEepHeader.rfSilent);
  111. eep->baseEepHeader.rfSilent = word;
  112. word = swab16(eep->baseEepHeader.blueToothOptions);
  113. eep->baseEepHeader.blueToothOptions = word;
  114. word = swab16(eep->baseEepHeader.deviceCap);
  115. eep->baseEepHeader.deviceCap = word;
  116. integer = swab32(eep->modalHeader.antCtrlCommon);
  117. eep->modalHeader.antCtrlCommon = integer;
  118. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  119. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  120. eep->modalHeader.antCtrlChain[i] = integer;
  121. }
  122. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  123. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  124. eep->modalHeader.spurChans[i].spurChan = word;
  125. }
  126. }
  127. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  128. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  129. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  130. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  131. sum, ah->eep_ops->get_eeprom_ver(ah));
  132. return -EINVAL;
  133. }
  134. return 0;
  135. #undef EEPROM_4K_SIZE
  136. }
  137. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  138. enum eeprom_param param)
  139. {
  140. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  141. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  142. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  143. switch (param) {
  144. case EEP_NFTHRESH_2:
  145. return pModal->noiseFloorThreshCh[0];
  146. case AR_EEPROM_MAC(0):
  147. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  148. case AR_EEPROM_MAC(1):
  149. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  150. case AR_EEPROM_MAC(2):
  151. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  152. case EEP_REG_0:
  153. return pBase->regDmn[0];
  154. case EEP_REG_1:
  155. return pBase->regDmn[1];
  156. case EEP_OP_CAP:
  157. return pBase->deviceCap;
  158. case EEP_OP_MODE:
  159. return pBase->opCapFlags;
  160. case EEP_RF_SILENT:
  161. return pBase->rfSilent;
  162. case EEP_OB_2:
  163. return pModal->ob_0;
  164. case EEP_DB_2:
  165. return pModal->db1_1;
  166. case EEP_MINOR_REV:
  167. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  168. case EEP_TX_MASK:
  169. return pBase->txMask;
  170. case EEP_RX_MASK:
  171. return pBase->rxMask;
  172. case EEP_FRAC_N_5G:
  173. return 0;
  174. default:
  175. return 0;
  176. }
  177. }
  178. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  179. struct ath9k_channel *chan,
  180. struct cal_data_per_freq_4k *pRawDataSet,
  181. u8 *bChans, u16 availPiers,
  182. u16 tPdGainOverlap, int16_t *pMinCalPower,
  183. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  184. u16 numXpdGains)
  185. {
  186. #define TMP_VAL_VPD_TABLE \
  187. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  188. int i, j, k;
  189. int16_t ss;
  190. u16 idxL = 0, idxR = 0, numPiers;
  191. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  192. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  193. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  194. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  195. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  196. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  197. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  198. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  199. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  200. int16_t vpdStep;
  201. int16_t tmpVal;
  202. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  203. bool match;
  204. int16_t minDelta = 0;
  205. struct chan_centers centers;
  206. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  207. ath9k_hw_get_channel_centers(ah, chan, &centers);
  208. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  209. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  210. break;
  211. }
  212. match = ath9k_hw_get_lower_upper_index(
  213. (u8)FREQ2FBIN(centers.synth_center,
  214. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  215. &idxL, &idxR);
  216. if (match) {
  217. for (i = 0; i < numXpdGains; i++) {
  218. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  219. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  220. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  221. pRawDataSet[idxL].pwrPdg[i],
  222. pRawDataSet[idxL].vpdPdg[i],
  223. AR5416_EEP4K_PD_GAIN_ICEPTS,
  224. vpdTableI[i]);
  225. }
  226. } else {
  227. for (i = 0; i < numXpdGains; i++) {
  228. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  229. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  230. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  231. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  232. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  233. maxPwrT4[i] =
  234. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  235. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  236. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  237. pPwrL, pVpdL,
  238. AR5416_EEP4K_PD_GAIN_ICEPTS,
  239. vpdTableL[i]);
  240. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  241. pPwrR, pVpdR,
  242. AR5416_EEP4K_PD_GAIN_ICEPTS,
  243. vpdTableR[i]);
  244. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  245. vpdTableI[i][j] =
  246. (u8)(ath9k_hw_interpolate((u16)
  247. FREQ2FBIN(centers.
  248. synth_center,
  249. IS_CHAN_2GHZ
  250. (chan)),
  251. bChans[idxL], bChans[idxR],
  252. vpdTableL[i][j], vpdTableR[i][j]));
  253. }
  254. }
  255. }
  256. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  257. k = 0;
  258. for (i = 0; i < numXpdGains; i++) {
  259. if (i == (numXpdGains - 1))
  260. pPdGainBoundaries[i] =
  261. (u16)(maxPwrT4[i] / 2);
  262. else
  263. pPdGainBoundaries[i] =
  264. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  265. pPdGainBoundaries[i] =
  266. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  267. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  268. minDelta = pPdGainBoundaries[0] - 23;
  269. pPdGainBoundaries[0] = 23;
  270. } else {
  271. minDelta = 0;
  272. }
  273. if (i == 0) {
  274. if (AR_SREV_9280_10_OR_LATER(ah))
  275. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  276. else
  277. ss = 0;
  278. } else {
  279. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  280. (minPwrT4[i] / 2)) -
  281. tPdGainOverlap + 1 + minDelta);
  282. }
  283. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  284. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  285. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  286. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  287. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  288. ss++;
  289. }
  290. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  291. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  292. (minPwrT4[i] / 2));
  293. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  294. tgtIndex : sizeCurrVpdTable;
  295. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  296. pPDADCValues[k++] = vpdTableI[i][ss++];
  297. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  298. vpdTableI[i][sizeCurrVpdTable - 2]);
  299. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  300. if (tgtIndex >= maxIndex) {
  301. while ((ss <= tgtIndex) &&
  302. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  303. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  304. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  305. 255 : tmpVal);
  306. ss++;
  307. }
  308. }
  309. }
  310. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  311. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  312. i++;
  313. }
  314. while (k < AR5416_NUM_PDADC_VALUES) {
  315. pPDADCValues[k] = pPDADCValues[k - 1];
  316. k++;
  317. }
  318. return;
  319. #undef TMP_VAL_VPD_TABLE
  320. }
  321. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  322. struct ath9k_channel *chan,
  323. int16_t *pTxPowerIndexOffset)
  324. {
  325. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  326. struct cal_data_per_freq_4k *pRawDataset;
  327. u8 *pCalBChans = NULL;
  328. u16 pdGainOverlap_t2;
  329. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  330. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  331. u16 numPiers, i, j;
  332. int16_t tMinCalPower;
  333. u16 numXpdGain, xpdMask;
  334. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  335. u32 reg32, regOffset, regChainOffset;
  336. xpdMask = pEepData->modalHeader.xpdGain;
  337. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  338. AR5416_EEP_MINOR_VER_2) {
  339. pdGainOverlap_t2 =
  340. pEepData->modalHeader.pdGainOverlap;
  341. } else {
  342. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  343. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  344. }
  345. pCalBChans = pEepData->calFreqPier2G;
  346. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  347. numXpdGain = 0;
  348. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  349. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  350. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  351. break;
  352. xpdGainValues[numXpdGain] =
  353. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  354. numXpdGain++;
  355. }
  356. }
  357. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  358. (numXpdGain - 1) & 0x3);
  359. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  360. xpdGainValues[0]);
  361. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  362. xpdGainValues[1]);
  363. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  364. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  365. if (AR_SREV_5416_20_OR_LATER(ah) &&
  366. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  367. (i != 0)) {
  368. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  369. } else
  370. regChainOffset = i * 0x1000;
  371. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  372. pRawDataset = pEepData->calPierData2G[i];
  373. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  374. pRawDataset, pCalBChans,
  375. numPiers, pdGainOverlap_t2,
  376. &tMinCalPower, gainBoundaries,
  377. pdadcValues, numXpdGain);
  378. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  379. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  380. SM(pdGainOverlap_t2,
  381. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  382. | SM(gainBoundaries[0],
  383. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  384. | SM(gainBoundaries[1],
  385. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  386. | SM(gainBoundaries[2],
  387. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  388. | SM(gainBoundaries[3],
  389. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  390. }
  391. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  392. for (j = 0; j < 32; j++) {
  393. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  394. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  395. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  396. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  397. REG_WRITE(ah, regOffset, reg32);
  398. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  399. "PDADC (%d,%4x): %4.4x %8.8x\n",
  400. i, regChainOffset, regOffset,
  401. reg32);
  402. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  403. "PDADC: Chain %d | "
  404. "PDADC %3d Value %3d | "
  405. "PDADC %3d Value %3d | "
  406. "PDADC %3d Value %3d | "
  407. "PDADC %3d Value %3d |\n",
  408. i, 4 * j, pdadcValues[4 * j],
  409. 4 * j + 1, pdadcValues[4 * j + 1],
  410. 4 * j + 2, pdadcValues[4 * j + 2],
  411. 4 * j + 3,
  412. pdadcValues[4 * j + 3]);
  413. regOffset += 4;
  414. }
  415. }
  416. }
  417. *pTxPowerIndexOffset = 0;
  418. }
  419. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  420. struct ath9k_channel *chan,
  421. int16_t *ratesArray,
  422. u16 cfgCtl,
  423. u16 AntennaReduction,
  424. u16 twiceMaxRegulatoryPower,
  425. u16 powerLimit)
  426. {
  427. #define CMP_TEST_GRP \
  428. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  429. pEepData->ctlIndex[i]) \
  430. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  431. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  432. int i;
  433. int16_t twiceLargestAntenna;
  434. u16 twiceMinEdgePower;
  435. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  436. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  437. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  438. struct chan_centers centers;
  439. struct cal_ctl_data_4k *rep;
  440. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  441. static const u16 tpScaleReductionTable[5] =
  442. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  443. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  444. 0, { 0, 0, 0, 0}
  445. };
  446. struct cal_target_power_leg targetPowerOfdmExt = {
  447. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  448. 0, { 0, 0, 0, 0 }
  449. };
  450. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  451. 0, {0, 0, 0, 0}
  452. };
  453. u16 ctlModesFor11g[] =
  454. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  455. CTL_2GHT40
  456. };
  457. ath9k_hw_get_channel_centers(ah, chan, &centers);
  458. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  459. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  460. twiceLargestAntenna, 0);
  461. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  462. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  463. maxRegAllowedPower -=
  464. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  465. }
  466. scaledPower = min(powerLimit, maxRegAllowedPower);
  467. scaledPower = max((u16)0, scaledPower);
  468. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  469. pCtlMode = ctlModesFor11g;
  470. ath9k_hw_get_legacy_target_powers(ah, chan,
  471. pEepData->calTargetPowerCck,
  472. AR5416_NUM_2G_CCK_TARGET_POWERS,
  473. &targetPowerCck, 4, false);
  474. ath9k_hw_get_legacy_target_powers(ah, chan,
  475. pEepData->calTargetPower2G,
  476. AR5416_NUM_2G_20_TARGET_POWERS,
  477. &targetPowerOfdm, 4, false);
  478. ath9k_hw_get_target_powers(ah, chan,
  479. pEepData->calTargetPower2GHT20,
  480. AR5416_NUM_2G_20_TARGET_POWERS,
  481. &targetPowerHt20, 8, false);
  482. if (IS_CHAN_HT40(chan)) {
  483. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  484. ath9k_hw_get_target_powers(ah, chan,
  485. pEepData->calTargetPower2GHT40,
  486. AR5416_NUM_2G_40_TARGET_POWERS,
  487. &targetPowerHt40, 8, true);
  488. ath9k_hw_get_legacy_target_powers(ah, chan,
  489. pEepData->calTargetPowerCck,
  490. AR5416_NUM_2G_CCK_TARGET_POWERS,
  491. &targetPowerCckExt, 4, true);
  492. ath9k_hw_get_legacy_target_powers(ah, chan,
  493. pEepData->calTargetPower2G,
  494. AR5416_NUM_2G_20_TARGET_POWERS,
  495. &targetPowerOfdmExt, 4, true);
  496. }
  497. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  498. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  499. (pCtlMode[ctlMode] == CTL_2GHT40);
  500. if (isHt40CtlMode)
  501. freq = centers.synth_center;
  502. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  503. freq = centers.ext_center;
  504. else
  505. freq = centers.ctl_center;
  506. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  507. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  508. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  509. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  510. pEepData->ctlIndex[i]; i++) {
  511. if (CMP_TEST_GRP) {
  512. rep = &(pEepData->ctlData[i]);
  513. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  514. freq,
  515. rep->ctlEdges[
  516. ar5416_get_ntxchains(ah->txchainmask) - 1],
  517. IS_CHAN_2GHZ(chan),
  518. AR5416_EEP4K_NUM_BAND_EDGES);
  519. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  520. twiceMaxEdgePower =
  521. min(twiceMaxEdgePower,
  522. twiceMinEdgePower);
  523. } else {
  524. twiceMaxEdgePower = twiceMinEdgePower;
  525. break;
  526. }
  527. }
  528. }
  529. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  530. switch (pCtlMode[ctlMode]) {
  531. case CTL_11B:
  532. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  533. targetPowerCck.tPow2x[i] =
  534. min((u16)targetPowerCck.tPow2x[i],
  535. minCtlPower);
  536. }
  537. break;
  538. case CTL_11G:
  539. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  540. targetPowerOfdm.tPow2x[i] =
  541. min((u16)targetPowerOfdm.tPow2x[i],
  542. minCtlPower);
  543. }
  544. break;
  545. case CTL_2GHT20:
  546. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  547. targetPowerHt20.tPow2x[i] =
  548. min((u16)targetPowerHt20.tPow2x[i],
  549. minCtlPower);
  550. }
  551. break;
  552. case CTL_11B_EXT:
  553. targetPowerCckExt.tPow2x[0] =
  554. min((u16)targetPowerCckExt.tPow2x[0],
  555. minCtlPower);
  556. break;
  557. case CTL_11G_EXT:
  558. targetPowerOfdmExt.tPow2x[0] =
  559. min((u16)targetPowerOfdmExt.tPow2x[0],
  560. minCtlPower);
  561. break;
  562. case CTL_2GHT40:
  563. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  564. targetPowerHt40.tPow2x[i] =
  565. min((u16)targetPowerHt40.tPow2x[i],
  566. minCtlPower);
  567. }
  568. break;
  569. default:
  570. break;
  571. }
  572. }
  573. ratesArray[rate6mb] =
  574. ratesArray[rate9mb] =
  575. ratesArray[rate12mb] =
  576. ratesArray[rate18mb] =
  577. ratesArray[rate24mb] =
  578. targetPowerOfdm.tPow2x[0];
  579. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  580. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  581. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  582. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  583. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  584. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  585. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  586. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  587. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  588. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  589. if (IS_CHAN_HT40(chan)) {
  590. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  591. ratesArray[rateHt40_0 + i] =
  592. targetPowerHt40.tPow2x[i];
  593. }
  594. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  595. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  596. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  597. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  598. }
  599. #undef CMP_TEST_GRP
  600. }
  601. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  602. struct ath9k_channel *chan,
  603. u16 cfgCtl,
  604. u8 twiceAntennaReduction,
  605. u8 twiceMaxRegulatoryPower,
  606. u8 powerLimit)
  607. {
  608. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  609. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  610. int16_t ratesArray[Ar5416RateSize];
  611. int16_t txPowerIndexOffset = 0;
  612. u8 ht40PowerIncForPdadc = 2;
  613. int i;
  614. memset(ratesArray, 0, sizeof(ratesArray));
  615. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  616. AR5416_EEP_MINOR_VER_2) {
  617. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  618. }
  619. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  620. &ratesArray[0], cfgCtl,
  621. twiceAntennaReduction,
  622. twiceMaxRegulatoryPower,
  623. powerLimit);
  624. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  625. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  626. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  627. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  628. ratesArray[i] = AR5416_MAX_RATE_POWER;
  629. }
  630. /* Update regulatory */
  631. i = rate6mb;
  632. if (IS_CHAN_HT40(chan))
  633. i = rateHt40_0;
  634. else if (IS_CHAN_HT20(chan))
  635. i = rateHt20_0;
  636. ah->regulatory.max_power_level = ratesArray[i];
  637. if (AR_SREV_9280_10_OR_LATER(ah)) {
  638. for (i = 0; i < Ar5416RateSize; i++)
  639. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  640. }
  641. /* OFDM power per rate */
  642. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  643. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  644. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  645. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  646. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  647. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  648. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  649. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  650. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  651. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  652. /* CCK power per rate */
  653. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  654. ATH9K_POW_SM(ratesArray[rate2s], 24)
  655. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  656. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  657. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  658. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  659. ATH9K_POW_SM(ratesArray[rate11s], 24)
  660. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  661. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  662. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  663. /* HT20 power per rate */
  664. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  665. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  666. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  667. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  668. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  669. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  670. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  671. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  672. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  673. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  674. /* HT40 power per rate */
  675. if (IS_CHAN_HT40(chan)) {
  676. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  677. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  678. ht40PowerIncForPdadc, 24)
  679. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  680. ht40PowerIncForPdadc, 16)
  681. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  682. ht40PowerIncForPdadc, 8)
  683. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  684. ht40PowerIncForPdadc, 0));
  685. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  686. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  687. ht40PowerIncForPdadc, 24)
  688. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  689. ht40PowerIncForPdadc, 16)
  690. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  691. ht40PowerIncForPdadc, 8)
  692. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  693. ht40PowerIncForPdadc, 0));
  694. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  695. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  696. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  697. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  698. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  699. }
  700. }
  701. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  702. struct ath9k_channel *chan)
  703. {
  704. struct modal_eep_4k_header *pModal;
  705. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  706. u8 biaslevel;
  707. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  708. return;
  709. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  710. return;
  711. pModal = &eep->modalHeader;
  712. if (pModal->xpaBiasLvl != 0xff) {
  713. biaslevel = pModal->xpaBiasLvl;
  714. INI_RA(&ah->iniAddac, 7, 1) =
  715. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  716. }
  717. }
  718. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  719. struct modal_eep_4k_header *pModal,
  720. struct ar5416_eeprom_4k *eep,
  721. u8 txRxAttenLocal)
  722. {
  723. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  724. pModal->antCtrlChain[0]);
  725. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  726. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  727. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  728. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  729. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  730. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  731. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  732. AR5416_EEP_MINOR_VER_3) {
  733. txRxAttenLocal = pModal->txRxAttenCh[0];
  734. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  735. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  736. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  737. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  738. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  739. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  740. pModal->xatten2Margin[0]);
  741. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  742. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  743. /* Set the block 1 value to block 0 value */
  744. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  745. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  746. pModal->bswMargin[0]);
  747. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  748. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  749. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  750. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  751. pModal->xatten2Margin[0]);
  752. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  753. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  754. pModal->xatten2Db[0]);
  755. }
  756. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  757. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  758. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  759. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  760. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  761. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  762. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  763. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  764. if (AR_SREV_9285_11(ah))
  765. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  766. }
  767. /*
  768. * Read EEPROM header info and program the device for correct operation
  769. * given the channel value.
  770. */
  771. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  772. struct ath9k_channel *chan)
  773. {
  774. struct modal_eep_4k_header *pModal;
  775. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  776. u8 txRxAttenLocal;
  777. u8 ob[5], db1[5], db2[5];
  778. u8 ant_div_control1, ant_div_control2;
  779. u32 regVal;
  780. pModal = &eep->modalHeader;
  781. txRxAttenLocal = 23;
  782. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  783. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  784. /* Single chain for 4K EEPROM*/
  785. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  786. /* Initialize Ant Diversity settings from EEPROM */
  787. if (pModal->version >= 3) {
  788. ant_div_control1 = pModal->antdiv_ctl1;
  789. ant_div_control2 = pModal->antdiv_ctl2;
  790. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  791. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  792. regVal |= SM(ant_div_control1,
  793. AR_PHY_9285_ANT_DIV_CTL);
  794. regVal |= SM(ant_div_control2,
  795. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  796. regVal |= SM((ant_div_control2 >> 2),
  797. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  798. regVal |= SM((ant_div_control1 >> 1),
  799. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  800. regVal |= SM((ant_div_control1 >> 2),
  801. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  802. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  803. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  804. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  805. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  806. regVal |= SM((ant_div_control1 >> 3),
  807. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  808. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  809. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  810. }
  811. if (pModal->version >= 2) {
  812. ob[0] = pModal->ob_0;
  813. ob[1] = pModal->ob_1;
  814. ob[2] = pModal->ob_2;
  815. ob[3] = pModal->ob_3;
  816. ob[4] = pModal->ob_4;
  817. db1[0] = pModal->db1_0;
  818. db1[1] = pModal->db1_1;
  819. db1[2] = pModal->db1_2;
  820. db1[3] = pModal->db1_3;
  821. db1[4] = pModal->db1_4;
  822. db2[0] = pModal->db2_0;
  823. db2[1] = pModal->db2_1;
  824. db2[2] = pModal->db2_2;
  825. db2[3] = pModal->db2_3;
  826. db2[4] = pModal->db2_4;
  827. } else if (pModal->version == 1) {
  828. ob[0] = pModal->ob_0;
  829. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  830. db1[0] = pModal->db1_0;
  831. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  832. db2[0] = pModal->db2_0;
  833. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  834. } else {
  835. int i;
  836. for (i = 0; i < 5; i++) {
  837. ob[i] = pModal->ob_0;
  838. db1[i] = pModal->db1_0;
  839. db2[i] = pModal->db1_0;
  840. }
  841. }
  842. if (AR_SREV_9271(ah)) {
  843. ath9k_hw_analog_shift_rmw(ah,
  844. AR9285_AN_RF2G3,
  845. AR9271_AN_RF2G3_OB_cck,
  846. AR9271_AN_RF2G3_OB_cck_S,
  847. ob[0]);
  848. ath9k_hw_analog_shift_rmw(ah,
  849. AR9285_AN_RF2G3,
  850. AR9271_AN_RF2G3_OB_psk,
  851. AR9271_AN_RF2G3_OB_psk_S,
  852. ob[1]);
  853. ath9k_hw_analog_shift_rmw(ah,
  854. AR9285_AN_RF2G3,
  855. AR9271_AN_RF2G3_OB_qam,
  856. AR9271_AN_RF2G3_OB_qam_S,
  857. ob[2]);
  858. ath9k_hw_analog_shift_rmw(ah,
  859. AR9285_AN_RF2G3,
  860. AR9271_AN_RF2G3_DB_1,
  861. AR9271_AN_RF2G3_DB_1_S,
  862. db1[0]);
  863. ath9k_hw_analog_shift_rmw(ah,
  864. AR9285_AN_RF2G4,
  865. AR9271_AN_RF2G4_DB_2,
  866. AR9271_AN_RF2G4_DB_2_S,
  867. db2[0]);
  868. } else {
  869. ath9k_hw_analog_shift_rmw(ah,
  870. AR9285_AN_RF2G3,
  871. AR9285_AN_RF2G3_OB_0,
  872. AR9285_AN_RF2G3_OB_0_S,
  873. ob[0]);
  874. ath9k_hw_analog_shift_rmw(ah,
  875. AR9285_AN_RF2G3,
  876. AR9285_AN_RF2G3_OB_1,
  877. AR9285_AN_RF2G3_OB_1_S,
  878. ob[1]);
  879. ath9k_hw_analog_shift_rmw(ah,
  880. AR9285_AN_RF2G3,
  881. AR9285_AN_RF2G3_OB_2,
  882. AR9285_AN_RF2G3_OB_2_S,
  883. ob[2]);
  884. ath9k_hw_analog_shift_rmw(ah,
  885. AR9285_AN_RF2G3,
  886. AR9285_AN_RF2G3_OB_3,
  887. AR9285_AN_RF2G3_OB_3_S,
  888. ob[3]);
  889. ath9k_hw_analog_shift_rmw(ah,
  890. AR9285_AN_RF2G3,
  891. AR9285_AN_RF2G3_OB_4,
  892. AR9285_AN_RF2G3_OB_4_S,
  893. ob[4]);
  894. ath9k_hw_analog_shift_rmw(ah,
  895. AR9285_AN_RF2G3,
  896. AR9285_AN_RF2G3_DB1_0,
  897. AR9285_AN_RF2G3_DB1_0_S,
  898. db1[0]);
  899. ath9k_hw_analog_shift_rmw(ah,
  900. AR9285_AN_RF2G3,
  901. AR9285_AN_RF2G3_DB1_1,
  902. AR9285_AN_RF2G3_DB1_1_S,
  903. db1[1]);
  904. ath9k_hw_analog_shift_rmw(ah,
  905. AR9285_AN_RF2G3,
  906. AR9285_AN_RF2G3_DB1_2,
  907. AR9285_AN_RF2G3_DB1_2_S,
  908. db1[2]);
  909. ath9k_hw_analog_shift_rmw(ah,
  910. AR9285_AN_RF2G4,
  911. AR9285_AN_RF2G4_DB1_3,
  912. AR9285_AN_RF2G4_DB1_3_S,
  913. db1[3]);
  914. ath9k_hw_analog_shift_rmw(ah,
  915. AR9285_AN_RF2G4,
  916. AR9285_AN_RF2G4_DB1_4,
  917. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  918. ath9k_hw_analog_shift_rmw(ah,
  919. AR9285_AN_RF2G4,
  920. AR9285_AN_RF2G4_DB2_0,
  921. AR9285_AN_RF2G4_DB2_0_S,
  922. db2[0]);
  923. ath9k_hw_analog_shift_rmw(ah,
  924. AR9285_AN_RF2G4,
  925. AR9285_AN_RF2G4_DB2_1,
  926. AR9285_AN_RF2G4_DB2_1_S,
  927. db2[1]);
  928. ath9k_hw_analog_shift_rmw(ah,
  929. AR9285_AN_RF2G4,
  930. AR9285_AN_RF2G4_DB2_2,
  931. AR9285_AN_RF2G4_DB2_2_S,
  932. db2[2]);
  933. ath9k_hw_analog_shift_rmw(ah,
  934. AR9285_AN_RF2G4,
  935. AR9285_AN_RF2G4_DB2_3,
  936. AR9285_AN_RF2G4_DB2_3_S,
  937. db2[3]);
  938. ath9k_hw_analog_shift_rmw(ah,
  939. AR9285_AN_RF2G4,
  940. AR9285_AN_RF2G4_DB2_4,
  941. AR9285_AN_RF2G4_DB2_4_S,
  942. db2[4]);
  943. }
  944. if (AR_SREV_9285_11(ah))
  945. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  946. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  947. pModal->switchSettling);
  948. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  949. pModal->adcDesiredSize);
  950. REG_WRITE(ah, AR_PHY_RF_CTL4,
  951. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  952. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  953. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  954. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  955. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  956. pModal->txEndToRxOn);
  957. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  958. pModal->thresh62);
  959. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  960. pModal->thresh62);
  961. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  962. AR5416_EEP_MINOR_VER_2) {
  963. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  964. pModal->txFrameToDataStart);
  965. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  966. pModal->txFrameToPaOn);
  967. }
  968. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  969. AR5416_EEP_MINOR_VER_3) {
  970. if (IS_CHAN_HT40(chan))
  971. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  972. AR_PHY_SETTLING_SWITCH,
  973. pModal->swSettleHt40);
  974. }
  975. }
  976. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  977. struct ath9k_channel *chan)
  978. {
  979. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  980. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  981. return pModal->antCtrlCommon & 0xFFFF;
  982. }
  983. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  984. enum ieee80211_band freq_band)
  985. {
  986. return 1;
  987. }
  988. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  989. {
  990. #define EEP_MAP4K_SPURCHAN \
  991. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  992. u16 spur_val = AR_NO_SPUR;
  993. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  994. "Getting spur idx %d is2Ghz. %d val %x\n",
  995. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  996. switch (ah->config.spurmode) {
  997. case SPUR_DISABLE:
  998. break;
  999. case SPUR_ENABLE_IOCTL:
  1000. spur_val = ah->config.spurchans[i][is2GHz];
  1001. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1002. "Getting spur val from new loc. %d\n", spur_val);
  1003. break;
  1004. case SPUR_ENABLE_EEPROM:
  1005. spur_val = EEP_MAP4K_SPURCHAN;
  1006. break;
  1007. }
  1008. return spur_val;
  1009. #undef EEP_MAP4K_SPURCHAN
  1010. }
  1011. const struct eeprom_ops eep_4k_ops = {
  1012. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1013. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1014. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1015. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1016. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1017. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1018. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1019. .set_board_values = ath9k_hw_4k_set_board_values,
  1020. .set_addac = ath9k_hw_4k_set_addac,
  1021. .set_txpower = ath9k_hw_4k_set_txpower,
  1022. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1023. };