vmscan.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/gfp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmpressure.h>
  22. #include <linux/vmstat.h>
  23. #include <linux/file.h>
  24. #include <linux/writeback.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/buffer_head.h> /* for try_to_release_page(),
  27. buffer_heads_over_limit */
  28. #include <linux/mm_inline.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/compaction.h>
  35. #include <linux/notifier.h>
  36. #include <linux/rwsem.h>
  37. #include <linux/delay.h>
  38. #include <linux/kthread.h>
  39. #include <linux/freezer.h>
  40. #include <linux/memcontrol.h>
  41. #include <linux/delayacct.h>
  42. #include <linux/sysctl.h>
  43. #include <linux/oom.h>
  44. #include <linux/prefetch.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include <linux/swapops.h>
  48. #include "internal.h"
  49. #define CREATE_TRACE_POINTS
  50. #include <trace/events/vmscan.h>
  51. struct scan_control {
  52. /* Incremented by the number of inactive pages that were scanned */
  53. unsigned long nr_scanned;
  54. /* Number of pages freed so far during a call to shrink_zones() */
  55. unsigned long nr_reclaimed;
  56. /* How many pages shrink_list() should reclaim */
  57. unsigned long nr_to_reclaim;
  58. unsigned long hibernation_mode;
  59. /* This context's GFP mask */
  60. gfp_t gfp_mask;
  61. int may_writepage;
  62. /* Can mapped pages be reclaimed? */
  63. int may_unmap;
  64. /* Can pages be swapped as part of reclaim? */
  65. int may_swap;
  66. int order;
  67. /* Scan (total_size >> priority) pages at once */
  68. int priority;
  69. /*
  70. * The memory cgroup that hit its limit and as a result is the
  71. * primary target of this reclaim invocation.
  72. */
  73. struct mem_cgroup *target_mem_cgroup;
  74. /*
  75. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  76. * are scanned.
  77. */
  78. nodemask_t *nodemask;
  79. };
  80. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  81. #ifdef ARCH_HAS_PREFETCH
  82. #define prefetch_prev_lru_page(_page, _base, _field) \
  83. do { \
  84. if ((_page)->lru.prev != _base) { \
  85. struct page *prev; \
  86. \
  87. prev = lru_to_page(&(_page->lru)); \
  88. prefetch(&prev->_field); \
  89. } \
  90. } while (0)
  91. #else
  92. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  93. #endif
  94. #ifdef ARCH_HAS_PREFETCHW
  95. #define prefetchw_prev_lru_page(_page, _base, _field) \
  96. do { \
  97. if ((_page)->lru.prev != _base) { \
  98. struct page *prev; \
  99. \
  100. prev = lru_to_page(&(_page->lru)); \
  101. prefetchw(&prev->_field); \
  102. } \
  103. } while (0)
  104. #else
  105. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  106. #endif
  107. /*
  108. * From 0 .. 100. Higher means more swappy.
  109. */
  110. int vm_swappiness = 60;
  111. unsigned long vm_total_pages; /* The total number of pages which the VM controls */
  112. static LIST_HEAD(shrinker_list);
  113. static DECLARE_RWSEM(shrinker_rwsem);
  114. #ifdef CONFIG_MEMCG
  115. static bool global_reclaim(struct scan_control *sc)
  116. {
  117. return !sc->target_mem_cgroup;
  118. }
  119. static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
  120. {
  121. return !mem_cgroup_disabled() && global_reclaim(sc);
  122. }
  123. #else
  124. static bool global_reclaim(struct scan_control *sc)
  125. {
  126. return true;
  127. }
  128. static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
  129. {
  130. return false;
  131. }
  132. #endif
  133. unsigned long zone_reclaimable_pages(struct zone *zone)
  134. {
  135. int nr;
  136. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  137. zone_page_state(zone, NR_INACTIVE_FILE);
  138. if (get_nr_swap_pages() > 0)
  139. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  140. zone_page_state(zone, NR_INACTIVE_ANON);
  141. return nr;
  142. }
  143. bool zone_reclaimable(struct zone *zone)
  144. {
  145. return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
  146. }
  147. static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  148. {
  149. if (!mem_cgroup_disabled())
  150. return mem_cgroup_get_lru_size(lruvec, lru);
  151. return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
  152. }
  153. /*
  154. * Add a shrinker callback to be called from the vm.
  155. */
  156. int register_shrinker(struct shrinker *shrinker)
  157. {
  158. size_t size = sizeof(*shrinker->nr_deferred);
  159. /*
  160. * If we only have one possible node in the system anyway, save
  161. * ourselves the trouble and disable NUMA aware behavior. This way we
  162. * will save memory and some small loop time later.
  163. */
  164. if (nr_node_ids == 1)
  165. shrinker->flags &= ~SHRINKER_NUMA_AWARE;
  166. if (shrinker->flags & SHRINKER_NUMA_AWARE)
  167. size *= nr_node_ids;
  168. shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
  169. if (!shrinker->nr_deferred)
  170. return -ENOMEM;
  171. down_write(&shrinker_rwsem);
  172. list_add_tail(&shrinker->list, &shrinker_list);
  173. up_write(&shrinker_rwsem);
  174. return 0;
  175. }
  176. EXPORT_SYMBOL(register_shrinker);
  177. /*
  178. * Remove one
  179. */
  180. void unregister_shrinker(struct shrinker *shrinker)
  181. {
  182. down_write(&shrinker_rwsem);
  183. list_del(&shrinker->list);
  184. up_write(&shrinker_rwsem);
  185. }
  186. EXPORT_SYMBOL(unregister_shrinker);
  187. #define SHRINK_BATCH 128
  188. static unsigned long
  189. shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
  190. unsigned long nr_pages_scanned, unsigned long lru_pages)
  191. {
  192. unsigned long freed = 0;
  193. unsigned long long delta;
  194. long total_scan;
  195. long max_pass;
  196. long nr;
  197. long new_nr;
  198. int nid = shrinkctl->nid;
  199. long batch_size = shrinker->batch ? shrinker->batch
  200. : SHRINK_BATCH;
  201. max_pass = shrinker->count_objects(shrinker, shrinkctl);
  202. if (max_pass == 0)
  203. return 0;
  204. /*
  205. * copy the current shrinker scan count into a local variable
  206. * and zero it so that other concurrent shrinker invocations
  207. * don't also do this scanning work.
  208. */
  209. nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
  210. total_scan = nr;
  211. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  212. delta *= max_pass;
  213. do_div(delta, lru_pages + 1);
  214. total_scan += delta;
  215. if (total_scan < 0) {
  216. printk(KERN_ERR
  217. "shrink_slab: %pF negative objects to delete nr=%ld\n",
  218. shrinker->scan_objects, total_scan);
  219. total_scan = max_pass;
  220. }
  221. /*
  222. * We need to avoid excessive windup on filesystem shrinkers
  223. * due to large numbers of GFP_NOFS allocations causing the
  224. * shrinkers to return -1 all the time. This results in a large
  225. * nr being built up so when a shrink that can do some work
  226. * comes along it empties the entire cache due to nr >>>
  227. * max_pass. This is bad for sustaining a working set in
  228. * memory.
  229. *
  230. * Hence only allow the shrinker to scan the entire cache when
  231. * a large delta change is calculated directly.
  232. */
  233. if (delta < max_pass / 4)
  234. total_scan = min(total_scan, max_pass / 2);
  235. /*
  236. * Avoid risking looping forever due to too large nr value:
  237. * never try to free more than twice the estimate number of
  238. * freeable entries.
  239. */
  240. if (total_scan > max_pass * 2)
  241. total_scan = max_pass * 2;
  242. trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
  243. nr_pages_scanned, lru_pages,
  244. max_pass, delta, total_scan);
  245. while (total_scan >= batch_size) {
  246. unsigned long ret;
  247. shrinkctl->nr_to_scan = batch_size;
  248. ret = shrinker->scan_objects(shrinker, shrinkctl);
  249. if (ret == SHRINK_STOP)
  250. break;
  251. freed += ret;
  252. count_vm_events(SLABS_SCANNED, batch_size);
  253. total_scan -= batch_size;
  254. cond_resched();
  255. }
  256. /*
  257. * move the unused scan count back into the shrinker in a
  258. * manner that handles concurrent updates. If we exhausted the
  259. * scan, there is no need to do an update.
  260. */
  261. if (total_scan > 0)
  262. new_nr = atomic_long_add_return(total_scan,
  263. &shrinker->nr_deferred[nid]);
  264. else
  265. new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
  266. trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
  267. return freed;
  268. }
  269. /*
  270. * Call the shrink functions to age shrinkable caches
  271. *
  272. * Here we assume it costs one seek to replace a lru page and that it also
  273. * takes a seek to recreate a cache object. With this in mind we age equal
  274. * percentages of the lru and ageable caches. This should balance the seeks
  275. * generated by these structures.
  276. *
  277. * If the vm encountered mapped pages on the LRU it increase the pressure on
  278. * slab to avoid swapping.
  279. *
  280. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  281. *
  282. * `lru_pages' represents the number of on-LRU pages in all the zones which
  283. * are eligible for the caller's allocation attempt. It is used for balancing
  284. * slab reclaim versus page reclaim.
  285. *
  286. * Returns the number of slab objects which we shrunk.
  287. */
  288. unsigned long shrink_slab(struct shrink_control *shrinkctl,
  289. unsigned long nr_pages_scanned,
  290. unsigned long lru_pages)
  291. {
  292. struct shrinker *shrinker;
  293. unsigned long freed = 0;
  294. if (nr_pages_scanned == 0)
  295. nr_pages_scanned = SWAP_CLUSTER_MAX;
  296. if (!down_read_trylock(&shrinker_rwsem)) {
  297. /*
  298. * If we would return 0, our callers would understand that we
  299. * have nothing else to shrink and give up trying. By returning
  300. * 1 we keep it going and assume we'll be able to shrink next
  301. * time.
  302. */
  303. freed = 1;
  304. goto out;
  305. }
  306. list_for_each_entry(shrinker, &shrinker_list, list) {
  307. for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
  308. if (!node_online(shrinkctl->nid))
  309. continue;
  310. if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
  311. (shrinkctl->nid != 0))
  312. break;
  313. freed += shrink_slab_node(shrinkctl, shrinker,
  314. nr_pages_scanned, lru_pages);
  315. }
  316. }
  317. up_read(&shrinker_rwsem);
  318. out:
  319. cond_resched();
  320. return freed;
  321. }
  322. static inline int is_page_cache_freeable(struct page *page)
  323. {
  324. /*
  325. * A freeable page cache page is referenced only by the caller
  326. * that isolated the page, the page cache radix tree and
  327. * optional buffer heads at page->private.
  328. */
  329. return page_count(page) - page_has_private(page) == 2;
  330. }
  331. static int may_write_to_queue(struct backing_dev_info *bdi,
  332. struct scan_control *sc)
  333. {
  334. if (current->flags & PF_SWAPWRITE)
  335. return 1;
  336. if (!bdi_write_congested(bdi))
  337. return 1;
  338. if (bdi == current->backing_dev_info)
  339. return 1;
  340. return 0;
  341. }
  342. /*
  343. * We detected a synchronous write error writing a page out. Probably
  344. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  345. * fsync(), msync() or close().
  346. *
  347. * The tricky part is that after writepage we cannot touch the mapping: nothing
  348. * prevents it from being freed up. But we have a ref on the page and once
  349. * that page is locked, the mapping is pinned.
  350. *
  351. * We're allowed to run sleeping lock_page() here because we know the caller has
  352. * __GFP_FS.
  353. */
  354. static void handle_write_error(struct address_space *mapping,
  355. struct page *page, int error)
  356. {
  357. lock_page(page);
  358. if (page_mapping(page) == mapping)
  359. mapping_set_error(mapping, error);
  360. unlock_page(page);
  361. }
  362. /* possible outcome of pageout() */
  363. typedef enum {
  364. /* failed to write page out, page is locked */
  365. PAGE_KEEP,
  366. /* move page to the active list, page is locked */
  367. PAGE_ACTIVATE,
  368. /* page has been sent to the disk successfully, page is unlocked */
  369. PAGE_SUCCESS,
  370. /* page is clean and locked */
  371. PAGE_CLEAN,
  372. } pageout_t;
  373. /*
  374. * pageout is called by shrink_page_list() for each dirty page.
  375. * Calls ->writepage().
  376. */
  377. static pageout_t pageout(struct page *page, struct address_space *mapping,
  378. struct scan_control *sc)
  379. {
  380. /*
  381. * If the page is dirty, only perform writeback if that write
  382. * will be non-blocking. To prevent this allocation from being
  383. * stalled by pagecache activity. But note that there may be
  384. * stalls if we need to run get_block(). We could test
  385. * PagePrivate for that.
  386. *
  387. * If this process is currently in __generic_file_aio_write() against
  388. * this page's queue, we can perform writeback even if that
  389. * will block.
  390. *
  391. * If the page is swapcache, write it back even if that would
  392. * block, for some throttling. This happens by accident, because
  393. * swap_backing_dev_info is bust: it doesn't reflect the
  394. * congestion state of the swapdevs. Easy to fix, if needed.
  395. */
  396. if (!is_page_cache_freeable(page))
  397. return PAGE_KEEP;
  398. if (!mapping) {
  399. /*
  400. * Some data journaling orphaned pages can have
  401. * page->mapping == NULL while being dirty with clean buffers.
  402. */
  403. if (page_has_private(page)) {
  404. if (try_to_free_buffers(page)) {
  405. ClearPageDirty(page);
  406. printk("%s: orphaned page\n", __func__);
  407. return PAGE_CLEAN;
  408. }
  409. }
  410. return PAGE_KEEP;
  411. }
  412. if (mapping->a_ops->writepage == NULL)
  413. return PAGE_ACTIVATE;
  414. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  415. return PAGE_KEEP;
  416. if (clear_page_dirty_for_io(page)) {
  417. int res;
  418. struct writeback_control wbc = {
  419. .sync_mode = WB_SYNC_NONE,
  420. .nr_to_write = SWAP_CLUSTER_MAX,
  421. .range_start = 0,
  422. .range_end = LLONG_MAX,
  423. .for_reclaim = 1,
  424. };
  425. SetPageReclaim(page);
  426. res = mapping->a_ops->writepage(page, &wbc);
  427. if (res < 0)
  428. handle_write_error(mapping, page, res);
  429. if (res == AOP_WRITEPAGE_ACTIVATE) {
  430. ClearPageReclaim(page);
  431. return PAGE_ACTIVATE;
  432. }
  433. if (!PageWriteback(page)) {
  434. /* synchronous write or broken a_ops? */
  435. ClearPageReclaim(page);
  436. }
  437. trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
  438. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  439. return PAGE_SUCCESS;
  440. }
  441. return PAGE_CLEAN;
  442. }
  443. /*
  444. * Same as remove_mapping, but if the page is removed from the mapping, it
  445. * gets returned with a refcount of 0.
  446. */
  447. static int __remove_mapping(struct address_space *mapping, struct page *page)
  448. {
  449. BUG_ON(!PageLocked(page));
  450. BUG_ON(mapping != page_mapping(page));
  451. spin_lock_irq(&mapping->tree_lock);
  452. /*
  453. * The non racy check for a busy page.
  454. *
  455. * Must be careful with the order of the tests. When someone has
  456. * a ref to the page, it may be possible that they dirty it then
  457. * drop the reference. So if PageDirty is tested before page_count
  458. * here, then the following race may occur:
  459. *
  460. * get_user_pages(&page);
  461. * [user mapping goes away]
  462. * write_to(page);
  463. * !PageDirty(page) [good]
  464. * SetPageDirty(page);
  465. * put_page(page);
  466. * !page_count(page) [good, discard it]
  467. *
  468. * [oops, our write_to data is lost]
  469. *
  470. * Reversing the order of the tests ensures such a situation cannot
  471. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  472. * load is not satisfied before that of page->_count.
  473. *
  474. * Note that if SetPageDirty is always performed via set_page_dirty,
  475. * and thus under tree_lock, then this ordering is not required.
  476. */
  477. if (!page_freeze_refs(page, 2))
  478. goto cannot_free;
  479. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  480. if (unlikely(PageDirty(page))) {
  481. page_unfreeze_refs(page, 2);
  482. goto cannot_free;
  483. }
  484. if (PageSwapCache(page)) {
  485. swp_entry_t swap = { .val = page_private(page) };
  486. __delete_from_swap_cache(page);
  487. spin_unlock_irq(&mapping->tree_lock);
  488. swapcache_free(swap, page);
  489. } else {
  490. void (*freepage)(struct page *);
  491. freepage = mapping->a_ops->freepage;
  492. __delete_from_page_cache(page);
  493. spin_unlock_irq(&mapping->tree_lock);
  494. mem_cgroup_uncharge_cache_page(page);
  495. if (freepage != NULL)
  496. freepage(page);
  497. }
  498. return 1;
  499. cannot_free:
  500. spin_unlock_irq(&mapping->tree_lock);
  501. return 0;
  502. }
  503. /*
  504. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  505. * someone else has a ref on the page, abort and return 0. If it was
  506. * successfully detached, return 1. Assumes the caller has a single ref on
  507. * this page.
  508. */
  509. int remove_mapping(struct address_space *mapping, struct page *page)
  510. {
  511. if (__remove_mapping(mapping, page)) {
  512. /*
  513. * Unfreezing the refcount with 1 rather than 2 effectively
  514. * drops the pagecache ref for us without requiring another
  515. * atomic operation.
  516. */
  517. page_unfreeze_refs(page, 1);
  518. return 1;
  519. }
  520. return 0;
  521. }
  522. /**
  523. * putback_lru_page - put previously isolated page onto appropriate LRU list
  524. * @page: page to be put back to appropriate lru list
  525. *
  526. * Add previously isolated @page to appropriate LRU list.
  527. * Page may still be unevictable for other reasons.
  528. *
  529. * lru_lock must not be held, interrupts must be enabled.
  530. */
  531. void putback_lru_page(struct page *page)
  532. {
  533. bool is_unevictable;
  534. int was_unevictable = PageUnevictable(page);
  535. VM_BUG_ON(PageLRU(page));
  536. redo:
  537. ClearPageUnevictable(page);
  538. if (page_evictable(page)) {
  539. /*
  540. * For evictable pages, we can use the cache.
  541. * In event of a race, worst case is we end up with an
  542. * unevictable page on [in]active list.
  543. * We know how to handle that.
  544. */
  545. is_unevictable = false;
  546. lru_cache_add(page);
  547. } else {
  548. /*
  549. * Put unevictable pages directly on zone's unevictable
  550. * list.
  551. */
  552. is_unevictable = true;
  553. add_page_to_unevictable_list(page);
  554. /*
  555. * When racing with an mlock or AS_UNEVICTABLE clearing
  556. * (page is unlocked) make sure that if the other thread
  557. * does not observe our setting of PG_lru and fails
  558. * isolation/check_move_unevictable_pages,
  559. * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  560. * the page back to the evictable list.
  561. *
  562. * The other side is TestClearPageMlocked() or shmem_lock().
  563. */
  564. smp_mb();
  565. }
  566. /*
  567. * page's status can change while we move it among lru. If an evictable
  568. * page is on unevictable list, it never be freed. To avoid that,
  569. * check after we added it to the list, again.
  570. */
  571. if (is_unevictable && page_evictable(page)) {
  572. if (!isolate_lru_page(page)) {
  573. put_page(page);
  574. goto redo;
  575. }
  576. /* This means someone else dropped this page from LRU
  577. * So, it will be freed or putback to LRU again. There is
  578. * nothing to do here.
  579. */
  580. }
  581. if (was_unevictable && !is_unevictable)
  582. count_vm_event(UNEVICTABLE_PGRESCUED);
  583. else if (!was_unevictable && is_unevictable)
  584. count_vm_event(UNEVICTABLE_PGCULLED);
  585. put_page(page); /* drop ref from isolate */
  586. }
  587. enum page_references {
  588. PAGEREF_RECLAIM,
  589. PAGEREF_RECLAIM_CLEAN,
  590. PAGEREF_KEEP,
  591. PAGEREF_ACTIVATE,
  592. };
  593. static enum page_references page_check_references(struct page *page,
  594. struct scan_control *sc)
  595. {
  596. int referenced_ptes, referenced_page;
  597. unsigned long vm_flags;
  598. referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
  599. &vm_flags);
  600. referenced_page = TestClearPageReferenced(page);
  601. /*
  602. * Mlock lost the isolation race with us. Let try_to_unmap()
  603. * move the page to the unevictable list.
  604. */
  605. if (vm_flags & VM_LOCKED)
  606. return PAGEREF_RECLAIM;
  607. if (referenced_ptes) {
  608. if (PageSwapBacked(page))
  609. return PAGEREF_ACTIVATE;
  610. /*
  611. * All mapped pages start out with page table
  612. * references from the instantiating fault, so we need
  613. * to look twice if a mapped file page is used more
  614. * than once.
  615. *
  616. * Mark it and spare it for another trip around the
  617. * inactive list. Another page table reference will
  618. * lead to its activation.
  619. *
  620. * Note: the mark is set for activated pages as well
  621. * so that recently deactivated but used pages are
  622. * quickly recovered.
  623. */
  624. SetPageReferenced(page);
  625. if (referenced_page || referenced_ptes > 1)
  626. return PAGEREF_ACTIVATE;
  627. /*
  628. * Activate file-backed executable pages after first usage.
  629. */
  630. if (vm_flags & VM_EXEC)
  631. return PAGEREF_ACTIVATE;
  632. return PAGEREF_KEEP;
  633. }
  634. /* Reclaim if clean, defer dirty pages to writeback */
  635. if (referenced_page && !PageSwapBacked(page))
  636. return PAGEREF_RECLAIM_CLEAN;
  637. return PAGEREF_RECLAIM;
  638. }
  639. /* Check if a page is dirty or under writeback */
  640. static void page_check_dirty_writeback(struct page *page,
  641. bool *dirty, bool *writeback)
  642. {
  643. struct address_space *mapping;
  644. /*
  645. * Anonymous pages are not handled by flushers and must be written
  646. * from reclaim context. Do not stall reclaim based on them
  647. */
  648. if (!page_is_file_cache(page)) {
  649. *dirty = false;
  650. *writeback = false;
  651. return;
  652. }
  653. /* By default assume that the page flags are accurate */
  654. *dirty = PageDirty(page);
  655. *writeback = PageWriteback(page);
  656. /* Verify dirty/writeback state if the filesystem supports it */
  657. if (!page_has_private(page))
  658. return;
  659. mapping = page_mapping(page);
  660. if (mapping && mapping->a_ops->is_dirty_writeback)
  661. mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
  662. }
  663. /*
  664. * shrink_page_list() returns the number of reclaimed pages
  665. */
  666. static unsigned long shrink_page_list(struct list_head *page_list,
  667. struct zone *zone,
  668. struct scan_control *sc,
  669. enum ttu_flags ttu_flags,
  670. unsigned long *ret_nr_dirty,
  671. unsigned long *ret_nr_unqueued_dirty,
  672. unsigned long *ret_nr_congested,
  673. unsigned long *ret_nr_writeback,
  674. unsigned long *ret_nr_immediate,
  675. bool force_reclaim)
  676. {
  677. LIST_HEAD(ret_pages);
  678. LIST_HEAD(free_pages);
  679. int pgactivate = 0;
  680. unsigned long nr_unqueued_dirty = 0;
  681. unsigned long nr_dirty = 0;
  682. unsigned long nr_congested = 0;
  683. unsigned long nr_reclaimed = 0;
  684. unsigned long nr_writeback = 0;
  685. unsigned long nr_immediate = 0;
  686. cond_resched();
  687. mem_cgroup_uncharge_start();
  688. while (!list_empty(page_list)) {
  689. struct address_space *mapping;
  690. struct page *page;
  691. int may_enter_fs;
  692. enum page_references references = PAGEREF_RECLAIM_CLEAN;
  693. bool dirty, writeback;
  694. cond_resched();
  695. page = lru_to_page(page_list);
  696. list_del(&page->lru);
  697. if (!trylock_page(page))
  698. goto keep;
  699. VM_BUG_ON(PageActive(page));
  700. VM_BUG_ON(page_zone(page) != zone);
  701. sc->nr_scanned++;
  702. if (unlikely(!page_evictable(page)))
  703. goto cull_mlocked;
  704. if (!sc->may_unmap && page_mapped(page))
  705. goto keep_locked;
  706. /* Double the slab pressure for mapped and swapcache pages */
  707. if (page_mapped(page) || PageSwapCache(page))
  708. sc->nr_scanned++;
  709. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  710. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  711. /*
  712. * The number of dirty pages determines if a zone is marked
  713. * reclaim_congested which affects wait_iff_congested. kswapd
  714. * will stall and start writing pages if the tail of the LRU
  715. * is all dirty unqueued pages.
  716. */
  717. page_check_dirty_writeback(page, &dirty, &writeback);
  718. if (dirty || writeback)
  719. nr_dirty++;
  720. if (dirty && !writeback)
  721. nr_unqueued_dirty++;
  722. /*
  723. * Treat this page as congested if the underlying BDI is or if
  724. * pages are cycling through the LRU so quickly that the
  725. * pages marked for immediate reclaim are making it to the
  726. * end of the LRU a second time.
  727. */
  728. mapping = page_mapping(page);
  729. if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
  730. (writeback && PageReclaim(page)))
  731. nr_congested++;
  732. /*
  733. * If a page at the tail of the LRU is under writeback, there
  734. * are three cases to consider.
  735. *
  736. * 1) If reclaim is encountering an excessive number of pages
  737. * under writeback and this page is both under writeback and
  738. * PageReclaim then it indicates that pages are being queued
  739. * for IO but are being recycled through the LRU before the
  740. * IO can complete. Waiting on the page itself risks an
  741. * indefinite stall if it is impossible to writeback the
  742. * page due to IO error or disconnected storage so instead
  743. * note that the LRU is being scanned too quickly and the
  744. * caller can stall after page list has been processed.
  745. *
  746. * 2) Global reclaim encounters a page, memcg encounters a
  747. * page that is not marked for immediate reclaim or
  748. * the caller does not have __GFP_IO. In this case mark
  749. * the page for immediate reclaim and continue scanning.
  750. *
  751. * __GFP_IO is checked because a loop driver thread might
  752. * enter reclaim, and deadlock if it waits on a page for
  753. * which it is needed to do the write (loop masks off
  754. * __GFP_IO|__GFP_FS for this reason); but more thought
  755. * would probably show more reasons.
  756. *
  757. * Don't require __GFP_FS, since we're not going into the
  758. * FS, just waiting on its writeback completion. Worryingly,
  759. * ext4 gfs2 and xfs allocate pages with
  760. * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
  761. * may_enter_fs here is liable to OOM on them.
  762. *
  763. * 3) memcg encounters a page that is not already marked
  764. * PageReclaim. memcg does not have any dirty pages
  765. * throttling so we could easily OOM just because too many
  766. * pages are in writeback and there is nothing else to
  767. * reclaim. Wait for the writeback to complete.
  768. */
  769. if (PageWriteback(page)) {
  770. /* Case 1 above */
  771. if (current_is_kswapd() &&
  772. PageReclaim(page) &&
  773. zone_is_reclaim_writeback(zone)) {
  774. nr_immediate++;
  775. goto keep_locked;
  776. /* Case 2 above */
  777. } else if (global_reclaim(sc) ||
  778. !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
  779. /*
  780. * This is slightly racy - end_page_writeback()
  781. * might have just cleared PageReclaim, then
  782. * setting PageReclaim here end up interpreted
  783. * as PageReadahead - but that does not matter
  784. * enough to care. What we do want is for this
  785. * page to have PageReclaim set next time memcg
  786. * reclaim reaches the tests above, so it will
  787. * then wait_on_page_writeback() to avoid OOM;
  788. * and it's also appropriate in global reclaim.
  789. */
  790. SetPageReclaim(page);
  791. nr_writeback++;
  792. goto keep_locked;
  793. /* Case 3 above */
  794. } else {
  795. wait_on_page_writeback(page);
  796. }
  797. }
  798. if (!force_reclaim)
  799. references = page_check_references(page, sc);
  800. switch (references) {
  801. case PAGEREF_ACTIVATE:
  802. goto activate_locked;
  803. case PAGEREF_KEEP:
  804. goto keep_locked;
  805. case PAGEREF_RECLAIM:
  806. case PAGEREF_RECLAIM_CLEAN:
  807. ; /* try to reclaim the page below */
  808. }
  809. /*
  810. * Anonymous process memory has backing store?
  811. * Try to allocate it some swap space here.
  812. */
  813. if (PageAnon(page) && !PageSwapCache(page)) {
  814. if (!(sc->gfp_mask & __GFP_IO))
  815. goto keep_locked;
  816. if (!add_to_swap(page, page_list))
  817. goto activate_locked;
  818. may_enter_fs = 1;
  819. /* Adding to swap updated mapping */
  820. mapping = page_mapping(page);
  821. }
  822. /*
  823. * The page is mapped into the page tables of one or more
  824. * processes. Try to unmap it here.
  825. */
  826. if (page_mapped(page) && mapping) {
  827. switch (try_to_unmap(page, ttu_flags)) {
  828. case SWAP_FAIL:
  829. goto activate_locked;
  830. case SWAP_AGAIN:
  831. goto keep_locked;
  832. case SWAP_MLOCK:
  833. goto cull_mlocked;
  834. case SWAP_SUCCESS:
  835. ; /* try to free the page below */
  836. }
  837. }
  838. if (PageDirty(page)) {
  839. /*
  840. * Only kswapd can writeback filesystem pages to
  841. * avoid risk of stack overflow but only writeback
  842. * if many dirty pages have been encountered.
  843. */
  844. if (page_is_file_cache(page) &&
  845. (!current_is_kswapd() ||
  846. !zone_is_reclaim_dirty(zone))) {
  847. /*
  848. * Immediately reclaim when written back.
  849. * Similar in principal to deactivate_page()
  850. * except we already have the page isolated
  851. * and know it's dirty
  852. */
  853. inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  854. SetPageReclaim(page);
  855. goto keep_locked;
  856. }
  857. if (references == PAGEREF_RECLAIM_CLEAN)
  858. goto keep_locked;
  859. if (!may_enter_fs)
  860. goto keep_locked;
  861. if (!sc->may_writepage)
  862. goto keep_locked;
  863. /* Page is dirty, try to write it out here */
  864. switch (pageout(page, mapping, sc)) {
  865. case PAGE_KEEP:
  866. goto keep_locked;
  867. case PAGE_ACTIVATE:
  868. goto activate_locked;
  869. case PAGE_SUCCESS:
  870. if (PageWriteback(page))
  871. goto keep;
  872. if (PageDirty(page))
  873. goto keep;
  874. /*
  875. * A synchronous write - probably a ramdisk. Go
  876. * ahead and try to reclaim the page.
  877. */
  878. if (!trylock_page(page))
  879. goto keep;
  880. if (PageDirty(page) || PageWriteback(page))
  881. goto keep_locked;
  882. mapping = page_mapping(page);
  883. case PAGE_CLEAN:
  884. ; /* try to free the page below */
  885. }
  886. }
  887. /*
  888. * If the page has buffers, try to free the buffer mappings
  889. * associated with this page. If we succeed we try to free
  890. * the page as well.
  891. *
  892. * We do this even if the page is PageDirty().
  893. * try_to_release_page() does not perform I/O, but it is
  894. * possible for a page to have PageDirty set, but it is actually
  895. * clean (all its buffers are clean). This happens if the
  896. * buffers were written out directly, with submit_bh(). ext3
  897. * will do this, as well as the blockdev mapping.
  898. * try_to_release_page() will discover that cleanness and will
  899. * drop the buffers and mark the page clean - it can be freed.
  900. *
  901. * Rarely, pages can have buffers and no ->mapping. These are
  902. * the pages which were not successfully invalidated in
  903. * truncate_complete_page(). We try to drop those buffers here
  904. * and if that worked, and the page is no longer mapped into
  905. * process address space (page_count == 1) it can be freed.
  906. * Otherwise, leave the page on the LRU so it is swappable.
  907. */
  908. if (page_has_private(page)) {
  909. if (!try_to_release_page(page, sc->gfp_mask))
  910. goto activate_locked;
  911. if (!mapping && page_count(page) == 1) {
  912. unlock_page(page);
  913. if (put_page_testzero(page))
  914. goto free_it;
  915. else {
  916. /*
  917. * rare race with speculative reference.
  918. * the speculative reference will free
  919. * this page shortly, so we may
  920. * increment nr_reclaimed here (and
  921. * leave it off the LRU).
  922. */
  923. nr_reclaimed++;
  924. continue;
  925. }
  926. }
  927. }
  928. if (!mapping || !__remove_mapping(mapping, page))
  929. goto keep_locked;
  930. /*
  931. * At this point, we have no other references and there is
  932. * no way to pick any more up (removed from LRU, removed
  933. * from pagecache). Can use non-atomic bitops now (and
  934. * we obviously don't have to worry about waking up a process
  935. * waiting on the page lock, because there are no references.
  936. */
  937. __clear_page_locked(page);
  938. free_it:
  939. nr_reclaimed++;
  940. /*
  941. * Is there need to periodically free_page_list? It would
  942. * appear not as the counts should be low
  943. */
  944. list_add(&page->lru, &free_pages);
  945. continue;
  946. cull_mlocked:
  947. if (PageSwapCache(page))
  948. try_to_free_swap(page);
  949. unlock_page(page);
  950. putback_lru_page(page);
  951. continue;
  952. activate_locked:
  953. /* Not a candidate for swapping, so reclaim swap space. */
  954. if (PageSwapCache(page) && vm_swap_full())
  955. try_to_free_swap(page);
  956. VM_BUG_ON(PageActive(page));
  957. SetPageActive(page);
  958. pgactivate++;
  959. keep_locked:
  960. unlock_page(page);
  961. keep:
  962. list_add(&page->lru, &ret_pages);
  963. VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  964. }
  965. free_hot_cold_page_list(&free_pages, 1);
  966. list_splice(&ret_pages, page_list);
  967. count_vm_events(PGACTIVATE, pgactivate);
  968. mem_cgroup_uncharge_end();
  969. *ret_nr_dirty += nr_dirty;
  970. *ret_nr_congested += nr_congested;
  971. *ret_nr_unqueued_dirty += nr_unqueued_dirty;
  972. *ret_nr_writeback += nr_writeback;
  973. *ret_nr_immediate += nr_immediate;
  974. return nr_reclaimed;
  975. }
  976. unsigned long reclaim_clean_pages_from_list(struct zone *zone,
  977. struct list_head *page_list)
  978. {
  979. struct scan_control sc = {
  980. .gfp_mask = GFP_KERNEL,
  981. .priority = DEF_PRIORITY,
  982. .may_unmap = 1,
  983. };
  984. unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
  985. struct page *page, *next;
  986. LIST_HEAD(clean_pages);
  987. list_for_each_entry_safe(page, next, page_list, lru) {
  988. if (page_is_file_cache(page) && !PageDirty(page)) {
  989. ClearPageActive(page);
  990. list_move(&page->lru, &clean_pages);
  991. }
  992. }
  993. ret = shrink_page_list(&clean_pages, zone, &sc,
  994. TTU_UNMAP|TTU_IGNORE_ACCESS,
  995. &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
  996. list_splice(&clean_pages, page_list);
  997. __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
  998. return ret;
  999. }
  1000. /*
  1001. * Attempt to remove the specified page from its LRU. Only take this page
  1002. * if it is of the appropriate PageActive status. Pages which are being
  1003. * freed elsewhere are also ignored.
  1004. *
  1005. * page: page to consider
  1006. * mode: one of the LRU isolation modes defined above
  1007. *
  1008. * returns 0 on success, -ve errno on failure.
  1009. */
  1010. int __isolate_lru_page(struct page *page, isolate_mode_t mode)
  1011. {
  1012. int ret = -EINVAL;
  1013. /* Only take pages on the LRU. */
  1014. if (!PageLRU(page))
  1015. return ret;
  1016. /* Compaction should not handle unevictable pages but CMA can do so */
  1017. if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
  1018. return ret;
  1019. ret = -EBUSY;
  1020. /*
  1021. * To minimise LRU disruption, the caller can indicate that it only
  1022. * wants to isolate pages it will be able to operate on without
  1023. * blocking - clean pages for the most part.
  1024. *
  1025. * ISOLATE_CLEAN means that only clean pages should be isolated. This
  1026. * is used by reclaim when it is cannot write to backing storage
  1027. *
  1028. * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
  1029. * that it is possible to migrate without blocking
  1030. */
  1031. if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
  1032. /* All the caller can do on PageWriteback is block */
  1033. if (PageWriteback(page))
  1034. return ret;
  1035. if (PageDirty(page)) {
  1036. struct address_space *mapping;
  1037. /* ISOLATE_CLEAN means only clean pages */
  1038. if (mode & ISOLATE_CLEAN)
  1039. return ret;
  1040. /*
  1041. * Only pages without mappings or that have a
  1042. * ->migratepage callback are possible to migrate
  1043. * without blocking
  1044. */
  1045. mapping = page_mapping(page);
  1046. if (mapping && !mapping->a_ops->migratepage)
  1047. return ret;
  1048. }
  1049. }
  1050. if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
  1051. return ret;
  1052. if (likely(get_page_unless_zero(page))) {
  1053. /*
  1054. * Be careful not to clear PageLRU until after we're
  1055. * sure the page is not being freed elsewhere -- the
  1056. * page release code relies on it.
  1057. */
  1058. ClearPageLRU(page);
  1059. ret = 0;
  1060. }
  1061. return ret;
  1062. }
  1063. /*
  1064. * zone->lru_lock is heavily contended. Some of the functions that
  1065. * shrink the lists perform better by taking out a batch of pages
  1066. * and working on them outside the LRU lock.
  1067. *
  1068. * For pagecache intensive workloads, this function is the hottest
  1069. * spot in the kernel (apart from copy_*_user functions).
  1070. *
  1071. * Appropriate locks must be held before calling this function.
  1072. *
  1073. * @nr_to_scan: The number of pages to look through on the list.
  1074. * @lruvec: The LRU vector to pull pages from.
  1075. * @dst: The temp list to put pages on to.
  1076. * @nr_scanned: The number of pages that were scanned.
  1077. * @sc: The scan_control struct for this reclaim session
  1078. * @mode: One of the LRU isolation modes
  1079. * @lru: LRU list id for isolating
  1080. *
  1081. * returns how many pages were moved onto *@dst.
  1082. */
  1083. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  1084. struct lruvec *lruvec, struct list_head *dst,
  1085. unsigned long *nr_scanned, struct scan_control *sc,
  1086. isolate_mode_t mode, enum lru_list lru)
  1087. {
  1088. struct list_head *src = &lruvec->lists[lru];
  1089. unsigned long nr_taken = 0;
  1090. unsigned long scan;
  1091. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  1092. struct page *page;
  1093. int nr_pages;
  1094. page = lru_to_page(src);
  1095. prefetchw_prev_lru_page(page, src, flags);
  1096. VM_BUG_ON(!PageLRU(page));
  1097. switch (__isolate_lru_page(page, mode)) {
  1098. case 0:
  1099. nr_pages = hpage_nr_pages(page);
  1100. mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
  1101. list_move(&page->lru, dst);
  1102. nr_taken += nr_pages;
  1103. break;
  1104. case -EBUSY:
  1105. /* else it is being freed elsewhere */
  1106. list_move(&page->lru, src);
  1107. continue;
  1108. default:
  1109. BUG();
  1110. }
  1111. }
  1112. *nr_scanned = scan;
  1113. trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
  1114. nr_taken, mode, is_file_lru(lru));
  1115. return nr_taken;
  1116. }
  1117. /**
  1118. * isolate_lru_page - tries to isolate a page from its LRU list
  1119. * @page: page to isolate from its LRU list
  1120. *
  1121. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1122. * vmstat statistic corresponding to whatever LRU list the page was on.
  1123. *
  1124. * Returns 0 if the page was removed from an LRU list.
  1125. * Returns -EBUSY if the page was not on an LRU list.
  1126. *
  1127. * The returned page will have PageLRU() cleared. If it was found on
  1128. * the active list, it will have PageActive set. If it was found on
  1129. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1130. * may need to be cleared by the caller before letting the page go.
  1131. *
  1132. * The vmstat statistic corresponding to the list on which the page was
  1133. * found will be decremented.
  1134. *
  1135. * Restrictions:
  1136. * (1) Must be called with an elevated refcount on the page. This is a
  1137. * fundamentnal difference from isolate_lru_pages (which is called
  1138. * without a stable reference).
  1139. * (2) the lru_lock must not be held.
  1140. * (3) interrupts must be enabled.
  1141. */
  1142. int isolate_lru_page(struct page *page)
  1143. {
  1144. int ret = -EBUSY;
  1145. VM_BUG_ON(!page_count(page));
  1146. if (PageLRU(page)) {
  1147. struct zone *zone = page_zone(page);
  1148. struct lruvec *lruvec;
  1149. spin_lock_irq(&zone->lru_lock);
  1150. lruvec = mem_cgroup_page_lruvec(page, zone);
  1151. if (PageLRU(page)) {
  1152. int lru = page_lru(page);
  1153. get_page(page);
  1154. ClearPageLRU(page);
  1155. del_page_from_lru_list(page, lruvec, lru);
  1156. ret = 0;
  1157. }
  1158. spin_unlock_irq(&zone->lru_lock);
  1159. }
  1160. return ret;
  1161. }
  1162. /*
  1163. * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
  1164. * then get resheduled. When there are massive number of tasks doing page
  1165. * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
  1166. * the LRU list will go small and be scanned faster than necessary, leading to
  1167. * unnecessary swapping, thrashing and OOM.
  1168. */
  1169. static int too_many_isolated(struct zone *zone, int file,
  1170. struct scan_control *sc)
  1171. {
  1172. unsigned long inactive, isolated;
  1173. if (current_is_kswapd())
  1174. return 0;
  1175. if (!global_reclaim(sc))
  1176. return 0;
  1177. if (file) {
  1178. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1179. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1180. } else {
  1181. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1182. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1183. }
  1184. /*
  1185. * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
  1186. * won't get blocked by normal direct-reclaimers, forming a circular
  1187. * deadlock.
  1188. */
  1189. if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
  1190. inactive >>= 3;
  1191. return isolated > inactive;
  1192. }
  1193. static noinline_for_stack void
  1194. putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
  1195. {
  1196. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1197. struct zone *zone = lruvec_zone(lruvec);
  1198. LIST_HEAD(pages_to_free);
  1199. /*
  1200. * Put back any unfreeable pages.
  1201. */
  1202. while (!list_empty(page_list)) {
  1203. struct page *page = lru_to_page(page_list);
  1204. int lru;
  1205. VM_BUG_ON(PageLRU(page));
  1206. list_del(&page->lru);
  1207. if (unlikely(!page_evictable(page))) {
  1208. spin_unlock_irq(&zone->lru_lock);
  1209. putback_lru_page(page);
  1210. spin_lock_irq(&zone->lru_lock);
  1211. continue;
  1212. }
  1213. lruvec = mem_cgroup_page_lruvec(page, zone);
  1214. SetPageLRU(page);
  1215. lru = page_lru(page);
  1216. add_page_to_lru_list(page, lruvec, lru);
  1217. if (is_active_lru(lru)) {
  1218. int file = is_file_lru(lru);
  1219. int numpages = hpage_nr_pages(page);
  1220. reclaim_stat->recent_rotated[file] += numpages;
  1221. }
  1222. if (put_page_testzero(page)) {
  1223. __ClearPageLRU(page);
  1224. __ClearPageActive(page);
  1225. del_page_from_lru_list(page, lruvec, lru);
  1226. if (unlikely(PageCompound(page))) {
  1227. spin_unlock_irq(&zone->lru_lock);
  1228. (*get_compound_page_dtor(page))(page);
  1229. spin_lock_irq(&zone->lru_lock);
  1230. } else
  1231. list_add(&page->lru, &pages_to_free);
  1232. }
  1233. }
  1234. /*
  1235. * To save our caller's stack, now use input list for pages to free.
  1236. */
  1237. list_splice(&pages_to_free, page_list);
  1238. }
  1239. /*
  1240. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1241. * of reclaimed pages
  1242. */
  1243. static noinline_for_stack unsigned long
  1244. shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
  1245. struct scan_control *sc, enum lru_list lru)
  1246. {
  1247. LIST_HEAD(page_list);
  1248. unsigned long nr_scanned;
  1249. unsigned long nr_reclaimed = 0;
  1250. unsigned long nr_taken;
  1251. unsigned long nr_dirty = 0;
  1252. unsigned long nr_congested = 0;
  1253. unsigned long nr_unqueued_dirty = 0;
  1254. unsigned long nr_writeback = 0;
  1255. unsigned long nr_immediate = 0;
  1256. isolate_mode_t isolate_mode = 0;
  1257. int file = is_file_lru(lru);
  1258. struct zone *zone = lruvec_zone(lruvec);
  1259. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1260. while (unlikely(too_many_isolated(zone, file, sc))) {
  1261. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1262. /* We are about to die and free our memory. Return now. */
  1263. if (fatal_signal_pending(current))
  1264. return SWAP_CLUSTER_MAX;
  1265. }
  1266. lru_add_drain();
  1267. if (!sc->may_unmap)
  1268. isolate_mode |= ISOLATE_UNMAPPED;
  1269. if (!sc->may_writepage)
  1270. isolate_mode |= ISOLATE_CLEAN;
  1271. spin_lock_irq(&zone->lru_lock);
  1272. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
  1273. &nr_scanned, sc, isolate_mode, lru);
  1274. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1275. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1276. if (global_reclaim(sc)) {
  1277. zone->pages_scanned += nr_scanned;
  1278. if (current_is_kswapd())
  1279. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
  1280. else
  1281. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
  1282. }
  1283. spin_unlock_irq(&zone->lru_lock);
  1284. if (nr_taken == 0)
  1285. return 0;
  1286. nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
  1287. &nr_dirty, &nr_unqueued_dirty, &nr_congested,
  1288. &nr_writeback, &nr_immediate,
  1289. false);
  1290. spin_lock_irq(&zone->lru_lock);
  1291. reclaim_stat->recent_scanned[file] += nr_taken;
  1292. if (global_reclaim(sc)) {
  1293. if (current_is_kswapd())
  1294. __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
  1295. nr_reclaimed);
  1296. else
  1297. __count_zone_vm_events(PGSTEAL_DIRECT, zone,
  1298. nr_reclaimed);
  1299. }
  1300. putback_inactive_pages(lruvec, &page_list);
  1301. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1302. spin_unlock_irq(&zone->lru_lock);
  1303. free_hot_cold_page_list(&page_list, 1);
  1304. /*
  1305. * If reclaim is isolating dirty pages under writeback, it implies
  1306. * that the long-lived page allocation rate is exceeding the page
  1307. * laundering rate. Either the global limits are not being effective
  1308. * at throttling processes due to the page distribution throughout
  1309. * zones or there is heavy usage of a slow backing device. The
  1310. * only option is to throttle from reclaim context which is not ideal
  1311. * as there is no guarantee the dirtying process is throttled in the
  1312. * same way balance_dirty_pages() manages.
  1313. *
  1314. * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
  1315. * of pages under pages flagged for immediate reclaim and stall if any
  1316. * are encountered in the nr_immediate check below.
  1317. */
  1318. if (nr_writeback && nr_writeback == nr_taken)
  1319. zone_set_flag(zone, ZONE_WRITEBACK);
  1320. /*
  1321. * memcg will stall in page writeback so only consider forcibly
  1322. * stalling for global reclaim
  1323. */
  1324. if (global_reclaim(sc)) {
  1325. /*
  1326. * Tag a zone as congested if all the dirty pages scanned were
  1327. * backed by a congested BDI and wait_iff_congested will stall.
  1328. */
  1329. if (nr_dirty && nr_dirty == nr_congested)
  1330. zone_set_flag(zone, ZONE_CONGESTED);
  1331. /*
  1332. * If dirty pages are scanned that are not queued for IO, it
  1333. * implies that flushers are not keeping up. In this case, flag
  1334. * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
  1335. * pages from reclaim context. It will forcibly stall in the
  1336. * next check.
  1337. */
  1338. if (nr_unqueued_dirty == nr_taken)
  1339. zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
  1340. /*
  1341. * In addition, if kswapd scans pages marked marked for
  1342. * immediate reclaim and under writeback (nr_immediate), it
  1343. * implies that pages are cycling through the LRU faster than
  1344. * they are written so also forcibly stall.
  1345. */
  1346. if (nr_unqueued_dirty == nr_taken || nr_immediate)
  1347. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1348. }
  1349. /*
  1350. * Stall direct reclaim for IO completions if underlying BDIs or zone
  1351. * is congested. Allow kswapd to continue until it starts encountering
  1352. * unqueued dirty pages or cycling through the LRU too quickly.
  1353. */
  1354. if (!sc->hibernation_mode && !current_is_kswapd())
  1355. wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
  1356. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1357. zone_idx(zone),
  1358. nr_scanned, nr_reclaimed,
  1359. sc->priority,
  1360. trace_shrink_flags(file));
  1361. return nr_reclaimed;
  1362. }
  1363. /*
  1364. * This moves pages from the active list to the inactive list.
  1365. *
  1366. * We move them the other way if the page is referenced by one or more
  1367. * processes, from rmap.
  1368. *
  1369. * If the pages are mostly unmapped, the processing is fast and it is
  1370. * appropriate to hold zone->lru_lock across the whole operation. But if
  1371. * the pages are mapped, the processing is slow (page_referenced()) so we
  1372. * should drop zone->lru_lock around each page. It's impossible to balance
  1373. * this, so instead we remove the pages from the LRU while processing them.
  1374. * It is safe to rely on PG_active against the non-LRU pages in here because
  1375. * nobody will play with that bit on a non-LRU page.
  1376. *
  1377. * The downside is that we have to touch page->_count against each page.
  1378. * But we had to alter page->flags anyway.
  1379. */
  1380. static void move_active_pages_to_lru(struct lruvec *lruvec,
  1381. struct list_head *list,
  1382. struct list_head *pages_to_free,
  1383. enum lru_list lru)
  1384. {
  1385. struct zone *zone = lruvec_zone(lruvec);
  1386. unsigned long pgmoved = 0;
  1387. struct page *page;
  1388. int nr_pages;
  1389. while (!list_empty(list)) {
  1390. page = lru_to_page(list);
  1391. lruvec = mem_cgroup_page_lruvec(page, zone);
  1392. VM_BUG_ON(PageLRU(page));
  1393. SetPageLRU(page);
  1394. nr_pages = hpage_nr_pages(page);
  1395. mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
  1396. list_move(&page->lru, &lruvec->lists[lru]);
  1397. pgmoved += nr_pages;
  1398. if (put_page_testzero(page)) {
  1399. __ClearPageLRU(page);
  1400. __ClearPageActive(page);
  1401. del_page_from_lru_list(page, lruvec, lru);
  1402. if (unlikely(PageCompound(page))) {
  1403. spin_unlock_irq(&zone->lru_lock);
  1404. (*get_compound_page_dtor(page))(page);
  1405. spin_lock_irq(&zone->lru_lock);
  1406. } else
  1407. list_add(&page->lru, pages_to_free);
  1408. }
  1409. }
  1410. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1411. if (!is_active_lru(lru))
  1412. __count_vm_events(PGDEACTIVATE, pgmoved);
  1413. }
  1414. static void shrink_active_list(unsigned long nr_to_scan,
  1415. struct lruvec *lruvec,
  1416. struct scan_control *sc,
  1417. enum lru_list lru)
  1418. {
  1419. unsigned long nr_taken;
  1420. unsigned long nr_scanned;
  1421. unsigned long vm_flags;
  1422. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1423. LIST_HEAD(l_active);
  1424. LIST_HEAD(l_inactive);
  1425. struct page *page;
  1426. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1427. unsigned long nr_rotated = 0;
  1428. isolate_mode_t isolate_mode = 0;
  1429. int file = is_file_lru(lru);
  1430. struct zone *zone = lruvec_zone(lruvec);
  1431. lru_add_drain();
  1432. if (!sc->may_unmap)
  1433. isolate_mode |= ISOLATE_UNMAPPED;
  1434. if (!sc->may_writepage)
  1435. isolate_mode |= ISOLATE_CLEAN;
  1436. spin_lock_irq(&zone->lru_lock);
  1437. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
  1438. &nr_scanned, sc, isolate_mode, lru);
  1439. if (global_reclaim(sc))
  1440. zone->pages_scanned += nr_scanned;
  1441. reclaim_stat->recent_scanned[file] += nr_taken;
  1442. __count_zone_vm_events(PGREFILL, zone, nr_scanned);
  1443. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1444. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1445. spin_unlock_irq(&zone->lru_lock);
  1446. while (!list_empty(&l_hold)) {
  1447. cond_resched();
  1448. page = lru_to_page(&l_hold);
  1449. list_del(&page->lru);
  1450. if (unlikely(!page_evictable(page))) {
  1451. putback_lru_page(page);
  1452. continue;
  1453. }
  1454. if (unlikely(buffer_heads_over_limit)) {
  1455. if (page_has_private(page) && trylock_page(page)) {
  1456. if (page_has_private(page))
  1457. try_to_release_page(page, 0);
  1458. unlock_page(page);
  1459. }
  1460. }
  1461. if (page_referenced(page, 0, sc->target_mem_cgroup,
  1462. &vm_flags)) {
  1463. nr_rotated += hpage_nr_pages(page);
  1464. /*
  1465. * Identify referenced, file-backed active pages and
  1466. * give them one more trip around the active list. So
  1467. * that executable code get better chances to stay in
  1468. * memory under moderate memory pressure. Anon pages
  1469. * are not likely to be evicted by use-once streaming
  1470. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1471. * so we ignore them here.
  1472. */
  1473. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1474. list_add(&page->lru, &l_active);
  1475. continue;
  1476. }
  1477. }
  1478. ClearPageActive(page); /* we are de-activating */
  1479. list_add(&page->lru, &l_inactive);
  1480. }
  1481. /*
  1482. * Move pages back to the lru list.
  1483. */
  1484. spin_lock_irq(&zone->lru_lock);
  1485. /*
  1486. * Count referenced pages from currently used mappings as rotated,
  1487. * even though only some of them are actually re-activated. This
  1488. * helps balance scan pressure between file and anonymous pages in
  1489. * get_scan_ratio.
  1490. */
  1491. reclaim_stat->recent_rotated[file] += nr_rotated;
  1492. move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
  1493. move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
  1494. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1495. spin_unlock_irq(&zone->lru_lock);
  1496. free_hot_cold_page_list(&l_hold, 1);
  1497. }
  1498. #ifdef CONFIG_SWAP
  1499. static int inactive_anon_is_low_global(struct zone *zone)
  1500. {
  1501. unsigned long active, inactive;
  1502. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1503. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1504. if (inactive * zone->inactive_ratio < active)
  1505. return 1;
  1506. return 0;
  1507. }
  1508. /**
  1509. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1510. * @lruvec: LRU vector to check
  1511. *
  1512. * Returns true if the zone does not have enough inactive anon pages,
  1513. * meaning some active anon pages need to be deactivated.
  1514. */
  1515. static int inactive_anon_is_low(struct lruvec *lruvec)
  1516. {
  1517. /*
  1518. * If we don't have swap space, anonymous page deactivation
  1519. * is pointless.
  1520. */
  1521. if (!total_swap_pages)
  1522. return 0;
  1523. if (!mem_cgroup_disabled())
  1524. return mem_cgroup_inactive_anon_is_low(lruvec);
  1525. return inactive_anon_is_low_global(lruvec_zone(lruvec));
  1526. }
  1527. #else
  1528. static inline int inactive_anon_is_low(struct lruvec *lruvec)
  1529. {
  1530. return 0;
  1531. }
  1532. #endif
  1533. /**
  1534. * inactive_file_is_low - check if file pages need to be deactivated
  1535. * @lruvec: LRU vector to check
  1536. *
  1537. * When the system is doing streaming IO, memory pressure here
  1538. * ensures that active file pages get deactivated, until more
  1539. * than half of the file pages are on the inactive list.
  1540. *
  1541. * Once we get to that situation, protect the system's working
  1542. * set from being evicted by disabling active file page aging.
  1543. *
  1544. * This uses a different ratio than the anonymous pages, because
  1545. * the page cache uses a use-once replacement algorithm.
  1546. */
  1547. static int inactive_file_is_low(struct lruvec *lruvec)
  1548. {
  1549. unsigned long inactive;
  1550. unsigned long active;
  1551. inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1552. active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
  1553. return active > inactive;
  1554. }
  1555. static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
  1556. {
  1557. if (is_file_lru(lru))
  1558. return inactive_file_is_low(lruvec);
  1559. else
  1560. return inactive_anon_is_low(lruvec);
  1561. }
  1562. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1563. struct lruvec *lruvec, struct scan_control *sc)
  1564. {
  1565. if (is_active_lru(lru)) {
  1566. if (inactive_list_is_low(lruvec, lru))
  1567. shrink_active_list(nr_to_scan, lruvec, sc, lru);
  1568. return 0;
  1569. }
  1570. return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
  1571. }
  1572. static int vmscan_swappiness(struct scan_control *sc)
  1573. {
  1574. if (global_reclaim(sc))
  1575. return vm_swappiness;
  1576. return mem_cgroup_swappiness(sc->target_mem_cgroup);
  1577. }
  1578. enum scan_balance {
  1579. SCAN_EQUAL,
  1580. SCAN_FRACT,
  1581. SCAN_ANON,
  1582. SCAN_FILE,
  1583. };
  1584. /*
  1585. * Determine how aggressively the anon and file LRU lists should be
  1586. * scanned. The relative value of each set of LRU lists is determined
  1587. * by looking at the fraction of the pages scanned we did rotate back
  1588. * onto the active list instead of evict.
  1589. *
  1590. * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
  1591. * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
  1592. */
  1593. static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
  1594. unsigned long *nr)
  1595. {
  1596. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1597. u64 fraction[2];
  1598. u64 denominator = 0; /* gcc */
  1599. struct zone *zone = lruvec_zone(lruvec);
  1600. unsigned long anon_prio, file_prio;
  1601. enum scan_balance scan_balance;
  1602. unsigned long anon, file, free;
  1603. bool force_scan = false;
  1604. unsigned long ap, fp;
  1605. enum lru_list lru;
  1606. /*
  1607. * If the zone or memcg is small, nr[l] can be 0. This
  1608. * results in no scanning on this priority and a potential
  1609. * priority drop. Global direct reclaim can go to the next
  1610. * zone and tends to have no problems. Global kswapd is for
  1611. * zone balancing and it needs to scan a minimum amount. When
  1612. * reclaiming for a memcg, a priority drop can cause high
  1613. * latencies, so it's better to scan a minimum amount there as
  1614. * well.
  1615. */
  1616. if (current_is_kswapd() && !zone_reclaimable(zone))
  1617. force_scan = true;
  1618. if (!global_reclaim(sc))
  1619. force_scan = true;
  1620. /* If we have no swap space, do not bother scanning anon pages. */
  1621. if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
  1622. scan_balance = SCAN_FILE;
  1623. goto out;
  1624. }
  1625. /*
  1626. * Global reclaim will swap to prevent OOM even with no
  1627. * swappiness, but memcg users want to use this knob to
  1628. * disable swapping for individual groups completely when
  1629. * using the memory controller's swap limit feature would be
  1630. * too expensive.
  1631. */
  1632. if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
  1633. scan_balance = SCAN_FILE;
  1634. goto out;
  1635. }
  1636. /*
  1637. * Do not apply any pressure balancing cleverness when the
  1638. * system is close to OOM, scan both anon and file equally
  1639. * (unless the swappiness setting disagrees with swapping).
  1640. */
  1641. if (!sc->priority && vmscan_swappiness(sc)) {
  1642. scan_balance = SCAN_EQUAL;
  1643. goto out;
  1644. }
  1645. anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
  1646. get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1647. file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
  1648. get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1649. /*
  1650. * If it's foreseeable that reclaiming the file cache won't be
  1651. * enough to get the zone back into a desirable shape, we have
  1652. * to swap. Better start now and leave the - probably heavily
  1653. * thrashing - remaining file pages alone.
  1654. */
  1655. if (global_reclaim(sc)) {
  1656. free = zone_page_state(zone, NR_FREE_PAGES);
  1657. if (unlikely(file + free <= high_wmark_pages(zone))) {
  1658. scan_balance = SCAN_ANON;
  1659. goto out;
  1660. }
  1661. }
  1662. /*
  1663. * There is enough inactive page cache, do not reclaim
  1664. * anything from the anonymous working set right now.
  1665. */
  1666. if (!inactive_file_is_low(lruvec)) {
  1667. scan_balance = SCAN_FILE;
  1668. goto out;
  1669. }
  1670. scan_balance = SCAN_FRACT;
  1671. /*
  1672. * With swappiness at 100, anonymous and file have the same priority.
  1673. * This scanning priority is essentially the inverse of IO cost.
  1674. */
  1675. anon_prio = vmscan_swappiness(sc);
  1676. file_prio = 200 - anon_prio;
  1677. /*
  1678. * OK, so we have swap space and a fair amount of page cache
  1679. * pages. We use the recently rotated / recently scanned
  1680. * ratios to determine how valuable each cache is.
  1681. *
  1682. * Because workloads change over time (and to avoid overflow)
  1683. * we keep these statistics as a floating average, which ends
  1684. * up weighing recent references more than old ones.
  1685. *
  1686. * anon in [0], file in [1]
  1687. */
  1688. spin_lock_irq(&zone->lru_lock);
  1689. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1690. reclaim_stat->recent_scanned[0] /= 2;
  1691. reclaim_stat->recent_rotated[0] /= 2;
  1692. }
  1693. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1694. reclaim_stat->recent_scanned[1] /= 2;
  1695. reclaim_stat->recent_rotated[1] /= 2;
  1696. }
  1697. /*
  1698. * The amount of pressure on anon vs file pages is inversely
  1699. * proportional to the fraction of recently scanned pages on
  1700. * each list that were recently referenced and in active use.
  1701. */
  1702. ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
  1703. ap /= reclaim_stat->recent_rotated[0] + 1;
  1704. fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
  1705. fp /= reclaim_stat->recent_rotated[1] + 1;
  1706. spin_unlock_irq(&zone->lru_lock);
  1707. fraction[0] = ap;
  1708. fraction[1] = fp;
  1709. denominator = ap + fp + 1;
  1710. out:
  1711. for_each_evictable_lru(lru) {
  1712. int file = is_file_lru(lru);
  1713. unsigned long size;
  1714. unsigned long scan;
  1715. size = get_lru_size(lruvec, lru);
  1716. scan = size >> sc->priority;
  1717. if (!scan && force_scan)
  1718. scan = min(size, SWAP_CLUSTER_MAX);
  1719. switch (scan_balance) {
  1720. case SCAN_EQUAL:
  1721. /* Scan lists relative to size */
  1722. break;
  1723. case SCAN_FRACT:
  1724. /*
  1725. * Scan types proportional to swappiness and
  1726. * their relative recent reclaim efficiency.
  1727. */
  1728. scan = div64_u64(scan * fraction[file], denominator);
  1729. break;
  1730. case SCAN_FILE:
  1731. case SCAN_ANON:
  1732. /* Scan one type exclusively */
  1733. if ((scan_balance == SCAN_FILE) != file)
  1734. scan = 0;
  1735. break;
  1736. default:
  1737. /* Look ma, no brain */
  1738. BUG();
  1739. }
  1740. nr[lru] = scan;
  1741. }
  1742. }
  1743. /*
  1744. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1745. */
  1746. static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
  1747. {
  1748. unsigned long nr[NR_LRU_LISTS];
  1749. unsigned long targets[NR_LRU_LISTS];
  1750. unsigned long nr_to_scan;
  1751. enum lru_list lru;
  1752. unsigned long nr_reclaimed = 0;
  1753. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1754. struct blk_plug plug;
  1755. bool scan_adjusted = false;
  1756. get_scan_count(lruvec, sc, nr);
  1757. /* Record the original scan target for proportional adjustments later */
  1758. memcpy(targets, nr, sizeof(nr));
  1759. blk_start_plug(&plug);
  1760. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1761. nr[LRU_INACTIVE_FILE]) {
  1762. unsigned long nr_anon, nr_file, percentage;
  1763. unsigned long nr_scanned;
  1764. for_each_evictable_lru(lru) {
  1765. if (nr[lru]) {
  1766. nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
  1767. nr[lru] -= nr_to_scan;
  1768. nr_reclaimed += shrink_list(lru, nr_to_scan,
  1769. lruvec, sc);
  1770. }
  1771. }
  1772. if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
  1773. continue;
  1774. /*
  1775. * For global direct reclaim, reclaim only the number of pages
  1776. * requested. Less care is taken to scan proportionally as it
  1777. * is more important to minimise direct reclaim stall latency
  1778. * than it is to properly age the LRU lists.
  1779. */
  1780. if (global_reclaim(sc) && !current_is_kswapd())
  1781. break;
  1782. /*
  1783. * For kswapd and memcg, reclaim at least the number of pages
  1784. * requested. Ensure that the anon and file LRUs shrink
  1785. * proportionally what was requested by get_scan_count(). We
  1786. * stop reclaiming one LRU and reduce the amount scanning
  1787. * proportional to the original scan target.
  1788. */
  1789. nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
  1790. nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
  1791. if (nr_file > nr_anon) {
  1792. unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
  1793. targets[LRU_ACTIVE_ANON] + 1;
  1794. lru = LRU_BASE;
  1795. percentage = nr_anon * 100 / scan_target;
  1796. } else {
  1797. unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
  1798. targets[LRU_ACTIVE_FILE] + 1;
  1799. lru = LRU_FILE;
  1800. percentage = nr_file * 100 / scan_target;
  1801. }
  1802. /* Stop scanning the smaller of the LRU */
  1803. nr[lru] = 0;
  1804. nr[lru + LRU_ACTIVE] = 0;
  1805. /*
  1806. * Recalculate the other LRU scan count based on its original
  1807. * scan target and the percentage scanning already complete
  1808. */
  1809. lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
  1810. nr_scanned = targets[lru] - nr[lru];
  1811. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1812. nr[lru] -= min(nr[lru], nr_scanned);
  1813. lru += LRU_ACTIVE;
  1814. nr_scanned = targets[lru] - nr[lru];
  1815. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1816. nr[lru] -= min(nr[lru], nr_scanned);
  1817. scan_adjusted = true;
  1818. }
  1819. blk_finish_plug(&plug);
  1820. sc->nr_reclaimed += nr_reclaimed;
  1821. /*
  1822. * Even if we did not try to evict anon pages at all, we want to
  1823. * rebalance the anon lru active/inactive ratio.
  1824. */
  1825. if (inactive_anon_is_low(lruvec))
  1826. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  1827. sc, LRU_ACTIVE_ANON);
  1828. throttle_vm_writeout(sc->gfp_mask);
  1829. }
  1830. /* Use reclaim/compaction for costly allocs or under memory pressure */
  1831. static bool in_reclaim_compaction(struct scan_control *sc)
  1832. {
  1833. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  1834. (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
  1835. sc->priority < DEF_PRIORITY - 2))
  1836. return true;
  1837. return false;
  1838. }
  1839. /*
  1840. * Reclaim/compaction is used for high-order allocation requests. It reclaims
  1841. * order-0 pages before compacting the zone. should_continue_reclaim() returns
  1842. * true if more pages should be reclaimed such that when the page allocator
  1843. * calls try_to_compact_zone() that it will have enough free pages to succeed.
  1844. * It will give up earlier than that if there is difficulty reclaiming pages.
  1845. */
  1846. static inline bool should_continue_reclaim(struct zone *zone,
  1847. unsigned long nr_reclaimed,
  1848. unsigned long nr_scanned,
  1849. struct scan_control *sc)
  1850. {
  1851. unsigned long pages_for_compaction;
  1852. unsigned long inactive_lru_pages;
  1853. /* If not in reclaim/compaction mode, stop */
  1854. if (!in_reclaim_compaction(sc))
  1855. return false;
  1856. /* Consider stopping depending on scan and reclaim activity */
  1857. if (sc->gfp_mask & __GFP_REPEAT) {
  1858. /*
  1859. * For __GFP_REPEAT allocations, stop reclaiming if the
  1860. * full LRU list has been scanned and we are still failing
  1861. * to reclaim pages. This full LRU scan is potentially
  1862. * expensive but a __GFP_REPEAT caller really wants to succeed
  1863. */
  1864. if (!nr_reclaimed && !nr_scanned)
  1865. return false;
  1866. } else {
  1867. /*
  1868. * For non-__GFP_REPEAT allocations which can presumably
  1869. * fail without consequence, stop if we failed to reclaim
  1870. * any pages from the last SWAP_CLUSTER_MAX number of
  1871. * pages that were scanned. This will return to the
  1872. * caller faster at the risk reclaim/compaction and
  1873. * the resulting allocation attempt fails
  1874. */
  1875. if (!nr_reclaimed)
  1876. return false;
  1877. }
  1878. /*
  1879. * If we have not reclaimed enough pages for compaction and the
  1880. * inactive lists are large enough, continue reclaiming
  1881. */
  1882. pages_for_compaction = (2UL << sc->order);
  1883. inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
  1884. if (get_nr_swap_pages() > 0)
  1885. inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
  1886. if (sc->nr_reclaimed < pages_for_compaction &&
  1887. inactive_lru_pages > pages_for_compaction)
  1888. return true;
  1889. /* If compaction would go ahead or the allocation would succeed, stop */
  1890. switch (compaction_suitable(zone, sc->order)) {
  1891. case COMPACT_PARTIAL:
  1892. case COMPACT_CONTINUE:
  1893. return false;
  1894. default:
  1895. return true;
  1896. }
  1897. }
  1898. static void
  1899. __shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
  1900. {
  1901. unsigned long nr_reclaimed, nr_scanned;
  1902. do {
  1903. struct mem_cgroup *root = sc->target_mem_cgroup;
  1904. struct mem_cgroup_reclaim_cookie reclaim = {
  1905. .zone = zone,
  1906. .priority = sc->priority,
  1907. };
  1908. struct mem_cgroup *memcg;
  1909. nr_reclaimed = sc->nr_reclaimed;
  1910. nr_scanned = sc->nr_scanned;
  1911. memcg = mem_cgroup_iter(root, NULL, &reclaim);
  1912. do {
  1913. struct lruvec *lruvec;
  1914. if (soft_reclaim &&
  1915. !mem_cgroup_soft_reclaim_eligible(memcg)) {
  1916. memcg = mem_cgroup_iter(root, memcg, &reclaim);
  1917. continue;
  1918. }
  1919. lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  1920. shrink_lruvec(lruvec, sc);
  1921. /*
  1922. * Direct reclaim and kswapd have to scan all memory
  1923. * cgroups to fulfill the overall scan target for the
  1924. * zone.
  1925. *
  1926. * Limit reclaim, on the other hand, only cares about
  1927. * nr_to_reclaim pages to be reclaimed and it will
  1928. * retry with decreasing priority if one round over the
  1929. * whole hierarchy is not sufficient.
  1930. */
  1931. if (!global_reclaim(sc) &&
  1932. sc->nr_reclaimed >= sc->nr_to_reclaim) {
  1933. mem_cgroup_iter_break(root, memcg);
  1934. break;
  1935. }
  1936. memcg = mem_cgroup_iter(root, memcg, &reclaim);
  1937. } while (memcg);
  1938. vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
  1939. sc->nr_scanned - nr_scanned,
  1940. sc->nr_reclaimed - nr_reclaimed);
  1941. } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
  1942. sc->nr_scanned - nr_scanned, sc));
  1943. }
  1944. static void shrink_zone(struct zone *zone, struct scan_control *sc)
  1945. {
  1946. bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
  1947. unsigned long nr_scanned = sc->nr_scanned;
  1948. __shrink_zone(zone, sc, do_soft_reclaim);
  1949. /*
  1950. * No group is over the soft limit or those that are do not have
  1951. * pages in the zone we are reclaiming so we have to reclaim everybody
  1952. */
  1953. if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
  1954. __shrink_zone(zone, sc, false);
  1955. return;
  1956. }
  1957. }
  1958. /* Returns true if compaction should go ahead for a high-order request */
  1959. static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
  1960. {
  1961. unsigned long balance_gap, watermark;
  1962. bool watermark_ok;
  1963. /* Do not consider compaction for orders reclaim is meant to satisfy */
  1964. if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
  1965. return false;
  1966. /*
  1967. * Compaction takes time to run and there are potentially other
  1968. * callers using the pages just freed. Continue reclaiming until
  1969. * there is a buffer of free pages available to give compaction
  1970. * a reasonable chance of completing and allocating the page
  1971. */
  1972. balance_gap = min(low_wmark_pages(zone),
  1973. (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  1974. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  1975. watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
  1976. watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
  1977. /*
  1978. * If compaction is deferred, reclaim up to a point where
  1979. * compaction will have a chance of success when re-enabled
  1980. */
  1981. if (compaction_deferred(zone, sc->order))
  1982. return watermark_ok;
  1983. /* If compaction is not ready to start, keep reclaiming */
  1984. if (!compaction_suitable(zone, sc->order))
  1985. return false;
  1986. return watermark_ok;
  1987. }
  1988. /*
  1989. * This is the direct reclaim path, for page-allocating processes. We only
  1990. * try to reclaim pages from zones which will satisfy the caller's allocation
  1991. * request.
  1992. *
  1993. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  1994. * Because:
  1995. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  1996. * allocation or
  1997. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  1998. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  1999. * zone defense algorithm.
  2000. *
  2001. * If a zone is deemed to be full of pinned pages then just give it a light
  2002. * scan then give up on it.
  2003. *
  2004. * This function returns true if a zone is being reclaimed for a costly
  2005. * high-order allocation and compaction is ready to begin. This indicates to
  2006. * the caller that it should consider retrying the allocation instead of
  2007. * further reclaim.
  2008. */
  2009. static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
  2010. {
  2011. struct zoneref *z;
  2012. struct zone *zone;
  2013. bool aborted_reclaim = false;
  2014. /*
  2015. * If the number of buffer_heads in the machine exceeds the maximum
  2016. * allowed level, force direct reclaim to scan the highmem zone as
  2017. * highmem pages could be pinning lowmem pages storing buffer_heads
  2018. */
  2019. if (buffer_heads_over_limit)
  2020. sc->gfp_mask |= __GFP_HIGHMEM;
  2021. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2022. gfp_zone(sc->gfp_mask), sc->nodemask) {
  2023. if (!populated_zone(zone))
  2024. continue;
  2025. /*
  2026. * Take care memory controller reclaiming has small influence
  2027. * to global LRU.
  2028. */
  2029. if (global_reclaim(sc)) {
  2030. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2031. continue;
  2032. if (sc->priority != DEF_PRIORITY &&
  2033. !zone_reclaimable(zone))
  2034. continue; /* Let kswapd poll it */
  2035. if (IS_ENABLED(CONFIG_COMPACTION)) {
  2036. /*
  2037. * If we already have plenty of memory free for
  2038. * compaction in this zone, don't free any more.
  2039. * Even though compaction is invoked for any
  2040. * non-zero order, only frequent costly order
  2041. * reclamation is disruptive enough to become a
  2042. * noticeable problem, like transparent huge
  2043. * page allocations.
  2044. */
  2045. if (compaction_ready(zone, sc)) {
  2046. aborted_reclaim = true;
  2047. continue;
  2048. }
  2049. }
  2050. /* need some check for avoid more shrink_zone() */
  2051. }
  2052. shrink_zone(zone, sc);
  2053. }
  2054. return aborted_reclaim;
  2055. }
  2056. /* All zones in zonelist are unreclaimable? */
  2057. static bool all_unreclaimable(struct zonelist *zonelist,
  2058. struct scan_control *sc)
  2059. {
  2060. struct zoneref *z;
  2061. struct zone *zone;
  2062. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2063. gfp_zone(sc->gfp_mask), sc->nodemask) {
  2064. if (!populated_zone(zone))
  2065. continue;
  2066. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2067. continue;
  2068. if (zone_reclaimable(zone))
  2069. return false;
  2070. }
  2071. return true;
  2072. }
  2073. /*
  2074. * This is the main entry point to direct page reclaim.
  2075. *
  2076. * If a full scan of the inactive list fails to free enough memory then we
  2077. * are "out of memory" and something needs to be killed.
  2078. *
  2079. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  2080. * high - the zone may be full of dirty or under-writeback pages, which this
  2081. * caller can't do much about. We kick the writeback threads and take explicit
  2082. * naps in the hope that some of these pages can be written. But if the
  2083. * allocating task holds filesystem locks which prevent writeout this might not
  2084. * work, and the allocation attempt will fail.
  2085. *
  2086. * returns: 0, if no pages reclaimed
  2087. * else, the number of pages reclaimed
  2088. */
  2089. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  2090. struct scan_control *sc,
  2091. struct shrink_control *shrink)
  2092. {
  2093. unsigned long total_scanned = 0;
  2094. struct reclaim_state *reclaim_state = current->reclaim_state;
  2095. struct zoneref *z;
  2096. struct zone *zone;
  2097. unsigned long writeback_threshold;
  2098. bool aborted_reclaim;
  2099. delayacct_freepages_start();
  2100. if (global_reclaim(sc))
  2101. count_vm_event(ALLOCSTALL);
  2102. do {
  2103. vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
  2104. sc->priority);
  2105. sc->nr_scanned = 0;
  2106. aborted_reclaim = shrink_zones(zonelist, sc);
  2107. /*
  2108. * Don't shrink slabs when reclaiming memory from over limit
  2109. * cgroups but do shrink slab at least once when aborting
  2110. * reclaim for compaction to avoid unevenly scanning file/anon
  2111. * LRU pages over slab pages.
  2112. */
  2113. if (global_reclaim(sc)) {
  2114. unsigned long lru_pages = 0;
  2115. nodes_clear(shrink->nodes_to_scan);
  2116. for_each_zone_zonelist(zone, z, zonelist,
  2117. gfp_zone(sc->gfp_mask)) {
  2118. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2119. continue;
  2120. lru_pages += zone_reclaimable_pages(zone);
  2121. node_set(zone_to_nid(zone),
  2122. shrink->nodes_to_scan);
  2123. }
  2124. shrink_slab(shrink, sc->nr_scanned, lru_pages);
  2125. if (reclaim_state) {
  2126. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2127. reclaim_state->reclaimed_slab = 0;
  2128. }
  2129. }
  2130. total_scanned += sc->nr_scanned;
  2131. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  2132. goto out;
  2133. /*
  2134. * If we're getting trouble reclaiming, start doing
  2135. * writepage even in laptop mode.
  2136. */
  2137. if (sc->priority < DEF_PRIORITY - 2)
  2138. sc->may_writepage = 1;
  2139. /*
  2140. * Try to write back as many pages as we just scanned. This
  2141. * tends to cause slow streaming writers to write data to the
  2142. * disk smoothly, at the dirtying rate, which is nice. But
  2143. * that's undesirable in laptop mode, where we *want* lumpy
  2144. * writeout. So in laptop mode, write out the whole world.
  2145. */
  2146. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  2147. if (total_scanned > writeback_threshold) {
  2148. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
  2149. WB_REASON_TRY_TO_FREE_PAGES);
  2150. sc->may_writepage = 1;
  2151. }
  2152. } while (--sc->priority >= 0 && !aborted_reclaim);
  2153. out:
  2154. delayacct_freepages_end();
  2155. if (sc->nr_reclaimed)
  2156. return sc->nr_reclaimed;
  2157. /*
  2158. * As hibernation is going on, kswapd is freezed so that it can't mark
  2159. * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
  2160. * check.
  2161. */
  2162. if (oom_killer_disabled)
  2163. return 0;
  2164. /* Aborted reclaim to try compaction? don't OOM, then */
  2165. if (aborted_reclaim)
  2166. return 1;
  2167. /* top priority shrink_zones still had more to do? don't OOM, then */
  2168. if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
  2169. return 1;
  2170. return 0;
  2171. }
  2172. static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
  2173. {
  2174. struct zone *zone;
  2175. unsigned long pfmemalloc_reserve = 0;
  2176. unsigned long free_pages = 0;
  2177. int i;
  2178. bool wmark_ok;
  2179. for (i = 0; i <= ZONE_NORMAL; i++) {
  2180. zone = &pgdat->node_zones[i];
  2181. pfmemalloc_reserve += min_wmark_pages(zone);
  2182. free_pages += zone_page_state(zone, NR_FREE_PAGES);
  2183. }
  2184. wmark_ok = free_pages > pfmemalloc_reserve / 2;
  2185. /* kswapd must be awake if processes are being throttled */
  2186. if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
  2187. pgdat->classzone_idx = min(pgdat->classzone_idx,
  2188. (enum zone_type)ZONE_NORMAL);
  2189. wake_up_interruptible(&pgdat->kswapd_wait);
  2190. }
  2191. return wmark_ok;
  2192. }
  2193. /*
  2194. * Throttle direct reclaimers if backing storage is backed by the network
  2195. * and the PFMEMALLOC reserve for the preferred node is getting dangerously
  2196. * depleted. kswapd will continue to make progress and wake the processes
  2197. * when the low watermark is reached.
  2198. *
  2199. * Returns true if a fatal signal was delivered during throttling. If this
  2200. * happens, the page allocator should not consider triggering the OOM killer.
  2201. */
  2202. static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
  2203. nodemask_t *nodemask)
  2204. {
  2205. struct zone *zone;
  2206. int high_zoneidx = gfp_zone(gfp_mask);
  2207. pg_data_t *pgdat;
  2208. /*
  2209. * Kernel threads should not be throttled as they may be indirectly
  2210. * responsible for cleaning pages necessary for reclaim to make forward
  2211. * progress. kjournald for example may enter direct reclaim while
  2212. * committing a transaction where throttling it could forcing other
  2213. * processes to block on log_wait_commit().
  2214. */
  2215. if (current->flags & PF_KTHREAD)
  2216. goto out;
  2217. /*
  2218. * If a fatal signal is pending, this process should not throttle.
  2219. * It should return quickly so it can exit and free its memory
  2220. */
  2221. if (fatal_signal_pending(current))
  2222. goto out;
  2223. /* Check if the pfmemalloc reserves are ok */
  2224. first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
  2225. pgdat = zone->zone_pgdat;
  2226. if (pfmemalloc_watermark_ok(pgdat))
  2227. goto out;
  2228. /* Account for the throttling */
  2229. count_vm_event(PGSCAN_DIRECT_THROTTLE);
  2230. /*
  2231. * If the caller cannot enter the filesystem, it's possible that it
  2232. * is due to the caller holding an FS lock or performing a journal
  2233. * transaction in the case of a filesystem like ext[3|4]. In this case,
  2234. * it is not safe to block on pfmemalloc_wait as kswapd could be
  2235. * blocked waiting on the same lock. Instead, throttle for up to a
  2236. * second before continuing.
  2237. */
  2238. if (!(gfp_mask & __GFP_FS)) {
  2239. wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
  2240. pfmemalloc_watermark_ok(pgdat), HZ);
  2241. goto check_pending;
  2242. }
  2243. /* Throttle until kswapd wakes the process */
  2244. wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
  2245. pfmemalloc_watermark_ok(pgdat));
  2246. check_pending:
  2247. if (fatal_signal_pending(current))
  2248. return true;
  2249. out:
  2250. return false;
  2251. }
  2252. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  2253. gfp_t gfp_mask, nodemask_t *nodemask)
  2254. {
  2255. unsigned long nr_reclaimed;
  2256. struct scan_control sc = {
  2257. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  2258. .may_writepage = !laptop_mode,
  2259. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2260. .may_unmap = 1,
  2261. .may_swap = 1,
  2262. .order = order,
  2263. .priority = DEF_PRIORITY,
  2264. .target_mem_cgroup = NULL,
  2265. .nodemask = nodemask,
  2266. };
  2267. struct shrink_control shrink = {
  2268. .gfp_mask = sc.gfp_mask,
  2269. };
  2270. /*
  2271. * Do not enter reclaim if fatal signal was delivered while throttled.
  2272. * 1 is returned so that the page allocator does not OOM kill at this
  2273. * point.
  2274. */
  2275. if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
  2276. return 1;
  2277. trace_mm_vmscan_direct_reclaim_begin(order,
  2278. sc.may_writepage,
  2279. gfp_mask);
  2280. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2281. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  2282. return nr_reclaimed;
  2283. }
  2284. #ifdef CONFIG_MEMCG
  2285. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
  2286. gfp_t gfp_mask, bool noswap,
  2287. struct zone *zone,
  2288. unsigned long *nr_scanned)
  2289. {
  2290. struct scan_control sc = {
  2291. .nr_scanned = 0,
  2292. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2293. .may_writepage = !laptop_mode,
  2294. .may_unmap = 1,
  2295. .may_swap = !noswap,
  2296. .order = 0,
  2297. .priority = 0,
  2298. .target_mem_cgroup = memcg,
  2299. };
  2300. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2301. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2302. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  2303. trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
  2304. sc.may_writepage,
  2305. sc.gfp_mask);
  2306. /*
  2307. * NOTE: Although we can get the priority field, using it
  2308. * here is not a good idea, since it limits the pages we can scan.
  2309. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2310. * will pick up pages from other mem cgroup's as well. We hack
  2311. * the priority and make it zero.
  2312. */
  2313. shrink_lruvec(lruvec, &sc);
  2314. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2315. *nr_scanned = sc.nr_scanned;
  2316. return sc.nr_reclaimed;
  2317. }
  2318. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
  2319. gfp_t gfp_mask,
  2320. bool noswap)
  2321. {
  2322. struct zonelist *zonelist;
  2323. unsigned long nr_reclaimed;
  2324. int nid;
  2325. struct scan_control sc = {
  2326. .may_writepage = !laptop_mode,
  2327. .may_unmap = 1,
  2328. .may_swap = !noswap,
  2329. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2330. .order = 0,
  2331. .priority = DEF_PRIORITY,
  2332. .target_mem_cgroup = memcg,
  2333. .nodemask = NULL, /* we don't care the placement */
  2334. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2335. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2336. };
  2337. struct shrink_control shrink = {
  2338. .gfp_mask = sc.gfp_mask,
  2339. };
  2340. /*
  2341. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2342. * take care of from where we get pages. So the node where we start the
  2343. * scan does not need to be the current node.
  2344. */
  2345. nid = mem_cgroup_select_victim_node(memcg);
  2346. zonelist = NODE_DATA(nid)->node_zonelists;
  2347. trace_mm_vmscan_memcg_reclaim_begin(0,
  2348. sc.may_writepage,
  2349. sc.gfp_mask);
  2350. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2351. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2352. return nr_reclaimed;
  2353. }
  2354. #endif
  2355. static void age_active_anon(struct zone *zone, struct scan_control *sc)
  2356. {
  2357. struct mem_cgroup *memcg;
  2358. if (!total_swap_pages)
  2359. return;
  2360. memcg = mem_cgroup_iter(NULL, NULL, NULL);
  2361. do {
  2362. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2363. if (inactive_anon_is_low(lruvec))
  2364. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  2365. sc, LRU_ACTIVE_ANON);
  2366. memcg = mem_cgroup_iter(NULL, memcg, NULL);
  2367. } while (memcg);
  2368. }
  2369. static bool zone_balanced(struct zone *zone, int order,
  2370. unsigned long balance_gap, int classzone_idx)
  2371. {
  2372. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
  2373. balance_gap, classzone_idx, 0))
  2374. return false;
  2375. if (IS_ENABLED(CONFIG_COMPACTION) && order &&
  2376. !compaction_suitable(zone, order))
  2377. return false;
  2378. return true;
  2379. }
  2380. /*
  2381. * pgdat_balanced() is used when checking if a node is balanced.
  2382. *
  2383. * For order-0, all zones must be balanced!
  2384. *
  2385. * For high-order allocations only zones that meet watermarks and are in a
  2386. * zone allowed by the callers classzone_idx are added to balanced_pages. The
  2387. * total of balanced pages must be at least 25% of the zones allowed by
  2388. * classzone_idx for the node to be considered balanced. Forcing all zones to
  2389. * be balanced for high orders can cause excessive reclaim when there are
  2390. * imbalanced zones.
  2391. * The choice of 25% is due to
  2392. * o a 16M DMA zone that is balanced will not balance a zone on any
  2393. * reasonable sized machine
  2394. * o On all other machines, the top zone must be at least a reasonable
  2395. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2396. * would need to be at least 256M for it to be balance a whole node.
  2397. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2398. * to balance a node on its own. These seemed like reasonable ratios.
  2399. */
  2400. static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
  2401. {
  2402. unsigned long managed_pages = 0;
  2403. unsigned long balanced_pages = 0;
  2404. int i;
  2405. /* Check the watermark levels */
  2406. for (i = 0; i <= classzone_idx; i++) {
  2407. struct zone *zone = pgdat->node_zones + i;
  2408. if (!populated_zone(zone))
  2409. continue;
  2410. managed_pages += zone->managed_pages;
  2411. /*
  2412. * A special case here:
  2413. *
  2414. * balance_pgdat() skips over all_unreclaimable after
  2415. * DEF_PRIORITY. Effectively, it considers them balanced so
  2416. * they must be considered balanced here as well!
  2417. */
  2418. if (!zone_reclaimable(zone)) {
  2419. balanced_pages += zone->managed_pages;
  2420. continue;
  2421. }
  2422. if (zone_balanced(zone, order, 0, i))
  2423. balanced_pages += zone->managed_pages;
  2424. else if (!order)
  2425. return false;
  2426. }
  2427. if (order)
  2428. return balanced_pages >= (managed_pages >> 2);
  2429. else
  2430. return true;
  2431. }
  2432. /*
  2433. * Prepare kswapd for sleeping. This verifies that there are no processes
  2434. * waiting in throttle_direct_reclaim() and that watermarks have been met.
  2435. *
  2436. * Returns true if kswapd is ready to sleep
  2437. */
  2438. static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
  2439. int classzone_idx)
  2440. {
  2441. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2442. if (remaining)
  2443. return false;
  2444. /*
  2445. * There is a potential race between when kswapd checks its watermarks
  2446. * and a process gets throttled. There is also a potential race if
  2447. * processes get throttled, kswapd wakes, a large process exits therby
  2448. * balancing the zones that causes kswapd to miss a wakeup. If kswapd
  2449. * is going to sleep, no process should be sleeping on pfmemalloc_wait
  2450. * so wake them now if necessary. If necessary, processes will wake
  2451. * kswapd and get throttled again
  2452. */
  2453. if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
  2454. wake_up(&pgdat->pfmemalloc_wait);
  2455. return false;
  2456. }
  2457. return pgdat_balanced(pgdat, order, classzone_idx);
  2458. }
  2459. /*
  2460. * kswapd shrinks the zone by the number of pages required to reach
  2461. * the high watermark.
  2462. *
  2463. * Returns true if kswapd scanned at least the requested number of pages to
  2464. * reclaim or if the lack of progress was due to pages under writeback.
  2465. * This is used to determine if the scanning priority needs to be raised.
  2466. */
  2467. static bool kswapd_shrink_zone(struct zone *zone,
  2468. int classzone_idx,
  2469. struct scan_control *sc,
  2470. unsigned long lru_pages,
  2471. unsigned long *nr_attempted)
  2472. {
  2473. int testorder = sc->order;
  2474. unsigned long balance_gap;
  2475. struct reclaim_state *reclaim_state = current->reclaim_state;
  2476. struct shrink_control shrink = {
  2477. .gfp_mask = sc->gfp_mask,
  2478. };
  2479. bool lowmem_pressure;
  2480. /* Reclaim above the high watermark. */
  2481. sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
  2482. /*
  2483. * Kswapd reclaims only single pages with compaction enabled. Trying
  2484. * too hard to reclaim until contiguous free pages have become
  2485. * available can hurt performance by evicting too much useful data
  2486. * from memory. Do not reclaim more than needed for compaction.
  2487. */
  2488. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  2489. compaction_suitable(zone, sc->order) !=
  2490. COMPACT_SKIPPED)
  2491. testorder = 0;
  2492. /*
  2493. * We put equal pressure on every zone, unless one zone has way too
  2494. * many pages free already. The "too many pages" is defined as the
  2495. * high wmark plus a "gap" where the gap is either the low
  2496. * watermark or 1% of the zone, whichever is smaller.
  2497. */
  2498. balance_gap = min(low_wmark_pages(zone),
  2499. (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2500. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2501. /*
  2502. * If there is no low memory pressure or the zone is balanced then no
  2503. * reclaim is necessary
  2504. */
  2505. lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
  2506. if (!lowmem_pressure && zone_balanced(zone, testorder,
  2507. balance_gap, classzone_idx))
  2508. return true;
  2509. shrink_zone(zone, sc);
  2510. nodes_clear(shrink.nodes_to_scan);
  2511. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  2512. reclaim_state->reclaimed_slab = 0;
  2513. shrink_slab(&shrink, sc->nr_scanned, lru_pages);
  2514. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2515. /* Account for the number of pages attempted to reclaim */
  2516. *nr_attempted += sc->nr_to_reclaim;
  2517. zone_clear_flag(zone, ZONE_WRITEBACK);
  2518. /*
  2519. * If a zone reaches its high watermark, consider it to be no longer
  2520. * congested. It's possible there are dirty pages backed by congested
  2521. * BDIs but as pressure is relieved, speculatively avoid congestion
  2522. * waits.
  2523. */
  2524. if (zone_reclaimable(zone) &&
  2525. zone_balanced(zone, testorder, 0, classzone_idx)) {
  2526. zone_clear_flag(zone, ZONE_CONGESTED);
  2527. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2528. }
  2529. return sc->nr_scanned >= sc->nr_to_reclaim;
  2530. }
  2531. /*
  2532. * For kswapd, balance_pgdat() will work across all this node's zones until
  2533. * they are all at high_wmark_pages(zone).
  2534. *
  2535. * Returns the final order kswapd was reclaiming at
  2536. *
  2537. * There is special handling here for zones which are full of pinned pages.
  2538. * This can happen if the pages are all mlocked, or if they are all used by
  2539. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2540. * What we do is to detect the case where all pages in the zone have been
  2541. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2542. * dead and from now on, only perform a short scan. Basically we're polling
  2543. * the zone for when the problem goes away.
  2544. *
  2545. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2546. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2547. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2548. * lower zones regardless of the number of free pages in the lower zones. This
  2549. * interoperates with the page allocator fallback scheme to ensure that aging
  2550. * of pages is balanced across the zones.
  2551. */
  2552. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2553. int *classzone_idx)
  2554. {
  2555. int i;
  2556. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2557. struct scan_control sc = {
  2558. .gfp_mask = GFP_KERNEL,
  2559. .priority = DEF_PRIORITY,
  2560. .may_unmap = 1,
  2561. .may_swap = 1,
  2562. .may_writepage = !laptop_mode,
  2563. .order = order,
  2564. .target_mem_cgroup = NULL,
  2565. };
  2566. count_vm_event(PAGEOUTRUN);
  2567. do {
  2568. unsigned long lru_pages = 0;
  2569. unsigned long nr_attempted = 0;
  2570. bool raise_priority = true;
  2571. bool pgdat_needs_compaction = (order > 0);
  2572. sc.nr_reclaimed = 0;
  2573. /*
  2574. * Scan in the highmem->dma direction for the highest
  2575. * zone which needs scanning
  2576. */
  2577. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2578. struct zone *zone = pgdat->node_zones + i;
  2579. if (!populated_zone(zone))
  2580. continue;
  2581. if (sc.priority != DEF_PRIORITY &&
  2582. !zone_reclaimable(zone))
  2583. continue;
  2584. /*
  2585. * Do some background aging of the anon list, to give
  2586. * pages a chance to be referenced before reclaiming.
  2587. */
  2588. age_active_anon(zone, &sc);
  2589. /*
  2590. * If the number of buffer_heads in the machine
  2591. * exceeds the maximum allowed level and this node
  2592. * has a highmem zone, force kswapd to reclaim from
  2593. * it to relieve lowmem pressure.
  2594. */
  2595. if (buffer_heads_over_limit && is_highmem_idx(i)) {
  2596. end_zone = i;
  2597. break;
  2598. }
  2599. if (!zone_balanced(zone, order, 0, 0)) {
  2600. end_zone = i;
  2601. break;
  2602. } else {
  2603. /*
  2604. * If balanced, clear the dirty and congested
  2605. * flags
  2606. */
  2607. zone_clear_flag(zone, ZONE_CONGESTED);
  2608. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2609. }
  2610. }
  2611. if (i < 0)
  2612. goto out;
  2613. for (i = 0; i <= end_zone; i++) {
  2614. struct zone *zone = pgdat->node_zones + i;
  2615. if (!populated_zone(zone))
  2616. continue;
  2617. lru_pages += zone_reclaimable_pages(zone);
  2618. /*
  2619. * If any zone is currently balanced then kswapd will
  2620. * not call compaction as it is expected that the
  2621. * necessary pages are already available.
  2622. */
  2623. if (pgdat_needs_compaction &&
  2624. zone_watermark_ok(zone, order,
  2625. low_wmark_pages(zone),
  2626. *classzone_idx, 0))
  2627. pgdat_needs_compaction = false;
  2628. }
  2629. /*
  2630. * If we're getting trouble reclaiming, start doing writepage
  2631. * even in laptop mode.
  2632. */
  2633. if (sc.priority < DEF_PRIORITY - 2)
  2634. sc.may_writepage = 1;
  2635. /*
  2636. * Now scan the zone in the dma->highmem direction, stopping
  2637. * at the last zone which needs scanning.
  2638. *
  2639. * We do this because the page allocator works in the opposite
  2640. * direction. This prevents the page allocator from allocating
  2641. * pages behind kswapd's direction of progress, which would
  2642. * cause too much scanning of the lower zones.
  2643. */
  2644. for (i = 0; i <= end_zone; i++) {
  2645. struct zone *zone = pgdat->node_zones + i;
  2646. if (!populated_zone(zone))
  2647. continue;
  2648. if (sc.priority != DEF_PRIORITY &&
  2649. !zone_reclaimable(zone))
  2650. continue;
  2651. sc.nr_scanned = 0;
  2652. /*
  2653. * There should be no need to raise the scanning
  2654. * priority if enough pages are already being scanned
  2655. * that that high watermark would be met at 100%
  2656. * efficiency.
  2657. */
  2658. if (kswapd_shrink_zone(zone, end_zone, &sc,
  2659. lru_pages, &nr_attempted))
  2660. raise_priority = false;
  2661. }
  2662. /*
  2663. * If the low watermark is met there is no need for processes
  2664. * to be throttled on pfmemalloc_wait as they should not be
  2665. * able to safely make forward progress. Wake them
  2666. */
  2667. if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
  2668. pfmemalloc_watermark_ok(pgdat))
  2669. wake_up(&pgdat->pfmemalloc_wait);
  2670. /*
  2671. * Fragmentation may mean that the system cannot be rebalanced
  2672. * for high-order allocations in all zones. If twice the
  2673. * allocation size has been reclaimed and the zones are still
  2674. * not balanced then recheck the watermarks at order-0 to
  2675. * prevent kswapd reclaiming excessively. Assume that a
  2676. * process requested a high-order can direct reclaim/compact.
  2677. */
  2678. if (order && sc.nr_reclaimed >= 2UL << order)
  2679. order = sc.order = 0;
  2680. /* Check if kswapd should be suspending */
  2681. if (try_to_freeze() || kthread_should_stop())
  2682. break;
  2683. /*
  2684. * Compact if necessary and kswapd is reclaiming at least the
  2685. * high watermark number of pages as requsted
  2686. */
  2687. if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
  2688. compact_pgdat(pgdat, order);
  2689. /*
  2690. * Raise priority if scanning rate is too low or there was no
  2691. * progress in reclaiming pages
  2692. */
  2693. if (raise_priority || !sc.nr_reclaimed)
  2694. sc.priority--;
  2695. } while (sc.priority >= 1 &&
  2696. !pgdat_balanced(pgdat, order, *classzone_idx));
  2697. out:
  2698. /*
  2699. * Return the order we were reclaiming at so prepare_kswapd_sleep()
  2700. * makes a decision on the order we were last reclaiming at. However,
  2701. * if another caller entered the allocator slow path while kswapd
  2702. * was awake, order will remain at the higher level
  2703. */
  2704. *classzone_idx = end_zone;
  2705. return order;
  2706. }
  2707. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2708. {
  2709. long remaining = 0;
  2710. DEFINE_WAIT(wait);
  2711. if (freezing(current) || kthread_should_stop())
  2712. return;
  2713. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2714. /* Try to sleep for a short interval */
  2715. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2716. remaining = schedule_timeout(HZ/10);
  2717. finish_wait(&pgdat->kswapd_wait, &wait);
  2718. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2719. }
  2720. /*
  2721. * After a short sleep, check if it was a premature sleep. If not, then
  2722. * go fully to sleep until explicitly woken up.
  2723. */
  2724. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2725. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2726. /*
  2727. * vmstat counters are not perfectly accurate and the estimated
  2728. * value for counters such as NR_FREE_PAGES can deviate from the
  2729. * true value by nr_online_cpus * threshold. To avoid the zone
  2730. * watermarks being breached while under pressure, we reduce the
  2731. * per-cpu vmstat threshold while kswapd is awake and restore
  2732. * them before going back to sleep.
  2733. */
  2734. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2735. /*
  2736. * Compaction records what page blocks it recently failed to
  2737. * isolate pages from and skips them in the future scanning.
  2738. * When kswapd is going to sleep, it is reasonable to assume
  2739. * that pages and compaction may succeed so reset the cache.
  2740. */
  2741. reset_isolation_suitable(pgdat);
  2742. if (!kthread_should_stop())
  2743. schedule();
  2744. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2745. } else {
  2746. if (remaining)
  2747. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2748. else
  2749. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2750. }
  2751. finish_wait(&pgdat->kswapd_wait, &wait);
  2752. }
  2753. /*
  2754. * The background pageout daemon, started as a kernel thread
  2755. * from the init process.
  2756. *
  2757. * This basically trickles out pages so that we have _some_
  2758. * free memory available even if there is no other activity
  2759. * that frees anything up. This is needed for things like routing
  2760. * etc, where we otherwise might have all activity going on in
  2761. * asynchronous contexts that cannot page things out.
  2762. *
  2763. * If there are applications that are active memory-allocators
  2764. * (most normal use), this basically shouldn't matter.
  2765. */
  2766. static int kswapd(void *p)
  2767. {
  2768. unsigned long order, new_order;
  2769. unsigned balanced_order;
  2770. int classzone_idx, new_classzone_idx;
  2771. int balanced_classzone_idx;
  2772. pg_data_t *pgdat = (pg_data_t*)p;
  2773. struct task_struct *tsk = current;
  2774. struct reclaim_state reclaim_state = {
  2775. .reclaimed_slab = 0,
  2776. };
  2777. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2778. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2779. if (!cpumask_empty(cpumask))
  2780. set_cpus_allowed_ptr(tsk, cpumask);
  2781. current->reclaim_state = &reclaim_state;
  2782. /*
  2783. * Tell the memory management that we're a "memory allocator",
  2784. * and that if we need more memory we should get access to it
  2785. * regardless (see "__alloc_pages()"). "kswapd" should
  2786. * never get caught in the normal page freeing logic.
  2787. *
  2788. * (Kswapd normally doesn't need memory anyway, but sometimes
  2789. * you need a small amount of memory in order to be able to
  2790. * page out something else, and this flag essentially protects
  2791. * us from recursively trying to free more memory as we're
  2792. * trying to free the first piece of memory in the first place).
  2793. */
  2794. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2795. set_freezable();
  2796. order = new_order = 0;
  2797. balanced_order = 0;
  2798. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2799. balanced_classzone_idx = classzone_idx;
  2800. for ( ; ; ) {
  2801. bool ret;
  2802. /*
  2803. * If the last balance_pgdat was unsuccessful it's unlikely a
  2804. * new request of a similar or harder type will succeed soon
  2805. * so consider going to sleep on the basis we reclaimed at
  2806. */
  2807. if (balanced_classzone_idx >= new_classzone_idx &&
  2808. balanced_order == new_order) {
  2809. new_order = pgdat->kswapd_max_order;
  2810. new_classzone_idx = pgdat->classzone_idx;
  2811. pgdat->kswapd_max_order = 0;
  2812. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2813. }
  2814. if (order < new_order || classzone_idx > new_classzone_idx) {
  2815. /*
  2816. * Don't sleep if someone wants a larger 'order'
  2817. * allocation or has tigher zone constraints
  2818. */
  2819. order = new_order;
  2820. classzone_idx = new_classzone_idx;
  2821. } else {
  2822. kswapd_try_to_sleep(pgdat, balanced_order,
  2823. balanced_classzone_idx);
  2824. order = pgdat->kswapd_max_order;
  2825. classzone_idx = pgdat->classzone_idx;
  2826. new_order = order;
  2827. new_classzone_idx = classzone_idx;
  2828. pgdat->kswapd_max_order = 0;
  2829. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2830. }
  2831. ret = try_to_freeze();
  2832. if (kthread_should_stop())
  2833. break;
  2834. /*
  2835. * We can speed up thawing tasks if we don't call balance_pgdat
  2836. * after returning from the refrigerator
  2837. */
  2838. if (!ret) {
  2839. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2840. balanced_classzone_idx = classzone_idx;
  2841. balanced_order = balance_pgdat(pgdat, order,
  2842. &balanced_classzone_idx);
  2843. }
  2844. }
  2845. current->reclaim_state = NULL;
  2846. return 0;
  2847. }
  2848. /*
  2849. * A zone is low on free memory, so wake its kswapd task to service it.
  2850. */
  2851. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2852. {
  2853. pg_data_t *pgdat;
  2854. if (!populated_zone(zone))
  2855. return;
  2856. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2857. return;
  2858. pgdat = zone->zone_pgdat;
  2859. if (pgdat->kswapd_max_order < order) {
  2860. pgdat->kswapd_max_order = order;
  2861. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2862. }
  2863. if (!waitqueue_active(&pgdat->kswapd_wait))
  2864. return;
  2865. if (zone_balanced(zone, order, 0, 0))
  2866. return;
  2867. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2868. wake_up_interruptible(&pgdat->kswapd_wait);
  2869. }
  2870. /*
  2871. * The reclaimable count would be mostly accurate.
  2872. * The less reclaimable pages may be
  2873. * - mlocked pages, which will be moved to unevictable list when encountered
  2874. * - mapped pages, which may require several travels to be reclaimed
  2875. * - dirty pages, which is not "instantly" reclaimable
  2876. */
  2877. unsigned long global_reclaimable_pages(void)
  2878. {
  2879. int nr;
  2880. nr = global_page_state(NR_ACTIVE_FILE) +
  2881. global_page_state(NR_INACTIVE_FILE);
  2882. if (get_nr_swap_pages() > 0)
  2883. nr += global_page_state(NR_ACTIVE_ANON) +
  2884. global_page_state(NR_INACTIVE_ANON);
  2885. return nr;
  2886. }
  2887. #ifdef CONFIG_HIBERNATION
  2888. /*
  2889. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2890. * freed pages.
  2891. *
  2892. * Rather than trying to age LRUs the aim is to preserve the overall
  2893. * LRU order by reclaiming preferentially
  2894. * inactive > active > active referenced > active mapped
  2895. */
  2896. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2897. {
  2898. struct reclaim_state reclaim_state;
  2899. struct scan_control sc = {
  2900. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2901. .may_swap = 1,
  2902. .may_unmap = 1,
  2903. .may_writepage = 1,
  2904. .nr_to_reclaim = nr_to_reclaim,
  2905. .hibernation_mode = 1,
  2906. .order = 0,
  2907. .priority = DEF_PRIORITY,
  2908. };
  2909. struct shrink_control shrink = {
  2910. .gfp_mask = sc.gfp_mask,
  2911. };
  2912. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2913. struct task_struct *p = current;
  2914. unsigned long nr_reclaimed;
  2915. p->flags |= PF_MEMALLOC;
  2916. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2917. reclaim_state.reclaimed_slab = 0;
  2918. p->reclaim_state = &reclaim_state;
  2919. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2920. p->reclaim_state = NULL;
  2921. lockdep_clear_current_reclaim_state();
  2922. p->flags &= ~PF_MEMALLOC;
  2923. return nr_reclaimed;
  2924. }
  2925. #endif /* CONFIG_HIBERNATION */
  2926. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2927. not required for correctness. So if the last cpu in a node goes
  2928. away, we get changed to run anywhere: as the first one comes back,
  2929. restore their cpu bindings. */
  2930. static int cpu_callback(struct notifier_block *nfb, unsigned long action,
  2931. void *hcpu)
  2932. {
  2933. int nid;
  2934. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  2935. for_each_node_state(nid, N_MEMORY) {
  2936. pg_data_t *pgdat = NODE_DATA(nid);
  2937. const struct cpumask *mask;
  2938. mask = cpumask_of_node(pgdat->node_id);
  2939. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  2940. /* One of our CPUs online: restore mask */
  2941. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  2942. }
  2943. }
  2944. return NOTIFY_OK;
  2945. }
  2946. /*
  2947. * This kswapd start function will be called by init and node-hot-add.
  2948. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  2949. */
  2950. int kswapd_run(int nid)
  2951. {
  2952. pg_data_t *pgdat = NODE_DATA(nid);
  2953. int ret = 0;
  2954. if (pgdat->kswapd)
  2955. return 0;
  2956. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  2957. if (IS_ERR(pgdat->kswapd)) {
  2958. /* failure at boot is fatal */
  2959. BUG_ON(system_state == SYSTEM_BOOTING);
  2960. pr_err("Failed to start kswapd on node %d\n", nid);
  2961. ret = PTR_ERR(pgdat->kswapd);
  2962. pgdat->kswapd = NULL;
  2963. }
  2964. return ret;
  2965. }
  2966. /*
  2967. * Called by memory hotplug when all memory in a node is offlined. Caller must
  2968. * hold lock_memory_hotplug().
  2969. */
  2970. void kswapd_stop(int nid)
  2971. {
  2972. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  2973. if (kswapd) {
  2974. kthread_stop(kswapd);
  2975. NODE_DATA(nid)->kswapd = NULL;
  2976. }
  2977. }
  2978. static int __init kswapd_init(void)
  2979. {
  2980. int nid;
  2981. swap_setup();
  2982. for_each_node_state(nid, N_MEMORY)
  2983. kswapd_run(nid);
  2984. hotcpu_notifier(cpu_callback, 0);
  2985. return 0;
  2986. }
  2987. module_init(kswapd_init)
  2988. #ifdef CONFIG_NUMA
  2989. /*
  2990. * Zone reclaim mode
  2991. *
  2992. * If non-zero call zone_reclaim when the number of free pages falls below
  2993. * the watermarks.
  2994. */
  2995. int zone_reclaim_mode __read_mostly;
  2996. #define RECLAIM_OFF 0
  2997. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  2998. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  2999. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  3000. /*
  3001. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  3002. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  3003. * a zone.
  3004. */
  3005. #define ZONE_RECLAIM_PRIORITY 4
  3006. /*
  3007. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  3008. * occur.
  3009. */
  3010. int sysctl_min_unmapped_ratio = 1;
  3011. /*
  3012. * If the number of slab pages in a zone grows beyond this percentage then
  3013. * slab reclaim needs to occur.
  3014. */
  3015. int sysctl_min_slab_ratio = 5;
  3016. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  3017. {
  3018. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  3019. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  3020. zone_page_state(zone, NR_ACTIVE_FILE);
  3021. /*
  3022. * It's possible for there to be more file mapped pages than
  3023. * accounted for by the pages on the file LRU lists because
  3024. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  3025. */
  3026. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  3027. }
  3028. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  3029. static long zone_pagecache_reclaimable(struct zone *zone)
  3030. {
  3031. long nr_pagecache_reclaimable;
  3032. long delta = 0;
  3033. /*
  3034. * If RECLAIM_SWAP is set, then all file pages are considered
  3035. * potentially reclaimable. Otherwise, we have to worry about
  3036. * pages like swapcache and zone_unmapped_file_pages() provides
  3037. * a better estimate
  3038. */
  3039. if (zone_reclaim_mode & RECLAIM_SWAP)
  3040. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  3041. else
  3042. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  3043. /* If we can't clean pages, remove dirty pages from consideration */
  3044. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  3045. delta += zone_page_state(zone, NR_FILE_DIRTY);
  3046. /* Watch for any possible underflows due to delta */
  3047. if (unlikely(delta > nr_pagecache_reclaimable))
  3048. delta = nr_pagecache_reclaimable;
  3049. return nr_pagecache_reclaimable - delta;
  3050. }
  3051. /*
  3052. * Try to free up some pages from this zone through reclaim.
  3053. */
  3054. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  3055. {
  3056. /* Minimum pages needed in order to stay on node */
  3057. const unsigned long nr_pages = 1 << order;
  3058. struct task_struct *p = current;
  3059. struct reclaim_state reclaim_state;
  3060. struct scan_control sc = {
  3061. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  3062. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  3063. .may_swap = 1,
  3064. .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
  3065. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  3066. .order = order,
  3067. .priority = ZONE_RECLAIM_PRIORITY,
  3068. };
  3069. struct shrink_control shrink = {
  3070. .gfp_mask = sc.gfp_mask,
  3071. };
  3072. unsigned long nr_slab_pages0, nr_slab_pages1;
  3073. cond_resched();
  3074. /*
  3075. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  3076. * and we also need to be able to write out pages for RECLAIM_WRITE
  3077. * and RECLAIM_SWAP.
  3078. */
  3079. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  3080. lockdep_set_current_reclaim_state(gfp_mask);
  3081. reclaim_state.reclaimed_slab = 0;
  3082. p->reclaim_state = &reclaim_state;
  3083. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  3084. /*
  3085. * Free memory by calling shrink zone with increasing
  3086. * priorities until we have enough memory freed.
  3087. */
  3088. do {
  3089. shrink_zone(zone, &sc);
  3090. } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
  3091. }
  3092. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3093. if (nr_slab_pages0 > zone->min_slab_pages) {
  3094. /*
  3095. * shrink_slab() does not currently allow us to determine how
  3096. * many pages were freed in this zone. So we take the current
  3097. * number of slab pages and shake the slab until it is reduced
  3098. * by the same nr_pages that we used for reclaiming unmapped
  3099. * pages.
  3100. */
  3101. nodes_clear(shrink.nodes_to_scan);
  3102. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  3103. for (;;) {
  3104. unsigned long lru_pages = zone_reclaimable_pages(zone);
  3105. /* No reclaimable slab or very low memory pressure */
  3106. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  3107. break;
  3108. /* Freed enough memory */
  3109. nr_slab_pages1 = zone_page_state(zone,
  3110. NR_SLAB_RECLAIMABLE);
  3111. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  3112. break;
  3113. }
  3114. /*
  3115. * Update nr_reclaimed by the number of slab pages we
  3116. * reclaimed from this zone.
  3117. */
  3118. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3119. if (nr_slab_pages1 < nr_slab_pages0)
  3120. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  3121. }
  3122. p->reclaim_state = NULL;
  3123. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  3124. lockdep_clear_current_reclaim_state();
  3125. return sc.nr_reclaimed >= nr_pages;
  3126. }
  3127. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  3128. {
  3129. int node_id;
  3130. int ret;
  3131. /*
  3132. * Zone reclaim reclaims unmapped file backed pages and
  3133. * slab pages if we are over the defined limits.
  3134. *
  3135. * A small portion of unmapped file backed pages is needed for
  3136. * file I/O otherwise pages read by file I/O will be immediately
  3137. * thrown out if the zone is overallocated. So we do not reclaim
  3138. * if less than a specified percentage of the zone is used by
  3139. * unmapped file backed pages.
  3140. */
  3141. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  3142. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  3143. return ZONE_RECLAIM_FULL;
  3144. if (!zone_reclaimable(zone))
  3145. return ZONE_RECLAIM_FULL;
  3146. /*
  3147. * Do not scan if the allocation should not be delayed.
  3148. */
  3149. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  3150. return ZONE_RECLAIM_NOSCAN;
  3151. /*
  3152. * Only run zone reclaim on the local zone or on zones that do not
  3153. * have associated processors. This will favor the local processor
  3154. * over remote processors and spread off node memory allocations
  3155. * as wide as possible.
  3156. */
  3157. node_id = zone_to_nid(zone);
  3158. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  3159. return ZONE_RECLAIM_NOSCAN;
  3160. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  3161. return ZONE_RECLAIM_NOSCAN;
  3162. ret = __zone_reclaim(zone, gfp_mask, order);
  3163. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  3164. if (!ret)
  3165. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  3166. return ret;
  3167. }
  3168. #endif
  3169. /*
  3170. * page_evictable - test whether a page is evictable
  3171. * @page: the page to test
  3172. *
  3173. * Test whether page is evictable--i.e., should be placed on active/inactive
  3174. * lists vs unevictable list.
  3175. *
  3176. * Reasons page might not be evictable:
  3177. * (1) page's mapping marked unevictable
  3178. * (2) page is part of an mlocked VMA
  3179. *
  3180. */
  3181. int page_evictable(struct page *page)
  3182. {
  3183. return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  3184. }
  3185. #ifdef CONFIG_SHMEM
  3186. /**
  3187. * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
  3188. * @pages: array of pages to check
  3189. * @nr_pages: number of pages to check
  3190. *
  3191. * Checks pages for evictability and moves them to the appropriate lru list.
  3192. *
  3193. * This function is only used for SysV IPC SHM_UNLOCK.
  3194. */
  3195. void check_move_unevictable_pages(struct page **pages, int nr_pages)
  3196. {
  3197. struct lruvec *lruvec;
  3198. struct zone *zone = NULL;
  3199. int pgscanned = 0;
  3200. int pgrescued = 0;
  3201. int i;
  3202. for (i = 0; i < nr_pages; i++) {
  3203. struct page *page = pages[i];
  3204. struct zone *pagezone;
  3205. pgscanned++;
  3206. pagezone = page_zone(page);
  3207. if (pagezone != zone) {
  3208. if (zone)
  3209. spin_unlock_irq(&zone->lru_lock);
  3210. zone = pagezone;
  3211. spin_lock_irq(&zone->lru_lock);
  3212. }
  3213. lruvec = mem_cgroup_page_lruvec(page, zone);
  3214. if (!PageLRU(page) || !PageUnevictable(page))
  3215. continue;
  3216. if (page_evictable(page)) {
  3217. enum lru_list lru = page_lru_base_type(page);
  3218. VM_BUG_ON(PageActive(page));
  3219. ClearPageUnevictable(page);
  3220. del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
  3221. add_page_to_lru_list(page, lruvec, lru);
  3222. pgrescued++;
  3223. }
  3224. }
  3225. if (zone) {
  3226. __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  3227. __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
  3228. spin_unlock_irq(&zone->lru_lock);
  3229. }
  3230. }
  3231. #endif /* CONFIG_SHMEM */
  3232. static void warn_scan_unevictable_pages(void)
  3233. {
  3234. printk_once(KERN_WARNING
  3235. "%s: The scan_unevictable_pages sysctl/node-interface has been "
  3236. "disabled for lack of a legitimate use case. If you have "
  3237. "one, please send an email to linux-mm@kvack.org.\n",
  3238. current->comm);
  3239. }
  3240. /*
  3241. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  3242. * all nodes' unevictable lists for evictable pages
  3243. */
  3244. unsigned long scan_unevictable_pages;
  3245. int scan_unevictable_handler(struct ctl_table *table, int write,
  3246. void __user *buffer,
  3247. size_t *length, loff_t *ppos)
  3248. {
  3249. warn_scan_unevictable_pages();
  3250. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  3251. scan_unevictable_pages = 0;
  3252. return 0;
  3253. }
  3254. #ifdef CONFIG_NUMA
  3255. /*
  3256. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  3257. * a specified node's per zone unevictable lists for evictable pages.
  3258. */
  3259. static ssize_t read_scan_unevictable_node(struct device *dev,
  3260. struct device_attribute *attr,
  3261. char *buf)
  3262. {
  3263. warn_scan_unevictable_pages();
  3264. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3265. }
  3266. static ssize_t write_scan_unevictable_node(struct device *dev,
  3267. struct device_attribute *attr,
  3268. const char *buf, size_t count)
  3269. {
  3270. warn_scan_unevictable_pages();
  3271. return 1;
  3272. }
  3273. static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3274. read_scan_unevictable_node,
  3275. write_scan_unevictable_node);
  3276. int scan_unevictable_register_node(struct node *node)
  3277. {
  3278. return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3279. }
  3280. void scan_unevictable_unregister_node(struct node *node)
  3281. {
  3282. device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3283. }
  3284. #endif