clock.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /*
  2. * linux/arch/arm/mach-omap1/clock.c
  3. *
  4. * Copyright (C) 2004 - 2005 Nokia corporation
  5. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  6. *
  7. * Modified to use omap shared clock framework by
  8. * Tony Lindgren <tony@atomide.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/list.h>
  17. #include <linux/errno.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <asm/mach-types.h>
  22. #include <asm/clkdev.h>
  23. #include <mach/cpu.h>
  24. #include <mach/usb.h>
  25. #include <mach/clock.h>
  26. #include <mach/sram.h>
  27. static const struct clkops clkops_generic;
  28. static const struct clkops clkops_uart;
  29. static const struct clkops clkops_dspck;
  30. #include "clock.h"
  31. static int clk_omap1_dummy_enable(struct clk *clk)
  32. {
  33. return 0;
  34. }
  35. static void clk_omap1_dummy_disable(struct clk *clk)
  36. {
  37. }
  38. static const struct clkops clkops_dummy = {
  39. .enable = clk_omap1_dummy_enable,
  40. .disable = clk_omap1_dummy_disable,
  41. };
  42. static struct clk dummy_ck = {
  43. .name = "dummy",
  44. .ops = &clkops_dummy,
  45. .flags = RATE_FIXED,
  46. };
  47. struct omap_clk {
  48. u32 cpu;
  49. struct clk_lookup lk;
  50. };
  51. #define CLK(dev, con, ck, cp) \
  52. { \
  53. .cpu = cp, \
  54. .lk = { \
  55. .dev_id = dev, \
  56. .con_id = con, \
  57. .clk = ck, \
  58. }, \
  59. }
  60. #define CK_310 (1 << 0)
  61. #define CK_730 (1 << 1)
  62. #define CK_1510 (1 << 2)
  63. #define CK_16XX (1 << 3)
  64. static struct omap_clk omap_clks[] = {
  65. /* non-ULPD clocks */
  66. CLK(NULL, "ck_ref", &ck_ref, CK_16XX | CK_1510 | CK_310),
  67. CLK(NULL, "ck_dpll1", &ck_dpll1, CK_16XX | CK_1510 | CK_310),
  68. /* CK_GEN1 clocks */
  69. CLK(NULL, "ck_dpll1out", &ck_dpll1out.clk, CK_16XX),
  70. CLK(NULL, "ck_sossi", &sossi_ck, CK_16XX),
  71. CLK(NULL, "arm_ck", &arm_ck, CK_16XX | CK_1510 | CK_310),
  72. CLK(NULL, "armper_ck", &armper_ck.clk, CK_16XX | CK_1510 | CK_310),
  73. CLK(NULL, "arm_gpio_ck", &arm_gpio_ck, CK_1510 | CK_310),
  74. CLK(NULL, "armxor_ck", &armxor_ck.clk, CK_16XX | CK_1510 | CK_310),
  75. CLK(NULL, "armtim_ck", &armtim_ck.clk, CK_16XX | CK_1510 | CK_310),
  76. CLK("omap_wdt", "fck", &armwdt_ck.clk, CK_16XX | CK_1510 | CK_310),
  77. CLK("omap_wdt", "ick", &armper_ck.clk, CK_16XX),
  78. CLK("omap_wdt", "ick", &dummy_ck, CK_1510 | CK_310),
  79. CLK(NULL, "arminth_ck", &arminth_ck1510, CK_1510 | CK_310),
  80. CLK(NULL, "arminth_ck", &arminth_ck16xx, CK_16XX),
  81. /* CK_GEN2 clocks */
  82. CLK(NULL, "dsp_ck", &dsp_ck, CK_16XX | CK_1510 | CK_310),
  83. CLK(NULL, "dspmmu_ck", &dspmmu_ck, CK_16XX | CK_1510 | CK_310),
  84. CLK(NULL, "dspper_ck", &dspper_ck, CK_16XX | CK_1510 | CK_310),
  85. CLK(NULL, "dspxor_ck", &dspxor_ck, CK_16XX | CK_1510 | CK_310),
  86. CLK(NULL, "dsptim_ck", &dsptim_ck, CK_16XX | CK_1510 | CK_310),
  87. /* CK_GEN3 clocks */
  88. CLK(NULL, "tc_ck", &tc_ck.clk, CK_16XX | CK_1510 | CK_310 | CK_730),
  89. CLK(NULL, "tipb_ck", &tipb_ck, CK_1510 | CK_310),
  90. CLK(NULL, "l3_ocpi_ck", &l3_ocpi_ck, CK_16XX),
  91. CLK(NULL, "tc1_ck", &tc1_ck, CK_16XX),
  92. CLK(NULL, "tc2_ck", &tc2_ck, CK_16XX),
  93. CLK(NULL, "dma_ck", &dma_ck, CK_16XX | CK_1510 | CK_310),
  94. CLK(NULL, "dma_lcdfree_ck", &dma_lcdfree_ck, CK_16XX),
  95. CLK(NULL, "api_ck", &api_ck.clk, CK_16XX | CK_1510 | CK_310),
  96. CLK(NULL, "lb_ck", &lb_ck.clk, CK_1510 | CK_310),
  97. CLK(NULL, "rhea1_ck", &rhea1_ck, CK_16XX),
  98. CLK(NULL, "rhea2_ck", &rhea2_ck, CK_16XX),
  99. CLK(NULL, "lcd_ck", &lcd_ck_16xx, CK_16XX | CK_730),
  100. CLK(NULL, "lcd_ck", &lcd_ck_1510.clk, CK_1510 | CK_310),
  101. /* ULPD clocks */
  102. CLK(NULL, "uart1_ck", &uart1_1510, CK_1510 | CK_310),
  103. CLK(NULL, "uart1_ck", &uart1_16xx.clk, CK_16XX),
  104. CLK(NULL, "uart2_ck", &uart2_ck, CK_16XX | CK_1510 | CK_310),
  105. CLK(NULL, "uart3_ck", &uart3_1510, CK_1510 | CK_310),
  106. CLK(NULL, "uart3_ck", &uart3_16xx.clk, CK_16XX),
  107. CLK(NULL, "usb_clko", &usb_clko, CK_16XX | CK_1510 | CK_310),
  108. CLK(NULL, "usb_hhc_ck", &usb_hhc_ck1510, CK_1510 | CK_310),
  109. CLK(NULL, "usb_hhc_ck", &usb_hhc_ck16xx, CK_16XX),
  110. CLK(NULL, "usb_dc_ck", &usb_dc_ck, CK_16XX),
  111. CLK(NULL, "mclk", &mclk_1510, CK_1510 | CK_310),
  112. CLK(NULL, "mclk", &mclk_16xx, CK_16XX),
  113. CLK(NULL, "bclk", &bclk_1510, CK_1510 | CK_310),
  114. CLK(NULL, "bclk", &bclk_16xx, CK_16XX),
  115. CLK("mmci-omap.0", "fck", &mmc1_ck, CK_16XX | CK_1510 | CK_310),
  116. CLK("mmci-omap.0", "ick", &armper_ck.clk, CK_16XX | CK_1510 | CK_310),
  117. CLK("mmci-omap.1", "fck", &mmc2_ck, CK_16XX),
  118. CLK("mmci-omap.1", "ick", &armper_ck.clk, CK_16XX),
  119. /* Virtual clocks */
  120. CLK(NULL, "mpu", &virtual_ck_mpu, CK_16XX | CK_1510 | CK_310),
  121. CLK("i2c_omap.1", "fck", &i2c_fck, CK_16XX | CK_1510 | CK_310),
  122. CLK("i2c_omap.1", "ick", &i2c_ick, CK_16XX),
  123. CLK("i2c_omap.1", "ick", &dummy_ck, CK_1510 | CK_310),
  124. CLK("omap_uwire", "fck", &armxor_ck.clk, CK_16XX | CK_1510 | CK_310),
  125. CLK("omap-mcbsp.1", "ick", &dspper_ck, CK_16XX),
  126. CLK("omap-mcbsp.1", "ick", &dummy_ck, CK_1510 | CK_310),
  127. CLK("omap-mcbsp.2", "ick", &armper_ck.clk, CK_16XX),
  128. CLK("omap-mcbsp.2", "ick", &dummy_ck, CK_1510 | CK_310),
  129. CLK("omap-mcbsp.3", "ick", &dspper_ck, CK_16XX),
  130. CLK("omap-mcbsp.3", "ick", &dummy_ck, CK_1510 | CK_310),
  131. CLK("omap-mcbsp.1", "fck", &dspxor_ck, CK_16XX | CK_1510 | CK_310),
  132. CLK("omap-mcbsp.2", "fck", &armper_ck.clk, CK_16XX | CK_1510 | CK_310),
  133. CLK("omap-mcbsp.3", "fck", &dspxor_ck, CK_16XX | CK_1510 | CK_310),
  134. };
  135. static int omap1_clk_enable_generic(struct clk * clk);
  136. static int omap1_clk_enable(struct clk *clk);
  137. static void omap1_clk_disable_generic(struct clk * clk);
  138. static void omap1_clk_disable(struct clk *clk);
  139. __u32 arm_idlect1_mask;
  140. /*-------------------------------------------------------------------------
  141. * Omap1 specific clock functions
  142. *-------------------------------------------------------------------------*/
  143. static void omap1_watchdog_recalc(struct clk * clk)
  144. {
  145. clk->rate = clk->parent->rate / 14;
  146. }
  147. static void omap1_uart_recalc(struct clk * clk)
  148. {
  149. unsigned int val = omap_readl(clk->enable_reg);
  150. if (val & clk->enable_bit)
  151. clk->rate = 48000000;
  152. else
  153. clk->rate = 12000000;
  154. }
  155. static void omap1_sossi_recalc(struct clk *clk)
  156. {
  157. u32 div = omap_readl(MOD_CONF_CTRL_1);
  158. div = (div >> 17) & 0x7;
  159. div++;
  160. clk->rate = clk->parent->rate / div;
  161. }
  162. static int omap1_clk_enable_dsp_domain(struct clk *clk)
  163. {
  164. int retval;
  165. retval = omap1_clk_enable(&api_ck.clk);
  166. if (!retval) {
  167. retval = omap1_clk_enable_generic(clk);
  168. omap1_clk_disable(&api_ck.clk);
  169. }
  170. return retval;
  171. }
  172. static void omap1_clk_disable_dsp_domain(struct clk *clk)
  173. {
  174. if (omap1_clk_enable(&api_ck.clk) == 0) {
  175. omap1_clk_disable_generic(clk);
  176. omap1_clk_disable(&api_ck.clk);
  177. }
  178. }
  179. static const struct clkops clkops_dspck = {
  180. .enable = &omap1_clk_enable_dsp_domain,
  181. .disable = &omap1_clk_disable_dsp_domain,
  182. };
  183. static int omap1_clk_enable_uart_functional(struct clk *clk)
  184. {
  185. int ret;
  186. struct uart_clk *uclk;
  187. ret = omap1_clk_enable_generic(clk);
  188. if (ret == 0) {
  189. /* Set smart idle acknowledgement mode */
  190. uclk = (struct uart_clk *)clk;
  191. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
  192. uclk->sysc_addr);
  193. }
  194. return ret;
  195. }
  196. static void omap1_clk_disable_uart_functional(struct clk *clk)
  197. {
  198. struct uart_clk *uclk;
  199. /* Set force idle acknowledgement mode */
  200. uclk = (struct uart_clk *)clk;
  201. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
  202. omap1_clk_disable_generic(clk);
  203. }
  204. static const struct clkops clkops_uart = {
  205. .enable = &omap1_clk_enable_uart_functional,
  206. .disable = &omap1_clk_disable_uart_functional,
  207. };
  208. static void omap1_clk_allow_idle(struct clk *clk)
  209. {
  210. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  211. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  212. return;
  213. if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
  214. arm_idlect1_mask |= 1 << iclk->idlect_shift;
  215. }
  216. static void omap1_clk_deny_idle(struct clk *clk)
  217. {
  218. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  219. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  220. return;
  221. if (iclk->no_idle_count++ == 0)
  222. arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
  223. }
  224. static __u16 verify_ckctl_value(__u16 newval)
  225. {
  226. /* This function checks for following limitations set
  227. * by the hardware (all conditions must be true):
  228. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  229. * ARM_CK >= TC_CK
  230. * DSP_CK >= TC_CK
  231. * DSPMMU_CK >= TC_CK
  232. *
  233. * In addition following rules are enforced:
  234. * LCD_CK <= TC_CK
  235. * ARMPER_CK <= TC_CK
  236. *
  237. * However, maximum frequencies are not checked for!
  238. */
  239. __u8 per_exp;
  240. __u8 lcd_exp;
  241. __u8 arm_exp;
  242. __u8 dsp_exp;
  243. __u8 tc_exp;
  244. __u8 dspmmu_exp;
  245. per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
  246. lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
  247. arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
  248. dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
  249. tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
  250. dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
  251. if (dspmmu_exp < dsp_exp)
  252. dspmmu_exp = dsp_exp;
  253. if (dspmmu_exp > dsp_exp+1)
  254. dspmmu_exp = dsp_exp+1;
  255. if (tc_exp < arm_exp)
  256. tc_exp = arm_exp;
  257. if (tc_exp < dspmmu_exp)
  258. tc_exp = dspmmu_exp;
  259. if (tc_exp > lcd_exp)
  260. lcd_exp = tc_exp;
  261. if (tc_exp > per_exp)
  262. per_exp = tc_exp;
  263. newval &= 0xf000;
  264. newval |= per_exp << CKCTL_PERDIV_OFFSET;
  265. newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
  266. newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
  267. newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
  268. newval |= tc_exp << CKCTL_TCDIV_OFFSET;
  269. newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
  270. return newval;
  271. }
  272. static int calc_dsor_exp(struct clk *clk, unsigned long rate)
  273. {
  274. /* Note: If target frequency is too low, this function will return 4,
  275. * which is invalid value. Caller must check for this value and act
  276. * accordingly.
  277. *
  278. * Note: This function does not check for following limitations set
  279. * by the hardware (all conditions must be true):
  280. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  281. * ARM_CK >= TC_CK
  282. * DSP_CK >= TC_CK
  283. * DSPMMU_CK >= TC_CK
  284. */
  285. unsigned long realrate;
  286. struct clk * parent;
  287. unsigned dsor_exp;
  288. parent = clk->parent;
  289. if (unlikely(parent == NULL))
  290. return -EIO;
  291. realrate = parent->rate;
  292. for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
  293. if (realrate <= rate)
  294. break;
  295. realrate /= 2;
  296. }
  297. return dsor_exp;
  298. }
  299. static void omap1_ckctl_recalc(struct clk * clk)
  300. {
  301. int dsor;
  302. /* Calculate divisor encoded as 2-bit exponent */
  303. dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
  304. if (unlikely(clk->rate == clk->parent->rate / dsor))
  305. return; /* No change, quick exit */
  306. clk->rate = clk->parent->rate / dsor;
  307. }
  308. static void omap1_ckctl_recalc_dsp_domain(struct clk * clk)
  309. {
  310. int dsor;
  311. /* Calculate divisor encoded as 2-bit exponent
  312. *
  313. * The clock control bits are in DSP domain,
  314. * so api_ck is needed for access.
  315. * Note that DSP_CKCTL virt addr = phys addr, so
  316. * we must use __raw_readw() instead of omap_readw().
  317. */
  318. omap1_clk_enable(&api_ck.clk);
  319. dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
  320. omap1_clk_disable(&api_ck.clk);
  321. if (unlikely(clk->rate == clk->parent->rate / dsor))
  322. return; /* No change, quick exit */
  323. clk->rate = clk->parent->rate / dsor;
  324. }
  325. /* MPU virtual clock functions */
  326. static int omap1_select_table_rate(struct clk * clk, unsigned long rate)
  327. {
  328. /* Find the highest supported frequency <= rate and switch to it */
  329. struct mpu_rate * ptr;
  330. if (clk != &virtual_ck_mpu)
  331. return -EINVAL;
  332. for (ptr = rate_table; ptr->rate; ptr++) {
  333. if (ptr->xtal != ck_ref.rate)
  334. continue;
  335. /* DPLL1 cannot be reprogrammed without risking system crash */
  336. if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
  337. continue;
  338. /* Can check only after xtal frequency check */
  339. if (ptr->rate <= rate)
  340. break;
  341. }
  342. if (!ptr->rate)
  343. return -EINVAL;
  344. /*
  345. * In most cases we should not need to reprogram DPLL.
  346. * Reprogramming the DPLL is tricky, it must be done from SRAM.
  347. * (on 730, bit 13 must always be 1)
  348. */
  349. if (cpu_is_omap730())
  350. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val | 0x2000);
  351. else
  352. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
  353. ck_dpll1.rate = ptr->pll_rate;
  354. return 0;
  355. }
  356. static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
  357. {
  358. int dsor_exp;
  359. u16 regval;
  360. dsor_exp = calc_dsor_exp(clk, rate);
  361. if (dsor_exp > 3)
  362. dsor_exp = -EINVAL;
  363. if (dsor_exp < 0)
  364. return dsor_exp;
  365. regval = __raw_readw(DSP_CKCTL);
  366. regval &= ~(3 << clk->rate_offset);
  367. regval |= dsor_exp << clk->rate_offset;
  368. __raw_writew(regval, DSP_CKCTL);
  369. clk->rate = clk->parent->rate / (1 << dsor_exp);
  370. return 0;
  371. }
  372. static long omap1_clk_round_rate_ckctl_arm(struct clk *clk, unsigned long rate)
  373. {
  374. int dsor_exp = calc_dsor_exp(clk, rate);
  375. if (dsor_exp < 0)
  376. return dsor_exp;
  377. if (dsor_exp > 3)
  378. dsor_exp = 3;
  379. return clk->parent->rate / (1 << dsor_exp);
  380. }
  381. static int omap1_clk_set_rate_ckctl_arm(struct clk *clk, unsigned long rate)
  382. {
  383. int dsor_exp;
  384. u16 regval;
  385. dsor_exp = calc_dsor_exp(clk, rate);
  386. if (dsor_exp > 3)
  387. dsor_exp = -EINVAL;
  388. if (dsor_exp < 0)
  389. return dsor_exp;
  390. regval = omap_readw(ARM_CKCTL);
  391. regval &= ~(3 << clk->rate_offset);
  392. regval |= dsor_exp << clk->rate_offset;
  393. regval = verify_ckctl_value(regval);
  394. omap_writew(regval, ARM_CKCTL);
  395. clk->rate = clk->parent->rate / (1 << dsor_exp);
  396. return 0;
  397. }
  398. static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate)
  399. {
  400. /* Find the highest supported frequency <= rate */
  401. struct mpu_rate * ptr;
  402. long highest_rate;
  403. if (clk != &virtual_ck_mpu)
  404. return -EINVAL;
  405. highest_rate = -EINVAL;
  406. for (ptr = rate_table; ptr->rate; ptr++) {
  407. if (ptr->xtal != ck_ref.rate)
  408. continue;
  409. highest_rate = ptr->rate;
  410. /* Can check only after xtal frequency check */
  411. if (ptr->rate <= rate)
  412. break;
  413. }
  414. return highest_rate;
  415. }
  416. static unsigned calc_ext_dsor(unsigned long rate)
  417. {
  418. unsigned dsor;
  419. /* MCLK and BCLK divisor selection is not linear:
  420. * freq = 96MHz / dsor
  421. *
  422. * RATIO_SEL range: dsor <-> RATIO_SEL
  423. * 0..6: (RATIO_SEL+2) <-> (dsor-2)
  424. * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
  425. * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
  426. * can not be used.
  427. */
  428. for (dsor = 2; dsor < 96; ++dsor) {
  429. if ((dsor & 1) && dsor > 8)
  430. continue;
  431. if (rate >= 96000000 / dsor)
  432. break;
  433. }
  434. return dsor;
  435. }
  436. /* Only needed on 1510 */
  437. static int omap1_set_uart_rate(struct clk * clk, unsigned long rate)
  438. {
  439. unsigned int val;
  440. val = omap_readl(clk->enable_reg);
  441. if (rate == 12000000)
  442. val &= ~(1 << clk->enable_bit);
  443. else if (rate == 48000000)
  444. val |= (1 << clk->enable_bit);
  445. else
  446. return -EINVAL;
  447. omap_writel(val, clk->enable_reg);
  448. clk->rate = rate;
  449. return 0;
  450. }
  451. /* External clock (MCLK & BCLK) functions */
  452. static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate)
  453. {
  454. unsigned dsor;
  455. __u16 ratio_bits;
  456. dsor = calc_ext_dsor(rate);
  457. clk->rate = 96000000 / dsor;
  458. if (dsor > 8)
  459. ratio_bits = ((dsor - 8) / 2 + 6) << 2;
  460. else
  461. ratio_bits = (dsor - 2) << 2;
  462. ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
  463. omap_writew(ratio_bits, clk->enable_reg);
  464. return 0;
  465. }
  466. static int omap1_set_sossi_rate(struct clk *clk, unsigned long rate)
  467. {
  468. u32 l;
  469. int div;
  470. unsigned long p_rate;
  471. p_rate = clk->parent->rate;
  472. /* Round towards slower frequency */
  473. div = (p_rate + rate - 1) / rate;
  474. div--;
  475. if (div < 0 || div > 7)
  476. return -EINVAL;
  477. l = omap_readl(MOD_CONF_CTRL_1);
  478. l &= ~(7 << 17);
  479. l |= div << 17;
  480. omap_writel(l, MOD_CONF_CTRL_1);
  481. clk->rate = p_rate / (div + 1);
  482. return 0;
  483. }
  484. static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate)
  485. {
  486. return 96000000 / calc_ext_dsor(rate);
  487. }
  488. static void omap1_init_ext_clk(struct clk * clk)
  489. {
  490. unsigned dsor;
  491. __u16 ratio_bits;
  492. /* Determine current rate and ensure clock is based on 96MHz APLL */
  493. ratio_bits = omap_readw(clk->enable_reg) & ~1;
  494. omap_writew(ratio_bits, clk->enable_reg);
  495. ratio_bits = (ratio_bits & 0xfc) >> 2;
  496. if (ratio_bits > 6)
  497. dsor = (ratio_bits - 6) * 2 + 8;
  498. else
  499. dsor = ratio_bits + 2;
  500. clk-> rate = 96000000 / dsor;
  501. }
  502. static int omap1_clk_enable(struct clk *clk)
  503. {
  504. int ret = 0;
  505. if (clk->usecount++ == 0) {
  506. if (likely(clk->parent)) {
  507. ret = omap1_clk_enable(clk->parent);
  508. if (unlikely(ret != 0)) {
  509. clk->usecount--;
  510. return ret;
  511. }
  512. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  513. omap1_clk_deny_idle(clk->parent);
  514. }
  515. ret = clk->ops->enable(clk);
  516. if (unlikely(ret != 0) && clk->parent) {
  517. omap1_clk_disable(clk->parent);
  518. clk->usecount--;
  519. }
  520. }
  521. return ret;
  522. }
  523. static void omap1_clk_disable(struct clk *clk)
  524. {
  525. if (clk->usecount > 0 && !(--clk->usecount)) {
  526. clk->ops->disable(clk);
  527. if (likely(clk->parent)) {
  528. omap1_clk_disable(clk->parent);
  529. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  530. omap1_clk_allow_idle(clk->parent);
  531. }
  532. }
  533. }
  534. static int omap1_clk_enable_generic(struct clk *clk)
  535. {
  536. __u16 regval16;
  537. __u32 regval32;
  538. if (unlikely(clk->enable_reg == NULL)) {
  539. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  540. clk->name);
  541. return -EINVAL;
  542. }
  543. if (clk->flags & ENABLE_REG_32BIT) {
  544. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  545. regval32 = __raw_readl(clk->enable_reg);
  546. regval32 |= (1 << clk->enable_bit);
  547. __raw_writel(regval32, clk->enable_reg);
  548. } else {
  549. regval32 = omap_readl(clk->enable_reg);
  550. regval32 |= (1 << clk->enable_bit);
  551. omap_writel(regval32, clk->enable_reg);
  552. }
  553. } else {
  554. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  555. regval16 = __raw_readw(clk->enable_reg);
  556. regval16 |= (1 << clk->enable_bit);
  557. __raw_writew(regval16, clk->enable_reg);
  558. } else {
  559. regval16 = omap_readw(clk->enable_reg);
  560. regval16 |= (1 << clk->enable_bit);
  561. omap_writew(regval16, clk->enable_reg);
  562. }
  563. }
  564. return 0;
  565. }
  566. static void omap1_clk_disable_generic(struct clk *clk)
  567. {
  568. __u16 regval16;
  569. __u32 regval32;
  570. if (clk->enable_reg == NULL)
  571. return;
  572. if (clk->flags & ENABLE_REG_32BIT) {
  573. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  574. regval32 = __raw_readl(clk->enable_reg);
  575. regval32 &= ~(1 << clk->enable_bit);
  576. __raw_writel(regval32, clk->enable_reg);
  577. } else {
  578. regval32 = omap_readl(clk->enable_reg);
  579. regval32 &= ~(1 << clk->enable_bit);
  580. omap_writel(regval32, clk->enable_reg);
  581. }
  582. } else {
  583. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  584. regval16 = __raw_readw(clk->enable_reg);
  585. regval16 &= ~(1 << clk->enable_bit);
  586. __raw_writew(regval16, clk->enable_reg);
  587. } else {
  588. regval16 = omap_readw(clk->enable_reg);
  589. regval16 &= ~(1 << clk->enable_bit);
  590. omap_writew(regval16, clk->enable_reg);
  591. }
  592. }
  593. }
  594. static const struct clkops clkops_generic = {
  595. .enable = &omap1_clk_enable_generic,
  596. .disable = &omap1_clk_disable_generic,
  597. };
  598. static long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
  599. {
  600. if (clk->flags & RATE_FIXED)
  601. return clk->rate;
  602. if (clk->round_rate != NULL)
  603. return clk->round_rate(clk, rate);
  604. return clk->rate;
  605. }
  606. static int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
  607. {
  608. int ret = -EINVAL;
  609. if (clk->set_rate)
  610. ret = clk->set_rate(clk, rate);
  611. return ret;
  612. }
  613. /*-------------------------------------------------------------------------
  614. * Omap1 clock reset and init functions
  615. *-------------------------------------------------------------------------*/
  616. #ifdef CONFIG_OMAP_RESET_CLOCKS
  617. static void __init omap1_clk_disable_unused(struct clk *clk)
  618. {
  619. __u32 regval32;
  620. /* Clocks in the DSP domain need api_ck. Just assume bootloader
  621. * has not enabled any DSP clocks */
  622. if (clk->enable_reg == DSP_IDLECT2) {
  623. printk(KERN_INFO "Skipping reset check for DSP domain "
  624. "clock \"%s\"\n", clk->name);
  625. return;
  626. }
  627. /* Is the clock already disabled? */
  628. if (clk->flags & ENABLE_REG_32BIT) {
  629. if (clk->flags & VIRTUAL_IO_ADDRESS)
  630. regval32 = __raw_readl(clk->enable_reg);
  631. else
  632. regval32 = omap_readl(clk->enable_reg);
  633. } else {
  634. if (clk->flags & VIRTUAL_IO_ADDRESS)
  635. regval32 = __raw_readw(clk->enable_reg);
  636. else
  637. regval32 = omap_readw(clk->enable_reg);
  638. }
  639. if ((regval32 & (1 << clk->enable_bit)) == 0)
  640. return;
  641. /* FIXME: This clock seems to be necessary but no-one
  642. * has asked for its activation. */
  643. if (clk == &tc2_ck /* FIX: pm.c (SRAM), CCP, Camera */
  644. || clk == &ck_dpll1out.clk /* FIX: SoSSI, SSR */
  645. || clk == &arm_gpio_ck /* FIX: GPIO code for 1510 */
  646. ) {
  647. printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
  648. clk->name);
  649. return;
  650. }
  651. printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name);
  652. clk->ops->disable(clk);
  653. printk(" done\n");
  654. }
  655. #else
  656. #define omap1_clk_disable_unused NULL
  657. #endif
  658. static struct clk_functions omap1_clk_functions = {
  659. .clk_enable = omap1_clk_enable,
  660. .clk_disable = omap1_clk_disable,
  661. .clk_round_rate = omap1_clk_round_rate,
  662. .clk_set_rate = omap1_clk_set_rate,
  663. .clk_disable_unused = omap1_clk_disable_unused,
  664. };
  665. int __init omap1_clk_init(void)
  666. {
  667. struct omap_clk *c;
  668. const struct omap_clock_config *info;
  669. int crystal_type = 0; /* Default 12 MHz */
  670. u32 reg, cpu_mask;
  671. #ifdef CONFIG_DEBUG_LL
  672. /* Resets some clocks that may be left on from bootloader,
  673. * but leaves serial clocks on.
  674. */
  675. omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
  676. #endif
  677. /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
  678. reg = omap_readw(SOFT_REQ_REG) & (1 << 4);
  679. omap_writew(reg, SOFT_REQ_REG);
  680. if (!cpu_is_omap15xx())
  681. omap_writew(0, SOFT_REQ_REG2);
  682. clk_init(&omap1_clk_functions);
  683. /* By default all idlect1 clocks are allowed to idle */
  684. arm_idlect1_mask = ~0;
  685. cpu_mask = 0;
  686. if (cpu_is_omap16xx())
  687. cpu_mask |= CK_16XX;
  688. if (cpu_is_omap1510())
  689. cpu_mask |= CK_1510;
  690. if (cpu_is_omap730())
  691. cpu_mask |= CK_730;
  692. if (cpu_is_omap310())
  693. cpu_mask |= CK_310;
  694. for (c = omap_clks; c < omap_clks + ARRAY_SIZE(omap_clks); c++)
  695. if (c->cpu & cpu_mask) {
  696. clkdev_add(&c->lk);
  697. clk_register(c->lk.clk);
  698. }
  699. info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
  700. if (info != NULL) {
  701. if (!cpu_is_omap15xx())
  702. crystal_type = info->system_clock_type;
  703. }
  704. #if defined(CONFIG_ARCH_OMAP730)
  705. ck_ref.rate = 13000000;
  706. #elif defined(CONFIG_ARCH_OMAP16XX)
  707. if (crystal_type == 2)
  708. ck_ref.rate = 19200000;
  709. #endif
  710. printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
  711. omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
  712. omap_readw(ARM_CKCTL));
  713. /* We want to be in syncronous scalable mode */
  714. omap_writew(0x1000, ARM_SYSST);
  715. #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
  716. /* Use values set by bootloader. Determine PLL rate and recalculate
  717. * dependent clocks as if kernel had changed PLL or divisors.
  718. */
  719. {
  720. unsigned pll_ctl_val = omap_readw(DPLL_CTL);
  721. ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
  722. if (pll_ctl_val & 0x10) {
  723. /* PLL enabled, apply multiplier and divisor */
  724. if (pll_ctl_val & 0xf80)
  725. ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
  726. ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
  727. } else {
  728. /* PLL disabled, apply bypass divisor */
  729. switch (pll_ctl_val & 0xc) {
  730. case 0:
  731. break;
  732. case 0x4:
  733. ck_dpll1.rate /= 2;
  734. break;
  735. default:
  736. ck_dpll1.rate /= 4;
  737. break;
  738. }
  739. }
  740. }
  741. #else
  742. /* Find the highest supported frequency and enable it */
  743. if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) {
  744. printk(KERN_ERR "System frequencies not set. Check your config.\n");
  745. /* Guess sane values (60MHz) */
  746. omap_writew(0x2290, DPLL_CTL);
  747. omap_writew(cpu_is_omap730() ? 0x3005 : 0x1005, ARM_CKCTL);
  748. ck_dpll1.rate = 60000000;
  749. }
  750. #endif
  751. propagate_rate(&ck_dpll1);
  752. /* Cache rates for clocks connected to ck_ref (not dpll1) */
  753. propagate_rate(&ck_ref);
  754. printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
  755. "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
  756. ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
  757. ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
  758. arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
  759. #if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE)
  760. /* Select slicer output as OMAP input clock */
  761. omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
  762. #endif
  763. /* Amstrad Delta wants BCLK high when inactive */
  764. if (machine_is_ams_delta())
  765. omap_writel(omap_readl(ULPD_CLOCK_CTRL) |
  766. (1 << SDW_MCLK_INV_BIT),
  767. ULPD_CLOCK_CTRL);
  768. /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
  769. /* (on 730, bit 13 must not be cleared) */
  770. if (cpu_is_omap730())
  771. omap_writew(omap_readw(ARM_CKCTL) & 0x2fff, ARM_CKCTL);
  772. else
  773. omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
  774. /* Put DSP/MPUI into reset until needed */
  775. omap_writew(0, ARM_RSTCT1);
  776. omap_writew(1, ARM_RSTCT2);
  777. omap_writew(0x400, ARM_IDLECT1);
  778. /*
  779. * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
  780. * of the ARM_IDLECT2 register must be set to zero. The power-on
  781. * default value of this bit is one.
  782. */
  783. omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
  784. /*
  785. * Only enable those clocks we will need, let the drivers
  786. * enable other clocks as necessary
  787. */
  788. clk_enable(&armper_ck.clk);
  789. clk_enable(&armxor_ck.clk);
  790. clk_enable(&armtim_ck.clk); /* This should be done by timer code */
  791. if (cpu_is_omap15xx())
  792. clk_enable(&arm_gpio_ck);
  793. return 0;
  794. }