gadget.h 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988
  1. /*
  2. * <linux/usb/gadget.h>
  3. *
  4. * We call the USB code inside a Linux-based peripheral device a "gadget"
  5. * driver, except for the hardware-specific bus glue. One USB host can
  6. * master many USB gadgets, but the gadgets are only slaved to one host.
  7. *
  8. *
  9. * (C) Copyright 2002-2004 by David Brownell
  10. * All Rights Reserved.
  11. *
  12. * This software is licensed under the GNU GPL version 2.
  13. */
  14. #ifndef __LINUX_USB_GADGET_H
  15. #define __LINUX_USB_GADGET_H
  16. #include <linux/device.h>
  17. #include <linux/errno.h>
  18. #include <linux/init.h>
  19. #include <linux/list.h>
  20. #include <linux/slab.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/types.h>
  23. #include <linux/workqueue.h>
  24. #include <linux/usb/ch9.h>
  25. struct usb_ep;
  26. /**
  27. * struct usb_request - describes one i/o request
  28. * @buf: Buffer used for data. Always provide this; some controllers
  29. * only use PIO, or don't use DMA for some endpoints.
  30. * @dma: DMA address corresponding to 'buf'. If you don't set this
  31. * field, and the usb controller needs one, it is responsible
  32. * for mapping and unmapping the buffer.
  33. * @sg: a scatterlist for SG-capable controllers.
  34. * @num_sgs: number of SG entries
  35. * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
  36. * @length: Length of that data
  37. * @stream_id: The stream id, when USB3.0 bulk streams are being used
  38. * @no_interrupt: If true, hints that no completion irq is needed.
  39. * Helpful sometimes with deep request queues that are handled
  40. * directly by DMA controllers.
  41. * @zero: If true, when writing data, makes the last packet be "short"
  42. * by adding a zero length packet as needed;
  43. * @short_not_ok: When reading data, makes short packets be
  44. * treated as errors (queue stops advancing till cleanup).
  45. * @complete: Function called when request completes, so this request and
  46. * its buffer may be re-used. The function will always be called with
  47. * interrupts disabled, and it must not sleep.
  48. * Reads terminate with a short packet, or when the buffer fills,
  49. * whichever comes first. When writes terminate, some data bytes
  50. * will usually still be in flight (often in a hardware fifo).
  51. * Errors (for reads or writes) stop the queue from advancing
  52. * until the completion function returns, so that any transfers
  53. * invalidated by the error may first be dequeued.
  54. * @context: For use by the completion callback
  55. * @list: For use by the gadget driver.
  56. * @status: Reports completion code, zero or a negative errno.
  57. * Normally, faults block the transfer queue from advancing until
  58. * the completion callback returns.
  59. * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
  60. * or when the driver disabled the endpoint.
  61. * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
  62. * transfers) this may be less than the requested length. If the
  63. * short_not_ok flag is set, short reads are treated as errors
  64. * even when status otherwise indicates successful completion.
  65. * Note that for writes (IN transfers) some data bytes may still
  66. * reside in a device-side FIFO when the request is reported as
  67. * complete.
  68. *
  69. * These are allocated/freed through the endpoint they're used with. The
  70. * hardware's driver can add extra per-request data to the memory it returns,
  71. * which often avoids separate memory allocations (potential failures),
  72. * later when the request is queued.
  73. *
  74. * Request flags affect request handling, such as whether a zero length
  75. * packet is written (the "zero" flag), whether a short read should be
  76. * treated as an error (blocking request queue advance, the "short_not_ok"
  77. * flag), or hinting that an interrupt is not required (the "no_interrupt"
  78. * flag, for use with deep request queues).
  79. *
  80. * Bulk endpoints can use any size buffers, and can also be used for interrupt
  81. * transfers. interrupt-only endpoints can be much less functional.
  82. *
  83. * NOTE: this is analogous to 'struct urb' on the host side, except that
  84. * it's thinner and promotes more pre-allocation.
  85. */
  86. struct usb_request {
  87. void *buf;
  88. unsigned length;
  89. dma_addr_t dma;
  90. struct scatterlist *sg;
  91. unsigned num_sgs;
  92. unsigned num_mapped_sgs;
  93. unsigned stream_id:16;
  94. unsigned no_interrupt:1;
  95. unsigned zero:1;
  96. unsigned short_not_ok:1;
  97. void (*complete)(struct usb_ep *ep,
  98. struct usb_request *req);
  99. void *context;
  100. struct list_head list;
  101. int status;
  102. unsigned actual;
  103. };
  104. /*-------------------------------------------------------------------------*/
  105. /* endpoint-specific parts of the api to the usb controller hardware.
  106. * unlike the urb model, (de)multiplexing layers are not required.
  107. * (so this api could slash overhead if used on the host side...)
  108. *
  109. * note that device side usb controllers commonly differ in how many
  110. * endpoints they support, as well as their capabilities.
  111. */
  112. struct usb_ep_ops {
  113. int (*enable) (struct usb_ep *ep,
  114. const struct usb_endpoint_descriptor *desc);
  115. int (*disable) (struct usb_ep *ep);
  116. struct usb_request *(*alloc_request) (struct usb_ep *ep,
  117. gfp_t gfp_flags);
  118. void (*free_request) (struct usb_ep *ep, struct usb_request *req);
  119. int (*queue) (struct usb_ep *ep, struct usb_request *req,
  120. gfp_t gfp_flags);
  121. int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
  122. int (*set_halt) (struct usb_ep *ep, int value);
  123. int (*set_wedge) (struct usb_ep *ep);
  124. int (*fifo_status) (struct usb_ep *ep);
  125. void (*fifo_flush) (struct usb_ep *ep);
  126. };
  127. /**
  128. * struct usb_ep - device side representation of USB endpoint
  129. * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
  130. * @ops: Function pointers used to access hardware-specific operations.
  131. * @ep_list:the gadget's ep_list holds all of its endpoints
  132. * @maxpacket:The maximum packet size used on this endpoint. The initial
  133. * value can sometimes be reduced (hardware allowing), according to
  134. * the endpoint descriptor used to configure the endpoint.
  135. * @max_streams: The maximum number of streams supported
  136. * by this EP (0 - 16, actual number is 2^n)
  137. * @mult: multiplier, 'mult' value for SS Isoc EPs
  138. * @maxburst: the maximum number of bursts supported by this EP (for usb3)
  139. * @driver_data:for use by the gadget driver.
  140. * @address: used to identify the endpoint when finding descriptor that
  141. * matches connection speed
  142. * @desc: endpoint descriptor. This pointer is set before the endpoint is
  143. * enabled and remains valid until the endpoint is disabled.
  144. * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
  145. * descriptor that is used to configure the endpoint
  146. *
  147. * the bus controller driver lists all the general purpose endpoints in
  148. * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
  149. * and is accessed only in response to a driver setup() callback.
  150. */
  151. struct usb_ep {
  152. void *driver_data;
  153. const char *name;
  154. const struct usb_ep_ops *ops;
  155. struct list_head ep_list;
  156. unsigned maxpacket:16;
  157. unsigned max_streams:16;
  158. unsigned mult:2;
  159. unsigned maxburst:5;
  160. u8 address;
  161. const struct usb_endpoint_descriptor *desc;
  162. const struct usb_ss_ep_comp_descriptor *comp_desc;
  163. };
  164. /*-------------------------------------------------------------------------*/
  165. /**
  166. * usb_ep_enable - configure endpoint, making it usable
  167. * @ep:the endpoint being configured. may not be the endpoint named "ep0".
  168. * drivers discover endpoints through the ep_list of a usb_gadget.
  169. *
  170. * When configurations are set, or when interface settings change, the driver
  171. * will enable or disable the relevant endpoints. while it is enabled, an
  172. * endpoint may be used for i/o until the driver receives a disconnect() from
  173. * the host or until the endpoint is disabled.
  174. *
  175. * the ep0 implementation (which calls this routine) must ensure that the
  176. * hardware capabilities of each endpoint match the descriptor provided
  177. * for it. for example, an endpoint named "ep2in-bulk" would be usable
  178. * for interrupt transfers as well as bulk, but it likely couldn't be used
  179. * for iso transfers or for endpoint 14. some endpoints are fully
  180. * configurable, with more generic names like "ep-a". (remember that for
  181. * USB, "in" means "towards the USB master".)
  182. *
  183. * returns zero, or a negative error code.
  184. */
  185. static inline int usb_ep_enable(struct usb_ep *ep)
  186. {
  187. return ep->ops->enable(ep, ep->desc);
  188. }
  189. /**
  190. * usb_ep_disable - endpoint is no longer usable
  191. * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
  192. *
  193. * no other task may be using this endpoint when this is called.
  194. * any pending and uncompleted requests will complete with status
  195. * indicating disconnect (-ESHUTDOWN) before this call returns.
  196. * gadget drivers must call usb_ep_enable() again before queueing
  197. * requests to the endpoint.
  198. *
  199. * returns zero, or a negative error code.
  200. */
  201. static inline int usb_ep_disable(struct usb_ep *ep)
  202. {
  203. return ep->ops->disable(ep);
  204. }
  205. /**
  206. * usb_ep_alloc_request - allocate a request object to use with this endpoint
  207. * @ep:the endpoint to be used with with the request
  208. * @gfp_flags:GFP_* flags to use
  209. *
  210. * Request objects must be allocated with this call, since they normally
  211. * need controller-specific setup and may even need endpoint-specific
  212. * resources such as allocation of DMA descriptors.
  213. * Requests may be submitted with usb_ep_queue(), and receive a single
  214. * completion callback. Free requests with usb_ep_free_request(), when
  215. * they are no longer needed.
  216. *
  217. * Returns the request, or null if one could not be allocated.
  218. */
  219. static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
  220. gfp_t gfp_flags)
  221. {
  222. return ep->ops->alloc_request(ep, gfp_flags);
  223. }
  224. /**
  225. * usb_ep_free_request - frees a request object
  226. * @ep:the endpoint associated with the request
  227. * @req:the request being freed
  228. *
  229. * Reverses the effect of usb_ep_alloc_request().
  230. * Caller guarantees the request is not queued, and that it will
  231. * no longer be requeued (or otherwise used).
  232. */
  233. static inline void usb_ep_free_request(struct usb_ep *ep,
  234. struct usb_request *req)
  235. {
  236. ep->ops->free_request(ep, req);
  237. }
  238. /**
  239. * usb_ep_queue - queues (submits) an I/O request to an endpoint.
  240. * @ep:the endpoint associated with the request
  241. * @req:the request being submitted
  242. * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
  243. * pre-allocate all necessary memory with the request.
  244. *
  245. * This tells the device controller to perform the specified request through
  246. * that endpoint (reading or writing a buffer). When the request completes,
  247. * including being canceled by usb_ep_dequeue(), the request's completion
  248. * routine is called to return the request to the driver. Any endpoint
  249. * (except control endpoints like ep0) may have more than one transfer
  250. * request queued; they complete in FIFO order. Once a gadget driver
  251. * submits a request, that request may not be examined or modified until it
  252. * is given back to that driver through the completion callback.
  253. *
  254. * Each request is turned into one or more packets. The controller driver
  255. * never merges adjacent requests into the same packet. OUT transfers
  256. * will sometimes use data that's already buffered in the hardware.
  257. * Drivers can rely on the fact that the first byte of the request's buffer
  258. * always corresponds to the first byte of some USB packet, for both
  259. * IN and OUT transfers.
  260. *
  261. * Bulk endpoints can queue any amount of data; the transfer is packetized
  262. * automatically. The last packet will be short if the request doesn't fill it
  263. * out completely. Zero length packets (ZLPs) should be avoided in portable
  264. * protocols since not all usb hardware can successfully handle zero length
  265. * packets. (ZLPs may be explicitly written, and may be implicitly written if
  266. * the request 'zero' flag is set.) Bulk endpoints may also be used
  267. * for interrupt transfers; but the reverse is not true, and some endpoints
  268. * won't support every interrupt transfer. (Such as 768 byte packets.)
  269. *
  270. * Interrupt-only endpoints are less functional than bulk endpoints, for
  271. * example by not supporting queueing or not handling buffers that are
  272. * larger than the endpoint's maxpacket size. They may also treat data
  273. * toggle differently.
  274. *
  275. * Control endpoints ... after getting a setup() callback, the driver queues
  276. * one response (even if it would be zero length). That enables the
  277. * status ack, after transferring data as specified in the response. Setup
  278. * functions may return negative error codes to generate protocol stalls.
  279. * (Note that some USB device controllers disallow protocol stall responses
  280. * in some cases.) When control responses are deferred (the response is
  281. * written after the setup callback returns), then usb_ep_set_halt() may be
  282. * used on ep0 to trigger protocol stalls. Depending on the controller,
  283. * it may not be possible to trigger a status-stage protocol stall when the
  284. * data stage is over, that is, from within the response's completion
  285. * routine.
  286. *
  287. * For periodic endpoints, like interrupt or isochronous ones, the usb host
  288. * arranges to poll once per interval, and the gadget driver usually will
  289. * have queued some data to transfer at that time.
  290. *
  291. * Returns zero, or a negative error code. Endpoints that are not enabled
  292. * report errors; errors will also be
  293. * reported when the usb peripheral is disconnected.
  294. */
  295. static inline int usb_ep_queue(struct usb_ep *ep,
  296. struct usb_request *req, gfp_t gfp_flags)
  297. {
  298. return ep->ops->queue(ep, req, gfp_flags);
  299. }
  300. /**
  301. * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
  302. * @ep:the endpoint associated with the request
  303. * @req:the request being canceled
  304. *
  305. * if the request is still active on the endpoint, it is dequeued and its
  306. * completion routine is called (with status -ECONNRESET); else a negative
  307. * error code is returned.
  308. *
  309. * note that some hardware can't clear out write fifos (to unlink the request
  310. * at the head of the queue) except as part of disconnecting from usb. such
  311. * restrictions prevent drivers from supporting configuration changes,
  312. * even to configuration zero (a "chapter 9" requirement).
  313. */
  314. static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  315. {
  316. return ep->ops->dequeue(ep, req);
  317. }
  318. /**
  319. * usb_ep_set_halt - sets the endpoint halt feature.
  320. * @ep: the non-isochronous endpoint being stalled
  321. *
  322. * Use this to stall an endpoint, perhaps as an error report.
  323. * Except for control endpoints,
  324. * the endpoint stays halted (will not stream any data) until the host
  325. * clears this feature; drivers may need to empty the endpoint's request
  326. * queue first, to make sure no inappropriate transfers happen.
  327. *
  328. * Note that while an endpoint CLEAR_FEATURE will be invisible to the
  329. * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
  330. * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
  331. * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
  332. *
  333. * Returns zero, or a negative error code. On success, this call sets
  334. * underlying hardware state that blocks data transfers.
  335. * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
  336. * transfer requests are still queued, or if the controller hardware
  337. * (usually a FIFO) still holds bytes that the host hasn't collected.
  338. */
  339. static inline int usb_ep_set_halt(struct usb_ep *ep)
  340. {
  341. return ep->ops->set_halt(ep, 1);
  342. }
  343. /**
  344. * usb_ep_clear_halt - clears endpoint halt, and resets toggle
  345. * @ep:the bulk or interrupt endpoint being reset
  346. *
  347. * Use this when responding to the standard usb "set interface" request,
  348. * for endpoints that aren't reconfigured, after clearing any other state
  349. * in the endpoint's i/o queue.
  350. *
  351. * Returns zero, or a negative error code. On success, this call clears
  352. * the underlying hardware state reflecting endpoint halt and data toggle.
  353. * Note that some hardware can't support this request (like pxa2xx_udc),
  354. * and accordingly can't correctly implement interface altsettings.
  355. */
  356. static inline int usb_ep_clear_halt(struct usb_ep *ep)
  357. {
  358. return ep->ops->set_halt(ep, 0);
  359. }
  360. /**
  361. * usb_ep_set_wedge - sets the halt feature and ignores clear requests
  362. * @ep: the endpoint being wedged
  363. *
  364. * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
  365. * requests. If the gadget driver clears the halt status, it will
  366. * automatically unwedge the endpoint.
  367. *
  368. * Returns zero on success, else negative errno.
  369. */
  370. static inline int
  371. usb_ep_set_wedge(struct usb_ep *ep)
  372. {
  373. if (ep->ops->set_wedge)
  374. return ep->ops->set_wedge(ep);
  375. else
  376. return ep->ops->set_halt(ep, 1);
  377. }
  378. /**
  379. * usb_ep_fifo_status - returns number of bytes in fifo, or error
  380. * @ep: the endpoint whose fifo status is being checked.
  381. *
  382. * FIFO endpoints may have "unclaimed data" in them in certain cases,
  383. * such as after aborted transfers. Hosts may not have collected all
  384. * the IN data written by the gadget driver (and reported by a request
  385. * completion). The gadget driver may not have collected all the data
  386. * written OUT to it by the host. Drivers that need precise handling for
  387. * fault reporting or recovery may need to use this call.
  388. *
  389. * This returns the number of such bytes in the fifo, or a negative
  390. * errno if the endpoint doesn't use a FIFO or doesn't support such
  391. * precise handling.
  392. */
  393. static inline int usb_ep_fifo_status(struct usb_ep *ep)
  394. {
  395. if (ep->ops->fifo_status)
  396. return ep->ops->fifo_status(ep);
  397. else
  398. return -EOPNOTSUPP;
  399. }
  400. /**
  401. * usb_ep_fifo_flush - flushes contents of a fifo
  402. * @ep: the endpoint whose fifo is being flushed.
  403. *
  404. * This call may be used to flush the "unclaimed data" that may exist in
  405. * an endpoint fifo after abnormal transaction terminations. The call
  406. * must never be used except when endpoint is not being used for any
  407. * protocol translation.
  408. */
  409. static inline void usb_ep_fifo_flush(struct usb_ep *ep)
  410. {
  411. if (ep->ops->fifo_flush)
  412. ep->ops->fifo_flush(ep);
  413. }
  414. /*-------------------------------------------------------------------------*/
  415. struct usb_dcd_config_params {
  416. __u8 bU1devExitLat; /* U1 Device exit Latency */
  417. #define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */
  418. __le16 bU2DevExitLat; /* U2 Device exit Latency */
  419. #define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */
  420. };
  421. struct usb_gadget;
  422. struct usb_gadget_driver;
  423. /* the rest of the api to the controller hardware: device operations,
  424. * which don't involve endpoints (or i/o).
  425. */
  426. struct usb_gadget_ops {
  427. int (*get_frame)(struct usb_gadget *);
  428. int (*wakeup)(struct usb_gadget *);
  429. int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
  430. int (*vbus_session) (struct usb_gadget *, int is_active);
  431. int (*vbus_draw) (struct usb_gadget *, unsigned mA);
  432. int (*pullup) (struct usb_gadget *, int is_on);
  433. int (*ioctl)(struct usb_gadget *,
  434. unsigned code, unsigned long param);
  435. void (*get_config_params)(struct usb_dcd_config_params *);
  436. int (*udc_start)(struct usb_gadget *,
  437. struct usb_gadget_driver *);
  438. int (*udc_stop)(struct usb_gadget *,
  439. struct usb_gadget_driver *);
  440. };
  441. /**
  442. * struct usb_gadget - represents a usb slave device
  443. * @work: (internal use) Workqueue to be used for sysfs_notify()
  444. * @ops: Function pointers used to access hardware-specific operations.
  445. * @ep0: Endpoint zero, used when reading or writing responses to
  446. * driver setup() requests
  447. * @ep_list: List of other endpoints supported by the device.
  448. * @speed: Speed of current connection to USB host.
  449. * @max_speed: Maximal speed the UDC can handle. UDC must support this
  450. * and all slower speeds.
  451. * @state: the state we are now (attached, suspended, configured, etc)
  452. * @sg_supported: true if we can handle scatter-gather
  453. * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
  454. * gadget driver must provide a USB OTG descriptor.
  455. * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
  456. * is in the Mini-AB jack, and HNP has been used to switch roles
  457. * so that the "A" device currently acts as A-Peripheral, not A-Host.
  458. * @a_hnp_support: OTG device feature flag, indicating that the A-Host
  459. * supports HNP at this port.
  460. * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
  461. * only supports HNP on a different root port.
  462. * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
  463. * enabled HNP support.
  464. * @name: Identifies the controller hardware type. Used in diagnostics
  465. * and sometimes configuration.
  466. * @dev: Driver model state for this abstract device.
  467. * @out_epnum: last used out ep number
  468. * @in_epnum: last used in ep number
  469. *
  470. * Gadgets have a mostly-portable "gadget driver" implementing device
  471. * functions, handling all usb configurations and interfaces. Gadget
  472. * drivers talk to hardware-specific code indirectly, through ops vectors.
  473. * That insulates the gadget driver from hardware details, and packages
  474. * the hardware endpoints through generic i/o queues. The "usb_gadget"
  475. * and "usb_ep" interfaces provide that insulation from the hardware.
  476. *
  477. * Except for the driver data, all fields in this structure are
  478. * read-only to the gadget driver. That driver data is part of the
  479. * "driver model" infrastructure in 2.6 (and later) kernels, and for
  480. * earlier systems is grouped in a similar structure that's not known
  481. * to the rest of the kernel.
  482. *
  483. * Values of the three OTG device feature flags are updated before the
  484. * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
  485. * driver suspend() calls. They are valid only when is_otg, and when the
  486. * device is acting as a B-Peripheral (so is_a_peripheral is false).
  487. */
  488. struct usb_gadget {
  489. struct work_struct work;
  490. /* readonly to gadget driver */
  491. const struct usb_gadget_ops *ops;
  492. struct usb_ep *ep0;
  493. struct list_head ep_list; /* of usb_ep */
  494. enum usb_device_speed speed;
  495. enum usb_device_speed max_speed;
  496. enum usb_device_state state;
  497. unsigned sg_supported:1;
  498. unsigned is_otg:1;
  499. unsigned is_a_peripheral:1;
  500. unsigned b_hnp_enable:1;
  501. unsigned a_hnp_support:1;
  502. unsigned a_alt_hnp_support:1;
  503. const char *name;
  504. struct device dev;
  505. unsigned out_epnum;
  506. unsigned in_epnum;
  507. };
  508. #define work_to_gadget(w) (container_of((w), struct usb_gadget, work))
  509. static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
  510. { dev_set_drvdata(&gadget->dev, data); }
  511. static inline void *get_gadget_data(struct usb_gadget *gadget)
  512. { return dev_get_drvdata(&gadget->dev); }
  513. static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
  514. {
  515. return container_of(dev, struct usb_gadget, dev);
  516. }
  517. /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
  518. #define gadget_for_each_ep(tmp, gadget) \
  519. list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
  520. /**
  521. * gadget_is_dualspeed - return true iff the hardware handles high speed
  522. * @g: controller that might support both high and full speeds
  523. */
  524. static inline int gadget_is_dualspeed(struct usb_gadget *g)
  525. {
  526. return g->max_speed >= USB_SPEED_HIGH;
  527. }
  528. /**
  529. * gadget_is_superspeed() - return true if the hardware handles superspeed
  530. * @g: controller that might support superspeed
  531. */
  532. static inline int gadget_is_superspeed(struct usb_gadget *g)
  533. {
  534. return g->max_speed >= USB_SPEED_SUPER;
  535. }
  536. /**
  537. * gadget_is_otg - return true iff the hardware is OTG-ready
  538. * @g: controller that might have a Mini-AB connector
  539. *
  540. * This is a runtime test, since kernels with a USB-OTG stack sometimes
  541. * run on boards which only have a Mini-B (or Mini-A) connector.
  542. */
  543. static inline int gadget_is_otg(struct usb_gadget *g)
  544. {
  545. #ifdef CONFIG_USB_OTG
  546. return g->is_otg;
  547. #else
  548. return 0;
  549. #endif
  550. }
  551. /**
  552. * usb_gadget_frame_number - returns the current frame number
  553. * @gadget: controller that reports the frame number
  554. *
  555. * Returns the usb frame number, normally eleven bits from a SOF packet,
  556. * or negative errno if this device doesn't support this capability.
  557. */
  558. static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
  559. {
  560. return gadget->ops->get_frame(gadget);
  561. }
  562. /**
  563. * usb_gadget_wakeup - tries to wake up the host connected to this gadget
  564. * @gadget: controller used to wake up the host
  565. *
  566. * Returns zero on success, else negative error code if the hardware
  567. * doesn't support such attempts, or its support has not been enabled
  568. * by the usb host. Drivers must return device descriptors that report
  569. * their ability to support this, or hosts won't enable it.
  570. *
  571. * This may also try to use SRP to wake the host and start enumeration,
  572. * even if OTG isn't otherwise in use. OTG devices may also start
  573. * remote wakeup even when hosts don't explicitly enable it.
  574. */
  575. static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
  576. {
  577. if (!gadget->ops->wakeup)
  578. return -EOPNOTSUPP;
  579. return gadget->ops->wakeup(gadget);
  580. }
  581. /**
  582. * usb_gadget_set_selfpowered - sets the device selfpowered feature.
  583. * @gadget:the device being declared as self-powered
  584. *
  585. * this affects the device status reported by the hardware driver
  586. * to reflect that it now has a local power supply.
  587. *
  588. * returns zero on success, else negative errno.
  589. */
  590. static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
  591. {
  592. if (!gadget->ops->set_selfpowered)
  593. return -EOPNOTSUPP;
  594. return gadget->ops->set_selfpowered(gadget, 1);
  595. }
  596. /**
  597. * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
  598. * @gadget:the device being declared as bus-powered
  599. *
  600. * this affects the device status reported by the hardware driver.
  601. * some hardware may not support bus-powered operation, in which
  602. * case this feature's value can never change.
  603. *
  604. * returns zero on success, else negative errno.
  605. */
  606. static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
  607. {
  608. if (!gadget->ops->set_selfpowered)
  609. return -EOPNOTSUPP;
  610. return gadget->ops->set_selfpowered(gadget, 0);
  611. }
  612. /**
  613. * usb_gadget_vbus_connect - Notify controller that VBUS is powered
  614. * @gadget:The device which now has VBUS power.
  615. * Context: can sleep
  616. *
  617. * This call is used by a driver for an external transceiver (or GPIO)
  618. * that detects a VBUS power session starting. Common responses include
  619. * resuming the controller, activating the D+ (or D-) pullup to let the
  620. * host detect that a USB device is attached, and starting to draw power
  621. * (8mA or possibly more, especially after SET_CONFIGURATION).
  622. *
  623. * Returns zero on success, else negative errno.
  624. */
  625. static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
  626. {
  627. if (!gadget->ops->vbus_session)
  628. return -EOPNOTSUPP;
  629. return gadget->ops->vbus_session(gadget, 1);
  630. }
  631. /**
  632. * usb_gadget_vbus_draw - constrain controller's VBUS power usage
  633. * @gadget:The device whose VBUS usage is being described
  634. * @mA:How much current to draw, in milliAmperes. This should be twice
  635. * the value listed in the configuration descriptor bMaxPower field.
  636. *
  637. * This call is used by gadget drivers during SET_CONFIGURATION calls,
  638. * reporting how much power the device may consume. For example, this
  639. * could affect how quickly batteries are recharged.
  640. *
  641. * Returns zero on success, else negative errno.
  642. */
  643. static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
  644. {
  645. if (!gadget->ops->vbus_draw)
  646. return -EOPNOTSUPP;
  647. return gadget->ops->vbus_draw(gadget, mA);
  648. }
  649. /**
  650. * usb_gadget_vbus_disconnect - notify controller about VBUS session end
  651. * @gadget:the device whose VBUS supply is being described
  652. * Context: can sleep
  653. *
  654. * This call is used by a driver for an external transceiver (or GPIO)
  655. * that detects a VBUS power session ending. Common responses include
  656. * reversing everything done in usb_gadget_vbus_connect().
  657. *
  658. * Returns zero on success, else negative errno.
  659. */
  660. static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
  661. {
  662. if (!gadget->ops->vbus_session)
  663. return -EOPNOTSUPP;
  664. return gadget->ops->vbus_session(gadget, 0);
  665. }
  666. /**
  667. * usb_gadget_connect - software-controlled connect to USB host
  668. * @gadget:the peripheral being connected
  669. *
  670. * Enables the D+ (or potentially D-) pullup. The host will start
  671. * enumerating this gadget when the pullup is active and a VBUS session
  672. * is active (the link is powered). This pullup is always enabled unless
  673. * usb_gadget_disconnect() has been used to disable it.
  674. *
  675. * Returns zero on success, else negative errno.
  676. */
  677. static inline int usb_gadget_connect(struct usb_gadget *gadget)
  678. {
  679. if (!gadget->ops->pullup)
  680. return -EOPNOTSUPP;
  681. return gadget->ops->pullup(gadget, 1);
  682. }
  683. /**
  684. * usb_gadget_disconnect - software-controlled disconnect from USB host
  685. * @gadget:the peripheral being disconnected
  686. *
  687. * Disables the D+ (or potentially D-) pullup, which the host may see
  688. * as a disconnect (when a VBUS session is active). Not all systems
  689. * support software pullup controls.
  690. *
  691. * This routine may be used during the gadget driver bind() call to prevent
  692. * the peripheral from ever being visible to the USB host, unless later
  693. * usb_gadget_connect() is called. For example, user mode components may
  694. * need to be activated before the system can talk to hosts.
  695. *
  696. * Returns zero on success, else negative errno.
  697. */
  698. static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
  699. {
  700. if (!gadget->ops->pullup)
  701. return -EOPNOTSUPP;
  702. return gadget->ops->pullup(gadget, 0);
  703. }
  704. /*-------------------------------------------------------------------------*/
  705. /**
  706. * struct usb_gadget_driver - driver for usb 'slave' devices
  707. * @function: String describing the gadget's function
  708. * @max_speed: Highest speed the driver handles.
  709. * @setup: Invoked for ep0 control requests that aren't handled by
  710. * the hardware level driver. Most calls must be handled by
  711. * the gadget driver, including descriptor and configuration
  712. * management. The 16 bit members of the setup data are in
  713. * USB byte order. Called in_interrupt; this may not sleep. Driver
  714. * queues a response to ep0, or returns negative to stall.
  715. * @disconnect: Invoked after all transfers have been stopped,
  716. * when the host is disconnected. May be called in_interrupt; this
  717. * may not sleep. Some devices can't detect disconnect, so this might
  718. * not be called except as part of controller shutdown.
  719. * @bind: the driver's bind callback
  720. * @unbind: Invoked when the driver is unbound from a gadget,
  721. * usually from rmmod (after a disconnect is reported).
  722. * Called in a context that permits sleeping.
  723. * @suspend: Invoked on USB suspend. May be called in_interrupt.
  724. * @resume: Invoked on USB resume. May be called in_interrupt.
  725. * @driver: Driver model state for this driver.
  726. *
  727. * Devices are disabled till a gadget driver successfully bind()s, which
  728. * means the driver will handle setup() requests needed to enumerate (and
  729. * meet "chapter 9" requirements) then do some useful work.
  730. *
  731. * If gadget->is_otg is true, the gadget driver must provide an OTG
  732. * descriptor during enumeration, or else fail the bind() call. In such
  733. * cases, no USB traffic may flow until both bind() returns without
  734. * having called usb_gadget_disconnect(), and the USB host stack has
  735. * initialized.
  736. *
  737. * Drivers use hardware-specific knowledge to configure the usb hardware.
  738. * endpoint addressing is only one of several hardware characteristics that
  739. * are in descriptors the ep0 implementation returns from setup() calls.
  740. *
  741. * Except for ep0 implementation, most driver code shouldn't need change to
  742. * run on top of different usb controllers. It'll use endpoints set up by
  743. * that ep0 implementation.
  744. *
  745. * The usb controller driver handles a few standard usb requests. Those
  746. * include set_address, and feature flags for devices, interfaces, and
  747. * endpoints (the get_status, set_feature, and clear_feature requests).
  748. *
  749. * Accordingly, the driver's setup() callback must always implement all
  750. * get_descriptor requests, returning at least a device descriptor and
  751. * a configuration descriptor. Drivers must make sure the endpoint
  752. * descriptors match any hardware constraints. Some hardware also constrains
  753. * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
  754. *
  755. * The driver's setup() callback must also implement set_configuration,
  756. * and should also implement set_interface, get_configuration, and
  757. * get_interface. Setting a configuration (or interface) is where
  758. * endpoints should be activated or (config 0) shut down.
  759. *
  760. * (Note that only the default control endpoint is supported. Neither
  761. * hosts nor devices generally support control traffic except to ep0.)
  762. *
  763. * Most devices will ignore USB suspend/resume operations, and so will
  764. * not provide those callbacks. However, some may need to change modes
  765. * when the host is not longer directing those activities. For example,
  766. * local controls (buttons, dials, etc) may need to be re-enabled since
  767. * the (remote) host can't do that any longer; or an error state might
  768. * be cleared, to make the device behave identically whether or not
  769. * power is maintained.
  770. */
  771. struct usb_gadget_driver {
  772. char *function;
  773. enum usb_device_speed max_speed;
  774. int (*bind)(struct usb_gadget *gadget,
  775. struct usb_gadget_driver *driver);
  776. void (*unbind)(struct usb_gadget *);
  777. int (*setup)(struct usb_gadget *,
  778. const struct usb_ctrlrequest *);
  779. void (*disconnect)(struct usb_gadget *);
  780. void (*suspend)(struct usb_gadget *);
  781. void (*resume)(struct usb_gadget *);
  782. /* FIXME support safe rmmod */
  783. struct device_driver driver;
  784. };
  785. /*-------------------------------------------------------------------------*/
  786. /* driver modules register and unregister, as usual.
  787. * these calls must be made in a context that can sleep.
  788. *
  789. * these will usually be implemented directly by the hardware-dependent
  790. * usb bus interface driver, which will only support a single driver.
  791. */
  792. /**
  793. * usb_gadget_probe_driver - probe a gadget driver
  794. * @driver: the driver being registered
  795. * Context: can sleep
  796. *
  797. * Call this in your gadget driver's module initialization function,
  798. * to tell the underlying usb controller driver about your driver.
  799. * The @bind() function will be called to bind it to a gadget before this
  800. * registration call returns. It's expected that the @bind() function will
  801. * be in init sections.
  802. */
  803. int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
  804. /**
  805. * usb_gadget_unregister_driver - unregister a gadget driver
  806. * @driver:the driver being unregistered
  807. * Context: can sleep
  808. *
  809. * Call this in your gadget driver's module cleanup function,
  810. * to tell the underlying usb controller that your driver is
  811. * going away. If the controller is connected to a USB host,
  812. * it will first disconnect(). The driver is also requested
  813. * to unbind() and clean up any device state, before this procedure
  814. * finally returns. It's expected that the unbind() functions
  815. * will in in exit sections, so may not be linked in some kernels.
  816. */
  817. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
  818. extern int usb_add_gadget_udc_release(struct device *parent,
  819. struct usb_gadget *gadget, void (*release)(struct device *dev));
  820. extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
  821. extern void usb_del_gadget_udc(struct usb_gadget *gadget);
  822. extern int udc_attach_driver(const char *name,
  823. struct usb_gadget_driver *driver);
  824. /*-------------------------------------------------------------------------*/
  825. /* utility to simplify dealing with string descriptors */
  826. /**
  827. * struct usb_string - wraps a C string and its USB id
  828. * @id:the (nonzero) ID for this string
  829. * @s:the string, in UTF-8 encoding
  830. *
  831. * If you're using usb_gadget_get_string(), use this to wrap a string
  832. * together with its ID.
  833. */
  834. struct usb_string {
  835. u8 id;
  836. const char *s;
  837. };
  838. /**
  839. * struct usb_gadget_strings - a set of USB strings in a given language
  840. * @language:identifies the strings' language (0x0409 for en-us)
  841. * @strings:array of strings with their ids
  842. *
  843. * If you're using usb_gadget_get_string(), use this to wrap all the
  844. * strings for a given language.
  845. */
  846. struct usb_gadget_strings {
  847. u16 language; /* 0x0409 for en-us */
  848. struct usb_string *strings;
  849. };
  850. struct usb_gadget_string_container {
  851. struct list_head list;
  852. u8 *stash[0];
  853. };
  854. /* put descriptor for string with that id into buf (buflen >= 256) */
  855. int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
  856. /*-------------------------------------------------------------------------*/
  857. /* utility to simplify managing config descriptors */
  858. /* write vector of descriptors into buffer */
  859. int usb_descriptor_fillbuf(void *, unsigned,
  860. const struct usb_descriptor_header **);
  861. /* build config descriptor from single descriptor vector */
  862. int usb_gadget_config_buf(const struct usb_config_descriptor *config,
  863. void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
  864. /* copy a NULL-terminated vector of descriptors */
  865. struct usb_descriptor_header **usb_copy_descriptors(
  866. struct usb_descriptor_header **);
  867. /**
  868. * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
  869. * @v: vector of descriptors
  870. */
  871. static inline void usb_free_descriptors(struct usb_descriptor_header **v)
  872. {
  873. kfree(v);
  874. }
  875. struct usb_function;
  876. int usb_assign_descriptors(struct usb_function *f,
  877. struct usb_descriptor_header **fs,
  878. struct usb_descriptor_header **hs,
  879. struct usb_descriptor_header **ss);
  880. void usb_free_all_descriptors(struct usb_function *f);
  881. /*-------------------------------------------------------------------------*/
  882. /* utility to simplify map/unmap of usb_requests to/from DMA */
  883. extern int usb_gadget_map_request(struct usb_gadget *gadget,
  884. struct usb_request *req, int is_in);
  885. extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
  886. struct usb_request *req, int is_in);
  887. /*-------------------------------------------------------------------------*/
  888. /* utility to set gadget state properly */
  889. extern void usb_gadget_set_state(struct usb_gadget *gadget,
  890. enum usb_device_state state);
  891. /*-------------------------------------------------------------------------*/
  892. /* utility wrapping a simple endpoint selection policy */
  893. extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
  894. struct usb_endpoint_descriptor *);
  895. extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
  896. struct usb_endpoint_descriptor *,
  897. struct usb_ss_ep_comp_descriptor *);
  898. extern void usb_ep_autoconfig_reset(struct usb_gadget *);
  899. #endif /* __LINUX_USB_GADGET_H */