1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672 |
- /*
- * Implement CPU time clocks for the POSIX clock interface.
- */
- #include <linux/sched.h>
- #include <linux/posix-timers.h>
- #include <linux/errno.h>
- #include <linux/math64.h>
- #include <asm/uaccess.h>
- #include <linux/kernel_stat.h>
- /*
- * Allocate the thread_group_cputime structure appropriately and fill in the
- * current values of the fields. Called from copy_signal() via
- * thread_group_cputime_clone_thread() when adding a second or subsequent
- * thread to a thread group. Assumes interrupts are enabled when called.
- */
- int thread_group_cputime_alloc(struct task_struct *tsk)
- {
- struct signal_struct *sig = tsk->signal;
- struct task_cputime *cputime;
- /*
- * If we have multiple threads and we don't already have a
- * per-CPU task_cputime struct (checked in the caller), allocate
- * one and fill it in with the times accumulated so far. We may
- * race with another thread so recheck after we pick up the sighand
- * lock.
- */
- cputime = alloc_percpu(struct task_cputime);
- if (cputime == NULL)
- return -ENOMEM;
- spin_lock_irq(&tsk->sighand->siglock);
- if (sig->cputime.totals) {
- spin_unlock_irq(&tsk->sighand->siglock);
- free_percpu(cputime);
- return 0;
- }
- sig->cputime.totals = cputime;
- cputime = per_cpu_ptr(sig->cputime.totals, smp_processor_id());
- cputime->utime = tsk->utime;
- cputime->stime = tsk->stime;
- cputime->sum_exec_runtime = tsk->se.sum_exec_runtime;
- spin_unlock_irq(&tsk->sighand->siglock);
- return 0;
- }
- /**
- * thread_group_cputime - Sum the thread group time fields across all CPUs.
- *
- * @tsk: The task we use to identify the thread group.
- * @times: task_cputime structure in which we return the summed fields.
- *
- * Walk the list of CPUs to sum the per-CPU time fields in the thread group
- * time structure.
- */
- void thread_group_cputime(
- struct task_struct *tsk,
- struct task_cputime *times)
- {
- struct task_cputime *totals, *tot;
- int i;
- totals = tsk->signal->cputime.totals;
- if (!totals) {
- times->utime = tsk->utime;
- times->stime = tsk->stime;
- times->sum_exec_runtime = tsk->se.sum_exec_runtime;
- return;
- }
- times->stime = times->utime = cputime_zero;
- times->sum_exec_runtime = 0;
- for_each_possible_cpu(i) {
- tot = per_cpu_ptr(totals, i);
- times->utime = cputime_add(times->utime, tot->utime);
- times->stime = cputime_add(times->stime, tot->stime);
- times->sum_exec_runtime += tot->sum_exec_runtime;
- }
- }
- /*
- * Called after updating RLIMIT_CPU to set timer expiration if necessary.
- */
- void update_rlimit_cpu(unsigned long rlim_new)
- {
- cputime_t cputime;
- cputime = secs_to_cputime(rlim_new);
- if (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
- cputime_lt(current->signal->it_prof_expires, cputime)) {
- spin_lock_irq(¤t->sighand->siglock);
- set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
- spin_unlock_irq(¤t->sighand->siglock);
- }
- }
- static int check_clock(const clockid_t which_clock)
- {
- int error = 0;
- struct task_struct *p;
- const pid_t pid = CPUCLOCK_PID(which_clock);
- if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
- return -EINVAL;
- if (pid == 0)
- return 0;
- read_lock(&tasklist_lock);
- p = find_task_by_vpid(pid);
- if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
- same_thread_group(p, current) : thread_group_leader(p))) {
- error = -EINVAL;
- }
- read_unlock(&tasklist_lock);
- return error;
- }
- static inline union cpu_time_count
- timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
- {
- union cpu_time_count ret;
- ret.sched = 0; /* high half always zero when .cpu used */
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
- } else {
- ret.cpu = timespec_to_cputime(tp);
- }
- return ret;
- }
- static void sample_to_timespec(const clockid_t which_clock,
- union cpu_time_count cpu,
- struct timespec *tp)
- {
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
- *tp = ns_to_timespec(cpu.sched);
- else
- cputime_to_timespec(cpu.cpu, tp);
- }
- static inline int cpu_time_before(const clockid_t which_clock,
- union cpu_time_count now,
- union cpu_time_count then)
- {
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- return now.sched < then.sched;
- } else {
- return cputime_lt(now.cpu, then.cpu);
- }
- }
- static inline void cpu_time_add(const clockid_t which_clock,
- union cpu_time_count *acc,
- union cpu_time_count val)
- {
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- acc->sched += val.sched;
- } else {
- acc->cpu = cputime_add(acc->cpu, val.cpu);
- }
- }
- static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
- union cpu_time_count a,
- union cpu_time_count b)
- {
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- a.sched -= b.sched;
- } else {
- a.cpu = cputime_sub(a.cpu, b.cpu);
- }
- return a;
- }
- /*
- * Divide and limit the result to res >= 1
- *
- * This is necessary to prevent signal delivery starvation, when the result of
- * the division would be rounded down to 0.
- */
- static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
- {
- cputime_t res = cputime_div(time, div);
- return max_t(cputime_t, res, 1);
- }
- /*
- * Update expiry time from increment, and increase overrun count,
- * given the current clock sample.
- */
- static void bump_cpu_timer(struct k_itimer *timer,
- union cpu_time_count now)
- {
- int i;
- if (timer->it.cpu.incr.sched == 0)
- return;
- if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
- unsigned long long delta, incr;
- if (now.sched < timer->it.cpu.expires.sched)
- return;
- incr = timer->it.cpu.incr.sched;
- delta = now.sched + incr - timer->it.cpu.expires.sched;
- /* Don't use (incr*2 < delta), incr*2 might overflow. */
- for (i = 0; incr < delta - incr; i++)
- incr = incr << 1;
- for (; i >= 0; incr >>= 1, i--) {
- if (delta < incr)
- continue;
- timer->it.cpu.expires.sched += incr;
- timer->it_overrun += 1 << i;
- delta -= incr;
- }
- } else {
- cputime_t delta, incr;
- if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
- return;
- incr = timer->it.cpu.incr.cpu;
- delta = cputime_sub(cputime_add(now.cpu, incr),
- timer->it.cpu.expires.cpu);
- /* Don't use (incr*2 < delta), incr*2 might overflow. */
- for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
- incr = cputime_add(incr, incr);
- for (; i >= 0; incr = cputime_halve(incr), i--) {
- if (cputime_lt(delta, incr))
- continue;
- timer->it.cpu.expires.cpu =
- cputime_add(timer->it.cpu.expires.cpu, incr);
- timer->it_overrun += 1 << i;
- delta = cputime_sub(delta, incr);
- }
- }
- }
- static inline cputime_t prof_ticks(struct task_struct *p)
- {
- return cputime_add(p->utime, p->stime);
- }
- static inline cputime_t virt_ticks(struct task_struct *p)
- {
- return p->utime;
- }
- int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
- {
- int error = check_clock(which_clock);
- if (!error) {
- tp->tv_sec = 0;
- tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- /*
- * If sched_clock is using a cycle counter, we
- * don't have any idea of its true resolution
- * exported, but it is much more than 1s/HZ.
- */
- tp->tv_nsec = 1;
- }
- }
- return error;
- }
- int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
- {
- /*
- * You can never reset a CPU clock, but we check for other errors
- * in the call before failing with EPERM.
- */
- int error = check_clock(which_clock);
- if (error == 0) {
- error = -EPERM;
- }
- return error;
- }
- /*
- * Sample a per-thread clock for the given task.
- */
- static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
- union cpu_time_count *cpu)
- {
- switch (CPUCLOCK_WHICH(which_clock)) {
- default:
- return -EINVAL;
- case CPUCLOCK_PROF:
- cpu->cpu = prof_ticks(p);
- break;
- case CPUCLOCK_VIRT:
- cpu->cpu = virt_ticks(p);
- break;
- case CPUCLOCK_SCHED:
- cpu->sched = p->se.sum_exec_runtime + task_delta_exec(p);
- break;
- }
- return 0;
- }
- /*
- * Sample a process (thread group) clock for the given group_leader task.
- * Must be called with tasklist_lock held for reading.
- */
- static int cpu_clock_sample_group(const clockid_t which_clock,
- struct task_struct *p,
- union cpu_time_count *cpu)
- {
- struct task_cputime cputime;
- thread_group_cputime(p, &cputime);
- switch (which_clock) {
- default:
- return -EINVAL;
- case CPUCLOCK_PROF:
- cpu->cpu = cputime_add(cputime.utime, cputime.stime);
- break;
- case CPUCLOCK_VIRT:
- cpu->cpu = cputime.utime;
- break;
- case CPUCLOCK_SCHED:
- cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
- break;
- }
- return 0;
- }
- int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
- {
- const pid_t pid = CPUCLOCK_PID(which_clock);
- int error = -EINVAL;
- union cpu_time_count rtn;
- if (pid == 0) {
- /*
- * Special case constant value for our own clocks.
- * We don't have to do any lookup to find ourselves.
- */
- if (CPUCLOCK_PERTHREAD(which_clock)) {
- /*
- * Sampling just ourselves we can do with no locking.
- */
- error = cpu_clock_sample(which_clock,
- current, &rtn);
- } else {
- read_lock(&tasklist_lock);
- error = cpu_clock_sample_group(which_clock,
- current, &rtn);
- read_unlock(&tasklist_lock);
- }
- } else {
- /*
- * Find the given PID, and validate that the caller
- * should be able to see it.
- */
- struct task_struct *p;
- rcu_read_lock();
- p = find_task_by_vpid(pid);
- if (p) {
- if (CPUCLOCK_PERTHREAD(which_clock)) {
- if (same_thread_group(p, current)) {
- error = cpu_clock_sample(which_clock,
- p, &rtn);
- }
- } else {
- read_lock(&tasklist_lock);
- if (thread_group_leader(p) && p->signal) {
- error =
- cpu_clock_sample_group(which_clock,
- p, &rtn);
- }
- read_unlock(&tasklist_lock);
- }
- }
- rcu_read_unlock();
- }
- if (error)
- return error;
- sample_to_timespec(which_clock, rtn, tp);
- return 0;
- }
- /*
- * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
- * This is called from sys_timer_create with the new timer already locked.
- */
- int posix_cpu_timer_create(struct k_itimer *new_timer)
- {
- int ret = 0;
- const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
- struct task_struct *p;
- if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
- return -EINVAL;
- INIT_LIST_HEAD(&new_timer->it.cpu.entry);
- new_timer->it.cpu.incr.sched = 0;
- new_timer->it.cpu.expires.sched = 0;
- read_lock(&tasklist_lock);
- if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
- if (pid == 0) {
- p = current;
- } else {
- p = find_task_by_vpid(pid);
- if (p && !same_thread_group(p, current))
- p = NULL;
- }
- } else {
- if (pid == 0) {
- p = current->group_leader;
- } else {
- p = find_task_by_vpid(pid);
- if (p && !thread_group_leader(p))
- p = NULL;
- }
- }
- new_timer->it.cpu.task = p;
- if (p) {
- get_task_struct(p);
- } else {
- ret = -EINVAL;
- }
- read_unlock(&tasklist_lock);
- return ret;
- }
- /*
- * Clean up a CPU-clock timer that is about to be destroyed.
- * This is called from timer deletion with the timer already locked.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
- int posix_cpu_timer_del(struct k_itimer *timer)
- {
- struct task_struct *p = timer->it.cpu.task;
- int ret = 0;
- if (likely(p != NULL)) {
- read_lock(&tasklist_lock);
- if (unlikely(p->signal == NULL)) {
- /*
- * We raced with the reaping of the task.
- * The deletion should have cleared us off the list.
- */
- BUG_ON(!list_empty(&timer->it.cpu.entry));
- } else {
- spin_lock(&p->sighand->siglock);
- if (timer->it.cpu.firing)
- ret = TIMER_RETRY;
- else
- list_del(&timer->it.cpu.entry);
- spin_unlock(&p->sighand->siglock);
- }
- read_unlock(&tasklist_lock);
- if (!ret)
- put_task_struct(p);
- }
- return ret;
- }
- /*
- * Clean out CPU timers still ticking when a thread exited. The task
- * pointer is cleared, and the expiry time is replaced with the residual
- * time for later timer_gettime calls to return.
- * This must be called with the siglock held.
- */
- static void cleanup_timers(struct list_head *head,
- cputime_t utime, cputime_t stime,
- unsigned long long sum_exec_runtime)
- {
- struct cpu_timer_list *timer, *next;
- cputime_t ptime = cputime_add(utime, stime);
- list_for_each_entry_safe(timer, next, head, entry) {
- list_del_init(&timer->entry);
- if (cputime_lt(timer->expires.cpu, ptime)) {
- timer->expires.cpu = cputime_zero;
- } else {
- timer->expires.cpu = cputime_sub(timer->expires.cpu,
- ptime);
- }
- }
- ++head;
- list_for_each_entry_safe(timer, next, head, entry) {
- list_del_init(&timer->entry);
- if (cputime_lt(timer->expires.cpu, utime)) {
- timer->expires.cpu = cputime_zero;
- } else {
- timer->expires.cpu = cputime_sub(timer->expires.cpu,
- utime);
- }
- }
- ++head;
- list_for_each_entry_safe(timer, next, head, entry) {
- list_del_init(&timer->entry);
- if (timer->expires.sched < sum_exec_runtime) {
- timer->expires.sched = 0;
- } else {
- timer->expires.sched -= sum_exec_runtime;
- }
- }
- }
- /*
- * These are both called with the siglock held, when the current thread
- * is being reaped. When the final (leader) thread in the group is reaped,
- * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
- */
- void posix_cpu_timers_exit(struct task_struct *tsk)
- {
- cleanup_timers(tsk->cpu_timers,
- tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
- }
- void posix_cpu_timers_exit_group(struct task_struct *tsk)
- {
- struct task_cputime cputime;
- thread_group_cputime(tsk, &cputime);
- cleanup_timers(tsk->signal->cpu_timers,
- cputime.utime, cputime.stime, cputime.sum_exec_runtime);
- }
- static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
- {
- /*
- * That's all for this thread or process.
- * We leave our residual in expires to be reported.
- */
- put_task_struct(timer->it.cpu.task);
- timer->it.cpu.task = NULL;
- timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
- timer->it.cpu.expires,
- now);
- }
- /*
- * Insert the timer on the appropriate list before any timers that
- * expire later. This must be called with the tasklist_lock held
- * for reading, and interrupts disabled.
- */
- static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
- {
- struct task_struct *p = timer->it.cpu.task;
- struct list_head *head, *listpos;
- struct cpu_timer_list *const nt = &timer->it.cpu;
- struct cpu_timer_list *next;
- unsigned long i;
- head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
- p->cpu_timers : p->signal->cpu_timers);
- head += CPUCLOCK_WHICH(timer->it_clock);
- BUG_ON(!irqs_disabled());
- spin_lock(&p->sighand->siglock);
- listpos = head;
- if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
- list_for_each_entry(next, head, entry) {
- if (next->expires.sched > nt->expires.sched)
- break;
- listpos = &next->entry;
- }
- } else {
- list_for_each_entry(next, head, entry) {
- if (cputime_gt(next->expires.cpu, nt->expires.cpu))
- break;
- listpos = &next->entry;
- }
- }
- list_add(&nt->entry, listpos);
- if (listpos == head) {
- /*
- * We are the new earliest-expiring timer.
- * If we are a thread timer, there can always
- * be a process timer telling us to stop earlier.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- switch (CPUCLOCK_WHICH(timer->it_clock)) {
- default:
- BUG();
- case CPUCLOCK_PROF:
- if (cputime_eq(p->cputime_expires.prof_exp,
- cputime_zero) ||
- cputime_gt(p->cputime_expires.prof_exp,
- nt->expires.cpu))
- p->cputime_expires.prof_exp =
- nt->expires.cpu;
- break;
- case CPUCLOCK_VIRT:
- if (cputime_eq(p->cputime_expires.virt_exp,
- cputime_zero) ||
- cputime_gt(p->cputime_expires.virt_exp,
- nt->expires.cpu))
- p->cputime_expires.virt_exp =
- nt->expires.cpu;
- break;
- case CPUCLOCK_SCHED:
- if (p->cputime_expires.sched_exp == 0 ||
- p->cputime_expires.sched_exp >
- nt->expires.sched)
- p->cputime_expires.sched_exp =
- nt->expires.sched;
- break;
- }
- } else {
- /*
- * For a process timer, set the cached expiration time.
- */
- switch (CPUCLOCK_WHICH(timer->it_clock)) {
- default:
- BUG();
- case CPUCLOCK_VIRT:
- if (!cputime_eq(p->signal->it_virt_expires,
- cputime_zero) &&
- cputime_lt(p->signal->it_virt_expires,
- timer->it.cpu.expires.cpu))
- break;
- p->signal->cputime_expires.virt_exp =
- timer->it.cpu.expires.cpu;
- break;
- case CPUCLOCK_PROF:
- if (!cputime_eq(p->signal->it_prof_expires,
- cputime_zero) &&
- cputime_lt(p->signal->it_prof_expires,
- timer->it.cpu.expires.cpu))
- break;
- i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
- if (i != RLIM_INFINITY &&
- i <= cputime_to_secs(timer->it.cpu.expires.cpu))
- break;
- p->signal->cputime_expires.prof_exp =
- timer->it.cpu.expires.cpu;
- break;
- case CPUCLOCK_SCHED:
- p->signal->cputime_expires.sched_exp =
- timer->it.cpu.expires.sched;
- break;
- }
- }
- }
- spin_unlock(&p->sighand->siglock);
- }
- /*
- * The timer is locked, fire it and arrange for its reload.
- */
- static void cpu_timer_fire(struct k_itimer *timer)
- {
- if (unlikely(timer->sigq == NULL)) {
- /*
- * This a special case for clock_nanosleep,
- * not a normal timer from sys_timer_create.
- */
- wake_up_process(timer->it_process);
- timer->it.cpu.expires.sched = 0;
- } else if (timer->it.cpu.incr.sched == 0) {
- /*
- * One-shot timer. Clear it as soon as it's fired.
- */
- posix_timer_event(timer, 0);
- timer->it.cpu.expires.sched = 0;
- } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
- /*
- * The signal did not get queued because the signal
- * was ignored, so we won't get any callback to
- * reload the timer. But we need to keep it
- * ticking in case the signal is deliverable next time.
- */
- posix_cpu_timer_schedule(timer);
- }
- }
- /*
- * Guts of sys_timer_settime for CPU timers.
- * This is called with the timer locked and interrupts disabled.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
- int posix_cpu_timer_set(struct k_itimer *timer, int flags,
- struct itimerspec *new, struct itimerspec *old)
- {
- struct task_struct *p = timer->it.cpu.task;
- union cpu_time_count old_expires, new_expires, val;
- int ret;
- if (unlikely(p == NULL)) {
- /*
- * Timer refers to a dead task's clock.
- */
- return -ESRCH;
- }
- new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
- read_lock(&tasklist_lock);
- /*
- * We need the tasklist_lock to protect against reaping that
- * clears p->signal. If p has just been reaped, we can no
- * longer get any information about it at all.
- */
- if (unlikely(p->signal == NULL)) {
- read_unlock(&tasklist_lock);
- put_task_struct(p);
- timer->it.cpu.task = NULL;
- return -ESRCH;
- }
- /*
- * Disarm any old timer after extracting its expiry time.
- */
- BUG_ON(!irqs_disabled());
- ret = 0;
- spin_lock(&p->sighand->siglock);
- old_expires = timer->it.cpu.expires;
- if (unlikely(timer->it.cpu.firing)) {
- timer->it.cpu.firing = -1;
- ret = TIMER_RETRY;
- } else
- list_del_init(&timer->it.cpu.entry);
- spin_unlock(&p->sighand->siglock);
- /*
- * We need to sample the current value to convert the new
- * value from to relative and absolute, and to convert the
- * old value from absolute to relative. To set a process
- * timer, we need a sample to balance the thread expiry
- * times (in arm_timer). With an absolute time, we must
- * check if it's already passed. In short, we need a sample.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &val);
- } else {
- cpu_clock_sample_group(timer->it_clock, p, &val);
- }
- if (old) {
- if (old_expires.sched == 0) {
- old->it_value.tv_sec = 0;
- old->it_value.tv_nsec = 0;
- } else {
- /*
- * Update the timer in case it has
- * overrun already. If it has,
- * we'll report it as having overrun
- * and with the next reloaded timer
- * already ticking, though we are
- * swallowing that pending
- * notification here to install the
- * new setting.
- */
- bump_cpu_timer(timer, val);
- if (cpu_time_before(timer->it_clock, val,
- timer->it.cpu.expires)) {
- old_expires = cpu_time_sub(
- timer->it_clock,
- timer->it.cpu.expires, val);
- sample_to_timespec(timer->it_clock,
- old_expires,
- &old->it_value);
- } else {
- old->it_value.tv_nsec = 1;
- old->it_value.tv_sec = 0;
- }
- }
- }
- if (unlikely(ret)) {
- /*
- * We are colliding with the timer actually firing.
- * Punt after filling in the timer's old value, and
- * disable this firing since we are already reporting
- * it as an overrun (thanks to bump_cpu_timer above).
- */
- read_unlock(&tasklist_lock);
- goto out;
- }
- if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
- cpu_time_add(timer->it_clock, &new_expires, val);
- }
- /*
- * Install the new expiry time (or zero).
- * For a timer with no notification action, we don't actually
- * arm the timer (we'll just fake it for timer_gettime).
- */
- timer->it.cpu.expires = new_expires;
- if (new_expires.sched != 0 &&
- (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
- cpu_time_before(timer->it_clock, val, new_expires)) {
- arm_timer(timer, val);
- }
- read_unlock(&tasklist_lock);
- /*
- * Install the new reload setting, and
- * set up the signal and overrun bookkeeping.
- */
- timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
- &new->it_interval);
- /*
- * This acts as a modification timestamp for the timer,
- * so any automatic reload attempt will punt on seeing
- * that we have reset the timer manually.
- */
- timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
- ~REQUEUE_PENDING;
- timer->it_overrun_last = 0;
- timer->it_overrun = -1;
- if (new_expires.sched != 0 &&
- (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
- !cpu_time_before(timer->it_clock, val, new_expires)) {
- /*
- * The designated time already passed, so we notify
- * immediately, even if the thread never runs to
- * accumulate more time on this clock.
- */
- cpu_timer_fire(timer);
- }
- ret = 0;
- out:
- if (old) {
- sample_to_timespec(timer->it_clock,
- timer->it.cpu.incr, &old->it_interval);
- }
- return ret;
- }
- void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
- {
- union cpu_time_count now;
- struct task_struct *p = timer->it.cpu.task;
- int clear_dead;
- /*
- * Easy part: convert the reload time.
- */
- sample_to_timespec(timer->it_clock,
- timer->it.cpu.incr, &itp->it_interval);
- if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
- itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
- return;
- }
- if (unlikely(p == NULL)) {
- /*
- * This task already died and the timer will never fire.
- * In this case, expires is actually the dead value.
- */
- dead:
- sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
- &itp->it_value);
- return;
- }
- /*
- * Sample the clock to take the difference with the expiry time.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &now);
- clear_dead = p->exit_state;
- } else {
- read_lock(&tasklist_lock);
- if (unlikely(p->signal == NULL)) {
- /*
- * The process has been reaped.
- * We can't even collect a sample any more.
- * Call the timer disarmed, nothing else to do.
- */
- put_task_struct(p);
- timer->it.cpu.task = NULL;
- timer->it.cpu.expires.sched = 0;
- read_unlock(&tasklist_lock);
- goto dead;
- } else {
- cpu_clock_sample_group(timer->it_clock, p, &now);
- clear_dead = (unlikely(p->exit_state) &&
- thread_group_empty(p));
- }
- read_unlock(&tasklist_lock);
- }
- if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
- if (timer->it.cpu.incr.sched == 0 &&
- cpu_time_before(timer->it_clock,
- timer->it.cpu.expires, now)) {
- /*
- * Do-nothing timer expired and has no reload,
- * so it's as if it was never set.
- */
- timer->it.cpu.expires.sched = 0;
- itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
- return;
- }
- /*
- * Account for any expirations and reloads that should
- * have happened.
- */
- bump_cpu_timer(timer, now);
- }
- if (unlikely(clear_dead)) {
- /*
- * We've noticed that the thread is dead, but
- * not yet reaped. Take this opportunity to
- * drop our task ref.
- */
- clear_dead_task(timer, now);
- goto dead;
- }
- if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
- sample_to_timespec(timer->it_clock,
- cpu_time_sub(timer->it_clock,
- timer->it.cpu.expires, now),
- &itp->it_value);
- } else {
- /*
- * The timer should have expired already, but the firing
- * hasn't taken place yet. Say it's just about to expire.
- */
- itp->it_value.tv_nsec = 1;
- itp->it_value.tv_sec = 0;
- }
- }
- /*
- * Check for any per-thread CPU timers that have fired and move them off
- * the tsk->cpu_timers[N] list onto the firing list. Here we update the
- * tsk->it_*_expires values to reflect the remaining thread CPU timers.
- */
- static void check_thread_timers(struct task_struct *tsk,
- struct list_head *firing)
- {
- int maxfire;
- struct list_head *timers = tsk->cpu_timers;
- struct signal_struct *const sig = tsk->signal;
- maxfire = 20;
- tsk->cputime_expires.prof_exp = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *t = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
- tsk->cputime_expires.prof_exp = t->expires.cpu;
- break;
- }
- t->firing = 1;
- list_move_tail(&t->entry, firing);
- }
- ++timers;
- maxfire = 20;
- tsk->cputime_expires.virt_exp = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *t = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
- tsk->cputime_expires.virt_exp = t->expires.cpu;
- break;
- }
- t->firing = 1;
- list_move_tail(&t->entry, firing);
- }
- ++timers;
- maxfire = 20;
- tsk->cputime_expires.sched_exp = 0;
- while (!list_empty(timers)) {
- struct cpu_timer_list *t = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
- tsk->cputime_expires.sched_exp = t->expires.sched;
- break;
- }
- t->firing = 1;
- list_move_tail(&t->entry, firing);
- }
- /*
- * Check for the special case thread timers.
- */
- if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
- unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
- unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
- if (hard != RLIM_INFINITY &&
- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
- /*
- * At the hard limit, we just die.
- * No need to calculate anything else now.
- */
- __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
- return;
- }
- if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
- /*
- * At the soft limit, send a SIGXCPU every second.
- */
- if (sig->rlim[RLIMIT_RTTIME].rlim_cur
- < sig->rlim[RLIMIT_RTTIME].rlim_max) {
- sig->rlim[RLIMIT_RTTIME].rlim_cur +=
- USEC_PER_SEC;
- }
- printk(KERN_INFO
- "RT Watchdog Timeout: %s[%d]\n",
- tsk->comm, task_pid_nr(tsk));
- __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
- }
- }
- }
- /*
- * Check for any per-thread CPU timers that have fired and move them
- * off the tsk->*_timers list onto the firing list. Per-thread timers
- * have already been taken off.
- */
- static void check_process_timers(struct task_struct *tsk,
- struct list_head *firing)
- {
- int maxfire;
- struct signal_struct *const sig = tsk->signal;
- cputime_t utime, ptime, virt_expires, prof_expires;
- unsigned long long sum_sched_runtime, sched_expires;
- struct list_head *timers = sig->cpu_timers;
- struct task_cputime cputime;
- /*
- * Don't sample the current process CPU clocks if there are no timers.
- */
- if (list_empty(&timers[CPUCLOCK_PROF]) &&
- cputime_eq(sig->it_prof_expires, cputime_zero) &&
- sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
- list_empty(&timers[CPUCLOCK_VIRT]) &&
- cputime_eq(sig->it_virt_expires, cputime_zero) &&
- list_empty(&timers[CPUCLOCK_SCHED]))
- return;
- /*
- * Collect the current process totals.
- */
- thread_group_cputime(tsk, &cputime);
- utime = cputime.utime;
- ptime = cputime_add(utime, cputime.stime);
- sum_sched_runtime = cputime.sum_exec_runtime;
- maxfire = 20;
- prof_expires = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *tl = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
- prof_expires = tl->expires.cpu;
- break;
- }
- tl->firing = 1;
- list_move_tail(&tl->entry, firing);
- }
- ++timers;
- maxfire = 20;
- virt_expires = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *tl = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
- virt_expires = tl->expires.cpu;
- break;
- }
- tl->firing = 1;
- list_move_tail(&tl->entry, firing);
- }
- ++timers;
- maxfire = 20;
- sched_expires = 0;
- while (!list_empty(timers)) {
- struct cpu_timer_list *tl = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
- sched_expires = tl->expires.sched;
- break;
- }
- tl->firing = 1;
- list_move_tail(&tl->entry, firing);
- }
- /*
- * Check for the special case process timers.
- */
- if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
- if (cputime_ge(ptime, sig->it_prof_expires)) {
- /* ITIMER_PROF fires and reloads. */
- sig->it_prof_expires = sig->it_prof_incr;
- if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
- sig->it_prof_expires = cputime_add(
- sig->it_prof_expires, ptime);
- }
- __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
- }
- if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
- (cputime_eq(prof_expires, cputime_zero) ||
- cputime_lt(sig->it_prof_expires, prof_expires))) {
- prof_expires = sig->it_prof_expires;
- }
- }
- if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
- if (cputime_ge(utime, sig->it_virt_expires)) {
- /* ITIMER_VIRTUAL fires and reloads. */
- sig->it_virt_expires = sig->it_virt_incr;
- if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
- sig->it_virt_expires = cputime_add(
- sig->it_virt_expires, utime);
- }
- __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
- }
- if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
- (cputime_eq(virt_expires, cputime_zero) ||
- cputime_lt(sig->it_virt_expires, virt_expires))) {
- virt_expires = sig->it_virt_expires;
- }
- }
- if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
- unsigned long psecs = cputime_to_secs(ptime);
- cputime_t x;
- if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
- /*
- * At the hard limit, we just die.
- * No need to calculate anything else now.
- */
- __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
- return;
- }
- if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
- /*
- * At the soft limit, send a SIGXCPU every second.
- */
- __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
- if (sig->rlim[RLIMIT_CPU].rlim_cur
- < sig->rlim[RLIMIT_CPU].rlim_max) {
- sig->rlim[RLIMIT_CPU].rlim_cur++;
- }
- }
- x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
- if (cputime_eq(prof_expires, cputime_zero) ||
- cputime_lt(x, prof_expires)) {
- prof_expires = x;
- }
- }
- if (!cputime_eq(prof_expires, cputime_zero) &&
- (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
- cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
- sig->cputime_expires.prof_exp = prof_expires;
- if (!cputime_eq(virt_expires, cputime_zero) &&
- (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
- cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
- sig->cputime_expires.virt_exp = virt_expires;
- if (sched_expires != 0 &&
- (sig->cputime_expires.sched_exp == 0 ||
- sig->cputime_expires.sched_exp > sched_expires))
- sig->cputime_expires.sched_exp = sched_expires;
- }
- /*
- * This is called from the signal code (via do_schedule_next_timer)
- * when the last timer signal was delivered and we have to reload the timer.
- */
- void posix_cpu_timer_schedule(struct k_itimer *timer)
- {
- struct task_struct *p = timer->it.cpu.task;
- union cpu_time_count now;
- if (unlikely(p == NULL))
- /*
- * The task was cleaned up already, no future firings.
- */
- goto out;
- /*
- * Fetch the current sample and update the timer's expiry time.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &now);
- bump_cpu_timer(timer, now);
- if (unlikely(p->exit_state)) {
- clear_dead_task(timer, now);
- goto out;
- }
- read_lock(&tasklist_lock); /* arm_timer needs it. */
- } else {
- read_lock(&tasklist_lock);
- if (unlikely(p->signal == NULL)) {
- /*
- * The process has been reaped.
- * We can't even collect a sample any more.
- */
- put_task_struct(p);
- timer->it.cpu.task = p = NULL;
- timer->it.cpu.expires.sched = 0;
- goto out_unlock;
- } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
- /*
- * We've noticed that the thread is dead, but
- * not yet reaped. Take this opportunity to
- * drop our task ref.
- */
- clear_dead_task(timer, now);
- goto out_unlock;
- }
- cpu_clock_sample_group(timer->it_clock, p, &now);
- bump_cpu_timer(timer, now);
- /* Leave the tasklist_lock locked for the call below. */
- }
- /*
- * Now re-arm for the new expiry time.
- */
- arm_timer(timer, now);
- out_unlock:
- read_unlock(&tasklist_lock);
- out:
- timer->it_overrun_last = timer->it_overrun;
- timer->it_overrun = -1;
- ++timer->it_requeue_pending;
- }
- /**
- * task_cputime_zero - Check a task_cputime struct for all zero fields.
- *
- * @cputime: The struct to compare.
- *
- * Checks @cputime to see if all fields are zero. Returns true if all fields
- * are zero, false if any field is nonzero.
- */
- static inline int task_cputime_zero(const struct task_cputime *cputime)
- {
- if (cputime_eq(cputime->utime, cputime_zero) &&
- cputime_eq(cputime->stime, cputime_zero) &&
- cputime->sum_exec_runtime == 0)
- return 1;
- return 0;
- }
- /**
- * task_cputime_expired - Compare two task_cputime entities.
- *
- * @sample: The task_cputime structure to be checked for expiration.
- * @expires: Expiration times, against which @sample will be checked.
- *
- * Checks @sample against @expires to see if any field of @sample has expired.
- * Returns true if any field of the former is greater than the corresponding
- * field of the latter if the latter field is set. Otherwise returns false.
- */
- static inline int task_cputime_expired(const struct task_cputime *sample,
- const struct task_cputime *expires)
- {
- if (!cputime_eq(expires->utime, cputime_zero) &&
- cputime_ge(sample->utime, expires->utime))
- return 1;
- if (!cputime_eq(expires->stime, cputime_zero) &&
- cputime_ge(cputime_add(sample->utime, sample->stime),
- expires->stime))
- return 1;
- if (expires->sum_exec_runtime != 0 &&
- sample->sum_exec_runtime >= expires->sum_exec_runtime)
- return 1;
- return 0;
- }
- /**
- * fastpath_timer_check - POSIX CPU timers fast path.
- *
- * @tsk: The task (thread) being checked.
- *
- * Check the task and thread group timers. If both are zero (there are no
- * timers set) return false. Otherwise snapshot the task and thread group
- * timers and compare them with the corresponding expiration times. Return
- * true if a timer has expired, else return false.
- */
- static inline int fastpath_timer_check(struct task_struct *tsk)
- {
- struct signal_struct *sig;
- /* tsk == current, ensure it is safe to use ->signal/sighand */
- if (unlikely(tsk->exit_state))
- return 0;
- if (!task_cputime_zero(&tsk->cputime_expires)) {
- struct task_cputime task_sample = {
- .utime = tsk->utime,
- .stime = tsk->stime,
- .sum_exec_runtime = tsk->se.sum_exec_runtime
- };
- if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
- return 1;
- }
- sig = tsk->signal;
- if (!task_cputime_zero(&sig->cputime_expires)) {
- struct task_cputime group_sample;
- thread_group_cputime(tsk, &group_sample);
- if (task_cputime_expired(&group_sample, &sig->cputime_expires))
- return 1;
- }
- return 0;
- }
- /*
- * This is called from the timer interrupt handler. The irq handler has
- * already updated our counts. We need to check if any timers fire now.
- * Interrupts are disabled.
- */
- void run_posix_cpu_timers(struct task_struct *tsk)
- {
- LIST_HEAD(firing);
- struct k_itimer *timer, *next;
- BUG_ON(!irqs_disabled());
- /*
- * The fast path checks that there are no expired thread or thread
- * group timers. If that's so, just return.
- */
- if (!fastpath_timer_check(tsk))
- return;
- spin_lock(&tsk->sighand->siglock);
- /*
- * Here we take off tsk->signal->cpu_timers[N] and
- * tsk->cpu_timers[N] all the timers that are firing, and
- * put them on the firing list.
- */
- check_thread_timers(tsk, &firing);
- check_process_timers(tsk, &firing);
- /*
- * We must release these locks before taking any timer's lock.
- * There is a potential race with timer deletion here, as the
- * siglock now protects our private firing list. We have set
- * the firing flag in each timer, so that a deletion attempt
- * that gets the timer lock before we do will give it up and
- * spin until we've taken care of that timer below.
- */
- spin_unlock(&tsk->sighand->siglock);
- /*
- * Now that all the timers on our list have the firing flag,
- * noone will touch their list entries but us. We'll take
- * each timer's lock before clearing its firing flag, so no
- * timer call will interfere.
- */
- list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
- int firing;
- spin_lock(&timer->it_lock);
- list_del_init(&timer->it.cpu.entry);
- firing = timer->it.cpu.firing;
- timer->it.cpu.firing = 0;
- /*
- * The firing flag is -1 if we collided with a reset
- * of the timer, which already reported this
- * almost-firing as an overrun. So don't generate an event.
- */
- if (likely(firing >= 0)) {
- cpu_timer_fire(timer);
- }
- spin_unlock(&timer->it_lock);
- }
- }
- /*
- * Set one of the process-wide special case CPU timers.
- * The tsk->sighand->siglock must be held by the caller.
- * The *newval argument is relative and we update it to be absolute, *oldval
- * is absolute and we update it to be relative.
- */
- void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
- cputime_t *newval, cputime_t *oldval)
- {
- union cpu_time_count now;
- struct list_head *head;
- BUG_ON(clock_idx == CPUCLOCK_SCHED);
- cpu_clock_sample_group(clock_idx, tsk, &now);
- if (oldval) {
- if (!cputime_eq(*oldval, cputime_zero)) {
- if (cputime_le(*oldval, now.cpu)) {
- /* Just about to fire. */
- *oldval = jiffies_to_cputime(1);
- } else {
- *oldval = cputime_sub(*oldval, now.cpu);
- }
- }
- if (cputime_eq(*newval, cputime_zero))
- return;
- *newval = cputime_add(*newval, now.cpu);
- /*
- * If the RLIMIT_CPU timer will expire before the
- * ITIMER_PROF timer, we have nothing else to do.
- */
- if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
- < cputime_to_secs(*newval))
- return;
- }
- /*
- * Check whether there are any process timers already set to fire
- * before this one. If so, we don't have anything more to do.
- */
- head = &tsk->signal->cpu_timers[clock_idx];
- if (list_empty(head) ||
- cputime_ge(list_first_entry(head,
- struct cpu_timer_list, entry)->expires.cpu,
- *newval)) {
- switch (clock_idx) {
- case CPUCLOCK_PROF:
- tsk->signal->cputime_expires.prof_exp = *newval;
- break;
- case CPUCLOCK_VIRT:
- tsk->signal->cputime_expires.virt_exp = *newval;
- break;
- }
- }
- }
- static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp, struct itimerspec *it)
- {
- struct k_itimer timer;
- int error;
- /*
- * Set up a temporary timer and then wait for it to go off.
- */
- memset(&timer, 0, sizeof timer);
- spin_lock_init(&timer.it_lock);
- timer.it_clock = which_clock;
- timer.it_overrun = -1;
- error = posix_cpu_timer_create(&timer);
- timer.it_process = current;
- if (!error) {
- static struct itimerspec zero_it;
- memset(it, 0, sizeof *it);
- it->it_value = *rqtp;
- spin_lock_irq(&timer.it_lock);
- error = posix_cpu_timer_set(&timer, flags, it, NULL);
- if (error) {
- spin_unlock_irq(&timer.it_lock);
- return error;
- }
- while (!signal_pending(current)) {
- if (timer.it.cpu.expires.sched == 0) {
- /*
- * Our timer fired and was reset.
- */
- spin_unlock_irq(&timer.it_lock);
- return 0;
- }
- /*
- * Block until cpu_timer_fire (or a signal) wakes us.
- */
- __set_current_state(TASK_INTERRUPTIBLE);
- spin_unlock_irq(&timer.it_lock);
- schedule();
- spin_lock_irq(&timer.it_lock);
- }
- /*
- * We were interrupted by a signal.
- */
- sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
- posix_cpu_timer_set(&timer, 0, &zero_it, it);
- spin_unlock_irq(&timer.it_lock);
- if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
- /*
- * It actually did fire already.
- */
- return 0;
- }
- error = -ERESTART_RESTARTBLOCK;
- }
- return error;
- }
- int posix_cpu_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp, struct timespec __user *rmtp)
- {
- struct restart_block *restart_block =
- ¤t_thread_info()->restart_block;
- struct itimerspec it;
- int error;
- /*
- * Diagnose required errors first.
- */
- if (CPUCLOCK_PERTHREAD(which_clock) &&
- (CPUCLOCK_PID(which_clock) == 0 ||
- CPUCLOCK_PID(which_clock) == current->pid))
- return -EINVAL;
- error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
- if (error == -ERESTART_RESTARTBLOCK) {
- if (flags & TIMER_ABSTIME)
- return -ERESTARTNOHAND;
- /*
- * Report back to the user the time still remaining.
- */
- if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
- return -EFAULT;
- restart_block->fn = posix_cpu_nsleep_restart;
- restart_block->arg0 = which_clock;
- restart_block->arg1 = (unsigned long) rmtp;
- restart_block->arg2 = rqtp->tv_sec;
- restart_block->arg3 = rqtp->tv_nsec;
- }
- return error;
- }
- long posix_cpu_nsleep_restart(struct restart_block *restart_block)
- {
- clockid_t which_clock = restart_block->arg0;
- struct timespec __user *rmtp;
- struct timespec t;
- struct itimerspec it;
- int error;
- rmtp = (struct timespec __user *) restart_block->arg1;
- t.tv_sec = restart_block->arg2;
- t.tv_nsec = restart_block->arg3;
- restart_block->fn = do_no_restart_syscall;
- error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
- if (error == -ERESTART_RESTARTBLOCK) {
- /*
- * Report back to the user the time still remaining.
- */
- if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
- return -EFAULT;
- restart_block->fn = posix_cpu_nsleep_restart;
- restart_block->arg0 = which_clock;
- restart_block->arg1 = (unsigned long) rmtp;
- restart_block->arg2 = t.tv_sec;
- restart_block->arg3 = t.tv_nsec;
- }
- return error;
- }
- #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
- #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
- static int process_cpu_clock_getres(const clockid_t which_clock,
- struct timespec *tp)
- {
- return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
- }
- static int process_cpu_clock_get(const clockid_t which_clock,
- struct timespec *tp)
- {
- return posix_cpu_clock_get(PROCESS_CLOCK, tp);
- }
- static int process_cpu_timer_create(struct k_itimer *timer)
- {
- timer->it_clock = PROCESS_CLOCK;
- return posix_cpu_timer_create(timer);
- }
- static int process_cpu_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp,
- struct timespec __user *rmtp)
- {
- return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
- }
- static long process_cpu_nsleep_restart(struct restart_block *restart_block)
- {
- return -EINVAL;
- }
- static int thread_cpu_clock_getres(const clockid_t which_clock,
- struct timespec *tp)
- {
- return posix_cpu_clock_getres(THREAD_CLOCK, tp);
- }
- static int thread_cpu_clock_get(const clockid_t which_clock,
- struct timespec *tp)
- {
- return posix_cpu_clock_get(THREAD_CLOCK, tp);
- }
- static int thread_cpu_timer_create(struct k_itimer *timer)
- {
- timer->it_clock = THREAD_CLOCK;
- return posix_cpu_timer_create(timer);
- }
- static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp, struct timespec __user *rmtp)
- {
- return -EINVAL;
- }
- static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
- {
- return -EINVAL;
- }
- static __init int init_posix_cpu_timers(void)
- {
- struct k_clock process = {
- .clock_getres = process_cpu_clock_getres,
- .clock_get = process_cpu_clock_get,
- .clock_set = do_posix_clock_nosettime,
- .timer_create = process_cpu_timer_create,
- .nsleep = process_cpu_nsleep,
- .nsleep_restart = process_cpu_nsleep_restart,
- };
- struct k_clock thread = {
- .clock_getres = thread_cpu_clock_getres,
- .clock_get = thread_cpu_clock_get,
- .clock_set = do_posix_clock_nosettime,
- .timer_create = thread_cpu_timer_create,
- .nsleep = thread_cpu_nsleep,
- .nsleep_restart = thread_cpu_nsleep_restart,
- };
- register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
- register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
- return 0;
- }
- __initcall(init_posix_cpu_timers);
|