mlme.c 124 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "rate.h"
  32. #include "led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (7 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define ERP_INFO_USE_PROTECTION BIT(1)
  54. /* mgmt header + 1 byte action code */
  55. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  56. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  57. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  58. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  59. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  60. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  61. /* next values represent the buffer size for A-MPDU frame.
  62. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  63. #define IEEE80211_MIN_AMPDU_BUF 0x8
  64. #define IEEE80211_MAX_AMPDU_BUF 0x40
  65. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  66. u8 *ssid, size_t ssid_len);
  67. static struct ieee80211_sta_bss *
  68. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  69. u8 *ssid, u8 ssid_len);
  70. static void ieee80211_rx_bss_put(struct ieee80211_local *local,
  71. struct ieee80211_sta_bss *bss);
  72. static int ieee80211_sta_find_ibss(struct net_device *dev,
  73. struct ieee80211_if_sta *ifsta);
  74. static int ieee80211_sta_wep_configured(struct net_device *dev);
  75. static int ieee80211_sta_start_scan(struct net_device *dev,
  76. u8 *ssid, size_t ssid_len);
  77. static int ieee80211_sta_config_auth(struct net_device *dev,
  78. struct ieee80211_if_sta *ifsta);
  79. static void sta_rx_agg_session_timer_expired(unsigned long data);
  80. void ieee802_11_parse_elems(u8 *start, size_t len,
  81. struct ieee802_11_elems *elems)
  82. {
  83. size_t left = len;
  84. u8 *pos = start;
  85. memset(elems, 0, sizeof(*elems));
  86. while (left >= 2) {
  87. u8 id, elen;
  88. id = *pos++;
  89. elen = *pos++;
  90. left -= 2;
  91. if (elen > left)
  92. return;
  93. switch (id) {
  94. case WLAN_EID_SSID:
  95. elems->ssid = pos;
  96. elems->ssid_len = elen;
  97. break;
  98. case WLAN_EID_SUPP_RATES:
  99. elems->supp_rates = pos;
  100. elems->supp_rates_len = elen;
  101. break;
  102. case WLAN_EID_FH_PARAMS:
  103. elems->fh_params = pos;
  104. elems->fh_params_len = elen;
  105. break;
  106. case WLAN_EID_DS_PARAMS:
  107. elems->ds_params = pos;
  108. elems->ds_params_len = elen;
  109. break;
  110. case WLAN_EID_CF_PARAMS:
  111. elems->cf_params = pos;
  112. elems->cf_params_len = elen;
  113. break;
  114. case WLAN_EID_TIM:
  115. elems->tim = pos;
  116. elems->tim_len = elen;
  117. break;
  118. case WLAN_EID_IBSS_PARAMS:
  119. elems->ibss_params = pos;
  120. elems->ibss_params_len = elen;
  121. break;
  122. case WLAN_EID_CHALLENGE:
  123. elems->challenge = pos;
  124. elems->challenge_len = elen;
  125. break;
  126. case WLAN_EID_WPA:
  127. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  128. pos[2] == 0xf2) {
  129. /* Microsoft OUI (00:50:F2) */
  130. if (pos[3] == 1) {
  131. /* OUI Type 1 - WPA IE */
  132. elems->wpa = pos;
  133. elems->wpa_len = elen;
  134. } else if (elen >= 5 && pos[3] == 2) {
  135. if (pos[4] == 0) {
  136. elems->wmm_info = pos;
  137. elems->wmm_info_len = elen;
  138. } else if (pos[4] == 1) {
  139. elems->wmm_param = pos;
  140. elems->wmm_param_len = elen;
  141. }
  142. }
  143. }
  144. break;
  145. case WLAN_EID_RSN:
  146. elems->rsn = pos;
  147. elems->rsn_len = elen;
  148. break;
  149. case WLAN_EID_ERP_INFO:
  150. elems->erp_info = pos;
  151. elems->erp_info_len = elen;
  152. break;
  153. case WLAN_EID_EXT_SUPP_RATES:
  154. elems->ext_supp_rates = pos;
  155. elems->ext_supp_rates_len = elen;
  156. break;
  157. case WLAN_EID_HT_CAPABILITY:
  158. elems->ht_cap_elem = pos;
  159. elems->ht_cap_elem_len = elen;
  160. break;
  161. case WLAN_EID_HT_EXTRA_INFO:
  162. elems->ht_info_elem = pos;
  163. elems->ht_info_elem_len = elen;
  164. break;
  165. case WLAN_EID_MESH_ID:
  166. elems->mesh_id = pos;
  167. elems->mesh_id_len = elen;
  168. break;
  169. case WLAN_EID_MESH_CONFIG:
  170. elems->mesh_config = pos;
  171. elems->mesh_config_len = elen;
  172. break;
  173. case WLAN_EID_PEER_LINK:
  174. elems->peer_link = pos;
  175. elems->peer_link_len = elen;
  176. break;
  177. case WLAN_EID_PREQ:
  178. elems->preq = pos;
  179. elems->preq_len = elen;
  180. break;
  181. case WLAN_EID_PREP:
  182. elems->prep = pos;
  183. elems->prep_len = elen;
  184. break;
  185. case WLAN_EID_PERR:
  186. elems->perr = pos;
  187. elems->perr_len = elen;
  188. break;
  189. case WLAN_EID_CHANNEL_SWITCH:
  190. elems->ch_switch_elem = pos;
  191. elems->ch_switch_elem_len = elen;
  192. break;
  193. case WLAN_EID_QUIET:
  194. if (!elems->quiet_elem) {
  195. elems->quiet_elem = pos;
  196. elems->quiet_elem_len = elen;
  197. }
  198. elems->num_of_quiet_elem++;
  199. break;
  200. case WLAN_EID_COUNTRY:
  201. elems->country_elem = pos;
  202. elems->country_elem_len = elen;
  203. break;
  204. case WLAN_EID_PWR_CONSTRAINT:
  205. elems->pwr_constr_elem = pos;
  206. elems->pwr_constr_elem_len = elen;
  207. break;
  208. default:
  209. break;
  210. }
  211. left -= elen;
  212. pos += elen;
  213. }
  214. }
  215. static int ecw2cw(int ecw)
  216. {
  217. return (1 << ecw) - 1;
  218. }
  219. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  220. struct ieee80211_sta_bss *bss,
  221. int ibss)
  222. {
  223. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  224. struct ieee80211_local *local = sdata->local;
  225. int i, have_higher_than_11mbit = 0;
  226. /* cf. IEEE 802.11 9.2.12 */
  227. for (i = 0; i < bss->supp_rates_len; i++)
  228. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  229. have_higher_than_11mbit = 1;
  230. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  231. have_higher_than_11mbit)
  232. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  233. else
  234. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  235. if (local->ops->conf_tx) {
  236. struct ieee80211_tx_queue_params qparam;
  237. memset(&qparam, 0, sizeof(qparam));
  238. qparam.aifs = 2;
  239. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  240. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  241. qparam.cw_min = 31;
  242. else
  243. qparam.cw_min = 15;
  244. qparam.cw_max = 1023;
  245. qparam.txop = 0;
  246. for (i = 0; i < local_to_hw(local)->queues; i++)
  247. local->ops->conf_tx(local_to_hw(local), i, &qparam);
  248. }
  249. }
  250. static void ieee80211_sta_wmm_params(struct net_device *dev,
  251. struct ieee80211_if_sta *ifsta,
  252. u8 *wmm_param, size_t wmm_param_len)
  253. {
  254. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  255. struct ieee80211_tx_queue_params params;
  256. size_t left;
  257. int count;
  258. u8 *pos;
  259. if (!(ifsta->flags & IEEE80211_STA_WMM_ENABLED))
  260. return;
  261. if (!wmm_param)
  262. return;
  263. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  264. return;
  265. count = wmm_param[6] & 0x0f;
  266. if (count == ifsta->wmm_last_param_set)
  267. return;
  268. ifsta->wmm_last_param_set = count;
  269. pos = wmm_param + 8;
  270. left = wmm_param_len - 8;
  271. memset(&params, 0, sizeof(params));
  272. if (!local->ops->conf_tx)
  273. return;
  274. local->wmm_acm = 0;
  275. for (; left >= 4; left -= 4, pos += 4) {
  276. int aci = (pos[0] >> 5) & 0x03;
  277. int acm = (pos[0] >> 4) & 0x01;
  278. int queue;
  279. switch (aci) {
  280. case 1:
  281. queue = 3;
  282. if (acm)
  283. local->wmm_acm |= BIT(0) | BIT(3);
  284. break;
  285. case 2:
  286. queue = 1;
  287. if (acm)
  288. local->wmm_acm |= BIT(4) | BIT(5);
  289. break;
  290. case 3:
  291. queue = 0;
  292. if (acm)
  293. local->wmm_acm |= BIT(6) | BIT(7);
  294. break;
  295. case 0:
  296. default:
  297. queue = 2;
  298. if (acm)
  299. local->wmm_acm |= BIT(1) | BIT(2);
  300. break;
  301. }
  302. params.aifs = pos[0] & 0x0f;
  303. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  304. params.cw_min = ecw2cw(pos[1] & 0x0f);
  305. params.txop = get_unaligned_le16(pos + 2);
  306. #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
  307. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  308. "cWmin=%d cWmax=%d txop=%d\n",
  309. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  310. params.cw_max, params.txop);
  311. #endif
  312. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  313. * AC for now) */
  314. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  315. printk(KERN_DEBUG "%s: failed to set TX queue "
  316. "parameters for queue %d\n", dev->name, queue);
  317. }
  318. }
  319. }
  320. static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
  321. bool use_protection,
  322. bool use_short_preamble)
  323. {
  324. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  325. #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
  326. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  327. DECLARE_MAC_BUF(mac);
  328. #endif
  329. u32 changed = 0;
  330. if (use_protection != bss_conf->use_cts_prot) {
  331. #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
  332. if (net_ratelimit()) {
  333. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  334. "%s)\n",
  335. sdata->dev->name,
  336. use_protection ? "enabled" : "disabled",
  337. print_mac(mac, ifsta->bssid));
  338. }
  339. #endif
  340. bss_conf->use_cts_prot = use_protection;
  341. changed |= BSS_CHANGED_ERP_CTS_PROT;
  342. }
  343. if (use_short_preamble != bss_conf->use_short_preamble) {
  344. #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
  345. if (net_ratelimit()) {
  346. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  347. " (BSSID=%s)\n",
  348. sdata->dev->name,
  349. use_short_preamble ? "short" : "long",
  350. print_mac(mac, ifsta->bssid));
  351. }
  352. #endif
  353. bss_conf->use_short_preamble = use_short_preamble;
  354. changed |= BSS_CHANGED_ERP_PREAMBLE;
  355. }
  356. return changed;
  357. }
  358. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  359. u8 erp_value)
  360. {
  361. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  362. bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
  363. return ieee80211_handle_protect_preamb(sdata,
  364. use_protection, use_short_preamble);
  365. }
  366. static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
  367. struct ieee80211_sta_bss *bss)
  368. {
  369. u32 changed = 0;
  370. if (bss->has_erp_value)
  371. changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
  372. else {
  373. u16 capab = bss->capability;
  374. changed |= ieee80211_handle_protect_preamb(sdata, false,
  375. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  376. }
  377. return changed;
  378. }
  379. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  380. struct ieee80211_ht_info *ht_info)
  381. {
  382. if (ht_info == NULL)
  383. return -EINVAL;
  384. memset(ht_info, 0, sizeof(*ht_info));
  385. if (ht_cap_ie) {
  386. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  387. ht_info->ht_supported = 1;
  388. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  389. ht_info->ampdu_factor =
  390. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  391. ht_info->ampdu_density =
  392. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  393. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  394. } else
  395. ht_info->ht_supported = 0;
  396. return 0;
  397. }
  398. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  399. struct ieee80211_ht_addt_info *ht_add_info_ie,
  400. struct ieee80211_ht_bss_info *bss_info)
  401. {
  402. if (bss_info == NULL)
  403. return -EINVAL;
  404. memset(bss_info, 0, sizeof(*bss_info));
  405. if (ht_add_info_ie) {
  406. u16 op_mode;
  407. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  408. bss_info->primary_channel = ht_add_info_ie->control_chan;
  409. bss_info->bss_cap = ht_add_info_ie->ht_param;
  410. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  411. }
  412. return 0;
  413. }
  414. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  415. struct ieee80211_if_sta *ifsta)
  416. {
  417. union iwreq_data wrqu;
  418. if (ifsta->assocreq_ies) {
  419. memset(&wrqu, 0, sizeof(wrqu));
  420. wrqu.data.length = ifsta->assocreq_ies_len;
  421. wireless_send_event(dev, IWEVASSOCREQIE, &wrqu,
  422. ifsta->assocreq_ies);
  423. }
  424. if (ifsta->assocresp_ies) {
  425. memset(&wrqu, 0, sizeof(wrqu));
  426. wrqu.data.length = ifsta->assocresp_ies_len;
  427. wireless_send_event(dev, IWEVASSOCRESPIE, &wrqu,
  428. ifsta->assocresp_ies);
  429. }
  430. }
  431. static void ieee80211_set_associated(struct net_device *dev,
  432. struct ieee80211_if_sta *ifsta,
  433. bool assoc)
  434. {
  435. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  436. struct ieee80211_local *local = sdata->local;
  437. struct ieee80211_conf *conf = &local_to_hw(local)->conf;
  438. union iwreq_data wrqu;
  439. u32 changed = BSS_CHANGED_ASSOC;
  440. if (assoc) {
  441. struct ieee80211_sta_bss *bss;
  442. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  443. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  444. return;
  445. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  446. conf->channel->center_freq,
  447. ifsta->ssid, ifsta->ssid_len);
  448. if (bss) {
  449. /* set timing information */
  450. sdata->bss_conf.beacon_int = bss->beacon_int;
  451. sdata->bss_conf.timestamp = bss->timestamp;
  452. sdata->bss_conf.dtim_period = bss->dtim_period;
  453. changed |= ieee80211_handle_bss_capability(sdata, bss);
  454. ieee80211_rx_bss_put(local, bss);
  455. }
  456. if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  457. changed |= BSS_CHANGED_HT;
  458. sdata->bss_conf.assoc_ht = 1;
  459. sdata->bss_conf.ht_conf = &conf->ht_conf;
  460. sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
  461. }
  462. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  463. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  464. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  465. ieee80211_sta_send_associnfo(dev, ifsta);
  466. } else {
  467. netif_carrier_off(dev);
  468. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  469. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  470. changed |= ieee80211_reset_erp_info(dev);
  471. sdata->bss_conf.assoc_ht = 0;
  472. sdata->bss_conf.ht_conf = NULL;
  473. sdata->bss_conf.ht_bss_conf = NULL;
  474. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  475. }
  476. ifsta->last_probe = jiffies;
  477. ieee80211_led_assoc(local, assoc);
  478. sdata->bss_conf.assoc = assoc;
  479. ieee80211_bss_info_change_notify(sdata, changed);
  480. if (assoc)
  481. netif_carrier_on(dev);
  482. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  483. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  484. }
  485. static void ieee80211_set_disassoc(struct net_device *dev,
  486. struct ieee80211_if_sta *ifsta, int deauth)
  487. {
  488. if (deauth)
  489. ifsta->auth_tries = 0;
  490. ifsta->assoc_tries = 0;
  491. ieee80211_set_associated(dev, ifsta, 0);
  492. }
  493. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  494. int encrypt)
  495. {
  496. struct ieee80211_sub_if_data *sdata;
  497. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  498. skb->dev = sdata->local->mdev;
  499. skb_set_mac_header(skb, 0);
  500. skb_set_network_header(skb, 0);
  501. skb_set_transport_header(skb, 0);
  502. skb->iif = sdata->dev->ifindex;
  503. skb->do_not_encrypt = !encrypt;
  504. dev_queue_xmit(skb);
  505. }
  506. static void ieee80211_send_auth(struct net_device *dev,
  507. struct ieee80211_if_sta *ifsta,
  508. int transaction, u8 *extra, size_t extra_len,
  509. int encrypt)
  510. {
  511. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  512. struct sk_buff *skb;
  513. struct ieee80211_mgmt *mgmt;
  514. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  515. sizeof(*mgmt) + 6 + extra_len);
  516. if (!skb) {
  517. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  518. "frame\n", dev->name);
  519. return;
  520. }
  521. skb_reserve(skb, local->hw.extra_tx_headroom);
  522. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  523. memset(mgmt, 0, 24 + 6);
  524. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  525. IEEE80211_STYPE_AUTH);
  526. if (encrypt)
  527. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  528. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  529. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  530. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  531. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  532. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  533. ifsta->auth_transaction = transaction + 1;
  534. mgmt->u.auth.status_code = cpu_to_le16(0);
  535. if (extra)
  536. memcpy(skb_put(skb, extra_len), extra, extra_len);
  537. ieee80211_sta_tx(dev, skb, encrypt);
  538. }
  539. static void ieee80211_authenticate(struct net_device *dev,
  540. struct ieee80211_if_sta *ifsta)
  541. {
  542. DECLARE_MAC_BUF(mac);
  543. ifsta->auth_tries++;
  544. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  545. printk(KERN_DEBUG "%s: authentication with AP %s"
  546. " timed out\n",
  547. dev->name, print_mac(mac, ifsta->bssid));
  548. ifsta->state = IEEE80211_DISABLED;
  549. return;
  550. }
  551. ifsta->state = IEEE80211_AUTHENTICATE;
  552. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  553. dev->name, print_mac(mac, ifsta->bssid));
  554. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  555. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  556. }
  557. static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss,
  558. struct ieee80211_supported_band *sband,
  559. u64 *rates)
  560. {
  561. int i, j, count;
  562. *rates = 0;
  563. count = 0;
  564. for (i = 0; i < bss->supp_rates_len; i++) {
  565. int rate = (bss->supp_rates[i] & 0x7F) * 5;
  566. for (j = 0; j < sband->n_bitrates; j++)
  567. if (sband->bitrates[j].bitrate == rate) {
  568. *rates |= BIT(j);
  569. count++;
  570. break;
  571. }
  572. }
  573. return count;
  574. }
  575. static void ieee80211_send_assoc(struct net_device *dev,
  576. struct ieee80211_if_sta *ifsta)
  577. {
  578. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  579. struct sk_buff *skb;
  580. struct ieee80211_mgmt *mgmt;
  581. u8 *pos, *ies;
  582. int i, len, count, rates_len, supp_rates_len;
  583. u16 capab;
  584. struct ieee80211_sta_bss *bss;
  585. int wmm = 0;
  586. struct ieee80211_supported_band *sband;
  587. u64 rates = 0;
  588. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  589. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  590. ifsta->ssid_len);
  591. if (!skb) {
  592. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  593. "frame\n", dev->name);
  594. return;
  595. }
  596. skb_reserve(skb, local->hw.extra_tx_headroom);
  597. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  598. capab = ifsta->capab;
  599. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  600. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  601. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  602. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  603. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  604. }
  605. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  606. local->hw.conf.channel->center_freq,
  607. ifsta->ssid, ifsta->ssid_len);
  608. if (bss) {
  609. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  610. capab |= WLAN_CAPABILITY_PRIVACY;
  611. if (bss->wmm_ie)
  612. wmm = 1;
  613. /* get all rates supported by the device and the AP as
  614. * some APs don't like getting a superset of their rates
  615. * in the association request (e.g. D-Link DAP 1353 in
  616. * b-only mode) */
  617. rates_len = ieee80211_compatible_rates(bss, sband, &rates);
  618. if ((bss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) &&
  619. (local->hw.flags & IEEE80211_HW_SPECTRUM_MGMT))
  620. capab |= WLAN_CAPABILITY_SPECTRUM_MGMT;
  621. ieee80211_rx_bss_put(local, bss);
  622. } else {
  623. rates = ~0;
  624. rates_len = sband->n_bitrates;
  625. }
  626. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  627. memset(mgmt, 0, 24);
  628. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  629. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  630. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  631. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  632. skb_put(skb, 10);
  633. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  634. IEEE80211_STYPE_REASSOC_REQ);
  635. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  636. mgmt->u.reassoc_req.listen_interval =
  637. cpu_to_le16(local->hw.conf.listen_interval);
  638. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  639. ETH_ALEN);
  640. } else {
  641. skb_put(skb, 4);
  642. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  643. IEEE80211_STYPE_ASSOC_REQ);
  644. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  645. mgmt->u.reassoc_req.listen_interval =
  646. cpu_to_le16(local->hw.conf.listen_interval);
  647. }
  648. /* SSID */
  649. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  650. *pos++ = WLAN_EID_SSID;
  651. *pos++ = ifsta->ssid_len;
  652. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  653. /* add all rates which were marked to be used above */
  654. supp_rates_len = rates_len;
  655. if (supp_rates_len > 8)
  656. supp_rates_len = 8;
  657. len = sband->n_bitrates;
  658. pos = skb_put(skb, supp_rates_len + 2);
  659. *pos++ = WLAN_EID_SUPP_RATES;
  660. *pos++ = supp_rates_len;
  661. count = 0;
  662. for (i = 0; i < sband->n_bitrates; i++) {
  663. if (BIT(i) & rates) {
  664. int rate = sband->bitrates[i].bitrate;
  665. *pos++ = (u8) (rate / 5);
  666. if (++count == 8)
  667. break;
  668. }
  669. }
  670. if (rates_len > count) {
  671. pos = skb_put(skb, rates_len - count + 2);
  672. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  673. *pos++ = rates_len - count;
  674. for (i++; i < sband->n_bitrates; i++) {
  675. if (BIT(i) & rates) {
  676. int rate = sband->bitrates[i].bitrate;
  677. *pos++ = (u8) (rate / 5);
  678. }
  679. }
  680. }
  681. if (capab & WLAN_CAPABILITY_SPECTRUM_MGMT) {
  682. /* 1. power capabilities */
  683. pos = skb_put(skb, 4);
  684. *pos++ = WLAN_EID_PWR_CAPABILITY;
  685. *pos++ = 2;
  686. *pos++ = 0; /* min tx power */
  687. *pos++ = local->hw.conf.channel->max_power; /* max tx power */
  688. /* 2. supported channels */
  689. /* TODO: get this in reg domain format */
  690. pos = skb_put(skb, 2 * sband->n_channels + 2);
  691. *pos++ = WLAN_EID_SUPPORTED_CHANNELS;
  692. *pos++ = 2 * sband->n_channels;
  693. for (i = 0; i < sband->n_channels; i++) {
  694. *pos++ = ieee80211_frequency_to_channel(
  695. sband->channels[i].center_freq);
  696. *pos++ = 1; /* one channel in the subband*/
  697. }
  698. }
  699. if (ifsta->extra_ie) {
  700. pos = skb_put(skb, ifsta->extra_ie_len);
  701. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  702. }
  703. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  704. pos = skb_put(skb, 9);
  705. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  706. *pos++ = 7; /* len */
  707. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  708. *pos++ = 0x50;
  709. *pos++ = 0xf2;
  710. *pos++ = 2; /* WME */
  711. *pos++ = 0; /* WME info */
  712. *pos++ = 1; /* WME ver */
  713. *pos++ = 0;
  714. }
  715. /* wmm support is a must to HT */
  716. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED) &&
  717. sband->ht_info.ht_supported && bss->ht_add_ie) {
  718. struct ieee80211_ht_addt_info *ht_add_info =
  719. (struct ieee80211_ht_addt_info *)bss->ht_add_ie;
  720. u16 cap = sband->ht_info.cap;
  721. __le16 tmp;
  722. u32 flags = local->hw.conf.channel->flags;
  723. switch (ht_add_info->ht_param & IEEE80211_HT_IE_CHA_SEC_OFFSET) {
  724. case IEEE80211_HT_IE_CHA_SEC_ABOVE:
  725. if (flags & IEEE80211_CHAN_NO_FAT_ABOVE) {
  726. cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
  727. cap &= ~IEEE80211_HT_CAP_SGI_40;
  728. }
  729. break;
  730. case IEEE80211_HT_IE_CHA_SEC_BELOW:
  731. if (flags & IEEE80211_CHAN_NO_FAT_BELOW) {
  732. cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
  733. cap &= ~IEEE80211_HT_CAP_SGI_40;
  734. }
  735. break;
  736. }
  737. tmp = cpu_to_le16(cap);
  738. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  739. *pos++ = WLAN_EID_HT_CAPABILITY;
  740. *pos++ = sizeof(struct ieee80211_ht_cap);
  741. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  742. memcpy(pos, &tmp, sizeof(u16));
  743. pos += sizeof(u16);
  744. /* TODO: needs a define here for << 2 */
  745. *pos++ = sband->ht_info.ampdu_factor |
  746. (sband->ht_info.ampdu_density << 2);
  747. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  748. }
  749. kfree(ifsta->assocreq_ies);
  750. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  751. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  752. if (ifsta->assocreq_ies)
  753. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  754. ieee80211_sta_tx(dev, skb, 0);
  755. }
  756. static void ieee80211_send_deauth(struct net_device *dev,
  757. struct ieee80211_if_sta *ifsta, u16 reason)
  758. {
  759. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  760. struct sk_buff *skb;
  761. struct ieee80211_mgmt *mgmt;
  762. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  763. if (!skb) {
  764. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  765. "frame\n", dev->name);
  766. return;
  767. }
  768. skb_reserve(skb, local->hw.extra_tx_headroom);
  769. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  770. memset(mgmt, 0, 24);
  771. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  772. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  773. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  774. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  775. IEEE80211_STYPE_DEAUTH);
  776. skb_put(skb, 2);
  777. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  778. ieee80211_sta_tx(dev, skb, 0);
  779. }
  780. static void ieee80211_send_disassoc(struct net_device *dev,
  781. struct ieee80211_if_sta *ifsta, u16 reason)
  782. {
  783. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  784. struct sk_buff *skb;
  785. struct ieee80211_mgmt *mgmt;
  786. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  787. if (!skb) {
  788. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  789. "frame\n", dev->name);
  790. return;
  791. }
  792. skb_reserve(skb, local->hw.extra_tx_headroom);
  793. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  794. memset(mgmt, 0, 24);
  795. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  796. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  797. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  798. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  799. IEEE80211_STYPE_DISASSOC);
  800. skb_put(skb, 2);
  801. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  802. ieee80211_sta_tx(dev, skb, 0);
  803. }
  804. static int ieee80211_privacy_mismatch(struct net_device *dev,
  805. struct ieee80211_if_sta *ifsta)
  806. {
  807. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  808. struct ieee80211_sta_bss *bss;
  809. int bss_privacy;
  810. int wep_privacy;
  811. int privacy_invoked;
  812. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  813. return 0;
  814. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  815. local->hw.conf.channel->center_freq,
  816. ifsta->ssid, ifsta->ssid_len);
  817. if (!bss)
  818. return 0;
  819. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  820. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  821. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  822. ieee80211_rx_bss_put(local, bss);
  823. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  824. return 0;
  825. return 1;
  826. }
  827. static void ieee80211_associate(struct net_device *dev,
  828. struct ieee80211_if_sta *ifsta)
  829. {
  830. DECLARE_MAC_BUF(mac);
  831. ifsta->assoc_tries++;
  832. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  833. printk(KERN_DEBUG "%s: association with AP %s"
  834. " timed out\n",
  835. dev->name, print_mac(mac, ifsta->bssid));
  836. ifsta->state = IEEE80211_DISABLED;
  837. return;
  838. }
  839. ifsta->state = IEEE80211_ASSOCIATE;
  840. printk(KERN_DEBUG "%s: associate with AP %s\n",
  841. dev->name, print_mac(mac, ifsta->bssid));
  842. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  843. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  844. "mixed-cell disabled - abort association\n", dev->name);
  845. ifsta->state = IEEE80211_DISABLED;
  846. return;
  847. }
  848. ieee80211_send_assoc(dev, ifsta);
  849. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  850. }
  851. static void ieee80211_associated(struct net_device *dev,
  852. struct ieee80211_if_sta *ifsta)
  853. {
  854. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  855. struct sta_info *sta;
  856. int disassoc;
  857. DECLARE_MAC_BUF(mac);
  858. /* TODO: start monitoring current AP signal quality and number of
  859. * missed beacons. Scan other channels every now and then and search
  860. * for better APs. */
  861. /* TODO: remove expired BSSes */
  862. ifsta->state = IEEE80211_ASSOCIATED;
  863. rcu_read_lock();
  864. sta = sta_info_get(local, ifsta->bssid);
  865. if (!sta) {
  866. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  867. dev->name, print_mac(mac, ifsta->bssid));
  868. disassoc = 1;
  869. } else {
  870. disassoc = 0;
  871. if (time_after(jiffies,
  872. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  873. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  874. printk(KERN_DEBUG "%s: No ProbeResp from "
  875. "current AP %s - assume out of "
  876. "range\n",
  877. dev->name, print_mac(mac, ifsta->bssid));
  878. disassoc = 1;
  879. sta_info_unlink(&sta);
  880. } else
  881. ieee80211_send_probe_req(dev, ifsta->bssid,
  882. local->scan_ssid,
  883. local->scan_ssid_len);
  884. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  885. } else {
  886. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  887. if (time_after(jiffies, ifsta->last_probe +
  888. IEEE80211_PROBE_INTERVAL)) {
  889. ifsta->last_probe = jiffies;
  890. ieee80211_send_probe_req(dev, ifsta->bssid,
  891. ifsta->ssid,
  892. ifsta->ssid_len);
  893. }
  894. }
  895. }
  896. rcu_read_unlock();
  897. if (disassoc && sta)
  898. sta_info_destroy(sta);
  899. if (disassoc) {
  900. ifsta->state = IEEE80211_DISABLED;
  901. ieee80211_set_associated(dev, ifsta, 0);
  902. } else {
  903. mod_timer(&ifsta->timer, jiffies +
  904. IEEE80211_MONITORING_INTERVAL);
  905. }
  906. }
  907. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  908. u8 *ssid, size_t ssid_len)
  909. {
  910. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  911. struct ieee80211_supported_band *sband;
  912. struct sk_buff *skb;
  913. struct ieee80211_mgmt *mgmt;
  914. u8 *pos, *supp_rates, *esupp_rates = NULL;
  915. int i;
  916. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  917. if (!skb) {
  918. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  919. "request\n", dev->name);
  920. return;
  921. }
  922. skb_reserve(skb, local->hw.extra_tx_headroom);
  923. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  924. memset(mgmt, 0, 24);
  925. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  926. IEEE80211_STYPE_PROBE_REQ);
  927. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  928. if (dst) {
  929. memcpy(mgmt->da, dst, ETH_ALEN);
  930. memcpy(mgmt->bssid, dst, ETH_ALEN);
  931. } else {
  932. memset(mgmt->da, 0xff, ETH_ALEN);
  933. memset(mgmt->bssid, 0xff, ETH_ALEN);
  934. }
  935. pos = skb_put(skb, 2 + ssid_len);
  936. *pos++ = WLAN_EID_SSID;
  937. *pos++ = ssid_len;
  938. memcpy(pos, ssid, ssid_len);
  939. supp_rates = skb_put(skb, 2);
  940. supp_rates[0] = WLAN_EID_SUPP_RATES;
  941. supp_rates[1] = 0;
  942. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  943. for (i = 0; i < sband->n_bitrates; i++) {
  944. struct ieee80211_rate *rate = &sband->bitrates[i];
  945. if (esupp_rates) {
  946. pos = skb_put(skb, 1);
  947. esupp_rates[1]++;
  948. } else if (supp_rates[1] == 8) {
  949. esupp_rates = skb_put(skb, 3);
  950. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  951. esupp_rates[1] = 1;
  952. pos = &esupp_rates[2];
  953. } else {
  954. pos = skb_put(skb, 1);
  955. supp_rates[1]++;
  956. }
  957. *pos = rate->bitrate / 5;
  958. }
  959. ieee80211_sta_tx(dev, skb, 0);
  960. }
  961. static int ieee80211_sta_wep_configured(struct net_device *dev)
  962. {
  963. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  964. if (!sdata || !sdata->default_key ||
  965. sdata->default_key->conf.alg != ALG_WEP)
  966. return 0;
  967. return 1;
  968. }
  969. static void ieee80211_auth_completed(struct net_device *dev,
  970. struct ieee80211_if_sta *ifsta)
  971. {
  972. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  973. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  974. ieee80211_associate(dev, ifsta);
  975. }
  976. static void ieee80211_auth_challenge(struct net_device *dev,
  977. struct ieee80211_if_sta *ifsta,
  978. struct ieee80211_mgmt *mgmt,
  979. size_t len)
  980. {
  981. u8 *pos;
  982. struct ieee802_11_elems elems;
  983. pos = mgmt->u.auth.variable;
  984. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  985. if (!elems.challenge)
  986. return;
  987. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  988. elems.challenge_len + 2, 1);
  989. }
  990. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  991. u8 dialog_token, u16 status, u16 policy,
  992. u16 buf_size, u16 timeout)
  993. {
  994. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  995. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  996. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  997. struct sk_buff *skb;
  998. struct ieee80211_mgmt *mgmt;
  999. u16 capab;
  1000. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
  1001. if (!skb) {
  1002. printk(KERN_DEBUG "%s: failed to allocate buffer "
  1003. "for addba resp frame\n", dev->name);
  1004. return;
  1005. }
  1006. skb_reserve(skb, local->hw.extra_tx_headroom);
  1007. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1008. memset(mgmt, 0, 24);
  1009. memcpy(mgmt->da, da, ETH_ALEN);
  1010. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1011. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1012. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1013. else
  1014. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1015. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1016. IEEE80211_STYPE_ACTION);
  1017. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  1018. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1019. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  1020. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  1021. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  1022. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  1023. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  1024. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  1025. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  1026. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  1027. ieee80211_sta_tx(dev, skb, 0);
  1028. return;
  1029. }
  1030. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  1031. u16 tid, u8 dialog_token, u16 start_seq_num,
  1032. u16 agg_size, u16 timeout)
  1033. {
  1034. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1035. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1036. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1037. struct sk_buff *skb;
  1038. struct ieee80211_mgmt *mgmt;
  1039. u16 capab;
  1040. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
  1041. if (!skb) {
  1042. printk(KERN_ERR "%s: failed to allocate buffer "
  1043. "for addba request frame\n", dev->name);
  1044. return;
  1045. }
  1046. skb_reserve(skb, local->hw.extra_tx_headroom);
  1047. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1048. memset(mgmt, 0, 24);
  1049. memcpy(mgmt->da, da, ETH_ALEN);
  1050. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1051. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1052. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1053. else
  1054. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1055. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1056. IEEE80211_STYPE_ACTION);
  1057. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  1058. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1059. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  1060. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  1061. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  1062. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  1063. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  1064. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  1065. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  1066. mgmt->u.action.u.addba_req.start_seq_num =
  1067. cpu_to_le16(start_seq_num << 4);
  1068. ieee80211_sta_tx(dev, skb, 0);
  1069. }
  1070. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  1071. struct ieee80211_mgmt *mgmt,
  1072. size_t len)
  1073. {
  1074. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1075. struct ieee80211_hw *hw = &local->hw;
  1076. struct ieee80211_conf *conf = &hw->conf;
  1077. struct sta_info *sta;
  1078. struct tid_ampdu_rx *tid_agg_rx;
  1079. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  1080. u8 dialog_token;
  1081. int ret = -EOPNOTSUPP;
  1082. DECLARE_MAC_BUF(mac);
  1083. rcu_read_lock();
  1084. sta = sta_info_get(local, mgmt->sa);
  1085. if (!sta) {
  1086. rcu_read_unlock();
  1087. return;
  1088. }
  1089. /* extract session parameters from addba request frame */
  1090. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1091. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1092. start_seq_num =
  1093. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1094. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1095. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1096. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1097. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1098. status = WLAN_STATUS_REQUEST_DECLINED;
  1099. /* sanity check for incoming parameters:
  1100. * check if configuration can support the BA policy
  1101. * and if buffer size does not exceeds max value */
  1102. if (((ba_policy != 1)
  1103. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1104. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1105. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1106. #ifdef CONFIG_MAC80211_HT_DEBUG
  1107. if (net_ratelimit())
  1108. printk(KERN_DEBUG "AddBA Req with bad params from "
  1109. "%s on tid %u. policy %d, buffer size %d\n",
  1110. print_mac(mac, mgmt->sa), tid, ba_policy,
  1111. buf_size);
  1112. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1113. goto end_no_lock;
  1114. }
  1115. /* determine default buffer size */
  1116. if (buf_size == 0) {
  1117. struct ieee80211_supported_band *sband;
  1118. sband = local->hw.wiphy->bands[conf->channel->band];
  1119. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1120. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1121. }
  1122. /* examine state machine */
  1123. spin_lock_bh(&sta->lock);
  1124. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1125. #ifdef CONFIG_MAC80211_HT_DEBUG
  1126. if (net_ratelimit())
  1127. printk(KERN_DEBUG "unexpected AddBA Req from "
  1128. "%s on tid %u\n",
  1129. print_mac(mac, mgmt->sa), tid);
  1130. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1131. goto end;
  1132. }
  1133. /* prepare A-MPDU MLME for Rx aggregation */
  1134. sta->ampdu_mlme.tid_rx[tid] =
  1135. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1136. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1137. #ifdef CONFIG_MAC80211_HT_DEBUG
  1138. if (net_ratelimit())
  1139. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1140. tid);
  1141. #endif
  1142. goto end;
  1143. }
  1144. /* rx timer */
  1145. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1146. sta_rx_agg_session_timer_expired;
  1147. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1148. (unsigned long)&sta->timer_to_tid[tid];
  1149. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1150. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1151. /* prepare reordering buffer */
  1152. tid_agg_rx->reorder_buf =
  1153. kmalloc(buf_size * sizeof(struct sk_buff *), GFP_ATOMIC);
  1154. if (!tid_agg_rx->reorder_buf) {
  1155. #ifdef CONFIG_MAC80211_HT_DEBUG
  1156. if (net_ratelimit())
  1157. printk(KERN_ERR "can not allocate reordering buffer "
  1158. "to tid %d\n", tid);
  1159. #endif
  1160. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1161. goto end;
  1162. }
  1163. memset(tid_agg_rx->reorder_buf, 0,
  1164. buf_size * sizeof(struct sk_buff *));
  1165. if (local->ops->ampdu_action)
  1166. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1167. sta->addr, tid, &start_seq_num);
  1168. #ifdef CONFIG_MAC80211_HT_DEBUG
  1169. printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret);
  1170. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1171. if (ret) {
  1172. kfree(tid_agg_rx->reorder_buf);
  1173. kfree(tid_agg_rx);
  1174. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1175. goto end;
  1176. }
  1177. /* change state and send addba resp */
  1178. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1179. tid_agg_rx->dialog_token = dialog_token;
  1180. tid_agg_rx->ssn = start_seq_num;
  1181. tid_agg_rx->head_seq_num = start_seq_num;
  1182. tid_agg_rx->buf_size = buf_size;
  1183. tid_agg_rx->timeout = timeout;
  1184. tid_agg_rx->stored_mpdu_num = 0;
  1185. status = WLAN_STATUS_SUCCESS;
  1186. end:
  1187. spin_unlock_bh(&sta->lock);
  1188. end_no_lock:
  1189. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1190. dialog_token, status, 1, buf_size, timeout);
  1191. rcu_read_unlock();
  1192. }
  1193. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1194. struct ieee80211_mgmt *mgmt,
  1195. size_t len)
  1196. {
  1197. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1198. struct ieee80211_hw *hw = &local->hw;
  1199. struct sta_info *sta;
  1200. u16 capab;
  1201. u16 tid;
  1202. u8 *state;
  1203. rcu_read_lock();
  1204. sta = sta_info_get(local, mgmt->sa);
  1205. if (!sta) {
  1206. rcu_read_unlock();
  1207. return;
  1208. }
  1209. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1210. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1211. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1212. spin_lock_bh(&sta->lock);
  1213. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1214. spin_unlock_bh(&sta->lock);
  1215. goto addba_resp_exit;
  1216. }
  1217. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1218. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1219. spin_unlock_bh(&sta->lock);
  1220. #ifdef CONFIG_MAC80211_HT_DEBUG
  1221. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1222. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1223. goto addba_resp_exit;
  1224. }
  1225. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1226. #ifdef CONFIG_MAC80211_HT_DEBUG
  1227. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1228. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1229. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1230. == WLAN_STATUS_SUCCESS) {
  1231. *state |= HT_ADDBA_RECEIVED_MSK;
  1232. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1233. if (*state == HT_AGG_STATE_OPERATIONAL)
  1234. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1235. spin_unlock_bh(&sta->lock);
  1236. } else {
  1237. sta->ampdu_mlme.addba_req_num[tid]++;
  1238. /* this will allow the state check in stop_BA_session */
  1239. *state = HT_AGG_STATE_OPERATIONAL;
  1240. spin_unlock_bh(&sta->lock);
  1241. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1242. WLAN_BACK_INITIATOR);
  1243. }
  1244. addba_resp_exit:
  1245. rcu_read_unlock();
  1246. }
  1247. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1248. u16 initiator, u16 reason_code)
  1249. {
  1250. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1251. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1252. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1253. struct sk_buff *skb;
  1254. struct ieee80211_mgmt *mgmt;
  1255. u16 params;
  1256. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
  1257. if (!skb) {
  1258. printk(KERN_ERR "%s: failed to allocate buffer "
  1259. "for delba frame\n", dev->name);
  1260. return;
  1261. }
  1262. skb_reserve(skb, local->hw.extra_tx_headroom);
  1263. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1264. memset(mgmt, 0, 24);
  1265. memcpy(mgmt->da, da, ETH_ALEN);
  1266. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1267. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1268. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1269. else
  1270. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1271. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1272. IEEE80211_STYPE_ACTION);
  1273. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1274. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1275. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1276. params = (u16)(initiator << 11); /* bit 11 initiator */
  1277. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1278. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1279. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1280. ieee80211_sta_tx(dev, skb, 0);
  1281. }
  1282. void ieee80211_send_bar(struct net_device *dev, u8 *ra, u16 tid, u16 ssn)
  1283. {
  1284. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1285. struct sk_buff *skb;
  1286. struct ieee80211_bar *bar;
  1287. u16 bar_control = 0;
  1288. skb = dev_alloc_skb(sizeof(*bar) + local->hw.extra_tx_headroom);
  1289. if (!skb) {
  1290. printk(KERN_ERR "%s: failed to allocate buffer for "
  1291. "bar frame\n", dev->name);
  1292. return;
  1293. }
  1294. skb_reserve(skb, local->hw.extra_tx_headroom);
  1295. bar = (struct ieee80211_bar *)skb_put(skb, sizeof(*bar));
  1296. memset(bar, 0, sizeof(*bar));
  1297. bar->frame_control = IEEE80211_FC(IEEE80211_FTYPE_CTL,
  1298. IEEE80211_STYPE_BACK_REQ);
  1299. memcpy(bar->ra, ra, ETH_ALEN);
  1300. memcpy(bar->ta, dev->dev_addr, ETH_ALEN);
  1301. bar_control |= (u16)IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL;
  1302. bar_control |= (u16)IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA;
  1303. bar_control |= (u16)(tid << 12);
  1304. bar->control = cpu_to_le16(bar_control);
  1305. bar->start_seq_num = cpu_to_le16(ssn);
  1306. ieee80211_sta_tx(dev, skb, 0);
  1307. }
  1308. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1309. u16 initiator, u16 reason)
  1310. {
  1311. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1312. struct ieee80211_hw *hw = &local->hw;
  1313. struct sta_info *sta;
  1314. int ret, i;
  1315. DECLARE_MAC_BUF(mac);
  1316. rcu_read_lock();
  1317. sta = sta_info_get(local, ra);
  1318. if (!sta) {
  1319. rcu_read_unlock();
  1320. return;
  1321. }
  1322. /* check if TID is in operational state */
  1323. spin_lock_bh(&sta->lock);
  1324. if (sta->ampdu_mlme.tid_state_rx[tid]
  1325. != HT_AGG_STATE_OPERATIONAL) {
  1326. spin_unlock_bh(&sta->lock);
  1327. rcu_read_unlock();
  1328. return;
  1329. }
  1330. sta->ampdu_mlme.tid_state_rx[tid] =
  1331. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1332. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1333. spin_unlock_bh(&sta->lock);
  1334. /* stop HW Rx aggregation. ampdu_action existence
  1335. * already verified in session init so we add the BUG_ON */
  1336. BUG_ON(!local->ops->ampdu_action);
  1337. #ifdef CONFIG_MAC80211_HT_DEBUG
  1338. printk(KERN_DEBUG "Rx BA session stop requested for %s tid %u\n",
  1339. print_mac(mac, ra), tid);
  1340. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1341. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1342. ra, tid, NULL);
  1343. if (ret)
  1344. printk(KERN_DEBUG "HW problem - can not stop rx "
  1345. "aggregation for tid %d\n", tid);
  1346. /* shutdown timer has not expired */
  1347. if (initiator != WLAN_BACK_TIMER)
  1348. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1349. /* check if this is a self generated aggregation halt */
  1350. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1351. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1352. /* free the reordering buffer */
  1353. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1354. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1355. /* release the reordered frames */
  1356. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1357. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1358. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1359. }
  1360. }
  1361. /* free resources */
  1362. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1363. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1364. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1365. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1366. rcu_read_unlock();
  1367. }
  1368. static void ieee80211_sta_process_delba(struct net_device *dev,
  1369. struct ieee80211_mgmt *mgmt, size_t len)
  1370. {
  1371. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1372. struct sta_info *sta;
  1373. u16 tid, params;
  1374. u16 initiator;
  1375. DECLARE_MAC_BUF(mac);
  1376. rcu_read_lock();
  1377. sta = sta_info_get(local, mgmt->sa);
  1378. if (!sta) {
  1379. rcu_read_unlock();
  1380. return;
  1381. }
  1382. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1383. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1384. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1385. #ifdef CONFIG_MAC80211_HT_DEBUG
  1386. if (net_ratelimit())
  1387. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1388. print_mac(mac, mgmt->sa),
  1389. initiator ? "initiator" : "recipient", tid,
  1390. mgmt->u.action.u.delba.reason_code);
  1391. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1392. if (initiator == WLAN_BACK_INITIATOR)
  1393. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1394. WLAN_BACK_INITIATOR, 0);
  1395. else { /* WLAN_BACK_RECIPIENT */
  1396. spin_lock_bh(&sta->lock);
  1397. sta->ampdu_mlme.tid_state_tx[tid] =
  1398. HT_AGG_STATE_OPERATIONAL;
  1399. spin_unlock_bh(&sta->lock);
  1400. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1401. WLAN_BACK_RECIPIENT);
  1402. }
  1403. rcu_read_unlock();
  1404. }
  1405. /*
  1406. * After sending add Block Ack request we activated a timer until
  1407. * add Block Ack response will arrive from the recipient.
  1408. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1409. */
  1410. void sta_addba_resp_timer_expired(unsigned long data)
  1411. {
  1412. /* not an elegant detour, but there is no choice as the timer passes
  1413. * only one argument, and both sta_info and TID are needed, so init
  1414. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1415. * array gives the sta through container_of */
  1416. u16 tid = *(u8 *)data;
  1417. struct sta_info *temp_sta = container_of((void *)data,
  1418. struct sta_info, timer_to_tid[tid]);
  1419. struct ieee80211_local *local = temp_sta->local;
  1420. struct ieee80211_hw *hw = &local->hw;
  1421. struct sta_info *sta;
  1422. u8 *state;
  1423. rcu_read_lock();
  1424. sta = sta_info_get(local, temp_sta->addr);
  1425. if (!sta) {
  1426. rcu_read_unlock();
  1427. return;
  1428. }
  1429. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1430. /* check if the TID waits for addBA response */
  1431. spin_lock_bh(&sta->lock);
  1432. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1433. spin_unlock_bh(&sta->lock);
  1434. *state = HT_AGG_STATE_IDLE;
  1435. #ifdef CONFIG_MAC80211_HT_DEBUG
  1436. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1437. "expecting addBA response there", tid);
  1438. #endif
  1439. goto timer_expired_exit;
  1440. }
  1441. #ifdef CONFIG_MAC80211_HT_DEBUG
  1442. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1443. #endif
  1444. /* go through the state check in stop_BA_session */
  1445. *state = HT_AGG_STATE_OPERATIONAL;
  1446. spin_unlock_bh(&sta->lock);
  1447. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1448. WLAN_BACK_INITIATOR);
  1449. timer_expired_exit:
  1450. rcu_read_unlock();
  1451. }
  1452. /*
  1453. * After accepting the AddBA Request we activated a timer,
  1454. * resetting it after each frame that arrives from the originator.
  1455. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1456. */
  1457. static void sta_rx_agg_session_timer_expired(unsigned long data)
  1458. {
  1459. /* not an elegant detour, but there is no choice as the timer passes
  1460. * only one argument, and various sta_info are needed here, so init
  1461. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1462. * array gives the sta through container_of */
  1463. u8 *ptid = (u8 *)data;
  1464. u8 *timer_to_id = ptid - *ptid;
  1465. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1466. timer_to_tid[0]);
  1467. #ifdef CONFIG_MAC80211_HT_DEBUG
  1468. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1469. #endif
  1470. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1471. (u16)*ptid, WLAN_BACK_TIMER,
  1472. WLAN_REASON_QSTA_TIMEOUT);
  1473. }
  1474. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1475. {
  1476. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1477. int i;
  1478. for (i = 0; i < STA_TID_NUM; i++) {
  1479. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1480. WLAN_BACK_INITIATOR);
  1481. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1482. WLAN_BACK_RECIPIENT,
  1483. WLAN_REASON_QSTA_LEAVE_QBSS);
  1484. }
  1485. }
  1486. static void ieee80211_send_refuse_measurement_request(struct net_device *dev,
  1487. struct ieee80211_msrment_ie *request_ie,
  1488. const u8 *da, const u8 *bssid,
  1489. u8 dialog_token)
  1490. {
  1491. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1492. struct sk_buff *skb;
  1493. struct ieee80211_mgmt *msr_report;
  1494. skb = dev_alloc_skb(sizeof(*msr_report) + local->hw.extra_tx_headroom +
  1495. sizeof(struct ieee80211_msrment_ie));
  1496. if (!skb) {
  1497. printk(KERN_ERR "%s: failed to allocate buffer for "
  1498. "measurement report frame\n", dev->name);
  1499. return;
  1500. }
  1501. skb_reserve(skb, local->hw.extra_tx_headroom);
  1502. msr_report = (struct ieee80211_mgmt *)skb_put(skb, 24);
  1503. memset(msr_report, 0, 24);
  1504. memcpy(msr_report->da, da, ETH_ALEN);
  1505. memcpy(msr_report->sa, dev->dev_addr, ETH_ALEN);
  1506. memcpy(msr_report->bssid, bssid, ETH_ALEN);
  1507. msr_report->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1508. IEEE80211_STYPE_ACTION);
  1509. skb_put(skb, 1 + sizeof(msr_report->u.action.u.measurement));
  1510. msr_report->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
  1511. msr_report->u.action.u.measurement.action_code =
  1512. WLAN_ACTION_SPCT_MSR_RPRT;
  1513. msr_report->u.action.u.measurement.dialog_token = dialog_token;
  1514. msr_report->u.action.u.measurement.element_id = WLAN_EID_MEASURE_REPORT;
  1515. msr_report->u.action.u.measurement.length =
  1516. sizeof(struct ieee80211_msrment_ie);
  1517. memset(&msr_report->u.action.u.measurement.msr_elem, 0,
  1518. sizeof(struct ieee80211_msrment_ie));
  1519. msr_report->u.action.u.measurement.msr_elem.token = request_ie->token;
  1520. msr_report->u.action.u.measurement.msr_elem.mode |=
  1521. IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED;
  1522. msr_report->u.action.u.measurement.msr_elem.type = request_ie->type;
  1523. ieee80211_sta_tx(dev, skb, 0);
  1524. }
  1525. static void ieee80211_sta_process_measurement_req(struct net_device *dev,
  1526. struct ieee80211_mgmt *mgmt,
  1527. size_t len)
  1528. {
  1529. /*
  1530. * Ignoring measurement request is spec violation.
  1531. * Mandatory measurements must be reported optional
  1532. * measurements might be refused or reported incapable
  1533. * For now just refuse
  1534. * TODO: Answer basic measurement as unmeasured
  1535. */
  1536. ieee80211_send_refuse_measurement_request(dev,
  1537. &mgmt->u.action.u.measurement.msr_elem,
  1538. mgmt->sa, mgmt->bssid,
  1539. mgmt->u.action.u.measurement.dialog_token);
  1540. }
  1541. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1542. struct ieee80211_if_sta *ifsta,
  1543. struct ieee80211_mgmt *mgmt,
  1544. size_t len)
  1545. {
  1546. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1547. u16 auth_alg, auth_transaction, status_code;
  1548. DECLARE_MAC_BUF(mac);
  1549. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1550. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  1551. return;
  1552. if (len < 24 + 6)
  1553. return;
  1554. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1555. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0)
  1556. return;
  1557. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1558. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  1559. return;
  1560. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1561. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1562. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1563. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1564. /*
  1565. * IEEE 802.11 standard does not require authentication in IBSS
  1566. * networks and most implementations do not seem to use it.
  1567. * However, try to reply to authentication attempts if someone
  1568. * has actually implemented this.
  1569. */
  1570. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1)
  1571. return;
  1572. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1573. }
  1574. if (auth_alg != ifsta->auth_alg ||
  1575. auth_transaction != ifsta->auth_transaction)
  1576. return;
  1577. if (status_code != WLAN_STATUS_SUCCESS) {
  1578. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1579. u8 algs[3];
  1580. const int num_algs = ARRAY_SIZE(algs);
  1581. int i, pos;
  1582. algs[0] = algs[1] = algs[2] = 0xff;
  1583. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1584. algs[0] = WLAN_AUTH_OPEN;
  1585. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1586. algs[1] = WLAN_AUTH_SHARED_KEY;
  1587. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1588. algs[2] = WLAN_AUTH_LEAP;
  1589. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1590. pos = 0;
  1591. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1592. pos = 1;
  1593. else
  1594. pos = 2;
  1595. for (i = 0; i < num_algs; i++) {
  1596. pos++;
  1597. if (pos >= num_algs)
  1598. pos = 0;
  1599. if (algs[pos] == ifsta->auth_alg ||
  1600. algs[pos] == 0xff)
  1601. continue;
  1602. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1603. !ieee80211_sta_wep_configured(dev))
  1604. continue;
  1605. ifsta->auth_alg = algs[pos];
  1606. break;
  1607. }
  1608. }
  1609. return;
  1610. }
  1611. switch (ifsta->auth_alg) {
  1612. case WLAN_AUTH_OPEN:
  1613. case WLAN_AUTH_LEAP:
  1614. ieee80211_auth_completed(dev, ifsta);
  1615. break;
  1616. case WLAN_AUTH_SHARED_KEY:
  1617. if (ifsta->auth_transaction == 4)
  1618. ieee80211_auth_completed(dev, ifsta);
  1619. else
  1620. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1621. break;
  1622. }
  1623. }
  1624. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1625. struct ieee80211_if_sta *ifsta,
  1626. struct ieee80211_mgmt *mgmt,
  1627. size_t len)
  1628. {
  1629. u16 reason_code;
  1630. DECLARE_MAC_BUF(mac);
  1631. if (len < 24 + 2)
  1632. return;
  1633. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN))
  1634. return;
  1635. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1636. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED)
  1637. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1638. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1639. ifsta->state == IEEE80211_ASSOCIATE ||
  1640. ifsta->state == IEEE80211_ASSOCIATED) {
  1641. ifsta->state = IEEE80211_AUTHENTICATE;
  1642. mod_timer(&ifsta->timer, jiffies +
  1643. IEEE80211_RETRY_AUTH_INTERVAL);
  1644. }
  1645. ieee80211_set_disassoc(dev, ifsta, 1);
  1646. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1647. }
  1648. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1649. struct ieee80211_if_sta *ifsta,
  1650. struct ieee80211_mgmt *mgmt,
  1651. size_t len)
  1652. {
  1653. u16 reason_code;
  1654. DECLARE_MAC_BUF(mac);
  1655. if (len < 24 + 2)
  1656. return;
  1657. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN))
  1658. return;
  1659. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1660. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1661. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1662. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1663. ifsta->state = IEEE80211_ASSOCIATE;
  1664. mod_timer(&ifsta->timer, jiffies +
  1665. IEEE80211_RETRY_AUTH_INTERVAL);
  1666. }
  1667. ieee80211_set_disassoc(dev, ifsta, 0);
  1668. }
  1669. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1670. struct ieee80211_if_sta *ifsta,
  1671. struct ieee80211_mgmt *mgmt,
  1672. size_t len,
  1673. int reassoc)
  1674. {
  1675. struct ieee80211_local *local = sdata->local;
  1676. struct net_device *dev = sdata->dev;
  1677. struct ieee80211_supported_band *sband;
  1678. struct sta_info *sta;
  1679. u64 rates, basic_rates;
  1680. u16 capab_info, status_code, aid;
  1681. struct ieee802_11_elems elems;
  1682. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1683. u8 *pos;
  1684. int i, j;
  1685. DECLARE_MAC_BUF(mac);
  1686. bool have_higher_than_11mbit = false;
  1687. /* AssocResp and ReassocResp have identical structure, so process both
  1688. * of them in this function. */
  1689. if (ifsta->state != IEEE80211_ASSOCIATE)
  1690. return;
  1691. if (len < 24 + 6)
  1692. return;
  1693. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0)
  1694. return;
  1695. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1696. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1697. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1698. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1699. "status=%d aid=%d)\n",
  1700. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1701. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1702. if (status_code != WLAN_STATUS_SUCCESS) {
  1703. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1704. dev->name, status_code);
  1705. /* if this was a reassociation, ensure we try a "full"
  1706. * association next time. This works around some broken APs
  1707. * which do not correctly reject reassociation requests. */
  1708. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1709. return;
  1710. }
  1711. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1712. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1713. "set\n", dev->name, aid);
  1714. aid &= ~(BIT(15) | BIT(14));
  1715. pos = mgmt->u.assoc_resp.variable;
  1716. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1717. if (!elems.supp_rates) {
  1718. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1719. dev->name);
  1720. return;
  1721. }
  1722. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1723. ifsta->aid = aid;
  1724. ifsta->ap_capab = capab_info;
  1725. kfree(ifsta->assocresp_ies);
  1726. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1727. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1728. if (ifsta->assocresp_ies)
  1729. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1730. rcu_read_lock();
  1731. /* Add STA entry for the AP */
  1732. sta = sta_info_get(local, ifsta->bssid);
  1733. if (!sta) {
  1734. struct ieee80211_sta_bss *bss;
  1735. int err;
  1736. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1737. if (!sta) {
  1738. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1739. " the AP\n", dev->name);
  1740. rcu_read_unlock();
  1741. return;
  1742. }
  1743. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1744. local->hw.conf.channel->center_freq,
  1745. ifsta->ssid, ifsta->ssid_len);
  1746. if (bss) {
  1747. sta->last_signal = bss->signal;
  1748. sta->last_qual = bss->qual;
  1749. sta->last_noise = bss->noise;
  1750. ieee80211_rx_bss_put(local, bss);
  1751. }
  1752. err = sta_info_insert(sta);
  1753. if (err) {
  1754. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1755. " the AP (error %d)\n", dev->name, err);
  1756. rcu_read_unlock();
  1757. return;
  1758. }
  1759. /* update new sta with its last rx activity */
  1760. sta->last_rx = jiffies;
  1761. }
  1762. /*
  1763. * FIXME: Do we really need to update the sta_info's information here?
  1764. * We already know about the AP (we found it in our list) so it
  1765. * should already be filled with the right info, no?
  1766. * As is stands, all this is racy because typically we assume
  1767. * the information that is filled in here (except flags) doesn't
  1768. * change while a STA structure is alive. As such, it should move
  1769. * to between the sta_info_alloc() and sta_info_insert() above.
  1770. */
  1771. set_sta_flags(sta, WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1772. WLAN_STA_AUTHORIZED);
  1773. rates = 0;
  1774. basic_rates = 0;
  1775. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1776. for (i = 0; i < elems.supp_rates_len; i++) {
  1777. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1778. if (rate > 110)
  1779. have_higher_than_11mbit = true;
  1780. for (j = 0; j < sband->n_bitrates; j++) {
  1781. if (sband->bitrates[j].bitrate == rate)
  1782. rates |= BIT(j);
  1783. if (elems.supp_rates[i] & 0x80)
  1784. basic_rates |= BIT(j);
  1785. }
  1786. }
  1787. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1788. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1789. if (rate > 110)
  1790. have_higher_than_11mbit = true;
  1791. for (j = 0; j < sband->n_bitrates; j++) {
  1792. if (sband->bitrates[j].bitrate == rate)
  1793. rates |= BIT(j);
  1794. if (elems.ext_supp_rates[i] & 0x80)
  1795. basic_rates |= BIT(j);
  1796. }
  1797. }
  1798. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1799. sdata->basic_rates = basic_rates;
  1800. /* cf. IEEE 802.11 9.2.12 */
  1801. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1802. have_higher_than_11mbit)
  1803. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1804. else
  1805. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1806. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1807. (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1808. struct ieee80211_ht_bss_info bss_info;
  1809. ieee80211_ht_cap_ie_to_ht_info(
  1810. (struct ieee80211_ht_cap *)
  1811. elems.ht_cap_elem, &sta->ht_info);
  1812. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1813. (struct ieee80211_ht_addt_info *)
  1814. elems.ht_info_elem, &bss_info);
  1815. ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
  1816. }
  1817. rate_control_rate_init(sta, local);
  1818. if (elems.wmm_param) {
  1819. set_sta_flags(sta, WLAN_STA_WME);
  1820. rcu_read_unlock();
  1821. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1822. elems.wmm_param_len);
  1823. } else
  1824. rcu_read_unlock();
  1825. /* set AID and assoc capability,
  1826. * ieee80211_set_associated() will tell the driver */
  1827. bss_conf->aid = aid;
  1828. bss_conf->assoc_capability = capab_info;
  1829. ieee80211_set_associated(dev, ifsta, 1);
  1830. ieee80211_associated(dev, ifsta);
  1831. }
  1832. /* Caller must hold local->sta_bss_lock */
  1833. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1834. struct ieee80211_sta_bss *bss)
  1835. {
  1836. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1837. u8 hash_idx;
  1838. if (bss_mesh_cfg(bss))
  1839. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1840. bss_mesh_id_len(bss));
  1841. else
  1842. hash_idx = STA_HASH(bss->bssid);
  1843. bss->hnext = local->sta_bss_hash[hash_idx];
  1844. local->sta_bss_hash[hash_idx] = bss;
  1845. }
  1846. /* Caller must hold local->sta_bss_lock */
  1847. static void __ieee80211_rx_bss_hash_del(struct ieee80211_local *local,
  1848. struct ieee80211_sta_bss *bss)
  1849. {
  1850. struct ieee80211_sta_bss *b, *prev = NULL;
  1851. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1852. while (b) {
  1853. if (b == bss) {
  1854. if (!prev)
  1855. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1856. bss->hnext;
  1857. else
  1858. prev->hnext = bss->hnext;
  1859. break;
  1860. }
  1861. prev = b;
  1862. b = b->hnext;
  1863. }
  1864. }
  1865. static struct ieee80211_sta_bss *
  1866. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1867. u8 *ssid, u8 ssid_len)
  1868. {
  1869. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1870. struct ieee80211_sta_bss *bss;
  1871. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1872. if (!bss)
  1873. return NULL;
  1874. atomic_inc(&bss->users);
  1875. atomic_inc(&bss->users);
  1876. memcpy(bss->bssid, bssid, ETH_ALEN);
  1877. bss->freq = freq;
  1878. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1879. memcpy(bss->ssid, ssid, ssid_len);
  1880. bss->ssid_len = ssid_len;
  1881. }
  1882. spin_lock_bh(&local->sta_bss_lock);
  1883. /* TODO: order by RSSI? */
  1884. list_add_tail(&bss->list, &local->sta_bss_list);
  1885. __ieee80211_rx_bss_hash_add(dev, bss);
  1886. spin_unlock_bh(&local->sta_bss_lock);
  1887. return bss;
  1888. }
  1889. static struct ieee80211_sta_bss *
  1890. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1891. u8 *ssid, u8 ssid_len)
  1892. {
  1893. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1894. struct ieee80211_sta_bss *bss;
  1895. spin_lock_bh(&local->sta_bss_lock);
  1896. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1897. while (bss) {
  1898. if (!bss_mesh_cfg(bss) &&
  1899. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1900. bss->freq == freq &&
  1901. bss->ssid_len == ssid_len &&
  1902. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1903. atomic_inc(&bss->users);
  1904. break;
  1905. }
  1906. bss = bss->hnext;
  1907. }
  1908. spin_unlock_bh(&local->sta_bss_lock);
  1909. return bss;
  1910. }
  1911. #ifdef CONFIG_MAC80211_MESH
  1912. static struct ieee80211_sta_bss *
  1913. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1914. u8 *mesh_cfg, int freq)
  1915. {
  1916. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1917. struct ieee80211_sta_bss *bss;
  1918. spin_lock_bh(&local->sta_bss_lock);
  1919. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1920. while (bss) {
  1921. if (bss_mesh_cfg(bss) &&
  1922. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1923. bss->freq == freq &&
  1924. mesh_id_len == bss->mesh_id_len &&
  1925. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1926. mesh_id_len))) {
  1927. atomic_inc(&bss->users);
  1928. break;
  1929. }
  1930. bss = bss->hnext;
  1931. }
  1932. spin_unlock_bh(&local->sta_bss_lock);
  1933. return bss;
  1934. }
  1935. static struct ieee80211_sta_bss *
  1936. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1937. u8 *mesh_cfg, int mesh_config_len, int freq)
  1938. {
  1939. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1940. struct ieee80211_sta_bss *bss;
  1941. if (mesh_config_len != MESH_CFG_LEN)
  1942. return NULL;
  1943. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1944. if (!bss)
  1945. return NULL;
  1946. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1947. if (!bss->mesh_cfg) {
  1948. kfree(bss);
  1949. return NULL;
  1950. }
  1951. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1952. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1953. if (!bss->mesh_id) {
  1954. kfree(bss->mesh_cfg);
  1955. kfree(bss);
  1956. return NULL;
  1957. }
  1958. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1959. }
  1960. atomic_inc(&bss->users);
  1961. atomic_inc(&bss->users);
  1962. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1963. bss->mesh_id_len = mesh_id_len;
  1964. bss->freq = freq;
  1965. spin_lock_bh(&local->sta_bss_lock);
  1966. /* TODO: order by RSSI? */
  1967. list_add_tail(&bss->list, &local->sta_bss_list);
  1968. __ieee80211_rx_bss_hash_add(dev, bss);
  1969. spin_unlock_bh(&local->sta_bss_lock);
  1970. return bss;
  1971. }
  1972. #endif
  1973. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1974. {
  1975. kfree(bss->wpa_ie);
  1976. kfree(bss->rsn_ie);
  1977. kfree(bss->wmm_ie);
  1978. kfree(bss->ht_ie);
  1979. kfree(bss->ht_add_ie);
  1980. kfree(bss_mesh_id(bss));
  1981. kfree(bss_mesh_cfg(bss));
  1982. kfree(bss);
  1983. }
  1984. static void ieee80211_rx_bss_put(struct ieee80211_local *local,
  1985. struct ieee80211_sta_bss *bss)
  1986. {
  1987. local_bh_disable();
  1988. if (!atomic_dec_and_lock(&bss->users, &local->sta_bss_lock)) {
  1989. local_bh_enable();
  1990. return;
  1991. }
  1992. __ieee80211_rx_bss_hash_del(local, bss);
  1993. list_del(&bss->list);
  1994. spin_unlock_bh(&local->sta_bss_lock);
  1995. ieee80211_rx_bss_free(bss);
  1996. }
  1997. void ieee80211_rx_bss_list_init(struct ieee80211_local *local)
  1998. {
  1999. spin_lock_init(&local->sta_bss_lock);
  2000. INIT_LIST_HEAD(&local->sta_bss_list);
  2001. }
  2002. void ieee80211_rx_bss_list_deinit(struct ieee80211_local *local)
  2003. {
  2004. struct ieee80211_sta_bss *bss, *tmp;
  2005. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  2006. ieee80211_rx_bss_put(local, bss);
  2007. }
  2008. static int ieee80211_sta_join_ibss(struct net_device *dev,
  2009. struct ieee80211_if_sta *ifsta,
  2010. struct ieee80211_sta_bss *bss)
  2011. {
  2012. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2013. int res, rates, i, j;
  2014. struct sk_buff *skb;
  2015. struct ieee80211_mgmt *mgmt;
  2016. u8 *pos;
  2017. struct ieee80211_sub_if_data *sdata;
  2018. struct ieee80211_supported_band *sband;
  2019. union iwreq_data wrqu;
  2020. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2021. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2022. /* Remove possible STA entries from other IBSS networks. */
  2023. sta_info_flush_delayed(sdata);
  2024. if (local->ops->reset_tsf) {
  2025. /* Reset own TSF to allow time synchronization work. */
  2026. local->ops->reset_tsf(local_to_hw(local));
  2027. }
  2028. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  2029. res = ieee80211_if_config(sdata, IEEE80211_IFCC_BSSID);
  2030. if (res)
  2031. return res;
  2032. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2033. sdata->drop_unencrypted = bss->capability &
  2034. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2035. res = ieee80211_set_freq(dev, bss->freq);
  2036. if (res)
  2037. return res;
  2038. /* Build IBSS probe response */
  2039. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2040. if (skb) {
  2041. skb_reserve(skb, local->hw.extra_tx_headroom);
  2042. mgmt = (struct ieee80211_mgmt *)
  2043. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2044. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2045. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2046. IEEE80211_STYPE_PROBE_RESP);
  2047. memset(mgmt->da, 0xff, ETH_ALEN);
  2048. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2049. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2050. mgmt->u.beacon.beacon_int =
  2051. cpu_to_le16(local->hw.conf.beacon_int);
  2052. mgmt->u.beacon.timestamp = cpu_to_le64(bss->timestamp);
  2053. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2054. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2055. *pos++ = WLAN_EID_SSID;
  2056. *pos++ = ifsta->ssid_len;
  2057. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2058. rates = bss->supp_rates_len;
  2059. if (rates > 8)
  2060. rates = 8;
  2061. pos = skb_put(skb, 2 + rates);
  2062. *pos++ = WLAN_EID_SUPP_RATES;
  2063. *pos++ = rates;
  2064. memcpy(pos, bss->supp_rates, rates);
  2065. if (bss->band == IEEE80211_BAND_2GHZ) {
  2066. pos = skb_put(skb, 2 + 1);
  2067. *pos++ = WLAN_EID_DS_PARAMS;
  2068. *pos++ = 1;
  2069. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  2070. }
  2071. pos = skb_put(skb, 2 + 2);
  2072. *pos++ = WLAN_EID_IBSS_PARAMS;
  2073. *pos++ = 2;
  2074. /* FIX: set ATIM window based on scan results */
  2075. *pos++ = 0;
  2076. *pos++ = 0;
  2077. if (bss->supp_rates_len > 8) {
  2078. rates = bss->supp_rates_len - 8;
  2079. pos = skb_put(skb, 2 + rates);
  2080. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2081. *pos++ = rates;
  2082. memcpy(pos, &bss->supp_rates[8], rates);
  2083. }
  2084. ifsta->probe_resp = skb;
  2085. ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON);
  2086. }
  2087. rates = 0;
  2088. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2089. for (i = 0; i < bss->supp_rates_len; i++) {
  2090. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2091. for (j = 0; j < sband->n_bitrates; j++)
  2092. if (sband->bitrates[j].bitrate == bitrate)
  2093. rates |= BIT(j);
  2094. }
  2095. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2096. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2097. ifsta->state = IEEE80211_IBSS_JOINED;
  2098. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2099. memset(&wrqu, 0, sizeof(wrqu));
  2100. memcpy(wrqu.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  2101. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  2102. return res;
  2103. }
  2104. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2105. struct ieee802_11_elems *elems,
  2106. enum ieee80211_band band)
  2107. {
  2108. struct ieee80211_supported_band *sband;
  2109. struct ieee80211_rate *bitrates;
  2110. size_t num_rates;
  2111. u64 supp_rates;
  2112. int i, j;
  2113. sband = local->hw.wiphy->bands[band];
  2114. if (!sband) {
  2115. WARN_ON(1);
  2116. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2117. }
  2118. bitrates = sband->bitrates;
  2119. num_rates = sband->n_bitrates;
  2120. supp_rates = 0;
  2121. for (i = 0; i < elems->supp_rates_len +
  2122. elems->ext_supp_rates_len; i++) {
  2123. u8 rate = 0;
  2124. int own_rate;
  2125. if (i < elems->supp_rates_len)
  2126. rate = elems->supp_rates[i];
  2127. else if (elems->ext_supp_rates)
  2128. rate = elems->ext_supp_rates
  2129. [i - elems->supp_rates_len];
  2130. own_rate = 5 * (rate & 0x7f);
  2131. for (j = 0; j < num_rates; j++)
  2132. if (bitrates[j].bitrate == own_rate)
  2133. supp_rates |= BIT(j);
  2134. }
  2135. return supp_rates;
  2136. }
  2137. static void ieee80211_rx_bss_info(struct net_device *dev,
  2138. struct ieee80211_mgmt *mgmt,
  2139. size_t len,
  2140. struct ieee80211_rx_status *rx_status,
  2141. struct ieee802_11_elems *elems,
  2142. int beacon)
  2143. {
  2144. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2145. int freq, clen;
  2146. struct ieee80211_sta_bss *bss;
  2147. struct sta_info *sta;
  2148. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2149. u64 beacon_timestamp, rx_timestamp;
  2150. struct ieee80211_channel *channel;
  2151. DECLARE_MAC_BUF(mac);
  2152. DECLARE_MAC_BUF(mac2);
  2153. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2154. return; /* ignore ProbeResp to foreign address */
  2155. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2156. if (ieee80211_vif_is_mesh(&sdata->vif) && elems->mesh_id &&
  2157. elems->mesh_config && mesh_matches_local(elems, dev)) {
  2158. u64 rates = ieee80211_sta_get_rates(local, elems,
  2159. rx_status->band);
  2160. mesh_neighbour_update(mgmt->sa, rates, dev,
  2161. mesh_peer_accepts_plinks(elems, dev));
  2162. }
  2163. rcu_read_lock();
  2164. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems->supp_rates &&
  2165. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2166. (sta = sta_info_get(local, mgmt->sa))) {
  2167. u64 prev_rates;
  2168. u64 supp_rates = ieee80211_sta_get_rates(local, elems,
  2169. rx_status->band);
  2170. prev_rates = sta->supp_rates[rx_status->band];
  2171. sta->supp_rates[rx_status->band] &= supp_rates;
  2172. if (sta->supp_rates[rx_status->band] == 0) {
  2173. /* No matching rates - this should not really happen.
  2174. * Make sure that at least one rate is marked
  2175. * supported to avoid issues with TX rate ctrl. */
  2176. sta->supp_rates[rx_status->band] =
  2177. sdata->u.sta.supp_rates_bits[rx_status->band];
  2178. }
  2179. }
  2180. rcu_read_unlock();
  2181. if (elems->ds_params && elems->ds_params_len == 1)
  2182. freq = ieee80211_channel_to_frequency(elems->ds_params[0]);
  2183. else
  2184. freq = rx_status->freq;
  2185. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2186. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2187. return;
  2188. #ifdef CONFIG_MAC80211_MESH
  2189. if (elems->mesh_config)
  2190. bss = ieee80211_rx_mesh_bss_get(dev, elems->mesh_id,
  2191. elems->mesh_id_len, elems->mesh_config, freq);
  2192. else
  2193. #endif
  2194. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2195. elems->ssid, elems->ssid_len);
  2196. if (!bss) {
  2197. #ifdef CONFIG_MAC80211_MESH
  2198. if (elems->mesh_config)
  2199. bss = ieee80211_rx_mesh_bss_add(dev, elems->mesh_id,
  2200. elems->mesh_id_len, elems->mesh_config,
  2201. elems->mesh_config_len, freq);
  2202. else
  2203. #endif
  2204. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2205. elems->ssid, elems->ssid_len);
  2206. if (!bss)
  2207. return;
  2208. } else {
  2209. #if 0
  2210. /* TODO: order by RSSI? */
  2211. spin_lock_bh(&local->sta_bss_lock);
  2212. list_move_tail(&bss->list, &local->sta_bss_list);
  2213. spin_unlock_bh(&local->sta_bss_lock);
  2214. #endif
  2215. }
  2216. /* save the ERP value so that it is available at association time */
  2217. if (elems->erp_info && elems->erp_info_len >= 1) {
  2218. bss->erp_value = elems->erp_info[0];
  2219. bss->has_erp_value = 1;
  2220. }
  2221. if (elems->ht_cap_elem &&
  2222. (!bss->ht_ie || bss->ht_ie_len != elems->ht_cap_elem_len ||
  2223. memcmp(bss->ht_ie, elems->ht_cap_elem, elems->ht_cap_elem_len))) {
  2224. kfree(bss->ht_ie);
  2225. bss->ht_ie = kmalloc(elems->ht_cap_elem_len + 2, GFP_ATOMIC);
  2226. if (bss->ht_ie) {
  2227. memcpy(bss->ht_ie, elems->ht_cap_elem - 2,
  2228. elems->ht_cap_elem_len + 2);
  2229. bss->ht_ie_len = elems->ht_cap_elem_len + 2;
  2230. } else
  2231. bss->ht_ie_len = 0;
  2232. } else if (!elems->ht_cap_elem && bss->ht_ie) {
  2233. kfree(bss->ht_ie);
  2234. bss->ht_ie = NULL;
  2235. bss->ht_ie_len = 0;
  2236. }
  2237. if (elems->ht_info_elem &&
  2238. (!bss->ht_add_ie ||
  2239. bss->ht_add_ie_len != elems->ht_info_elem_len ||
  2240. memcmp(bss->ht_add_ie, elems->ht_info_elem,
  2241. elems->ht_info_elem_len))) {
  2242. kfree(bss->ht_add_ie);
  2243. bss->ht_add_ie =
  2244. kmalloc(elems->ht_info_elem_len + 2, GFP_ATOMIC);
  2245. if (bss->ht_add_ie) {
  2246. memcpy(bss->ht_add_ie, elems->ht_info_elem - 2,
  2247. elems->ht_info_elem_len + 2);
  2248. bss->ht_add_ie_len = elems->ht_info_elem_len + 2;
  2249. } else
  2250. bss->ht_add_ie_len = 0;
  2251. } else if (!elems->ht_info_elem && bss->ht_add_ie) {
  2252. kfree(bss->ht_add_ie);
  2253. bss->ht_add_ie = NULL;
  2254. bss->ht_add_ie_len = 0;
  2255. }
  2256. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2257. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2258. if (elems->tim) {
  2259. struct ieee80211_tim_ie *tim_ie =
  2260. (struct ieee80211_tim_ie *)elems->tim;
  2261. bss->dtim_period = tim_ie->dtim_period;
  2262. }
  2263. /* set default value for buggy APs */
  2264. if (!elems->tim || bss->dtim_period == 0)
  2265. bss->dtim_period = 1;
  2266. bss->supp_rates_len = 0;
  2267. if (elems->supp_rates) {
  2268. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2269. if (clen > elems->supp_rates_len)
  2270. clen = elems->supp_rates_len;
  2271. memcpy(&bss->supp_rates[bss->supp_rates_len], elems->supp_rates,
  2272. clen);
  2273. bss->supp_rates_len += clen;
  2274. }
  2275. if (elems->ext_supp_rates) {
  2276. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2277. if (clen > elems->ext_supp_rates_len)
  2278. clen = elems->ext_supp_rates_len;
  2279. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2280. elems->ext_supp_rates, clen);
  2281. bss->supp_rates_len += clen;
  2282. }
  2283. bss->band = rx_status->band;
  2284. bss->timestamp = beacon_timestamp;
  2285. bss->last_update = jiffies;
  2286. bss->signal = rx_status->signal;
  2287. bss->noise = rx_status->noise;
  2288. bss->qual = rx_status->qual;
  2289. if (!beacon && !bss->probe_resp)
  2290. bss->probe_resp = true;
  2291. /*
  2292. * In STA mode, the remaining parameters should not be overridden
  2293. * by beacons because they're not necessarily accurate there.
  2294. */
  2295. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2296. bss->probe_resp && beacon) {
  2297. ieee80211_rx_bss_put(local, bss);
  2298. return;
  2299. }
  2300. if (elems->wpa &&
  2301. (!bss->wpa_ie || bss->wpa_ie_len != elems->wpa_len ||
  2302. memcmp(bss->wpa_ie, elems->wpa, elems->wpa_len))) {
  2303. kfree(bss->wpa_ie);
  2304. bss->wpa_ie = kmalloc(elems->wpa_len + 2, GFP_ATOMIC);
  2305. if (bss->wpa_ie) {
  2306. memcpy(bss->wpa_ie, elems->wpa - 2, elems->wpa_len + 2);
  2307. bss->wpa_ie_len = elems->wpa_len + 2;
  2308. } else
  2309. bss->wpa_ie_len = 0;
  2310. } else if (!elems->wpa && bss->wpa_ie) {
  2311. kfree(bss->wpa_ie);
  2312. bss->wpa_ie = NULL;
  2313. bss->wpa_ie_len = 0;
  2314. }
  2315. if (elems->rsn &&
  2316. (!bss->rsn_ie || bss->rsn_ie_len != elems->rsn_len ||
  2317. memcmp(bss->rsn_ie, elems->rsn, elems->rsn_len))) {
  2318. kfree(bss->rsn_ie);
  2319. bss->rsn_ie = kmalloc(elems->rsn_len + 2, GFP_ATOMIC);
  2320. if (bss->rsn_ie) {
  2321. memcpy(bss->rsn_ie, elems->rsn - 2, elems->rsn_len + 2);
  2322. bss->rsn_ie_len = elems->rsn_len + 2;
  2323. } else
  2324. bss->rsn_ie_len = 0;
  2325. } else if (!elems->rsn && bss->rsn_ie) {
  2326. kfree(bss->rsn_ie);
  2327. bss->rsn_ie = NULL;
  2328. bss->rsn_ie_len = 0;
  2329. }
  2330. /*
  2331. * Cf.
  2332. * http://www.wipo.int/pctdb/en/wo.jsp?wo=2007047181&IA=WO2007047181&DISPLAY=DESC
  2333. *
  2334. * quoting:
  2335. *
  2336. * In particular, "Wi-Fi CERTIFIED for WMM - Support for Multimedia
  2337. * Applications with Quality of Service in Wi-Fi Networks," Wi- Fi
  2338. * Alliance (September 1, 2004) is incorporated by reference herein.
  2339. * The inclusion of the WMM Parameters in probe responses and
  2340. * association responses is mandatory for WMM enabled networks. The
  2341. * inclusion of the WMM Parameters in beacons, however, is optional.
  2342. */
  2343. if (elems->wmm_param &&
  2344. (!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_param_len ||
  2345. memcmp(bss->wmm_ie, elems->wmm_param, elems->wmm_param_len))) {
  2346. kfree(bss->wmm_ie);
  2347. bss->wmm_ie = kmalloc(elems->wmm_param_len + 2, GFP_ATOMIC);
  2348. if (bss->wmm_ie) {
  2349. memcpy(bss->wmm_ie, elems->wmm_param - 2,
  2350. elems->wmm_param_len + 2);
  2351. bss->wmm_ie_len = elems->wmm_param_len + 2;
  2352. } else
  2353. bss->wmm_ie_len = 0;
  2354. } else if (elems->wmm_info &&
  2355. (!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_info_len ||
  2356. memcmp(bss->wmm_ie, elems->wmm_info,
  2357. elems->wmm_info_len))) {
  2358. /* As for certain AP's Fifth bit is not set in WMM IE in
  2359. * beacon frames.So while parsing the beacon frame the
  2360. * wmm_info structure is used instead of wmm_param.
  2361. * wmm_info structure was never used to set bss->wmm_ie.
  2362. * This code fixes this problem by copying the WME
  2363. * information from wmm_info to bss->wmm_ie and enabling
  2364. * n-band association.
  2365. */
  2366. kfree(bss->wmm_ie);
  2367. bss->wmm_ie = kmalloc(elems->wmm_info_len + 2, GFP_ATOMIC);
  2368. if (bss->wmm_ie) {
  2369. memcpy(bss->wmm_ie, elems->wmm_info - 2,
  2370. elems->wmm_info_len + 2);
  2371. bss->wmm_ie_len = elems->wmm_info_len + 2;
  2372. } else
  2373. bss->wmm_ie_len = 0;
  2374. } else if (!elems->wmm_param && !elems->wmm_info && bss->wmm_ie) {
  2375. kfree(bss->wmm_ie);
  2376. bss->wmm_ie = NULL;
  2377. bss->wmm_ie_len = 0;
  2378. }
  2379. /* check if we need to merge IBSS */
  2380. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2381. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2382. bss->capability & WLAN_CAPABILITY_IBSS &&
  2383. bss->freq == local->oper_channel->center_freq &&
  2384. elems->ssid_len == sdata->u.sta.ssid_len &&
  2385. memcmp(elems->ssid, sdata->u.sta.ssid,
  2386. sdata->u.sta.ssid_len) == 0) {
  2387. if (rx_status->flag & RX_FLAG_TSFT) {
  2388. /* in order for correct IBSS merging we need mactime
  2389. *
  2390. * since mactime is defined as the time the first data
  2391. * symbol of the frame hits the PHY, and the timestamp
  2392. * of the beacon is defined as "the time that the data
  2393. * symbol containing the first bit of the timestamp is
  2394. * transmitted to the PHY plus the transmitting STA’s
  2395. * delays through its local PHY from the MAC-PHY
  2396. * interface to its interface with the WM"
  2397. * (802.11 11.1.2) - equals the time this bit arrives at
  2398. * the receiver - we have to take into account the
  2399. * offset between the two.
  2400. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2401. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2402. */
  2403. int rate = local->hw.wiphy->bands[rx_status->band]->
  2404. bitrates[rx_status->rate_idx].bitrate;
  2405. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2406. } else if (local && local->ops && local->ops->get_tsf)
  2407. /* second best option: get current TSF */
  2408. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2409. else
  2410. /* can't merge without knowing the TSF */
  2411. rx_timestamp = -1LLU;
  2412. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2413. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2414. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2415. print_mac(mac, mgmt->sa),
  2416. print_mac(mac2, mgmt->bssid),
  2417. (unsigned long long)rx_timestamp,
  2418. (unsigned long long)beacon_timestamp,
  2419. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2420. jiffies);
  2421. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2422. if (beacon_timestamp > rx_timestamp) {
  2423. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2424. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2425. "local TSF - IBSS merge with BSSID %s\n",
  2426. dev->name, print_mac(mac, mgmt->bssid));
  2427. #endif
  2428. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2429. ieee80211_ibss_add_sta(dev, NULL,
  2430. mgmt->bssid, mgmt->sa,
  2431. BIT(rx_status->rate_idx));
  2432. }
  2433. }
  2434. ieee80211_rx_bss_put(local, bss);
  2435. }
  2436. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2437. struct ieee80211_mgmt *mgmt,
  2438. size_t len,
  2439. struct ieee80211_rx_status *rx_status)
  2440. {
  2441. size_t baselen;
  2442. struct ieee802_11_elems elems;
  2443. baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt;
  2444. if (baselen > len)
  2445. return;
  2446. ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen,
  2447. &elems);
  2448. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, &elems, 0);
  2449. }
  2450. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2451. struct ieee80211_mgmt *mgmt,
  2452. size_t len,
  2453. struct ieee80211_rx_status *rx_status)
  2454. {
  2455. struct ieee80211_sub_if_data *sdata;
  2456. struct ieee80211_if_sta *ifsta;
  2457. size_t baselen;
  2458. struct ieee802_11_elems elems;
  2459. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2460. struct ieee80211_conf *conf = &local->hw.conf;
  2461. u32 changed = 0;
  2462. /* Process beacon from the current BSS */
  2463. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2464. if (baselen > len)
  2465. return;
  2466. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2467. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, &elems, 1);
  2468. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2469. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2470. return;
  2471. ifsta = &sdata->u.sta;
  2472. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2473. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2474. return;
  2475. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2476. elems.wmm_param_len);
  2477. /* Do not send changes to driver if we are scanning. This removes
  2478. * requirement that driver's bss_info_changed function needs to be
  2479. * atomic. */
  2480. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2481. return;
  2482. if (elems.erp_info && elems.erp_info_len >= 1)
  2483. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2484. else {
  2485. u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info);
  2486. changed |= ieee80211_handle_protect_preamb(sdata, false,
  2487. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  2488. }
  2489. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2490. elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2491. struct ieee80211_ht_bss_info bss_info;
  2492. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2493. (struct ieee80211_ht_addt_info *)
  2494. elems.ht_info_elem, &bss_info);
  2495. changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
  2496. &bss_info);
  2497. }
  2498. ieee80211_bss_info_change_notify(sdata, changed);
  2499. }
  2500. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2501. struct ieee80211_if_sta *ifsta,
  2502. struct ieee80211_mgmt *mgmt,
  2503. size_t len,
  2504. struct ieee80211_rx_status *rx_status)
  2505. {
  2506. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2507. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2508. int tx_last_beacon;
  2509. struct sk_buff *skb;
  2510. struct ieee80211_mgmt *resp;
  2511. u8 *pos, *end;
  2512. DECLARE_MAC_BUF(mac);
  2513. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2514. DECLARE_MAC_BUF(mac2);
  2515. DECLARE_MAC_BUF(mac3);
  2516. #endif
  2517. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2518. ifsta->state != IEEE80211_IBSS_JOINED ||
  2519. len < 24 + 2 || !ifsta->probe_resp)
  2520. return;
  2521. if (local->ops->tx_last_beacon)
  2522. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2523. else
  2524. tx_last_beacon = 1;
  2525. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2526. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2527. "%s (tx_last_beacon=%d)\n",
  2528. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2529. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2530. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2531. if (!tx_last_beacon)
  2532. return;
  2533. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2534. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2535. return;
  2536. end = ((u8 *) mgmt) + len;
  2537. pos = mgmt->u.probe_req.variable;
  2538. if (pos[0] != WLAN_EID_SSID ||
  2539. pos + 2 + pos[1] > end) {
  2540. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2541. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2542. "from %s\n",
  2543. dev->name, print_mac(mac, mgmt->sa));
  2544. #endif
  2545. return;
  2546. }
  2547. if (pos[1] != 0 &&
  2548. (pos[1] != ifsta->ssid_len ||
  2549. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2550. /* Ignore ProbeReq for foreign SSID */
  2551. return;
  2552. }
  2553. /* Reply with ProbeResp */
  2554. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2555. if (!skb)
  2556. return;
  2557. resp = (struct ieee80211_mgmt *) skb->data;
  2558. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2559. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2560. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2561. dev->name, print_mac(mac, resp->da));
  2562. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2563. ieee80211_sta_tx(dev, skb, 0);
  2564. }
  2565. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2566. struct ieee80211_if_sta *ifsta,
  2567. struct ieee80211_mgmt *mgmt,
  2568. size_t len,
  2569. struct ieee80211_rx_status *rx_status)
  2570. {
  2571. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2572. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2573. if (len < IEEE80211_MIN_ACTION_SIZE)
  2574. return;
  2575. switch (mgmt->u.action.category) {
  2576. case WLAN_CATEGORY_SPECTRUM_MGMT:
  2577. if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
  2578. break;
  2579. switch (mgmt->u.action.u.chan_switch.action_code) {
  2580. case WLAN_ACTION_SPCT_MSR_REQ:
  2581. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2582. sizeof(mgmt->u.action.u.measurement)))
  2583. break;
  2584. ieee80211_sta_process_measurement_req(dev, mgmt, len);
  2585. break;
  2586. }
  2587. break;
  2588. case WLAN_CATEGORY_BACK:
  2589. switch (mgmt->u.action.u.addba_req.action_code) {
  2590. case WLAN_ACTION_ADDBA_REQ:
  2591. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2592. sizeof(mgmt->u.action.u.addba_req)))
  2593. break;
  2594. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2595. break;
  2596. case WLAN_ACTION_ADDBA_RESP:
  2597. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2598. sizeof(mgmt->u.action.u.addba_resp)))
  2599. break;
  2600. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2601. break;
  2602. case WLAN_ACTION_DELBA:
  2603. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2604. sizeof(mgmt->u.action.u.delba)))
  2605. break;
  2606. ieee80211_sta_process_delba(dev, mgmt, len);
  2607. break;
  2608. }
  2609. break;
  2610. case PLINK_CATEGORY:
  2611. if (ieee80211_vif_is_mesh(&sdata->vif))
  2612. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2613. break;
  2614. case MESH_PATH_SEL_CATEGORY:
  2615. if (ieee80211_vif_is_mesh(&sdata->vif))
  2616. mesh_rx_path_sel_frame(dev, mgmt, len);
  2617. break;
  2618. }
  2619. }
  2620. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2621. struct ieee80211_rx_status *rx_status)
  2622. {
  2623. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2624. struct ieee80211_sub_if_data *sdata;
  2625. struct ieee80211_if_sta *ifsta;
  2626. struct ieee80211_mgmt *mgmt;
  2627. u16 fc;
  2628. if (skb->len < 24)
  2629. goto fail;
  2630. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2631. ifsta = &sdata->u.sta;
  2632. mgmt = (struct ieee80211_mgmt *) skb->data;
  2633. fc = le16_to_cpu(mgmt->frame_control);
  2634. switch (fc & IEEE80211_FCTL_STYPE) {
  2635. case IEEE80211_STYPE_PROBE_REQ:
  2636. case IEEE80211_STYPE_PROBE_RESP:
  2637. case IEEE80211_STYPE_BEACON:
  2638. case IEEE80211_STYPE_ACTION:
  2639. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2640. case IEEE80211_STYPE_AUTH:
  2641. case IEEE80211_STYPE_ASSOC_RESP:
  2642. case IEEE80211_STYPE_REASSOC_RESP:
  2643. case IEEE80211_STYPE_DEAUTH:
  2644. case IEEE80211_STYPE_DISASSOC:
  2645. skb_queue_tail(&ifsta->skb_queue, skb);
  2646. queue_work(local->hw.workqueue, &ifsta->work);
  2647. return;
  2648. }
  2649. fail:
  2650. kfree_skb(skb);
  2651. }
  2652. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2653. struct sk_buff *skb)
  2654. {
  2655. struct ieee80211_rx_status *rx_status;
  2656. struct ieee80211_sub_if_data *sdata;
  2657. struct ieee80211_if_sta *ifsta;
  2658. struct ieee80211_mgmt *mgmt;
  2659. u16 fc;
  2660. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2661. ifsta = &sdata->u.sta;
  2662. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2663. mgmt = (struct ieee80211_mgmt *) skb->data;
  2664. fc = le16_to_cpu(mgmt->frame_control);
  2665. switch (fc & IEEE80211_FCTL_STYPE) {
  2666. case IEEE80211_STYPE_PROBE_REQ:
  2667. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2668. rx_status);
  2669. break;
  2670. case IEEE80211_STYPE_PROBE_RESP:
  2671. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2672. break;
  2673. case IEEE80211_STYPE_BEACON:
  2674. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2675. break;
  2676. case IEEE80211_STYPE_AUTH:
  2677. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2678. break;
  2679. case IEEE80211_STYPE_ASSOC_RESP:
  2680. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2681. break;
  2682. case IEEE80211_STYPE_REASSOC_RESP:
  2683. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2684. break;
  2685. case IEEE80211_STYPE_DEAUTH:
  2686. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2687. break;
  2688. case IEEE80211_STYPE_DISASSOC:
  2689. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2690. break;
  2691. case IEEE80211_STYPE_ACTION:
  2692. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2693. break;
  2694. }
  2695. kfree_skb(skb);
  2696. }
  2697. ieee80211_rx_result
  2698. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2699. struct ieee80211_rx_status *rx_status)
  2700. {
  2701. struct ieee80211_mgmt *mgmt;
  2702. __le16 fc;
  2703. if (skb->len < 2)
  2704. return RX_DROP_UNUSABLE;
  2705. mgmt = (struct ieee80211_mgmt *) skb->data;
  2706. fc = mgmt->frame_control;
  2707. if (ieee80211_is_ctl(fc))
  2708. return RX_CONTINUE;
  2709. if (skb->len < 24)
  2710. return RX_DROP_MONITOR;
  2711. if (ieee80211_is_probe_resp(fc)) {
  2712. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2713. dev_kfree_skb(skb);
  2714. return RX_QUEUED;
  2715. }
  2716. if (ieee80211_is_beacon(fc)) {
  2717. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2718. dev_kfree_skb(skb);
  2719. return RX_QUEUED;
  2720. }
  2721. return RX_CONTINUE;
  2722. }
  2723. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2724. {
  2725. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2726. int active = 0;
  2727. struct sta_info *sta;
  2728. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2729. rcu_read_lock();
  2730. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2731. if (sta->sdata == sdata &&
  2732. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2733. jiffies)) {
  2734. active++;
  2735. break;
  2736. }
  2737. }
  2738. rcu_read_unlock();
  2739. return active;
  2740. }
  2741. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2742. {
  2743. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2744. struct sta_info *sta, *tmp;
  2745. LIST_HEAD(tmp_list);
  2746. DECLARE_MAC_BUF(mac);
  2747. unsigned long flags;
  2748. spin_lock_irqsave(&local->sta_lock, flags);
  2749. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2750. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2751. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2752. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2753. dev->name, print_mac(mac, sta->addr));
  2754. #endif
  2755. __sta_info_unlink(&sta);
  2756. if (sta)
  2757. list_add(&sta->list, &tmp_list);
  2758. }
  2759. spin_unlock_irqrestore(&local->sta_lock, flags);
  2760. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2761. sta_info_destroy(sta);
  2762. }
  2763. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2764. struct ieee80211_if_sta *ifsta)
  2765. {
  2766. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2767. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2768. if (ieee80211_sta_active_ibss(dev))
  2769. return;
  2770. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2771. "IBSS networks with same SSID (merge)\n", dev->name);
  2772. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2773. }
  2774. #ifdef CONFIG_MAC80211_MESH
  2775. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2776. struct ieee80211_if_sta *ifsta)
  2777. {
  2778. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2779. bool free_plinks;
  2780. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2781. mesh_path_expire(dev);
  2782. free_plinks = mesh_plink_availables(sdata);
  2783. if (free_plinks != sdata->u.sta.accepting_plinks)
  2784. ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON);
  2785. mod_timer(&ifsta->timer, jiffies +
  2786. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2787. }
  2788. void ieee80211_start_mesh(struct net_device *dev)
  2789. {
  2790. struct ieee80211_if_sta *ifsta;
  2791. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2792. ifsta = &sdata->u.sta;
  2793. ifsta->state = IEEE80211_MESH_UP;
  2794. ieee80211_sta_timer((unsigned long)sdata);
  2795. ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON);
  2796. }
  2797. #endif
  2798. void ieee80211_sta_timer(unsigned long data)
  2799. {
  2800. struct ieee80211_sub_if_data *sdata =
  2801. (struct ieee80211_sub_if_data *) data;
  2802. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2803. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2804. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2805. queue_work(local->hw.workqueue, &ifsta->work);
  2806. }
  2807. void ieee80211_sta_work(struct work_struct *work)
  2808. {
  2809. struct ieee80211_sub_if_data *sdata =
  2810. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2811. struct net_device *dev = sdata->dev;
  2812. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2813. struct ieee80211_if_sta *ifsta;
  2814. struct sk_buff *skb;
  2815. if (!netif_running(dev))
  2816. return;
  2817. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2818. return;
  2819. if (WARN_ON(sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2820. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2821. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT))
  2822. return;
  2823. ifsta = &sdata->u.sta;
  2824. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2825. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2826. #ifdef CONFIG_MAC80211_MESH
  2827. if (ifsta->preq_queue_len &&
  2828. time_after(jiffies,
  2829. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2830. mesh_path_start_discovery(dev);
  2831. #endif
  2832. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2833. ifsta->state != IEEE80211_ASSOCIATE &&
  2834. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2835. if (ifsta->scan_ssid_len)
  2836. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2837. else
  2838. ieee80211_sta_start_scan(dev, NULL, 0);
  2839. return;
  2840. }
  2841. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2842. if (ieee80211_sta_config_auth(dev, ifsta))
  2843. return;
  2844. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2845. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2846. return;
  2847. switch (ifsta->state) {
  2848. case IEEE80211_DISABLED:
  2849. break;
  2850. case IEEE80211_AUTHENTICATE:
  2851. ieee80211_authenticate(dev, ifsta);
  2852. break;
  2853. case IEEE80211_ASSOCIATE:
  2854. ieee80211_associate(dev, ifsta);
  2855. break;
  2856. case IEEE80211_ASSOCIATED:
  2857. ieee80211_associated(dev, ifsta);
  2858. break;
  2859. case IEEE80211_IBSS_SEARCH:
  2860. ieee80211_sta_find_ibss(dev, ifsta);
  2861. break;
  2862. case IEEE80211_IBSS_JOINED:
  2863. ieee80211_sta_merge_ibss(dev, ifsta);
  2864. break;
  2865. #ifdef CONFIG_MAC80211_MESH
  2866. case IEEE80211_MESH_UP:
  2867. ieee80211_mesh_housekeeping(dev, ifsta);
  2868. break;
  2869. #endif
  2870. default:
  2871. WARN_ON(1);
  2872. break;
  2873. }
  2874. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2875. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2876. "mixed-cell disabled - disassociate\n", dev->name);
  2877. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2878. ieee80211_set_disassoc(dev, ifsta, 0);
  2879. }
  2880. }
  2881. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2882. struct ieee80211_if_sta *ifsta)
  2883. {
  2884. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2885. if (local->ops->reset_tsf) {
  2886. /* Reset own TSF to allow time synchronization work. */
  2887. local->ops->reset_tsf(local_to_hw(local));
  2888. }
  2889. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2890. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2891. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2892. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2893. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2894. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2895. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2896. else
  2897. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2898. ifsta->auth_transaction = -1;
  2899. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2900. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2901. netif_carrier_off(dev);
  2902. }
  2903. void ieee80211_sta_req_auth(struct net_device *dev,
  2904. struct ieee80211_if_sta *ifsta)
  2905. {
  2906. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2907. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2908. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2909. return;
  2910. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2911. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2912. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2913. IEEE80211_STA_AUTO_SSID_SEL))) {
  2914. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2915. queue_work(local->hw.workqueue, &ifsta->work);
  2916. }
  2917. }
  2918. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2919. const char *ssid, int ssid_len)
  2920. {
  2921. int tmp, hidden_ssid;
  2922. if (ssid_len == ifsta->ssid_len &&
  2923. !memcmp(ifsta->ssid, ssid, ssid_len))
  2924. return 1;
  2925. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2926. return 0;
  2927. hidden_ssid = 1;
  2928. tmp = ssid_len;
  2929. while (tmp--) {
  2930. if (ssid[tmp] != '\0') {
  2931. hidden_ssid = 0;
  2932. break;
  2933. }
  2934. }
  2935. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2936. return 1;
  2937. if (ssid_len == 1 && ssid[0] == ' ')
  2938. return 1;
  2939. return 0;
  2940. }
  2941. static int ieee80211_sta_config_auth(struct net_device *dev,
  2942. struct ieee80211_if_sta *ifsta)
  2943. {
  2944. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2945. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2946. struct ieee80211_sta_bss *bss, *selected = NULL;
  2947. int top_rssi = 0, freq;
  2948. spin_lock_bh(&local->sta_bss_lock);
  2949. freq = local->oper_channel->center_freq;
  2950. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2951. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2952. continue;
  2953. if ((ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2954. IEEE80211_STA_AUTO_BSSID_SEL |
  2955. IEEE80211_STA_AUTO_CHANNEL_SEL)) &&
  2956. (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2957. !!sdata->default_key))
  2958. continue;
  2959. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2960. bss->freq != freq)
  2961. continue;
  2962. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2963. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2964. continue;
  2965. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2966. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2967. continue;
  2968. if (!selected || top_rssi < bss->signal) {
  2969. selected = bss;
  2970. top_rssi = bss->signal;
  2971. }
  2972. }
  2973. if (selected)
  2974. atomic_inc(&selected->users);
  2975. spin_unlock_bh(&local->sta_bss_lock);
  2976. if (selected) {
  2977. ieee80211_set_freq(dev, selected->freq);
  2978. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2979. ieee80211_sta_set_ssid(dev, selected->ssid,
  2980. selected->ssid_len);
  2981. ieee80211_sta_set_bssid(dev, selected->bssid);
  2982. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2983. ieee80211_rx_bss_put(local, selected);
  2984. ifsta->state = IEEE80211_AUTHENTICATE;
  2985. ieee80211_sta_reset_auth(dev, ifsta);
  2986. return 0;
  2987. } else {
  2988. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2989. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2990. ieee80211_sta_start_scan(dev, NULL, 0);
  2991. else
  2992. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2993. ifsta->ssid_len);
  2994. ifsta->state = IEEE80211_AUTHENTICATE;
  2995. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2996. } else
  2997. ifsta->state = IEEE80211_DISABLED;
  2998. }
  2999. return -1;
  3000. }
  3001. static int ieee80211_sta_create_ibss(struct net_device *dev,
  3002. struct ieee80211_if_sta *ifsta)
  3003. {
  3004. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3005. struct ieee80211_sta_bss *bss;
  3006. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3007. struct ieee80211_supported_band *sband;
  3008. u8 bssid[ETH_ALEN], *pos;
  3009. int i;
  3010. int ret;
  3011. DECLARE_MAC_BUF(mac);
  3012. #if 0
  3013. /* Easier testing, use fixed BSSID. */
  3014. memset(bssid, 0xfe, ETH_ALEN);
  3015. #else
  3016. /* Generate random, not broadcast, locally administered BSSID. Mix in
  3017. * own MAC address to make sure that devices that do not have proper
  3018. * random number generator get different BSSID. */
  3019. get_random_bytes(bssid, ETH_ALEN);
  3020. for (i = 0; i < ETH_ALEN; i++)
  3021. bssid[i] ^= dev->dev_addr[i];
  3022. bssid[0] &= ~0x01;
  3023. bssid[0] |= 0x02;
  3024. #endif
  3025. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  3026. dev->name, print_mac(mac, bssid));
  3027. bss = ieee80211_rx_bss_add(dev, bssid,
  3028. local->hw.conf.channel->center_freq,
  3029. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  3030. if (!bss)
  3031. return -ENOMEM;
  3032. bss->band = local->hw.conf.channel->band;
  3033. sband = local->hw.wiphy->bands[bss->band];
  3034. if (local->hw.conf.beacon_int == 0)
  3035. local->hw.conf.beacon_int = 100;
  3036. bss->beacon_int = local->hw.conf.beacon_int;
  3037. bss->last_update = jiffies;
  3038. bss->capability = WLAN_CAPABILITY_IBSS;
  3039. if (sdata->default_key)
  3040. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  3041. else
  3042. sdata->drop_unencrypted = 0;
  3043. bss->supp_rates_len = sband->n_bitrates;
  3044. pos = bss->supp_rates;
  3045. for (i = 0; i < sband->n_bitrates; i++) {
  3046. int rate = sband->bitrates[i].bitrate;
  3047. *pos++ = (u8) (rate / 5);
  3048. }
  3049. ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
  3050. ieee80211_rx_bss_put(local, bss);
  3051. return ret;
  3052. }
  3053. static int ieee80211_sta_find_ibss(struct net_device *dev,
  3054. struct ieee80211_if_sta *ifsta)
  3055. {
  3056. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3057. struct ieee80211_sta_bss *bss;
  3058. int found = 0;
  3059. u8 bssid[ETH_ALEN];
  3060. int active_ibss;
  3061. DECLARE_MAC_BUF(mac);
  3062. DECLARE_MAC_BUF(mac2);
  3063. if (ifsta->ssid_len == 0)
  3064. return -EINVAL;
  3065. active_ibss = ieee80211_sta_active_ibss(dev);
  3066. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3067. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  3068. dev->name, active_ibss);
  3069. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3070. spin_lock_bh(&local->sta_bss_lock);
  3071. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3072. if (ifsta->ssid_len != bss->ssid_len ||
  3073. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  3074. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  3075. continue;
  3076. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3077. printk(KERN_DEBUG " bssid=%s found\n",
  3078. print_mac(mac, bss->bssid));
  3079. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3080. memcpy(bssid, bss->bssid, ETH_ALEN);
  3081. found = 1;
  3082. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  3083. break;
  3084. }
  3085. spin_unlock_bh(&local->sta_bss_lock);
  3086. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3087. if (found)
  3088. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  3089. "%s\n", print_mac(mac, bssid),
  3090. print_mac(mac2, ifsta->bssid));
  3091. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3092. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3093. int ret;
  3094. int search_freq;
  3095. if (ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL)
  3096. search_freq = bss->freq;
  3097. else
  3098. search_freq = local->hw.conf.channel->center_freq;
  3099. bss = ieee80211_rx_bss_get(dev, bssid, search_freq,
  3100. ifsta->ssid, ifsta->ssid_len);
  3101. if (!bss)
  3102. goto dont_join;
  3103. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  3104. " based on configured SSID\n",
  3105. dev->name, print_mac(mac, bssid));
  3106. ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
  3107. ieee80211_rx_bss_put(local, bss);
  3108. return ret;
  3109. }
  3110. dont_join:
  3111. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3112. printk(KERN_DEBUG " did not try to join ibss\n");
  3113. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3114. /* Selected IBSS not found in current scan results - try to scan */
  3115. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  3116. !ieee80211_sta_active_ibss(dev)) {
  3117. mod_timer(&ifsta->timer, jiffies +
  3118. IEEE80211_IBSS_MERGE_INTERVAL);
  3119. } else if (time_after(jiffies, local->last_scan_completed +
  3120. IEEE80211_SCAN_INTERVAL)) {
  3121. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3122. "join\n", dev->name);
  3123. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3124. ifsta->ssid_len);
  3125. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3126. int interval = IEEE80211_SCAN_INTERVAL;
  3127. if (time_after(jiffies, ifsta->ibss_join_req +
  3128. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3129. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3130. (!(local->oper_channel->flags &
  3131. IEEE80211_CHAN_NO_IBSS)))
  3132. return ieee80211_sta_create_ibss(dev, ifsta);
  3133. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3134. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3135. " %d MHz\n", dev->name,
  3136. local->hw.conf.channel->center_freq);
  3137. }
  3138. /* No IBSS found - decrease scan interval and continue
  3139. * scanning. */
  3140. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3141. }
  3142. ifsta->state = IEEE80211_IBSS_SEARCH;
  3143. mod_timer(&ifsta->timer, jiffies + interval);
  3144. return 0;
  3145. }
  3146. return 0;
  3147. }
  3148. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3149. {
  3150. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3151. struct ieee80211_if_sta *ifsta;
  3152. int res;
  3153. if (len > IEEE80211_MAX_SSID_LEN)
  3154. return -EINVAL;
  3155. ifsta = &sdata->u.sta;
  3156. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0) {
  3157. memset(ifsta->ssid, 0, sizeof(ifsta->ssid));
  3158. memcpy(ifsta->ssid, ssid, len);
  3159. ifsta->ssid_len = len;
  3160. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3161. res = 0;
  3162. /*
  3163. * Hack! MLME code needs to be cleaned up to have different
  3164. * entry points for configuration and internal selection change
  3165. */
  3166. if (netif_running(sdata->dev))
  3167. res = ieee80211_if_config(sdata, IEEE80211_IFCC_SSID);
  3168. if (res) {
  3169. printk(KERN_DEBUG "%s: Failed to config new SSID to "
  3170. "the low-level driver\n", dev->name);
  3171. return res;
  3172. }
  3173. }
  3174. if (len)
  3175. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3176. else
  3177. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3178. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3179. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3180. ifsta->ibss_join_req = jiffies;
  3181. ifsta->state = IEEE80211_IBSS_SEARCH;
  3182. return ieee80211_sta_find_ibss(dev, ifsta);
  3183. }
  3184. return 0;
  3185. }
  3186. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3187. {
  3188. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3189. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3190. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3191. *len = ifsta->ssid_len;
  3192. return 0;
  3193. }
  3194. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3195. {
  3196. struct ieee80211_sub_if_data *sdata;
  3197. struct ieee80211_if_sta *ifsta;
  3198. int res;
  3199. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3200. ifsta = &sdata->u.sta;
  3201. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3202. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3203. res = 0;
  3204. /*
  3205. * Hack! See also ieee80211_sta_set_ssid.
  3206. */
  3207. if (netif_running(sdata->dev))
  3208. res = ieee80211_if_config(sdata, IEEE80211_IFCC_BSSID);
  3209. if (res) {
  3210. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3211. "the low-level driver\n", dev->name);
  3212. return res;
  3213. }
  3214. }
  3215. if (is_valid_ether_addr(bssid))
  3216. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3217. else
  3218. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3219. return 0;
  3220. }
  3221. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3222. struct ieee80211_sub_if_data *sdata,
  3223. int powersave)
  3224. {
  3225. struct sk_buff *skb;
  3226. struct ieee80211_hdr *nullfunc;
  3227. __le16 fc;
  3228. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3229. if (!skb) {
  3230. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3231. "frame\n", sdata->dev->name);
  3232. return;
  3233. }
  3234. skb_reserve(skb, local->hw.extra_tx_headroom);
  3235. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3236. memset(nullfunc, 0, 24);
  3237. fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3238. IEEE80211_FCTL_TODS);
  3239. if (powersave)
  3240. fc |= cpu_to_le16(IEEE80211_FCTL_PM);
  3241. nullfunc->frame_control = fc;
  3242. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3243. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3244. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3245. ieee80211_sta_tx(sdata->dev, skb, 0);
  3246. }
  3247. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3248. {
  3249. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3250. ieee80211_vif_is_mesh(&sdata->vif))
  3251. ieee80211_sta_timer((unsigned long)sdata);
  3252. }
  3253. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3254. {
  3255. struct ieee80211_local *local = hw_to_local(hw);
  3256. struct net_device *dev = local->scan_dev;
  3257. struct ieee80211_sub_if_data *sdata;
  3258. union iwreq_data wrqu;
  3259. local->last_scan_completed = jiffies;
  3260. memset(&wrqu, 0, sizeof(wrqu));
  3261. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3262. if (local->sta_hw_scanning) {
  3263. local->sta_hw_scanning = 0;
  3264. if (ieee80211_hw_config(local))
  3265. printk(KERN_DEBUG "%s: failed to restore operational "
  3266. "channel after scan\n", dev->name);
  3267. /* Restart STA timer for HW scan case */
  3268. rcu_read_lock();
  3269. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3270. ieee80211_restart_sta_timer(sdata);
  3271. rcu_read_unlock();
  3272. goto done;
  3273. }
  3274. local->sta_sw_scanning = 0;
  3275. if (ieee80211_hw_config(local))
  3276. printk(KERN_DEBUG "%s: failed to restore operational "
  3277. "channel after scan\n", dev->name);
  3278. netif_tx_lock_bh(local->mdev);
  3279. netif_addr_lock(local->mdev);
  3280. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3281. local->ops->configure_filter(local_to_hw(local),
  3282. FIF_BCN_PRBRESP_PROMISC,
  3283. &local->filter_flags,
  3284. local->mdev->mc_count,
  3285. local->mdev->mc_list);
  3286. netif_addr_unlock(local->mdev);
  3287. netif_tx_unlock_bh(local->mdev);
  3288. rcu_read_lock();
  3289. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3290. /* Tell AP we're back */
  3291. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3292. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3293. ieee80211_send_nullfunc(local, sdata, 0);
  3294. ieee80211_restart_sta_timer(sdata);
  3295. netif_wake_queue(sdata->dev);
  3296. }
  3297. rcu_read_unlock();
  3298. done:
  3299. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3300. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3301. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3302. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3303. (!(ifsta->state == IEEE80211_IBSS_JOINED) &&
  3304. !ieee80211_sta_active_ibss(dev)))
  3305. ieee80211_sta_find_ibss(dev, ifsta);
  3306. }
  3307. }
  3308. EXPORT_SYMBOL(ieee80211_scan_completed);
  3309. void ieee80211_sta_scan_work(struct work_struct *work)
  3310. {
  3311. struct ieee80211_local *local =
  3312. container_of(work, struct ieee80211_local, scan_work.work);
  3313. struct net_device *dev = local->scan_dev;
  3314. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3315. struct ieee80211_supported_band *sband;
  3316. struct ieee80211_channel *chan;
  3317. int skip;
  3318. unsigned long next_delay = 0;
  3319. if (!local->sta_sw_scanning)
  3320. return;
  3321. switch (local->scan_state) {
  3322. case SCAN_SET_CHANNEL:
  3323. /*
  3324. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3325. * after we successfully scanned the last channel of the last
  3326. * band (and the last band is supported by the hw)
  3327. */
  3328. if (local->scan_band < IEEE80211_NUM_BANDS)
  3329. sband = local->hw.wiphy->bands[local->scan_band];
  3330. else
  3331. sband = NULL;
  3332. /*
  3333. * If we are at an unsupported band and have more bands
  3334. * left to scan, advance to the next supported one.
  3335. */
  3336. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3337. local->scan_band++;
  3338. sband = local->hw.wiphy->bands[local->scan_band];
  3339. local->scan_channel_idx = 0;
  3340. }
  3341. /* if no more bands/channels left, complete scan */
  3342. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3343. ieee80211_scan_completed(local_to_hw(local));
  3344. return;
  3345. }
  3346. skip = 0;
  3347. chan = &sband->channels[local->scan_channel_idx];
  3348. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3349. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3350. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3351. skip = 1;
  3352. if (!skip) {
  3353. local->scan_channel = chan;
  3354. if (ieee80211_hw_config(local)) {
  3355. printk(KERN_DEBUG "%s: failed to set freq to "
  3356. "%d MHz for scan\n", dev->name,
  3357. chan->center_freq);
  3358. skip = 1;
  3359. }
  3360. }
  3361. /* advance state machine to next channel/band */
  3362. local->scan_channel_idx++;
  3363. if (local->scan_channel_idx >= sband->n_channels) {
  3364. /*
  3365. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3366. * we'll catch that case above and complete the scan
  3367. * if that is the case.
  3368. */
  3369. local->scan_band++;
  3370. local->scan_channel_idx = 0;
  3371. }
  3372. if (skip)
  3373. break;
  3374. next_delay = IEEE80211_PROBE_DELAY +
  3375. usecs_to_jiffies(local->hw.channel_change_time);
  3376. local->scan_state = SCAN_SEND_PROBE;
  3377. break;
  3378. case SCAN_SEND_PROBE:
  3379. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3380. local->scan_state = SCAN_SET_CHANNEL;
  3381. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3382. break;
  3383. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3384. local->scan_ssid_len);
  3385. next_delay = IEEE80211_CHANNEL_TIME;
  3386. break;
  3387. }
  3388. if (local->sta_sw_scanning)
  3389. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3390. next_delay);
  3391. }
  3392. static int ieee80211_sta_start_scan(struct net_device *dev,
  3393. u8 *ssid, size_t ssid_len)
  3394. {
  3395. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3396. struct ieee80211_sub_if_data *sdata;
  3397. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3398. return -EINVAL;
  3399. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3400. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3401. * BSSID: MACAddress
  3402. * SSID
  3403. * ScanType: ACTIVE, PASSIVE
  3404. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3405. * a Probe frame during active scanning
  3406. * ChannelList
  3407. * MinChannelTime (>= ProbeDelay), in TU
  3408. * MaxChannelTime: (>= MinChannelTime), in TU
  3409. */
  3410. /* MLME-SCAN.confirm
  3411. * BSSDescriptionSet
  3412. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3413. */
  3414. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3415. if (local->scan_dev == dev)
  3416. return 0;
  3417. return -EBUSY;
  3418. }
  3419. if (local->ops->hw_scan) {
  3420. int rc = local->ops->hw_scan(local_to_hw(local),
  3421. ssid, ssid_len);
  3422. if (!rc) {
  3423. local->sta_hw_scanning = 1;
  3424. local->scan_dev = dev;
  3425. }
  3426. return rc;
  3427. }
  3428. local->sta_sw_scanning = 1;
  3429. rcu_read_lock();
  3430. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3431. netif_stop_queue(sdata->dev);
  3432. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3433. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3434. ieee80211_send_nullfunc(local, sdata, 1);
  3435. }
  3436. rcu_read_unlock();
  3437. if (ssid) {
  3438. local->scan_ssid_len = ssid_len;
  3439. memcpy(local->scan_ssid, ssid, ssid_len);
  3440. } else
  3441. local->scan_ssid_len = 0;
  3442. local->scan_state = SCAN_SET_CHANNEL;
  3443. local->scan_channel_idx = 0;
  3444. local->scan_band = IEEE80211_BAND_2GHZ;
  3445. local->scan_dev = dev;
  3446. netif_addr_lock_bh(local->mdev);
  3447. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3448. local->ops->configure_filter(local_to_hw(local),
  3449. FIF_BCN_PRBRESP_PROMISC,
  3450. &local->filter_flags,
  3451. local->mdev->mc_count,
  3452. local->mdev->mc_list);
  3453. netif_addr_unlock_bh(local->mdev);
  3454. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3455. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3456. IEEE80211_CHANNEL_TIME);
  3457. return 0;
  3458. }
  3459. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3460. {
  3461. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3462. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3463. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3464. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3465. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3466. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3467. if (local->scan_dev == dev)
  3468. return 0;
  3469. return -EBUSY;
  3470. }
  3471. ifsta->scan_ssid_len = ssid_len;
  3472. if (ssid_len)
  3473. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3474. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3475. queue_work(local->hw.workqueue, &ifsta->work);
  3476. return 0;
  3477. }
  3478. static char *
  3479. ieee80211_sta_scan_result(struct net_device *dev,
  3480. struct iw_request_info *info,
  3481. struct ieee80211_sta_bss *bss,
  3482. char *current_ev, char *end_buf)
  3483. {
  3484. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3485. struct iw_event iwe;
  3486. if (time_after(jiffies,
  3487. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3488. return current_ev;
  3489. memset(&iwe, 0, sizeof(iwe));
  3490. iwe.cmd = SIOCGIWAP;
  3491. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3492. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3493. current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
  3494. IW_EV_ADDR_LEN);
  3495. memset(&iwe, 0, sizeof(iwe));
  3496. iwe.cmd = SIOCGIWESSID;
  3497. if (bss_mesh_cfg(bss)) {
  3498. iwe.u.data.length = bss_mesh_id_len(bss);
  3499. iwe.u.data.flags = 1;
  3500. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  3501. &iwe, bss_mesh_id(bss));
  3502. } else {
  3503. iwe.u.data.length = bss->ssid_len;
  3504. iwe.u.data.flags = 1;
  3505. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  3506. &iwe, bss->ssid);
  3507. }
  3508. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3509. || bss_mesh_cfg(bss)) {
  3510. memset(&iwe, 0, sizeof(iwe));
  3511. iwe.cmd = SIOCGIWMODE;
  3512. if (bss_mesh_cfg(bss))
  3513. iwe.u.mode = IW_MODE_MESH;
  3514. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3515. iwe.u.mode = IW_MODE_MASTER;
  3516. else
  3517. iwe.u.mode = IW_MODE_ADHOC;
  3518. current_ev = iwe_stream_add_event(info, current_ev, end_buf,
  3519. &iwe, IW_EV_UINT_LEN);
  3520. }
  3521. memset(&iwe, 0, sizeof(iwe));
  3522. iwe.cmd = SIOCGIWFREQ;
  3523. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3524. iwe.u.freq.e = 0;
  3525. current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
  3526. IW_EV_FREQ_LEN);
  3527. memset(&iwe, 0, sizeof(iwe));
  3528. iwe.cmd = SIOCGIWFREQ;
  3529. iwe.u.freq.m = bss->freq;
  3530. iwe.u.freq.e = 6;
  3531. current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
  3532. IW_EV_FREQ_LEN);
  3533. memset(&iwe, 0, sizeof(iwe));
  3534. iwe.cmd = IWEVQUAL;
  3535. iwe.u.qual.qual = bss->qual;
  3536. iwe.u.qual.level = bss->signal;
  3537. iwe.u.qual.noise = bss->noise;
  3538. iwe.u.qual.updated = local->wstats_flags;
  3539. current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
  3540. IW_EV_QUAL_LEN);
  3541. memset(&iwe, 0, sizeof(iwe));
  3542. iwe.cmd = SIOCGIWENCODE;
  3543. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3544. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3545. else
  3546. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3547. iwe.u.data.length = 0;
  3548. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  3549. &iwe, "");
  3550. if (bss && bss->wpa_ie) {
  3551. memset(&iwe, 0, sizeof(iwe));
  3552. iwe.cmd = IWEVGENIE;
  3553. iwe.u.data.length = bss->wpa_ie_len;
  3554. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  3555. &iwe, bss->wpa_ie);
  3556. }
  3557. if (bss && bss->rsn_ie) {
  3558. memset(&iwe, 0, sizeof(iwe));
  3559. iwe.cmd = IWEVGENIE;
  3560. iwe.u.data.length = bss->rsn_ie_len;
  3561. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  3562. &iwe, bss->rsn_ie);
  3563. }
  3564. if (bss && bss->ht_ie) {
  3565. memset(&iwe, 0, sizeof(iwe));
  3566. iwe.cmd = IWEVGENIE;
  3567. iwe.u.data.length = bss->ht_ie_len;
  3568. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  3569. &iwe, bss->ht_ie);
  3570. }
  3571. if (bss && bss->supp_rates_len > 0) {
  3572. /* display all supported rates in readable format */
  3573. char *p = current_ev + iwe_stream_lcp_len(info);
  3574. int i;
  3575. memset(&iwe, 0, sizeof(iwe));
  3576. iwe.cmd = SIOCGIWRATE;
  3577. /* Those two flags are ignored... */
  3578. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3579. for (i = 0; i < bss->supp_rates_len; i++) {
  3580. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3581. 0x7f) * 500000);
  3582. p = iwe_stream_add_value(info, current_ev, p,
  3583. end_buf, &iwe, IW_EV_PARAM_LEN);
  3584. }
  3585. current_ev = p;
  3586. }
  3587. if (bss) {
  3588. char *buf;
  3589. buf = kmalloc(30, GFP_ATOMIC);
  3590. if (buf) {
  3591. memset(&iwe, 0, sizeof(iwe));
  3592. iwe.cmd = IWEVCUSTOM;
  3593. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3594. iwe.u.data.length = strlen(buf);
  3595. current_ev = iwe_stream_add_point(info, current_ev,
  3596. end_buf,
  3597. &iwe, buf);
  3598. memset(&iwe, 0, sizeof(iwe));
  3599. iwe.cmd = IWEVCUSTOM;
  3600. sprintf(buf, " Last beacon: %dms ago",
  3601. jiffies_to_msecs(jiffies - bss->last_update));
  3602. iwe.u.data.length = strlen(buf);
  3603. current_ev = iwe_stream_add_point(info, current_ev,
  3604. end_buf, &iwe, buf);
  3605. kfree(buf);
  3606. }
  3607. }
  3608. if (bss_mesh_cfg(bss)) {
  3609. char *buf;
  3610. u8 *cfg = bss_mesh_cfg(bss);
  3611. buf = kmalloc(50, GFP_ATOMIC);
  3612. if (buf) {
  3613. memset(&iwe, 0, sizeof(iwe));
  3614. iwe.cmd = IWEVCUSTOM;
  3615. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3616. iwe.u.data.length = strlen(buf);
  3617. current_ev = iwe_stream_add_point(info, current_ev,
  3618. end_buf,
  3619. &iwe, buf);
  3620. sprintf(buf, "Path Selection Protocol ID: "
  3621. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3622. cfg[4]);
  3623. iwe.u.data.length = strlen(buf);
  3624. current_ev = iwe_stream_add_point(info, current_ev,
  3625. end_buf,
  3626. &iwe, buf);
  3627. sprintf(buf, "Path Selection Metric ID: "
  3628. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3629. cfg[8]);
  3630. iwe.u.data.length = strlen(buf);
  3631. current_ev = iwe_stream_add_point(info, current_ev,
  3632. end_buf,
  3633. &iwe, buf);
  3634. sprintf(buf, "Congestion Control Mode ID: "
  3635. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3636. cfg[11], cfg[12]);
  3637. iwe.u.data.length = strlen(buf);
  3638. current_ev = iwe_stream_add_point(info, current_ev,
  3639. end_buf,
  3640. &iwe, buf);
  3641. sprintf(buf, "Channel Precedence: "
  3642. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3643. cfg[15], cfg[16]);
  3644. iwe.u.data.length = strlen(buf);
  3645. current_ev = iwe_stream_add_point(info, current_ev,
  3646. end_buf,
  3647. &iwe, buf);
  3648. kfree(buf);
  3649. }
  3650. }
  3651. return current_ev;
  3652. }
  3653. int ieee80211_sta_scan_results(struct net_device *dev,
  3654. struct iw_request_info *info,
  3655. char *buf, size_t len)
  3656. {
  3657. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3658. char *current_ev = buf;
  3659. char *end_buf = buf + len;
  3660. struct ieee80211_sta_bss *bss;
  3661. spin_lock_bh(&local->sta_bss_lock);
  3662. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3663. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3664. spin_unlock_bh(&local->sta_bss_lock);
  3665. return -E2BIG;
  3666. }
  3667. current_ev = ieee80211_sta_scan_result(dev, info, bss,
  3668. current_ev, end_buf);
  3669. }
  3670. spin_unlock_bh(&local->sta_bss_lock);
  3671. return current_ev - buf;
  3672. }
  3673. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3674. {
  3675. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3676. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3677. kfree(ifsta->extra_ie);
  3678. if (len == 0) {
  3679. ifsta->extra_ie = NULL;
  3680. ifsta->extra_ie_len = 0;
  3681. return 0;
  3682. }
  3683. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3684. if (!ifsta->extra_ie) {
  3685. ifsta->extra_ie_len = 0;
  3686. return -ENOMEM;
  3687. }
  3688. memcpy(ifsta->extra_ie, ie, len);
  3689. ifsta->extra_ie_len = len;
  3690. return 0;
  3691. }
  3692. struct sta_info *ieee80211_ibss_add_sta(struct net_device *dev,
  3693. struct sk_buff *skb, u8 *bssid,
  3694. u8 *addr, u64 supp_rates)
  3695. {
  3696. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3697. struct sta_info *sta;
  3698. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3699. DECLARE_MAC_BUF(mac);
  3700. int band = local->hw.conf.channel->band;
  3701. /* TODO: Could consider removing the least recently used entry and
  3702. * allow new one to be added. */
  3703. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3704. if (net_ratelimit()) {
  3705. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3706. "entry %s\n", dev->name, print_mac(mac, addr));
  3707. }
  3708. return NULL;
  3709. }
  3710. if (compare_ether_addr(bssid, sdata->u.sta.bssid))
  3711. return NULL;
  3712. #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
  3713. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3714. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3715. #endif
  3716. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3717. if (!sta)
  3718. return NULL;
  3719. set_sta_flags(sta, WLAN_STA_AUTHORIZED);
  3720. if (supp_rates)
  3721. sta->supp_rates[band] = supp_rates;
  3722. else
  3723. sta->supp_rates[band] = sdata->u.sta.supp_rates_bits[band];
  3724. rate_control_rate_init(sta, local);
  3725. if (sta_info_insert(sta))
  3726. return NULL;
  3727. return sta;
  3728. }
  3729. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3730. {
  3731. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3732. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3733. printk(KERN_DEBUG "%s: deauthenticating by local choice (reason=%d)\n",
  3734. dev->name, reason);
  3735. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3736. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3737. return -EINVAL;
  3738. ieee80211_send_deauth(dev, ifsta, reason);
  3739. ieee80211_set_disassoc(dev, ifsta, 1);
  3740. return 0;
  3741. }
  3742. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3743. {
  3744. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3745. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3746. printk(KERN_DEBUG "%s: disassociating by local choice (reason=%d)\n",
  3747. dev->name, reason);
  3748. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3749. return -EINVAL;
  3750. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3751. return -1;
  3752. ieee80211_send_disassoc(dev, ifsta, reason);
  3753. ieee80211_set_disassoc(dev, ifsta, 0);
  3754. return 0;
  3755. }
  3756. void ieee80211_notify_mac(struct ieee80211_hw *hw,
  3757. enum ieee80211_notification_types notif_type)
  3758. {
  3759. struct ieee80211_local *local = hw_to_local(hw);
  3760. struct ieee80211_sub_if_data *sdata;
  3761. switch (notif_type) {
  3762. case IEEE80211_NOTIFY_RE_ASSOC:
  3763. rcu_read_lock();
  3764. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3765. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3766. continue;
  3767. ieee80211_sta_req_auth(sdata->dev, &sdata->u.sta);
  3768. }
  3769. rcu_read_unlock();
  3770. break;
  3771. }
  3772. }
  3773. EXPORT_SYMBOL(ieee80211_notify_mac);