slub.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. /*
  121. * Issues still to be resolved:
  122. *
  123. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  124. *
  125. * - Variable sizing of the per node arrays
  126. */
  127. /* Enable to test recovery from slab corruption on boot */
  128. #undef SLUB_RESILIENCY_TEST
  129. /* Enable to log cmpxchg failures */
  130. #undef SLUB_DEBUG_CMPXCHG
  131. /*
  132. * Mininum number of partial slabs. These will be left on the partial
  133. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  134. */
  135. #define MIN_PARTIAL 5
  136. /*
  137. * Maximum number of desirable partial slabs.
  138. * The existence of more partial slabs makes kmem_cache_shrink
  139. * sort the partial list by the number of objects in the.
  140. */
  141. #define MAX_PARTIAL 10
  142. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  143. SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Debugging flags that require metadata to be stored in the slab. These get
  146. * disabled when slub_debug=O is used and a cache's min order increases with
  147. * metadata.
  148. */
  149. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  150. /*
  151. * Set of flags that will prevent slab merging
  152. */
  153. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  154. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  155. SLAB_FAILSLAB)
  156. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  157. SLAB_CACHE_DMA | SLAB_NOTRACK)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. #ifdef CONFIG_SMP
  165. static struct notifier_block slab_notifier;
  166. #endif
  167. /*
  168. * Tracking user of a slab.
  169. */
  170. #define TRACK_ADDRS_COUNT 16
  171. struct track {
  172. unsigned long addr; /* Called from address */
  173. #ifdef CONFIG_STACKTRACE
  174. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  175. #endif
  176. int cpu; /* Was running on cpu */
  177. int pid; /* Pid context */
  178. unsigned long when; /* When did the operation occur */
  179. };
  180. enum track_item { TRACK_ALLOC, TRACK_FREE };
  181. #ifdef CONFIG_SYSFS
  182. static int sysfs_slab_add(struct kmem_cache *);
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void sysfs_slab_remove(struct kmem_cache *);
  185. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  191. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  192. #endif
  193. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  194. {
  195. #ifdef CONFIG_SLUB_STATS
  196. __this_cpu_inc(s->cpu_slab->stat[si]);
  197. #endif
  198. }
  199. /********************************************************************
  200. * Core slab cache functions
  201. *******************************************************************/
  202. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  203. {
  204. return s->node[node];
  205. }
  206. /* Verify that a pointer has an address that is valid within a slab page */
  207. static inline int check_valid_pointer(struct kmem_cache *s,
  208. struct page *page, const void *object)
  209. {
  210. void *base;
  211. if (!object)
  212. return 1;
  213. base = page_address(page);
  214. if (object < base || object >= base + page->objects * s->size ||
  215. (object - base) % s->size) {
  216. return 0;
  217. }
  218. return 1;
  219. }
  220. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  221. {
  222. return *(void **)(object + s->offset);
  223. }
  224. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  225. {
  226. prefetch(object + s->offset);
  227. }
  228. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  229. {
  230. void *p;
  231. #ifdef CONFIG_DEBUG_PAGEALLOC
  232. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  233. #else
  234. p = get_freepointer(s, object);
  235. #endif
  236. return p;
  237. }
  238. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  239. {
  240. *(void **)(object + s->offset) = fp;
  241. }
  242. /* Loop over all objects in a slab */
  243. #define for_each_object(__p, __s, __addr, __objects) \
  244. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  245. __p += (__s)->size)
  246. /* Determine object index from a given position */
  247. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  248. {
  249. return (p - addr) / s->size;
  250. }
  251. static inline size_t slab_ksize(const struct kmem_cache *s)
  252. {
  253. #ifdef CONFIG_SLUB_DEBUG
  254. /*
  255. * Debugging requires use of the padding between object
  256. * and whatever may come after it.
  257. */
  258. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  259. return s->object_size;
  260. #endif
  261. /*
  262. * If we have the need to store the freelist pointer
  263. * back there or track user information then we can
  264. * only use the space before that information.
  265. */
  266. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  267. return s->inuse;
  268. /*
  269. * Else we can use all the padding etc for the allocation
  270. */
  271. return s->size;
  272. }
  273. static inline int order_objects(int order, unsigned long size, int reserved)
  274. {
  275. return ((PAGE_SIZE << order) - reserved) / size;
  276. }
  277. static inline struct kmem_cache_order_objects oo_make(int order,
  278. unsigned long size, int reserved)
  279. {
  280. struct kmem_cache_order_objects x = {
  281. (order << OO_SHIFT) + order_objects(order, size, reserved)
  282. };
  283. return x;
  284. }
  285. static inline int oo_order(struct kmem_cache_order_objects x)
  286. {
  287. return x.x >> OO_SHIFT;
  288. }
  289. static inline int oo_objects(struct kmem_cache_order_objects x)
  290. {
  291. return x.x & OO_MASK;
  292. }
  293. /*
  294. * Per slab locking using the pagelock
  295. */
  296. static __always_inline void slab_lock(struct page *page)
  297. {
  298. bit_spin_lock(PG_locked, &page->flags);
  299. }
  300. static __always_inline void slab_unlock(struct page *page)
  301. {
  302. __bit_spin_unlock(PG_locked, &page->flags);
  303. }
  304. /* Interrupts must be disabled (for the fallback code to work right) */
  305. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  306. void *freelist_old, unsigned long counters_old,
  307. void *freelist_new, unsigned long counters_new,
  308. const char *n)
  309. {
  310. VM_BUG_ON(!irqs_disabled());
  311. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  312. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  313. if (s->flags & __CMPXCHG_DOUBLE) {
  314. if (cmpxchg_double(&page->freelist, &page->counters,
  315. freelist_old, counters_old,
  316. freelist_new, counters_new))
  317. return 1;
  318. } else
  319. #endif
  320. {
  321. slab_lock(page);
  322. if (page->freelist == freelist_old && page->counters == counters_old) {
  323. page->freelist = freelist_new;
  324. page->counters = counters_new;
  325. slab_unlock(page);
  326. return 1;
  327. }
  328. slab_unlock(page);
  329. }
  330. cpu_relax();
  331. stat(s, CMPXCHG_DOUBLE_FAIL);
  332. #ifdef SLUB_DEBUG_CMPXCHG
  333. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  334. #endif
  335. return 0;
  336. }
  337. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  338. void *freelist_old, unsigned long counters_old,
  339. void *freelist_new, unsigned long counters_new,
  340. const char *n)
  341. {
  342. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  343. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  344. if (s->flags & __CMPXCHG_DOUBLE) {
  345. if (cmpxchg_double(&page->freelist, &page->counters,
  346. freelist_old, counters_old,
  347. freelist_new, counters_new))
  348. return 1;
  349. } else
  350. #endif
  351. {
  352. unsigned long flags;
  353. local_irq_save(flags);
  354. slab_lock(page);
  355. if (page->freelist == freelist_old && page->counters == counters_old) {
  356. page->freelist = freelist_new;
  357. page->counters = counters_new;
  358. slab_unlock(page);
  359. local_irq_restore(flags);
  360. return 1;
  361. }
  362. slab_unlock(page);
  363. local_irq_restore(flags);
  364. }
  365. cpu_relax();
  366. stat(s, CMPXCHG_DOUBLE_FAIL);
  367. #ifdef SLUB_DEBUG_CMPXCHG
  368. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  369. #endif
  370. return 0;
  371. }
  372. #ifdef CONFIG_SLUB_DEBUG
  373. /*
  374. * Determine a map of object in use on a page.
  375. *
  376. * Node listlock must be held to guarantee that the page does
  377. * not vanish from under us.
  378. */
  379. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  380. {
  381. void *p;
  382. void *addr = page_address(page);
  383. for (p = page->freelist; p; p = get_freepointer(s, p))
  384. set_bit(slab_index(p, s, addr), map);
  385. }
  386. /*
  387. * Debug settings:
  388. */
  389. #ifdef CONFIG_SLUB_DEBUG_ON
  390. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  391. #else
  392. static int slub_debug;
  393. #endif
  394. static char *slub_debug_slabs;
  395. static int disable_higher_order_debug;
  396. /*
  397. * Object debugging
  398. */
  399. static void print_section(char *text, u8 *addr, unsigned int length)
  400. {
  401. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  402. length, 1);
  403. }
  404. static struct track *get_track(struct kmem_cache *s, void *object,
  405. enum track_item alloc)
  406. {
  407. struct track *p;
  408. if (s->offset)
  409. p = object + s->offset + sizeof(void *);
  410. else
  411. p = object + s->inuse;
  412. return p + alloc;
  413. }
  414. static void set_track(struct kmem_cache *s, void *object,
  415. enum track_item alloc, unsigned long addr)
  416. {
  417. struct track *p = get_track(s, object, alloc);
  418. if (addr) {
  419. #ifdef CONFIG_STACKTRACE
  420. struct stack_trace trace;
  421. int i;
  422. trace.nr_entries = 0;
  423. trace.max_entries = TRACK_ADDRS_COUNT;
  424. trace.entries = p->addrs;
  425. trace.skip = 3;
  426. save_stack_trace(&trace);
  427. /* See rant in lockdep.c */
  428. if (trace.nr_entries != 0 &&
  429. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  430. trace.nr_entries--;
  431. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  432. p->addrs[i] = 0;
  433. #endif
  434. p->addr = addr;
  435. p->cpu = smp_processor_id();
  436. p->pid = current->pid;
  437. p->when = jiffies;
  438. } else
  439. memset(p, 0, sizeof(struct track));
  440. }
  441. static void init_tracking(struct kmem_cache *s, void *object)
  442. {
  443. if (!(s->flags & SLAB_STORE_USER))
  444. return;
  445. set_track(s, object, TRACK_FREE, 0UL);
  446. set_track(s, object, TRACK_ALLOC, 0UL);
  447. }
  448. static void print_track(const char *s, struct track *t)
  449. {
  450. if (!t->addr)
  451. return;
  452. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  453. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  454. #ifdef CONFIG_STACKTRACE
  455. {
  456. int i;
  457. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  458. if (t->addrs[i])
  459. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  460. else
  461. break;
  462. }
  463. #endif
  464. }
  465. static void print_tracking(struct kmem_cache *s, void *object)
  466. {
  467. if (!(s->flags & SLAB_STORE_USER))
  468. return;
  469. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  470. print_track("Freed", get_track(s, object, TRACK_FREE));
  471. }
  472. static void print_page_info(struct page *page)
  473. {
  474. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  475. page, page->objects, page->inuse, page->freelist, page->flags);
  476. }
  477. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  478. {
  479. va_list args;
  480. char buf[100];
  481. va_start(args, fmt);
  482. vsnprintf(buf, sizeof(buf), fmt, args);
  483. va_end(args);
  484. printk(KERN_ERR "========================================"
  485. "=====================================\n");
  486. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  487. printk(KERN_ERR "----------------------------------------"
  488. "-------------------------------------\n\n");
  489. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  490. }
  491. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  492. {
  493. va_list args;
  494. char buf[100];
  495. va_start(args, fmt);
  496. vsnprintf(buf, sizeof(buf), fmt, args);
  497. va_end(args);
  498. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  499. }
  500. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  501. {
  502. unsigned int off; /* Offset of last byte */
  503. u8 *addr = page_address(page);
  504. print_tracking(s, p);
  505. print_page_info(page);
  506. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  507. p, p - addr, get_freepointer(s, p));
  508. if (p > addr + 16)
  509. print_section("Bytes b4 ", p - 16, 16);
  510. print_section("Object ", p, min_t(unsigned long, s->object_size,
  511. PAGE_SIZE));
  512. if (s->flags & SLAB_RED_ZONE)
  513. print_section("Redzone ", p + s->object_size,
  514. s->inuse - s->object_size);
  515. if (s->offset)
  516. off = s->offset + sizeof(void *);
  517. else
  518. off = s->inuse;
  519. if (s->flags & SLAB_STORE_USER)
  520. off += 2 * sizeof(struct track);
  521. if (off != s->size)
  522. /* Beginning of the filler is the free pointer */
  523. print_section("Padding ", p + off, s->size - off);
  524. dump_stack();
  525. }
  526. static void object_err(struct kmem_cache *s, struct page *page,
  527. u8 *object, char *reason)
  528. {
  529. slab_bug(s, "%s", reason);
  530. print_trailer(s, page, object);
  531. }
  532. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  533. {
  534. va_list args;
  535. char buf[100];
  536. va_start(args, fmt);
  537. vsnprintf(buf, sizeof(buf), fmt, args);
  538. va_end(args);
  539. slab_bug(s, "%s", buf);
  540. print_page_info(page);
  541. dump_stack();
  542. }
  543. static void init_object(struct kmem_cache *s, void *object, u8 val)
  544. {
  545. u8 *p = object;
  546. if (s->flags & __OBJECT_POISON) {
  547. memset(p, POISON_FREE, s->object_size - 1);
  548. p[s->object_size - 1] = POISON_END;
  549. }
  550. if (s->flags & SLAB_RED_ZONE)
  551. memset(p + s->object_size, val, s->inuse - s->object_size);
  552. }
  553. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  554. void *from, void *to)
  555. {
  556. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  557. memset(from, data, to - from);
  558. }
  559. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  560. u8 *object, char *what,
  561. u8 *start, unsigned int value, unsigned int bytes)
  562. {
  563. u8 *fault;
  564. u8 *end;
  565. fault = memchr_inv(start, value, bytes);
  566. if (!fault)
  567. return 1;
  568. end = start + bytes;
  569. while (end > fault && end[-1] == value)
  570. end--;
  571. slab_bug(s, "%s overwritten", what);
  572. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  573. fault, end - 1, fault[0], value);
  574. print_trailer(s, page, object);
  575. restore_bytes(s, what, value, fault, end);
  576. return 0;
  577. }
  578. /*
  579. * Object layout:
  580. *
  581. * object address
  582. * Bytes of the object to be managed.
  583. * If the freepointer may overlay the object then the free
  584. * pointer is the first word of the object.
  585. *
  586. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  587. * 0xa5 (POISON_END)
  588. *
  589. * object + s->object_size
  590. * Padding to reach word boundary. This is also used for Redzoning.
  591. * Padding is extended by another word if Redzoning is enabled and
  592. * object_size == inuse.
  593. *
  594. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  595. * 0xcc (RED_ACTIVE) for objects in use.
  596. *
  597. * object + s->inuse
  598. * Meta data starts here.
  599. *
  600. * A. Free pointer (if we cannot overwrite object on free)
  601. * B. Tracking data for SLAB_STORE_USER
  602. * C. Padding to reach required alignment boundary or at mininum
  603. * one word if debugging is on to be able to detect writes
  604. * before the word boundary.
  605. *
  606. * Padding is done using 0x5a (POISON_INUSE)
  607. *
  608. * object + s->size
  609. * Nothing is used beyond s->size.
  610. *
  611. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  612. * ignored. And therefore no slab options that rely on these boundaries
  613. * may be used with merged slabcaches.
  614. */
  615. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  616. {
  617. unsigned long off = s->inuse; /* The end of info */
  618. if (s->offset)
  619. /* Freepointer is placed after the object. */
  620. off += sizeof(void *);
  621. if (s->flags & SLAB_STORE_USER)
  622. /* We also have user information there */
  623. off += 2 * sizeof(struct track);
  624. if (s->size == off)
  625. return 1;
  626. return check_bytes_and_report(s, page, p, "Object padding",
  627. p + off, POISON_INUSE, s->size - off);
  628. }
  629. /* Check the pad bytes at the end of a slab page */
  630. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  631. {
  632. u8 *start;
  633. u8 *fault;
  634. u8 *end;
  635. int length;
  636. int remainder;
  637. if (!(s->flags & SLAB_POISON))
  638. return 1;
  639. start = page_address(page);
  640. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  641. end = start + length;
  642. remainder = length % s->size;
  643. if (!remainder)
  644. return 1;
  645. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  646. if (!fault)
  647. return 1;
  648. while (end > fault && end[-1] == POISON_INUSE)
  649. end--;
  650. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  651. print_section("Padding ", end - remainder, remainder);
  652. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  653. return 0;
  654. }
  655. static int check_object(struct kmem_cache *s, struct page *page,
  656. void *object, u8 val)
  657. {
  658. u8 *p = object;
  659. u8 *endobject = object + s->object_size;
  660. if (s->flags & SLAB_RED_ZONE) {
  661. if (!check_bytes_and_report(s, page, object, "Redzone",
  662. endobject, val, s->inuse - s->object_size))
  663. return 0;
  664. } else {
  665. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  666. check_bytes_and_report(s, page, p, "Alignment padding",
  667. endobject, POISON_INUSE, s->inuse - s->object_size);
  668. }
  669. }
  670. if (s->flags & SLAB_POISON) {
  671. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  672. (!check_bytes_and_report(s, page, p, "Poison", p,
  673. POISON_FREE, s->object_size - 1) ||
  674. !check_bytes_and_report(s, page, p, "Poison",
  675. p + s->object_size - 1, POISON_END, 1)))
  676. return 0;
  677. /*
  678. * check_pad_bytes cleans up on its own.
  679. */
  680. check_pad_bytes(s, page, p);
  681. }
  682. if (!s->offset && val == SLUB_RED_ACTIVE)
  683. /*
  684. * Object and freepointer overlap. Cannot check
  685. * freepointer while object is allocated.
  686. */
  687. return 1;
  688. /* Check free pointer validity */
  689. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  690. object_err(s, page, p, "Freepointer corrupt");
  691. /*
  692. * No choice but to zap it and thus lose the remainder
  693. * of the free objects in this slab. May cause
  694. * another error because the object count is now wrong.
  695. */
  696. set_freepointer(s, p, NULL);
  697. return 0;
  698. }
  699. return 1;
  700. }
  701. static int check_slab(struct kmem_cache *s, struct page *page)
  702. {
  703. int maxobj;
  704. VM_BUG_ON(!irqs_disabled());
  705. if (!PageSlab(page)) {
  706. slab_err(s, page, "Not a valid slab page");
  707. return 0;
  708. }
  709. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  710. if (page->objects > maxobj) {
  711. slab_err(s, page, "objects %u > max %u",
  712. s->name, page->objects, maxobj);
  713. return 0;
  714. }
  715. if (page->inuse > page->objects) {
  716. slab_err(s, page, "inuse %u > max %u",
  717. s->name, page->inuse, page->objects);
  718. return 0;
  719. }
  720. /* Slab_pad_check fixes things up after itself */
  721. slab_pad_check(s, page);
  722. return 1;
  723. }
  724. /*
  725. * Determine if a certain object on a page is on the freelist. Must hold the
  726. * slab lock to guarantee that the chains are in a consistent state.
  727. */
  728. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  729. {
  730. int nr = 0;
  731. void *fp;
  732. void *object = NULL;
  733. unsigned long max_objects;
  734. fp = page->freelist;
  735. while (fp && nr <= page->objects) {
  736. if (fp == search)
  737. return 1;
  738. if (!check_valid_pointer(s, page, fp)) {
  739. if (object) {
  740. object_err(s, page, object,
  741. "Freechain corrupt");
  742. set_freepointer(s, object, NULL);
  743. break;
  744. } else {
  745. slab_err(s, page, "Freepointer corrupt");
  746. page->freelist = NULL;
  747. page->inuse = page->objects;
  748. slab_fix(s, "Freelist cleared");
  749. return 0;
  750. }
  751. break;
  752. }
  753. object = fp;
  754. fp = get_freepointer(s, object);
  755. nr++;
  756. }
  757. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  758. if (max_objects > MAX_OBJS_PER_PAGE)
  759. max_objects = MAX_OBJS_PER_PAGE;
  760. if (page->objects != max_objects) {
  761. slab_err(s, page, "Wrong number of objects. Found %d but "
  762. "should be %d", page->objects, max_objects);
  763. page->objects = max_objects;
  764. slab_fix(s, "Number of objects adjusted.");
  765. }
  766. if (page->inuse != page->objects - nr) {
  767. slab_err(s, page, "Wrong object count. Counter is %d but "
  768. "counted were %d", page->inuse, page->objects - nr);
  769. page->inuse = page->objects - nr;
  770. slab_fix(s, "Object count adjusted.");
  771. }
  772. return search == NULL;
  773. }
  774. static void trace(struct kmem_cache *s, struct page *page, void *object,
  775. int alloc)
  776. {
  777. if (s->flags & SLAB_TRACE) {
  778. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  779. s->name,
  780. alloc ? "alloc" : "free",
  781. object, page->inuse,
  782. page->freelist);
  783. if (!alloc)
  784. print_section("Object ", (void *)object, s->object_size);
  785. dump_stack();
  786. }
  787. }
  788. /*
  789. * Hooks for other subsystems that check memory allocations. In a typical
  790. * production configuration these hooks all should produce no code at all.
  791. */
  792. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  793. {
  794. flags &= gfp_allowed_mask;
  795. lockdep_trace_alloc(flags);
  796. might_sleep_if(flags & __GFP_WAIT);
  797. return should_failslab(s->object_size, flags, s->flags);
  798. }
  799. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  800. {
  801. flags &= gfp_allowed_mask;
  802. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  803. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  804. }
  805. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  806. {
  807. kmemleak_free_recursive(x, s->flags);
  808. /*
  809. * Trouble is that we may no longer disable interupts in the fast path
  810. * So in order to make the debug calls that expect irqs to be
  811. * disabled we need to disable interrupts temporarily.
  812. */
  813. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  814. {
  815. unsigned long flags;
  816. local_irq_save(flags);
  817. kmemcheck_slab_free(s, x, s->object_size);
  818. debug_check_no_locks_freed(x, s->object_size);
  819. local_irq_restore(flags);
  820. }
  821. #endif
  822. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  823. debug_check_no_obj_freed(x, s->object_size);
  824. }
  825. /*
  826. * Tracking of fully allocated slabs for debugging purposes.
  827. *
  828. * list_lock must be held.
  829. */
  830. static void add_full(struct kmem_cache *s,
  831. struct kmem_cache_node *n, struct page *page)
  832. {
  833. if (!(s->flags & SLAB_STORE_USER))
  834. return;
  835. list_add(&page->lru, &n->full);
  836. }
  837. /*
  838. * list_lock must be held.
  839. */
  840. static void remove_full(struct kmem_cache *s, struct page *page)
  841. {
  842. if (!(s->flags & SLAB_STORE_USER))
  843. return;
  844. list_del(&page->lru);
  845. }
  846. /* Tracking of the number of slabs for debugging purposes */
  847. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  848. {
  849. struct kmem_cache_node *n = get_node(s, node);
  850. return atomic_long_read(&n->nr_slabs);
  851. }
  852. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  853. {
  854. return atomic_long_read(&n->nr_slabs);
  855. }
  856. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  857. {
  858. struct kmem_cache_node *n = get_node(s, node);
  859. /*
  860. * May be called early in order to allocate a slab for the
  861. * kmem_cache_node structure. Solve the chicken-egg
  862. * dilemma by deferring the increment of the count during
  863. * bootstrap (see early_kmem_cache_node_alloc).
  864. */
  865. if (likely(n)) {
  866. atomic_long_inc(&n->nr_slabs);
  867. atomic_long_add(objects, &n->total_objects);
  868. }
  869. }
  870. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  871. {
  872. struct kmem_cache_node *n = get_node(s, node);
  873. atomic_long_dec(&n->nr_slabs);
  874. atomic_long_sub(objects, &n->total_objects);
  875. }
  876. /* Object debug checks for alloc/free paths */
  877. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  878. void *object)
  879. {
  880. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  881. return;
  882. init_object(s, object, SLUB_RED_INACTIVE);
  883. init_tracking(s, object);
  884. }
  885. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  886. void *object, unsigned long addr)
  887. {
  888. if (!check_slab(s, page))
  889. goto bad;
  890. if (!check_valid_pointer(s, page, object)) {
  891. object_err(s, page, object, "Freelist Pointer check fails");
  892. goto bad;
  893. }
  894. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  895. goto bad;
  896. /* Success perform special debug activities for allocs */
  897. if (s->flags & SLAB_STORE_USER)
  898. set_track(s, object, TRACK_ALLOC, addr);
  899. trace(s, page, object, 1);
  900. init_object(s, object, SLUB_RED_ACTIVE);
  901. return 1;
  902. bad:
  903. if (PageSlab(page)) {
  904. /*
  905. * If this is a slab page then lets do the best we can
  906. * to avoid issues in the future. Marking all objects
  907. * as used avoids touching the remaining objects.
  908. */
  909. slab_fix(s, "Marking all objects used");
  910. page->inuse = page->objects;
  911. page->freelist = NULL;
  912. }
  913. return 0;
  914. }
  915. static noinline struct kmem_cache_node *free_debug_processing(
  916. struct kmem_cache *s, struct page *page, void *object,
  917. unsigned long addr, unsigned long *flags)
  918. {
  919. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  920. spin_lock_irqsave(&n->list_lock, *flags);
  921. slab_lock(page);
  922. if (!check_slab(s, page))
  923. goto fail;
  924. if (!check_valid_pointer(s, page, object)) {
  925. slab_err(s, page, "Invalid object pointer 0x%p", object);
  926. goto fail;
  927. }
  928. if (on_freelist(s, page, object)) {
  929. object_err(s, page, object, "Object already free");
  930. goto fail;
  931. }
  932. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  933. goto out;
  934. if (unlikely(s != page->slab_cache)) {
  935. if (!PageSlab(page)) {
  936. slab_err(s, page, "Attempt to free object(0x%p) "
  937. "outside of slab", object);
  938. } else if (!page->slab_cache) {
  939. printk(KERN_ERR
  940. "SLUB <none>: no slab for object 0x%p.\n",
  941. object);
  942. dump_stack();
  943. } else
  944. object_err(s, page, object,
  945. "page slab pointer corrupt.");
  946. goto fail;
  947. }
  948. if (s->flags & SLAB_STORE_USER)
  949. set_track(s, object, TRACK_FREE, addr);
  950. trace(s, page, object, 0);
  951. init_object(s, object, SLUB_RED_INACTIVE);
  952. out:
  953. slab_unlock(page);
  954. /*
  955. * Keep node_lock to preserve integrity
  956. * until the object is actually freed
  957. */
  958. return n;
  959. fail:
  960. slab_unlock(page);
  961. spin_unlock_irqrestore(&n->list_lock, *flags);
  962. slab_fix(s, "Object at 0x%p not freed", object);
  963. return NULL;
  964. }
  965. static int __init setup_slub_debug(char *str)
  966. {
  967. slub_debug = DEBUG_DEFAULT_FLAGS;
  968. if (*str++ != '=' || !*str)
  969. /*
  970. * No options specified. Switch on full debugging.
  971. */
  972. goto out;
  973. if (*str == ',')
  974. /*
  975. * No options but restriction on slabs. This means full
  976. * debugging for slabs matching a pattern.
  977. */
  978. goto check_slabs;
  979. if (tolower(*str) == 'o') {
  980. /*
  981. * Avoid enabling debugging on caches if its minimum order
  982. * would increase as a result.
  983. */
  984. disable_higher_order_debug = 1;
  985. goto out;
  986. }
  987. slub_debug = 0;
  988. if (*str == '-')
  989. /*
  990. * Switch off all debugging measures.
  991. */
  992. goto out;
  993. /*
  994. * Determine which debug features should be switched on
  995. */
  996. for (; *str && *str != ','; str++) {
  997. switch (tolower(*str)) {
  998. case 'f':
  999. slub_debug |= SLAB_DEBUG_FREE;
  1000. break;
  1001. case 'z':
  1002. slub_debug |= SLAB_RED_ZONE;
  1003. break;
  1004. case 'p':
  1005. slub_debug |= SLAB_POISON;
  1006. break;
  1007. case 'u':
  1008. slub_debug |= SLAB_STORE_USER;
  1009. break;
  1010. case 't':
  1011. slub_debug |= SLAB_TRACE;
  1012. break;
  1013. case 'a':
  1014. slub_debug |= SLAB_FAILSLAB;
  1015. break;
  1016. default:
  1017. printk(KERN_ERR "slub_debug option '%c' "
  1018. "unknown. skipped\n", *str);
  1019. }
  1020. }
  1021. check_slabs:
  1022. if (*str == ',')
  1023. slub_debug_slabs = str + 1;
  1024. out:
  1025. return 1;
  1026. }
  1027. __setup("slub_debug", setup_slub_debug);
  1028. static unsigned long kmem_cache_flags(unsigned long object_size,
  1029. unsigned long flags, const char *name,
  1030. void (*ctor)(void *))
  1031. {
  1032. /*
  1033. * Enable debugging if selected on the kernel commandline.
  1034. */
  1035. if (slub_debug && (!slub_debug_slabs ||
  1036. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1037. flags |= slub_debug;
  1038. return flags;
  1039. }
  1040. #else
  1041. static inline void setup_object_debug(struct kmem_cache *s,
  1042. struct page *page, void *object) {}
  1043. static inline int alloc_debug_processing(struct kmem_cache *s,
  1044. struct page *page, void *object, unsigned long addr) { return 0; }
  1045. static inline struct kmem_cache_node *free_debug_processing(
  1046. struct kmem_cache *s, struct page *page, void *object,
  1047. unsigned long addr, unsigned long *flags) { return NULL; }
  1048. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1049. { return 1; }
  1050. static inline int check_object(struct kmem_cache *s, struct page *page,
  1051. void *object, u8 val) { return 1; }
  1052. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1053. struct page *page) {}
  1054. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1055. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1056. unsigned long flags, const char *name,
  1057. void (*ctor)(void *))
  1058. {
  1059. return flags;
  1060. }
  1061. #define slub_debug 0
  1062. #define disable_higher_order_debug 0
  1063. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1064. { return 0; }
  1065. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1066. { return 0; }
  1067. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1068. int objects) {}
  1069. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1070. int objects) {}
  1071. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1072. { return 0; }
  1073. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1074. void *object) {}
  1075. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1076. #endif /* CONFIG_SLUB_DEBUG */
  1077. /*
  1078. * Slab allocation and freeing
  1079. */
  1080. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1081. struct kmem_cache_order_objects oo)
  1082. {
  1083. int order = oo_order(oo);
  1084. flags |= __GFP_NOTRACK;
  1085. if (node == NUMA_NO_NODE)
  1086. return alloc_pages(flags, order);
  1087. else
  1088. return alloc_pages_exact_node(node, flags, order);
  1089. }
  1090. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1091. {
  1092. struct page *page;
  1093. struct kmem_cache_order_objects oo = s->oo;
  1094. gfp_t alloc_gfp;
  1095. flags &= gfp_allowed_mask;
  1096. if (flags & __GFP_WAIT)
  1097. local_irq_enable();
  1098. flags |= s->allocflags;
  1099. /*
  1100. * Let the initial higher-order allocation fail under memory pressure
  1101. * so we fall-back to the minimum order allocation.
  1102. */
  1103. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1104. page = alloc_slab_page(alloc_gfp, node, oo);
  1105. if (unlikely(!page)) {
  1106. oo = s->min;
  1107. /*
  1108. * Allocation may have failed due to fragmentation.
  1109. * Try a lower order alloc if possible
  1110. */
  1111. page = alloc_slab_page(flags, node, oo);
  1112. if (page)
  1113. stat(s, ORDER_FALLBACK);
  1114. }
  1115. if (kmemcheck_enabled && page
  1116. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1117. int pages = 1 << oo_order(oo);
  1118. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1119. /*
  1120. * Objects from caches that have a constructor don't get
  1121. * cleared when they're allocated, so we need to do it here.
  1122. */
  1123. if (s->ctor)
  1124. kmemcheck_mark_uninitialized_pages(page, pages);
  1125. else
  1126. kmemcheck_mark_unallocated_pages(page, pages);
  1127. }
  1128. if (flags & __GFP_WAIT)
  1129. local_irq_disable();
  1130. if (!page)
  1131. return NULL;
  1132. page->objects = oo_objects(oo);
  1133. mod_zone_page_state(page_zone(page),
  1134. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1135. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1136. 1 << oo_order(oo));
  1137. return page;
  1138. }
  1139. static void setup_object(struct kmem_cache *s, struct page *page,
  1140. void *object)
  1141. {
  1142. setup_object_debug(s, page, object);
  1143. if (unlikely(s->ctor))
  1144. s->ctor(object);
  1145. }
  1146. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1147. {
  1148. struct page *page;
  1149. void *start;
  1150. void *last;
  1151. void *p;
  1152. int order;
  1153. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1154. page = allocate_slab(s,
  1155. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1156. if (!page)
  1157. goto out;
  1158. order = compound_order(page);
  1159. inc_slabs_node(s, page_to_nid(page), page->objects);
  1160. memcg_bind_pages(s, order);
  1161. page->slab_cache = s;
  1162. __SetPageSlab(page);
  1163. if (page->pfmemalloc)
  1164. SetPageSlabPfmemalloc(page);
  1165. start = page_address(page);
  1166. if (unlikely(s->flags & SLAB_POISON))
  1167. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1168. last = start;
  1169. for_each_object(p, s, start, page->objects) {
  1170. setup_object(s, page, last);
  1171. set_freepointer(s, last, p);
  1172. last = p;
  1173. }
  1174. setup_object(s, page, last);
  1175. set_freepointer(s, last, NULL);
  1176. page->freelist = start;
  1177. page->inuse = page->objects;
  1178. page->frozen = 1;
  1179. out:
  1180. return page;
  1181. }
  1182. static void __free_slab(struct kmem_cache *s, struct page *page)
  1183. {
  1184. int order = compound_order(page);
  1185. int pages = 1 << order;
  1186. if (kmem_cache_debug(s)) {
  1187. void *p;
  1188. slab_pad_check(s, page);
  1189. for_each_object(p, s, page_address(page),
  1190. page->objects)
  1191. check_object(s, page, p, SLUB_RED_INACTIVE);
  1192. }
  1193. kmemcheck_free_shadow(page, compound_order(page));
  1194. mod_zone_page_state(page_zone(page),
  1195. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1196. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1197. -pages);
  1198. __ClearPageSlabPfmemalloc(page);
  1199. __ClearPageSlab(page);
  1200. memcg_release_pages(s, order);
  1201. page_mapcount_reset(page);
  1202. if (current->reclaim_state)
  1203. current->reclaim_state->reclaimed_slab += pages;
  1204. __free_memcg_kmem_pages(page, order);
  1205. }
  1206. #define need_reserve_slab_rcu \
  1207. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1208. static void rcu_free_slab(struct rcu_head *h)
  1209. {
  1210. struct page *page;
  1211. if (need_reserve_slab_rcu)
  1212. page = virt_to_head_page(h);
  1213. else
  1214. page = container_of((struct list_head *)h, struct page, lru);
  1215. __free_slab(page->slab_cache, page);
  1216. }
  1217. static void free_slab(struct kmem_cache *s, struct page *page)
  1218. {
  1219. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1220. struct rcu_head *head;
  1221. if (need_reserve_slab_rcu) {
  1222. int order = compound_order(page);
  1223. int offset = (PAGE_SIZE << order) - s->reserved;
  1224. VM_BUG_ON(s->reserved != sizeof(*head));
  1225. head = page_address(page) + offset;
  1226. } else {
  1227. /*
  1228. * RCU free overloads the RCU head over the LRU
  1229. */
  1230. head = (void *)&page->lru;
  1231. }
  1232. call_rcu(head, rcu_free_slab);
  1233. } else
  1234. __free_slab(s, page);
  1235. }
  1236. static void discard_slab(struct kmem_cache *s, struct page *page)
  1237. {
  1238. dec_slabs_node(s, page_to_nid(page), page->objects);
  1239. free_slab(s, page);
  1240. }
  1241. /*
  1242. * Management of partially allocated slabs.
  1243. *
  1244. * list_lock must be held.
  1245. */
  1246. static inline void add_partial(struct kmem_cache_node *n,
  1247. struct page *page, int tail)
  1248. {
  1249. n->nr_partial++;
  1250. if (tail == DEACTIVATE_TO_TAIL)
  1251. list_add_tail(&page->lru, &n->partial);
  1252. else
  1253. list_add(&page->lru, &n->partial);
  1254. }
  1255. /*
  1256. * list_lock must be held.
  1257. */
  1258. static inline void remove_partial(struct kmem_cache_node *n,
  1259. struct page *page)
  1260. {
  1261. list_del(&page->lru);
  1262. n->nr_partial--;
  1263. }
  1264. /*
  1265. * Remove slab from the partial list, freeze it and
  1266. * return the pointer to the freelist.
  1267. *
  1268. * Returns a list of objects or NULL if it fails.
  1269. *
  1270. * Must hold list_lock since we modify the partial list.
  1271. */
  1272. static inline void *acquire_slab(struct kmem_cache *s,
  1273. struct kmem_cache_node *n, struct page *page,
  1274. int mode, int *objects)
  1275. {
  1276. void *freelist;
  1277. unsigned long counters;
  1278. struct page new;
  1279. /*
  1280. * Zap the freelist and set the frozen bit.
  1281. * The old freelist is the list of objects for the
  1282. * per cpu allocation list.
  1283. */
  1284. freelist = page->freelist;
  1285. counters = page->counters;
  1286. new.counters = counters;
  1287. *objects = new.objects - new.inuse;
  1288. if (mode) {
  1289. new.inuse = page->objects;
  1290. new.freelist = NULL;
  1291. } else {
  1292. new.freelist = freelist;
  1293. }
  1294. VM_BUG_ON(new.frozen);
  1295. new.frozen = 1;
  1296. if (!__cmpxchg_double_slab(s, page,
  1297. freelist, counters,
  1298. new.freelist, new.counters,
  1299. "acquire_slab"))
  1300. return NULL;
  1301. remove_partial(n, page);
  1302. WARN_ON(!freelist);
  1303. return freelist;
  1304. }
  1305. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1306. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1307. /*
  1308. * Try to allocate a partial slab from a specific node.
  1309. */
  1310. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1311. struct kmem_cache_cpu *c, gfp_t flags)
  1312. {
  1313. struct page *page, *page2;
  1314. void *object = NULL;
  1315. int available = 0;
  1316. int objects;
  1317. /*
  1318. * Racy check. If we mistakenly see no partial slabs then we
  1319. * just allocate an empty slab. If we mistakenly try to get a
  1320. * partial slab and there is none available then get_partials()
  1321. * will return NULL.
  1322. */
  1323. if (!n || !n->nr_partial)
  1324. return NULL;
  1325. spin_lock(&n->list_lock);
  1326. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1327. void *t;
  1328. if (!pfmemalloc_match(page, flags))
  1329. continue;
  1330. t = acquire_slab(s, n, page, object == NULL, &objects);
  1331. if (!t)
  1332. break;
  1333. available += objects;
  1334. if (!object) {
  1335. c->page = page;
  1336. stat(s, ALLOC_FROM_PARTIAL);
  1337. object = t;
  1338. } else {
  1339. put_cpu_partial(s, page, 0);
  1340. stat(s, CPU_PARTIAL_NODE);
  1341. }
  1342. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1343. break;
  1344. }
  1345. spin_unlock(&n->list_lock);
  1346. return object;
  1347. }
  1348. /*
  1349. * Get a page from somewhere. Search in increasing NUMA distances.
  1350. */
  1351. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1352. struct kmem_cache_cpu *c)
  1353. {
  1354. #ifdef CONFIG_NUMA
  1355. struct zonelist *zonelist;
  1356. struct zoneref *z;
  1357. struct zone *zone;
  1358. enum zone_type high_zoneidx = gfp_zone(flags);
  1359. void *object;
  1360. unsigned int cpuset_mems_cookie;
  1361. /*
  1362. * The defrag ratio allows a configuration of the tradeoffs between
  1363. * inter node defragmentation and node local allocations. A lower
  1364. * defrag_ratio increases the tendency to do local allocations
  1365. * instead of attempting to obtain partial slabs from other nodes.
  1366. *
  1367. * If the defrag_ratio is set to 0 then kmalloc() always
  1368. * returns node local objects. If the ratio is higher then kmalloc()
  1369. * may return off node objects because partial slabs are obtained
  1370. * from other nodes and filled up.
  1371. *
  1372. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1373. * defrag_ratio = 1000) then every (well almost) allocation will
  1374. * first attempt to defrag slab caches on other nodes. This means
  1375. * scanning over all nodes to look for partial slabs which may be
  1376. * expensive if we do it every time we are trying to find a slab
  1377. * with available objects.
  1378. */
  1379. if (!s->remote_node_defrag_ratio ||
  1380. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1381. return NULL;
  1382. do {
  1383. cpuset_mems_cookie = get_mems_allowed();
  1384. zonelist = node_zonelist(slab_node(), flags);
  1385. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1386. struct kmem_cache_node *n;
  1387. n = get_node(s, zone_to_nid(zone));
  1388. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1389. n->nr_partial > s->min_partial) {
  1390. object = get_partial_node(s, n, c, flags);
  1391. if (object) {
  1392. /*
  1393. * Return the object even if
  1394. * put_mems_allowed indicated that
  1395. * the cpuset mems_allowed was
  1396. * updated in parallel. It's a
  1397. * harmless race between the alloc
  1398. * and the cpuset update.
  1399. */
  1400. put_mems_allowed(cpuset_mems_cookie);
  1401. return object;
  1402. }
  1403. }
  1404. }
  1405. } while (!put_mems_allowed(cpuset_mems_cookie));
  1406. #endif
  1407. return NULL;
  1408. }
  1409. /*
  1410. * Get a partial page, lock it and return it.
  1411. */
  1412. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1413. struct kmem_cache_cpu *c)
  1414. {
  1415. void *object;
  1416. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1417. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1418. if (object || node != NUMA_NO_NODE)
  1419. return object;
  1420. return get_any_partial(s, flags, c);
  1421. }
  1422. #ifdef CONFIG_PREEMPT
  1423. /*
  1424. * Calculate the next globally unique transaction for disambiguiation
  1425. * during cmpxchg. The transactions start with the cpu number and are then
  1426. * incremented by CONFIG_NR_CPUS.
  1427. */
  1428. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1429. #else
  1430. /*
  1431. * No preemption supported therefore also no need to check for
  1432. * different cpus.
  1433. */
  1434. #define TID_STEP 1
  1435. #endif
  1436. static inline unsigned long next_tid(unsigned long tid)
  1437. {
  1438. return tid + TID_STEP;
  1439. }
  1440. static inline unsigned int tid_to_cpu(unsigned long tid)
  1441. {
  1442. return tid % TID_STEP;
  1443. }
  1444. static inline unsigned long tid_to_event(unsigned long tid)
  1445. {
  1446. return tid / TID_STEP;
  1447. }
  1448. static inline unsigned int init_tid(int cpu)
  1449. {
  1450. return cpu;
  1451. }
  1452. static inline void note_cmpxchg_failure(const char *n,
  1453. const struct kmem_cache *s, unsigned long tid)
  1454. {
  1455. #ifdef SLUB_DEBUG_CMPXCHG
  1456. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1457. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1458. #ifdef CONFIG_PREEMPT
  1459. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1460. printk("due to cpu change %d -> %d\n",
  1461. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1462. else
  1463. #endif
  1464. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1465. printk("due to cpu running other code. Event %ld->%ld\n",
  1466. tid_to_event(tid), tid_to_event(actual_tid));
  1467. else
  1468. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1469. actual_tid, tid, next_tid(tid));
  1470. #endif
  1471. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1472. }
  1473. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1474. {
  1475. int cpu;
  1476. for_each_possible_cpu(cpu)
  1477. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1478. }
  1479. /*
  1480. * Remove the cpu slab
  1481. */
  1482. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1483. {
  1484. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1485. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1486. int lock = 0;
  1487. enum slab_modes l = M_NONE, m = M_NONE;
  1488. void *nextfree;
  1489. int tail = DEACTIVATE_TO_HEAD;
  1490. struct page new;
  1491. struct page old;
  1492. if (page->freelist) {
  1493. stat(s, DEACTIVATE_REMOTE_FREES);
  1494. tail = DEACTIVATE_TO_TAIL;
  1495. }
  1496. /*
  1497. * Stage one: Free all available per cpu objects back
  1498. * to the page freelist while it is still frozen. Leave the
  1499. * last one.
  1500. *
  1501. * There is no need to take the list->lock because the page
  1502. * is still frozen.
  1503. */
  1504. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1505. void *prior;
  1506. unsigned long counters;
  1507. do {
  1508. prior = page->freelist;
  1509. counters = page->counters;
  1510. set_freepointer(s, freelist, prior);
  1511. new.counters = counters;
  1512. new.inuse--;
  1513. VM_BUG_ON(!new.frozen);
  1514. } while (!__cmpxchg_double_slab(s, page,
  1515. prior, counters,
  1516. freelist, new.counters,
  1517. "drain percpu freelist"));
  1518. freelist = nextfree;
  1519. }
  1520. /*
  1521. * Stage two: Ensure that the page is unfrozen while the
  1522. * list presence reflects the actual number of objects
  1523. * during unfreeze.
  1524. *
  1525. * We setup the list membership and then perform a cmpxchg
  1526. * with the count. If there is a mismatch then the page
  1527. * is not unfrozen but the page is on the wrong list.
  1528. *
  1529. * Then we restart the process which may have to remove
  1530. * the page from the list that we just put it on again
  1531. * because the number of objects in the slab may have
  1532. * changed.
  1533. */
  1534. redo:
  1535. old.freelist = page->freelist;
  1536. old.counters = page->counters;
  1537. VM_BUG_ON(!old.frozen);
  1538. /* Determine target state of the slab */
  1539. new.counters = old.counters;
  1540. if (freelist) {
  1541. new.inuse--;
  1542. set_freepointer(s, freelist, old.freelist);
  1543. new.freelist = freelist;
  1544. } else
  1545. new.freelist = old.freelist;
  1546. new.frozen = 0;
  1547. if (!new.inuse && n->nr_partial > s->min_partial)
  1548. m = M_FREE;
  1549. else if (new.freelist) {
  1550. m = M_PARTIAL;
  1551. if (!lock) {
  1552. lock = 1;
  1553. /*
  1554. * Taking the spinlock removes the possiblity
  1555. * that acquire_slab() will see a slab page that
  1556. * is frozen
  1557. */
  1558. spin_lock(&n->list_lock);
  1559. }
  1560. } else {
  1561. m = M_FULL;
  1562. if (kmem_cache_debug(s) && !lock) {
  1563. lock = 1;
  1564. /*
  1565. * This also ensures that the scanning of full
  1566. * slabs from diagnostic functions will not see
  1567. * any frozen slabs.
  1568. */
  1569. spin_lock(&n->list_lock);
  1570. }
  1571. }
  1572. if (l != m) {
  1573. if (l == M_PARTIAL)
  1574. remove_partial(n, page);
  1575. else if (l == M_FULL)
  1576. remove_full(s, page);
  1577. if (m == M_PARTIAL) {
  1578. add_partial(n, page, tail);
  1579. stat(s, tail);
  1580. } else if (m == M_FULL) {
  1581. stat(s, DEACTIVATE_FULL);
  1582. add_full(s, n, page);
  1583. }
  1584. }
  1585. l = m;
  1586. if (!__cmpxchg_double_slab(s, page,
  1587. old.freelist, old.counters,
  1588. new.freelist, new.counters,
  1589. "unfreezing slab"))
  1590. goto redo;
  1591. if (lock)
  1592. spin_unlock(&n->list_lock);
  1593. if (m == M_FREE) {
  1594. stat(s, DEACTIVATE_EMPTY);
  1595. discard_slab(s, page);
  1596. stat(s, FREE_SLAB);
  1597. }
  1598. }
  1599. /*
  1600. * Unfreeze all the cpu partial slabs.
  1601. *
  1602. * This function must be called with interrupts disabled
  1603. * for the cpu using c (or some other guarantee must be there
  1604. * to guarantee no concurrent accesses).
  1605. */
  1606. static void unfreeze_partials(struct kmem_cache *s,
  1607. struct kmem_cache_cpu *c)
  1608. {
  1609. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1610. struct page *page, *discard_page = NULL;
  1611. while ((page = c->partial)) {
  1612. struct page new;
  1613. struct page old;
  1614. c->partial = page->next;
  1615. n2 = get_node(s, page_to_nid(page));
  1616. if (n != n2) {
  1617. if (n)
  1618. spin_unlock(&n->list_lock);
  1619. n = n2;
  1620. spin_lock(&n->list_lock);
  1621. }
  1622. do {
  1623. old.freelist = page->freelist;
  1624. old.counters = page->counters;
  1625. VM_BUG_ON(!old.frozen);
  1626. new.counters = old.counters;
  1627. new.freelist = old.freelist;
  1628. new.frozen = 0;
  1629. } while (!__cmpxchg_double_slab(s, page,
  1630. old.freelist, old.counters,
  1631. new.freelist, new.counters,
  1632. "unfreezing slab"));
  1633. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1634. page->next = discard_page;
  1635. discard_page = page;
  1636. } else {
  1637. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1638. stat(s, FREE_ADD_PARTIAL);
  1639. }
  1640. }
  1641. if (n)
  1642. spin_unlock(&n->list_lock);
  1643. while (discard_page) {
  1644. page = discard_page;
  1645. discard_page = discard_page->next;
  1646. stat(s, DEACTIVATE_EMPTY);
  1647. discard_slab(s, page);
  1648. stat(s, FREE_SLAB);
  1649. }
  1650. }
  1651. /*
  1652. * Put a page that was just frozen (in __slab_free) into a partial page
  1653. * slot if available. This is done without interrupts disabled and without
  1654. * preemption disabled. The cmpxchg is racy and may put the partial page
  1655. * onto a random cpus partial slot.
  1656. *
  1657. * If we did not find a slot then simply move all the partials to the
  1658. * per node partial list.
  1659. */
  1660. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1661. {
  1662. struct page *oldpage;
  1663. int pages;
  1664. int pobjects;
  1665. do {
  1666. pages = 0;
  1667. pobjects = 0;
  1668. oldpage = this_cpu_read(s->cpu_slab->partial);
  1669. if (oldpage) {
  1670. pobjects = oldpage->pobjects;
  1671. pages = oldpage->pages;
  1672. if (drain && pobjects > s->cpu_partial) {
  1673. unsigned long flags;
  1674. /*
  1675. * partial array is full. Move the existing
  1676. * set to the per node partial list.
  1677. */
  1678. local_irq_save(flags);
  1679. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1680. local_irq_restore(flags);
  1681. oldpage = NULL;
  1682. pobjects = 0;
  1683. pages = 0;
  1684. stat(s, CPU_PARTIAL_DRAIN);
  1685. }
  1686. }
  1687. pages++;
  1688. pobjects += page->objects - page->inuse;
  1689. page->pages = pages;
  1690. page->pobjects = pobjects;
  1691. page->next = oldpage;
  1692. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1693. }
  1694. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1695. {
  1696. stat(s, CPUSLAB_FLUSH);
  1697. deactivate_slab(s, c->page, c->freelist);
  1698. c->tid = next_tid(c->tid);
  1699. c->page = NULL;
  1700. c->freelist = NULL;
  1701. }
  1702. /*
  1703. * Flush cpu slab.
  1704. *
  1705. * Called from IPI handler with interrupts disabled.
  1706. */
  1707. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1708. {
  1709. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1710. if (likely(c)) {
  1711. if (c->page)
  1712. flush_slab(s, c);
  1713. unfreeze_partials(s, c);
  1714. }
  1715. }
  1716. static void flush_cpu_slab(void *d)
  1717. {
  1718. struct kmem_cache *s = d;
  1719. __flush_cpu_slab(s, smp_processor_id());
  1720. }
  1721. static bool has_cpu_slab(int cpu, void *info)
  1722. {
  1723. struct kmem_cache *s = info;
  1724. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1725. return c->page || c->partial;
  1726. }
  1727. static void flush_all(struct kmem_cache *s)
  1728. {
  1729. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1730. }
  1731. /*
  1732. * Check if the objects in a per cpu structure fit numa
  1733. * locality expectations.
  1734. */
  1735. static inline int node_match(struct page *page, int node)
  1736. {
  1737. #ifdef CONFIG_NUMA
  1738. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1739. return 0;
  1740. #endif
  1741. return 1;
  1742. }
  1743. static int count_free(struct page *page)
  1744. {
  1745. return page->objects - page->inuse;
  1746. }
  1747. static unsigned long count_partial(struct kmem_cache_node *n,
  1748. int (*get_count)(struct page *))
  1749. {
  1750. unsigned long flags;
  1751. unsigned long x = 0;
  1752. struct page *page;
  1753. spin_lock_irqsave(&n->list_lock, flags);
  1754. list_for_each_entry(page, &n->partial, lru)
  1755. x += get_count(page);
  1756. spin_unlock_irqrestore(&n->list_lock, flags);
  1757. return x;
  1758. }
  1759. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1760. {
  1761. #ifdef CONFIG_SLUB_DEBUG
  1762. return atomic_long_read(&n->total_objects);
  1763. #else
  1764. return 0;
  1765. #endif
  1766. }
  1767. static noinline void
  1768. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1769. {
  1770. int node;
  1771. printk(KERN_WARNING
  1772. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1773. nid, gfpflags);
  1774. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1775. "default order: %d, min order: %d\n", s->name, s->object_size,
  1776. s->size, oo_order(s->oo), oo_order(s->min));
  1777. if (oo_order(s->min) > get_order(s->object_size))
  1778. printk(KERN_WARNING " %s debugging increased min order, use "
  1779. "slub_debug=O to disable.\n", s->name);
  1780. for_each_online_node(node) {
  1781. struct kmem_cache_node *n = get_node(s, node);
  1782. unsigned long nr_slabs;
  1783. unsigned long nr_objs;
  1784. unsigned long nr_free;
  1785. if (!n)
  1786. continue;
  1787. nr_free = count_partial(n, count_free);
  1788. nr_slabs = node_nr_slabs(n);
  1789. nr_objs = node_nr_objs(n);
  1790. printk(KERN_WARNING
  1791. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1792. node, nr_slabs, nr_objs, nr_free);
  1793. }
  1794. }
  1795. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1796. int node, struct kmem_cache_cpu **pc)
  1797. {
  1798. void *freelist;
  1799. struct kmem_cache_cpu *c = *pc;
  1800. struct page *page;
  1801. freelist = get_partial(s, flags, node, c);
  1802. if (freelist)
  1803. return freelist;
  1804. page = new_slab(s, flags, node);
  1805. if (page) {
  1806. c = __this_cpu_ptr(s->cpu_slab);
  1807. if (c->page)
  1808. flush_slab(s, c);
  1809. /*
  1810. * No other reference to the page yet so we can
  1811. * muck around with it freely without cmpxchg
  1812. */
  1813. freelist = page->freelist;
  1814. page->freelist = NULL;
  1815. stat(s, ALLOC_SLAB);
  1816. c->page = page;
  1817. *pc = c;
  1818. } else
  1819. freelist = NULL;
  1820. return freelist;
  1821. }
  1822. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1823. {
  1824. if (unlikely(PageSlabPfmemalloc(page)))
  1825. return gfp_pfmemalloc_allowed(gfpflags);
  1826. return true;
  1827. }
  1828. /*
  1829. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1830. * or deactivate the page.
  1831. *
  1832. * The page is still frozen if the return value is not NULL.
  1833. *
  1834. * If this function returns NULL then the page has been unfrozen.
  1835. *
  1836. * This function must be called with interrupt disabled.
  1837. */
  1838. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1839. {
  1840. struct page new;
  1841. unsigned long counters;
  1842. void *freelist;
  1843. do {
  1844. freelist = page->freelist;
  1845. counters = page->counters;
  1846. new.counters = counters;
  1847. VM_BUG_ON(!new.frozen);
  1848. new.inuse = page->objects;
  1849. new.frozen = freelist != NULL;
  1850. } while (!__cmpxchg_double_slab(s, page,
  1851. freelist, counters,
  1852. NULL, new.counters,
  1853. "get_freelist"));
  1854. return freelist;
  1855. }
  1856. /*
  1857. * Slow path. The lockless freelist is empty or we need to perform
  1858. * debugging duties.
  1859. *
  1860. * Processing is still very fast if new objects have been freed to the
  1861. * regular freelist. In that case we simply take over the regular freelist
  1862. * as the lockless freelist and zap the regular freelist.
  1863. *
  1864. * If that is not working then we fall back to the partial lists. We take the
  1865. * first element of the freelist as the object to allocate now and move the
  1866. * rest of the freelist to the lockless freelist.
  1867. *
  1868. * And if we were unable to get a new slab from the partial slab lists then
  1869. * we need to allocate a new slab. This is the slowest path since it involves
  1870. * a call to the page allocator and the setup of a new slab.
  1871. */
  1872. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1873. unsigned long addr, struct kmem_cache_cpu *c)
  1874. {
  1875. void *freelist;
  1876. struct page *page;
  1877. unsigned long flags;
  1878. local_irq_save(flags);
  1879. #ifdef CONFIG_PREEMPT
  1880. /*
  1881. * We may have been preempted and rescheduled on a different
  1882. * cpu before disabling interrupts. Need to reload cpu area
  1883. * pointer.
  1884. */
  1885. c = this_cpu_ptr(s->cpu_slab);
  1886. #endif
  1887. page = c->page;
  1888. if (!page)
  1889. goto new_slab;
  1890. redo:
  1891. if (unlikely(!node_match(page, node))) {
  1892. stat(s, ALLOC_NODE_MISMATCH);
  1893. deactivate_slab(s, page, c->freelist);
  1894. c->page = NULL;
  1895. c->freelist = NULL;
  1896. goto new_slab;
  1897. }
  1898. /*
  1899. * By rights, we should be searching for a slab page that was
  1900. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1901. * information when the page leaves the per-cpu allocator
  1902. */
  1903. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1904. deactivate_slab(s, page, c->freelist);
  1905. c->page = NULL;
  1906. c->freelist = NULL;
  1907. goto new_slab;
  1908. }
  1909. /* must check again c->freelist in case of cpu migration or IRQ */
  1910. freelist = c->freelist;
  1911. if (freelist)
  1912. goto load_freelist;
  1913. stat(s, ALLOC_SLOWPATH);
  1914. freelist = get_freelist(s, page);
  1915. if (!freelist) {
  1916. c->page = NULL;
  1917. stat(s, DEACTIVATE_BYPASS);
  1918. goto new_slab;
  1919. }
  1920. stat(s, ALLOC_REFILL);
  1921. load_freelist:
  1922. /*
  1923. * freelist is pointing to the list of objects to be used.
  1924. * page is pointing to the page from which the objects are obtained.
  1925. * That page must be frozen for per cpu allocations to work.
  1926. */
  1927. VM_BUG_ON(!c->page->frozen);
  1928. c->freelist = get_freepointer(s, freelist);
  1929. c->tid = next_tid(c->tid);
  1930. local_irq_restore(flags);
  1931. return freelist;
  1932. new_slab:
  1933. if (c->partial) {
  1934. page = c->page = c->partial;
  1935. c->partial = page->next;
  1936. stat(s, CPU_PARTIAL_ALLOC);
  1937. c->freelist = NULL;
  1938. goto redo;
  1939. }
  1940. freelist = new_slab_objects(s, gfpflags, node, &c);
  1941. if (unlikely(!freelist)) {
  1942. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1943. slab_out_of_memory(s, gfpflags, node);
  1944. local_irq_restore(flags);
  1945. return NULL;
  1946. }
  1947. page = c->page;
  1948. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1949. goto load_freelist;
  1950. /* Only entered in the debug case */
  1951. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1952. goto new_slab; /* Slab failed checks. Next slab needed */
  1953. deactivate_slab(s, page, get_freepointer(s, freelist));
  1954. c->page = NULL;
  1955. c->freelist = NULL;
  1956. local_irq_restore(flags);
  1957. return freelist;
  1958. }
  1959. /*
  1960. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1961. * have the fastpath folded into their functions. So no function call
  1962. * overhead for requests that can be satisfied on the fastpath.
  1963. *
  1964. * The fastpath works by first checking if the lockless freelist can be used.
  1965. * If not then __slab_alloc is called for slow processing.
  1966. *
  1967. * Otherwise we can simply pick the next object from the lockless free list.
  1968. */
  1969. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1970. gfp_t gfpflags, int node, unsigned long addr)
  1971. {
  1972. void **object;
  1973. struct kmem_cache_cpu *c;
  1974. struct page *page;
  1975. unsigned long tid;
  1976. if (slab_pre_alloc_hook(s, gfpflags))
  1977. return NULL;
  1978. s = memcg_kmem_get_cache(s, gfpflags);
  1979. redo:
  1980. /*
  1981. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1982. * enabled. We may switch back and forth between cpus while
  1983. * reading from one cpu area. That does not matter as long
  1984. * as we end up on the original cpu again when doing the cmpxchg.
  1985. *
  1986. * Preemption is disabled for the retrieval of the tid because that
  1987. * must occur from the current processor. We cannot allow rescheduling
  1988. * on a different processor between the determination of the pointer
  1989. * and the retrieval of the tid.
  1990. */
  1991. preempt_disable();
  1992. c = __this_cpu_ptr(s->cpu_slab);
  1993. /*
  1994. * The transaction ids are globally unique per cpu and per operation on
  1995. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1996. * occurs on the right processor and that there was no operation on the
  1997. * linked list in between.
  1998. */
  1999. tid = c->tid;
  2000. preempt_enable();
  2001. object = c->freelist;
  2002. page = c->page;
  2003. if (unlikely(!object || !node_match(page, node)))
  2004. object = __slab_alloc(s, gfpflags, node, addr, c);
  2005. else {
  2006. void *next_object = get_freepointer_safe(s, object);
  2007. /*
  2008. * The cmpxchg will only match if there was no additional
  2009. * operation and if we are on the right processor.
  2010. *
  2011. * The cmpxchg does the following atomically (without lock semantics!)
  2012. * 1. Relocate first pointer to the current per cpu area.
  2013. * 2. Verify that tid and freelist have not been changed
  2014. * 3. If they were not changed replace tid and freelist
  2015. *
  2016. * Since this is without lock semantics the protection is only against
  2017. * code executing on this cpu *not* from access by other cpus.
  2018. */
  2019. if (unlikely(!this_cpu_cmpxchg_double(
  2020. s->cpu_slab->freelist, s->cpu_slab->tid,
  2021. object, tid,
  2022. next_object, next_tid(tid)))) {
  2023. note_cmpxchg_failure("slab_alloc", s, tid);
  2024. goto redo;
  2025. }
  2026. prefetch_freepointer(s, next_object);
  2027. stat(s, ALLOC_FASTPATH);
  2028. }
  2029. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2030. memset(object, 0, s->object_size);
  2031. slab_post_alloc_hook(s, gfpflags, object);
  2032. return object;
  2033. }
  2034. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2035. gfp_t gfpflags, unsigned long addr)
  2036. {
  2037. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2038. }
  2039. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2040. {
  2041. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2042. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2043. return ret;
  2044. }
  2045. EXPORT_SYMBOL(kmem_cache_alloc);
  2046. #ifdef CONFIG_TRACING
  2047. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2048. {
  2049. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2050. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2051. return ret;
  2052. }
  2053. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2054. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2055. {
  2056. void *ret = kmalloc_order(size, flags, order);
  2057. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2058. return ret;
  2059. }
  2060. EXPORT_SYMBOL(kmalloc_order_trace);
  2061. #endif
  2062. #ifdef CONFIG_NUMA
  2063. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2064. {
  2065. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2066. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2067. s->object_size, s->size, gfpflags, node);
  2068. return ret;
  2069. }
  2070. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2071. #ifdef CONFIG_TRACING
  2072. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2073. gfp_t gfpflags,
  2074. int node, size_t size)
  2075. {
  2076. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2077. trace_kmalloc_node(_RET_IP_, ret,
  2078. size, s->size, gfpflags, node);
  2079. return ret;
  2080. }
  2081. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2082. #endif
  2083. #endif
  2084. /*
  2085. * Slow patch handling. This may still be called frequently since objects
  2086. * have a longer lifetime than the cpu slabs in most processing loads.
  2087. *
  2088. * So we still attempt to reduce cache line usage. Just take the slab
  2089. * lock and free the item. If there is no additional partial page
  2090. * handling required then we can return immediately.
  2091. */
  2092. static void __slab_free(struct kmem_cache *s, struct page *page,
  2093. void *x, unsigned long addr)
  2094. {
  2095. void *prior;
  2096. void **object = (void *)x;
  2097. int was_frozen;
  2098. struct page new;
  2099. unsigned long counters;
  2100. struct kmem_cache_node *n = NULL;
  2101. unsigned long uninitialized_var(flags);
  2102. stat(s, FREE_SLOWPATH);
  2103. if (kmem_cache_debug(s) &&
  2104. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2105. return;
  2106. do {
  2107. if (unlikely(n)) {
  2108. spin_unlock_irqrestore(&n->list_lock, flags);
  2109. n = NULL;
  2110. }
  2111. prior = page->freelist;
  2112. counters = page->counters;
  2113. set_freepointer(s, object, prior);
  2114. new.counters = counters;
  2115. was_frozen = new.frozen;
  2116. new.inuse--;
  2117. if ((!new.inuse || !prior) && !was_frozen) {
  2118. if (!kmem_cache_debug(s) && !prior)
  2119. /*
  2120. * Slab was on no list before and will be partially empty
  2121. * We can defer the list move and instead freeze it.
  2122. */
  2123. new.frozen = 1;
  2124. else { /* Needs to be taken off a list */
  2125. n = get_node(s, page_to_nid(page));
  2126. /*
  2127. * Speculatively acquire the list_lock.
  2128. * If the cmpxchg does not succeed then we may
  2129. * drop the list_lock without any processing.
  2130. *
  2131. * Otherwise the list_lock will synchronize with
  2132. * other processors updating the list of slabs.
  2133. */
  2134. spin_lock_irqsave(&n->list_lock, flags);
  2135. }
  2136. }
  2137. } while (!cmpxchg_double_slab(s, page,
  2138. prior, counters,
  2139. object, new.counters,
  2140. "__slab_free"));
  2141. if (likely(!n)) {
  2142. /*
  2143. * If we just froze the page then put it onto the
  2144. * per cpu partial list.
  2145. */
  2146. if (new.frozen && !was_frozen) {
  2147. put_cpu_partial(s, page, 1);
  2148. stat(s, CPU_PARTIAL_FREE);
  2149. }
  2150. /*
  2151. * The list lock was not taken therefore no list
  2152. * activity can be necessary.
  2153. */
  2154. if (was_frozen)
  2155. stat(s, FREE_FROZEN);
  2156. return;
  2157. }
  2158. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2159. goto slab_empty;
  2160. /*
  2161. * Objects left in the slab. If it was not on the partial list before
  2162. * then add it.
  2163. */
  2164. if (kmem_cache_debug(s) && unlikely(!prior)) {
  2165. remove_full(s, page);
  2166. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2167. stat(s, FREE_ADD_PARTIAL);
  2168. }
  2169. spin_unlock_irqrestore(&n->list_lock, flags);
  2170. return;
  2171. slab_empty:
  2172. if (prior) {
  2173. /*
  2174. * Slab on the partial list.
  2175. */
  2176. remove_partial(n, page);
  2177. stat(s, FREE_REMOVE_PARTIAL);
  2178. } else
  2179. /* Slab must be on the full list */
  2180. remove_full(s, page);
  2181. spin_unlock_irqrestore(&n->list_lock, flags);
  2182. stat(s, FREE_SLAB);
  2183. discard_slab(s, page);
  2184. }
  2185. /*
  2186. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2187. * can perform fastpath freeing without additional function calls.
  2188. *
  2189. * The fastpath is only possible if we are freeing to the current cpu slab
  2190. * of this processor. This typically the case if we have just allocated
  2191. * the item before.
  2192. *
  2193. * If fastpath is not possible then fall back to __slab_free where we deal
  2194. * with all sorts of special processing.
  2195. */
  2196. static __always_inline void slab_free(struct kmem_cache *s,
  2197. struct page *page, void *x, unsigned long addr)
  2198. {
  2199. void **object = (void *)x;
  2200. struct kmem_cache_cpu *c;
  2201. unsigned long tid;
  2202. slab_free_hook(s, x);
  2203. redo:
  2204. /*
  2205. * Determine the currently cpus per cpu slab.
  2206. * The cpu may change afterward. However that does not matter since
  2207. * data is retrieved via this pointer. If we are on the same cpu
  2208. * during the cmpxchg then the free will succedd.
  2209. */
  2210. preempt_disable();
  2211. c = __this_cpu_ptr(s->cpu_slab);
  2212. tid = c->tid;
  2213. preempt_enable();
  2214. if (likely(page == c->page)) {
  2215. set_freepointer(s, object, c->freelist);
  2216. if (unlikely(!this_cpu_cmpxchg_double(
  2217. s->cpu_slab->freelist, s->cpu_slab->tid,
  2218. c->freelist, tid,
  2219. object, next_tid(tid)))) {
  2220. note_cmpxchg_failure("slab_free", s, tid);
  2221. goto redo;
  2222. }
  2223. stat(s, FREE_FASTPATH);
  2224. } else
  2225. __slab_free(s, page, x, addr);
  2226. }
  2227. void kmem_cache_free(struct kmem_cache *s, void *x)
  2228. {
  2229. s = cache_from_obj(s, x);
  2230. if (!s)
  2231. return;
  2232. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2233. trace_kmem_cache_free(_RET_IP_, x);
  2234. }
  2235. EXPORT_SYMBOL(kmem_cache_free);
  2236. /*
  2237. * Object placement in a slab is made very easy because we always start at
  2238. * offset 0. If we tune the size of the object to the alignment then we can
  2239. * get the required alignment by putting one properly sized object after
  2240. * another.
  2241. *
  2242. * Notice that the allocation order determines the sizes of the per cpu
  2243. * caches. Each processor has always one slab available for allocations.
  2244. * Increasing the allocation order reduces the number of times that slabs
  2245. * must be moved on and off the partial lists and is therefore a factor in
  2246. * locking overhead.
  2247. */
  2248. /*
  2249. * Mininum / Maximum order of slab pages. This influences locking overhead
  2250. * and slab fragmentation. A higher order reduces the number of partial slabs
  2251. * and increases the number of allocations possible without having to
  2252. * take the list_lock.
  2253. */
  2254. static int slub_min_order;
  2255. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2256. static int slub_min_objects;
  2257. /*
  2258. * Merge control. If this is set then no merging of slab caches will occur.
  2259. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2260. */
  2261. static int slub_nomerge;
  2262. /*
  2263. * Calculate the order of allocation given an slab object size.
  2264. *
  2265. * The order of allocation has significant impact on performance and other
  2266. * system components. Generally order 0 allocations should be preferred since
  2267. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2268. * be problematic to put into order 0 slabs because there may be too much
  2269. * unused space left. We go to a higher order if more than 1/16th of the slab
  2270. * would be wasted.
  2271. *
  2272. * In order to reach satisfactory performance we must ensure that a minimum
  2273. * number of objects is in one slab. Otherwise we may generate too much
  2274. * activity on the partial lists which requires taking the list_lock. This is
  2275. * less a concern for large slabs though which are rarely used.
  2276. *
  2277. * slub_max_order specifies the order where we begin to stop considering the
  2278. * number of objects in a slab as critical. If we reach slub_max_order then
  2279. * we try to keep the page order as low as possible. So we accept more waste
  2280. * of space in favor of a small page order.
  2281. *
  2282. * Higher order allocations also allow the placement of more objects in a
  2283. * slab and thereby reduce object handling overhead. If the user has
  2284. * requested a higher mininum order then we start with that one instead of
  2285. * the smallest order which will fit the object.
  2286. */
  2287. static inline int slab_order(int size, int min_objects,
  2288. int max_order, int fract_leftover, int reserved)
  2289. {
  2290. int order;
  2291. int rem;
  2292. int min_order = slub_min_order;
  2293. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2294. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2295. for (order = max(min_order,
  2296. fls(min_objects * size - 1) - PAGE_SHIFT);
  2297. order <= max_order; order++) {
  2298. unsigned long slab_size = PAGE_SIZE << order;
  2299. if (slab_size < min_objects * size + reserved)
  2300. continue;
  2301. rem = (slab_size - reserved) % size;
  2302. if (rem <= slab_size / fract_leftover)
  2303. break;
  2304. }
  2305. return order;
  2306. }
  2307. static inline int calculate_order(int size, int reserved)
  2308. {
  2309. int order;
  2310. int min_objects;
  2311. int fraction;
  2312. int max_objects;
  2313. /*
  2314. * Attempt to find best configuration for a slab. This
  2315. * works by first attempting to generate a layout with
  2316. * the best configuration and backing off gradually.
  2317. *
  2318. * First we reduce the acceptable waste in a slab. Then
  2319. * we reduce the minimum objects required in a slab.
  2320. */
  2321. min_objects = slub_min_objects;
  2322. if (!min_objects)
  2323. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2324. max_objects = order_objects(slub_max_order, size, reserved);
  2325. min_objects = min(min_objects, max_objects);
  2326. while (min_objects > 1) {
  2327. fraction = 16;
  2328. while (fraction >= 4) {
  2329. order = slab_order(size, min_objects,
  2330. slub_max_order, fraction, reserved);
  2331. if (order <= slub_max_order)
  2332. return order;
  2333. fraction /= 2;
  2334. }
  2335. min_objects--;
  2336. }
  2337. /*
  2338. * We were unable to place multiple objects in a slab. Now
  2339. * lets see if we can place a single object there.
  2340. */
  2341. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2342. if (order <= slub_max_order)
  2343. return order;
  2344. /*
  2345. * Doh this slab cannot be placed using slub_max_order.
  2346. */
  2347. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2348. if (order < MAX_ORDER)
  2349. return order;
  2350. return -ENOSYS;
  2351. }
  2352. static void
  2353. init_kmem_cache_node(struct kmem_cache_node *n)
  2354. {
  2355. n->nr_partial = 0;
  2356. spin_lock_init(&n->list_lock);
  2357. INIT_LIST_HEAD(&n->partial);
  2358. #ifdef CONFIG_SLUB_DEBUG
  2359. atomic_long_set(&n->nr_slabs, 0);
  2360. atomic_long_set(&n->total_objects, 0);
  2361. INIT_LIST_HEAD(&n->full);
  2362. #endif
  2363. }
  2364. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2365. {
  2366. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2367. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2368. /*
  2369. * Must align to double word boundary for the double cmpxchg
  2370. * instructions to work; see __pcpu_double_call_return_bool().
  2371. */
  2372. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2373. 2 * sizeof(void *));
  2374. if (!s->cpu_slab)
  2375. return 0;
  2376. init_kmem_cache_cpus(s);
  2377. return 1;
  2378. }
  2379. static struct kmem_cache *kmem_cache_node;
  2380. /*
  2381. * No kmalloc_node yet so do it by hand. We know that this is the first
  2382. * slab on the node for this slabcache. There are no concurrent accesses
  2383. * possible.
  2384. *
  2385. * Note that this function only works on the kmalloc_node_cache
  2386. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2387. * memory on a fresh node that has no slab structures yet.
  2388. */
  2389. static void early_kmem_cache_node_alloc(int node)
  2390. {
  2391. struct page *page;
  2392. struct kmem_cache_node *n;
  2393. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2394. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2395. BUG_ON(!page);
  2396. if (page_to_nid(page) != node) {
  2397. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2398. "node %d\n", node);
  2399. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2400. "in order to be able to continue\n");
  2401. }
  2402. n = page->freelist;
  2403. BUG_ON(!n);
  2404. page->freelist = get_freepointer(kmem_cache_node, n);
  2405. page->inuse = 1;
  2406. page->frozen = 0;
  2407. kmem_cache_node->node[node] = n;
  2408. #ifdef CONFIG_SLUB_DEBUG
  2409. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2410. init_tracking(kmem_cache_node, n);
  2411. #endif
  2412. init_kmem_cache_node(n);
  2413. inc_slabs_node(kmem_cache_node, node, page->objects);
  2414. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2415. }
  2416. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2417. {
  2418. int node;
  2419. for_each_node_state(node, N_NORMAL_MEMORY) {
  2420. struct kmem_cache_node *n = s->node[node];
  2421. if (n)
  2422. kmem_cache_free(kmem_cache_node, n);
  2423. s->node[node] = NULL;
  2424. }
  2425. }
  2426. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2427. {
  2428. int node;
  2429. for_each_node_state(node, N_NORMAL_MEMORY) {
  2430. struct kmem_cache_node *n;
  2431. if (slab_state == DOWN) {
  2432. early_kmem_cache_node_alloc(node);
  2433. continue;
  2434. }
  2435. n = kmem_cache_alloc_node(kmem_cache_node,
  2436. GFP_KERNEL, node);
  2437. if (!n) {
  2438. free_kmem_cache_nodes(s);
  2439. return 0;
  2440. }
  2441. s->node[node] = n;
  2442. init_kmem_cache_node(n);
  2443. }
  2444. return 1;
  2445. }
  2446. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2447. {
  2448. if (min < MIN_PARTIAL)
  2449. min = MIN_PARTIAL;
  2450. else if (min > MAX_PARTIAL)
  2451. min = MAX_PARTIAL;
  2452. s->min_partial = min;
  2453. }
  2454. /*
  2455. * calculate_sizes() determines the order and the distribution of data within
  2456. * a slab object.
  2457. */
  2458. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2459. {
  2460. unsigned long flags = s->flags;
  2461. unsigned long size = s->object_size;
  2462. int order;
  2463. /*
  2464. * Round up object size to the next word boundary. We can only
  2465. * place the free pointer at word boundaries and this determines
  2466. * the possible location of the free pointer.
  2467. */
  2468. size = ALIGN(size, sizeof(void *));
  2469. #ifdef CONFIG_SLUB_DEBUG
  2470. /*
  2471. * Determine if we can poison the object itself. If the user of
  2472. * the slab may touch the object after free or before allocation
  2473. * then we should never poison the object itself.
  2474. */
  2475. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2476. !s->ctor)
  2477. s->flags |= __OBJECT_POISON;
  2478. else
  2479. s->flags &= ~__OBJECT_POISON;
  2480. /*
  2481. * If we are Redzoning then check if there is some space between the
  2482. * end of the object and the free pointer. If not then add an
  2483. * additional word to have some bytes to store Redzone information.
  2484. */
  2485. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2486. size += sizeof(void *);
  2487. #endif
  2488. /*
  2489. * With that we have determined the number of bytes in actual use
  2490. * by the object. This is the potential offset to the free pointer.
  2491. */
  2492. s->inuse = size;
  2493. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2494. s->ctor)) {
  2495. /*
  2496. * Relocate free pointer after the object if it is not
  2497. * permitted to overwrite the first word of the object on
  2498. * kmem_cache_free.
  2499. *
  2500. * This is the case if we do RCU, have a constructor or
  2501. * destructor or are poisoning the objects.
  2502. */
  2503. s->offset = size;
  2504. size += sizeof(void *);
  2505. }
  2506. #ifdef CONFIG_SLUB_DEBUG
  2507. if (flags & SLAB_STORE_USER)
  2508. /*
  2509. * Need to store information about allocs and frees after
  2510. * the object.
  2511. */
  2512. size += 2 * sizeof(struct track);
  2513. if (flags & SLAB_RED_ZONE)
  2514. /*
  2515. * Add some empty padding so that we can catch
  2516. * overwrites from earlier objects rather than let
  2517. * tracking information or the free pointer be
  2518. * corrupted if a user writes before the start
  2519. * of the object.
  2520. */
  2521. size += sizeof(void *);
  2522. #endif
  2523. /*
  2524. * SLUB stores one object immediately after another beginning from
  2525. * offset 0. In order to align the objects we have to simply size
  2526. * each object to conform to the alignment.
  2527. */
  2528. size = ALIGN(size, s->align);
  2529. s->size = size;
  2530. if (forced_order >= 0)
  2531. order = forced_order;
  2532. else
  2533. order = calculate_order(size, s->reserved);
  2534. if (order < 0)
  2535. return 0;
  2536. s->allocflags = 0;
  2537. if (order)
  2538. s->allocflags |= __GFP_COMP;
  2539. if (s->flags & SLAB_CACHE_DMA)
  2540. s->allocflags |= GFP_DMA;
  2541. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2542. s->allocflags |= __GFP_RECLAIMABLE;
  2543. /*
  2544. * Determine the number of objects per slab
  2545. */
  2546. s->oo = oo_make(order, size, s->reserved);
  2547. s->min = oo_make(get_order(size), size, s->reserved);
  2548. if (oo_objects(s->oo) > oo_objects(s->max))
  2549. s->max = s->oo;
  2550. return !!oo_objects(s->oo);
  2551. }
  2552. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2553. {
  2554. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2555. s->reserved = 0;
  2556. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2557. s->reserved = sizeof(struct rcu_head);
  2558. if (!calculate_sizes(s, -1))
  2559. goto error;
  2560. if (disable_higher_order_debug) {
  2561. /*
  2562. * Disable debugging flags that store metadata if the min slab
  2563. * order increased.
  2564. */
  2565. if (get_order(s->size) > get_order(s->object_size)) {
  2566. s->flags &= ~DEBUG_METADATA_FLAGS;
  2567. s->offset = 0;
  2568. if (!calculate_sizes(s, -1))
  2569. goto error;
  2570. }
  2571. }
  2572. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2573. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2574. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2575. /* Enable fast mode */
  2576. s->flags |= __CMPXCHG_DOUBLE;
  2577. #endif
  2578. /*
  2579. * The larger the object size is, the more pages we want on the partial
  2580. * list to avoid pounding the page allocator excessively.
  2581. */
  2582. set_min_partial(s, ilog2(s->size) / 2);
  2583. /*
  2584. * cpu_partial determined the maximum number of objects kept in the
  2585. * per cpu partial lists of a processor.
  2586. *
  2587. * Per cpu partial lists mainly contain slabs that just have one
  2588. * object freed. If they are used for allocation then they can be
  2589. * filled up again with minimal effort. The slab will never hit the
  2590. * per node partial lists and therefore no locking will be required.
  2591. *
  2592. * This setting also determines
  2593. *
  2594. * A) The number of objects from per cpu partial slabs dumped to the
  2595. * per node list when we reach the limit.
  2596. * B) The number of objects in cpu partial slabs to extract from the
  2597. * per node list when we run out of per cpu objects. We only fetch 50%
  2598. * to keep some capacity around for frees.
  2599. */
  2600. if (kmem_cache_debug(s))
  2601. s->cpu_partial = 0;
  2602. else if (s->size >= PAGE_SIZE)
  2603. s->cpu_partial = 2;
  2604. else if (s->size >= 1024)
  2605. s->cpu_partial = 6;
  2606. else if (s->size >= 256)
  2607. s->cpu_partial = 13;
  2608. else
  2609. s->cpu_partial = 30;
  2610. #ifdef CONFIG_NUMA
  2611. s->remote_node_defrag_ratio = 1000;
  2612. #endif
  2613. if (!init_kmem_cache_nodes(s))
  2614. goto error;
  2615. if (alloc_kmem_cache_cpus(s))
  2616. return 0;
  2617. free_kmem_cache_nodes(s);
  2618. error:
  2619. if (flags & SLAB_PANIC)
  2620. panic("Cannot create slab %s size=%lu realsize=%u "
  2621. "order=%u offset=%u flags=%lx\n",
  2622. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2623. s->offset, flags);
  2624. return -EINVAL;
  2625. }
  2626. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2627. const char *text)
  2628. {
  2629. #ifdef CONFIG_SLUB_DEBUG
  2630. void *addr = page_address(page);
  2631. void *p;
  2632. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2633. sizeof(long), GFP_ATOMIC);
  2634. if (!map)
  2635. return;
  2636. slab_err(s, page, text, s->name);
  2637. slab_lock(page);
  2638. get_map(s, page, map);
  2639. for_each_object(p, s, addr, page->objects) {
  2640. if (!test_bit(slab_index(p, s, addr), map)) {
  2641. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2642. p, p - addr);
  2643. print_tracking(s, p);
  2644. }
  2645. }
  2646. slab_unlock(page);
  2647. kfree(map);
  2648. #endif
  2649. }
  2650. /*
  2651. * Attempt to free all partial slabs on a node.
  2652. * This is called from kmem_cache_close(). We must be the last thread
  2653. * using the cache and therefore we do not need to lock anymore.
  2654. */
  2655. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2656. {
  2657. struct page *page, *h;
  2658. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2659. if (!page->inuse) {
  2660. remove_partial(n, page);
  2661. discard_slab(s, page);
  2662. } else {
  2663. list_slab_objects(s, page,
  2664. "Objects remaining in %s on kmem_cache_close()");
  2665. }
  2666. }
  2667. }
  2668. /*
  2669. * Release all resources used by a slab cache.
  2670. */
  2671. static inline int kmem_cache_close(struct kmem_cache *s)
  2672. {
  2673. int node;
  2674. flush_all(s);
  2675. /* Attempt to free all objects */
  2676. for_each_node_state(node, N_NORMAL_MEMORY) {
  2677. struct kmem_cache_node *n = get_node(s, node);
  2678. free_partial(s, n);
  2679. if (n->nr_partial || slabs_node(s, node))
  2680. return 1;
  2681. }
  2682. free_percpu(s->cpu_slab);
  2683. free_kmem_cache_nodes(s);
  2684. return 0;
  2685. }
  2686. int __kmem_cache_shutdown(struct kmem_cache *s)
  2687. {
  2688. int rc = kmem_cache_close(s);
  2689. if (!rc) {
  2690. /*
  2691. * We do the same lock strategy around sysfs_slab_add, see
  2692. * __kmem_cache_create. Because this is pretty much the last
  2693. * operation we do and the lock will be released shortly after
  2694. * that in slab_common.c, we could just move sysfs_slab_remove
  2695. * to a later point in common code. We should do that when we
  2696. * have a common sysfs framework for all allocators.
  2697. */
  2698. mutex_unlock(&slab_mutex);
  2699. sysfs_slab_remove(s);
  2700. mutex_lock(&slab_mutex);
  2701. }
  2702. return rc;
  2703. }
  2704. /********************************************************************
  2705. * Kmalloc subsystem
  2706. *******************************************************************/
  2707. static int __init setup_slub_min_order(char *str)
  2708. {
  2709. get_option(&str, &slub_min_order);
  2710. return 1;
  2711. }
  2712. __setup("slub_min_order=", setup_slub_min_order);
  2713. static int __init setup_slub_max_order(char *str)
  2714. {
  2715. get_option(&str, &slub_max_order);
  2716. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2717. return 1;
  2718. }
  2719. __setup("slub_max_order=", setup_slub_max_order);
  2720. static int __init setup_slub_min_objects(char *str)
  2721. {
  2722. get_option(&str, &slub_min_objects);
  2723. return 1;
  2724. }
  2725. __setup("slub_min_objects=", setup_slub_min_objects);
  2726. static int __init setup_slub_nomerge(char *str)
  2727. {
  2728. slub_nomerge = 1;
  2729. return 1;
  2730. }
  2731. __setup("slub_nomerge", setup_slub_nomerge);
  2732. void *__kmalloc(size_t size, gfp_t flags)
  2733. {
  2734. struct kmem_cache *s;
  2735. void *ret;
  2736. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2737. return kmalloc_large(size, flags);
  2738. s = kmalloc_slab(size, flags);
  2739. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2740. return s;
  2741. ret = slab_alloc(s, flags, _RET_IP_);
  2742. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2743. return ret;
  2744. }
  2745. EXPORT_SYMBOL(__kmalloc);
  2746. #ifdef CONFIG_NUMA
  2747. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2748. {
  2749. struct page *page;
  2750. void *ptr = NULL;
  2751. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2752. page = alloc_pages_node(node, flags, get_order(size));
  2753. if (page)
  2754. ptr = page_address(page);
  2755. kmemleak_alloc(ptr, size, 1, flags);
  2756. return ptr;
  2757. }
  2758. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2759. {
  2760. struct kmem_cache *s;
  2761. void *ret;
  2762. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2763. ret = kmalloc_large_node(size, flags, node);
  2764. trace_kmalloc_node(_RET_IP_, ret,
  2765. size, PAGE_SIZE << get_order(size),
  2766. flags, node);
  2767. return ret;
  2768. }
  2769. s = kmalloc_slab(size, flags);
  2770. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2771. return s;
  2772. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2773. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2774. return ret;
  2775. }
  2776. EXPORT_SYMBOL(__kmalloc_node);
  2777. #endif
  2778. size_t ksize(const void *object)
  2779. {
  2780. struct page *page;
  2781. if (unlikely(object == ZERO_SIZE_PTR))
  2782. return 0;
  2783. page = virt_to_head_page(object);
  2784. if (unlikely(!PageSlab(page))) {
  2785. WARN_ON(!PageCompound(page));
  2786. return PAGE_SIZE << compound_order(page);
  2787. }
  2788. return slab_ksize(page->slab_cache);
  2789. }
  2790. EXPORT_SYMBOL(ksize);
  2791. #ifdef CONFIG_SLUB_DEBUG
  2792. bool verify_mem_not_deleted(const void *x)
  2793. {
  2794. struct page *page;
  2795. void *object = (void *)x;
  2796. unsigned long flags;
  2797. bool rv;
  2798. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2799. return false;
  2800. local_irq_save(flags);
  2801. page = virt_to_head_page(x);
  2802. if (unlikely(!PageSlab(page))) {
  2803. /* maybe it was from stack? */
  2804. rv = true;
  2805. goto out_unlock;
  2806. }
  2807. slab_lock(page);
  2808. if (on_freelist(page->slab_cache, page, object)) {
  2809. object_err(page->slab_cache, page, object, "Object is on free-list");
  2810. rv = false;
  2811. } else {
  2812. rv = true;
  2813. }
  2814. slab_unlock(page);
  2815. out_unlock:
  2816. local_irq_restore(flags);
  2817. return rv;
  2818. }
  2819. EXPORT_SYMBOL(verify_mem_not_deleted);
  2820. #endif
  2821. void kfree(const void *x)
  2822. {
  2823. struct page *page;
  2824. void *object = (void *)x;
  2825. trace_kfree(_RET_IP_, x);
  2826. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2827. return;
  2828. page = virt_to_head_page(x);
  2829. if (unlikely(!PageSlab(page))) {
  2830. BUG_ON(!PageCompound(page));
  2831. kmemleak_free(x);
  2832. __free_memcg_kmem_pages(page, compound_order(page));
  2833. return;
  2834. }
  2835. slab_free(page->slab_cache, page, object, _RET_IP_);
  2836. }
  2837. EXPORT_SYMBOL(kfree);
  2838. /*
  2839. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2840. * the remaining slabs by the number of items in use. The slabs with the
  2841. * most items in use come first. New allocations will then fill those up
  2842. * and thus they can be removed from the partial lists.
  2843. *
  2844. * The slabs with the least items are placed last. This results in them
  2845. * being allocated from last increasing the chance that the last objects
  2846. * are freed in them.
  2847. */
  2848. int kmem_cache_shrink(struct kmem_cache *s)
  2849. {
  2850. int node;
  2851. int i;
  2852. struct kmem_cache_node *n;
  2853. struct page *page;
  2854. struct page *t;
  2855. int objects = oo_objects(s->max);
  2856. struct list_head *slabs_by_inuse =
  2857. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2858. unsigned long flags;
  2859. if (!slabs_by_inuse)
  2860. return -ENOMEM;
  2861. flush_all(s);
  2862. for_each_node_state(node, N_NORMAL_MEMORY) {
  2863. n = get_node(s, node);
  2864. if (!n->nr_partial)
  2865. continue;
  2866. for (i = 0; i < objects; i++)
  2867. INIT_LIST_HEAD(slabs_by_inuse + i);
  2868. spin_lock_irqsave(&n->list_lock, flags);
  2869. /*
  2870. * Build lists indexed by the items in use in each slab.
  2871. *
  2872. * Note that concurrent frees may occur while we hold the
  2873. * list_lock. page->inuse here is the upper limit.
  2874. */
  2875. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2876. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2877. if (!page->inuse)
  2878. n->nr_partial--;
  2879. }
  2880. /*
  2881. * Rebuild the partial list with the slabs filled up most
  2882. * first and the least used slabs at the end.
  2883. */
  2884. for (i = objects - 1; i > 0; i--)
  2885. list_splice(slabs_by_inuse + i, n->partial.prev);
  2886. spin_unlock_irqrestore(&n->list_lock, flags);
  2887. /* Release empty slabs */
  2888. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2889. discard_slab(s, page);
  2890. }
  2891. kfree(slabs_by_inuse);
  2892. return 0;
  2893. }
  2894. EXPORT_SYMBOL(kmem_cache_shrink);
  2895. static int slab_mem_going_offline_callback(void *arg)
  2896. {
  2897. struct kmem_cache *s;
  2898. mutex_lock(&slab_mutex);
  2899. list_for_each_entry(s, &slab_caches, list)
  2900. kmem_cache_shrink(s);
  2901. mutex_unlock(&slab_mutex);
  2902. return 0;
  2903. }
  2904. static void slab_mem_offline_callback(void *arg)
  2905. {
  2906. struct kmem_cache_node *n;
  2907. struct kmem_cache *s;
  2908. struct memory_notify *marg = arg;
  2909. int offline_node;
  2910. offline_node = marg->status_change_nid_normal;
  2911. /*
  2912. * If the node still has available memory. we need kmem_cache_node
  2913. * for it yet.
  2914. */
  2915. if (offline_node < 0)
  2916. return;
  2917. mutex_lock(&slab_mutex);
  2918. list_for_each_entry(s, &slab_caches, list) {
  2919. n = get_node(s, offline_node);
  2920. if (n) {
  2921. /*
  2922. * if n->nr_slabs > 0, slabs still exist on the node
  2923. * that is going down. We were unable to free them,
  2924. * and offline_pages() function shouldn't call this
  2925. * callback. So, we must fail.
  2926. */
  2927. BUG_ON(slabs_node(s, offline_node));
  2928. s->node[offline_node] = NULL;
  2929. kmem_cache_free(kmem_cache_node, n);
  2930. }
  2931. }
  2932. mutex_unlock(&slab_mutex);
  2933. }
  2934. static int slab_mem_going_online_callback(void *arg)
  2935. {
  2936. struct kmem_cache_node *n;
  2937. struct kmem_cache *s;
  2938. struct memory_notify *marg = arg;
  2939. int nid = marg->status_change_nid_normal;
  2940. int ret = 0;
  2941. /*
  2942. * If the node's memory is already available, then kmem_cache_node is
  2943. * already created. Nothing to do.
  2944. */
  2945. if (nid < 0)
  2946. return 0;
  2947. /*
  2948. * We are bringing a node online. No memory is available yet. We must
  2949. * allocate a kmem_cache_node structure in order to bring the node
  2950. * online.
  2951. */
  2952. mutex_lock(&slab_mutex);
  2953. list_for_each_entry(s, &slab_caches, list) {
  2954. /*
  2955. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2956. * since memory is not yet available from the node that
  2957. * is brought up.
  2958. */
  2959. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2960. if (!n) {
  2961. ret = -ENOMEM;
  2962. goto out;
  2963. }
  2964. init_kmem_cache_node(n);
  2965. s->node[nid] = n;
  2966. }
  2967. out:
  2968. mutex_unlock(&slab_mutex);
  2969. return ret;
  2970. }
  2971. static int slab_memory_callback(struct notifier_block *self,
  2972. unsigned long action, void *arg)
  2973. {
  2974. int ret = 0;
  2975. switch (action) {
  2976. case MEM_GOING_ONLINE:
  2977. ret = slab_mem_going_online_callback(arg);
  2978. break;
  2979. case MEM_GOING_OFFLINE:
  2980. ret = slab_mem_going_offline_callback(arg);
  2981. break;
  2982. case MEM_OFFLINE:
  2983. case MEM_CANCEL_ONLINE:
  2984. slab_mem_offline_callback(arg);
  2985. break;
  2986. case MEM_ONLINE:
  2987. case MEM_CANCEL_OFFLINE:
  2988. break;
  2989. }
  2990. if (ret)
  2991. ret = notifier_from_errno(ret);
  2992. else
  2993. ret = NOTIFY_OK;
  2994. return ret;
  2995. }
  2996. static struct notifier_block slab_memory_callback_nb = {
  2997. .notifier_call = slab_memory_callback,
  2998. .priority = SLAB_CALLBACK_PRI,
  2999. };
  3000. /********************************************************************
  3001. * Basic setup of slabs
  3002. *******************************************************************/
  3003. /*
  3004. * Used for early kmem_cache structures that were allocated using
  3005. * the page allocator. Allocate them properly then fix up the pointers
  3006. * that may be pointing to the wrong kmem_cache structure.
  3007. */
  3008. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3009. {
  3010. int node;
  3011. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3012. memcpy(s, static_cache, kmem_cache->object_size);
  3013. /*
  3014. * This runs very early, and only the boot processor is supposed to be
  3015. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3016. * IPIs around.
  3017. */
  3018. __flush_cpu_slab(s, smp_processor_id());
  3019. for_each_node_state(node, N_NORMAL_MEMORY) {
  3020. struct kmem_cache_node *n = get_node(s, node);
  3021. struct page *p;
  3022. if (n) {
  3023. list_for_each_entry(p, &n->partial, lru)
  3024. p->slab_cache = s;
  3025. #ifdef CONFIG_SLUB_DEBUG
  3026. list_for_each_entry(p, &n->full, lru)
  3027. p->slab_cache = s;
  3028. #endif
  3029. }
  3030. }
  3031. list_add(&s->list, &slab_caches);
  3032. return s;
  3033. }
  3034. void __init kmem_cache_init(void)
  3035. {
  3036. static __initdata struct kmem_cache boot_kmem_cache,
  3037. boot_kmem_cache_node;
  3038. if (debug_guardpage_minorder())
  3039. slub_max_order = 0;
  3040. kmem_cache_node = &boot_kmem_cache_node;
  3041. kmem_cache = &boot_kmem_cache;
  3042. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3043. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3044. register_hotmemory_notifier(&slab_memory_callback_nb);
  3045. /* Able to allocate the per node structures */
  3046. slab_state = PARTIAL;
  3047. create_boot_cache(kmem_cache, "kmem_cache",
  3048. offsetof(struct kmem_cache, node) +
  3049. nr_node_ids * sizeof(struct kmem_cache_node *),
  3050. SLAB_HWCACHE_ALIGN);
  3051. kmem_cache = bootstrap(&boot_kmem_cache);
  3052. /*
  3053. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3054. * kmem_cache_node is separately allocated so no need to
  3055. * update any list pointers.
  3056. */
  3057. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3058. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3059. create_kmalloc_caches(0);
  3060. #ifdef CONFIG_SMP
  3061. register_cpu_notifier(&slab_notifier);
  3062. #endif
  3063. printk(KERN_INFO
  3064. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3065. " CPUs=%d, Nodes=%d\n",
  3066. cache_line_size(),
  3067. slub_min_order, slub_max_order, slub_min_objects,
  3068. nr_cpu_ids, nr_node_ids);
  3069. }
  3070. void __init kmem_cache_init_late(void)
  3071. {
  3072. }
  3073. /*
  3074. * Find a mergeable slab cache
  3075. */
  3076. static int slab_unmergeable(struct kmem_cache *s)
  3077. {
  3078. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3079. return 1;
  3080. if (s->ctor)
  3081. return 1;
  3082. /*
  3083. * We may have set a slab to be unmergeable during bootstrap.
  3084. */
  3085. if (s->refcount < 0)
  3086. return 1;
  3087. return 0;
  3088. }
  3089. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3090. size_t align, unsigned long flags, const char *name,
  3091. void (*ctor)(void *))
  3092. {
  3093. struct kmem_cache *s;
  3094. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3095. return NULL;
  3096. if (ctor)
  3097. return NULL;
  3098. size = ALIGN(size, sizeof(void *));
  3099. align = calculate_alignment(flags, align, size);
  3100. size = ALIGN(size, align);
  3101. flags = kmem_cache_flags(size, flags, name, NULL);
  3102. list_for_each_entry(s, &slab_caches, list) {
  3103. if (slab_unmergeable(s))
  3104. continue;
  3105. if (size > s->size)
  3106. continue;
  3107. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3108. continue;
  3109. /*
  3110. * Check if alignment is compatible.
  3111. * Courtesy of Adrian Drzewiecki
  3112. */
  3113. if ((s->size & ~(align - 1)) != s->size)
  3114. continue;
  3115. if (s->size - size >= sizeof(void *))
  3116. continue;
  3117. if (!cache_match_memcg(s, memcg))
  3118. continue;
  3119. return s;
  3120. }
  3121. return NULL;
  3122. }
  3123. struct kmem_cache *
  3124. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3125. size_t align, unsigned long flags, void (*ctor)(void *))
  3126. {
  3127. struct kmem_cache *s;
  3128. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3129. if (s) {
  3130. s->refcount++;
  3131. /*
  3132. * Adjust the object sizes so that we clear
  3133. * the complete object on kzalloc.
  3134. */
  3135. s->object_size = max(s->object_size, (int)size);
  3136. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3137. if (sysfs_slab_alias(s, name)) {
  3138. s->refcount--;
  3139. s = NULL;
  3140. }
  3141. }
  3142. return s;
  3143. }
  3144. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3145. {
  3146. int err;
  3147. err = kmem_cache_open(s, flags);
  3148. if (err)
  3149. return err;
  3150. /* Mutex is not taken during early boot */
  3151. if (slab_state <= UP)
  3152. return 0;
  3153. memcg_propagate_slab_attrs(s);
  3154. mutex_unlock(&slab_mutex);
  3155. err = sysfs_slab_add(s);
  3156. mutex_lock(&slab_mutex);
  3157. if (err)
  3158. kmem_cache_close(s);
  3159. return err;
  3160. }
  3161. #ifdef CONFIG_SMP
  3162. /*
  3163. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3164. * necessary.
  3165. */
  3166. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3167. unsigned long action, void *hcpu)
  3168. {
  3169. long cpu = (long)hcpu;
  3170. struct kmem_cache *s;
  3171. unsigned long flags;
  3172. switch (action) {
  3173. case CPU_UP_CANCELED:
  3174. case CPU_UP_CANCELED_FROZEN:
  3175. case CPU_DEAD:
  3176. case CPU_DEAD_FROZEN:
  3177. mutex_lock(&slab_mutex);
  3178. list_for_each_entry(s, &slab_caches, list) {
  3179. local_irq_save(flags);
  3180. __flush_cpu_slab(s, cpu);
  3181. local_irq_restore(flags);
  3182. }
  3183. mutex_unlock(&slab_mutex);
  3184. break;
  3185. default:
  3186. break;
  3187. }
  3188. return NOTIFY_OK;
  3189. }
  3190. static struct notifier_block __cpuinitdata slab_notifier = {
  3191. .notifier_call = slab_cpuup_callback
  3192. };
  3193. #endif
  3194. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3195. {
  3196. struct kmem_cache *s;
  3197. void *ret;
  3198. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3199. return kmalloc_large(size, gfpflags);
  3200. s = kmalloc_slab(size, gfpflags);
  3201. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3202. return s;
  3203. ret = slab_alloc(s, gfpflags, caller);
  3204. /* Honor the call site pointer we received. */
  3205. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3206. return ret;
  3207. }
  3208. #ifdef CONFIG_NUMA
  3209. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3210. int node, unsigned long caller)
  3211. {
  3212. struct kmem_cache *s;
  3213. void *ret;
  3214. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3215. ret = kmalloc_large_node(size, gfpflags, node);
  3216. trace_kmalloc_node(caller, ret,
  3217. size, PAGE_SIZE << get_order(size),
  3218. gfpflags, node);
  3219. return ret;
  3220. }
  3221. s = kmalloc_slab(size, gfpflags);
  3222. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3223. return s;
  3224. ret = slab_alloc_node(s, gfpflags, node, caller);
  3225. /* Honor the call site pointer we received. */
  3226. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3227. return ret;
  3228. }
  3229. #endif
  3230. #ifdef CONFIG_SYSFS
  3231. static int count_inuse(struct page *page)
  3232. {
  3233. return page->inuse;
  3234. }
  3235. static int count_total(struct page *page)
  3236. {
  3237. return page->objects;
  3238. }
  3239. #endif
  3240. #ifdef CONFIG_SLUB_DEBUG
  3241. static int validate_slab(struct kmem_cache *s, struct page *page,
  3242. unsigned long *map)
  3243. {
  3244. void *p;
  3245. void *addr = page_address(page);
  3246. if (!check_slab(s, page) ||
  3247. !on_freelist(s, page, NULL))
  3248. return 0;
  3249. /* Now we know that a valid freelist exists */
  3250. bitmap_zero(map, page->objects);
  3251. get_map(s, page, map);
  3252. for_each_object(p, s, addr, page->objects) {
  3253. if (test_bit(slab_index(p, s, addr), map))
  3254. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3255. return 0;
  3256. }
  3257. for_each_object(p, s, addr, page->objects)
  3258. if (!test_bit(slab_index(p, s, addr), map))
  3259. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3260. return 0;
  3261. return 1;
  3262. }
  3263. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3264. unsigned long *map)
  3265. {
  3266. slab_lock(page);
  3267. validate_slab(s, page, map);
  3268. slab_unlock(page);
  3269. }
  3270. static int validate_slab_node(struct kmem_cache *s,
  3271. struct kmem_cache_node *n, unsigned long *map)
  3272. {
  3273. unsigned long count = 0;
  3274. struct page *page;
  3275. unsigned long flags;
  3276. spin_lock_irqsave(&n->list_lock, flags);
  3277. list_for_each_entry(page, &n->partial, lru) {
  3278. validate_slab_slab(s, page, map);
  3279. count++;
  3280. }
  3281. if (count != n->nr_partial)
  3282. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3283. "counter=%ld\n", s->name, count, n->nr_partial);
  3284. if (!(s->flags & SLAB_STORE_USER))
  3285. goto out;
  3286. list_for_each_entry(page, &n->full, lru) {
  3287. validate_slab_slab(s, page, map);
  3288. count++;
  3289. }
  3290. if (count != atomic_long_read(&n->nr_slabs))
  3291. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3292. "counter=%ld\n", s->name, count,
  3293. atomic_long_read(&n->nr_slabs));
  3294. out:
  3295. spin_unlock_irqrestore(&n->list_lock, flags);
  3296. return count;
  3297. }
  3298. static long validate_slab_cache(struct kmem_cache *s)
  3299. {
  3300. int node;
  3301. unsigned long count = 0;
  3302. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3303. sizeof(unsigned long), GFP_KERNEL);
  3304. if (!map)
  3305. return -ENOMEM;
  3306. flush_all(s);
  3307. for_each_node_state(node, N_NORMAL_MEMORY) {
  3308. struct kmem_cache_node *n = get_node(s, node);
  3309. count += validate_slab_node(s, n, map);
  3310. }
  3311. kfree(map);
  3312. return count;
  3313. }
  3314. /*
  3315. * Generate lists of code addresses where slabcache objects are allocated
  3316. * and freed.
  3317. */
  3318. struct location {
  3319. unsigned long count;
  3320. unsigned long addr;
  3321. long long sum_time;
  3322. long min_time;
  3323. long max_time;
  3324. long min_pid;
  3325. long max_pid;
  3326. DECLARE_BITMAP(cpus, NR_CPUS);
  3327. nodemask_t nodes;
  3328. };
  3329. struct loc_track {
  3330. unsigned long max;
  3331. unsigned long count;
  3332. struct location *loc;
  3333. };
  3334. static void free_loc_track(struct loc_track *t)
  3335. {
  3336. if (t->max)
  3337. free_pages((unsigned long)t->loc,
  3338. get_order(sizeof(struct location) * t->max));
  3339. }
  3340. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3341. {
  3342. struct location *l;
  3343. int order;
  3344. order = get_order(sizeof(struct location) * max);
  3345. l = (void *)__get_free_pages(flags, order);
  3346. if (!l)
  3347. return 0;
  3348. if (t->count) {
  3349. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3350. free_loc_track(t);
  3351. }
  3352. t->max = max;
  3353. t->loc = l;
  3354. return 1;
  3355. }
  3356. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3357. const struct track *track)
  3358. {
  3359. long start, end, pos;
  3360. struct location *l;
  3361. unsigned long caddr;
  3362. unsigned long age = jiffies - track->when;
  3363. start = -1;
  3364. end = t->count;
  3365. for ( ; ; ) {
  3366. pos = start + (end - start + 1) / 2;
  3367. /*
  3368. * There is nothing at "end". If we end up there
  3369. * we need to add something to before end.
  3370. */
  3371. if (pos == end)
  3372. break;
  3373. caddr = t->loc[pos].addr;
  3374. if (track->addr == caddr) {
  3375. l = &t->loc[pos];
  3376. l->count++;
  3377. if (track->when) {
  3378. l->sum_time += age;
  3379. if (age < l->min_time)
  3380. l->min_time = age;
  3381. if (age > l->max_time)
  3382. l->max_time = age;
  3383. if (track->pid < l->min_pid)
  3384. l->min_pid = track->pid;
  3385. if (track->pid > l->max_pid)
  3386. l->max_pid = track->pid;
  3387. cpumask_set_cpu(track->cpu,
  3388. to_cpumask(l->cpus));
  3389. }
  3390. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3391. return 1;
  3392. }
  3393. if (track->addr < caddr)
  3394. end = pos;
  3395. else
  3396. start = pos;
  3397. }
  3398. /*
  3399. * Not found. Insert new tracking element.
  3400. */
  3401. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3402. return 0;
  3403. l = t->loc + pos;
  3404. if (pos < t->count)
  3405. memmove(l + 1, l,
  3406. (t->count - pos) * sizeof(struct location));
  3407. t->count++;
  3408. l->count = 1;
  3409. l->addr = track->addr;
  3410. l->sum_time = age;
  3411. l->min_time = age;
  3412. l->max_time = age;
  3413. l->min_pid = track->pid;
  3414. l->max_pid = track->pid;
  3415. cpumask_clear(to_cpumask(l->cpus));
  3416. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3417. nodes_clear(l->nodes);
  3418. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3419. return 1;
  3420. }
  3421. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3422. struct page *page, enum track_item alloc,
  3423. unsigned long *map)
  3424. {
  3425. void *addr = page_address(page);
  3426. void *p;
  3427. bitmap_zero(map, page->objects);
  3428. get_map(s, page, map);
  3429. for_each_object(p, s, addr, page->objects)
  3430. if (!test_bit(slab_index(p, s, addr), map))
  3431. add_location(t, s, get_track(s, p, alloc));
  3432. }
  3433. static int list_locations(struct kmem_cache *s, char *buf,
  3434. enum track_item alloc)
  3435. {
  3436. int len = 0;
  3437. unsigned long i;
  3438. struct loc_track t = { 0, 0, NULL };
  3439. int node;
  3440. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3441. sizeof(unsigned long), GFP_KERNEL);
  3442. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3443. GFP_TEMPORARY)) {
  3444. kfree(map);
  3445. return sprintf(buf, "Out of memory\n");
  3446. }
  3447. /* Push back cpu slabs */
  3448. flush_all(s);
  3449. for_each_node_state(node, N_NORMAL_MEMORY) {
  3450. struct kmem_cache_node *n = get_node(s, node);
  3451. unsigned long flags;
  3452. struct page *page;
  3453. if (!atomic_long_read(&n->nr_slabs))
  3454. continue;
  3455. spin_lock_irqsave(&n->list_lock, flags);
  3456. list_for_each_entry(page, &n->partial, lru)
  3457. process_slab(&t, s, page, alloc, map);
  3458. list_for_each_entry(page, &n->full, lru)
  3459. process_slab(&t, s, page, alloc, map);
  3460. spin_unlock_irqrestore(&n->list_lock, flags);
  3461. }
  3462. for (i = 0; i < t.count; i++) {
  3463. struct location *l = &t.loc[i];
  3464. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3465. break;
  3466. len += sprintf(buf + len, "%7ld ", l->count);
  3467. if (l->addr)
  3468. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3469. else
  3470. len += sprintf(buf + len, "<not-available>");
  3471. if (l->sum_time != l->min_time) {
  3472. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3473. l->min_time,
  3474. (long)div_u64(l->sum_time, l->count),
  3475. l->max_time);
  3476. } else
  3477. len += sprintf(buf + len, " age=%ld",
  3478. l->min_time);
  3479. if (l->min_pid != l->max_pid)
  3480. len += sprintf(buf + len, " pid=%ld-%ld",
  3481. l->min_pid, l->max_pid);
  3482. else
  3483. len += sprintf(buf + len, " pid=%ld",
  3484. l->min_pid);
  3485. if (num_online_cpus() > 1 &&
  3486. !cpumask_empty(to_cpumask(l->cpus)) &&
  3487. len < PAGE_SIZE - 60) {
  3488. len += sprintf(buf + len, " cpus=");
  3489. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3490. to_cpumask(l->cpus));
  3491. }
  3492. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3493. len < PAGE_SIZE - 60) {
  3494. len += sprintf(buf + len, " nodes=");
  3495. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3496. l->nodes);
  3497. }
  3498. len += sprintf(buf + len, "\n");
  3499. }
  3500. free_loc_track(&t);
  3501. kfree(map);
  3502. if (!t.count)
  3503. len += sprintf(buf, "No data\n");
  3504. return len;
  3505. }
  3506. #endif
  3507. #ifdef SLUB_RESILIENCY_TEST
  3508. static void resiliency_test(void)
  3509. {
  3510. u8 *p;
  3511. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3512. printk(KERN_ERR "SLUB resiliency testing\n");
  3513. printk(KERN_ERR "-----------------------\n");
  3514. printk(KERN_ERR "A. Corruption after allocation\n");
  3515. p = kzalloc(16, GFP_KERNEL);
  3516. p[16] = 0x12;
  3517. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3518. " 0x12->0x%p\n\n", p + 16);
  3519. validate_slab_cache(kmalloc_caches[4]);
  3520. /* Hmmm... The next two are dangerous */
  3521. p = kzalloc(32, GFP_KERNEL);
  3522. p[32 + sizeof(void *)] = 0x34;
  3523. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3524. " 0x34 -> -0x%p\n", p);
  3525. printk(KERN_ERR
  3526. "If allocated object is overwritten then not detectable\n\n");
  3527. validate_slab_cache(kmalloc_caches[5]);
  3528. p = kzalloc(64, GFP_KERNEL);
  3529. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3530. *p = 0x56;
  3531. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3532. p);
  3533. printk(KERN_ERR
  3534. "If allocated object is overwritten then not detectable\n\n");
  3535. validate_slab_cache(kmalloc_caches[6]);
  3536. printk(KERN_ERR "\nB. Corruption after free\n");
  3537. p = kzalloc(128, GFP_KERNEL);
  3538. kfree(p);
  3539. *p = 0x78;
  3540. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3541. validate_slab_cache(kmalloc_caches[7]);
  3542. p = kzalloc(256, GFP_KERNEL);
  3543. kfree(p);
  3544. p[50] = 0x9a;
  3545. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3546. p);
  3547. validate_slab_cache(kmalloc_caches[8]);
  3548. p = kzalloc(512, GFP_KERNEL);
  3549. kfree(p);
  3550. p[512] = 0xab;
  3551. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3552. validate_slab_cache(kmalloc_caches[9]);
  3553. }
  3554. #else
  3555. #ifdef CONFIG_SYSFS
  3556. static void resiliency_test(void) {};
  3557. #endif
  3558. #endif
  3559. #ifdef CONFIG_SYSFS
  3560. enum slab_stat_type {
  3561. SL_ALL, /* All slabs */
  3562. SL_PARTIAL, /* Only partially allocated slabs */
  3563. SL_CPU, /* Only slabs used for cpu caches */
  3564. SL_OBJECTS, /* Determine allocated objects not slabs */
  3565. SL_TOTAL /* Determine object capacity not slabs */
  3566. };
  3567. #define SO_ALL (1 << SL_ALL)
  3568. #define SO_PARTIAL (1 << SL_PARTIAL)
  3569. #define SO_CPU (1 << SL_CPU)
  3570. #define SO_OBJECTS (1 << SL_OBJECTS)
  3571. #define SO_TOTAL (1 << SL_TOTAL)
  3572. static ssize_t show_slab_objects(struct kmem_cache *s,
  3573. char *buf, unsigned long flags)
  3574. {
  3575. unsigned long total = 0;
  3576. int node;
  3577. int x;
  3578. unsigned long *nodes;
  3579. unsigned long *per_cpu;
  3580. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3581. if (!nodes)
  3582. return -ENOMEM;
  3583. per_cpu = nodes + nr_node_ids;
  3584. if (flags & SO_CPU) {
  3585. int cpu;
  3586. for_each_possible_cpu(cpu) {
  3587. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3588. int node;
  3589. struct page *page;
  3590. page = ACCESS_ONCE(c->page);
  3591. if (!page)
  3592. continue;
  3593. node = page_to_nid(page);
  3594. if (flags & SO_TOTAL)
  3595. x = page->objects;
  3596. else if (flags & SO_OBJECTS)
  3597. x = page->inuse;
  3598. else
  3599. x = 1;
  3600. total += x;
  3601. nodes[node] += x;
  3602. page = ACCESS_ONCE(c->partial);
  3603. if (page) {
  3604. x = page->pobjects;
  3605. total += x;
  3606. nodes[node] += x;
  3607. }
  3608. per_cpu[node]++;
  3609. }
  3610. }
  3611. lock_memory_hotplug();
  3612. #ifdef CONFIG_SLUB_DEBUG
  3613. if (flags & SO_ALL) {
  3614. for_each_node_state(node, N_NORMAL_MEMORY) {
  3615. struct kmem_cache_node *n = get_node(s, node);
  3616. if (flags & SO_TOTAL)
  3617. x = atomic_long_read(&n->total_objects);
  3618. else if (flags & SO_OBJECTS)
  3619. x = atomic_long_read(&n->total_objects) -
  3620. count_partial(n, count_free);
  3621. else
  3622. x = atomic_long_read(&n->nr_slabs);
  3623. total += x;
  3624. nodes[node] += x;
  3625. }
  3626. } else
  3627. #endif
  3628. if (flags & SO_PARTIAL) {
  3629. for_each_node_state(node, N_NORMAL_MEMORY) {
  3630. struct kmem_cache_node *n = get_node(s, node);
  3631. if (flags & SO_TOTAL)
  3632. x = count_partial(n, count_total);
  3633. else if (flags & SO_OBJECTS)
  3634. x = count_partial(n, count_inuse);
  3635. else
  3636. x = n->nr_partial;
  3637. total += x;
  3638. nodes[node] += x;
  3639. }
  3640. }
  3641. x = sprintf(buf, "%lu", total);
  3642. #ifdef CONFIG_NUMA
  3643. for_each_node_state(node, N_NORMAL_MEMORY)
  3644. if (nodes[node])
  3645. x += sprintf(buf + x, " N%d=%lu",
  3646. node, nodes[node]);
  3647. #endif
  3648. unlock_memory_hotplug();
  3649. kfree(nodes);
  3650. return x + sprintf(buf + x, "\n");
  3651. }
  3652. #ifdef CONFIG_SLUB_DEBUG
  3653. static int any_slab_objects(struct kmem_cache *s)
  3654. {
  3655. int node;
  3656. for_each_online_node(node) {
  3657. struct kmem_cache_node *n = get_node(s, node);
  3658. if (!n)
  3659. continue;
  3660. if (atomic_long_read(&n->total_objects))
  3661. return 1;
  3662. }
  3663. return 0;
  3664. }
  3665. #endif
  3666. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3667. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3668. struct slab_attribute {
  3669. struct attribute attr;
  3670. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3671. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3672. };
  3673. #define SLAB_ATTR_RO(_name) \
  3674. static struct slab_attribute _name##_attr = \
  3675. __ATTR(_name, 0400, _name##_show, NULL)
  3676. #define SLAB_ATTR(_name) \
  3677. static struct slab_attribute _name##_attr = \
  3678. __ATTR(_name, 0600, _name##_show, _name##_store)
  3679. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3680. {
  3681. return sprintf(buf, "%d\n", s->size);
  3682. }
  3683. SLAB_ATTR_RO(slab_size);
  3684. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3685. {
  3686. return sprintf(buf, "%d\n", s->align);
  3687. }
  3688. SLAB_ATTR_RO(align);
  3689. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3690. {
  3691. return sprintf(buf, "%d\n", s->object_size);
  3692. }
  3693. SLAB_ATTR_RO(object_size);
  3694. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3695. {
  3696. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3697. }
  3698. SLAB_ATTR_RO(objs_per_slab);
  3699. static ssize_t order_store(struct kmem_cache *s,
  3700. const char *buf, size_t length)
  3701. {
  3702. unsigned long order;
  3703. int err;
  3704. err = strict_strtoul(buf, 10, &order);
  3705. if (err)
  3706. return err;
  3707. if (order > slub_max_order || order < slub_min_order)
  3708. return -EINVAL;
  3709. calculate_sizes(s, order);
  3710. return length;
  3711. }
  3712. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3713. {
  3714. return sprintf(buf, "%d\n", oo_order(s->oo));
  3715. }
  3716. SLAB_ATTR(order);
  3717. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3718. {
  3719. return sprintf(buf, "%lu\n", s->min_partial);
  3720. }
  3721. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3722. size_t length)
  3723. {
  3724. unsigned long min;
  3725. int err;
  3726. err = strict_strtoul(buf, 10, &min);
  3727. if (err)
  3728. return err;
  3729. set_min_partial(s, min);
  3730. return length;
  3731. }
  3732. SLAB_ATTR(min_partial);
  3733. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3734. {
  3735. return sprintf(buf, "%u\n", s->cpu_partial);
  3736. }
  3737. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3738. size_t length)
  3739. {
  3740. unsigned long objects;
  3741. int err;
  3742. err = strict_strtoul(buf, 10, &objects);
  3743. if (err)
  3744. return err;
  3745. if (objects && kmem_cache_debug(s))
  3746. return -EINVAL;
  3747. s->cpu_partial = objects;
  3748. flush_all(s);
  3749. return length;
  3750. }
  3751. SLAB_ATTR(cpu_partial);
  3752. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3753. {
  3754. if (!s->ctor)
  3755. return 0;
  3756. return sprintf(buf, "%pS\n", s->ctor);
  3757. }
  3758. SLAB_ATTR_RO(ctor);
  3759. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3760. {
  3761. return sprintf(buf, "%d\n", s->refcount - 1);
  3762. }
  3763. SLAB_ATTR_RO(aliases);
  3764. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3765. {
  3766. return show_slab_objects(s, buf, SO_PARTIAL);
  3767. }
  3768. SLAB_ATTR_RO(partial);
  3769. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3770. {
  3771. return show_slab_objects(s, buf, SO_CPU);
  3772. }
  3773. SLAB_ATTR_RO(cpu_slabs);
  3774. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3775. {
  3776. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3777. }
  3778. SLAB_ATTR_RO(objects);
  3779. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3780. {
  3781. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3782. }
  3783. SLAB_ATTR_RO(objects_partial);
  3784. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3785. {
  3786. int objects = 0;
  3787. int pages = 0;
  3788. int cpu;
  3789. int len;
  3790. for_each_online_cpu(cpu) {
  3791. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3792. if (page) {
  3793. pages += page->pages;
  3794. objects += page->pobjects;
  3795. }
  3796. }
  3797. len = sprintf(buf, "%d(%d)", objects, pages);
  3798. #ifdef CONFIG_SMP
  3799. for_each_online_cpu(cpu) {
  3800. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3801. if (page && len < PAGE_SIZE - 20)
  3802. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3803. page->pobjects, page->pages);
  3804. }
  3805. #endif
  3806. return len + sprintf(buf + len, "\n");
  3807. }
  3808. SLAB_ATTR_RO(slabs_cpu_partial);
  3809. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3810. {
  3811. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3812. }
  3813. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3814. const char *buf, size_t length)
  3815. {
  3816. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3817. if (buf[0] == '1')
  3818. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3819. return length;
  3820. }
  3821. SLAB_ATTR(reclaim_account);
  3822. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3823. {
  3824. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3825. }
  3826. SLAB_ATTR_RO(hwcache_align);
  3827. #ifdef CONFIG_ZONE_DMA
  3828. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3829. {
  3830. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3831. }
  3832. SLAB_ATTR_RO(cache_dma);
  3833. #endif
  3834. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3835. {
  3836. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3837. }
  3838. SLAB_ATTR_RO(destroy_by_rcu);
  3839. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3840. {
  3841. return sprintf(buf, "%d\n", s->reserved);
  3842. }
  3843. SLAB_ATTR_RO(reserved);
  3844. #ifdef CONFIG_SLUB_DEBUG
  3845. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3846. {
  3847. return show_slab_objects(s, buf, SO_ALL);
  3848. }
  3849. SLAB_ATTR_RO(slabs);
  3850. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3851. {
  3852. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3853. }
  3854. SLAB_ATTR_RO(total_objects);
  3855. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3856. {
  3857. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3858. }
  3859. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3860. const char *buf, size_t length)
  3861. {
  3862. s->flags &= ~SLAB_DEBUG_FREE;
  3863. if (buf[0] == '1') {
  3864. s->flags &= ~__CMPXCHG_DOUBLE;
  3865. s->flags |= SLAB_DEBUG_FREE;
  3866. }
  3867. return length;
  3868. }
  3869. SLAB_ATTR(sanity_checks);
  3870. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3871. {
  3872. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3873. }
  3874. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3875. size_t length)
  3876. {
  3877. s->flags &= ~SLAB_TRACE;
  3878. if (buf[0] == '1') {
  3879. s->flags &= ~__CMPXCHG_DOUBLE;
  3880. s->flags |= SLAB_TRACE;
  3881. }
  3882. return length;
  3883. }
  3884. SLAB_ATTR(trace);
  3885. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3886. {
  3887. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3888. }
  3889. static ssize_t red_zone_store(struct kmem_cache *s,
  3890. const char *buf, size_t length)
  3891. {
  3892. if (any_slab_objects(s))
  3893. return -EBUSY;
  3894. s->flags &= ~SLAB_RED_ZONE;
  3895. if (buf[0] == '1') {
  3896. s->flags &= ~__CMPXCHG_DOUBLE;
  3897. s->flags |= SLAB_RED_ZONE;
  3898. }
  3899. calculate_sizes(s, -1);
  3900. return length;
  3901. }
  3902. SLAB_ATTR(red_zone);
  3903. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3904. {
  3905. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3906. }
  3907. static ssize_t poison_store(struct kmem_cache *s,
  3908. const char *buf, size_t length)
  3909. {
  3910. if (any_slab_objects(s))
  3911. return -EBUSY;
  3912. s->flags &= ~SLAB_POISON;
  3913. if (buf[0] == '1') {
  3914. s->flags &= ~__CMPXCHG_DOUBLE;
  3915. s->flags |= SLAB_POISON;
  3916. }
  3917. calculate_sizes(s, -1);
  3918. return length;
  3919. }
  3920. SLAB_ATTR(poison);
  3921. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3922. {
  3923. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3924. }
  3925. static ssize_t store_user_store(struct kmem_cache *s,
  3926. const char *buf, size_t length)
  3927. {
  3928. if (any_slab_objects(s))
  3929. return -EBUSY;
  3930. s->flags &= ~SLAB_STORE_USER;
  3931. if (buf[0] == '1') {
  3932. s->flags &= ~__CMPXCHG_DOUBLE;
  3933. s->flags |= SLAB_STORE_USER;
  3934. }
  3935. calculate_sizes(s, -1);
  3936. return length;
  3937. }
  3938. SLAB_ATTR(store_user);
  3939. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3940. {
  3941. return 0;
  3942. }
  3943. static ssize_t validate_store(struct kmem_cache *s,
  3944. const char *buf, size_t length)
  3945. {
  3946. int ret = -EINVAL;
  3947. if (buf[0] == '1') {
  3948. ret = validate_slab_cache(s);
  3949. if (ret >= 0)
  3950. ret = length;
  3951. }
  3952. return ret;
  3953. }
  3954. SLAB_ATTR(validate);
  3955. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3956. {
  3957. if (!(s->flags & SLAB_STORE_USER))
  3958. return -ENOSYS;
  3959. return list_locations(s, buf, TRACK_ALLOC);
  3960. }
  3961. SLAB_ATTR_RO(alloc_calls);
  3962. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3963. {
  3964. if (!(s->flags & SLAB_STORE_USER))
  3965. return -ENOSYS;
  3966. return list_locations(s, buf, TRACK_FREE);
  3967. }
  3968. SLAB_ATTR_RO(free_calls);
  3969. #endif /* CONFIG_SLUB_DEBUG */
  3970. #ifdef CONFIG_FAILSLAB
  3971. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3972. {
  3973. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3974. }
  3975. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3976. size_t length)
  3977. {
  3978. s->flags &= ~SLAB_FAILSLAB;
  3979. if (buf[0] == '1')
  3980. s->flags |= SLAB_FAILSLAB;
  3981. return length;
  3982. }
  3983. SLAB_ATTR(failslab);
  3984. #endif
  3985. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3986. {
  3987. return 0;
  3988. }
  3989. static ssize_t shrink_store(struct kmem_cache *s,
  3990. const char *buf, size_t length)
  3991. {
  3992. if (buf[0] == '1') {
  3993. int rc = kmem_cache_shrink(s);
  3994. if (rc)
  3995. return rc;
  3996. } else
  3997. return -EINVAL;
  3998. return length;
  3999. }
  4000. SLAB_ATTR(shrink);
  4001. #ifdef CONFIG_NUMA
  4002. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4003. {
  4004. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4005. }
  4006. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4007. const char *buf, size_t length)
  4008. {
  4009. unsigned long ratio;
  4010. int err;
  4011. err = strict_strtoul(buf, 10, &ratio);
  4012. if (err)
  4013. return err;
  4014. if (ratio <= 100)
  4015. s->remote_node_defrag_ratio = ratio * 10;
  4016. return length;
  4017. }
  4018. SLAB_ATTR(remote_node_defrag_ratio);
  4019. #endif
  4020. #ifdef CONFIG_SLUB_STATS
  4021. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4022. {
  4023. unsigned long sum = 0;
  4024. int cpu;
  4025. int len;
  4026. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4027. if (!data)
  4028. return -ENOMEM;
  4029. for_each_online_cpu(cpu) {
  4030. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4031. data[cpu] = x;
  4032. sum += x;
  4033. }
  4034. len = sprintf(buf, "%lu", sum);
  4035. #ifdef CONFIG_SMP
  4036. for_each_online_cpu(cpu) {
  4037. if (data[cpu] && len < PAGE_SIZE - 20)
  4038. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4039. }
  4040. #endif
  4041. kfree(data);
  4042. return len + sprintf(buf + len, "\n");
  4043. }
  4044. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4045. {
  4046. int cpu;
  4047. for_each_online_cpu(cpu)
  4048. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4049. }
  4050. #define STAT_ATTR(si, text) \
  4051. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4052. { \
  4053. return show_stat(s, buf, si); \
  4054. } \
  4055. static ssize_t text##_store(struct kmem_cache *s, \
  4056. const char *buf, size_t length) \
  4057. { \
  4058. if (buf[0] != '0') \
  4059. return -EINVAL; \
  4060. clear_stat(s, si); \
  4061. return length; \
  4062. } \
  4063. SLAB_ATTR(text); \
  4064. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4065. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4066. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4067. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4068. STAT_ATTR(FREE_FROZEN, free_frozen);
  4069. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4070. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4071. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4072. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4073. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4074. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4075. STAT_ATTR(FREE_SLAB, free_slab);
  4076. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4077. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4078. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4079. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4080. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4081. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4082. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4083. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4084. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4085. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4086. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4087. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4088. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4089. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4090. #endif
  4091. static struct attribute *slab_attrs[] = {
  4092. &slab_size_attr.attr,
  4093. &object_size_attr.attr,
  4094. &objs_per_slab_attr.attr,
  4095. &order_attr.attr,
  4096. &min_partial_attr.attr,
  4097. &cpu_partial_attr.attr,
  4098. &objects_attr.attr,
  4099. &objects_partial_attr.attr,
  4100. &partial_attr.attr,
  4101. &cpu_slabs_attr.attr,
  4102. &ctor_attr.attr,
  4103. &aliases_attr.attr,
  4104. &align_attr.attr,
  4105. &hwcache_align_attr.attr,
  4106. &reclaim_account_attr.attr,
  4107. &destroy_by_rcu_attr.attr,
  4108. &shrink_attr.attr,
  4109. &reserved_attr.attr,
  4110. &slabs_cpu_partial_attr.attr,
  4111. #ifdef CONFIG_SLUB_DEBUG
  4112. &total_objects_attr.attr,
  4113. &slabs_attr.attr,
  4114. &sanity_checks_attr.attr,
  4115. &trace_attr.attr,
  4116. &red_zone_attr.attr,
  4117. &poison_attr.attr,
  4118. &store_user_attr.attr,
  4119. &validate_attr.attr,
  4120. &alloc_calls_attr.attr,
  4121. &free_calls_attr.attr,
  4122. #endif
  4123. #ifdef CONFIG_ZONE_DMA
  4124. &cache_dma_attr.attr,
  4125. #endif
  4126. #ifdef CONFIG_NUMA
  4127. &remote_node_defrag_ratio_attr.attr,
  4128. #endif
  4129. #ifdef CONFIG_SLUB_STATS
  4130. &alloc_fastpath_attr.attr,
  4131. &alloc_slowpath_attr.attr,
  4132. &free_fastpath_attr.attr,
  4133. &free_slowpath_attr.attr,
  4134. &free_frozen_attr.attr,
  4135. &free_add_partial_attr.attr,
  4136. &free_remove_partial_attr.attr,
  4137. &alloc_from_partial_attr.attr,
  4138. &alloc_slab_attr.attr,
  4139. &alloc_refill_attr.attr,
  4140. &alloc_node_mismatch_attr.attr,
  4141. &free_slab_attr.attr,
  4142. &cpuslab_flush_attr.attr,
  4143. &deactivate_full_attr.attr,
  4144. &deactivate_empty_attr.attr,
  4145. &deactivate_to_head_attr.attr,
  4146. &deactivate_to_tail_attr.attr,
  4147. &deactivate_remote_frees_attr.attr,
  4148. &deactivate_bypass_attr.attr,
  4149. &order_fallback_attr.attr,
  4150. &cmpxchg_double_fail_attr.attr,
  4151. &cmpxchg_double_cpu_fail_attr.attr,
  4152. &cpu_partial_alloc_attr.attr,
  4153. &cpu_partial_free_attr.attr,
  4154. &cpu_partial_node_attr.attr,
  4155. &cpu_partial_drain_attr.attr,
  4156. #endif
  4157. #ifdef CONFIG_FAILSLAB
  4158. &failslab_attr.attr,
  4159. #endif
  4160. NULL
  4161. };
  4162. static struct attribute_group slab_attr_group = {
  4163. .attrs = slab_attrs,
  4164. };
  4165. static ssize_t slab_attr_show(struct kobject *kobj,
  4166. struct attribute *attr,
  4167. char *buf)
  4168. {
  4169. struct slab_attribute *attribute;
  4170. struct kmem_cache *s;
  4171. int err;
  4172. attribute = to_slab_attr(attr);
  4173. s = to_slab(kobj);
  4174. if (!attribute->show)
  4175. return -EIO;
  4176. err = attribute->show(s, buf);
  4177. return err;
  4178. }
  4179. static ssize_t slab_attr_store(struct kobject *kobj,
  4180. struct attribute *attr,
  4181. const char *buf, size_t len)
  4182. {
  4183. struct slab_attribute *attribute;
  4184. struct kmem_cache *s;
  4185. int err;
  4186. attribute = to_slab_attr(attr);
  4187. s = to_slab(kobj);
  4188. if (!attribute->store)
  4189. return -EIO;
  4190. err = attribute->store(s, buf, len);
  4191. #ifdef CONFIG_MEMCG_KMEM
  4192. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4193. int i;
  4194. mutex_lock(&slab_mutex);
  4195. if (s->max_attr_size < len)
  4196. s->max_attr_size = len;
  4197. /*
  4198. * This is a best effort propagation, so this function's return
  4199. * value will be determined by the parent cache only. This is
  4200. * basically because not all attributes will have a well
  4201. * defined semantics for rollbacks - most of the actions will
  4202. * have permanent effects.
  4203. *
  4204. * Returning the error value of any of the children that fail
  4205. * is not 100 % defined, in the sense that users seeing the
  4206. * error code won't be able to know anything about the state of
  4207. * the cache.
  4208. *
  4209. * Only returning the error code for the parent cache at least
  4210. * has well defined semantics. The cache being written to
  4211. * directly either failed or succeeded, in which case we loop
  4212. * through the descendants with best-effort propagation.
  4213. */
  4214. for_each_memcg_cache_index(i) {
  4215. struct kmem_cache *c = cache_from_memcg(s, i);
  4216. if (c)
  4217. attribute->store(c, buf, len);
  4218. }
  4219. mutex_unlock(&slab_mutex);
  4220. }
  4221. #endif
  4222. return err;
  4223. }
  4224. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4225. {
  4226. #ifdef CONFIG_MEMCG_KMEM
  4227. int i;
  4228. char *buffer = NULL;
  4229. if (!is_root_cache(s))
  4230. return;
  4231. /*
  4232. * This mean this cache had no attribute written. Therefore, no point
  4233. * in copying default values around
  4234. */
  4235. if (!s->max_attr_size)
  4236. return;
  4237. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4238. char mbuf[64];
  4239. char *buf;
  4240. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4241. if (!attr || !attr->store || !attr->show)
  4242. continue;
  4243. /*
  4244. * It is really bad that we have to allocate here, so we will
  4245. * do it only as a fallback. If we actually allocate, though,
  4246. * we can just use the allocated buffer until the end.
  4247. *
  4248. * Most of the slub attributes will tend to be very small in
  4249. * size, but sysfs allows buffers up to a page, so they can
  4250. * theoretically happen.
  4251. */
  4252. if (buffer)
  4253. buf = buffer;
  4254. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4255. buf = mbuf;
  4256. else {
  4257. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4258. if (WARN_ON(!buffer))
  4259. continue;
  4260. buf = buffer;
  4261. }
  4262. attr->show(s->memcg_params->root_cache, buf);
  4263. attr->store(s, buf, strlen(buf));
  4264. }
  4265. if (buffer)
  4266. free_page((unsigned long)buffer);
  4267. #endif
  4268. }
  4269. static const struct sysfs_ops slab_sysfs_ops = {
  4270. .show = slab_attr_show,
  4271. .store = slab_attr_store,
  4272. };
  4273. static struct kobj_type slab_ktype = {
  4274. .sysfs_ops = &slab_sysfs_ops,
  4275. };
  4276. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4277. {
  4278. struct kobj_type *ktype = get_ktype(kobj);
  4279. if (ktype == &slab_ktype)
  4280. return 1;
  4281. return 0;
  4282. }
  4283. static const struct kset_uevent_ops slab_uevent_ops = {
  4284. .filter = uevent_filter,
  4285. };
  4286. static struct kset *slab_kset;
  4287. #define ID_STR_LENGTH 64
  4288. /* Create a unique string id for a slab cache:
  4289. *
  4290. * Format :[flags-]size
  4291. */
  4292. static char *create_unique_id(struct kmem_cache *s)
  4293. {
  4294. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4295. char *p = name;
  4296. BUG_ON(!name);
  4297. *p++ = ':';
  4298. /*
  4299. * First flags affecting slabcache operations. We will only
  4300. * get here for aliasable slabs so we do not need to support
  4301. * too many flags. The flags here must cover all flags that
  4302. * are matched during merging to guarantee that the id is
  4303. * unique.
  4304. */
  4305. if (s->flags & SLAB_CACHE_DMA)
  4306. *p++ = 'd';
  4307. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4308. *p++ = 'a';
  4309. if (s->flags & SLAB_DEBUG_FREE)
  4310. *p++ = 'F';
  4311. if (!(s->flags & SLAB_NOTRACK))
  4312. *p++ = 't';
  4313. if (p != name + 1)
  4314. *p++ = '-';
  4315. p += sprintf(p, "%07d", s->size);
  4316. #ifdef CONFIG_MEMCG_KMEM
  4317. if (!is_root_cache(s))
  4318. p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
  4319. #endif
  4320. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4321. return name;
  4322. }
  4323. static int sysfs_slab_add(struct kmem_cache *s)
  4324. {
  4325. int err;
  4326. const char *name;
  4327. int unmergeable = slab_unmergeable(s);
  4328. if (unmergeable) {
  4329. /*
  4330. * Slabcache can never be merged so we can use the name proper.
  4331. * This is typically the case for debug situations. In that
  4332. * case we can catch duplicate names easily.
  4333. */
  4334. sysfs_remove_link(&slab_kset->kobj, s->name);
  4335. name = s->name;
  4336. } else {
  4337. /*
  4338. * Create a unique name for the slab as a target
  4339. * for the symlinks.
  4340. */
  4341. name = create_unique_id(s);
  4342. }
  4343. s->kobj.kset = slab_kset;
  4344. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4345. if (err) {
  4346. kobject_put(&s->kobj);
  4347. return err;
  4348. }
  4349. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4350. if (err) {
  4351. kobject_del(&s->kobj);
  4352. kobject_put(&s->kobj);
  4353. return err;
  4354. }
  4355. kobject_uevent(&s->kobj, KOBJ_ADD);
  4356. if (!unmergeable) {
  4357. /* Setup first alias */
  4358. sysfs_slab_alias(s, s->name);
  4359. kfree(name);
  4360. }
  4361. return 0;
  4362. }
  4363. static void sysfs_slab_remove(struct kmem_cache *s)
  4364. {
  4365. if (slab_state < FULL)
  4366. /*
  4367. * Sysfs has not been setup yet so no need to remove the
  4368. * cache from sysfs.
  4369. */
  4370. return;
  4371. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4372. kobject_del(&s->kobj);
  4373. kobject_put(&s->kobj);
  4374. }
  4375. /*
  4376. * Need to buffer aliases during bootup until sysfs becomes
  4377. * available lest we lose that information.
  4378. */
  4379. struct saved_alias {
  4380. struct kmem_cache *s;
  4381. const char *name;
  4382. struct saved_alias *next;
  4383. };
  4384. static struct saved_alias *alias_list;
  4385. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4386. {
  4387. struct saved_alias *al;
  4388. if (slab_state == FULL) {
  4389. /*
  4390. * If we have a leftover link then remove it.
  4391. */
  4392. sysfs_remove_link(&slab_kset->kobj, name);
  4393. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4394. }
  4395. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4396. if (!al)
  4397. return -ENOMEM;
  4398. al->s = s;
  4399. al->name = name;
  4400. al->next = alias_list;
  4401. alias_list = al;
  4402. return 0;
  4403. }
  4404. static int __init slab_sysfs_init(void)
  4405. {
  4406. struct kmem_cache *s;
  4407. int err;
  4408. mutex_lock(&slab_mutex);
  4409. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4410. if (!slab_kset) {
  4411. mutex_unlock(&slab_mutex);
  4412. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4413. return -ENOSYS;
  4414. }
  4415. slab_state = FULL;
  4416. list_for_each_entry(s, &slab_caches, list) {
  4417. err = sysfs_slab_add(s);
  4418. if (err)
  4419. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4420. " to sysfs\n", s->name);
  4421. }
  4422. while (alias_list) {
  4423. struct saved_alias *al = alias_list;
  4424. alias_list = alias_list->next;
  4425. err = sysfs_slab_alias(al->s, al->name);
  4426. if (err)
  4427. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4428. " %s to sysfs\n", al->name);
  4429. kfree(al);
  4430. }
  4431. mutex_unlock(&slab_mutex);
  4432. resiliency_test();
  4433. return 0;
  4434. }
  4435. __initcall(slab_sysfs_init);
  4436. #endif /* CONFIG_SYSFS */
  4437. /*
  4438. * The /proc/slabinfo ABI
  4439. */
  4440. #ifdef CONFIG_SLABINFO
  4441. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4442. {
  4443. unsigned long nr_partials = 0;
  4444. unsigned long nr_slabs = 0;
  4445. unsigned long nr_objs = 0;
  4446. unsigned long nr_free = 0;
  4447. int node;
  4448. for_each_online_node(node) {
  4449. struct kmem_cache_node *n = get_node(s, node);
  4450. if (!n)
  4451. continue;
  4452. nr_partials += n->nr_partial;
  4453. nr_slabs += atomic_long_read(&n->nr_slabs);
  4454. nr_objs += atomic_long_read(&n->total_objects);
  4455. nr_free += count_partial(n, count_free);
  4456. }
  4457. sinfo->active_objs = nr_objs - nr_free;
  4458. sinfo->num_objs = nr_objs;
  4459. sinfo->active_slabs = nr_slabs;
  4460. sinfo->num_slabs = nr_slabs;
  4461. sinfo->objects_per_slab = oo_objects(s->oo);
  4462. sinfo->cache_order = oo_order(s->oo);
  4463. }
  4464. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4465. {
  4466. }
  4467. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4468. size_t count, loff_t *ppos)
  4469. {
  4470. return -EIO;
  4471. }
  4472. #endif /* CONFIG_SLABINFO */