sched.h 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/mutex.h>
  5. #include <linux/spinlock.h>
  6. #include <linux/stop_machine.h>
  7. #include <linux/tick.h>
  8. #include "cpupri.h"
  9. #include "cpuacct.h"
  10. extern __read_mostly int scheduler_running;
  11. /*
  12. * Convert user-nice values [ -20 ... 0 ... 19 ]
  13. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  14. * and back.
  15. */
  16. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  17. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  18. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  19. /*
  20. * 'User priority' is the nice value converted to something we
  21. * can work with better when scaling various scheduler parameters,
  22. * it's a [ 0 ... 39 ] range.
  23. */
  24. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  25. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  26. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  27. /*
  28. * Helpers for converting nanosecond timing to jiffy resolution
  29. */
  30. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  31. /*
  32. * Increase resolution of nice-level calculations for 64-bit architectures.
  33. * The extra resolution improves shares distribution and load balancing of
  34. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  35. * hierarchies, especially on larger systems. This is not a user-visible change
  36. * and does not change the user-interface for setting shares/weights.
  37. *
  38. * We increase resolution only if we have enough bits to allow this increased
  39. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  40. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  41. * increased costs.
  42. */
  43. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  44. # define SCHED_LOAD_RESOLUTION 10
  45. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  46. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  47. #else
  48. # define SCHED_LOAD_RESOLUTION 0
  49. # define scale_load(w) (w)
  50. # define scale_load_down(w) (w)
  51. #endif
  52. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  53. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  54. #define NICE_0_LOAD SCHED_LOAD_SCALE
  55. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  56. /*
  57. * These are the 'tuning knobs' of the scheduler:
  58. */
  59. /*
  60. * single value that denotes runtime == period, ie unlimited time.
  61. */
  62. #define RUNTIME_INF ((u64)~0ULL)
  63. static inline int rt_policy(int policy)
  64. {
  65. if (policy == SCHED_FIFO || policy == SCHED_RR)
  66. return 1;
  67. return 0;
  68. }
  69. static inline int task_has_rt_policy(struct task_struct *p)
  70. {
  71. return rt_policy(p->policy);
  72. }
  73. /*
  74. * This is the priority-queue data structure of the RT scheduling class:
  75. */
  76. struct rt_prio_array {
  77. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  78. struct list_head queue[MAX_RT_PRIO];
  79. };
  80. struct rt_bandwidth {
  81. /* nests inside the rq lock: */
  82. raw_spinlock_t rt_runtime_lock;
  83. ktime_t rt_period;
  84. u64 rt_runtime;
  85. struct hrtimer rt_period_timer;
  86. };
  87. extern struct mutex sched_domains_mutex;
  88. #ifdef CONFIG_CGROUP_SCHED
  89. #include <linux/cgroup.h>
  90. struct cfs_rq;
  91. struct rt_rq;
  92. extern struct list_head task_groups;
  93. struct cfs_bandwidth {
  94. #ifdef CONFIG_CFS_BANDWIDTH
  95. raw_spinlock_t lock;
  96. ktime_t period;
  97. u64 quota, runtime;
  98. s64 hierarchal_quota;
  99. u64 runtime_expires;
  100. int idle, timer_active;
  101. struct hrtimer period_timer, slack_timer;
  102. struct list_head throttled_cfs_rq;
  103. /* statistics */
  104. int nr_periods, nr_throttled;
  105. u64 throttled_time;
  106. #endif
  107. };
  108. /* task group related information */
  109. struct task_group {
  110. struct cgroup_subsys_state css;
  111. #ifdef CONFIG_FAIR_GROUP_SCHED
  112. /* schedulable entities of this group on each cpu */
  113. struct sched_entity **se;
  114. /* runqueue "owned" by this group on each cpu */
  115. struct cfs_rq **cfs_rq;
  116. unsigned long shares;
  117. atomic_t load_weight;
  118. atomic64_t load_avg;
  119. atomic_t runnable_avg;
  120. #endif
  121. #ifdef CONFIG_RT_GROUP_SCHED
  122. struct sched_rt_entity **rt_se;
  123. struct rt_rq **rt_rq;
  124. struct rt_bandwidth rt_bandwidth;
  125. #endif
  126. struct rcu_head rcu;
  127. struct list_head list;
  128. struct task_group *parent;
  129. struct list_head siblings;
  130. struct list_head children;
  131. #ifdef CONFIG_SCHED_AUTOGROUP
  132. struct autogroup *autogroup;
  133. #endif
  134. struct cfs_bandwidth cfs_bandwidth;
  135. };
  136. #ifdef CONFIG_FAIR_GROUP_SCHED
  137. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  138. /*
  139. * A weight of 0 or 1 can cause arithmetics problems.
  140. * A weight of a cfs_rq is the sum of weights of which entities
  141. * are queued on this cfs_rq, so a weight of a entity should not be
  142. * too large, so as the shares value of a task group.
  143. * (The default weight is 1024 - so there's no practical
  144. * limitation from this.)
  145. */
  146. #define MIN_SHARES (1UL << 1)
  147. #define MAX_SHARES (1UL << 18)
  148. #endif
  149. typedef int (*tg_visitor)(struct task_group *, void *);
  150. extern int walk_tg_tree_from(struct task_group *from,
  151. tg_visitor down, tg_visitor up, void *data);
  152. /*
  153. * Iterate the full tree, calling @down when first entering a node and @up when
  154. * leaving it for the final time.
  155. *
  156. * Caller must hold rcu_lock or sufficient equivalent.
  157. */
  158. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  159. {
  160. return walk_tg_tree_from(&root_task_group, down, up, data);
  161. }
  162. extern int tg_nop(struct task_group *tg, void *data);
  163. extern void free_fair_sched_group(struct task_group *tg);
  164. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  165. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  166. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  167. struct sched_entity *se, int cpu,
  168. struct sched_entity *parent);
  169. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  170. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  171. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  172. extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  173. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  174. extern void free_rt_sched_group(struct task_group *tg);
  175. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  176. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  177. struct sched_rt_entity *rt_se, int cpu,
  178. struct sched_rt_entity *parent);
  179. extern struct task_group *sched_create_group(struct task_group *parent);
  180. extern void sched_online_group(struct task_group *tg,
  181. struct task_group *parent);
  182. extern void sched_destroy_group(struct task_group *tg);
  183. extern void sched_offline_group(struct task_group *tg);
  184. extern void sched_move_task(struct task_struct *tsk);
  185. #ifdef CONFIG_FAIR_GROUP_SCHED
  186. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  187. #endif
  188. #else /* CONFIG_CGROUP_SCHED */
  189. struct cfs_bandwidth { };
  190. #endif /* CONFIG_CGROUP_SCHED */
  191. /* CFS-related fields in a runqueue */
  192. struct cfs_rq {
  193. struct load_weight load;
  194. unsigned int nr_running, h_nr_running;
  195. u64 exec_clock;
  196. u64 min_vruntime;
  197. #ifndef CONFIG_64BIT
  198. u64 min_vruntime_copy;
  199. #endif
  200. struct rb_root tasks_timeline;
  201. struct rb_node *rb_leftmost;
  202. /*
  203. * 'curr' points to currently running entity on this cfs_rq.
  204. * It is set to NULL otherwise (i.e when none are currently running).
  205. */
  206. struct sched_entity *curr, *next, *last, *skip;
  207. #ifdef CONFIG_SCHED_DEBUG
  208. unsigned int nr_spread_over;
  209. #endif
  210. #ifdef CONFIG_SMP
  211. /*
  212. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  213. * removed when useful for applications beyond shares distribution (e.g.
  214. * load-balance).
  215. */
  216. #ifdef CONFIG_FAIR_GROUP_SCHED
  217. /*
  218. * CFS Load tracking
  219. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  220. * This allows for the description of both thread and group usage (in
  221. * the FAIR_GROUP_SCHED case).
  222. */
  223. u64 runnable_load_avg, blocked_load_avg;
  224. atomic64_t decay_counter, removed_load;
  225. u64 last_decay;
  226. #endif /* CONFIG_FAIR_GROUP_SCHED */
  227. /* These always depend on CONFIG_FAIR_GROUP_SCHED */
  228. #ifdef CONFIG_FAIR_GROUP_SCHED
  229. u32 tg_runnable_contrib;
  230. u64 tg_load_contrib;
  231. #endif /* CONFIG_FAIR_GROUP_SCHED */
  232. /*
  233. * h_load = weight * f(tg)
  234. *
  235. * Where f(tg) is the recursive weight fraction assigned to
  236. * this group.
  237. */
  238. unsigned long h_load;
  239. #endif /* CONFIG_SMP */
  240. #ifdef CONFIG_FAIR_GROUP_SCHED
  241. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  242. /*
  243. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  244. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  245. * (like users, containers etc.)
  246. *
  247. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  248. * list is used during load balance.
  249. */
  250. int on_list;
  251. struct list_head leaf_cfs_rq_list;
  252. struct task_group *tg; /* group that "owns" this runqueue */
  253. #ifdef CONFIG_CFS_BANDWIDTH
  254. int runtime_enabled;
  255. u64 runtime_expires;
  256. s64 runtime_remaining;
  257. u64 throttled_clock, throttled_clock_task;
  258. u64 throttled_clock_task_time;
  259. int throttled, throttle_count;
  260. struct list_head throttled_list;
  261. #endif /* CONFIG_CFS_BANDWIDTH */
  262. #endif /* CONFIG_FAIR_GROUP_SCHED */
  263. };
  264. static inline int rt_bandwidth_enabled(void)
  265. {
  266. return sysctl_sched_rt_runtime >= 0;
  267. }
  268. /* Real-Time classes' related field in a runqueue: */
  269. struct rt_rq {
  270. struct rt_prio_array active;
  271. unsigned int rt_nr_running;
  272. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  273. struct {
  274. int curr; /* highest queued rt task prio */
  275. #ifdef CONFIG_SMP
  276. int next; /* next highest */
  277. #endif
  278. } highest_prio;
  279. #endif
  280. #ifdef CONFIG_SMP
  281. unsigned long rt_nr_migratory;
  282. unsigned long rt_nr_total;
  283. int overloaded;
  284. struct plist_head pushable_tasks;
  285. #endif
  286. int rt_throttled;
  287. u64 rt_time;
  288. u64 rt_runtime;
  289. /* Nests inside the rq lock: */
  290. raw_spinlock_t rt_runtime_lock;
  291. #ifdef CONFIG_RT_GROUP_SCHED
  292. unsigned long rt_nr_boosted;
  293. struct rq *rq;
  294. struct list_head leaf_rt_rq_list;
  295. struct task_group *tg;
  296. #endif
  297. };
  298. #ifdef CONFIG_SMP
  299. /*
  300. * We add the notion of a root-domain which will be used to define per-domain
  301. * variables. Each exclusive cpuset essentially defines an island domain by
  302. * fully partitioning the member cpus from any other cpuset. Whenever a new
  303. * exclusive cpuset is created, we also create and attach a new root-domain
  304. * object.
  305. *
  306. */
  307. struct root_domain {
  308. atomic_t refcount;
  309. atomic_t rto_count;
  310. struct rcu_head rcu;
  311. cpumask_var_t span;
  312. cpumask_var_t online;
  313. /*
  314. * The "RT overload" flag: it gets set if a CPU has more than
  315. * one runnable RT task.
  316. */
  317. cpumask_var_t rto_mask;
  318. struct cpupri cpupri;
  319. };
  320. extern struct root_domain def_root_domain;
  321. #endif /* CONFIG_SMP */
  322. /*
  323. * This is the main, per-CPU runqueue data structure.
  324. *
  325. * Locking rule: those places that want to lock multiple runqueues
  326. * (such as the load balancing or the thread migration code), lock
  327. * acquire operations must be ordered by ascending &runqueue.
  328. */
  329. struct rq {
  330. /* runqueue lock: */
  331. raw_spinlock_t lock;
  332. /*
  333. * nr_running and cpu_load should be in the same cacheline because
  334. * remote CPUs use both these fields when doing load calculation.
  335. */
  336. unsigned int nr_running;
  337. #define CPU_LOAD_IDX_MAX 5
  338. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  339. unsigned long last_load_update_tick;
  340. #ifdef CONFIG_NO_HZ_COMMON
  341. u64 nohz_stamp;
  342. unsigned long nohz_flags;
  343. #endif
  344. #ifdef CONFIG_NO_HZ_FULL
  345. unsigned long last_sched_tick;
  346. #endif
  347. int skip_clock_update;
  348. /* capture load from *all* tasks on this cpu: */
  349. struct load_weight load;
  350. unsigned long nr_load_updates;
  351. u64 nr_switches;
  352. struct cfs_rq cfs;
  353. struct rt_rq rt;
  354. #ifdef CONFIG_FAIR_GROUP_SCHED
  355. /* list of leaf cfs_rq on this cpu: */
  356. struct list_head leaf_cfs_rq_list;
  357. #ifdef CONFIG_SMP
  358. unsigned long h_load_throttle;
  359. #endif /* CONFIG_SMP */
  360. #endif /* CONFIG_FAIR_GROUP_SCHED */
  361. #ifdef CONFIG_RT_GROUP_SCHED
  362. struct list_head leaf_rt_rq_list;
  363. #endif
  364. /*
  365. * This is part of a global counter where only the total sum
  366. * over all CPUs matters. A task can increase this counter on
  367. * one CPU and if it got migrated afterwards it may decrease
  368. * it on another CPU. Always updated under the runqueue lock:
  369. */
  370. unsigned long nr_uninterruptible;
  371. struct task_struct *curr, *idle, *stop;
  372. unsigned long next_balance;
  373. struct mm_struct *prev_mm;
  374. u64 clock;
  375. u64 clock_task;
  376. atomic_t nr_iowait;
  377. #ifdef CONFIG_SMP
  378. struct root_domain *rd;
  379. struct sched_domain *sd;
  380. unsigned long cpu_power;
  381. unsigned char idle_balance;
  382. /* For active balancing */
  383. int post_schedule;
  384. int active_balance;
  385. int push_cpu;
  386. struct cpu_stop_work active_balance_work;
  387. /* cpu of this runqueue: */
  388. int cpu;
  389. int online;
  390. struct list_head cfs_tasks;
  391. u64 rt_avg;
  392. u64 age_stamp;
  393. u64 idle_stamp;
  394. u64 avg_idle;
  395. #endif
  396. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  397. u64 prev_irq_time;
  398. #endif
  399. #ifdef CONFIG_PARAVIRT
  400. u64 prev_steal_time;
  401. #endif
  402. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  403. u64 prev_steal_time_rq;
  404. #endif
  405. /* calc_load related fields */
  406. unsigned long calc_load_update;
  407. long calc_load_active;
  408. #ifdef CONFIG_SCHED_HRTICK
  409. #ifdef CONFIG_SMP
  410. int hrtick_csd_pending;
  411. struct call_single_data hrtick_csd;
  412. #endif
  413. struct hrtimer hrtick_timer;
  414. #endif
  415. #ifdef CONFIG_SCHEDSTATS
  416. /* latency stats */
  417. struct sched_info rq_sched_info;
  418. unsigned long long rq_cpu_time;
  419. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  420. /* sys_sched_yield() stats */
  421. unsigned int yld_count;
  422. /* schedule() stats */
  423. unsigned int sched_count;
  424. unsigned int sched_goidle;
  425. /* try_to_wake_up() stats */
  426. unsigned int ttwu_count;
  427. unsigned int ttwu_local;
  428. #endif
  429. #ifdef CONFIG_SMP
  430. struct llist_head wake_list;
  431. #endif
  432. struct sched_avg avg;
  433. };
  434. static inline int cpu_of(struct rq *rq)
  435. {
  436. #ifdef CONFIG_SMP
  437. return rq->cpu;
  438. #else
  439. return 0;
  440. #endif
  441. }
  442. DECLARE_PER_CPU(struct rq, runqueues);
  443. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  444. #define this_rq() (&__get_cpu_var(runqueues))
  445. #define task_rq(p) cpu_rq(task_cpu(p))
  446. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  447. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  448. #ifdef CONFIG_SMP
  449. #define rcu_dereference_check_sched_domain(p) \
  450. rcu_dereference_check((p), \
  451. lockdep_is_held(&sched_domains_mutex))
  452. /*
  453. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  454. * See detach_destroy_domains: synchronize_sched for details.
  455. *
  456. * The domain tree of any CPU may only be accessed from within
  457. * preempt-disabled sections.
  458. */
  459. #define for_each_domain(cpu, __sd) \
  460. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  461. __sd; __sd = __sd->parent)
  462. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  463. /**
  464. * highest_flag_domain - Return highest sched_domain containing flag.
  465. * @cpu: The cpu whose highest level of sched domain is to
  466. * be returned.
  467. * @flag: The flag to check for the highest sched_domain
  468. * for the given cpu.
  469. *
  470. * Returns the highest sched_domain of a cpu which contains the given flag.
  471. */
  472. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  473. {
  474. struct sched_domain *sd, *hsd = NULL;
  475. for_each_domain(cpu, sd) {
  476. if (!(sd->flags & flag))
  477. break;
  478. hsd = sd;
  479. }
  480. return hsd;
  481. }
  482. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  483. DECLARE_PER_CPU(int, sd_llc_id);
  484. struct sched_group_power {
  485. atomic_t ref;
  486. /*
  487. * CPU power of this group, SCHED_LOAD_SCALE being max power for a
  488. * single CPU.
  489. */
  490. unsigned int power, power_orig;
  491. unsigned long next_update;
  492. /*
  493. * Number of busy cpus in this group.
  494. */
  495. atomic_t nr_busy_cpus;
  496. unsigned long cpumask[0]; /* iteration mask */
  497. };
  498. struct sched_group {
  499. struct sched_group *next; /* Must be a circular list */
  500. atomic_t ref;
  501. unsigned int group_weight;
  502. struct sched_group_power *sgp;
  503. /*
  504. * The CPUs this group covers.
  505. *
  506. * NOTE: this field is variable length. (Allocated dynamically
  507. * by attaching extra space to the end of the structure,
  508. * depending on how many CPUs the kernel has booted up with)
  509. */
  510. unsigned long cpumask[0];
  511. };
  512. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  513. {
  514. return to_cpumask(sg->cpumask);
  515. }
  516. /*
  517. * cpumask masking which cpus in the group are allowed to iterate up the domain
  518. * tree.
  519. */
  520. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  521. {
  522. return to_cpumask(sg->sgp->cpumask);
  523. }
  524. /**
  525. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  526. * @group: The group whose first cpu is to be returned.
  527. */
  528. static inline unsigned int group_first_cpu(struct sched_group *group)
  529. {
  530. return cpumask_first(sched_group_cpus(group));
  531. }
  532. extern int group_balance_cpu(struct sched_group *sg);
  533. #endif /* CONFIG_SMP */
  534. #include "stats.h"
  535. #include "auto_group.h"
  536. #ifdef CONFIG_CGROUP_SCHED
  537. /*
  538. * Return the group to which this tasks belongs.
  539. *
  540. * We cannot use task_subsys_state() and friends because the cgroup
  541. * subsystem changes that value before the cgroup_subsys::attach() method
  542. * is called, therefore we cannot pin it and might observe the wrong value.
  543. *
  544. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  545. * core changes this before calling sched_move_task().
  546. *
  547. * Instead we use a 'copy' which is updated from sched_move_task() while
  548. * holding both task_struct::pi_lock and rq::lock.
  549. */
  550. static inline struct task_group *task_group(struct task_struct *p)
  551. {
  552. return p->sched_task_group;
  553. }
  554. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  555. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  556. {
  557. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  558. struct task_group *tg = task_group(p);
  559. #endif
  560. #ifdef CONFIG_FAIR_GROUP_SCHED
  561. p->se.cfs_rq = tg->cfs_rq[cpu];
  562. p->se.parent = tg->se[cpu];
  563. #endif
  564. #ifdef CONFIG_RT_GROUP_SCHED
  565. p->rt.rt_rq = tg->rt_rq[cpu];
  566. p->rt.parent = tg->rt_se[cpu];
  567. #endif
  568. }
  569. #else /* CONFIG_CGROUP_SCHED */
  570. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  571. static inline struct task_group *task_group(struct task_struct *p)
  572. {
  573. return NULL;
  574. }
  575. #endif /* CONFIG_CGROUP_SCHED */
  576. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  577. {
  578. set_task_rq(p, cpu);
  579. #ifdef CONFIG_SMP
  580. /*
  581. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  582. * successfuly executed on another CPU. We must ensure that updates of
  583. * per-task data have been completed by this moment.
  584. */
  585. smp_wmb();
  586. task_thread_info(p)->cpu = cpu;
  587. #endif
  588. }
  589. /*
  590. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  591. */
  592. #ifdef CONFIG_SCHED_DEBUG
  593. # include <linux/static_key.h>
  594. # define const_debug __read_mostly
  595. #else
  596. # define const_debug const
  597. #endif
  598. extern const_debug unsigned int sysctl_sched_features;
  599. #define SCHED_FEAT(name, enabled) \
  600. __SCHED_FEAT_##name ,
  601. enum {
  602. #include "features.h"
  603. __SCHED_FEAT_NR,
  604. };
  605. #undef SCHED_FEAT
  606. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  607. static __always_inline bool static_branch__true(struct static_key *key)
  608. {
  609. return static_key_true(key); /* Not out of line branch. */
  610. }
  611. static __always_inline bool static_branch__false(struct static_key *key)
  612. {
  613. return static_key_false(key); /* Out of line branch. */
  614. }
  615. #define SCHED_FEAT(name, enabled) \
  616. static __always_inline bool static_branch_##name(struct static_key *key) \
  617. { \
  618. return static_branch__##enabled(key); \
  619. }
  620. #include "features.h"
  621. #undef SCHED_FEAT
  622. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  623. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  624. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  625. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  626. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  627. #ifdef CONFIG_NUMA_BALANCING
  628. #define sched_feat_numa(x) sched_feat(x)
  629. #ifdef CONFIG_SCHED_DEBUG
  630. #define numabalancing_enabled sched_feat_numa(NUMA)
  631. #else
  632. extern bool numabalancing_enabled;
  633. #endif /* CONFIG_SCHED_DEBUG */
  634. #else
  635. #define sched_feat_numa(x) (0)
  636. #define numabalancing_enabled (0)
  637. #endif /* CONFIG_NUMA_BALANCING */
  638. static inline u64 global_rt_period(void)
  639. {
  640. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  641. }
  642. static inline u64 global_rt_runtime(void)
  643. {
  644. if (sysctl_sched_rt_runtime < 0)
  645. return RUNTIME_INF;
  646. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  647. }
  648. static inline int task_current(struct rq *rq, struct task_struct *p)
  649. {
  650. return rq->curr == p;
  651. }
  652. static inline int task_running(struct rq *rq, struct task_struct *p)
  653. {
  654. #ifdef CONFIG_SMP
  655. return p->on_cpu;
  656. #else
  657. return task_current(rq, p);
  658. #endif
  659. }
  660. #ifndef prepare_arch_switch
  661. # define prepare_arch_switch(next) do { } while (0)
  662. #endif
  663. #ifndef finish_arch_switch
  664. # define finish_arch_switch(prev) do { } while (0)
  665. #endif
  666. #ifndef finish_arch_post_lock_switch
  667. # define finish_arch_post_lock_switch() do { } while (0)
  668. #endif
  669. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  670. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  671. {
  672. #ifdef CONFIG_SMP
  673. /*
  674. * We can optimise this out completely for !SMP, because the
  675. * SMP rebalancing from interrupt is the only thing that cares
  676. * here.
  677. */
  678. next->on_cpu = 1;
  679. #endif
  680. }
  681. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  682. {
  683. #ifdef CONFIG_SMP
  684. /*
  685. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  686. * We must ensure this doesn't happen until the switch is completely
  687. * finished.
  688. */
  689. smp_wmb();
  690. prev->on_cpu = 0;
  691. #endif
  692. #ifdef CONFIG_DEBUG_SPINLOCK
  693. /* this is a valid case when another task releases the spinlock */
  694. rq->lock.owner = current;
  695. #endif
  696. /*
  697. * If we are tracking spinlock dependencies then we have to
  698. * fix up the runqueue lock - which gets 'carried over' from
  699. * prev into current:
  700. */
  701. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  702. raw_spin_unlock_irq(&rq->lock);
  703. }
  704. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  705. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  706. {
  707. #ifdef CONFIG_SMP
  708. /*
  709. * We can optimise this out completely for !SMP, because the
  710. * SMP rebalancing from interrupt is the only thing that cares
  711. * here.
  712. */
  713. next->on_cpu = 1;
  714. #endif
  715. raw_spin_unlock(&rq->lock);
  716. }
  717. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  718. {
  719. #ifdef CONFIG_SMP
  720. /*
  721. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  722. * We must ensure this doesn't happen until the switch is completely
  723. * finished.
  724. */
  725. smp_wmb();
  726. prev->on_cpu = 0;
  727. #endif
  728. local_irq_enable();
  729. }
  730. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  731. /*
  732. * wake flags
  733. */
  734. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  735. #define WF_FORK 0x02 /* child wakeup after fork */
  736. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  737. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  738. {
  739. lw->weight += inc;
  740. lw->inv_weight = 0;
  741. }
  742. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  743. {
  744. lw->weight -= dec;
  745. lw->inv_weight = 0;
  746. }
  747. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  748. {
  749. lw->weight = w;
  750. lw->inv_weight = 0;
  751. }
  752. /*
  753. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  754. * of tasks with abnormal "nice" values across CPUs the contribution that
  755. * each task makes to its run queue's load is weighted according to its
  756. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  757. * scaled version of the new time slice allocation that they receive on time
  758. * slice expiry etc.
  759. */
  760. #define WEIGHT_IDLEPRIO 3
  761. #define WMULT_IDLEPRIO 1431655765
  762. /*
  763. * Nice levels are multiplicative, with a gentle 10% change for every
  764. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  765. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  766. * that remained on nice 0.
  767. *
  768. * The "10% effect" is relative and cumulative: from _any_ nice level,
  769. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  770. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  771. * If a task goes up by ~10% and another task goes down by ~10% then
  772. * the relative distance between them is ~25%.)
  773. */
  774. static const int prio_to_weight[40] = {
  775. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  776. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  777. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  778. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  779. /* 0 */ 1024, 820, 655, 526, 423,
  780. /* 5 */ 335, 272, 215, 172, 137,
  781. /* 10 */ 110, 87, 70, 56, 45,
  782. /* 15 */ 36, 29, 23, 18, 15,
  783. };
  784. /*
  785. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  786. *
  787. * In cases where the weight does not change often, we can use the
  788. * precalculated inverse to speed up arithmetics by turning divisions
  789. * into multiplications:
  790. */
  791. static const u32 prio_to_wmult[40] = {
  792. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  793. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  794. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  795. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  796. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  797. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  798. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  799. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  800. };
  801. #define ENQUEUE_WAKEUP 1
  802. #define ENQUEUE_HEAD 2
  803. #ifdef CONFIG_SMP
  804. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  805. #else
  806. #define ENQUEUE_WAKING 0
  807. #endif
  808. #define DEQUEUE_SLEEP 1
  809. struct sched_class {
  810. const struct sched_class *next;
  811. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  812. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  813. void (*yield_task) (struct rq *rq);
  814. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  815. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  816. struct task_struct * (*pick_next_task) (struct rq *rq);
  817. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  818. #ifdef CONFIG_SMP
  819. int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
  820. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  821. void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
  822. void (*post_schedule) (struct rq *this_rq);
  823. void (*task_waking) (struct task_struct *task);
  824. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  825. void (*set_cpus_allowed)(struct task_struct *p,
  826. const struct cpumask *newmask);
  827. void (*rq_online)(struct rq *rq);
  828. void (*rq_offline)(struct rq *rq);
  829. #endif
  830. void (*set_curr_task) (struct rq *rq);
  831. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  832. void (*task_fork) (struct task_struct *p);
  833. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  834. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  835. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  836. int oldprio);
  837. unsigned int (*get_rr_interval) (struct rq *rq,
  838. struct task_struct *task);
  839. #ifdef CONFIG_FAIR_GROUP_SCHED
  840. void (*task_move_group) (struct task_struct *p, int on_rq);
  841. #endif
  842. };
  843. #define sched_class_highest (&stop_sched_class)
  844. #define for_each_class(class) \
  845. for (class = sched_class_highest; class; class = class->next)
  846. extern const struct sched_class stop_sched_class;
  847. extern const struct sched_class rt_sched_class;
  848. extern const struct sched_class fair_sched_class;
  849. extern const struct sched_class idle_sched_class;
  850. #ifdef CONFIG_SMP
  851. extern void update_group_power(struct sched_domain *sd, int cpu);
  852. extern void trigger_load_balance(struct rq *rq, int cpu);
  853. extern void idle_balance(int this_cpu, struct rq *this_rq);
  854. /*
  855. * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
  856. * becomes useful in lb
  857. */
  858. #if defined(CONFIG_FAIR_GROUP_SCHED)
  859. extern void idle_enter_fair(struct rq *this_rq);
  860. extern void idle_exit_fair(struct rq *this_rq);
  861. #else
  862. static inline void idle_enter_fair(struct rq *this_rq) {}
  863. static inline void idle_exit_fair(struct rq *this_rq) {}
  864. #endif
  865. #else /* CONFIG_SMP */
  866. static inline void idle_balance(int cpu, struct rq *rq)
  867. {
  868. }
  869. #endif
  870. extern void sysrq_sched_debug_show(void);
  871. extern void sched_init_granularity(void);
  872. extern void update_max_interval(void);
  873. extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
  874. extern void init_sched_rt_class(void);
  875. extern void init_sched_fair_class(void);
  876. extern void resched_task(struct task_struct *p);
  877. extern void resched_cpu(int cpu);
  878. extern struct rt_bandwidth def_rt_bandwidth;
  879. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  880. extern void update_idle_cpu_load(struct rq *this_rq);
  881. #ifdef CONFIG_PARAVIRT
  882. static inline u64 steal_ticks(u64 steal)
  883. {
  884. if (unlikely(steal > NSEC_PER_SEC))
  885. return div_u64(steal, TICK_NSEC);
  886. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  887. }
  888. #endif
  889. static inline void inc_nr_running(struct rq *rq)
  890. {
  891. rq->nr_running++;
  892. #ifdef CONFIG_NO_HZ_FULL
  893. if (rq->nr_running == 2) {
  894. if (tick_nohz_full_cpu(rq->cpu)) {
  895. /* Order rq->nr_running write against the IPI */
  896. smp_wmb();
  897. smp_send_reschedule(rq->cpu);
  898. }
  899. }
  900. #endif
  901. }
  902. static inline void dec_nr_running(struct rq *rq)
  903. {
  904. rq->nr_running--;
  905. }
  906. static inline void rq_last_tick_reset(struct rq *rq)
  907. {
  908. #ifdef CONFIG_NO_HZ_FULL
  909. rq->last_sched_tick = jiffies;
  910. #endif
  911. }
  912. extern void update_rq_clock(struct rq *rq);
  913. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  914. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  915. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  916. extern const_debug unsigned int sysctl_sched_time_avg;
  917. extern const_debug unsigned int sysctl_sched_nr_migrate;
  918. extern const_debug unsigned int sysctl_sched_migration_cost;
  919. static inline u64 sched_avg_period(void)
  920. {
  921. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  922. }
  923. #ifdef CONFIG_SCHED_HRTICK
  924. /*
  925. * Use hrtick when:
  926. * - enabled by features
  927. * - hrtimer is actually high res
  928. */
  929. static inline int hrtick_enabled(struct rq *rq)
  930. {
  931. if (!sched_feat(HRTICK))
  932. return 0;
  933. if (!cpu_active(cpu_of(rq)))
  934. return 0;
  935. return hrtimer_is_hres_active(&rq->hrtick_timer);
  936. }
  937. void hrtick_start(struct rq *rq, u64 delay);
  938. #else
  939. static inline int hrtick_enabled(struct rq *rq)
  940. {
  941. return 0;
  942. }
  943. #endif /* CONFIG_SCHED_HRTICK */
  944. #ifdef CONFIG_SMP
  945. extern void sched_avg_update(struct rq *rq);
  946. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  947. {
  948. rq->rt_avg += rt_delta;
  949. sched_avg_update(rq);
  950. }
  951. #else
  952. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  953. static inline void sched_avg_update(struct rq *rq) { }
  954. #endif
  955. extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
  956. #ifdef CONFIG_SMP
  957. #ifdef CONFIG_PREEMPT
  958. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  959. /*
  960. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  961. * way at the expense of forcing extra atomic operations in all
  962. * invocations. This assures that the double_lock is acquired using the
  963. * same underlying policy as the spinlock_t on this architecture, which
  964. * reduces latency compared to the unfair variant below. However, it
  965. * also adds more overhead and therefore may reduce throughput.
  966. */
  967. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  968. __releases(this_rq->lock)
  969. __acquires(busiest->lock)
  970. __acquires(this_rq->lock)
  971. {
  972. raw_spin_unlock(&this_rq->lock);
  973. double_rq_lock(this_rq, busiest);
  974. return 1;
  975. }
  976. #else
  977. /*
  978. * Unfair double_lock_balance: Optimizes throughput at the expense of
  979. * latency by eliminating extra atomic operations when the locks are
  980. * already in proper order on entry. This favors lower cpu-ids and will
  981. * grant the double lock to lower cpus over higher ids under contention,
  982. * regardless of entry order into the function.
  983. */
  984. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  985. __releases(this_rq->lock)
  986. __acquires(busiest->lock)
  987. __acquires(this_rq->lock)
  988. {
  989. int ret = 0;
  990. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  991. if (busiest < this_rq) {
  992. raw_spin_unlock(&this_rq->lock);
  993. raw_spin_lock(&busiest->lock);
  994. raw_spin_lock_nested(&this_rq->lock,
  995. SINGLE_DEPTH_NESTING);
  996. ret = 1;
  997. } else
  998. raw_spin_lock_nested(&busiest->lock,
  999. SINGLE_DEPTH_NESTING);
  1000. }
  1001. return ret;
  1002. }
  1003. #endif /* CONFIG_PREEMPT */
  1004. /*
  1005. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1006. */
  1007. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1008. {
  1009. if (unlikely(!irqs_disabled())) {
  1010. /* printk() doesn't work good under rq->lock */
  1011. raw_spin_unlock(&this_rq->lock);
  1012. BUG_ON(1);
  1013. }
  1014. return _double_lock_balance(this_rq, busiest);
  1015. }
  1016. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1017. __releases(busiest->lock)
  1018. {
  1019. raw_spin_unlock(&busiest->lock);
  1020. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1021. }
  1022. /*
  1023. * double_rq_lock - safely lock two runqueues
  1024. *
  1025. * Note this does not disable interrupts like task_rq_lock,
  1026. * you need to do so manually before calling.
  1027. */
  1028. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1029. __acquires(rq1->lock)
  1030. __acquires(rq2->lock)
  1031. {
  1032. BUG_ON(!irqs_disabled());
  1033. if (rq1 == rq2) {
  1034. raw_spin_lock(&rq1->lock);
  1035. __acquire(rq2->lock); /* Fake it out ;) */
  1036. } else {
  1037. if (rq1 < rq2) {
  1038. raw_spin_lock(&rq1->lock);
  1039. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1040. } else {
  1041. raw_spin_lock(&rq2->lock);
  1042. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1043. }
  1044. }
  1045. }
  1046. /*
  1047. * double_rq_unlock - safely unlock two runqueues
  1048. *
  1049. * Note this does not restore interrupts like task_rq_unlock,
  1050. * you need to do so manually after calling.
  1051. */
  1052. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1053. __releases(rq1->lock)
  1054. __releases(rq2->lock)
  1055. {
  1056. raw_spin_unlock(&rq1->lock);
  1057. if (rq1 != rq2)
  1058. raw_spin_unlock(&rq2->lock);
  1059. else
  1060. __release(rq2->lock);
  1061. }
  1062. #else /* CONFIG_SMP */
  1063. /*
  1064. * double_rq_lock - safely lock two runqueues
  1065. *
  1066. * Note this does not disable interrupts like task_rq_lock,
  1067. * you need to do so manually before calling.
  1068. */
  1069. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1070. __acquires(rq1->lock)
  1071. __acquires(rq2->lock)
  1072. {
  1073. BUG_ON(!irqs_disabled());
  1074. BUG_ON(rq1 != rq2);
  1075. raw_spin_lock(&rq1->lock);
  1076. __acquire(rq2->lock); /* Fake it out ;) */
  1077. }
  1078. /*
  1079. * double_rq_unlock - safely unlock two runqueues
  1080. *
  1081. * Note this does not restore interrupts like task_rq_unlock,
  1082. * you need to do so manually after calling.
  1083. */
  1084. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1085. __releases(rq1->lock)
  1086. __releases(rq2->lock)
  1087. {
  1088. BUG_ON(rq1 != rq2);
  1089. raw_spin_unlock(&rq1->lock);
  1090. __release(rq2->lock);
  1091. }
  1092. #endif
  1093. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1094. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1095. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1096. extern void print_rt_stats(struct seq_file *m, int cpu);
  1097. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1098. extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
  1099. extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
  1100. #ifdef CONFIG_NO_HZ_COMMON
  1101. enum rq_nohz_flag_bits {
  1102. NOHZ_TICK_STOPPED,
  1103. NOHZ_BALANCE_KICK,
  1104. };
  1105. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1106. #endif
  1107. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1108. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1109. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1110. #ifndef CONFIG_64BIT
  1111. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1112. static inline void irq_time_write_begin(void)
  1113. {
  1114. __this_cpu_inc(irq_time_seq.sequence);
  1115. smp_wmb();
  1116. }
  1117. static inline void irq_time_write_end(void)
  1118. {
  1119. smp_wmb();
  1120. __this_cpu_inc(irq_time_seq.sequence);
  1121. }
  1122. static inline u64 irq_time_read(int cpu)
  1123. {
  1124. u64 irq_time;
  1125. unsigned seq;
  1126. do {
  1127. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1128. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1129. per_cpu(cpu_hardirq_time, cpu);
  1130. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1131. return irq_time;
  1132. }
  1133. #else /* CONFIG_64BIT */
  1134. static inline void irq_time_write_begin(void)
  1135. {
  1136. }
  1137. static inline void irq_time_write_end(void)
  1138. {
  1139. }
  1140. static inline u64 irq_time_read(int cpu)
  1141. {
  1142. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1143. }
  1144. #endif /* CONFIG_64BIT */
  1145. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */