file.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/aio.h>
  27. #include <linux/falloc.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/statfs.h>
  31. #include <linux/compat.h>
  32. #include <linux/slab.h>
  33. #include <linux/btrfs.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "compat.h"
  42. #include "volumes.h"
  43. static struct kmem_cache *btrfs_inode_defrag_cachep;
  44. /*
  45. * when auto defrag is enabled we
  46. * queue up these defrag structs to remember which
  47. * inodes need defragging passes
  48. */
  49. struct inode_defrag {
  50. struct rb_node rb_node;
  51. /* objectid */
  52. u64 ino;
  53. /*
  54. * transid where the defrag was added, we search for
  55. * extents newer than this
  56. */
  57. u64 transid;
  58. /* root objectid */
  59. u64 root;
  60. /* last offset we were able to defrag */
  61. u64 last_offset;
  62. /* if we've wrapped around back to zero once already */
  63. int cycled;
  64. };
  65. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  66. struct inode_defrag *defrag2)
  67. {
  68. if (defrag1->root > defrag2->root)
  69. return 1;
  70. else if (defrag1->root < defrag2->root)
  71. return -1;
  72. else if (defrag1->ino > defrag2->ino)
  73. return 1;
  74. else if (defrag1->ino < defrag2->ino)
  75. return -1;
  76. else
  77. return 0;
  78. }
  79. /* pop a record for an inode into the defrag tree. The lock
  80. * must be held already
  81. *
  82. * If you're inserting a record for an older transid than an
  83. * existing record, the transid already in the tree is lowered
  84. *
  85. * If an existing record is found the defrag item you
  86. * pass in is freed
  87. */
  88. static int __btrfs_add_inode_defrag(struct inode *inode,
  89. struct inode_defrag *defrag)
  90. {
  91. struct btrfs_root *root = BTRFS_I(inode)->root;
  92. struct inode_defrag *entry;
  93. struct rb_node **p;
  94. struct rb_node *parent = NULL;
  95. int ret;
  96. p = &root->fs_info->defrag_inodes.rb_node;
  97. while (*p) {
  98. parent = *p;
  99. entry = rb_entry(parent, struct inode_defrag, rb_node);
  100. ret = __compare_inode_defrag(defrag, entry);
  101. if (ret < 0)
  102. p = &parent->rb_left;
  103. else if (ret > 0)
  104. p = &parent->rb_right;
  105. else {
  106. /* if we're reinserting an entry for
  107. * an old defrag run, make sure to
  108. * lower the transid of our existing record
  109. */
  110. if (defrag->transid < entry->transid)
  111. entry->transid = defrag->transid;
  112. if (defrag->last_offset > entry->last_offset)
  113. entry->last_offset = defrag->last_offset;
  114. return -EEXIST;
  115. }
  116. }
  117. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  118. rb_link_node(&defrag->rb_node, parent, p);
  119. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  120. return 0;
  121. }
  122. static inline int __need_auto_defrag(struct btrfs_root *root)
  123. {
  124. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  125. return 0;
  126. if (btrfs_fs_closing(root->fs_info))
  127. return 0;
  128. return 1;
  129. }
  130. /*
  131. * insert a defrag record for this inode if auto defrag is
  132. * enabled
  133. */
  134. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  135. struct inode *inode)
  136. {
  137. struct btrfs_root *root = BTRFS_I(inode)->root;
  138. struct inode_defrag *defrag;
  139. u64 transid;
  140. int ret;
  141. if (!__need_auto_defrag(root))
  142. return 0;
  143. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  144. return 0;
  145. if (trans)
  146. transid = trans->transid;
  147. else
  148. transid = BTRFS_I(inode)->root->last_trans;
  149. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  150. if (!defrag)
  151. return -ENOMEM;
  152. defrag->ino = btrfs_ino(inode);
  153. defrag->transid = transid;
  154. defrag->root = root->root_key.objectid;
  155. spin_lock(&root->fs_info->defrag_inodes_lock);
  156. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  157. /*
  158. * If we set IN_DEFRAG flag and evict the inode from memory,
  159. * and then re-read this inode, this new inode doesn't have
  160. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  161. */
  162. ret = __btrfs_add_inode_defrag(inode, defrag);
  163. if (ret)
  164. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  165. } else {
  166. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  167. }
  168. spin_unlock(&root->fs_info->defrag_inodes_lock);
  169. return 0;
  170. }
  171. /*
  172. * Requeue the defrag object. If there is a defrag object that points to
  173. * the same inode in the tree, we will merge them together (by
  174. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  175. */
  176. static void btrfs_requeue_inode_defrag(struct inode *inode,
  177. struct inode_defrag *defrag)
  178. {
  179. struct btrfs_root *root = BTRFS_I(inode)->root;
  180. int ret;
  181. if (!__need_auto_defrag(root))
  182. goto out;
  183. /*
  184. * Here we don't check the IN_DEFRAG flag, because we need merge
  185. * them together.
  186. */
  187. spin_lock(&root->fs_info->defrag_inodes_lock);
  188. ret = __btrfs_add_inode_defrag(inode, defrag);
  189. spin_unlock(&root->fs_info->defrag_inodes_lock);
  190. if (ret)
  191. goto out;
  192. return;
  193. out:
  194. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  195. }
  196. /*
  197. * pick the defragable inode that we want, if it doesn't exist, we will get
  198. * the next one.
  199. */
  200. static struct inode_defrag *
  201. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  202. {
  203. struct inode_defrag *entry = NULL;
  204. struct inode_defrag tmp;
  205. struct rb_node *p;
  206. struct rb_node *parent = NULL;
  207. int ret;
  208. tmp.ino = ino;
  209. tmp.root = root;
  210. spin_lock(&fs_info->defrag_inodes_lock);
  211. p = fs_info->defrag_inodes.rb_node;
  212. while (p) {
  213. parent = p;
  214. entry = rb_entry(parent, struct inode_defrag, rb_node);
  215. ret = __compare_inode_defrag(&tmp, entry);
  216. if (ret < 0)
  217. p = parent->rb_left;
  218. else if (ret > 0)
  219. p = parent->rb_right;
  220. else
  221. goto out;
  222. }
  223. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  224. parent = rb_next(parent);
  225. if (parent)
  226. entry = rb_entry(parent, struct inode_defrag, rb_node);
  227. else
  228. entry = NULL;
  229. }
  230. out:
  231. if (entry)
  232. rb_erase(parent, &fs_info->defrag_inodes);
  233. spin_unlock(&fs_info->defrag_inodes_lock);
  234. return entry;
  235. }
  236. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  237. {
  238. struct inode_defrag *defrag;
  239. struct rb_node *node;
  240. spin_lock(&fs_info->defrag_inodes_lock);
  241. node = rb_first(&fs_info->defrag_inodes);
  242. while (node) {
  243. rb_erase(node, &fs_info->defrag_inodes);
  244. defrag = rb_entry(node, struct inode_defrag, rb_node);
  245. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  246. if (need_resched()) {
  247. spin_unlock(&fs_info->defrag_inodes_lock);
  248. cond_resched();
  249. spin_lock(&fs_info->defrag_inodes_lock);
  250. }
  251. node = rb_first(&fs_info->defrag_inodes);
  252. }
  253. spin_unlock(&fs_info->defrag_inodes_lock);
  254. }
  255. #define BTRFS_DEFRAG_BATCH 1024
  256. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  257. struct inode_defrag *defrag)
  258. {
  259. struct btrfs_root *inode_root;
  260. struct inode *inode;
  261. struct btrfs_key key;
  262. struct btrfs_ioctl_defrag_range_args range;
  263. int num_defrag;
  264. int index;
  265. int ret;
  266. /* get the inode */
  267. key.objectid = defrag->root;
  268. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  269. key.offset = (u64)-1;
  270. index = srcu_read_lock(&fs_info->subvol_srcu);
  271. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  272. if (IS_ERR(inode_root)) {
  273. ret = PTR_ERR(inode_root);
  274. goto cleanup;
  275. }
  276. if (btrfs_root_refs(&inode_root->root_item) == 0) {
  277. ret = -ENOENT;
  278. goto cleanup;
  279. }
  280. key.objectid = defrag->ino;
  281. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  282. key.offset = 0;
  283. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  284. if (IS_ERR(inode)) {
  285. ret = PTR_ERR(inode);
  286. goto cleanup;
  287. }
  288. srcu_read_unlock(&fs_info->subvol_srcu, index);
  289. /* do a chunk of defrag */
  290. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  291. memset(&range, 0, sizeof(range));
  292. range.len = (u64)-1;
  293. range.start = defrag->last_offset;
  294. sb_start_write(fs_info->sb);
  295. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  296. BTRFS_DEFRAG_BATCH);
  297. sb_end_write(fs_info->sb);
  298. /*
  299. * if we filled the whole defrag batch, there
  300. * must be more work to do. Queue this defrag
  301. * again
  302. */
  303. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  304. defrag->last_offset = range.start;
  305. btrfs_requeue_inode_defrag(inode, defrag);
  306. } else if (defrag->last_offset && !defrag->cycled) {
  307. /*
  308. * we didn't fill our defrag batch, but
  309. * we didn't start at zero. Make sure we loop
  310. * around to the start of the file.
  311. */
  312. defrag->last_offset = 0;
  313. defrag->cycled = 1;
  314. btrfs_requeue_inode_defrag(inode, defrag);
  315. } else {
  316. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  317. }
  318. iput(inode);
  319. return 0;
  320. cleanup:
  321. srcu_read_unlock(&fs_info->subvol_srcu, index);
  322. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  323. return ret;
  324. }
  325. /*
  326. * run through the list of inodes in the FS that need
  327. * defragging
  328. */
  329. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  330. {
  331. struct inode_defrag *defrag;
  332. u64 first_ino = 0;
  333. u64 root_objectid = 0;
  334. atomic_inc(&fs_info->defrag_running);
  335. while(1) {
  336. /* Pause the auto defragger. */
  337. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  338. &fs_info->fs_state))
  339. break;
  340. if (!__need_auto_defrag(fs_info->tree_root))
  341. break;
  342. /* find an inode to defrag */
  343. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  344. first_ino);
  345. if (!defrag) {
  346. if (root_objectid || first_ino) {
  347. root_objectid = 0;
  348. first_ino = 0;
  349. continue;
  350. } else {
  351. break;
  352. }
  353. }
  354. first_ino = defrag->ino + 1;
  355. root_objectid = defrag->root;
  356. __btrfs_run_defrag_inode(fs_info, defrag);
  357. }
  358. atomic_dec(&fs_info->defrag_running);
  359. /*
  360. * during unmount, we use the transaction_wait queue to
  361. * wait for the defragger to stop
  362. */
  363. wake_up(&fs_info->transaction_wait);
  364. return 0;
  365. }
  366. /* simple helper to fault in pages and copy. This should go away
  367. * and be replaced with calls into generic code.
  368. */
  369. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  370. size_t write_bytes,
  371. struct page **prepared_pages,
  372. struct iov_iter *i)
  373. {
  374. size_t copied = 0;
  375. size_t total_copied = 0;
  376. int pg = 0;
  377. int offset = pos & (PAGE_CACHE_SIZE - 1);
  378. while (write_bytes > 0) {
  379. size_t count = min_t(size_t,
  380. PAGE_CACHE_SIZE - offset, write_bytes);
  381. struct page *page = prepared_pages[pg];
  382. /*
  383. * Copy data from userspace to the current page
  384. *
  385. * Disable pagefault to avoid recursive lock since
  386. * the pages are already locked
  387. */
  388. pagefault_disable();
  389. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  390. pagefault_enable();
  391. /* Flush processor's dcache for this page */
  392. flush_dcache_page(page);
  393. /*
  394. * if we get a partial write, we can end up with
  395. * partially up to date pages. These add
  396. * a lot of complexity, so make sure they don't
  397. * happen by forcing this copy to be retried.
  398. *
  399. * The rest of the btrfs_file_write code will fall
  400. * back to page at a time copies after we return 0.
  401. */
  402. if (!PageUptodate(page) && copied < count)
  403. copied = 0;
  404. iov_iter_advance(i, copied);
  405. write_bytes -= copied;
  406. total_copied += copied;
  407. /* Return to btrfs_file_aio_write to fault page */
  408. if (unlikely(copied == 0))
  409. break;
  410. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  411. offset += copied;
  412. } else {
  413. pg++;
  414. offset = 0;
  415. }
  416. }
  417. return total_copied;
  418. }
  419. /*
  420. * unlocks pages after btrfs_file_write is done with them
  421. */
  422. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  423. {
  424. size_t i;
  425. for (i = 0; i < num_pages; i++) {
  426. /* page checked is some magic around finding pages that
  427. * have been modified without going through btrfs_set_page_dirty
  428. * clear it here
  429. */
  430. ClearPageChecked(pages[i]);
  431. unlock_page(pages[i]);
  432. mark_page_accessed(pages[i]);
  433. page_cache_release(pages[i]);
  434. }
  435. }
  436. /*
  437. * after copy_from_user, pages need to be dirtied and we need to make
  438. * sure holes are created between the current EOF and the start of
  439. * any next extents (if required).
  440. *
  441. * this also makes the decision about creating an inline extent vs
  442. * doing real data extents, marking pages dirty and delalloc as required.
  443. */
  444. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  445. struct page **pages, size_t num_pages,
  446. loff_t pos, size_t write_bytes,
  447. struct extent_state **cached)
  448. {
  449. int err = 0;
  450. int i;
  451. u64 num_bytes;
  452. u64 start_pos;
  453. u64 end_of_last_block;
  454. u64 end_pos = pos + write_bytes;
  455. loff_t isize = i_size_read(inode);
  456. start_pos = pos & ~((u64)root->sectorsize - 1);
  457. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  458. end_of_last_block = start_pos + num_bytes - 1;
  459. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  460. cached);
  461. if (err)
  462. return err;
  463. for (i = 0; i < num_pages; i++) {
  464. struct page *p = pages[i];
  465. SetPageUptodate(p);
  466. ClearPageChecked(p);
  467. set_page_dirty(p);
  468. }
  469. /*
  470. * we've only changed i_size in ram, and we haven't updated
  471. * the disk i_size. There is no need to log the inode
  472. * at this time.
  473. */
  474. if (end_pos > isize)
  475. i_size_write(inode, end_pos);
  476. return 0;
  477. }
  478. /*
  479. * this drops all the extents in the cache that intersect the range
  480. * [start, end]. Existing extents are split as required.
  481. */
  482. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  483. int skip_pinned)
  484. {
  485. struct extent_map *em;
  486. struct extent_map *split = NULL;
  487. struct extent_map *split2 = NULL;
  488. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  489. u64 len = end - start + 1;
  490. u64 gen;
  491. int ret;
  492. int testend = 1;
  493. unsigned long flags;
  494. int compressed = 0;
  495. bool modified;
  496. WARN_ON(end < start);
  497. if (end == (u64)-1) {
  498. len = (u64)-1;
  499. testend = 0;
  500. }
  501. while (1) {
  502. int no_splits = 0;
  503. modified = false;
  504. if (!split)
  505. split = alloc_extent_map();
  506. if (!split2)
  507. split2 = alloc_extent_map();
  508. if (!split || !split2)
  509. no_splits = 1;
  510. write_lock(&em_tree->lock);
  511. em = lookup_extent_mapping(em_tree, start, len);
  512. if (!em) {
  513. write_unlock(&em_tree->lock);
  514. break;
  515. }
  516. flags = em->flags;
  517. gen = em->generation;
  518. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  519. if (testend && em->start + em->len >= start + len) {
  520. free_extent_map(em);
  521. write_unlock(&em_tree->lock);
  522. break;
  523. }
  524. start = em->start + em->len;
  525. if (testend)
  526. len = start + len - (em->start + em->len);
  527. free_extent_map(em);
  528. write_unlock(&em_tree->lock);
  529. continue;
  530. }
  531. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  532. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  533. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  534. modified = !list_empty(&em->list);
  535. remove_extent_mapping(em_tree, em);
  536. if (no_splits)
  537. goto next;
  538. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  539. em->start < start) {
  540. split->start = em->start;
  541. split->len = start - em->start;
  542. split->orig_start = em->orig_start;
  543. split->block_start = em->block_start;
  544. if (compressed)
  545. split->block_len = em->block_len;
  546. else
  547. split->block_len = split->len;
  548. split->ram_bytes = em->ram_bytes;
  549. split->orig_block_len = max(split->block_len,
  550. em->orig_block_len);
  551. split->generation = gen;
  552. split->bdev = em->bdev;
  553. split->flags = flags;
  554. split->compress_type = em->compress_type;
  555. ret = add_extent_mapping(em_tree, split, modified);
  556. BUG_ON(ret); /* Logic error */
  557. free_extent_map(split);
  558. split = split2;
  559. split2 = NULL;
  560. }
  561. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  562. testend && em->start + em->len > start + len) {
  563. u64 diff = start + len - em->start;
  564. split->start = start + len;
  565. split->len = em->start + em->len - (start + len);
  566. split->bdev = em->bdev;
  567. split->flags = flags;
  568. split->compress_type = em->compress_type;
  569. split->generation = gen;
  570. split->orig_block_len = max(em->block_len,
  571. em->orig_block_len);
  572. split->ram_bytes = em->ram_bytes;
  573. if (compressed) {
  574. split->block_len = em->block_len;
  575. split->block_start = em->block_start;
  576. split->orig_start = em->orig_start;
  577. } else {
  578. split->block_len = split->len;
  579. split->block_start = em->block_start + diff;
  580. split->orig_start = em->orig_start;
  581. }
  582. ret = add_extent_mapping(em_tree, split, modified);
  583. BUG_ON(ret); /* Logic error */
  584. free_extent_map(split);
  585. split = NULL;
  586. }
  587. next:
  588. write_unlock(&em_tree->lock);
  589. /* once for us */
  590. free_extent_map(em);
  591. /* once for the tree*/
  592. free_extent_map(em);
  593. }
  594. if (split)
  595. free_extent_map(split);
  596. if (split2)
  597. free_extent_map(split2);
  598. }
  599. /*
  600. * this is very complex, but the basic idea is to drop all extents
  601. * in the range start - end. hint_block is filled in with a block number
  602. * that would be a good hint to the block allocator for this file.
  603. *
  604. * If an extent intersects the range but is not entirely inside the range
  605. * it is either truncated or split. Anything entirely inside the range
  606. * is deleted from the tree.
  607. */
  608. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  609. struct btrfs_root *root, struct inode *inode,
  610. struct btrfs_path *path, u64 start, u64 end,
  611. u64 *drop_end, int drop_cache)
  612. {
  613. struct extent_buffer *leaf;
  614. struct btrfs_file_extent_item *fi;
  615. struct btrfs_key key;
  616. struct btrfs_key new_key;
  617. u64 ino = btrfs_ino(inode);
  618. u64 search_start = start;
  619. u64 disk_bytenr = 0;
  620. u64 num_bytes = 0;
  621. u64 extent_offset = 0;
  622. u64 extent_end = 0;
  623. int del_nr = 0;
  624. int del_slot = 0;
  625. int extent_type;
  626. int recow;
  627. int ret;
  628. int modify_tree = -1;
  629. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  630. int found = 0;
  631. if (drop_cache)
  632. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  633. if (start >= BTRFS_I(inode)->disk_i_size)
  634. modify_tree = 0;
  635. while (1) {
  636. recow = 0;
  637. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  638. search_start, modify_tree);
  639. if (ret < 0)
  640. break;
  641. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  642. leaf = path->nodes[0];
  643. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  644. if (key.objectid == ino &&
  645. key.type == BTRFS_EXTENT_DATA_KEY)
  646. path->slots[0]--;
  647. }
  648. ret = 0;
  649. next_slot:
  650. leaf = path->nodes[0];
  651. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  652. BUG_ON(del_nr > 0);
  653. ret = btrfs_next_leaf(root, path);
  654. if (ret < 0)
  655. break;
  656. if (ret > 0) {
  657. ret = 0;
  658. break;
  659. }
  660. leaf = path->nodes[0];
  661. recow = 1;
  662. }
  663. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  664. if (key.objectid > ino ||
  665. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  666. break;
  667. fi = btrfs_item_ptr(leaf, path->slots[0],
  668. struct btrfs_file_extent_item);
  669. extent_type = btrfs_file_extent_type(leaf, fi);
  670. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  671. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  672. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  673. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  674. extent_offset = btrfs_file_extent_offset(leaf, fi);
  675. extent_end = key.offset +
  676. btrfs_file_extent_num_bytes(leaf, fi);
  677. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  678. extent_end = key.offset +
  679. btrfs_file_extent_inline_len(leaf, fi);
  680. } else {
  681. WARN_ON(1);
  682. extent_end = search_start;
  683. }
  684. if (extent_end <= search_start) {
  685. path->slots[0]++;
  686. goto next_slot;
  687. }
  688. found = 1;
  689. search_start = max(key.offset, start);
  690. if (recow || !modify_tree) {
  691. modify_tree = -1;
  692. btrfs_release_path(path);
  693. continue;
  694. }
  695. /*
  696. * | - range to drop - |
  697. * | -------- extent -------- |
  698. */
  699. if (start > key.offset && end < extent_end) {
  700. BUG_ON(del_nr > 0);
  701. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  702. memcpy(&new_key, &key, sizeof(new_key));
  703. new_key.offset = start;
  704. ret = btrfs_duplicate_item(trans, root, path,
  705. &new_key);
  706. if (ret == -EAGAIN) {
  707. btrfs_release_path(path);
  708. continue;
  709. }
  710. if (ret < 0)
  711. break;
  712. leaf = path->nodes[0];
  713. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  714. struct btrfs_file_extent_item);
  715. btrfs_set_file_extent_num_bytes(leaf, fi,
  716. start - key.offset);
  717. fi = btrfs_item_ptr(leaf, path->slots[0],
  718. struct btrfs_file_extent_item);
  719. extent_offset += start - key.offset;
  720. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  721. btrfs_set_file_extent_num_bytes(leaf, fi,
  722. extent_end - start);
  723. btrfs_mark_buffer_dirty(leaf);
  724. if (update_refs && disk_bytenr > 0) {
  725. ret = btrfs_inc_extent_ref(trans, root,
  726. disk_bytenr, num_bytes, 0,
  727. root->root_key.objectid,
  728. new_key.objectid,
  729. start - extent_offset, 0);
  730. BUG_ON(ret); /* -ENOMEM */
  731. }
  732. key.offset = start;
  733. }
  734. /*
  735. * | ---- range to drop ----- |
  736. * | -------- extent -------- |
  737. */
  738. if (start <= key.offset && end < extent_end) {
  739. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  740. memcpy(&new_key, &key, sizeof(new_key));
  741. new_key.offset = end;
  742. btrfs_set_item_key_safe(root, path, &new_key);
  743. extent_offset += end - key.offset;
  744. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  745. btrfs_set_file_extent_num_bytes(leaf, fi,
  746. extent_end - end);
  747. btrfs_mark_buffer_dirty(leaf);
  748. if (update_refs && disk_bytenr > 0)
  749. inode_sub_bytes(inode, end - key.offset);
  750. break;
  751. }
  752. search_start = extent_end;
  753. /*
  754. * | ---- range to drop ----- |
  755. * | -------- extent -------- |
  756. */
  757. if (start > key.offset && end >= extent_end) {
  758. BUG_ON(del_nr > 0);
  759. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  760. btrfs_set_file_extent_num_bytes(leaf, fi,
  761. start - key.offset);
  762. btrfs_mark_buffer_dirty(leaf);
  763. if (update_refs && disk_bytenr > 0)
  764. inode_sub_bytes(inode, extent_end - start);
  765. if (end == extent_end)
  766. break;
  767. path->slots[0]++;
  768. goto next_slot;
  769. }
  770. /*
  771. * | ---- range to drop ----- |
  772. * | ------ extent ------ |
  773. */
  774. if (start <= key.offset && end >= extent_end) {
  775. if (del_nr == 0) {
  776. del_slot = path->slots[0];
  777. del_nr = 1;
  778. } else {
  779. BUG_ON(del_slot + del_nr != path->slots[0]);
  780. del_nr++;
  781. }
  782. if (update_refs &&
  783. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  784. inode_sub_bytes(inode,
  785. extent_end - key.offset);
  786. extent_end = ALIGN(extent_end,
  787. root->sectorsize);
  788. } else if (update_refs && disk_bytenr > 0) {
  789. ret = btrfs_free_extent(trans, root,
  790. disk_bytenr, num_bytes, 0,
  791. root->root_key.objectid,
  792. key.objectid, key.offset -
  793. extent_offset, 0);
  794. BUG_ON(ret); /* -ENOMEM */
  795. inode_sub_bytes(inode,
  796. extent_end - key.offset);
  797. }
  798. if (end == extent_end)
  799. break;
  800. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  801. path->slots[0]++;
  802. goto next_slot;
  803. }
  804. ret = btrfs_del_items(trans, root, path, del_slot,
  805. del_nr);
  806. if (ret) {
  807. btrfs_abort_transaction(trans, root, ret);
  808. break;
  809. }
  810. del_nr = 0;
  811. del_slot = 0;
  812. btrfs_release_path(path);
  813. continue;
  814. }
  815. BUG_ON(1);
  816. }
  817. if (!ret && del_nr > 0) {
  818. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  819. if (ret)
  820. btrfs_abort_transaction(trans, root, ret);
  821. }
  822. if (drop_end)
  823. *drop_end = found ? min(end, extent_end) : end;
  824. btrfs_release_path(path);
  825. return ret;
  826. }
  827. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  828. struct btrfs_root *root, struct inode *inode, u64 start,
  829. u64 end, int drop_cache)
  830. {
  831. struct btrfs_path *path;
  832. int ret;
  833. path = btrfs_alloc_path();
  834. if (!path)
  835. return -ENOMEM;
  836. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  837. drop_cache);
  838. btrfs_free_path(path);
  839. return ret;
  840. }
  841. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  842. u64 objectid, u64 bytenr, u64 orig_offset,
  843. u64 *start, u64 *end)
  844. {
  845. struct btrfs_file_extent_item *fi;
  846. struct btrfs_key key;
  847. u64 extent_end;
  848. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  849. return 0;
  850. btrfs_item_key_to_cpu(leaf, &key, slot);
  851. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  852. return 0;
  853. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  854. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  855. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  856. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  857. btrfs_file_extent_compression(leaf, fi) ||
  858. btrfs_file_extent_encryption(leaf, fi) ||
  859. btrfs_file_extent_other_encoding(leaf, fi))
  860. return 0;
  861. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  862. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  863. return 0;
  864. *start = key.offset;
  865. *end = extent_end;
  866. return 1;
  867. }
  868. /*
  869. * Mark extent in the range start - end as written.
  870. *
  871. * This changes extent type from 'pre-allocated' to 'regular'. If only
  872. * part of extent is marked as written, the extent will be split into
  873. * two or three.
  874. */
  875. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  876. struct inode *inode, u64 start, u64 end)
  877. {
  878. struct btrfs_root *root = BTRFS_I(inode)->root;
  879. struct extent_buffer *leaf;
  880. struct btrfs_path *path;
  881. struct btrfs_file_extent_item *fi;
  882. struct btrfs_key key;
  883. struct btrfs_key new_key;
  884. u64 bytenr;
  885. u64 num_bytes;
  886. u64 extent_end;
  887. u64 orig_offset;
  888. u64 other_start;
  889. u64 other_end;
  890. u64 split;
  891. int del_nr = 0;
  892. int del_slot = 0;
  893. int recow;
  894. int ret;
  895. u64 ino = btrfs_ino(inode);
  896. path = btrfs_alloc_path();
  897. if (!path)
  898. return -ENOMEM;
  899. again:
  900. recow = 0;
  901. split = start;
  902. key.objectid = ino;
  903. key.type = BTRFS_EXTENT_DATA_KEY;
  904. key.offset = split;
  905. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  906. if (ret < 0)
  907. goto out;
  908. if (ret > 0 && path->slots[0] > 0)
  909. path->slots[0]--;
  910. leaf = path->nodes[0];
  911. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  912. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  913. fi = btrfs_item_ptr(leaf, path->slots[0],
  914. struct btrfs_file_extent_item);
  915. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  916. BTRFS_FILE_EXTENT_PREALLOC);
  917. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  918. BUG_ON(key.offset > start || extent_end < end);
  919. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  920. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  921. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  922. memcpy(&new_key, &key, sizeof(new_key));
  923. if (start == key.offset && end < extent_end) {
  924. other_start = 0;
  925. other_end = start;
  926. if (extent_mergeable(leaf, path->slots[0] - 1,
  927. ino, bytenr, orig_offset,
  928. &other_start, &other_end)) {
  929. new_key.offset = end;
  930. btrfs_set_item_key_safe(root, path, &new_key);
  931. fi = btrfs_item_ptr(leaf, path->slots[0],
  932. struct btrfs_file_extent_item);
  933. btrfs_set_file_extent_generation(leaf, fi,
  934. trans->transid);
  935. btrfs_set_file_extent_num_bytes(leaf, fi,
  936. extent_end - end);
  937. btrfs_set_file_extent_offset(leaf, fi,
  938. end - orig_offset);
  939. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  940. struct btrfs_file_extent_item);
  941. btrfs_set_file_extent_generation(leaf, fi,
  942. trans->transid);
  943. btrfs_set_file_extent_num_bytes(leaf, fi,
  944. end - other_start);
  945. btrfs_mark_buffer_dirty(leaf);
  946. goto out;
  947. }
  948. }
  949. if (start > key.offset && end == extent_end) {
  950. other_start = end;
  951. other_end = 0;
  952. if (extent_mergeable(leaf, path->slots[0] + 1,
  953. ino, bytenr, orig_offset,
  954. &other_start, &other_end)) {
  955. fi = btrfs_item_ptr(leaf, path->slots[0],
  956. struct btrfs_file_extent_item);
  957. btrfs_set_file_extent_num_bytes(leaf, fi,
  958. start - key.offset);
  959. btrfs_set_file_extent_generation(leaf, fi,
  960. trans->transid);
  961. path->slots[0]++;
  962. new_key.offset = start;
  963. btrfs_set_item_key_safe(root, path, &new_key);
  964. fi = btrfs_item_ptr(leaf, path->slots[0],
  965. struct btrfs_file_extent_item);
  966. btrfs_set_file_extent_generation(leaf, fi,
  967. trans->transid);
  968. btrfs_set_file_extent_num_bytes(leaf, fi,
  969. other_end - start);
  970. btrfs_set_file_extent_offset(leaf, fi,
  971. start - orig_offset);
  972. btrfs_mark_buffer_dirty(leaf);
  973. goto out;
  974. }
  975. }
  976. while (start > key.offset || end < extent_end) {
  977. if (key.offset == start)
  978. split = end;
  979. new_key.offset = split;
  980. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  981. if (ret == -EAGAIN) {
  982. btrfs_release_path(path);
  983. goto again;
  984. }
  985. if (ret < 0) {
  986. btrfs_abort_transaction(trans, root, ret);
  987. goto out;
  988. }
  989. leaf = path->nodes[0];
  990. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  991. struct btrfs_file_extent_item);
  992. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  993. btrfs_set_file_extent_num_bytes(leaf, fi,
  994. split - key.offset);
  995. fi = btrfs_item_ptr(leaf, path->slots[0],
  996. struct btrfs_file_extent_item);
  997. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  998. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  999. btrfs_set_file_extent_num_bytes(leaf, fi,
  1000. extent_end - split);
  1001. btrfs_mark_buffer_dirty(leaf);
  1002. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  1003. root->root_key.objectid,
  1004. ino, orig_offset, 0);
  1005. BUG_ON(ret); /* -ENOMEM */
  1006. if (split == start) {
  1007. key.offset = start;
  1008. } else {
  1009. BUG_ON(start != key.offset);
  1010. path->slots[0]--;
  1011. extent_end = end;
  1012. }
  1013. recow = 1;
  1014. }
  1015. other_start = end;
  1016. other_end = 0;
  1017. if (extent_mergeable(leaf, path->slots[0] + 1,
  1018. ino, bytenr, orig_offset,
  1019. &other_start, &other_end)) {
  1020. if (recow) {
  1021. btrfs_release_path(path);
  1022. goto again;
  1023. }
  1024. extent_end = other_end;
  1025. del_slot = path->slots[0] + 1;
  1026. del_nr++;
  1027. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1028. 0, root->root_key.objectid,
  1029. ino, orig_offset, 0);
  1030. BUG_ON(ret); /* -ENOMEM */
  1031. }
  1032. other_start = 0;
  1033. other_end = start;
  1034. if (extent_mergeable(leaf, path->slots[0] - 1,
  1035. ino, bytenr, orig_offset,
  1036. &other_start, &other_end)) {
  1037. if (recow) {
  1038. btrfs_release_path(path);
  1039. goto again;
  1040. }
  1041. key.offset = other_start;
  1042. del_slot = path->slots[0];
  1043. del_nr++;
  1044. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1045. 0, root->root_key.objectid,
  1046. ino, orig_offset, 0);
  1047. BUG_ON(ret); /* -ENOMEM */
  1048. }
  1049. if (del_nr == 0) {
  1050. fi = btrfs_item_ptr(leaf, path->slots[0],
  1051. struct btrfs_file_extent_item);
  1052. btrfs_set_file_extent_type(leaf, fi,
  1053. BTRFS_FILE_EXTENT_REG);
  1054. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1055. btrfs_mark_buffer_dirty(leaf);
  1056. } else {
  1057. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1058. struct btrfs_file_extent_item);
  1059. btrfs_set_file_extent_type(leaf, fi,
  1060. BTRFS_FILE_EXTENT_REG);
  1061. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1062. btrfs_set_file_extent_num_bytes(leaf, fi,
  1063. extent_end - key.offset);
  1064. btrfs_mark_buffer_dirty(leaf);
  1065. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1066. if (ret < 0) {
  1067. btrfs_abort_transaction(trans, root, ret);
  1068. goto out;
  1069. }
  1070. }
  1071. out:
  1072. btrfs_free_path(path);
  1073. return 0;
  1074. }
  1075. /*
  1076. * on error we return an unlocked page and the error value
  1077. * on success we return a locked page and 0
  1078. */
  1079. static int prepare_uptodate_page(struct page *page, u64 pos,
  1080. bool force_uptodate)
  1081. {
  1082. int ret = 0;
  1083. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1084. !PageUptodate(page)) {
  1085. ret = btrfs_readpage(NULL, page);
  1086. if (ret)
  1087. return ret;
  1088. lock_page(page);
  1089. if (!PageUptodate(page)) {
  1090. unlock_page(page);
  1091. return -EIO;
  1092. }
  1093. }
  1094. return 0;
  1095. }
  1096. /*
  1097. * this gets pages into the page cache and locks them down, it also properly
  1098. * waits for data=ordered extents to finish before allowing the pages to be
  1099. * modified.
  1100. */
  1101. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1102. struct page **pages, size_t num_pages,
  1103. loff_t pos, unsigned long first_index,
  1104. size_t write_bytes, bool force_uptodate)
  1105. {
  1106. struct extent_state *cached_state = NULL;
  1107. int i;
  1108. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1109. struct inode *inode = file_inode(file);
  1110. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1111. int err = 0;
  1112. int faili = 0;
  1113. u64 start_pos;
  1114. u64 last_pos;
  1115. start_pos = pos & ~((u64)root->sectorsize - 1);
  1116. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1117. again:
  1118. for (i = 0; i < num_pages; i++) {
  1119. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1120. mask | __GFP_WRITE);
  1121. if (!pages[i]) {
  1122. faili = i - 1;
  1123. err = -ENOMEM;
  1124. goto fail;
  1125. }
  1126. if (i == 0)
  1127. err = prepare_uptodate_page(pages[i], pos,
  1128. force_uptodate);
  1129. if (i == num_pages - 1)
  1130. err = prepare_uptodate_page(pages[i],
  1131. pos + write_bytes, false);
  1132. if (err) {
  1133. page_cache_release(pages[i]);
  1134. faili = i - 1;
  1135. goto fail;
  1136. }
  1137. wait_on_page_writeback(pages[i]);
  1138. }
  1139. err = 0;
  1140. if (start_pos < inode->i_size) {
  1141. struct btrfs_ordered_extent *ordered;
  1142. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1143. start_pos, last_pos - 1, 0, &cached_state);
  1144. ordered = btrfs_lookup_first_ordered_extent(inode,
  1145. last_pos - 1);
  1146. if (ordered &&
  1147. ordered->file_offset + ordered->len > start_pos &&
  1148. ordered->file_offset < last_pos) {
  1149. btrfs_put_ordered_extent(ordered);
  1150. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1151. start_pos, last_pos - 1,
  1152. &cached_state, GFP_NOFS);
  1153. for (i = 0; i < num_pages; i++) {
  1154. unlock_page(pages[i]);
  1155. page_cache_release(pages[i]);
  1156. }
  1157. btrfs_wait_ordered_range(inode, start_pos,
  1158. last_pos - start_pos);
  1159. goto again;
  1160. }
  1161. if (ordered)
  1162. btrfs_put_ordered_extent(ordered);
  1163. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1164. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1165. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1166. 0, 0, &cached_state, GFP_NOFS);
  1167. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1168. start_pos, last_pos - 1, &cached_state,
  1169. GFP_NOFS);
  1170. }
  1171. for (i = 0; i < num_pages; i++) {
  1172. if (clear_page_dirty_for_io(pages[i]))
  1173. account_page_redirty(pages[i]);
  1174. set_page_extent_mapped(pages[i]);
  1175. WARN_ON(!PageLocked(pages[i]));
  1176. }
  1177. return 0;
  1178. fail:
  1179. while (faili >= 0) {
  1180. unlock_page(pages[faili]);
  1181. page_cache_release(pages[faili]);
  1182. faili--;
  1183. }
  1184. return err;
  1185. }
  1186. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1187. struct iov_iter *i,
  1188. loff_t pos)
  1189. {
  1190. struct inode *inode = file_inode(file);
  1191. struct btrfs_root *root = BTRFS_I(inode)->root;
  1192. struct page **pages = NULL;
  1193. unsigned long first_index;
  1194. size_t num_written = 0;
  1195. int nrptrs;
  1196. int ret = 0;
  1197. bool force_page_uptodate = false;
  1198. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1199. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1200. (sizeof(struct page *)));
  1201. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1202. nrptrs = max(nrptrs, 8);
  1203. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1204. if (!pages)
  1205. return -ENOMEM;
  1206. first_index = pos >> PAGE_CACHE_SHIFT;
  1207. while (iov_iter_count(i) > 0) {
  1208. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1209. size_t write_bytes = min(iov_iter_count(i),
  1210. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1211. offset);
  1212. size_t num_pages = (write_bytes + offset +
  1213. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1214. size_t dirty_pages;
  1215. size_t copied;
  1216. WARN_ON(num_pages > nrptrs);
  1217. /*
  1218. * Fault pages before locking them in prepare_pages
  1219. * to avoid recursive lock
  1220. */
  1221. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1222. ret = -EFAULT;
  1223. break;
  1224. }
  1225. ret = btrfs_delalloc_reserve_space(inode,
  1226. num_pages << PAGE_CACHE_SHIFT);
  1227. if (ret)
  1228. break;
  1229. /*
  1230. * This is going to setup the pages array with the number of
  1231. * pages we want, so we don't really need to worry about the
  1232. * contents of pages from loop to loop
  1233. */
  1234. ret = prepare_pages(root, file, pages, num_pages,
  1235. pos, first_index, write_bytes,
  1236. force_page_uptodate);
  1237. if (ret) {
  1238. btrfs_delalloc_release_space(inode,
  1239. num_pages << PAGE_CACHE_SHIFT);
  1240. break;
  1241. }
  1242. copied = btrfs_copy_from_user(pos, num_pages,
  1243. write_bytes, pages, i);
  1244. /*
  1245. * if we have trouble faulting in the pages, fall
  1246. * back to one page at a time
  1247. */
  1248. if (copied < write_bytes)
  1249. nrptrs = 1;
  1250. if (copied == 0) {
  1251. force_page_uptodate = true;
  1252. dirty_pages = 0;
  1253. } else {
  1254. force_page_uptodate = false;
  1255. dirty_pages = (copied + offset +
  1256. PAGE_CACHE_SIZE - 1) >>
  1257. PAGE_CACHE_SHIFT;
  1258. }
  1259. /*
  1260. * If we had a short copy we need to release the excess delaloc
  1261. * bytes we reserved. We need to increment outstanding_extents
  1262. * because btrfs_delalloc_release_space will decrement it, but
  1263. * we still have an outstanding extent for the chunk we actually
  1264. * managed to copy.
  1265. */
  1266. if (num_pages > dirty_pages) {
  1267. if (copied > 0) {
  1268. spin_lock(&BTRFS_I(inode)->lock);
  1269. BTRFS_I(inode)->outstanding_extents++;
  1270. spin_unlock(&BTRFS_I(inode)->lock);
  1271. }
  1272. btrfs_delalloc_release_space(inode,
  1273. (num_pages - dirty_pages) <<
  1274. PAGE_CACHE_SHIFT);
  1275. }
  1276. if (copied > 0) {
  1277. ret = btrfs_dirty_pages(root, inode, pages,
  1278. dirty_pages, pos, copied,
  1279. NULL);
  1280. if (ret) {
  1281. btrfs_delalloc_release_space(inode,
  1282. dirty_pages << PAGE_CACHE_SHIFT);
  1283. btrfs_drop_pages(pages, num_pages);
  1284. break;
  1285. }
  1286. }
  1287. btrfs_drop_pages(pages, num_pages);
  1288. cond_resched();
  1289. balance_dirty_pages_ratelimited(inode->i_mapping);
  1290. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1291. btrfs_btree_balance_dirty(root);
  1292. pos += copied;
  1293. num_written += copied;
  1294. }
  1295. kfree(pages);
  1296. return num_written ? num_written : ret;
  1297. }
  1298. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1299. const struct iovec *iov,
  1300. unsigned long nr_segs, loff_t pos,
  1301. loff_t *ppos, size_t count, size_t ocount)
  1302. {
  1303. struct file *file = iocb->ki_filp;
  1304. struct iov_iter i;
  1305. ssize_t written;
  1306. ssize_t written_buffered;
  1307. loff_t endbyte;
  1308. int err;
  1309. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1310. count, ocount);
  1311. if (written < 0 || written == count)
  1312. return written;
  1313. pos += written;
  1314. count -= written;
  1315. iov_iter_init(&i, iov, nr_segs, count, written);
  1316. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1317. if (written_buffered < 0) {
  1318. err = written_buffered;
  1319. goto out;
  1320. }
  1321. endbyte = pos + written_buffered - 1;
  1322. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1323. if (err)
  1324. goto out;
  1325. written += written_buffered;
  1326. *ppos = pos + written_buffered;
  1327. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1328. endbyte >> PAGE_CACHE_SHIFT);
  1329. out:
  1330. return written ? written : err;
  1331. }
  1332. static void update_time_for_write(struct inode *inode)
  1333. {
  1334. struct timespec now;
  1335. if (IS_NOCMTIME(inode))
  1336. return;
  1337. now = current_fs_time(inode->i_sb);
  1338. if (!timespec_equal(&inode->i_mtime, &now))
  1339. inode->i_mtime = now;
  1340. if (!timespec_equal(&inode->i_ctime, &now))
  1341. inode->i_ctime = now;
  1342. if (IS_I_VERSION(inode))
  1343. inode_inc_iversion(inode);
  1344. }
  1345. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1346. const struct iovec *iov,
  1347. unsigned long nr_segs, loff_t pos)
  1348. {
  1349. struct file *file = iocb->ki_filp;
  1350. struct inode *inode = file_inode(file);
  1351. struct btrfs_root *root = BTRFS_I(inode)->root;
  1352. loff_t *ppos = &iocb->ki_pos;
  1353. u64 start_pos;
  1354. ssize_t num_written = 0;
  1355. ssize_t err = 0;
  1356. size_t count, ocount;
  1357. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1358. mutex_lock(&inode->i_mutex);
  1359. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1360. if (err) {
  1361. mutex_unlock(&inode->i_mutex);
  1362. goto out;
  1363. }
  1364. count = ocount;
  1365. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1366. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1367. if (err) {
  1368. mutex_unlock(&inode->i_mutex);
  1369. goto out;
  1370. }
  1371. if (count == 0) {
  1372. mutex_unlock(&inode->i_mutex);
  1373. goto out;
  1374. }
  1375. err = file_remove_suid(file);
  1376. if (err) {
  1377. mutex_unlock(&inode->i_mutex);
  1378. goto out;
  1379. }
  1380. /*
  1381. * If BTRFS flips readonly due to some impossible error
  1382. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1383. * although we have opened a file as writable, we have
  1384. * to stop this write operation to ensure FS consistency.
  1385. */
  1386. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1387. mutex_unlock(&inode->i_mutex);
  1388. err = -EROFS;
  1389. goto out;
  1390. }
  1391. /*
  1392. * We reserve space for updating the inode when we reserve space for the
  1393. * extent we are going to write, so we will enospc out there. We don't
  1394. * need to start yet another transaction to update the inode as we will
  1395. * update the inode when we finish writing whatever data we write.
  1396. */
  1397. update_time_for_write(inode);
  1398. start_pos = round_down(pos, root->sectorsize);
  1399. if (start_pos > i_size_read(inode)) {
  1400. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1401. if (err) {
  1402. mutex_unlock(&inode->i_mutex);
  1403. goto out;
  1404. }
  1405. }
  1406. if (sync)
  1407. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1408. if (unlikely(file->f_flags & O_DIRECT)) {
  1409. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1410. pos, ppos, count, ocount);
  1411. } else {
  1412. struct iov_iter i;
  1413. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1414. num_written = __btrfs_buffered_write(file, &i, pos);
  1415. if (num_written > 0)
  1416. *ppos = pos + num_written;
  1417. }
  1418. mutex_unlock(&inode->i_mutex);
  1419. /*
  1420. * we want to make sure fsync finds this change
  1421. * but we haven't joined a transaction running right now.
  1422. *
  1423. * Later on, someone is sure to update the inode and get the
  1424. * real transid recorded.
  1425. *
  1426. * We set last_trans now to the fs_info generation + 1,
  1427. * this will either be one more than the running transaction
  1428. * or the generation used for the next transaction if there isn't
  1429. * one running right now.
  1430. *
  1431. * We also have to set last_sub_trans to the current log transid,
  1432. * otherwise subsequent syncs to a file that's been synced in this
  1433. * transaction will appear to have already occured.
  1434. */
  1435. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1436. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1437. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1438. err = generic_write_sync(file, pos, num_written);
  1439. if (err < 0 && num_written > 0)
  1440. num_written = err;
  1441. }
  1442. if (sync)
  1443. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1444. out:
  1445. current->backing_dev_info = NULL;
  1446. return num_written ? num_written : err;
  1447. }
  1448. int btrfs_release_file(struct inode *inode, struct file *filp)
  1449. {
  1450. /*
  1451. * ordered_data_close is set by settattr when we are about to truncate
  1452. * a file from a non-zero size to a zero size. This tries to
  1453. * flush down new bytes that may have been written if the
  1454. * application were using truncate to replace a file in place.
  1455. */
  1456. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1457. &BTRFS_I(inode)->runtime_flags)) {
  1458. struct btrfs_trans_handle *trans;
  1459. struct btrfs_root *root = BTRFS_I(inode)->root;
  1460. /*
  1461. * We need to block on a committing transaction to keep us from
  1462. * throwing a ordered operation on to the list and causing
  1463. * something like sync to deadlock trying to flush out this
  1464. * inode.
  1465. */
  1466. trans = btrfs_start_transaction(root, 0);
  1467. if (IS_ERR(trans))
  1468. return PTR_ERR(trans);
  1469. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1470. btrfs_end_transaction(trans, root);
  1471. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1472. filemap_flush(inode->i_mapping);
  1473. }
  1474. if (filp->private_data)
  1475. btrfs_ioctl_trans_end(filp);
  1476. return 0;
  1477. }
  1478. /*
  1479. * fsync call for both files and directories. This logs the inode into
  1480. * the tree log instead of forcing full commits whenever possible.
  1481. *
  1482. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1483. * in the metadata btree are up to date for copying to the log.
  1484. *
  1485. * It drops the inode mutex before doing the tree log commit. This is an
  1486. * important optimization for directories because holding the mutex prevents
  1487. * new operations on the dir while we write to disk.
  1488. */
  1489. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1490. {
  1491. struct dentry *dentry = file->f_path.dentry;
  1492. struct inode *inode = dentry->d_inode;
  1493. struct btrfs_root *root = BTRFS_I(inode)->root;
  1494. int ret = 0;
  1495. struct btrfs_trans_handle *trans;
  1496. bool full_sync = 0;
  1497. trace_btrfs_sync_file(file, datasync);
  1498. /*
  1499. * We write the dirty pages in the range and wait until they complete
  1500. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1501. * multi-task, and make the performance up. See
  1502. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1503. */
  1504. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1505. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1506. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1507. &BTRFS_I(inode)->runtime_flags))
  1508. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1509. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1510. if (ret)
  1511. return ret;
  1512. mutex_lock(&inode->i_mutex);
  1513. /*
  1514. * We flush the dirty pages again to avoid some dirty pages in the
  1515. * range being left.
  1516. */
  1517. atomic_inc(&root->log_batch);
  1518. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1519. &BTRFS_I(inode)->runtime_flags);
  1520. if (full_sync)
  1521. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1522. atomic_inc(&root->log_batch);
  1523. /*
  1524. * check the transaction that last modified this inode
  1525. * and see if its already been committed
  1526. */
  1527. if (!BTRFS_I(inode)->last_trans) {
  1528. mutex_unlock(&inode->i_mutex);
  1529. goto out;
  1530. }
  1531. /*
  1532. * if the last transaction that changed this file was before
  1533. * the current transaction, we can bail out now without any
  1534. * syncing
  1535. */
  1536. smp_mb();
  1537. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1538. BTRFS_I(inode)->last_trans <=
  1539. root->fs_info->last_trans_committed) {
  1540. BTRFS_I(inode)->last_trans = 0;
  1541. /*
  1542. * We'v had everything committed since the last time we were
  1543. * modified so clear this flag in case it was set for whatever
  1544. * reason, it's no longer relevant.
  1545. */
  1546. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1547. &BTRFS_I(inode)->runtime_flags);
  1548. mutex_unlock(&inode->i_mutex);
  1549. goto out;
  1550. }
  1551. /*
  1552. * ok we haven't committed the transaction yet, lets do a commit
  1553. */
  1554. if (file->private_data)
  1555. btrfs_ioctl_trans_end(file);
  1556. trans = btrfs_start_transaction(root, 0);
  1557. if (IS_ERR(trans)) {
  1558. ret = PTR_ERR(trans);
  1559. mutex_unlock(&inode->i_mutex);
  1560. goto out;
  1561. }
  1562. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1563. if (ret < 0) {
  1564. mutex_unlock(&inode->i_mutex);
  1565. goto out;
  1566. }
  1567. /* we've logged all the items and now have a consistent
  1568. * version of the file in the log. It is possible that
  1569. * someone will come in and modify the file, but that's
  1570. * fine because the log is consistent on disk, and we
  1571. * have references to all of the file's extents
  1572. *
  1573. * It is possible that someone will come in and log the
  1574. * file again, but that will end up using the synchronization
  1575. * inside btrfs_sync_log to keep things safe.
  1576. */
  1577. mutex_unlock(&inode->i_mutex);
  1578. if (ret != BTRFS_NO_LOG_SYNC) {
  1579. if (ret > 0) {
  1580. /*
  1581. * If we didn't already wait for ordered extents we need
  1582. * to do that now.
  1583. */
  1584. if (!full_sync)
  1585. btrfs_wait_ordered_range(inode, start,
  1586. end - start + 1);
  1587. ret = btrfs_commit_transaction(trans, root);
  1588. } else {
  1589. ret = btrfs_sync_log(trans, root);
  1590. if (ret == 0) {
  1591. ret = btrfs_end_transaction(trans, root);
  1592. } else {
  1593. if (!full_sync)
  1594. btrfs_wait_ordered_range(inode, start,
  1595. end -
  1596. start + 1);
  1597. ret = btrfs_commit_transaction(trans, root);
  1598. }
  1599. }
  1600. } else {
  1601. ret = btrfs_end_transaction(trans, root);
  1602. }
  1603. out:
  1604. return ret > 0 ? -EIO : ret;
  1605. }
  1606. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1607. .fault = filemap_fault,
  1608. .page_mkwrite = btrfs_page_mkwrite,
  1609. .remap_pages = generic_file_remap_pages,
  1610. };
  1611. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1612. {
  1613. struct address_space *mapping = filp->f_mapping;
  1614. if (!mapping->a_ops->readpage)
  1615. return -ENOEXEC;
  1616. file_accessed(filp);
  1617. vma->vm_ops = &btrfs_file_vm_ops;
  1618. return 0;
  1619. }
  1620. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1621. int slot, u64 start, u64 end)
  1622. {
  1623. struct btrfs_file_extent_item *fi;
  1624. struct btrfs_key key;
  1625. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1626. return 0;
  1627. btrfs_item_key_to_cpu(leaf, &key, slot);
  1628. if (key.objectid != btrfs_ino(inode) ||
  1629. key.type != BTRFS_EXTENT_DATA_KEY)
  1630. return 0;
  1631. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1632. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1633. return 0;
  1634. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1635. return 0;
  1636. if (key.offset == end)
  1637. return 1;
  1638. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1639. return 1;
  1640. return 0;
  1641. }
  1642. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1643. struct btrfs_path *path, u64 offset, u64 end)
  1644. {
  1645. struct btrfs_root *root = BTRFS_I(inode)->root;
  1646. struct extent_buffer *leaf;
  1647. struct btrfs_file_extent_item *fi;
  1648. struct extent_map *hole_em;
  1649. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1650. struct btrfs_key key;
  1651. int ret;
  1652. key.objectid = btrfs_ino(inode);
  1653. key.type = BTRFS_EXTENT_DATA_KEY;
  1654. key.offset = offset;
  1655. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1656. if (ret < 0)
  1657. return ret;
  1658. BUG_ON(!ret);
  1659. leaf = path->nodes[0];
  1660. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1661. u64 num_bytes;
  1662. path->slots[0]--;
  1663. fi = btrfs_item_ptr(leaf, path->slots[0],
  1664. struct btrfs_file_extent_item);
  1665. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1666. end - offset;
  1667. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1668. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1669. btrfs_set_file_extent_offset(leaf, fi, 0);
  1670. btrfs_mark_buffer_dirty(leaf);
  1671. goto out;
  1672. }
  1673. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1674. u64 num_bytes;
  1675. path->slots[0]++;
  1676. key.offset = offset;
  1677. btrfs_set_item_key_safe(root, path, &key);
  1678. fi = btrfs_item_ptr(leaf, path->slots[0],
  1679. struct btrfs_file_extent_item);
  1680. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1681. offset;
  1682. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1683. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1684. btrfs_set_file_extent_offset(leaf, fi, 0);
  1685. btrfs_mark_buffer_dirty(leaf);
  1686. goto out;
  1687. }
  1688. btrfs_release_path(path);
  1689. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1690. 0, 0, end - offset, 0, end - offset,
  1691. 0, 0, 0);
  1692. if (ret)
  1693. return ret;
  1694. out:
  1695. btrfs_release_path(path);
  1696. hole_em = alloc_extent_map();
  1697. if (!hole_em) {
  1698. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1699. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1700. &BTRFS_I(inode)->runtime_flags);
  1701. } else {
  1702. hole_em->start = offset;
  1703. hole_em->len = end - offset;
  1704. hole_em->ram_bytes = hole_em->len;
  1705. hole_em->orig_start = offset;
  1706. hole_em->block_start = EXTENT_MAP_HOLE;
  1707. hole_em->block_len = 0;
  1708. hole_em->orig_block_len = 0;
  1709. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1710. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1711. hole_em->generation = trans->transid;
  1712. do {
  1713. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1714. write_lock(&em_tree->lock);
  1715. ret = add_extent_mapping(em_tree, hole_em, 1);
  1716. write_unlock(&em_tree->lock);
  1717. } while (ret == -EEXIST);
  1718. free_extent_map(hole_em);
  1719. if (ret)
  1720. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1721. &BTRFS_I(inode)->runtime_flags);
  1722. }
  1723. return 0;
  1724. }
  1725. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1726. {
  1727. struct btrfs_root *root = BTRFS_I(inode)->root;
  1728. struct extent_state *cached_state = NULL;
  1729. struct btrfs_path *path;
  1730. struct btrfs_block_rsv *rsv;
  1731. struct btrfs_trans_handle *trans;
  1732. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1733. u64 lockend = round_down(offset + len,
  1734. BTRFS_I(inode)->root->sectorsize) - 1;
  1735. u64 cur_offset = lockstart;
  1736. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1737. u64 drop_end;
  1738. int ret = 0;
  1739. int err = 0;
  1740. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1741. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1742. btrfs_wait_ordered_range(inode, offset, len);
  1743. mutex_lock(&inode->i_mutex);
  1744. /*
  1745. * We needn't truncate any page which is beyond the end of the file
  1746. * because we are sure there is no data there.
  1747. */
  1748. /*
  1749. * Only do this if we are in the same page and we aren't doing the
  1750. * entire page.
  1751. */
  1752. if (same_page && len < PAGE_CACHE_SIZE) {
  1753. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1754. ret = btrfs_truncate_page(inode, offset, len, 0);
  1755. mutex_unlock(&inode->i_mutex);
  1756. return ret;
  1757. }
  1758. /* zero back part of the first page */
  1759. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1760. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1761. if (ret) {
  1762. mutex_unlock(&inode->i_mutex);
  1763. return ret;
  1764. }
  1765. }
  1766. /* zero the front end of the last page */
  1767. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1768. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1769. if (ret) {
  1770. mutex_unlock(&inode->i_mutex);
  1771. return ret;
  1772. }
  1773. }
  1774. if (lockend < lockstart) {
  1775. mutex_unlock(&inode->i_mutex);
  1776. return 0;
  1777. }
  1778. while (1) {
  1779. struct btrfs_ordered_extent *ordered;
  1780. truncate_pagecache_range(inode, lockstart, lockend);
  1781. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1782. 0, &cached_state);
  1783. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1784. /*
  1785. * We need to make sure we have no ordered extents in this range
  1786. * and nobody raced in and read a page in this range, if we did
  1787. * we need to try again.
  1788. */
  1789. if ((!ordered ||
  1790. (ordered->file_offset + ordered->len < lockstart ||
  1791. ordered->file_offset > lockend)) &&
  1792. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1793. lockend, EXTENT_UPTODATE, 0,
  1794. cached_state)) {
  1795. if (ordered)
  1796. btrfs_put_ordered_extent(ordered);
  1797. break;
  1798. }
  1799. if (ordered)
  1800. btrfs_put_ordered_extent(ordered);
  1801. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1802. lockend, &cached_state, GFP_NOFS);
  1803. btrfs_wait_ordered_range(inode, lockstart,
  1804. lockend - lockstart + 1);
  1805. }
  1806. path = btrfs_alloc_path();
  1807. if (!path) {
  1808. ret = -ENOMEM;
  1809. goto out;
  1810. }
  1811. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1812. if (!rsv) {
  1813. ret = -ENOMEM;
  1814. goto out_free;
  1815. }
  1816. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1817. rsv->failfast = 1;
  1818. /*
  1819. * 1 - update the inode
  1820. * 1 - removing the extents in the range
  1821. * 1 - adding the hole extent
  1822. */
  1823. trans = btrfs_start_transaction(root, 3);
  1824. if (IS_ERR(trans)) {
  1825. err = PTR_ERR(trans);
  1826. goto out_free;
  1827. }
  1828. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1829. min_size);
  1830. BUG_ON(ret);
  1831. trans->block_rsv = rsv;
  1832. while (cur_offset < lockend) {
  1833. ret = __btrfs_drop_extents(trans, root, inode, path,
  1834. cur_offset, lockend + 1,
  1835. &drop_end, 1);
  1836. if (ret != -ENOSPC)
  1837. break;
  1838. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1839. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1840. if (ret) {
  1841. err = ret;
  1842. break;
  1843. }
  1844. cur_offset = drop_end;
  1845. ret = btrfs_update_inode(trans, root, inode);
  1846. if (ret) {
  1847. err = ret;
  1848. break;
  1849. }
  1850. btrfs_end_transaction(trans, root);
  1851. btrfs_btree_balance_dirty(root);
  1852. trans = btrfs_start_transaction(root, 3);
  1853. if (IS_ERR(trans)) {
  1854. ret = PTR_ERR(trans);
  1855. trans = NULL;
  1856. break;
  1857. }
  1858. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1859. rsv, min_size);
  1860. BUG_ON(ret); /* shouldn't happen */
  1861. trans->block_rsv = rsv;
  1862. }
  1863. if (ret) {
  1864. err = ret;
  1865. goto out_trans;
  1866. }
  1867. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1868. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1869. if (ret) {
  1870. err = ret;
  1871. goto out_trans;
  1872. }
  1873. out_trans:
  1874. if (!trans)
  1875. goto out_free;
  1876. inode_inc_iversion(inode);
  1877. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1878. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1879. ret = btrfs_update_inode(trans, root, inode);
  1880. btrfs_end_transaction(trans, root);
  1881. btrfs_btree_balance_dirty(root);
  1882. out_free:
  1883. btrfs_free_path(path);
  1884. btrfs_free_block_rsv(root, rsv);
  1885. out:
  1886. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1887. &cached_state, GFP_NOFS);
  1888. mutex_unlock(&inode->i_mutex);
  1889. if (ret && !err)
  1890. err = ret;
  1891. return err;
  1892. }
  1893. static long btrfs_fallocate(struct file *file, int mode,
  1894. loff_t offset, loff_t len)
  1895. {
  1896. struct inode *inode = file_inode(file);
  1897. struct extent_state *cached_state = NULL;
  1898. struct btrfs_root *root = BTRFS_I(inode)->root;
  1899. u64 cur_offset;
  1900. u64 last_byte;
  1901. u64 alloc_start;
  1902. u64 alloc_end;
  1903. u64 alloc_hint = 0;
  1904. u64 locked_end;
  1905. struct extent_map *em;
  1906. int blocksize = BTRFS_I(inode)->root->sectorsize;
  1907. int ret;
  1908. alloc_start = round_down(offset, blocksize);
  1909. alloc_end = round_up(offset + len, blocksize);
  1910. /* Make sure we aren't being give some crap mode */
  1911. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  1912. return -EOPNOTSUPP;
  1913. if (mode & FALLOC_FL_PUNCH_HOLE)
  1914. return btrfs_punch_hole(inode, offset, len);
  1915. /*
  1916. * Make sure we have enough space before we do the
  1917. * allocation.
  1918. */
  1919. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  1920. if (ret)
  1921. return ret;
  1922. if (root->fs_info->quota_enabled) {
  1923. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  1924. if (ret)
  1925. goto out_reserve_fail;
  1926. }
  1927. /*
  1928. * wait for ordered IO before we have any locks. We'll loop again
  1929. * below with the locks held.
  1930. */
  1931. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  1932. mutex_lock(&inode->i_mutex);
  1933. ret = inode_newsize_ok(inode, alloc_end);
  1934. if (ret)
  1935. goto out;
  1936. if (alloc_start > inode->i_size) {
  1937. ret = btrfs_cont_expand(inode, i_size_read(inode),
  1938. alloc_start);
  1939. if (ret)
  1940. goto out;
  1941. }
  1942. locked_end = alloc_end - 1;
  1943. while (1) {
  1944. struct btrfs_ordered_extent *ordered;
  1945. /* the extent lock is ordered inside the running
  1946. * transaction
  1947. */
  1948. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  1949. locked_end, 0, &cached_state);
  1950. ordered = btrfs_lookup_first_ordered_extent(inode,
  1951. alloc_end - 1);
  1952. if (ordered &&
  1953. ordered->file_offset + ordered->len > alloc_start &&
  1954. ordered->file_offset < alloc_end) {
  1955. btrfs_put_ordered_extent(ordered);
  1956. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1957. alloc_start, locked_end,
  1958. &cached_state, GFP_NOFS);
  1959. /*
  1960. * we can't wait on the range with the transaction
  1961. * running or with the extent lock held
  1962. */
  1963. btrfs_wait_ordered_range(inode, alloc_start,
  1964. alloc_end - alloc_start);
  1965. } else {
  1966. if (ordered)
  1967. btrfs_put_ordered_extent(ordered);
  1968. break;
  1969. }
  1970. }
  1971. cur_offset = alloc_start;
  1972. while (1) {
  1973. u64 actual_end;
  1974. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  1975. alloc_end - cur_offset, 0);
  1976. if (IS_ERR_OR_NULL(em)) {
  1977. if (!em)
  1978. ret = -ENOMEM;
  1979. else
  1980. ret = PTR_ERR(em);
  1981. break;
  1982. }
  1983. last_byte = min(extent_map_end(em), alloc_end);
  1984. actual_end = min_t(u64, extent_map_end(em), offset + len);
  1985. last_byte = ALIGN(last_byte, blocksize);
  1986. if (em->block_start == EXTENT_MAP_HOLE ||
  1987. (cur_offset >= inode->i_size &&
  1988. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  1989. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  1990. last_byte - cur_offset,
  1991. 1 << inode->i_blkbits,
  1992. offset + len,
  1993. &alloc_hint);
  1994. if (ret < 0) {
  1995. free_extent_map(em);
  1996. break;
  1997. }
  1998. } else if (actual_end > inode->i_size &&
  1999. !(mode & FALLOC_FL_KEEP_SIZE)) {
  2000. /*
  2001. * We didn't need to allocate any more space, but we
  2002. * still extended the size of the file so we need to
  2003. * update i_size.
  2004. */
  2005. inode->i_ctime = CURRENT_TIME;
  2006. i_size_write(inode, actual_end);
  2007. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2008. }
  2009. free_extent_map(em);
  2010. cur_offset = last_byte;
  2011. if (cur_offset >= alloc_end) {
  2012. ret = 0;
  2013. break;
  2014. }
  2015. }
  2016. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2017. &cached_state, GFP_NOFS);
  2018. out:
  2019. mutex_unlock(&inode->i_mutex);
  2020. if (root->fs_info->quota_enabled)
  2021. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2022. out_reserve_fail:
  2023. /* Let go of our reservation. */
  2024. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2025. return ret;
  2026. }
  2027. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2028. {
  2029. struct btrfs_root *root = BTRFS_I(inode)->root;
  2030. struct extent_map *em;
  2031. struct extent_state *cached_state = NULL;
  2032. u64 lockstart = *offset;
  2033. u64 lockend = i_size_read(inode);
  2034. u64 start = *offset;
  2035. u64 orig_start = *offset;
  2036. u64 len = i_size_read(inode);
  2037. u64 last_end = 0;
  2038. int ret = 0;
  2039. lockend = max_t(u64, root->sectorsize, lockend);
  2040. if (lockend <= lockstart)
  2041. lockend = lockstart + root->sectorsize;
  2042. lockend--;
  2043. len = lockend - lockstart + 1;
  2044. len = max_t(u64, len, root->sectorsize);
  2045. if (inode->i_size == 0)
  2046. return -ENXIO;
  2047. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2048. &cached_state);
  2049. /*
  2050. * Delalloc is such a pain. If we have a hole and we have pending
  2051. * delalloc for a portion of the hole we will get back a hole that
  2052. * exists for the entire range since it hasn't been actually written
  2053. * yet. So to take care of this case we need to look for an extent just
  2054. * before the position we want in case there is outstanding delalloc
  2055. * going on here.
  2056. */
  2057. if (whence == SEEK_HOLE && start != 0) {
  2058. if (start <= root->sectorsize)
  2059. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  2060. root->sectorsize, 0);
  2061. else
  2062. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  2063. start - root->sectorsize,
  2064. root->sectorsize, 0);
  2065. if (IS_ERR(em)) {
  2066. ret = PTR_ERR(em);
  2067. goto out;
  2068. }
  2069. last_end = em->start + em->len;
  2070. if (em->block_start == EXTENT_MAP_DELALLOC)
  2071. last_end = min_t(u64, last_end, inode->i_size);
  2072. free_extent_map(em);
  2073. }
  2074. while (1) {
  2075. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2076. if (IS_ERR(em)) {
  2077. ret = PTR_ERR(em);
  2078. break;
  2079. }
  2080. if (em->block_start == EXTENT_MAP_HOLE) {
  2081. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2082. if (last_end <= orig_start) {
  2083. free_extent_map(em);
  2084. ret = -ENXIO;
  2085. break;
  2086. }
  2087. }
  2088. if (whence == SEEK_HOLE) {
  2089. *offset = start;
  2090. free_extent_map(em);
  2091. break;
  2092. }
  2093. } else {
  2094. if (whence == SEEK_DATA) {
  2095. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2096. if (start >= inode->i_size) {
  2097. free_extent_map(em);
  2098. ret = -ENXIO;
  2099. break;
  2100. }
  2101. }
  2102. if (!test_bit(EXTENT_FLAG_PREALLOC,
  2103. &em->flags)) {
  2104. *offset = start;
  2105. free_extent_map(em);
  2106. break;
  2107. }
  2108. }
  2109. }
  2110. start = em->start + em->len;
  2111. last_end = em->start + em->len;
  2112. if (em->block_start == EXTENT_MAP_DELALLOC)
  2113. last_end = min_t(u64, last_end, inode->i_size);
  2114. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2115. free_extent_map(em);
  2116. ret = -ENXIO;
  2117. break;
  2118. }
  2119. free_extent_map(em);
  2120. cond_resched();
  2121. }
  2122. if (!ret)
  2123. *offset = min(*offset, inode->i_size);
  2124. out:
  2125. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2126. &cached_state, GFP_NOFS);
  2127. return ret;
  2128. }
  2129. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2130. {
  2131. struct inode *inode = file->f_mapping->host;
  2132. int ret;
  2133. mutex_lock(&inode->i_mutex);
  2134. switch (whence) {
  2135. case SEEK_END:
  2136. case SEEK_CUR:
  2137. offset = generic_file_llseek(file, offset, whence);
  2138. goto out;
  2139. case SEEK_DATA:
  2140. case SEEK_HOLE:
  2141. if (offset >= i_size_read(inode)) {
  2142. mutex_unlock(&inode->i_mutex);
  2143. return -ENXIO;
  2144. }
  2145. ret = find_desired_extent(inode, &offset, whence);
  2146. if (ret) {
  2147. mutex_unlock(&inode->i_mutex);
  2148. return ret;
  2149. }
  2150. }
  2151. if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
  2152. offset = -EINVAL;
  2153. goto out;
  2154. }
  2155. if (offset > inode->i_sb->s_maxbytes) {
  2156. offset = -EINVAL;
  2157. goto out;
  2158. }
  2159. /* Special lock needed here? */
  2160. if (offset != file->f_pos) {
  2161. file->f_pos = offset;
  2162. file->f_version = 0;
  2163. }
  2164. out:
  2165. mutex_unlock(&inode->i_mutex);
  2166. return offset;
  2167. }
  2168. const struct file_operations btrfs_file_operations = {
  2169. .llseek = btrfs_file_llseek,
  2170. .read = do_sync_read,
  2171. .write = do_sync_write,
  2172. .aio_read = generic_file_aio_read,
  2173. .splice_read = generic_file_splice_read,
  2174. .aio_write = btrfs_file_aio_write,
  2175. .mmap = btrfs_file_mmap,
  2176. .open = generic_file_open,
  2177. .release = btrfs_release_file,
  2178. .fsync = btrfs_sync_file,
  2179. .fallocate = btrfs_fallocate,
  2180. .unlocked_ioctl = btrfs_ioctl,
  2181. #ifdef CONFIG_COMPAT
  2182. .compat_ioctl = btrfs_ioctl,
  2183. #endif
  2184. };
  2185. void btrfs_auto_defrag_exit(void)
  2186. {
  2187. if (btrfs_inode_defrag_cachep)
  2188. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2189. }
  2190. int btrfs_auto_defrag_init(void)
  2191. {
  2192. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2193. sizeof(struct inode_defrag), 0,
  2194. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2195. NULL);
  2196. if (!btrfs_inode_defrag_cachep)
  2197. return -ENOMEM;
  2198. return 0;
  2199. }