disk-io.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <asm/unaligned.h>
  34. #include "compat.h"
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * Return 0 if the superblock checksum type matches the checksum value of that
  329. * algorithm. Pass the raw disk superblock data.
  330. */
  331. static int btrfs_check_super_csum(char *raw_disk_sb)
  332. {
  333. struct btrfs_super_block *disk_sb =
  334. (struct btrfs_super_block *)raw_disk_sb;
  335. u16 csum_type = btrfs_super_csum_type(disk_sb);
  336. int ret = 0;
  337. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  338. u32 crc = ~(u32)0;
  339. const int csum_size = sizeof(crc);
  340. char result[csum_size];
  341. /*
  342. * The super_block structure does not span the whole
  343. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  344. * is filled with zeros and is included in the checkum.
  345. */
  346. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  347. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  348. btrfs_csum_final(crc, result);
  349. if (memcmp(raw_disk_sb, result, csum_size))
  350. ret = 1;
  351. if (ret && btrfs_super_generation(disk_sb) < 10) {
  352. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  353. ret = 0;
  354. }
  355. }
  356. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  357. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  358. csum_type);
  359. ret = 1;
  360. }
  361. return ret;
  362. }
  363. /*
  364. * helper to read a given tree block, doing retries as required when
  365. * the checksums don't match and we have alternate mirrors to try.
  366. */
  367. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  368. struct extent_buffer *eb,
  369. u64 start, u64 parent_transid)
  370. {
  371. struct extent_io_tree *io_tree;
  372. int failed = 0;
  373. int ret;
  374. int num_copies = 0;
  375. int mirror_num = 0;
  376. int failed_mirror = 0;
  377. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  378. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  379. while (1) {
  380. ret = read_extent_buffer_pages(io_tree, eb, start,
  381. WAIT_COMPLETE,
  382. btree_get_extent, mirror_num);
  383. if (!ret) {
  384. if (!verify_parent_transid(io_tree, eb,
  385. parent_transid, 0))
  386. break;
  387. else
  388. ret = -EIO;
  389. }
  390. /*
  391. * This buffer's crc is fine, but its contents are corrupted, so
  392. * there is no reason to read the other copies, they won't be
  393. * any less wrong.
  394. */
  395. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  396. break;
  397. num_copies = btrfs_num_copies(root->fs_info,
  398. eb->start, eb->len);
  399. if (num_copies == 1)
  400. break;
  401. if (!failed_mirror) {
  402. failed = 1;
  403. failed_mirror = eb->read_mirror;
  404. }
  405. mirror_num++;
  406. if (mirror_num == failed_mirror)
  407. mirror_num++;
  408. if (mirror_num > num_copies)
  409. break;
  410. }
  411. if (failed && !ret && failed_mirror)
  412. repair_eb_io_failure(root, eb, failed_mirror);
  413. return ret;
  414. }
  415. /*
  416. * checksum a dirty tree block before IO. This has extra checks to make sure
  417. * we only fill in the checksum field in the first page of a multi-page block
  418. */
  419. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  420. {
  421. struct extent_io_tree *tree;
  422. u64 start = page_offset(page);
  423. u64 found_start;
  424. struct extent_buffer *eb;
  425. tree = &BTRFS_I(page->mapping->host)->io_tree;
  426. eb = (struct extent_buffer *)page->private;
  427. if (page != eb->pages[0])
  428. return 0;
  429. found_start = btrfs_header_bytenr(eb);
  430. if (found_start != start) {
  431. WARN_ON(1);
  432. return 0;
  433. }
  434. if (!PageUptodate(page)) {
  435. WARN_ON(1);
  436. return 0;
  437. }
  438. csum_tree_block(root, eb, 0);
  439. return 0;
  440. }
  441. static int check_tree_block_fsid(struct btrfs_root *root,
  442. struct extent_buffer *eb)
  443. {
  444. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  445. u8 fsid[BTRFS_UUID_SIZE];
  446. int ret = 1;
  447. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  448. BTRFS_FSID_SIZE);
  449. while (fs_devices) {
  450. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  451. ret = 0;
  452. break;
  453. }
  454. fs_devices = fs_devices->seed;
  455. }
  456. return ret;
  457. }
  458. #define CORRUPT(reason, eb, root, slot) \
  459. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  460. "root=%llu, slot=%d\n", reason, \
  461. (unsigned long long)btrfs_header_bytenr(eb), \
  462. (unsigned long long)root->objectid, slot)
  463. static noinline int check_leaf(struct btrfs_root *root,
  464. struct extent_buffer *leaf)
  465. {
  466. struct btrfs_key key;
  467. struct btrfs_key leaf_key;
  468. u32 nritems = btrfs_header_nritems(leaf);
  469. int slot;
  470. if (nritems == 0)
  471. return 0;
  472. /* Check the 0 item */
  473. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  474. BTRFS_LEAF_DATA_SIZE(root)) {
  475. CORRUPT("invalid item offset size pair", leaf, root, 0);
  476. return -EIO;
  477. }
  478. /*
  479. * Check to make sure each items keys are in the correct order and their
  480. * offsets make sense. We only have to loop through nritems-1 because
  481. * we check the current slot against the next slot, which verifies the
  482. * next slot's offset+size makes sense and that the current's slot
  483. * offset is correct.
  484. */
  485. for (slot = 0; slot < nritems - 1; slot++) {
  486. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  487. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  488. /* Make sure the keys are in the right order */
  489. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  490. CORRUPT("bad key order", leaf, root, slot);
  491. return -EIO;
  492. }
  493. /*
  494. * Make sure the offset and ends are right, remember that the
  495. * item data starts at the end of the leaf and grows towards the
  496. * front.
  497. */
  498. if (btrfs_item_offset_nr(leaf, slot) !=
  499. btrfs_item_end_nr(leaf, slot + 1)) {
  500. CORRUPT("slot offset bad", leaf, root, slot);
  501. return -EIO;
  502. }
  503. /*
  504. * Check to make sure that we don't point outside of the leaf,
  505. * just incase all the items are consistent to eachother, but
  506. * all point outside of the leaf.
  507. */
  508. if (btrfs_item_end_nr(leaf, slot) >
  509. BTRFS_LEAF_DATA_SIZE(root)) {
  510. CORRUPT("slot end outside of leaf", leaf, root, slot);
  511. return -EIO;
  512. }
  513. }
  514. return 0;
  515. }
  516. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  517. struct extent_state *state, int mirror)
  518. {
  519. struct extent_io_tree *tree;
  520. u64 found_start;
  521. int found_level;
  522. struct extent_buffer *eb;
  523. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  524. int ret = 0;
  525. int reads_done;
  526. if (!page->private)
  527. goto out;
  528. tree = &BTRFS_I(page->mapping->host)->io_tree;
  529. eb = (struct extent_buffer *)page->private;
  530. /* the pending IO might have been the only thing that kept this buffer
  531. * in memory. Make sure we have a ref for all this other checks
  532. */
  533. extent_buffer_get(eb);
  534. reads_done = atomic_dec_and_test(&eb->io_pages);
  535. if (!reads_done)
  536. goto err;
  537. eb->read_mirror = mirror;
  538. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  539. ret = -EIO;
  540. goto err;
  541. }
  542. found_start = btrfs_header_bytenr(eb);
  543. if (found_start != eb->start) {
  544. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  545. "%llu %llu\n",
  546. (unsigned long long)found_start,
  547. (unsigned long long)eb->start);
  548. ret = -EIO;
  549. goto err;
  550. }
  551. if (check_tree_block_fsid(root, eb)) {
  552. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  553. (unsigned long long)eb->start);
  554. ret = -EIO;
  555. goto err;
  556. }
  557. found_level = btrfs_header_level(eb);
  558. if (found_level >= BTRFS_MAX_LEVEL) {
  559. btrfs_info(root->fs_info, "bad tree block level %d\n",
  560. (int)btrfs_header_level(eb));
  561. ret = -EIO;
  562. goto err;
  563. }
  564. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  565. eb, found_level);
  566. ret = csum_tree_block(root, eb, 1);
  567. if (ret) {
  568. ret = -EIO;
  569. goto err;
  570. }
  571. /*
  572. * If this is a leaf block and it is corrupt, set the corrupt bit so
  573. * that we don't try and read the other copies of this block, just
  574. * return -EIO.
  575. */
  576. if (found_level == 0 && check_leaf(root, eb)) {
  577. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  578. ret = -EIO;
  579. }
  580. if (!ret)
  581. set_extent_buffer_uptodate(eb);
  582. err:
  583. if (reads_done &&
  584. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, ret);
  586. if (ret) {
  587. /*
  588. * our io error hook is going to dec the io pages
  589. * again, we have to make sure it has something
  590. * to decrement
  591. */
  592. atomic_inc(&eb->io_pages);
  593. clear_extent_buffer_uptodate(eb);
  594. }
  595. free_extent_buffer(eb);
  596. out:
  597. return ret;
  598. }
  599. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  600. {
  601. struct extent_buffer *eb;
  602. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  603. eb = (struct extent_buffer *)page->private;
  604. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  605. eb->read_mirror = failed_mirror;
  606. atomic_dec(&eb->io_pages);
  607. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  608. btree_readahead_hook(root, eb, eb->start, -EIO);
  609. return -EIO; /* we fixed nothing */
  610. }
  611. static void end_workqueue_bio(struct bio *bio, int err)
  612. {
  613. struct end_io_wq *end_io_wq = bio->bi_private;
  614. struct btrfs_fs_info *fs_info;
  615. fs_info = end_io_wq->info;
  616. end_io_wq->error = err;
  617. end_io_wq->work.func = end_workqueue_fn;
  618. end_io_wq->work.flags = 0;
  619. if (bio->bi_rw & REQ_WRITE) {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  621. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  624. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  625. &end_io_wq->work);
  626. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  627. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  628. &end_io_wq->work);
  629. else
  630. btrfs_queue_worker(&fs_info->endio_write_workers,
  631. &end_io_wq->work);
  632. } else {
  633. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  634. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  635. &end_io_wq->work);
  636. else if (end_io_wq->metadata)
  637. btrfs_queue_worker(&fs_info->endio_meta_workers,
  638. &end_io_wq->work);
  639. else
  640. btrfs_queue_worker(&fs_info->endio_workers,
  641. &end_io_wq->work);
  642. }
  643. }
  644. /*
  645. * For the metadata arg you want
  646. *
  647. * 0 - if data
  648. * 1 - if normal metadta
  649. * 2 - if writing to the free space cache area
  650. * 3 - raid parity work
  651. */
  652. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  653. int metadata)
  654. {
  655. struct end_io_wq *end_io_wq;
  656. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  657. if (!end_io_wq)
  658. return -ENOMEM;
  659. end_io_wq->private = bio->bi_private;
  660. end_io_wq->end_io = bio->bi_end_io;
  661. end_io_wq->info = info;
  662. end_io_wq->error = 0;
  663. end_io_wq->bio = bio;
  664. end_io_wq->metadata = metadata;
  665. bio->bi_private = end_io_wq;
  666. bio->bi_end_io = end_workqueue_bio;
  667. return 0;
  668. }
  669. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  670. {
  671. unsigned long limit = min_t(unsigned long,
  672. info->workers.max_workers,
  673. info->fs_devices->open_devices);
  674. return 256 * limit;
  675. }
  676. static void run_one_async_start(struct btrfs_work *work)
  677. {
  678. struct async_submit_bio *async;
  679. int ret;
  680. async = container_of(work, struct async_submit_bio, work);
  681. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  682. async->mirror_num, async->bio_flags,
  683. async->bio_offset);
  684. if (ret)
  685. async->error = ret;
  686. }
  687. static void run_one_async_done(struct btrfs_work *work)
  688. {
  689. struct btrfs_fs_info *fs_info;
  690. struct async_submit_bio *async;
  691. int limit;
  692. async = container_of(work, struct async_submit_bio, work);
  693. fs_info = BTRFS_I(async->inode)->root->fs_info;
  694. limit = btrfs_async_submit_limit(fs_info);
  695. limit = limit * 2 / 3;
  696. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  697. waitqueue_active(&fs_info->async_submit_wait))
  698. wake_up(&fs_info->async_submit_wait);
  699. /* If an error occured we just want to clean up the bio and move on */
  700. if (async->error) {
  701. bio_endio(async->bio, async->error);
  702. return;
  703. }
  704. async->submit_bio_done(async->inode, async->rw, async->bio,
  705. async->mirror_num, async->bio_flags,
  706. async->bio_offset);
  707. }
  708. static void run_one_async_free(struct btrfs_work *work)
  709. {
  710. struct async_submit_bio *async;
  711. async = container_of(work, struct async_submit_bio, work);
  712. kfree(async);
  713. }
  714. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  715. int rw, struct bio *bio, int mirror_num,
  716. unsigned long bio_flags,
  717. u64 bio_offset,
  718. extent_submit_bio_hook_t *submit_bio_start,
  719. extent_submit_bio_hook_t *submit_bio_done)
  720. {
  721. struct async_submit_bio *async;
  722. async = kmalloc(sizeof(*async), GFP_NOFS);
  723. if (!async)
  724. return -ENOMEM;
  725. async->inode = inode;
  726. async->rw = rw;
  727. async->bio = bio;
  728. async->mirror_num = mirror_num;
  729. async->submit_bio_start = submit_bio_start;
  730. async->submit_bio_done = submit_bio_done;
  731. async->work.func = run_one_async_start;
  732. async->work.ordered_func = run_one_async_done;
  733. async->work.ordered_free = run_one_async_free;
  734. async->work.flags = 0;
  735. async->bio_flags = bio_flags;
  736. async->bio_offset = bio_offset;
  737. async->error = 0;
  738. atomic_inc(&fs_info->nr_async_submits);
  739. if (rw & REQ_SYNC)
  740. btrfs_set_work_high_prio(&async->work);
  741. btrfs_queue_worker(&fs_info->workers, &async->work);
  742. while (atomic_read(&fs_info->async_submit_draining) &&
  743. atomic_read(&fs_info->nr_async_submits)) {
  744. wait_event(fs_info->async_submit_wait,
  745. (atomic_read(&fs_info->nr_async_submits) == 0));
  746. }
  747. return 0;
  748. }
  749. static int btree_csum_one_bio(struct bio *bio)
  750. {
  751. struct bio_vec *bvec = bio->bi_io_vec;
  752. int bio_index = 0;
  753. struct btrfs_root *root;
  754. int ret = 0;
  755. WARN_ON(bio->bi_vcnt <= 0);
  756. while (bio_index < bio->bi_vcnt) {
  757. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  758. ret = csum_dirty_buffer(root, bvec->bv_page);
  759. if (ret)
  760. break;
  761. bio_index++;
  762. bvec++;
  763. }
  764. return ret;
  765. }
  766. static int __btree_submit_bio_start(struct inode *inode, int rw,
  767. struct bio *bio, int mirror_num,
  768. unsigned long bio_flags,
  769. u64 bio_offset)
  770. {
  771. /*
  772. * when we're called for a write, we're already in the async
  773. * submission context. Just jump into btrfs_map_bio
  774. */
  775. return btree_csum_one_bio(bio);
  776. }
  777. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  778. int mirror_num, unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. int ret;
  782. /*
  783. * when we're called for a write, we're already in the async
  784. * submission context. Just jump into btrfs_map_bio
  785. */
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  787. if (ret)
  788. bio_endio(bio, ret);
  789. return ret;
  790. }
  791. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  792. {
  793. if (bio_flags & EXTENT_BIO_TREE_LOG)
  794. return 0;
  795. #ifdef CONFIG_X86
  796. if (cpu_has_xmm4_2)
  797. return 0;
  798. #endif
  799. return 1;
  800. }
  801. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  802. int mirror_num, unsigned long bio_flags,
  803. u64 bio_offset)
  804. {
  805. int async = check_async_write(inode, bio_flags);
  806. int ret;
  807. if (!(rw & REQ_WRITE)) {
  808. /*
  809. * called for a read, do the setup so that checksum validation
  810. * can happen in the async kernel threads
  811. */
  812. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  813. bio, 1);
  814. if (ret)
  815. goto out_w_error;
  816. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  817. mirror_num, 0);
  818. } else if (!async) {
  819. ret = btree_csum_one_bio(bio);
  820. if (ret)
  821. goto out_w_error;
  822. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  823. mirror_num, 0);
  824. } else {
  825. /*
  826. * kthread helpers are used to submit writes so that
  827. * checksumming can happen in parallel across all CPUs
  828. */
  829. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  830. inode, rw, bio, mirror_num, 0,
  831. bio_offset,
  832. __btree_submit_bio_start,
  833. __btree_submit_bio_done);
  834. }
  835. if (ret) {
  836. out_w_error:
  837. bio_endio(bio, ret);
  838. }
  839. return ret;
  840. }
  841. #ifdef CONFIG_MIGRATION
  842. static int btree_migratepage(struct address_space *mapping,
  843. struct page *newpage, struct page *page,
  844. enum migrate_mode mode)
  845. {
  846. /*
  847. * we can't safely write a btree page from here,
  848. * we haven't done the locking hook
  849. */
  850. if (PageDirty(page))
  851. return -EAGAIN;
  852. /*
  853. * Buffers may be managed in a filesystem specific way.
  854. * We must have no buffers or drop them.
  855. */
  856. if (page_has_private(page) &&
  857. !try_to_release_page(page, GFP_KERNEL))
  858. return -EAGAIN;
  859. return migrate_page(mapping, newpage, page, mode);
  860. }
  861. #endif
  862. static int btree_writepages(struct address_space *mapping,
  863. struct writeback_control *wbc)
  864. {
  865. struct extent_io_tree *tree;
  866. struct btrfs_fs_info *fs_info;
  867. int ret;
  868. tree = &BTRFS_I(mapping->host)->io_tree;
  869. if (wbc->sync_mode == WB_SYNC_NONE) {
  870. if (wbc->for_kupdate)
  871. return 0;
  872. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  873. /* this is a bit racy, but that's ok */
  874. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  875. BTRFS_DIRTY_METADATA_THRESH);
  876. if (ret < 0)
  877. return 0;
  878. }
  879. return btree_write_cache_pages(mapping, wbc);
  880. }
  881. static int btree_readpage(struct file *file, struct page *page)
  882. {
  883. struct extent_io_tree *tree;
  884. tree = &BTRFS_I(page->mapping->host)->io_tree;
  885. return extent_read_full_page(tree, page, btree_get_extent, 0);
  886. }
  887. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  888. {
  889. if (PageWriteback(page) || PageDirty(page))
  890. return 0;
  891. return try_release_extent_buffer(page);
  892. }
  893. static void btree_invalidatepage(struct page *page, unsigned long offset)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. extent_invalidatepage(tree, page, offset);
  898. btree_releasepage(page, GFP_NOFS);
  899. if (PagePrivate(page)) {
  900. printk(KERN_WARNING "btrfs warning page private not zero "
  901. "on page %llu\n", (unsigned long long)page_offset(page));
  902. ClearPagePrivate(page);
  903. set_page_private(page, 0);
  904. page_cache_release(page);
  905. }
  906. }
  907. static int btree_set_page_dirty(struct page *page)
  908. {
  909. #ifdef DEBUG
  910. struct extent_buffer *eb;
  911. BUG_ON(!PagePrivate(page));
  912. eb = (struct extent_buffer *)page->private;
  913. BUG_ON(!eb);
  914. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  915. BUG_ON(!atomic_read(&eb->refs));
  916. btrfs_assert_tree_locked(eb);
  917. #endif
  918. return __set_page_dirty_nobuffers(page);
  919. }
  920. static const struct address_space_operations btree_aops = {
  921. .readpage = btree_readpage,
  922. .writepages = btree_writepages,
  923. .releasepage = btree_releasepage,
  924. .invalidatepage = btree_invalidatepage,
  925. #ifdef CONFIG_MIGRATION
  926. .migratepage = btree_migratepage,
  927. #endif
  928. .set_page_dirty = btree_set_page_dirty,
  929. };
  930. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  931. u64 parent_transid)
  932. {
  933. struct extent_buffer *buf = NULL;
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. int ret = 0;
  936. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  937. if (!buf)
  938. return 0;
  939. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  940. buf, 0, WAIT_NONE, btree_get_extent, 0);
  941. free_extent_buffer(buf);
  942. return ret;
  943. }
  944. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  945. int mirror_num, struct extent_buffer **eb)
  946. {
  947. struct extent_buffer *buf = NULL;
  948. struct inode *btree_inode = root->fs_info->btree_inode;
  949. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  952. if (!buf)
  953. return 0;
  954. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  955. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  956. btree_get_extent, mirror_num);
  957. if (ret) {
  958. free_extent_buffer(buf);
  959. return ret;
  960. }
  961. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  962. free_extent_buffer(buf);
  963. return -EIO;
  964. } else if (extent_buffer_uptodate(buf)) {
  965. *eb = buf;
  966. } else {
  967. free_extent_buffer(buf);
  968. }
  969. return 0;
  970. }
  971. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  972. u64 bytenr, u32 blocksize)
  973. {
  974. struct inode *btree_inode = root->fs_info->btree_inode;
  975. struct extent_buffer *eb;
  976. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  977. bytenr, blocksize);
  978. return eb;
  979. }
  980. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  981. u64 bytenr, u32 blocksize)
  982. {
  983. struct inode *btree_inode = root->fs_info->btree_inode;
  984. struct extent_buffer *eb;
  985. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  986. bytenr, blocksize);
  987. return eb;
  988. }
  989. int btrfs_write_tree_block(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  992. buf->start + buf->len - 1);
  993. }
  994. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawait_range(buf->pages[0]->mapping,
  997. buf->start, buf->start + buf->len - 1);
  998. }
  999. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1000. u32 blocksize, u64 parent_transid)
  1001. {
  1002. struct extent_buffer *buf = NULL;
  1003. int ret;
  1004. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1005. if (!buf)
  1006. return NULL;
  1007. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1008. return buf;
  1009. }
  1010. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1011. struct extent_buffer *buf)
  1012. {
  1013. struct btrfs_fs_info *fs_info = root->fs_info;
  1014. if (btrfs_header_generation(buf) ==
  1015. fs_info->running_transaction->transid) {
  1016. btrfs_assert_tree_locked(buf);
  1017. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1018. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1019. -buf->len,
  1020. fs_info->dirty_metadata_batch);
  1021. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1022. btrfs_set_lock_blocking(buf);
  1023. clear_extent_buffer_dirty(buf);
  1024. }
  1025. }
  1026. }
  1027. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1028. u32 stripesize, struct btrfs_root *root,
  1029. struct btrfs_fs_info *fs_info,
  1030. u64 objectid)
  1031. {
  1032. root->node = NULL;
  1033. root->commit_root = NULL;
  1034. root->sectorsize = sectorsize;
  1035. root->nodesize = nodesize;
  1036. root->leafsize = leafsize;
  1037. root->stripesize = stripesize;
  1038. root->ref_cows = 0;
  1039. root->track_dirty = 0;
  1040. root->in_radix = 0;
  1041. root->orphan_item_inserted = 0;
  1042. root->orphan_cleanup_state = 0;
  1043. root->objectid = objectid;
  1044. root->last_trans = 0;
  1045. root->highest_objectid = 0;
  1046. root->name = NULL;
  1047. root->inode_tree = RB_ROOT;
  1048. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1049. root->block_rsv = NULL;
  1050. root->orphan_block_rsv = NULL;
  1051. INIT_LIST_HEAD(&root->dirty_list);
  1052. INIT_LIST_HEAD(&root->root_list);
  1053. INIT_LIST_HEAD(&root->logged_list[0]);
  1054. INIT_LIST_HEAD(&root->logged_list[1]);
  1055. spin_lock_init(&root->orphan_lock);
  1056. spin_lock_init(&root->inode_lock);
  1057. spin_lock_init(&root->accounting_lock);
  1058. spin_lock_init(&root->log_extents_lock[0]);
  1059. spin_lock_init(&root->log_extents_lock[1]);
  1060. mutex_init(&root->objectid_mutex);
  1061. mutex_init(&root->log_mutex);
  1062. init_waitqueue_head(&root->log_writer_wait);
  1063. init_waitqueue_head(&root->log_commit_wait[0]);
  1064. init_waitqueue_head(&root->log_commit_wait[1]);
  1065. atomic_set(&root->log_commit[0], 0);
  1066. atomic_set(&root->log_commit[1], 0);
  1067. atomic_set(&root->log_writers, 0);
  1068. atomic_set(&root->log_batch, 0);
  1069. atomic_set(&root->orphan_inodes, 0);
  1070. root->log_transid = 0;
  1071. root->last_log_commit = 0;
  1072. extent_io_tree_init(&root->dirty_log_pages,
  1073. fs_info->btree_inode->i_mapping);
  1074. memset(&root->root_key, 0, sizeof(root->root_key));
  1075. memset(&root->root_item, 0, sizeof(root->root_item));
  1076. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1077. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1078. root->defrag_trans_start = fs_info->generation;
  1079. init_completion(&root->kobj_unregister);
  1080. root->defrag_running = 0;
  1081. root->root_key.objectid = objectid;
  1082. root->anon_dev = 0;
  1083. spin_lock_init(&root->root_item_lock);
  1084. }
  1085. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1086. struct btrfs_fs_info *fs_info,
  1087. u64 objectid,
  1088. struct btrfs_root *root)
  1089. {
  1090. int ret;
  1091. u32 blocksize;
  1092. u64 generation;
  1093. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1094. tree_root->sectorsize, tree_root->stripesize,
  1095. root, fs_info, objectid);
  1096. ret = btrfs_find_last_root(tree_root, objectid,
  1097. &root->root_item, &root->root_key);
  1098. if (ret > 0)
  1099. return -ENOENT;
  1100. else if (ret < 0)
  1101. return ret;
  1102. generation = btrfs_root_generation(&root->root_item);
  1103. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1104. root->commit_root = NULL;
  1105. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1106. blocksize, generation);
  1107. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1108. free_extent_buffer(root->node);
  1109. root->node = NULL;
  1110. return -EIO;
  1111. }
  1112. root->commit_root = btrfs_root_node(root);
  1113. return 0;
  1114. }
  1115. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1116. {
  1117. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1118. if (root)
  1119. root->fs_info = fs_info;
  1120. return root;
  1121. }
  1122. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1123. struct btrfs_fs_info *fs_info,
  1124. u64 objectid)
  1125. {
  1126. struct extent_buffer *leaf;
  1127. struct btrfs_root *tree_root = fs_info->tree_root;
  1128. struct btrfs_root *root;
  1129. struct btrfs_key key;
  1130. int ret = 0;
  1131. u64 bytenr;
  1132. uuid_le uuid;
  1133. root = btrfs_alloc_root(fs_info);
  1134. if (!root)
  1135. return ERR_PTR(-ENOMEM);
  1136. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1137. tree_root->sectorsize, tree_root->stripesize,
  1138. root, fs_info, objectid);
  1139. root->root_key.objectid = objectid;
  1140. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1141. root->root_key.offset = 0;
  1142. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1143. 0, objectid, NULL, 0, 0, 0);
  1144. if (IS_ERR(leaf)) {
  1145. ret = PTR_ERR(leaf);
  1146. leaf = NULL;
  1147. goto fail;
  1148. }
  1149. bytenr = leaf->start;
  1150. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1151. btrfs_set_header_bytenr(leaf, leaf->start);
  1152. btrfs_set_header_generation(leaf, trans->transid);
  1153. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1154. btrfs_set_header_owner(leaf, objectid);
  1155. root->node = leaf;
  1156. write_extent_buffer(leaf, fs_info->fsid,
  1157. (unsigned long)btrfs_header_fsid(leaf),
  1158. BTRFS_FSID_SIZE);
  1159. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1160. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1161. BTRFS_UUID_SIZE);
  1162. btrfs_mark_buffer_dirty(leaf);
  1163. root->commit_root = btrfs_root_node(root);
  1164. root->track_dirty = 1;
  1165. root->root_item.flags = 0;
  1166. root->root_item.byte_limit = 0;
  1167. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1168. btrfs_set_root_generation(&root->root_item, trans->transid);
  1169. btrfs_set_root_level(&root->root_item, 0);
  1170. btrfs_set_root_refs(&root->root_item, 1);
  1171. btrfs_set_root_used(&root->root_item, leaf->len);
  1172. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1173. btrfs_set_root_dirid(&root->root_item, 0);
  1174. uuid_le_gen(&uuid);
  1175. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1176. root->root_item.drop_level = 0;
  1177. key.objectid = objectid;
  1178. key.type = BTRFS_ROOT_ITEM_KEY;
  1179. key.offset = 0;
  1180. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1181. if (ret)
  1182. goto fail;
  1183. btrfs_tree_unlock(leaf);
  1184. return root;
  1185. fail:
  1186. if (leaf) {
  1187. btrfs_tree_unlock(leaf);
  1188. free_extent_buffer(leaf);
  1189. }
  1190. kfree(root);
  1191. return ERR_PTR(ret);
  1192. }
  1193. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1194. struct btrfs_fs_info *fs_info)
  1195. {
  1196. struct btrfs_root *root;
  1197. struct btrfs_root *tree_root = fs_info->tree_root;
  1198. struct extent_buffer *leaf;
  1199. root = btrfs_alloc_root(fs_info);
  1200. if (!root)
  1201. return ERR_PTR(-ENOMEM);
  1202. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1203. tree_root->sectorsize, tree_root->stripesize,
  1204. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1205. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1206. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1207. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1208. /*
  1209. * log trees do not get reference counted because they go away
  1210. * before a real commit is actually done. They do store pointers
  1211. * to file data extents, and those reference counts still get
  1212. * updated (along with back refs to the log tree).
  1213. */
  1214. root->ref_cows = 0;
  1215. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1216. BTRFS_TREE_LOG_OBJECTID, NULL,
  1217. 0, 0, 0);
  1218. if (IS_ERR(leaf)) {
  1219. kfree(root);
  1220. return ERR_CAST(leaf);
  1221. }
  1222. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1223. btrfs_set_header_bytenr(leaf, leaf->start);
  1224. btrfs_set_header_generation(leaf, trans->transid);
  1225. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1226. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1227. root->node = leaf;
  1228. write_extent_buffer(root->node, root->fs_info->fsid,
  1229. (unsigned long)btrfs_header_fsid(root->node),
  1230. BTRFS_FSID_SIZE);
  1231. btrfs_mark_buffer_dirty(root->node);
  1232. btrfs_tree_unlock(root->node);
  1233. return root;
  1234. }
  1235. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1236. struct btrfs_fs_info *fs_info)
  1237. {
  1238. struct btrfs_root *log_root;
  1239. log_root = alloc_log_tree(trans, fs_info);
  1240. if (IS_ERR(log_root))
  1241. return PTR_ERR(log_root);
  1242. WARN_ON(fs_info->log_root_tree);
  1243. fs_info->log_root_tree = log_root;
  1244. return 0;
  1245. }
  1246. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1247. struct btrfs_root *root)
  1248. {
  1249. struct btrfs_root *log_root;
  1250. struct btrfs_inode_item *inode_item;
  1251. log_root = alloc_log_tree(trans, root->fs_info);
  1252. if (IS_ERR(log_root))
  1253. return PTR_ERR(log_root);
  1254. log_root->last_trans = trans->transid;
  1255. log_root->root_key.offset = root->root_key.objectid;
  1256. inode_item = &log_root->root_item.inode;
  1257. inode_item->generation = cpu_to_le64(1);
  1258. inode_item->size = cpu_to_le64(3);
  1259. inode_item->nlink = cpu_to_le32(1);
  1260. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1261. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1262. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1263. WARN_ON(root->log_root);
  1264. root->log_root = log_root;
  1265. root->log_transid = 0;
  1266. root->last_log_commit = 0;
  1267. return 0;
  1268. }
  1269. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1270. struct btrfs_key *location)
  1271. {
  1272. struct btrfs_root *root;
  1273. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1274. struct btrfs_path *path;
  1275. struct extent_buffer *l;
  1276. u64 generation;
  1277. u32 blocksize;
  1278. int ret = 0;
  1279. int slot;
  1280. root = btrfs_alloc_root(fs_info);
  1281. if (!root)
  1282. return ERR_PTR(-ENOMEM);
  1283. if (location->offset == (u64)-1) {
  1284. ret = find_and_setup_root(tree_root, fs_info,
  1285. location->objectid, root);
  1286. if (ret) {
  1287. kfree(root);
  1288. return ERR_PTR(ret);
  1289. }
  1290. goto out;
  1291. }
  1292. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1293. tree_root->sectorsize, tree_root->stripesize,
  1294. root, fs_info, location->objectid);
  1295. path = btrfs_alloc_path();
  1296. if (!path) {
  1297. kfree(root);
  1298. return ERR_PTR(-ENOMEM);
  1299. }
  1300. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1301. if (ret == 0) {
  1302. l = path->nodes[0];
  1303. slot = path->slots[0];
  1304. btrfs_read_root_item(l, slot, &root->root_item);
  1305. memcpy(&root->root_key, location, sizeof(*location));
  1306. }
  1307. btrfs_free_path(path);
  1308. if (ret) {
  1309. kfree(root);
  1310. if (ret > 0)
  1311. ret = -ENOENT;
  1312. return ERR_PTR(ret);
  1313. }
  1314. generation = btrfs_root_generation(&root->root_item);
  1315. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1316. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1317. blocksize, generation);
  1318. if (!root->node || !extent_buffer_uptodate(root->node)) {
  1319. ret = (!root->node) ? -ENOMEM : -EIO;
  1320. free_extent_buffer(root->node);
  1321. kfree(root);
  1322. return ERR_PTR(ret);
  1323. }
  1324. root->commit_root = btrfs_root_node(root);
  1325. BUG_ON(!root->node); /* -ENOMEM */
  1326. out:
  1327. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1328. root->ref_cows = 1;
  1329. btrfs_check_and_init_root_item(&root->root_item);
  1330. }
  1331. return root;
  1332. }
  1333. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1334. struct btrfs_key *location)
  1335. {
  1336. struct btrfs_root *root;
  1337. int ret;
  1338. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1339. return fs_info->tree_root;
  1340. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1341. return fs_info->extent_root;
  1342. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1343. return fs_info->chunk_root;
  1344. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1345. return fs_info->dev_root;
  1346. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1347. return fs_info->csum_root;
  1348. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1349. return fs_info->quota_root ? fs_info->quota_root :
  1350. ERR_PTR(-ENOENT);
  1351. again:
  1352. spin_lock(&fs_info->fs_roots_radix_lock);
  1353. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1354. (unsigned long)location->objectid);
  1355. spin_unlock(&fs_info->fs_roots_radix_lock);
  1356. if (root)
  1357. return root;
  1358. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1359. if (IS_ERR(root))
  1360. return root;
  1361. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1362. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1363. GFP_NOFS);
  1364. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1365. ret = -ENOMEM;
  1366. goto fail;
  1367. }
  1368. btrfs_init_free_ino_ctl(root);
  1369. mutex_init(&root->fs_commit_mutex);
  1370. spin_lock_init(&root->cache_lock);
  1371. init_waitqueue_head(&root->cache_wait);
  1372. ret = get_anon_bdev(&root->anon_dev);
  1373. if (ret)
  1374. goto fail;
  1375. if (btrfs_root_refs(&root->root_item) == 0) {
  1376. ret = -ENOENT;
  1377. goto fail;
  1378. }
  1379. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1380. if (ret < 0)
  1381. goto fail;
  1382. if (ret == 0)
  1383. root->orphan_item_inserted = 1;
  1384. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1385. if (ret)
  1386. goto fail;
  1387. spin_lock(&fs_info->fs_roots_radix_lock);
  1388. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1389. (unsigned long)root->root_key.objectid,
  1390. root);
  1391. if (ret == 0)
  1392. root->in_radix = 1;
  1393. spin_unlock(&fs_info->fs_roots_radix_lock);
  1394. radix_tree_preload_end();
  1395. if (ret) {
  1396. if (ret == -EEXIST) {
  1397. free_fs_root(root);
  1398. goto again;
  1399. }
  1400. goto fail;
  1401. }
  1402. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1403. root->root_key.objectid);
  1404. WARN_ON(ret);
  1405. return root;
  1406. fail:
  1407. free_fs_root(root);
  1408. return ERR_PTR(ret);
  1409. }
  1410. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1411. {
  1412. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1413. int ret = 0;
  1414. struct btrfs_device *device;
  1415. struct backing_dev_info *bdi;
  1416. rcu_read_lock();
  1417. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1418. if (!device->bdev)
  1419. continue;
  1420. bdi = blk_get_backing_dev_info(device->bdev);
  1421. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1422. ret = 1;
  1423. break;
  1424. }
  1425. }
  1426. rcu_read_unlock();
  1427. return ret;
  1428. }
  1429. /*
  1430. * If this fails, caller must call bdi_destroy() to get rid of the
  1431. * bdi again.
  1432. */
  1433. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1434. {
  1435. int err;
  1436. bdi->capabilities = BDI_CAP_MAP_COPY;
  1437. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1438. if (err)
  1439. return err;
  1440. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1441. bdi->congested_fn = btrfs_congested_fn;
  1442. bdi->congested_data = info;
  1443. return 0;
  1444. }
  1445. /*
  1446. * called by the kthread helper functions to finally call the bio end_io
  1447. * functions. This is where read checksum verification actually happens
  1448. */
  1449. static void end_workqueue_fn(struct btrfs_work *work)
  1450. {
  1451. struct bio *bio;
  1452. struct end_io_wq *end_io_wq;
  1453. struct btrfs_fs_info *fs_info;
  1454. int error;
  1455. end_io_wq = container_of(work, struct end_io_wq, work);
  1456. bio = end_io_wq->bio;
  1457. fs_info = end_io_wq->info;
  1458. error = end_io_wq->error;
  1459. bio->bi_private = end_io_wq->private;
  1460. bio->bi_end_io = end_io_wq->end_io;
  1461. kfree(end_io_wq);
  1462. bio_endio(bio, error);
  1463. }
  1464. static int cleaner_kthread(void *arg)
  1465. {
  1466. struct btrfs_root *root = arg;
  1467. do {
  1468. int again = 0;
  1469. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1470. down_read_trylock(&root->fs_info->sb->s_umount)) {
  1471. if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1472. btrfs_run_delayed_iputs(root);
  1473. again = btrfs_clean_one_deleted_snapshot(root);
  1474. mutex_unlock(&root->fs_info->cleaner_mutex);
  1475. }
  1476. btrfs_run_defrag_inodes(root->fs_info);
  1477. up_read(&root->fs_info->sb->s_umount);
  1478. }
  1479. if (!try_to_freeze() && !again) {
  1480. set_current_state(TASK_INTERRUPTIBLE);
  1481. if (!kthread_should_stop())
  1482. schedule();
  1483. __set_current_state(TASK_RUNNING);
  1484. }
  1485. } while (!kthread_should_stop());
  1486. return 0;
  1487. }
  1488. static int transaction_kthread(void *arg)
  1489. {
  1490. struct btrfs_root *root = arg;
  1491. struct btrfs_trans_handle *trans;
  1492. struct btrfs_transaction *cur;
  1493. u64 transid;
  1494. unsigned long now;
  1495. unsigned long delay;
  1496. bool cannot_commit;
  1497. do {
  1498. cannot_commit = false;
  1499. delay = HZ * 30;
  1500. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1501. spin_lock(&root->fs_info->trans_lock);
  1502. cur = root->fs_info->running_transaction;
  1503. if (!cur) {
  1504. spin_unlock(&root->fs_info->trans_lock);
  1505. goto sleep;
  1506. }
  1507. now = get_seconds();
  1508. if (!cur->blocked &&
  1509. (now < cur->start_time || now - cur->start_time < 30)) {
  1510. spin_unlock(&root->fs_info->trans_lock);
  1511. delay = HZ * 5;
  1512. goto sleep;
  1513. }
  1514. transid = cur->transid;
  1515. spin_unlock(&root->fs_info->trans_lock);
  1516. /* If the file system is aborted, this will always fail. */
  1517. trans = btrfs_attach_transaction(root);
  1518. if (IS_ERR(trans)) {
  1519. if (PTR_ERR(trans) != -ENOENT)
  1520. cannot_commit = true;
  1521. goto sleep;
  1522. }
  1523. if (transid == trans->transid) {
  1524. btrfs_commit_transaction(trans, root);
  1525. } else {
  1526. btrfs_end_transaction(trans, root);
  1527. }
  1528. sleep:
  1529. wake_up_process(root->fs_info->cleaner_kthread);
  1530. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1531. if (!try_to_freeze()) {
  1532. set_current_state(TASK_INTERRUPTIBLE);
  1533. if (!kthread_should_stop() &&
  1534. (!btrfs_transaction_blocked(root->fs_info) ||
  1535. cannot_commit))
  1536. schedule_timeout(delay);
  1537. __set_current_state(TASK_RUNNING);
  1538. }
  1539. } while (!kthread_should_stop());
  1540. return 0;
  1541. }
  1542. /*
  1543. * this will find the highest generation in the array of
  1544. * root backups. The index of the highest array is returned,
  1545. * or -1 if we can't find anything.
  1546. *
  1547. * We check to make sure the array is valid by comparing the
  1548. * generation of the latest root in the array with the generation
  1549. * in the super block. If they don't match we pitch it.
  1550. */
  1551. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1552. {
  1553. u64 cur;
  1554. int newest_index = -1;
  1555. struct btrfs_root_backup *root_backup;
  1556. int i;
  1557. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1558. root_backup = info->super_copy->super_roots + i;
  1559. cur = btrfs_backup_tree_root_gen(root_backup);
  1560. if (cur == newest_gen)
  1561. newest_index = i;
  1562. }
  1563. /* check to see if we actually wrapped around */
  1564. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1565. root_backup = info->super_copy->super_roots;
  1566. cur = btrfs_backup_tree_root_gen(root_backup);
  1567. if (cur == newest_gen)
  1568. newest_index = 0;
  1569. }
  1570. return newest_index;
  1571. }
  1572. /*
  1573. * find the oldest backup so we know where to store new entries
  1574. * in the backup array. This will set the backup_root_index
  1575. * field in the fs_info struct
  1576. */
  1577. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1578. u64 newest_gen)
  1579. {
  1580. int newest_index = -1;
  1581. newest_index = find_newest_super_backup(info, newest_gen);
  1582. /* if there was garbage in there, just move along */
  1583. if (newest_index == -1) {
  1584. info->backup_root_index = 0;
  1585. } else {
  1586. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1587. }
  1588. }
  1589. /*
  1590. * copy all the root pointers into the super backup array.
  1591. * this will bump the backup pointer by one when it is
  1592. * done
  1593. */
  1594. static void backup_super_roots(struct btrfs_fs_info *info)
  1595. {
  1596. int next_backup;
  1597. struct btrfs_root_backup *root_backup;
  1598. int last_backup;
  1599. next_backup = info->backup_root_index;
  1600. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1601. BTRFS_NUM_BACKUP_ROOTS;
  1602. /*
  1603. * just overwrite the last backup if we're at the same generation
  1604. * this happens only at umount
  1605. */
  1606. root_backup = info->super_for_commit->super_roots + last_backup;
  1607. if (btrfs_backup_tree_root_gen(root_backup) ==
  1608. btrfs_header_generation(info->tree_root->node))
  1609. next_backup = last_backup;
  1610. root_backup = info->super_for_commit->super_roots + next_backup;
  1611. /*
  1612. * make sure all of our padding and empty slots get zero filled
  1613. * regardless of which ones we use today
  1614. */
  1615. memset(root_backup, 0, sizeof(*root_backup));
  1616. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1617. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1618. btrfs_set_backup_tree_root_gen(root_backup,
  1619. btrfs_header_generation(info->tree_root->node));
  1620. btrfs_set_backup_tree_root_level(root_backup,
  1621. btrfs_header_level(info->tree_root->node));
  1622. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1623. btrfs_set_backup_chunk_root_gen(root_backup,
  1624. btrfs_header_generation(info->chunk_root->node));
  1625. btrfs_set_backup_chunk_root_level(root_backup,
  1626. btrfs_header_level(info->chunk_root->node));
  1627. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1628. btrfs_set_backup_extent_root_gen(root_backup,
  1629. btrfs_header_generation(info->extent_root->node));
  1630. btrfs_set_backup_extent_root_level(root_backup,
  1631. btrfs_header_level(info->extent_root->node));
  1632. /*
  1633. * we might commit during log recovery, which happens before we set
  1634. * the fs_root. Make sure it is valid before we fill it in.
  1635. */
  1636. if (info->fs_root && info->fs_root->node) {
  1637. btrfs_set_backup_fs_root(root_backup,
  1638. info->fs_root->node->start);
  1639. btrfs_set_backup_fs_root_gen(root_backup,
  1640. btrfs_header_generation(info->fs_root->node));
  1641. btrfs_set_backup_fs_root_level(root_backup,
  1642. btrfs_header_level(info->fs_root->node));
  1643. }
  1644. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1645. btrfs_set_backup_dev_root_gen(root_backup,
  1646. btrfs_header_generation(info->dev_root->node));
  1647. btrfs_set_backup_dev_root_level(root_backup,
  1648. btrfs_header_level(info->dev_root->node));
  1649. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1650. btrfs_set_backup_csum_root_gen(root_backup,
  1651. btrfs_header_generation(info->csum_root->node));
  1652. btrfs_set_backup_csum_root_level(root_backup,
  1653. btrfs_header_level(info->csum_root->node));
  1654. btrfs_set_backup_total_bytes(root_backup,
  1655. btrfs_super_total_bytes(info->super_copy));
  1656. btrfs_set_backup_bytes_used(root_backup,
  1657. btrfs_super_bytes_used(info->super_copy));
  1658. btrfs_set_backup_num_devices(root_backup,
  1659. btrfs_super_num_devices(info->super_copy));
  1660. /*
  1661. * if we don't copy this out to the super_copy, it won't get remembered
  1662. * for the next commit
  1663. */
  1664. memcpy(&info->super_copy->super_roots,
  1665. &info->super_for_commit->super_roots,
  1666. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1667. }
  1668. /*
  1669. * this copies info out of the root backup array and back into
  1670. * the in-memory super block. It is meant to help iterate through
  1671. * the array, so you send it the number of backups you've already
  1672. * tried and the last backup index you used.
  1673. *
  1674. * this returns -1 when it has tried all the backups
  1675. */
  1676. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1677. struct btrfs_super_block *super,
  1678. int *num_backups_tried, int *backup_index)
  1679. {
  1680. struct btrfs_root_backup *root_backup;
  1681. int newest = *backup_index;
  1682. if (*num_backups_tried == 0) {
  1683. u64 gen = btrfs_super_generation(super);
  1684. newest = find_newest_super_backup(info, gen);
  1685. if (newest == -1)
  1686. return -1;
  1687. *backup_index = newest;
  1688. *num_backups_tried = 1;
  1689. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1690. /* we've tried all the backups, all done */
  1691. return -1;
  1692. } else {
  1693. /* jump to the next oldest backup */
  1694. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1695. BTRFS_NUM_BACKUP_ROOTS;
  1696. *backup_index = newest;
  1697. *num_backups_tried += 1;
  1698. }
  1699. root_backup = super->super_roots + newest;
  1700. btrfs_set_super_generation(super,
  1701. btrfs_backup_tree_root_gen(root_backup));
  1702. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1703. btrfs_set_super_root_level(super,
  1704. btrfs_backup_tree_root_level(root_backup));
  1705. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1706. /*
  1707. * fixme: the total bytes and num_devices need to match or we should
  1708. * need a fsck
  1709. */
  1710. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1711. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1712. return 0;
  1713. }
  1714. /* helper to cleanup workers */
  1715. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1716. {
  1717. btrfs_stop_workers(&fs_info->generic_worker);
  1718. btrfs_stop_workers(&fs_info->fixup_workers);
  1719. btrfs_stop_workers(&fs_info->delalloc_workers);
  1720. btrfs_stop_workers(&fs_info->workers);
  1721. btrfs_stop_workers(&fs_info->endio_workers);
  1722. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1723. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1724. btrfs_stop_workers(&fs_info->rmw_workers);
  1725. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1726. btrfs_stop_workers(&fs_info->endio_write_workers);
  1727. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1728. btrfs_stop_workers(&fs_info->submit_workers);
  1729. btrfs_stop_workers(&fs_info->delayed_workers);
  1730. btrfs_stop_workers(&fs_info->caching_workers);
  1731. btrfs_stop_workers(&fs_info->readahead_workers);
  1732. btrfs_stop_workers(&fs_info->flush_workers);
  1733. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1734. }
  1735. /* helper to cleanup tree roots */
  1736. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1737. {
  1738. free_extent_buffer(info->tree_root->node);
  1739. free_extent_buffer(info->tree_root->commit_root);
  1740. free_extent_buffer(info->dev_root->node);
  1741. free_extent_buffer(info->dev_root->commit_root);
  1742. free_extent_buffer(info->extent_root->node);
  1743. free_extent_buffer(info->extent_root->commit_root);
  1744. free_extent_buffer(info->csum_root->node);
  1745. free_extent_buffer(info->csum_root->commit_root);
  1746. if (info->quota_root) {
  1747. free_extent_buffer(info->quota_root->node);
  1748. free_extent_buffer(info->quota_root->commit_root);
  1749. }
  1750. info->tree_root->node = NULL;
  1751. info->tree_root->commit_root = NULL;
  1752. info->dev_root->node = NULL;
  1753. info->dev_root->commit_root = NULL;
  1754. info->extent_root->node = NULL;
  1755. info->extent_root->commit_root = NULL;
  1756. info->csum_root->node = NULL;
  1757. info->csum_root->commit_root = NULL;
  1758. if (info->quota_root) {
  1759. info->quota_root->node = NULL;
  1760. info->quota_root->commit_root = NULL;
  1761. }
  1762. if (chunk_root) {
  1763. free_extent_buffer(info->chunk_root->node);
  1764. free_extent_buffer(info->chunk_root->commit_root);
  1765. info->chunk_root->node = NULL;
  1766. info->chunk_root->commit_root = NULL;
  1767. }
  1768. }
  1769. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1770. {
  1771. int ret;
  1772. struct btrfs_root *gang[8];
  1773. int i;
  1774. while (!list_empty(&fs_info->dead_roots)) {
  1775. gang[0] = list_entry(fs_info->dead_roots.next,
  1776. struct btrfs_root, root_list);
  1777. list_del(&gang[0]->root_list);
  1778. if (gang[0]->in_radix) {
  1779. btrfs_free_fs_root(fs_info, gang[0]);
  1780. } else {
  1781. free_extent_buffer(gang[0]->node);
  1782. free_extent_buffer(gang[0]->commit_root);
  1783. kfree(gang[0]);
  1784. }
  1785. }
  1786. while (1) {
  1787. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1788. (void **)gang, 0,
  1789. ARRAY_SIZE(gang));
  1790. if (!ret)
  1791. break;
  1792. for (i = 0; i < ret; i++)
  1793. btrfs_free_fs_root(fs_info, gang[i]);
  1794. }
  1795. }
  1796. int open_ctree(struct super_block *sb,
  1797. struct btrfs_fs_devices *fs_devices,
  1798. char *options)
  1799. {
  1800. u32 sectorsize;
  1801. u32 nodesize;
  1802. u32 leafsize;
  1803. u32 blocksize;
  1804. u32 stripesize;
  1805. u64 generation;
  1806. u64 features;
  1807. struct btrfs_key location;
  1808. struct buffer_head *bh;
  1809. struct btrfs_super_block *disk_super;
  1810. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1811. struct btrfs_root *tree_root;
  1812. struct btrfs_root *extent_root;
  1813. struct btrfs_root *csum_root;
  1814. struct btrfs_root *chunk_root;
  1815. struct btrfs_root *dev_root;
  1816. struct btrfs_root *quota_root;
  1817. struct btrfs_root *log_tree_root;
  1818. int ret;
  1819. int err = -EINVAL;
  1820. int num_backups_tried = 0;
  1821. int backup_index = 0;
  1822. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1823. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1824. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1825. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1826. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1827. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1828. if (!tree_root || !extent_root || !csum_root ||
  1829. !chunk_root || !dev_root || !quota_root) {
  1830. err = -ENOMEM;
  1831. goto fail;
  1832. }
  1833. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1834. if (ret) {
  1835. err = ret;
  1836. goto fail;
  1837. }
  1838. ret = setup_bdi(fs_info, &fs_info->bdi);
  1839. if (ret) {
  1840. err = ret;
  1841. goto fail_srcu;
  1842. }
  1843. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1844. if (ret) {
  1845. err = ret;
  1846. goto fail_bdi;
  1847. }
  1848. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1849. (1 + ilog2(nr_cpu_ids));
  1850. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1851. if (ret) {
  1852. err = ret;
  1853. goto fail_dirty_metadata_bytes;
  1854. }
  1855. fs_info->btree_inode = new_inode(sb);
  1856. if (!fs_info->btree_inode) {
  1857. err = -ENOMEM;
  1858. goto fail_delalloc_bytes;
  1859. }
  1860. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1861. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1862. INIT_LIST_HEAD(&fs_info->trans_list);
  1863. INIT_LIST_HEAD(&fs_info->dead_roots);
  1864. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1865. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1866. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1867. spin_lock_init(&fs_info->delalloc_lock);
  1868. spin_lock_init(&fs_info->trans_lock);
  1869. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1870. spin_lock_init(&fs_info->delayed_iput_lock);
  1871. spin_lock_init(&fs_info->defrag_inodes_lock);
  1872. spin_lock_init(&fs_info->free_chunk_lock);
  1873. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1874. spin_lock_init(&fs_info->super_lock);
  1875. rwlock_init(&fs_info->tree_mod_log_lock);
  1876. mutex_init(&fs_info->reloc_mutex);
  1877. seqlock_init(&fs_info->profiles_lock);
  1878. init_completion(&fs_info->kobj_unregister);
  1879. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1880. INIT_LIST_HEAD(&fs_info->space_info);
  1881. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1882. btrfs_mapping_init(&fs_info->mapping_tree);
  1883. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1884. BTRFS_BLOCK_RSV_GLOBAL);
  1885. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1886. BTRFS_BLOCK_RSV_DELALLOC);
  1887. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1888. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1889. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1890. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1891. BTRFS_BLOCK_RSV_DELOPS);
  1892. atomic_set(&fs_info->nr_async_submits, 0);
  1893. atomic_set(&fs_info->async_delalloc_pages, 0);
  1894. atomic_set(&fs_info->async_submit_draining, 0);
  1895. atomic_set(&fs_info->nr_async_bios, 0);
  1896. atomic_set(&fs_info->defrag_running, 0);
  1897. atomic64_set(&fs_info->tree_mod_seq, 0);
  1898. fs_info->sb = sb;
  1899. fs_info->max_inline = 8192 * 1024;
  1900. fs_info->metadata_ratio = 0;
  1901. fs_info->defrag_inodes = RB_ROOT;
  1902. fs_info->trans_no_join = 0;
  1903. fs_info->free_chunk_space = 0;
  1904. fs_info->tree_mod_log = RB_ROOT;
  1905. /* readahead state */
  1906. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1907. spin_lock_init(&fs_info->reada_lock);
  1908. fs_info->thread_pool_size = min_t(unsigned long,
  1909. num_online_cpus() + 2, 8);
  1910. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1911. spin_lock_init(&fs_info->ordered_extent_lock);
  1912. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1913. GFP_NOFS);
  1914. if (!fs_info->delayed_root) {
  1915. err = -ENOMEM;
  1916. goto fail_iput;
  1917. }
  1918. btrfs_init_delayed_root(fs_info->delayed_root);
  1919. mutex_init(&fs_info->scrub_lock);
  1920. atomic_set(&fs_info->scrubs_running, 0);
  1921. atomic_set(&fs_info->scrub_pause_req, 0);
  1922. atomic_set(&fs_info->scrubs_paused, 0);
  1923. atomic_set(&fs_info->scrub_cancel_req, 0);
  1924. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1925. init_rwsem(&fs_info->scrub_super_lock);
  1926. fs_info->scrub_workers_refcnt = 0;
  1927. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1928. fs_info->check_integrity_print_mask = 0;
  1929. #endif
  1930. spin_lock_init(&fs_info->balance_lock);
  1931. mutex_init(&fs_info->balance_mutex);
  1932. atomic_set(&fs_info->balance_running, 0);
  1933. atomic_set(&fs_info->balance_pause_req, 0);
  1934. atomic_set(&fs_info->balance_cancel_req, 0);
  1935. fs_info->balance_ctl = NULL;
  1936. init_waitqueue_head(&fs_info->balance_wait_q);
  1937. sb->s_blocksize = 4096;
  1938. sb->s_blocksize_bits = blksize_bits(4096);
  1939. sb->s_bdi = &fs_info->bdi;
  1940. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1941. set_nlink(fs_info->btree_inode, 1);
  1942. /*
  1943. * we set the i_size on the btree inode to the max possible int.
  1944. * the real end of the address space is determined by all of
  1945. * the devices in the system
  1946. */
  1947. fs_info->btree_inode->i_size = OFFSET_MAX;
  1948. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1949. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1950. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1951. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1952. fs_info->btree_inode->i_mapping);
  1953. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1954. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1955. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1956. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1957. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1958. sizeof(struct btrfs_key));
  1959. set_bit(BTRFS_INODE_DUMMY,
  1960. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1961. insert_inode_hash(fs_info->btree_inode);
  1962. spin_lock_init(&fs_info->block_group_cache_lock);
  1963. fs_info->block_group_cache_tree = RB_ROOT;
  1964. fs_info->first_logical_byte = (u64)-1;
  1965. extent_io_tree_init(&fs_info->freed_extents[0],
  1966. fs_info->btree_inode->i_mapping);
  1967. extent_io_tree_init(&fs_info->freed_extents[1],
  1968. fs_info->btree_inode->i_mapping);
  1969. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1970. fs_info->do_barriers = 1;
  1971. mutex_init(&fs_info->ordered_operations_mutex);
  1972. mutex_init(&fs_info->tree_log_mutex);
  1973. mutex_init(&fs_info->chunk_mutex);
  1974. mutex_init(&fs_info->transaction_kthread_mutex);
  1975. mutex_init(&fs_info->cleaner_mutex);
  1976. mutex_init(&fs_info->volume_mutex);
  1977. init_rwsem(&fs_info->extent_commit_sem);
  1978. init_rwsem(&fs_info->cleanup_work_sem);
  1979. init_rwsem(&fs_info->subvol_sem);
  1980. fs_info->dev_replace.lock_owner = 0;
  1981. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1982. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1983. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1984. mutex_init(&fs_info->dev_replace.lock);
  1985. spin_lock_init(&fs_info->qgroup_lock);
  1986. mutex_init(&fs_info->qgroup_ioctl_lock);
  1987. fs_info->qgroup_tree = RB_ROOT;
  1988. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1989. fs_info->qgroup_seq = 1;
  1990. fs_info->quota_enabled = 0;
  1991. fs_info->pending_quota_state = 0;
  1992. mutex_init(&fs_info->qgroup_rescan_lock);
  1993. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1994. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1995. init_waitqueue_head(&fs_info->transaction_throttle);
  1996. init_waitqueue_head(&fs_info->transaction_wait);
  1997. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1998. init_waitqueue_head(&fs_info->async_submit_wait);
  1999. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2000. if (ret) {
  2001. err = ret;
  2002. goto fail_alloc;
  2003. }
  2004. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2005. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2006. invalidate_bdev(fs_devices->latest_bdev);
  2007. /*
  2008. * Read super block and check the signature bytes only
  2009. */
  2010. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2011. if (!bh) {
  2012. err = -EINVAL;
  2013. goto fail_alloc;
  2014. }
  2015. /*
  2016. * We want to check superblock checksum, the type is stored inside.
  2017. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2018. */
  2019. if (btrfs_check_super_csum(bh->b_data)) {
  2020. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2021. err = -EINVAL;
  2022. goto fail_alloc;
  2023. }
  2024. /*
  2025. * super_copy is zeroed at allocation time and we never touch the
  2026. * following bytes up to INFO_SIZE, the checksum is calculated from
  2027. * the whole block of INFO_SIZE
  2028. */
  2029. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2030. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2031. sizeof(*fs_info->super_for_commit));
  2032. brelse(bh);
  2033. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2034. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2035. if (ret) {
  2036. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2037. err = -EINVAL;
  2038. goto fail_alloc;
  2039. }
  2040. disk_super = fs_info->super_copy;
  2041. if (!btrfs_super_root(disk_super))
  2042. goto fail_alloc;
  2043. /* check FS state, whether FS is broken. */
  2044. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2045. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2046. /*
  2047. * run through our array of backup supers and setup
  2048. * our ring pointer to the oldest one
  2049. */
  2050. generation = btrfs_super_generation(disk_super);
  2051. find_oldest_super_backup(fs_info, generation);
  2052. /*
  2053. * In the long term, we'll store the compression type in the super
  2054. * block, and it'll be used for per file compression control.
  2055. */
  2056. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2057. ret = btrfs_parse_options(tree_root, options);
  2058. if (ret) {
  2059. err = ret;
  2060. goto fail_alloc;
  2061. }
  2062. features = btrfs_super_incompat_flags(disk_super) &
  2063. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2064. if (features) {
  2065. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2066. "unsupported optional features (%Lx).\n",
  2067. (unsigned long long)features);
  2068. err = -EINVAL;
  2069. goto fail_alloc;
  2070. }
  2071. if (btrfs_super_leafsize(disk_super) !=
  2072. btrfs_super_nodesize(disk_super)) {
  2073. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2074. "blocksizes don't match. node %d leaf %d\n",
  2075. btrfs_super_nodesize(disk_super),
  2076. btrfs_super_leafsize(disk_super));
  2077. err = -EINVAL;
  2078. goto fail_alloc;
  2079. }
  2080. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2081. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2082. "blocksize (%d) was too large\n",
  2083. btrfs_super_leafsize(disk_super));
  2084. err = -EINVAL;
  2085. goto fail_alloc;
  2086. }
  2087. features = btrfs_super_incompat_flags(disk_super);
  2088. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2089. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2090. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2091. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2092. printk(KERN_ERR "btrfs: has skinny extents\n");
  2093. /*
  2094. * flag our filesystem as having big metadata blocks if
  2095. * they are bigger than the page size
  2096. */
  2097. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2098. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2099. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2100. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2101. }
  2102. nodesize = btrfs_super_nodesize(disk_super);
  2103. leafsize = btrfs_super_leafsize(disk_super);
  2104. sectorsize = btrfs_super_sectorsize(disk_super);
  2105. stripesize = btrfs_super_stripesize(disk_super);
  2106. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2107. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2108. /*
  2109. * mixed block groups end up with duplicate but slightly offset
  2110. * extent buffers for the same range. It leads to corruptions
  2111. */
  2112. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2113. (sectorsize != leafsize)) {
  2114. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2115. "are not allowed for mixed block groups on %s\n",
  2116. sb->s_id);
  2117. goto fail_alloc;
  2118. }
  2119. /*
  2120. * Needn't use the lock because there is no other task which will
  2121. * update the flag.
  2122. */
  2123. btrfs_set_super_incompat_flags(disk_super, features);
  2124. features = btrfs_super_compat_ro_flags(disk_super) &
  2125. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2126. if (!(sb->s_flags & MS_RDONLY) && features) {
  2127. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2128. "unsupported option features (%Lx).\n",
  2129. (unsigned long long)features);
  2130. err = -EINVAL;
  2131. goto fail_alloc;
  2132. }
  2133. btrfs_init_workers(&fs_info->generic_worker,
  2134. "genwork", 1, NULL);
  2135. btrfs_init_workers(&fs_info->workers, "worker",
  2136. fs_info->thread_pool_size,
  2137. &fs_info->generic_worker);
  2138. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2139. fs_info->thread_pool_size,
  2140. &fs_info->generic_worker);
  2141. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2142. fs_info->thread_pool_size,
  2143. &fs_info->generic_worker);
  2144. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2145. min_t(u64, fs_devices->num_devices,
  2146. fs_info->thread_pool_size),
  2147. &fs_info->generic_worker);
  2148. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2149. 2, &fs_info->generic_worker);
  2150. /* a higher idle thresh on the submit workers makes it much more
  2151. * likely that bios will be send down in a sane order to the
  2152. * devices
  2153. */
  2154. fs_info->submit_workers.idle_thresh = 64;
  2155. fs_info->workers.idle_thresh = 16;
  2156. fs_info->workers.ordered = 1;
  2157. fs_info->delalloc_workers.idle_thresh = 2;
  2158. fs_info->delalloc_workers.ordered = 1;
  2159. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2160. &fs_info->generic_worker);
  2161. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2162. fs_info->thread_pool_size,
  2163. &fs_info->generic_worker);
  2164. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2165. fs_info->thread_pool_size,
  2166. &fs_info->generic_worker);
  2167. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2168. "endio-meta-write", fs_info->thread_pool_size,
  2169. &fs_info->generic_worker);
  2170. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2171. "endio-raid56", fs_info->thread_pool_size,
  2172. &fs_info->generic_worker);
  2173. btrfs_init_workers(&fs_info->rmw_workers,
  2174. "rmw", fs_info->thread_pool_size,
  2175. &fs_info->generic_worker);
  2176. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2177. fs_info->thread_pool_size,
  2178. &fs_info->generic_worker);
  2179. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2180. 1, &fs_info->generic_worker);
  2181. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2182. fs_info->thread_pool_size,
  2183. &fs_info->generic_worker);
  2184. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2185. fs_info->thread_pool_size,
  2186. &fs_info->generic_worker);
  2187. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2188. &fs_info->generic_worker);
  2189. /*
  2190. * endios are largely parallel and should have a very
  2191. * low idle thresh
  2192. */
  2193. fs_info->endio_workers.idle_thresh = 4;
  2194. fs_info->endio_meta_workers.idle_thresh = 4;
  2195. fs_info->endio_raid56_workers.idle_thresh = 4;
  2196. fs_info->rmw_workers.idle_thresh = 2;
  2197. fs_info->endio_write_workers.idle_thresh = 2;
  2198. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2199. fs_info->readahead_workers.idle_thresh = 2;
  2200. /*
  2201. * btrfs_start_workers can really only fail because of ENOMEM so just
  2202. * return -ENOMEM if any of these fail.
  2203. */
  2204. ret = btrfs_start_workers(&fs_info->workers);
  2205. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2206. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2207. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2208. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2209. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2210. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2211. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2212. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2213. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2214. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2215. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2216. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2217. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2218. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2219. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2220. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2221. if (ret) {
  2222. err = -ENOMEM;
  2223. goto fail_sb_buffer;
  2224. }
  2225. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2226. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2227. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2228. tree_root->nodesize = nodesize;
  2229. tree_root->leafsize = leafsize;
  2230. tree_root->sectorsize = sectorsize;
  2231. tree_root->stripesize = stripesize;
  2232. sb->s_blocksize = sectorsize;
  2233. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2234. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2235. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2236. goto fail_sb_buffer;
  2237. }
  2238. if (sectorsize != PAGE_SIZE) {
  2239. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2240. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2241. goto fail_sb_buffer;
  2242. }
  2243. mutex_lock(&fs_info->chunk_mutex);
  2244. ret = btrfs_read_sys_array(tree_root);
  2245. mutex_unlock(&fs_info->chunk_mutex);
  2246. if (ret) {
  2247. printk(KERN_WARNING "btrfs: failed to read the system "
  2248. "array on %s\n", sb->s_id);
  2249. goto fail_sb_buffer;
  2250. }
  2251. blocksize = btrfs_level_size(tree_root,
  2252. btrfs_super_chunk_root_level(disk_super));
  2253. generation = btrfs_super_chunk_root_generation(disk_super);
  2254. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2255. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2256. chunk_root->node = read_tree_block(chunk_root,
  2257. btrfs_super_chunk_root(disk_super),
  2258. blocksize, generation);
  2259. if (!chunk_root->node ||
  2260. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2261. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2262. sb->s_id);
  2263. goto fail_tree_roots;
  2264. }
  2265. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2266. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2267. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2268. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2269. BTRFS_UUID_SIZE);
  2270. ret = btrfs_read_chunk_tree(chunk_root);
  2271. if (ret) {
  2272. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2273. sb->s_id);
  2274. goto fail_tree_roots;
  2275. }
  2276. /*
  2277. * keep the device that is marked to be the target device for the
  2278. * dev_replace procedure
  2279. */
  2280. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2281. if (!fs_devices->latest_bdev) {
  2282. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2283. sb->s_id);
  2284. goto fail_tree_roots;
  2285. }
  2286. retry_root_backup:
  2287. blocksize = btrfs_level_size(tree_root,
  2288. btrfs_super_root_level(disk_super));
  2289. generation = btrfs_super_generation(disk_super);
  2290. tree_root->node = read_tree_block(tree_root,
  2291. btrfs_super_root(disk_super),
  2292. blocksize, generation);
  2293. if (!tree_root->node ||
  2294. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2295. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2296. sb->s_id);
  2297. goto recovery_tree_root;
  2298. }
  2299. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2300. tree_root->commit_root = btrfs_root_node(tree_root);
  2301. ret = find_and_setup_root(tree_root, fs_info,
  2302. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2303. if (ret)
  2304. goto recovery_tree_root;
  2305. extent_root->track_dirty = 1;
  2306. ret = find_and_setup_root(tree_root, fs_info,
  2307. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2308. if (ret)
  2309. goto recovery_tree_root;
  2310. dev_root->track_dirty = 1;
  2311. ret = find_and_setup_root(tree_root, fs_info,
  2312. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2313. if (ret)
  2314. goto recovery_tree_root;
  2315. csum_root->track_dirty = 1;
  2316. ret = find_and_setup_root(tree_root, fs_info,
  2317. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2318. if (ret) {
  2319. kfree(quota_root);
  2320. quota_root = fs_info->quota_root = NULL;
  2321. } else {
  2322. quota_root->track_dirty = 1;
  2323. fs_info->quota_enabled = 1;
  2324. fs_info->pending_quota_state = 1;
  2325. }
  2326. fs_info->generation = generation;
  2327. fs_info->last_trans_committed = generation;
  2328. ret = btrfs_recover_balance(fs_info);
  2329. if (ret) {
  2330. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2331. goto fail_block_groups;
  2332. }
  2333. ret = btrfs_init_dev_stats(fs_info);
  2334. if (ret) {
  2335. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2336. ret);
  2337. goto fail_block_groups;
  2338. }
  2339. ret = btrfs_init_dev_replace(fs_info);
  2340. if (ret) {
  2341. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2342. goto fail_block_groups;
  2343. }
  2344. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2345. ret = btrfs_init_space_info(fs_info);
  2346. if (ret) {
  2347. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2348. goto fail_block_groups;
  2349. }
  2350. ret = btrfs_read_block_groups(extent_root);
  2351. if (ret) {
  2352. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2353. goto fail_block_groups;
  2354. }
  2355. fs_info->num_tolerated_disk_barrier_failures =
  2356. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2357. if (fs_info->fs_devices->missing_devices >
  2358. fs_info->num_tolerated_disk_barrier_failures &&
  2359. !(sb->s_flags & MS_RDONLY)) {
  2360. printk(KERN_WARNING
  2361. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2362. goto fail_block_groups;
  2363. }
  2364. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2365. "btrfs-cleaner");
  2366. if (IS_ERR(fs_info->cleaner_kthread))
  2367. goto fail_block_groups;
  2368. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2369. tree_root,
  2370. "btrfs-transaction");
  2371. if (IS_ERR(fs_info->transaction_kthread))
  2372. goto fail_cleaner;
  2373. if (!btrfs_test_opt(tree_root, SSD) &&
  2374. !btrfs_test_opt(tree_root, NOSSD) &&
  2375. !fs_info->fs_devices->rotating) {
  2376. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2377. "mode\n");
  2378. btrfs_set_opt(fs_info->mount_opt, SSD);
  2379. }
  2380. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2381. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2382. ret = btrfsic_mount(tree_root, fs_devices,
  2383. btrfs_test_opt(tree_root,
  2384. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2385. 1 : 0,
  2386. fs_info->check_integrity_print_mask);
  2387. if (ret)
  2388. printk(KERN_WARNING "btrfs: failed to initialize"
  2389. " integrity check module %s\n", sb->s_id);
  2390. }
  2391. #endif
  2392. ret = btrfs_read_qgroup_config(fs_info);
  2393. if (ret)
  2394. goto fail_trans_kthread;
  2395. /* do not make disk changes in broken FS */
  2396. if (btrfs_super_log_root(disk_super) != 0) {
  2397. u64 bytenr = btrfs_super_log_root(disk_super);
  2398. if (fs_devices->rw_devices == 0) {
  2399. printk(KERN_WARNING "Btrfs log replay required "
  2400. "on RO media\n");
  2401. err = -EIO;
  2402. goto fail_qgroup;
  2403. }
  2404. blocksize =
  2405. btrfs_level_size(tree_root,
  2406. btrfs_super_log_root_level(disk_super));
  2407. log_tree_root = btrfs_alloc_root(fs_info);
  2408. if (!log_tree_root) {
  2409. err = -ENOMEM;
  2410. goto fail_qgroup;
  2411. }
  2412. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2413. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2414. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2415. blocksize,
  2416. generation + 1);
  2417. if (!log_tree_root->node ||
  2418. !extent_buffer_uptodate(log_tree_root->node)) {
  2419. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2420. free_extent_buffer(log_tree_root->node);
  2421. kfree(log_tree_root);
  2422. goto fail_trans_kthread;
  2423. }
  2424. /* returns with log_tree_root freed on success */
  2425. ret = btrfs_recover_log_trees(log_tree_root);
  2426. if (ret) {
  2427. btrfs_error(tree_root->fs_info, ret,
  2428. "Failed to recover log tree");
  2429. free_extent_buffer(log_tree_root->node);
  2430. kfree(log_tree_root);
  2431. goto fail_trans_kthread;
  2432. }
  2433. if (sb->s_flags & MS_RDONLY) {
  2434. ret = btrfs_commit_super(tree_root);
  2435. if (ret)
  2436. goto fail_trans_kthread;
  2437. }
  2438. }
  2439. ret = btrfs_find_orphan_roots(tree_root);
  2440. if (ret)
  2441. goto fail_trans_kthread;
  2442. if (!(sb->s_flags & MS_RDONLY)) {
  2443. ret = btrfs_cleanup_fs_roots(fs_info);
  2444. if (ret)
  2445. goto fail_trans_kthread;
  2446. ret = btrfs_recover_relocation(tree_root);
  2447. if (ret < 0) {
  2448. printk(KERN_WARNING
  2449. "btrfs: failed to recover relocation\n");
  2450. err = -EINVAL;
  2451. goto fail_qgroup;
  2452. }
  2453. }
  2454. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2455. location.type = BTRFS_ROOT_ITEM_KEY;
  2456. location.offset = (u64)-1;
  2457. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2458. if (!fs_info->fs_root)
  2459. goto fail_qgroup;
  2460. if (IS_ERR(fs_info->fs_root)) {
  2461. err = PTR_ERR(fs_info->fs_root);
  2462. goto fail_qgroup;
  2463. }
  2464. if (sb->s_flags & MS_RDONLY)
  2465. return 0;
  2466. down_read(&fs_info->cleanup_work_sem);
  2467. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2468. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2469. up_read(&fs_info->cleanup_work_sem);
  2470. close_ctree(tree_root);
  2471. return ret;
  2472. }
  2473. up_read(&fs_info->cleanup_work_sem);
  2474. ret = btrfs_resume_balance_async(fs_info);
  2475. if (ret) {
  2476. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2477. close_ctree(tree_root);
  2478. return ret;
  2479. }
  2480. ret = btrfs_resume_dev_replace_async(fs_info);
  2481. if (ret) {
  2482. pr_warn("btrfs: failed to resume dev_replace\n");
  2483. close_ctree(tree_root);
  2484. return ret;
  2485. }
  2486. return 0;
  2487. fail_qgroup:
  2488. btrfs_free_qgroup_config(fs_info);
  2489. fail_trans_kthread:
  2490. kthread_stop(fs_info->transaction_kthread);
  2491. del_fs_roots(fs_info);
  2492. btrfs_cleanup_transaction(fs_info->tree_root);
  2493. fail_cleaner:
  2494. kthread_stop(fs_info->cleaner_kthread);
  2495. /*
  2496. * make sure we're done with the btree inode before we stop our
  2497. * kthreads
  2498. */
  2499. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2500. fail_block_groups:
  2501. btrfs_put_block_group_cache(fs_info);
  2502. btrfs_free_block_groups(fs_info);
  2503. fail_tree_roots:
  2504. free_root_pointers(fs_info, 1);
  2505. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2506. fail_sb_buffer:
  2507. btrfs_stop_all_workers(fs_info);
  2508. fail_alloc:
  2509. fail_iput:
  2510. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2511. iput(fs_info->btree_inode);
  2512. fail_delalloc_bytes:
  2513. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2514. fail_dirty_metadata_bytes:
  2515. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2516. fail_bdi:
  2517. bdi_destroy(&fs_info->bdi);
  2518. fail_srcu:
  2519. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2520. fail:
  2521. btrfs_free_stripe_hash_table(fs_info);
  2522. btrfs_close_devices(fs_info->fs_devices);
  2523. return err;
  2524. recovery_tree_root:
  2525. if (!btrfs_test_opt(tree_root, RECOVERY))
  2526. goto fail_tree_roots;
  2527. free_root_pointers(fs_info, 0);
  2528. /* don't use the log in recovery mode, it won't be valid */
  2529. btrfs_set_super_log_root(disk_super, 0);
  2530. /* we can't trust the free space cache either */
  2531. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2532. ret = next_root_backup(fs_info, fs_info->super_copy,
  2533. &num_backups_tried, &backup_index);
  2534. if (ret == -1)
  2535. goto fail_block_groups;
  2536. goto retry_root_backup;
  2537. }
  2538. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2539. {
  2540. if (uptodate) {
  2541. set_buffer_uptodate(bh);
  2542. } else {
  2543. struct btrfs_device *device = (struct btrfs_device *)
  2544. bh->b_private;
  2545. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2546. "I/O error on %s\n",
  2547. rcu_str_deref(device->name));
  2548. /* note, we dont' set_buffer_write_io_error because we have
  2549. * our own ways of dealing with the IO errors
  2550. */
  2551. clear_buffer_uptodate(bh);
  2552. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2553. }
  2554. unlock_buffer(bh);
  2555. put_bh(bh);
  2556. }
  2557. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2558. {
  2559. struct buffer_head *bh;
  2560. struct buffer_head *latest = NULL;
  2561. struct btrfs_super_block *super;
  2562. int i;
  2563. u64 transid = 0;
  2564. u64 bytenr;
  2565. /* we would like to check all the supers, but that would make
  2566. * a btrfs mount succeed after a mkfs from a different FS.
  2567. * So, we need to add a special mount option to scan for
  2568. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2569. */
  2570. for (i = 0; i < 1; i++) {
  2571. bytenr = btrfs_sb_offset(i);
  2572. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2573. break;
  2574. bh = __bread(bdev, bytenr / 4096, 4096);
  2575. if (!bh)
  2576. continue;
  2577. super = (struct btrfs_super_block *)bh->b_data;
  2578. if (btrfs_super_bytenr(super) != bytenr ||
  2579. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2580. brelse(bh);
  2581. continue;
  2582. }
  2583. if (!latest || btrfs_super_generation(super) > transid) {
  2584. brelse(latest);
  2585. latest = bh;
  2586. transid = btrfs_super_generation(super);
  2587. } else {
  2588. brelse(bh);
  2589. }
  2590. }
  2591. return latest;
  2592. }
  2593. /*
  2594. * this should be called twice, once with wait == 0 and
  2595. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2596. * we write are pinned.
  2597. *
  2598. * They are released when wait == 1 is done.
  2599. * max_mirrors must be the same for both runs, and it indicates how
  2600. * many supers on this one device should be written.
  2601. *
  2602. * max_mirrors == 0 means to write them all.
  2603. */
  2604. static int write_dev_supers(struct btrfs_device *device,
  2605. struct btrfs_super_block *sb,
  2606. int do_barriers, int wait, int max_mirrors)
  2607. {
  2608. struct buffer_head *bh;
  2609. int i;
  2610. int ret;
  2611. int errors = 0;
  2612. u32 crc;
  2613. u64 bytenr;
  2614. if (max_mirrors == 0)
  2615. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2616. for (i = 0; i < max_mirrors; i++) {
  2617. bytenr = btrfs_sb_offset(i);
  2618. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2619. break;
  2620. if (wait) {
  2621. bh = __find_get_block(device->bdev, bytenr / 4096,
  2622. BTRFS_SUPER_INFO_SIZE);
  2623. if (!bh) {
  2624. errors++;
  2625. continue;
  2626. }
  2627. wait_on_buffer(bh);
  2628. if (!buffer_uptodate(bh))
  2629. errors++;
  2630. /* drop our reference */
  2631. brelse(bh);
  2632. /* drop the reference from the wait == 0 run */
  2633. brelse(bh);
  2634. continue;
  2635. } else {
  2636. btrfs_set_super_bytenr(sb, bytenr);
  2637. crc = ~(u32)0;
  2638. crc = btrfs_csum_data((char *)sb +
  2639. BTRFS_CSUM_SIZE, crc,
  2640. BTRFS_SUPER_INFO_SIZE -
  2641. BTRFS_CSUM_SIZE);
  2642. btrfs_csum_final(crc, sb->csum);
  2643. /*
  2644. * one reference for us, and we leave it for the
  2645. * caller
  2646. */
  2647. bh = __getblk(device->bdev, bytenr / 4096,
  2648. BTRFS_SUPER_INFO_SIZE);
  2649. if (!bh) {
  2650. printk(KERN_ERR "btrfs: couldn't get super "
  2651. "buffer head for bytenr %Lu\n", bytenr);
  2652. errors++;
  2653. continue;
  2654. }
  2655. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2656. /* one reference for submit_bh */
  2657. get_bh(bh);
  2658. set_buffer_uptodate(bh);
  2659. lock_buffer(bh);
  2660. bh->b_end_io = btrfs_end_buffer_write_sync;
  2661. bh->b_private = device;
  2662. }
  2663. /*
  2664. * we fua the first super. The others we allow
  2665. * to go down lazy.
  2666. */
  2667. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2668. if (ret)
  2669. errors++;
  2670. }
  2671. return errors < i ? 0 : -1;
  2672. }
  2673. /*
  2674. * endio for the write_dev_flush, this will wake anyone waiting
  2675. * for the barrier when it is done
  2676. */
  2677. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2678. {
  2679. if (err) {
  2680. if (err == -EOPNOTSUPP)
  2681. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2682. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2683. }
  2684. if (bio->bi_private)
  2685. complete(bio->bi_private);
  2686. bio_put(bio);
  2687. }
  2688. /*
  2689. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2690. * sent down. With wait == 1, it waits for the previous flush.
  2691. *
  2692. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2693. * capable
  2694. */
  2695. static int write_dev_flush(struct btrfs_device *device, int wait)
  2696. {
  2697. struct bio *bio;
  2698. int ret = 0;
  2699. if (device->nobarriers)
  2700. return 0;
  2701. if (wait) {
  2702. bio = device->flush_bio;
  2703. if (!bio)
  2704. return 0;
  2705. wait_for_completion(&device->flush_wait);
  2706. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2707. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2708. rcu_str_deref(device->name));
  2709. device->nobarriers = 1;
  2710. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2711. ret = -EIO;
  2712. btrfs_dev_stat_inc_and_print(device,
  2713. BTRFS_DEV_STAT_FLUSH_ERRS);
  2714. }
  2715. /* drop the reference from the wait == 0 run */
  2716. bio_put(bio);
  2717. device->flush_bio = NULL;
  2718. return ret;
  2719. }
  2720. /*
  2721. * one reference for us, and we leave it for the
  2722. * caller
  2723. */
  2724. device->flush_bio = NULL;
  2725. bio = bio_alloc(GFP_NOFS, 0);
  2726. if (!bio)
  2727. return -ENOMEM;
  2728. bio->bi_end_io = btrfs_end_empty_barrier;
  2729. bio->bi_bdev = device->bdev;
  2730. init_completion(&device->flush_wait);
  2731. bio->bi_private = &device->flush_wait;
  2732. device->flush_bio = bio;
  2733. bio_get(bio);
  2734. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2735. return 0;
  2736. }
  2737. /*
  2738. * send an empty flush down to each device in parallel,
  2739. * then wait for them
  2740. */
  2741. static int barrier_all_devices(struct btrfs_fs_info *info)
  2742. {
  2743. struct list_head *head;
  2744. struct btrfs_device *dev;
  2745. int errors_send = 0;
  2746. int errors_wait = 0;
  2747. int ret;
  2748. /* send down all the barriers */
  2749. head = &info->fs_devices->devices;
  2750. list_for_each_entry_rcu(dev, head, dev_list) {
  2751. if (!dev->bdev) {
  2752. errors_send++;
  2753. continue;
  2754. }
  2755. if (!dev->in_fs_metadata || !dev->writeable)
  2756. continue;
  2757. ret = write_dev_flush(dev, 0);
  2758. if (ret)
  2759. errors_send++;
  2760. }
  2761. /* wait for all the barriers */
  2762. list_for_each_entry_rcu(dev, head, dev_list) {
  2763. if (!dev->bdev) {
  2764. errors_wait++;
  2765. continue;
  2766. }
  2767. if (!dev->in_fs_metadata || !dev->writeable)
  2768. continue;
  2769. ret = write_dev_flush(dev, 1);
  2770. if (ret)
  2771. errors_wait++;
  2772. }
  2773. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2774. errors_wait > info->num_tolerated_disk_barrier_failures)
  2775. return -EIO;
  2776. return 0;
  2777. }
  2778. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2779. struct btrfs_fs_info *fs_info)
  2780. {
  2781. struct btrfs_ioctl_space_info space;
  2782. struct btrfs_space_info *sinfo;
  2783. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2784. BTRFS_BLOCK_GROUP_SYSTEM,
  2785. BTRFS_BLOCK_GROUP_METADATA,
  2786. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2787. int num_types = 4;
  2788. int i;
  2789. int c;
  2790. int num_tolerated_disk_barrier_failures =
  2791. (int)fs_info->fs_devices->num_devices;
  2792. for (i = 0; i < num_types; i++) {
  2793. struct btrfs_space_info *tmp;
  2794. sinfo = NULL;
  2795. rcu_read_lock();
  2796. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2797. if (tmp->flags == types[i]) {
  2798. sinfo = tmp;
  2799. break;
  2800. }
  2801. }
  2802. rcu_read_unlock();
  2803. if (!sinfo)
  2804. continue;
  2805. down_read(&sinfo->groups_sem);
  2806. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2807. if (!list_empty(&sinfo->block_groups[c])) {
  2808. u64 flags;
  2809. btrfs_get_block_group_info(
  2810. &sinfo->block_groups[c], &space);
  2811. if (space.total_bytes == 0 ||
  2812. space.used_bytes == 0)
  2813. continue;
  2814. flags = space.flags;
  2815. /*
  2816. * return
  2817. * 0: if dup, single or RAID0 is configured for
  2818. * any of metadata, system or data, else
  2819. * 1: if RAID5 is configured, or if RAID1 or
  2820. * RAID10 is configured and only two mirrors
  2821. * are used, else
  2822. * 2: if RAID6 is configured, else
  2823. * num_mirrors - 1: if RAID1 or RAID10 is
  2824. * configured and more than
  2825. * 2 mirrors are used.
  2826. */
  2827. if (num_tolerated_disk_barrier_failures > 0 &&
  2828. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2829. BTRFS_BLOCK_GROUP_RAID0)) ||
  2830. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2831. == 0)))
  2832. num_tolerated_disk_barrier_failures = 0;
  2833. else if (num_tolerated_disk_barrier_failures > 1) {
  2834. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2835. BTRFS_BLOCK_GROUP_RAID5 |
  2836. BTRFS_BLOCK_GROUP_RAID10)) {
  2837. num_tolerated_disk_barrier_failures = 1;
  2838. } else if (flags &
  2839. BTRFS_BLOCK_GROUP_RAID5) {
  2840. num_tolerated_disk_barrier_failures = 2;
  2841. }
  2842. }
  2843. }
  2844. }
  2845. up_read(&sinfo->groups_sem);
  2846. }
  2847. return num_tolerated_disk_barrier_failures;
  2848. }
  2849. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2850. {
  2851. struct list_head *head;
  2852. struct btrfs_device *dev;
  2853. struct btrfs_super_block *sb;
  2854. struct btrfs_dev_item *dev_item;
  2855. int ret;
  2856. int do_barriers;
  2857. int max_errors;
  2858. int total_errors = 0;
  2859. u64 flags;
  2860. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2861. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2862. backup_super_roots(root->fs_info);
  2863. sb = root->fs_info->super_for_commit;
  2864. dev_item = &sb->dev_item;
  2865. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2866. head = &root->fs_info->fs_devices->devices;
  2867. if (do_barriers) {
  2868. ret = barrier_all_devices(root->fs_info);
  2869. if (ret) {
  2870. mutex_unlock(
  2871. &root->fs_info->fs_devices->device_list_mutex);
  2872. btrfs_error(root->fs_info, ret,
  2873. "errors while submitting device barriers.");
  2874. return ret;
  2875. }
  2876. }
  2877. list_for_each_entry_rcu(dev, head, dev_list) {
  2878. if (!dev->bdev) {
  2879. total_errors++;
  2880. continue;
  2881. }
  2882. if (!dev->in_fs_metadata || !dev->writeable)
  2883. continue;
  2884. btrfs_set_stack_device_generation(dev_item, 0);
  2885. btrfs_set_stack_device_type(dev_item, dev->type);
  2886. btrfs_set_stack_device_id(dev_item, dev->devid);
  2887. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2888. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2889. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2890. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2891. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2892. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2893. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2894. flags = btrfs_super_flags(sb);
  2895. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2896. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2897. if (ret)
  2898. total_errors++;
  2899. }
  2900. if (total_errors > max_errors) {
  2901. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2902. total_errors);
  2903. /* This shouldn't happen. FUA is masked off if unsupported */
  2904. BUG();
  2905. }
  2906. total_errors = 0;
  2907. list_for_each_entry_rcu(dev, head, dev_list) {
  2908. if (!dev->bdev)
  2909. continue;
  2910. if (!dev->in_fs_metadata || !dev->writeable)
  2911. continue;
  2912. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2913. if (ret)
  2914. total_errors++;
  2915. }
  2916. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2917. if (total_errors > max_errors) {
  2918. btrfs_error(root->fs_info, -EIO,
  2919. "%d errors while writing supers", total_errors);
  2920. return -EIO;
  2921. }
  2922. return 0;
  2923. }
  2924. int write_ctree_super(struct btrfs_trans_handle *trans,
  2925. struct btrfs_root *root, int max_mirrors)
  2926. {
  2927. int ret;
  2928. ret = write_all_supers(root, max_mirrors);
  2929. return ret;
  2930. }
  2931. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2932. {
  2933. spin_lock(&fs_info->fs_roots_radix_lock);
  2934. radix_tree_delete(&fs_info->fs_roots_radix,
  2935. (unsigned long)root->root_key.objectid);
  2936. spin_unlock(&fs_info->fs_roots_radix_lock);
  2937. if (btrfs_root_refs(&root->root_item) == 0)
  2938. synchronize_srcu(&fs_info->subvol_srcu);
  2939. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2940. btrfs_free_log(NULL, root);
  2941. btrfs_free_log_root_tree(NULL, fs_info);
  2942. }
  2943. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2944. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2945. free_fs_root(root);
  2946. }
  2947. static void free_fs_root(struct btrfs_root *root)
  2948. {
  2949. iput(root->cache_inode);
  2950. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2951. if (root->anon_dev)
  2952. free_anon_bdev(root->anon_dev);
  2953. free_extent_buffer(root->node);
  2954. free_extent_buffer(root->commit_root);
  2955. kfree(root->free_ino_ctl);
  2956. kfree(root->free_ino_pinned);
  2957. kfree(root->name);
  2958. kfree(root);
  2959. }
  2960. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2961. {
  2962. u64 root_objectid = 0;
  2963. struct btrfs_root *gang[8];
  2964. int i;
  2965. int ret;
  2966. while (1) {
  2967. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2968. (void **)gang, root_objectid,
  2969. ARRAY_SIZE(gang));
  2970. if (!ret)
  2971. break;
  2972. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2973. for (i = 0; i < ret; i++) {
  2974. int err;
  2975. root_objectid = gang[i]->root_key.objectid;
  2976. err = btrfs_orphan_cleanup(gang[i]);
  2977. if (err)
  2978. return err;
  2979. }
  2980. root_objectid++;
  2981. }
  2982. return 0;
  2983. }
  2984. int btrfs_commit_super(struct btrfs_root *root)
  2985. {
  2986. struct btrfs_trans_handle *trans;
  2987. int ret;
  2988. mutex_lock(&root->fs_info->cleaner_mutex);
  2989. btrfs_run_delayed_iputs(root);
  2990. mutex_unlock(&root->fs_info->cleaner_mutex);
  2991. wake_up_process(root->fs_info->cleaner_kthread);
  2992. /* wait until ongoing cleanup work done */
  2993. down_write(&root->fs_info->cleanup_work_sem);
  2994. up_write(&root->fs_info->cleanup_work_sem);
  2995. trans = btrfs_join_transaction(root);
  2996. if (IS_ERR(trans))
  2997. return PTR_ERR(trans);
  2998. ret = btrfs_commit_transaction(trans, root);
  2999. if (ret)
  3000. return ret;
  3001. /* run commit again to drop the original snapshot */
  3002. trans = btrfs_join_transaction(root);
  3003. if (IS_ERR(trans))
  3004. return PTR_ERR(trans);
  3005. ret = btrfs_commit_transaction(trans, root);
  3006. if (ret)
  3007. return ret;
  3008. ret = btrfs_write_and_wait_transaction(NULL, root);
  3009. if (ret) {
  3010. btrfs_error(root->fs_info, ret,
  3011. "Failed to sync btree inode to disk.");
  3012. return ret;
  3013. }
  3014. ret = write_ctree_super(NULL, root, 0);
  3015. return ret;
  3016. }
  3017. int close_ctree(struct btrfs_root *root)
  3018. {
  3019. struct btrfs_fs_info *fs_info = root->fs_info;
  3020. int ret;
  3021. fs_info->closing = 1;
  3022. smp_mb();
  3023. /* pause restriper - we want to resume on mount */
  3024. btrfs_pause_balance(fs_info);
  3025. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3026. btrfs_scrub_cancel(fs_info);
  3027. /* wait for any defraggers to finish */
  3028. wait_event(fs_info->transaction_wait,
  3029. (atomic_read(&fs_info->defrag_running) == 0));
  3030. /* clear out the rbtree of defraggable inodes */
  3031. btrfs_cleanup_defrag_inodes(fs_info);
  3032. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3033. ret = btrfs_commit_super(root);
  3034. if (ret)
  3035. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3036. }
  3037. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3038. btrfs_error_commit_super(root);
  3039. btrfs_put_block_group_cache(fs_info);
  3040. kthread_stop(fs_info->transaction_kthread);
  3041. kthread_stop(fs_info->cleaner_kthread);
  3042. fs_info->closing = 2;
  3043. smp_mb();
  3044. btrfs_free_qgroup_config(root->fs_info);
  3045. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3046. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3047. percpu_counter_sum(&fs_info->delalloc_bytes));
  3048. }
  3049. free_root_pointers(fs_info, 1);
  3050. btrfs_free_block_groups(fs_info);
  3051. del_fs_roots(fs_info);
  3052. iput(fs_info->btree_inode);
  3053. btrfs_stop_all_workers(fs_info);
  3054. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3055. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3056. btrfsic_unmount(root, fs_info->fs_devices);
  3057. #endif
  3058. btrfs_close_devices(fs_info->fs_devices);
  3059. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3060. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3061. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3062. bdi_destroy(&fs_info->bdi);
  3063. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3064. btrfs_free_stripe_hash_table(fs_info);
  3065. return 0;
  3066. }
  3067. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3068. int atomic)
  3069. {
  3070. int ret;
  3071. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3072. ret = extent_buffer_uptodate(buf);
  3073. if (!ret)
  3074. return ret;
  3075. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3076. parent_transid, atomic);
  3077. if (ret == -EAGAIN)
  3078. return ret;
  3079. return !ret;
  3080. }
  3081. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3082. {
  3083. return set_extent_buffer_uptodate(buf);
  3084. }
  3085. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3086. {
  3087. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3088. u64 transid = btrfs_header_generation(buf);
  3089. int was_dirty;
  3090. btrfs_assert_tree_locked(buf);
  3091. if (transid != root->fs_info->generation)
  3092. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3093. "found %llu running %llu\n",
  3094. (unsigned long long)buf->start,
  3095. (unsigned long long)transid,
  3096. (unsigned long long)root->fs_info->generation);
  3097. was_dirty = set_extent_buffer_dirty(buf);
  3098. if (!was_dirty)
  3099. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3100. buf->len,
  3101. root->fs_info->dirty_metadata_batch);
  3102. }
  3103. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3104. int flush_delayed)
  3105. {
  3106. /*
  3107. * looks as though older kernels can get into trouble with
  3108. * this code, they end up stuck in balance_dirty_pages forever
  3109. */
  3110. int ret;
  3111. if (current->flags & PF_MEMALLOC)
  3112. return;
  3113. if (flush_delayed)
  3114. btrfs_balance_delayed_items(root);
  3115. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3116. BTRFS_DIRTY_METADATA_THRESH);
  3117. if (ret > 0) {
  3118. balance_dirty_pages_ratelimited(
  3119. root->fs_info->btree_inode->i_mapping);
  3120. }
  3121. return;
  3122. }
  3123. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3124. {
  3125. __btrfs_btree_balance_dirty(root, 1);
  3126. }
  3127. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3128. {
  3129. __btrfs_btree_balance_dirty(root, 0);
  3130. }
  3131. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3132. {
  3133. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3134. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3135. }
  3136. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3137. int read_only)
  3138. {
  3139. /*
  3140. * Placeholder for checks
  3141. */
  3142. return 0;
  3143. }
  3144. static void btrfs_error_commit_super(struct btrfs_root *root)
  3145. {
  3146. mutex_lock(&root->fs_info->cleaner_mutex);
  3147. btrfs_run_delayed_iputs(root);
  3148. mutex_unlock(&root->fs_info->cleaner_mutex);
  3149. down_write(&root->fs_info->cleanup_work_sem);
  3150. up_write(&root->fs_info->cleanup_work_sem);
  3151. /* cleanup FS via transaction */
  3152. btrfs_cleanup_transaction(root);
  3153. }
  3154. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3155. struct btrfs_root *root)
  3156. {
  3157. struct btrfs_inode *btrfs_inode;
  3158. struct list_head splice;
  3159. INIT_LIST_HEAD(&splice);
  3160. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3161. spin_lock(&root->fs_info->ordered_extent_lock);
  3162. list_splice_init(&t->ordered_operations, &splice);
  3163. while (!list_empty(&splice)) {
  3164. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3165. ordered_operations);
  3166. list_del_init(&btrfs_inode->ordered_operations);
  3167. btrfs_invalidate_inodes(btrfs_inode->root);
  3168. }
  3169. spin_unlock(&root->fs_info->ordered_extent_lock);
  3170. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3171. }
  3172. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3173. {
  3174. struct btrfs_ordered_extent *ordered;
  3175. spin_lock(&root->fs_info->ordered_extent_lock);
  3176. /*
  3177. * This will just short circuit the ordered completion stuff which will
  3178. * make sure the ordered extent gets properly cleaned up.
  3179. */
  3180. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3181. root_extent_list)
  3182. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3183. spin_unlock(&root->fs_info->ordered_extent_lock);
  3184. }
  3185. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3186. struct btrfs_root *root)
  3187. {
  3188. struct rb_node *node;
  3189. struct btrfs_delayed_ref_root *delayed_refs;
  3190. struct btrfs_delayed_ref_node *ref;
  3191. int ret = 0;
  3192. delayed_refs = &trans->delayed_refs;
  3193. spin_lock(&delayed_refs->lock);
  3194. if (delayed_refs->num_entries == 0) {
  3195. spin_unlock(&delayed_refs->lock);
  3196. printk(KERN_INFO "delayed_refs has NO entry\n");
  3197. return ret;
  3198. }
  3199. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3200. struct btrfs_delayed_ref_head *head = NULL;
  3201. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3202. atomic_set(&ref->refs, 1);
  3203. if (btrfs_delayed_ref_is_head(ref)) {
  3204. head = btrfs_delayed_node_to_head(ref);
  3205. if (!mutex_trylock(&head->mutex)) {
  3206. atomic_inc(&ref->refs);
  3207. spin_unlock(&delayed_refs->lock);
  3208. /* Need to wait for the delayed ref to run */
  3209. mutex_lock(&head->mutex);
  3210. mutex_unlock(&head->mutex);
  3211. btrfs_put_delayed_ref(ref);
  3212. spin_lock(&delayed_refs->lock);
  3213. continue;
  3214. }
  3215. if (head->must_insert_reserved)
  3216. btrfs_pin_extent(root, ref->bytenr,
  3217. ref->num_bytes, 1);
  3218. btrfs_free_delayed_extent_op(head->extent_op);
  3219. delayed_refs->num_heads--;
  3220. if (list_empty(&head->cluster))
  3221. delayed_refs->num_heads_ready--;
  3222. list_del_init(&head->cluster);
  3223. }
  3224. ref->in_tree = 0;
  3225. rb_erase(&ref->rb_node, &delayed_refs->root);
  3226. delayed_refs->num_entries--;
  3227. if (head)
  3228. mutex_unlock(&head->mutex);
  3229. spin_unlock(&delayed_refs->lock);
  3230. btrfs_put_delayed_ref(ref);
  3231. cond_resched();
  3232. spin_lock(&delayed_refs->lock);
  3233. }
  3234. spin_unlock(&delayed_refs->lock);
  3235. return ret;
  3236. }
  3237. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3238. {
  3239. struct btrfs_pending_snapshot *snapshot;
  3240. struct list_head splice;
  3241. INIT_LIST_HEAD(&splice);
  3242. list_splice_init(&t->pending_snapshots, &splice);
  3243. while (!list_empty(&splice)) {
  3244. snapshot = list_entry(splice.next,
  3245. struct btrfs_pending_snapshot,
  3246. list);
  3247. snapshot->error = -ECANCELED;
  3248. list_del_init(&snapshot->list);
  3249. }
  3250. }
  3251. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3252. {
  3253. struct btrfs_inode *btrfs_inode;
  3254. struct list_head splice;
  3255. INIT_LIST_HEAD(&splice);
  3256. spin_lock(&root->fs_info->delalloc_lock);
  3257. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3258. while (!list_empty(&splice)) {
  3259. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3260. delalloc_inodes);
  3261. list_del_init(&btrfs_inode->delalloc_inodes);
  3262. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3263. &btrfs_inode->runtime_flags);
  3264. btrfs_invalidate_inodes(btrfs_inode->root);
  3265. }
  3266. spin_unlock(&root->fs_info->delalloc_lock);
  3267. }
  3268. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3269. struct extent_io_tree *dirty_pages,
  3270. int mark)
  3271. {
  3272. int ret;
  3273. struct extent_buffer *eb;
  3274. u64 start = 0;
  3275. u64 end;
  3276. while (1) {
  3277. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3278. mark, NULL);
  3279. if (ret)
  3280. break;
  3281. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3282. while (start <= end) {
  3283. eb = btrfs_find_tree_block(root, start,
  3284. root->leafsize);
  3285. start += eb->len;
  3286. if (!eb)
  3287. continue;
  3288. wait_on_extent_buffer_writeback(eb);
  3289. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3290. &eb->bflags))
  3291. clear_extent_buffer_dirty(eb);
  3292. free_extent_buffer_stale(eb);
  3293. }
  3294. }
  3295. return ret;
  3296. }
  3297. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3298. struct extent_io_tree *pinned_extents)
  3299. {
  3300. struct extent_io_tree *unpin;
  3301. u64 start;
  3302. u64 end;
  3303. int ret;
  3304. bool loop = true;
  3305. unpin = pinned_extents;
  3306. again:
  3307. while (1) {
  3308. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3309. EXTENT_DIRTY, NULL);
  3310. if (ret)
  3311. break;
  3312. /* opt_discard */
  3313. if (btrfs_test_opt(root, DISCARD))
  3314. ret = btrfs_error_discard_extent(root, start,
  3315. end + 1 - start,
  3316. NULL);
  3317. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3318. btrfs_error_unpin_extent_range(root, start, end);
  3319. cond_resched();
  3320. }
  3321. if (loop) {
  3322. if (unpin == &root->fs_info->freed_extents[0])
  3323. unpin = &root->fs_info->freed_extents[1];
  3324. else
  3325. unpin = &root->fs_info->freed_extents[0];
  3326. loop = false;
  3327. goto again;
  3328. }
  3329. return 0;
  3330. }
  3331. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3332. struct btrfs_root *root)
  3333. {
  3334. btrfs_destroy_delayed_refs(cur_trans, root);
  3335. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3336. cur_trans->dirty_pages.dirty_bytes);
  3337. /* FIXME: cleanup wait for commit */
  3338. cur_trans->in_commit = 1;
  3339. cur_trans->blocked = 1;
  3340. wake_up(&root->fs_info->transaction_blocked_wait);
  3341. btrfs_evict_pending_snapshots(cur_trans);
  3342. cur_trans->blocked = 0;
  3343. wake_up(&root->fs_info->transaction_wait);
  3344. cur_trans->commit_done = 1;
  3345. wake_up(&cur_trans->commit_wait);
  3346. btrfs_destroy_delayed_inodes(root);
  3347. btrfs_assert_delayed_root_empty(root);
  3348. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3349. EXTENT_DIRTY);
  3350. btrfs_destroy_pinned_extent(root,
  3351. root->fs_info->pinned_extents);
  3352. /*
  3353. memset(cur_trans, 0, sizeof(*cur_trans));
  3354. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3355. */
  3356. }
  3357. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3358. {
  3359. struct btrfs_transaction *t;
  3360. LIST_HEAD(list);
  3361. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3362. spin_lock(&root->fs_info->trans_lock);
  3363. list_splice_init(&root->fs_info->trans_list, &list);
  3364. root->fs_info->trans_no_join = 1;
  3365. spin_unlock(&root->fs_info->trans_lock);
  3366. while (!list_empty(&list)) {
  3367. t = list_entry(list.next, struct btrfs_transaction, list);
  3368. btrfs_destroy_ordered_operations(t, root);
  3369. btrfs_destroy_ordered_extents(root);
  3370. btrfs_destroy_delayed_refs(t, root);
  3371. /* FIXME: cleanup wait for commit */
  3372. t->in_commit = 1;
  3373. t->blocked = 1;
  3374. smp_mb();
  3375. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3376. wake_up(&root->fs_info->transaction_blocked_wait);
  3377. btrfs_evict_pending_snapshots(t);
  3378. t->blocked = 0;
  3379. smp_mb();
  3380. if (waitqueue_active(&root->fs_info->transaction_wait))
  3381. wake_up(&root->fs_info->transaction_wait);
  3382. t->commit_done = 1;
  3383. smp_mb();
  3384. if (waitqueue_active(&t->commit_wait))
  3385. wake_up(&t->commit_wait);
  3386. btrfs_destroy_delayed_inodes(root);
  3387. btrfs_assert_delayed_root_empty(root);
  3388. btrfs_destroy_delalloc_inodes(root);
  3389. spin_lock(&root->fs_info->trans_lock);
  3390. root->fs_info->running_transaction = NULL;
  3391. spin_unlock(&root->fs_info->trans_lock);
  3392. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3393. EXTENT_DIRTY);
  3394. btrfs_destroy_pinned_extent(root,
  3395. root->fs_info->pinned_extents);
  3396. atomic_set(&t->use_count, 0);
  3397. list_del_init(&t->list);
  3398. memset(t, 0, sizeof(*t));
  3399. kmem_cache_free(btrfs_transaction_cachep, t);
  3400. }
  3401. spin_lock(&root->fs_info->trans_lock);
  3402. root->fs_info->trans_no_join = 0;
  3403. spin_unlock(&root->fs_info->trans_lock);
  3404. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3405. return 0;
  3406. }
  3407. static struct extent_io_ops btree_extent_io_ops = {
  3408. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3409. .readpage_io_failed_hook = btree_io_failed_hook,
  3410. .submit_bio_hook = btree_submit_bio_hook,
  3411. /* note we're sharing with inode.c for the merge bio hook */
  3412. .merge_bio_hook = btrfs_merge_bio_hook,
  3413. };