delayed-inode.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 512
  24. #define BTRFS_DELAYED_BACKGROUND 128
  25. #define BTRFS_DELAYED_BATCH 16
  26. static struct kmem_cache *delayed_node_cache;
  27. int __init btrfs_delayed_inode_init(void)
  28. {
  29. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  30. sizeof(struct btrfs_delayed_node),
  31. 0,
  32. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  33. NULL);
  34. if (!delayed_node_cache)
  35. return -ENOMEM;
  36. return 0;
  37. }
  38. void btrfs_delayed_inode_exit(void)
  39. {
  40. if (delayed_node_cache)
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->count = 0;
  51. delayed_node->in_list = 0;
  52. delayed_node->inode_dirty = 0;
  53. delayed_node->ins_root = RB_ROOT;
  54. delayed_node->del_root = RB_ROOT;
  55. mutex_init(&delayed_node->mutex);
  56. delayed_node->index_cnt = 0;
  57. INIT_LIST_HEAD(&delayed_node->n_list);
  58. INIT_LIST_HEAD(&delayed_node->p_list);
  59. delayed_node->bytes_reserved = 0;
  60. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  61. }
  62. static inline int btrfs_is_continuous_delayed_item(
  63. struct btrfs_delayed_item *item1,
  64. struct btrfs_delayed_item *item2)
  65. {
  66. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  67. item1->key.objectid == item2->key.objectid &&
  68. item1->key.type == item2->key.type &&
  69. item1->key.offset + 1 == item2->key.offset)
  70. return 1;
  71. return 0;
  72. }
  73. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  74. struct btrfs_root *root)
  75. {
  76. return root->fs_info->delayed_root;
  77. }
  78. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  79. {
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. struct btrfs_delayed_node *node;
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs);
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. atomic_inc(&node->refs); /* can be accessed */
  94. BUG_ON(btrfs_inode->delayed_node != node);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. btrfs_inode->delayed_node = node;
  99. atomic_inc(&node->refs); /* can be accessed */
  100. atomic_inc(&node->refs); /* cached in the inode */
  101. spin_unlock(&root->inode_lock);
  102. return node;
  103. }
  104. spin_unlock(&root->inode_lock);
  105. return NULL;
  106. }
  107. /* Will return either the node or PTR_ERR(-ENOMEM) */
  108. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  109. struct inode *inode)
  110. {
  111. struct btrfs_delayed_node *node;
  112. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  113. struct btrfs_root *root = btrfs_inode->root;
  114. u64 ino = btrfs_ino(inode);
  115. int ret;
  116. again:
  117. node = btrfs_get_delayed_node(inode);
  118. if (node)
  119. return node;
  120. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  121. if (!node)
  122. return ERR_PTR(-ENOMEM);
  123. btrfs_init_delayed_node(node, root, ino);
  124. atomic_inc(&node->refs); /* cached in the btrfs inode */
  125. atomic_inc(&node->refs); /* can be accessed */
  126. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  127. if (ret) {
  128. kmem_cache_free(delayed_node_cache, node);
  129. return ERR_PTR(ret);
  130. }
  131. spin_lock(&root->inode_lock);
  132. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  133. if (ret == -EEXIST) {
  134. kmem_cache_free(delayed_node_cache, node);
  135. spin_unlock(&root->inode_lock);
  136. radix_tree_preload_end();
  137. goto again;
  138. }
  139. btrfs_inode->delayed_node = node;
  140. spin_unlock(&root->inode_lock);
  141. radix_tree_preload_end();
  142. return node;
  143. }
  144. /*
  145. * Call it when holding delayed_node->mutex
  146. *
  147. * If mod = 1, add this node into the prepared list.
  148. */
  149. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  150. struct btrfs_delayed_node *node,
  151. int mod)
  152. {
  153. spin_lock(&root->lock);
  154. if (node->in_list) {
  155. if (!list_empty(&node->p_list))
  156. list_move_tail(&node->p_list, &root->prepare_list);
  157. else if (mod)
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. } else {
  160. list_add_tail(&node->n_list, &root->node_list);
  161. list_add_tail(&node->p_list, &root->prepare_list);
  162. atomic_inc(&node->refs); /* inserted into list */
  163. root->nodes++;
  164. node->in_list = 1;
  165. }
  166. spin_unlock(&root->lock);
  167. }
  168. /* Call it when holding delayed_node->mutex */
  169. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  170. struct btrfs_delayed_node *node)
  171. {
  172. spin_lock(&root->lock);
  173. if (node->in_list) {
  174. root->nodes--;
  175. atomic_dec(&node->refs); /* not in the list */
  176. list_del_init(&node->n_list);
  177. if (!list_empty(&node->p_list))
  178. list_del_init(&node->p_list);
  179. node->in_list = 0;
  180. }
  181. spin_unlock(&root->lock);
  182. }
  183. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  184. struct btrfs_delayed_root *delayed_root)
  185. {
  186. struct list_head *p;
  187. struct btrfs_delayed_node *node = NULL;
  188. spin_lock(&delayed_root->lock);
  189. if (list_empty(&delayed_root->node_list))
  190. goto out;
  191. p = delayed_root->node_list.next;
  192. node = list_entry(p, struct btrfs_delayed_node, n_list);
  193. atomic_inc(&node->refs);
  194. out:
  195. spin_unlock(&delayed_root->lock);
  196. return node;
  197. }
  198. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  199. struct btrfs_delayed_node *node)
  200. {
  201. struct btrfs_delayed_root *delayed_root;
  202. struct list_head *p;
  203. struct btrfs_delayed_node *next = NULL;
  204. delayed_root = node->root->fs_info->delayed_root;
  205. spin_lock(&delayed_root->lock);
  206. if (!node->in_list) { /* not in the list */
  207. if (list_empty(&delayed_root->node_list))
  208. goto out;
  209. p = delayed_root->node_list.next;
  210. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  211. goto out;
  212. else
  213. p = node->n_list.next;
  214. next = list_entry(p, struct btrfs_delayed_node, n_list);
  215. atomic_inc(&next->refs);
  216. out:
  217. spin_unlock(&delayed_root->lock);
  218. return next;
  219. }
  220. static void __btrfs_release_delayed_node(
  221. struct btrfs_delayed_node *delayed_node,
  222. int mod)
  223. {
  224. struct btrfs_delayed_root *delayed_root;
  225. if (!delayed_node)
  226. return;
  227. delayed_root = delayed_node->root->fs_info->delayed_root;
  228. mutex_lock(&delayed_node->mutex);
  229. if (delayed_node->count)
  230. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  231. else
  232. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  233. mutex_unlock(&delayed_node->mutex);
  234. if (atomic_dec_and_test(&delayed_node->refs)) {
  235. struct btrfs_root *root = delayed_node->root;
  236. spin_lock(&root->inode_lock);
  237. if (atomic_read(&delayed_node->refs) == 0) {
  238. radix_tree_delete(&root->delayed_nodes_tree,
  239. delayed_node->inode_id);
  240. kmem_cache_free(delayed_node_cache, delayed_node);
  241. }
  242. spin_unlock(&root->inode_lock);
  243. }
  244. }
  245. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  246. {
  247. __btrfs_release_delayed_node(node, 0);
  248. }
  249. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  250. struct btrfs_delayed_root *delayed_root)
  251. {
  252. struct list_head *p;
  253. struct btrfs_delayed_node *node = NULL;
  254. spin_lock(&delayed_root->lock);
  255. if (list_empty(&delayed_root->prepare_list))
  256. goto out;
  257. p = delayed_root->prepare_list.next;
  258. list_del_init(p);
  259. node = list_entry(p, struct btrfs_delayed_node, p_list);
  260. atomic_inc(&node->refs);
  261. out:
  262. spin_unlock(&delayed_root->lock);
  263. return node;
  264. }
  265. static inline void btrfs_release_prepared_delayed_node(
  266. struct btrfs_delayed_node *node)
  267. {
  268. __btrfs_release_delayed_node(node, 1);
  269. }
  270. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  271. {
  272. struct btrfs_delayed_item *item;
  273. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  274. if (item) {
  275. item->data_len = data_len;
  276. item->ins_or_del = 0;
  277. item->bytes_reserved = 0;
  278. item->delayed_node = NULL;
  279. atomic_set(&item->refs, 1);
  280. }
  281. return item;
  282. }
  283. /*
  284. * __btrfs_lookup_delayed_item - look up the delayed item by key
  285. * @delayed_node: pointer to the delayed node
  286. * @key: the key to look up
  287. * @prev: used to store the prev item if the right item isn't found
  288. * @next: used to store the next item if the right item isn't found
  289. *
  290. * Note: if we don't find the right item, we will return the prev item and
  291. * the next item.
  292. */
  293. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  294. struct rb_root *root,
  295. struct btrfs_key *key,
  296. struct btrfs_delayed_item **prev,
  297. struct btrfs_delayed_item **next)
  298. {
  299. struct rb_node *node, *prev_node = NULL;
  300. struct btrfs_delayed_item *delayed_item = NULL;
  301. int ret = 0;
  302. node = root->rb_node;
  303. while (node) {
  304. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  305. rb_node);
  306. prev_node = node;
  307. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  308. if (ret < 0)
  309. node = node->rb_right;
  310. else if (ret > 0)
  311. node = node->rb_left;
  312. else
  313. return delayed_item;
  314. }
  315. if (prev) {
  316. if (!prev_node)
  317. *prev = NULL;
  318. else if (ret < 0)
  319. *prev = delayed_item;
  320. else if ((node = rb_prev(prev_node)) != NULL) {
  321. *prev = rb_entry(node, struct btrfs_delayed_item,
  322. rb_node);
  323. } else
  324. *prev = NULL;
  325. }
  326. if (next) {
  327. if (!prev_node)
  328. *next = NULL;
  329. else if (ret > 0)
  330. *next = delayed_item;
  331. else if ((node = rb_next(prev_node)) != NULL) {
  332. *next = rb_entry(node, struct btrfs_delayed_item,
  333. rb_node);
  334. } else
  335. *next = NULL;
  336. }
  337. return NULL;
  338. }
  339. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  340. struct btrfs_delayed_node *delayed_node,
  341. struct btrfs_key *key)
  342. {
  343. struct btrfs_delayed_item *item;
  344. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  345. NULL, NULL);
  346. return item;
  347. }
  348. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  349. struct btrfs_delayed_item *ins,
  350. int action)
  351. {
  352. struct rb_node **p, *node;
  353. struct rb_node *parent_node = NULL;
  354. struct rb_root *root;
  355. struct btrfs_delayed_item *item;
  356. int cmp;
  357. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  358. root = &delayed_node->ins_root;
  359. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  360. root = &delayed_node->del_root;
  361. else
  362. BUG();
  363. p = &root->rb_node;
  364. node = &ins->rb_node;
  365. while (*p) {
  366. parent_node = *p;
  367. item = rb_entry(parent_node, struct btrfs_delayed_item,
  368. rb_node);
  369. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  370. if (cmp < 0)
  371. p = &(*p)->rb_right;
  372. else if (cmp > 0)
  373. p = &(*p)->rb_left;
  374. else
  375. return -EEXIST;
  376. }
  377. rb_link_node(node, parent_node, p);
  378. rb_insert_color(node, root);
  379. ins->delayed_node = delayed_node;
  380. ins->ins_or_del = action;
  381. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  382. action == BTRFS_DELAYED_INSERTION_ITEM &&
  383. ins->key.offset >= delayed_node->index_cnt)
  384. delayed_node->index_cnt = ins->key.offset + 1;
  385. delayed_node->count++;
  386. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  387. return 0;
  388. }
  389. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  390. struct btrfs_delayed_item *item)
  391. {
  392. return __btrfs_add_delayed_item(node, item,
  393. BTRFS_DELAYED_INSERTION_ITEM);
  394. }
  395. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  396. struct btrfs_delayed_item *item)
  397. {
  398. return __btrfs_add_delayed_item(node, item,
  399. BTRFS_DELAYED_DELETION_ITEM);
  400. }
  401. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  402. {
  403. int seq = atomic_inc_return(&delayed_root->items_seq);
  404. if ((atomic_dec_return(&delayed_root->items) <
  405. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  406. waitqueue_active(&delayed_root->wait))
  407. wake_up(&delayed_root->wait);
  408. }
  409. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  410. {
  411. struct rb_root *root;
  412. struct btrfs_delayed_root *delayed_root;
  413. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  414. BUG_ON(!delayed_root);
  415. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  416. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  417. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  418. root = &delayed_item->delayed_node->ins_root;
  419. else
  420. root = &delayed_item->delayed_node->del_root;
  421. rb_erase(&delayed_item->rb_node, root);
  422. delayed_item->delayed_node->count--;
  423. finish_one_item(delayed_root);
  424. }
  425. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  426. {
  427. if (item) {
  428. __btrfs_remove_delayed_item(item);
  429. if (atomic_dec_and_test(&item->refs))
  430. kfree(item);
  431. }
  432. }
  433. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  434. struct btrfs_delayed_node *delayed_node)
  435. {
  436. struct rb_node *p;
  437. struct btrfs_delayed_item *item = NULL;
  438. p = rb_first(&delayed_node->ins_root);
  439. if (p)
  440. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  441. return item;
  442. }
  443. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  444. struct btrfs_delayed_node *delayed_node)
  445. {
  446. struct rb_node *p;
  447. struct btrfs_delayed_item *item = NULL;
  448. p = rb_first(&delayed_node->del_root);
  449. if (p)
  450. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  451. return item;
  452. }
  453. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  454. struct btrfs_delayed_item *item)
  455. {
  456. struct rb_node *p;
  457. struct btrfs_delayed_item *next = NULL;
  458. p = rb_next(&item->rb_node);
  459. if (p)
  460. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  461. return next;
  462. }
  463. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  464. u64 root_id)
  465. {
  466. struct btrfs_key root_key;
  467. if (root->objectid == root_id)
  468. return root;
  469. root_key.objectid = root_id;
  470. root_key.type = BTRFS_ROOT_ITEM_KEY;
  471. root_key.offset = (u64)-1;
  472. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  473. }
  474. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  475. struct btrfs_root *root,
  476. struct btrfs_delayed_item *item)
  477. {
  478. struct btrfs_block_rsv *src_rsv;
  479. struct btrfs_block_rsv *dst_rsv;
  480. u64 num_bytes;
  481. int ret;
  482. if (!trans->bytes_reserved)
  483. return 0;
  484. src_rsv = trans->block_rsv;
  485. dst_rsv = &root->fs_info->delayed_block_rsv;
  486. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  487. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  488. if (!ret) {
  489. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  490. item->key.objectid,
  491. num_bytes, 1);
  492. item->bytes_reserved = num_bytes;
  493. }
  494. return ret;
  495. }
  496. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  497. struct btrfs_delayed_item *item)
  498. {
  499. struct btrfs_block_rsv *rsv;
  500. if (!item->bytes_reserved)
  501. return;
  502. rsv = &root->fs_info->delayed_block_rsv;
  503. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  504. item->key.objectid, item->bytes_reserved,
  505. 0);
  506. btrfs_block_rsv_release(root, rsv,
  507. item->bytes_reserved);
  508. }
  509. static int btrfs_delayed_inode_reserve_metadata(
  510. struct btrfs_trans_handle *trans,
  511. struct btrfs_root *root,
  512. struct inode *inode,
  513. struct btrfs_delayed_node *node)
  514. {
  515. struct btrfs_block_rsv *src_rsv;
  516. struct btrfs_block_rsv *dst_rsv;
  517. u64 num_bytes;
  518. int ret;
  519. bool release = false;
  520. src_rsv = trans->block_rsv;
  521. dst_rsv = &root->fs_info->delayed_block_rsv;
  522. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  523. /*
  524. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  525. * which doesn't reserve space for speed. This is a problem since we
  526. * still need to reserve space for this update, so try to reserve the
  527. * space.
  528. *
  529. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  530. * we're accounted for.
  531. */
  532. if (!src_rsv || (!trans->bytes_reserved &&
  533. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  534. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  535. BTRFS_RESERVE_NO_FLUSH);
  536. /*
  537. * Since we're under a transaction reserve_metadata_bytes could
  538. * try to commit the transaction which will make it return
  539. * EAGAIN to make us stop the transaction we have, so return
  540. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  541. */
  542. if (ret == -EAGAIN)
  543. ret = -ENOSPC;
  544. if (!ret) {
  545. node->bytes_reserved = num_bytes;
  546. trace_btrfs_space_reservation(root->fs_info,
  547. "delayed_inode",
  548. btrfs_ino(inode),
  549. num_bytes, 1);
  550. }
  551. return ret;
  552. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  553. spin_lock(&BTRFS_I(inode)->lock);
  554. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  555. &BTRFS_I(inode)->runtime_flags)) {
  556. spin_unlock(&BTRFS_I(inode)->lock);
  557. release = true;
  558. goto migrate;
  559. }
  560. spin_unlock(&BTRFS_I(inode)->lock);
  561. /* Ok we didn't have space pre-reserved. This shouldn't happen
  562. * too often but it can happen if we do delalloc to an existing
  563. * inode which gets dirtied because of the time update, and then
  564. * isn't touched again until after the transaction commits and
  565. * then we try to write out the data. First try to be nice and
  566. * reserve something strictly for us. If not be a pain and try
  567. * to steal from the delalloc block rsv.
  568. */
  569. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  570. BTRFS_RESERVE_NO_FLUSH);
  571. if (!ret)
  572. goto out;
  573. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  574. if (!ret)
  575. goto out;
  576. /*
  577. * Ok this is a problem, let's just steal from the global rsv
  578. * since this really shouldn't happen that often.
  579. */
  580. WARN_ON(1);
  581. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  582. dst_rsv, num_bytes);
  583. goto out;
  584. }
  585. migrate:
  586. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  587. out:
  588. /*
  589. * Migrate only takes a reservation, it doesn't touch the size of the
  590. * block_rsv. This is to simplify people who don't normally have things
  591. * migrated from their block rsv. If they go to release their
  592. * reservation, that will decrease the size as well, so if migrate
  593. * reduced size we'd end up with a negative size. But for the
  594. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  595. * but we could in fact do this reserve/migrate dance several times
  596. * between the time we did the original reservation and we'd clean it
  597. * up. So to take care of this, release the space for the meta
  598. * reservation here. I think it may be time for a documentation page on
  599. * how block rsvs. work.
  600. */
  601. if (!ret) {
  602. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  603. btrfs_ino(inode), num_bytes, 1);
  604. node->bytes_reserved = num_bytes;
  605. }
  606. if (release) {
  607. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  608. btrfs_ino(inode), num_bytes, 0);
  609. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  610. }
  611. return ret;
  612. }
  613. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  614. struct btrfs_delayed_node *node)
  615. {
  616. struct btrfs_block_rsv *rsv;
  617. if (!node->bytes_reserved)
  618. return;
  619. rsv = &root->fs_info->delayed_block_rsv;
  620. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  621. node->inode_id, node->bytes_reserved, 0);
  622. btrfs_block_rsv_release(root, rsv,
  623. node->bytes_reserved);
  624. node->bytes_reserved = 0;
  625. }
  626. /*
  627. * This helper will insert some continuous items into the same leaf according
  628. * to the free space of the leaf.
  629. */
  630. static int btrfs_batch_insert_items(struct btrfs_root *root,
  631. struct btrfs_path *path,
  632. struct btrfs_delayed_item *item)
  633. {
  634. struct btrfs_delayed_item *curr, *next;
  635. int free_space;
  636. int total_data_size = 0, total_size = 0;
  637. struct extent_buffer *leaf;
  638. char *data_ptr;
  639. struct btrfs_key *keys;
  640. u32 *data_size;
  641. struct list_head head;
  642. int slot;
  643. int nitems;
  644. int i;
  645. int ret = 0;
  646. BUG_ON(!path->nodes[0]);
  647. leaf = path->nodes[0];
  648. free_space = btrfs_leaf_free_space(root, leaf);
  649. INIT_LIST_HEAD(&head);
  650. next = item;
  651. nitems = 0;
  652. /*
  653. * count the number of the continuous items that we can insert in batch
  654. */
  655. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  656. free_space) {
  657. total_data_size += next->data_len;
  658. total_size += next->data_len + sizeof(struct btrfs_item);
  659. list_add_tail(&next->tree_list, &head);
  660. nitems++;
  661. curr = next;
  662. next = __btrfs_next_delayed_item(curr);
  663. if (!next)
  664. break;
  665. if (!btrfs_is_continuous_delayed_item(curr, next))
  666. break;
  667. }
  668. if (!nitems) {
  669. ret = 0;
  670. goto out;
  671. }
  672. /*
  673. * we need allocate some memory space, but it might cause the task
  674. * to sleep, so we set all locked nodes in the path to blocking locks
  675. * first.
  676. */
  677. btrfs_set_path_blocking(path);
  678. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  679. if (!keys) {
  680. ret = -ENOMEM;
  681. goto out;
  682. }
  683. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  684. if (!data_size) {
  685. ret = -ENOMEM;
  686. goto error;
  687. }
  688. /* get keys of all the delayed items */
  689. i = 0;
  690. list_for_each_entry(next, &head, tree_list) {
  691. keys[i] = next->key;
  692. data_size[i] = next->data_len;
  693. i++;
  694. }
  695. /* reset all the locked nodes in the patch to spinning locks. */
  696. btrfs_clear_path_blocking(path, NULL, 0);
  697. /* insert the keys of the items */
  698. setup_items_for_insert(root, path, keys, data_size,
  699. total_data_size, total_size, nitems);
  700. /* insert the dir index items */
  701. slot = path->slots[0];
  702. list_for_each_entry_safe(curr, next, &head, tree_list) {
  703. data_ptr = btrfs_item_ptr(leaf, slot, char);
  704. write_extent_buffer(leaf, &curr->data,
  705. (unsigned long)data_ptr,
  706. curr->data_len);
  707. slot++;
  708. btrfs_delayed_item_release_metadata(root, curr);
  709. list_del(&curr->tree_list);
  710. btrfs_release_delayed_item(curr);
  711. }
  712. error:
  713. kfree(data_size);
  714. kfree(keys);
  715. out:
  716. return ret;
  717. }
  718. /*
  719. * This helper can just do simple insertion that needn't extend item for new
  720. * data, such as directory name index insertion, inode insertion.
  721. */
  722. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  723. struct btrfs_root *root,
  724. struct btrfs_path *path,
  725. struct btrfs_delayed_item *delayed_item)
  726. {
  727. struct extent_buffer *leaf;
  728. char *ptr;
  729. int ret;
  730. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  731. delayed_item->data_len);
  732. if (ret < 0 && ret != -EEXIST)
  733. return ret;
  734. leaf = path->nodes[0];
  735. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  736. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  737. delayed_item->data_len);
  738. btrfs_mark_buffer_dirty(leaf);
  739. btrfs_delayed_item_release_metadata(root, delayed_item);
  740. return 0;
  741. }
  742. /*
  743. * we insert an item first, then if there are some continuous items, we try
  744. * to insert those items into the same leaf.
  745. */
  746. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  747. struct btrfs_path *path,
  748. struct btrfs_root *root,
  749. struct btrfs_delayed_node *node)
  750. {
  751. struct btrfs_delayed_item *curr, *prev;
  752. int ret = 0;
  753. do_again:
  754. mutex_lock(&node->mutex);
  755. curr = __btrfs_first_delayed_insertion_item(node);
  756. if (!curr)
  757. goto insert_end;
  758. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  759. if (ret < 0) {
  760. btrfs_release_path(path);
  761. goto insert_end;
  762. }
  763. prev = curr;
  764. curr = __btrfs_next_delayed_item(prev);
  765. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  766. /* insert the continuous items into the same leaf */
  767. path->slots[0]++;
  768. btrfs_batch_insert_items(root, path, curr);
  769. }
  770. btrfs_release_delayed_item(prev);
  771. btrfs_mark_buffer_dirty(path->nodes[0]);
  772. btrfs_release_path(path);
  773. mutex_unlock(&node->mutex);
  774. goto do_again;
  775. insert_end:
  776. mutex_unlock(&node->mutex);
  777. return ret;
  778. }
  779. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  780. struct btrfs_root *root,
  781. struct btrfs_path *path,
  782. struct btrfs_delayed_item *item)
  783. {
  784. struct btrfs_delayed_item *curr, *next;
  785. struct extent_buffer *leaf;
  786. struct btrfs_key key;
  787. struct list_head head;
  788. int nitems, i, last_item;
  789. int ret = 0;
  790. BUG_ON(!path->nodes[0]);
  791. leaf = path->nodes[0];
  792. i = path->slots[0];
  793. last_item = btrfs_header_nritems(leaf) - 1;
  794. if (i > last_item)
  795. return -ENOENT; /* FIXME: Is errno suitable? */
  796. next = item;
  797. INIT_LIST_HEAD(&head);
  798. btrfs_item_key_to_cpu(leaf, &key, i);
  799. nitems = 0;
  800. /*
  801. * count the number of the dir index items that we can delete in batch
  802. */
  803. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  804. list_add_tail(&next->tree_list, &head);
  805. nitems++;
  806. curr = next;
  807. next = __btrfs_next_delayed_item(curr);
  808. if (!next)
  809. break;
  810. if (!btrfs_is_continuous_delayed_item(curr, next))
  811. break;
  812. i++;
  813. if (i > last_item)
  814. break;
  815. btrfs_item_key_to_cpu(leaf, &key, i);
  816. }
  817. if (!nitems)
  818. return 0;
  819. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  820. if (ret)
  821. goto out;
  822. list_for_each_entry_safe(curr, next, &head, tree_list) {
  823. btrfs_delayed_item_release_metadata(root, curr);
  824. list_del(&curr->tree_list);
  825. btrfs_release_delayed_item(curr);
  826. }
  827. out:
  828. return ret;
  829. }
  830. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  831. struct btrfs_path *path,
  832. struct btrfs_root *root,
  833. struct btrfs_delayed_node *node)
  834. {
  835. struct btrfs_delayed_item *curr, *prev;
  836. int ret = 0;
  837. do_again:
  838. mutex_lock(&node->mutex);
  839. curr = __btrfs_first_delayed_deletion_item(node);
  840. if (!curr)
  841. goto delete_fail;
  842. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  843. if (ret < 0)
  844. goto delete_fail;
  845. else if (ret > 0) {
  846. /*
  847. * can't find the item which the node points to, so this node
  848. * is invalid, just drop it.
  849. */
  850. prev = curr;
  851. curr = __btrfs_next_delayed_item(prev);
  852. btrfs_release_delayed_item(prev);
  853. ret = 0;
  854. btrfs_release_path(path);
  855. if (curr) {
  856. mutex_unlock(&node->mutex);
  857. goto do_again;
  858. } else
  859. goto delete_fail;
  860. }
  861. btrfs_batch_delete_items(trans, root, path, curr);
  862. btrfs_release_path(path);
  863. mutex_unlock(&node->mutex);
  864. goto do_again;
  865. delete_fail:
  866. btrfs_release_path(path);
  867. mutex_unlock(&node->mutex);
  868. return ret;
  869. }
  870. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  871. {
  872. struct btrfs_delayed_root *delayed_root;
  873. if (delayed_node && delayed_node->inode_dirty) {
  874. BUG_ON(!delayed_node->root);
  875. delayed_node->inode_dirty = 0;
  876. delayed_node->count--;
  877. delayed_root = delayed_node->root->fs_info->delayed_root;
  878. finish_one_item(delayed_root);
  879. }
  880. }
  881. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  882. struct btrfs_root *root,
  883. struct btrfs_path *path,
  884. struct btrfs_delayed_node *node)
  885. {
  886. struct btrfs_key key;
  887. struct btrfs_inode_item *inode_item;
  888. struct extent_buffer *leaf;
  889. int ret;
  890. key.objectid = node->inode_id;
  891. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  892. key.offset = 0;
  893. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  894. if (ret > 0) {
  895. btrfs_release_path(path);
  896. return -ENOENT;
  897. } else if (ret < 0) {
  898. return ret;
  899. }
  900. btrfs_unlock_up_safe(path, 1);
  901. leaf = path->nodes[0];
  902. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  903. struct btrfs_inode_item);
  904. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  905. sizeof(struct btrfs_inode_item));
  906. btrfs_mark_buffer_dirty(leaf);
  907. btrfs_release_path(path);
  908. btrfs_delayed_inode_release_metadata(root, node);
  909. btrfs_release_delayed_inode(node);
  910. return 0;
  911. }
  912. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  913. struct btrfs_root *root,
  914. struct btrfs_path *path,
  915. struct btrfs_delayed_node *node)
  916. {
  917. int ret;
  918. mutex_lock(&node->mutex);
  919. if (!node->inode_dirty) {
  920. mutex_unlock(&node->mutex);
  921. return 0;
  922. }
  923. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  924. mutex_unlock(&node->mutex);
  925. return ret;
  926. }
  927. static inline int
  928. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  929. struct btrfs_path *path,
  930. struct btrfs_delayed_node *node)
  931. {
  932. int ret;
  933. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  934. if (ret)
  935. return ret;
  936. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  937. if (ret)
  938. return ret;
  939. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  940. return ret;
  941. }
  942. /*
  943. * Called when committing the transaction.
  944. * Returns 0 on success.
  945. * Returns < 0 on error and returns with an aborted transaction with any
  946. * outstanding delayed items cleaned up.
  947. */
  948. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  949. struct btrfs_root *root, int nr)
  950. {
  951. struct btrfs_delayed_root *delayed_root;
  952. struct btrfs_delayed_node *curr_node, *prev_node;
  953. struct btrfs_path *path;
  954. struct btrfs_block_rsv *block_rsv;
  955. int ret = 0;
  956. bool count = (nr > 0);
  957. if (trans->aborted)
  958. return -EIO;
  959. path = btrfs_alloc_path();
  960. if (!path)
  961. return -ENOMEM;
  962. path->leave_spinning = 1;
  963. block_rsv = trans->block_rsv;
  964. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  965. delayed_root = btrfs_get_delayed_root(root);
  966. curr_node = btrfs_first_delayed_node(delayed_root);
  967. while (curr_node && (!count || (count && nr--))) {
  968. ret = __btrfs_commit_inode_delayed_items(trans, path,
  969. curr_node);
  970. if (ret) {
  971. btrfs_release_delayed_node(curr_node);
  972. curr_node = NULL;
  973. btrfs_abort_transaction(trans, root, ret);
  974. break;
  975. }
  976. prev_node = curr_node;
  977. curr_node = btrfs_next_delayed_node(curr_node);
  978. btrfs_release_delayed_node(prev_node);
  979. }
  980. if (curr_node)
  981. btrfs_release_delayed_node(curr_node);
  982. btrfs_free_path(path);
  983. trans->block_rsv = block_rsv;
  984. return ret;
  985. }
  986. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  987. struct btrfs_root *root)
  988. {
  989. return __btrfs_run_delayed_items(trans, root, -1);
  990. }
  991. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  992. struct btrfs_root *root, int nr)
  993. {
  994. return __btrfs_run_delayed_items(trans, root, nr);
  995. }
  996. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  997. struct inode *inode)
  998. {
  999. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1000. struct btrfs_path *path;
  1001. struct btrfs_block_rsv *block_rsv;
  1002. int ret;
  1003. if (!delayed_node)
  1004. return 0;
  1005. mutex_lock(&delayed_node->mutex);
  1006. if (!delayed_node->count) {
  1007. mutex_unlock(&delayed_node->mutex);
  1008. btrfs_release_delayed_node(delayed_node);
  1009. return 0;
  1010. }
  1011. mutex_unlock(&delayed_node->mutex);
  1012. path = btrfs_alloc_path();
  1013. if (!path)
  1014. return -ENOMEM;
  1015. path->leave_spinning = 1;
  1016. block_rsv = trans->block_rsv;
  1017. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1018. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1019. btrfs_release_delayed_node(delayed_node);
  1020. btrfs_free_path(path);
  1021. trans->block_rsv = block_rsv;
  1022. return ret;
  1023. }
  1024. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1025. {
  1026. struct btrfs_trans_handle *trans;
  1027. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1028. struct btrfs_path *path;
  1029. struct btrfs_block_rsv *block_rsv;
  1030. int ret;
  1031. if (!delayed_node)
  1032. return 0;
  1033. mutex_lock(&delayed_node->mutex);
  1034. if (!delayed_node->inode_dirty) {
  1035. mutex_unlock(&delayed_node->mutex);
  1036. btrfs_release_delayed_node(delayed_node);
  1037. return 0;
  1038. }
  1039. mutex_unlock(&delayed_node->mutex);
  1040. trans = btrfs_join_transaction(delayed_node->root);
  1041. if (IS_ERR(trans)) {
  1042. ret = PTR_ERR(trans);
  1043. goto out;
  1044. }
  1045. path = btrfs_alloc_path();
  1046. if (!path) {
  1047. ret = -ENOMEM;
  1048. goto trans_out;
  1049. }
  1050. path->leave_spinning = 1;
  1051. block_rsv = trans->block_rsv;
  1052. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1053. mutex_lock(&delayed_node->mutex);
  1054. if (delayed_node->inode_dirty)
  1055. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1056. path, delayed_node);
  1057. else
  1058. ret = 0;
  1059. mutex_unlock(&delayed_node->mutex);
  1060. btrfs_free_path(path);
  1061. trans->block_rsv = block_rsv;
  1062. trans_out:
  1063. btrfs_end_transaction(trans, delayed_node->root);
  1064. btrfs_btree_balance_dirty(delayed_node->root);
  1065. out:
  1066. btrfs_release_delayed_node(delayed_node);
  1067. return ret;
  1068. }
  1069. void btrfs_remove_delayed_node(struct inode *inode)
  1070. {
  1071. struct btrfs_delayed_node *delayed_node;
  1072. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1073. if (!delayed_node)
  1074. return;
  1075. BTRFS_I(inode)->delayed_node = NULL;
  1076. btrfs_release_delayed_node(delayed_node);
  1077. }
  1078. struct btrfs_async_delayed_work {
  1079. struct btrfs_delayed_root *delayed_root;
  1080. int nr;
  1081. struct btrfs_work work;
  1082. };
  1083. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1084. {
  1085. struct btrfs_async_delayed_work *async_work;
  1086. struct btrfs_delayed_root *delayed_root;
  1087. struct btrfs_trans_handle *trans;
  1088. struct btrfs_path *path;
  1089. struct btrfs_delayed_node *delayed_node = NULL;
  1090. struct btrfs_root *root;
  1091. struct btrfs_block_rsv *block_rsv;
  1092. int total_done = 0;
  1093. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1094. delayed_root = async_work->delayed_root;
  1095. path = btrfs_alloc_path();
  1096. if (!path)
  1097. goto out;
  1098. again:
  1099. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1100. goto free_path;
  1101. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1102. if (!delayed_node)
  1103. goto free_path;
  1104. path->leave_spinning = 1;
  1105. root = delayed_node->root;
  1106. trans = btrfs_join_transaction(root);
  1107. if (IS_ERR(trans))
  1108. goto release_path;
  1109. block_rsv = trans->block_rsv;
  1110. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1111. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1112. /*
  1113. * Maybe new delayed items have been inserted, so we need requeue
  1114. * the work. Besides that, we must dequeue the empty delayed nodes
  1115. * to avoid the race between delayed items balance and the worker.
  1116. * The race like this:
  1117. * Task1 Worker thread
  1118. * count == 0, needn't requeue
  1119. * also needn't insert the
  1120. * delayed node into prepare
  1121. * list again.
  1122. * add lots of delayed items
  1123. * queue the delayed node
  1124. * already in the list,
  1125. * and not in the prepare
  1126. * list, it means the delayed
  1127. * node is being dealt with
  1128. * by the worker.
  1129. * do delayed items balance
  1130. * the delayed node is being
  1131. * dealt with by the worker
  1132. * now, just wait.
  1133. * the worker goto idle.
  1134. * Task1 will sleep until the transaction is commited.
  1135. */
  1136. mutex_lock(&delayed_node->mutex);
  1137. btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
  1138. mutex_unlock(&delayed_node->mutex);
  1139. trans->block_rsv = block_rsv;
  1140. btrfs_end_transaction_dmeta(trans, root);
  1141. btrfs_btree_balance_dirty_nodelay(root);
  1142. release_path:
  1143. btrfs_release_path(path);
  1144. total_done++;
  1145. btrfs_release_prepared_delayed_node(delayed_node);
  1146. if (async_work->nr == 0 || total_done < async_work->nr)
  1147. goto again;
  1148. free_path:
  1149. btrfs_free_path(path);
  1150. out:
  1151. wake_up(&delayed_root->wait);
  1152. kfree(async_work);
  1153. }
  1154. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1155. struct btrfs_root *root, int nr)
  1156. {
  1157. struct btrfs_async_delayed_work *async_work;
  1158. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1159. return 0;
  1160. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1161. if (!async_work)
  1162. return -ENOMEM;
  1163. async_work->delayed_root = delayed_root;
  1164. async_work->work.func = btrfs_async_run_delayed_root;
  1165. async_work->work.flags = 0;
  1166. async_work->nr = nr;
  1167. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
  1168. return 0;
  1169. }
  1170. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1171. {
  1172. struct btrfs_delayed_root *delayed_root;
  1173. delayed_root = btrfs_get_delayed_root(root);
  1174. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1175. }
  1176. static int refs_newer(struct btrfs_delayed_root *delayed_root,
  1177. int seq, int count)
  1178. {
  1179. int val = atomic_read(&delayed_root->items_seq);
  1180. if (val < seq || val >= seq + count)
  1181. return 1;
  1182. return 0;
  1183. }
  1184. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1185. {
  1186. struct btrfs_delayed_root *delayed_root;
  1187. int seq;
  1188. delayed_root = btrfs_get_delayed_root(root);
  1189. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1190. return;
  1191. seq = atomic_read(&delayed_root->items_seq);
  1192. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1193. int ret;
  1194. DEFINE_WAIT(__wait);
  1195. ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1196. if (ret)
  1197. return;
  1198. while (1) {
  1199. prepare_to_wait(&delayed_root->wait, &__wait,
  1200. TASK_INTERRUPTIBLE);
  1201. if (refs_newer(delayed_root, seq,
  1202. BTRFS_DELAYED_BATCH) ||
  1203. atomic_read(&delayed_root->items) <
  1204. BTRFS_DELAYED_BACKGROUND) {
  1205. break;
  1206. }
  1207. if (!signal_pending(current))
  1208. schedule();
  1209. else
  1210. break;
  1211. }
  1212. finish_wait(&delayed_root->wait, &__wait);
  1213. }
  1214. btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
  1215. }
  1216. /* Will return 0 or -ENOMEM */
  1217. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1218. struct btrfs_root *root, const char *name,
  1219. int name_len, struct inode *dir,
  1220. struct btrfs_disk_key *disk_key, u8 type,
  1221. u64 index)
  1222. {
  1223. struct btrfs_delayed_node *delayed_node;
  1224. struct btrfs_delayed_item *delayed_item;
  1225. struct btrfs_dir_item *dir_item;
  1226. int ret;
  1227. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1228. if (IS_ERR(delayed_node))
  1229. return PTR_ERR(delayed_node);
  1230. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1231. if (!delayed_item) {
  1232. ret = -ENOMEM;
  1233. goto release_node;
  1234. }
  1235. delayed_item->key.objectid = btrfs_ino(dir);
  1236. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1237. delayed_item->key.offset = index;
  1238. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1239. dir_item->location = *disk_key;
  1240. dir_item->transid = cpu_to_le64(trans->transid);
  1241. dir_item->data_len = 0;
  1242. dir_item->name_len = cpu_to_le16(name_len);
  1243. dir_item->type = type;
  1244. memcpy((char *)(dir_item + 1), name, name_len);
  1245. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1246. /*
  1247. * we have reserved enough space when we start a new transaction,
  1248. * so reserving metadata failure is impossible
  1249. */
  1250. BUG_ON(ret);
  1251. mutex_lock(&delayed_node->mutex);
  1252. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1253. if (unlikely(ret)) {
  1254. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1255. "the insertion tree of the delayed node"
  1256. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1257. name,
  1258. (unsigned long long)delayed_node->root->objectid,
  1259. (unsigned long long)delayed_node->inode_id,
  1260. ret);
  1261. BUG();
  1262. }
  1263. mutex_unlock(&delayed_node->mutex);
  1264. release_node:
  1265. btrfs_release_delayed_node(delayed_node);
  1266. return ret;
  1267. }
  1268. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1269. struct btrfs_delayed_node *node,
  1270. struct btrfs_key *key)
  1271. {
  1272. struct btrfs_delayed_item *item;
  1273. mutex_lock(&node->mutex);
  1274. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1275. if (!item) {
  1276. mutex_unlock(&node->mutex);
  1277. return 1;
  1278. }
  1279. btrfs_delayed_item_release_metadata(root, item);
  1280. btrfs_release_delayed_item(item);
  1281. mutex_unlock(&node->mutex);
  1282. return 0;
  1283. }
  1284. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1285. struct btrfs_root *root, struct inode *dir,
  1286. u64 index)
  1287. {
  1288. struct btrfs_delayed_node *node;
  1289. struct btrfs_delayed_item *item;
  1290. struct btrfs_key item_key;
  1291. int ret;
  1292. node = btrfs_get_or_create_delayed_node(dir);
  1293. if (IS_ERR(node))
  1294. return PTR_ERR(node);
  1295. item_key.objectid = btrfs_ino(dir);
  1296. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1297. item_key.offset = index;
  1298. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1299. if (!ret)
  1300. goto end;
  1301. item = btrfs_alloc_delayed_item(0);
  1302. if (!item) {
  1303. ret = -ENOMEM;
  1304. goto end;
  1305. }
  1306. item->key = item_key;
  1307. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1308. /*
  1309. * we have reserved enough space when we start a new transaction,
  1310. * so reserving metadata failure is impossible.
  1311. */
  1312. BUG_ON(ret);
  1313. mutex_lock(&node->mutex);
  1314. ret = __btrfs_add_delayed_deletion_item(node, item);
  1315. if (unlikely(ret)) {
  1316. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1317. "into the deletion tree of the delayed node"
  1318. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1319. (unsigned long long)index,
  1320. (unsigned long long)node->root->objectid,
  1321. (unsigned long long)node->inode_id,
  1322. ret);
  1323. BUG();
  1324. }
  1325. mutex_unlock(&node->mutex);
  1326. end:
  1327. btrfs_release_delayed_node(node);
  1328. return ret;
  1329. }
  1330. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1331. {
  1332. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1333. if (!delayed_node)
  1334. return -ENOENT;
  1335. /*
  1336. * Since we have held i_mutex of this directory, it is impossible that
  1337. * a new directory index is added into the delayed node and index_cnt
  1338. * is updated now. So we needn't lock the delayed node.
  1339. */
  1340. if (!delayed_node->index_cnt) {
  1341. btrfs_release_delayed_node(delayed_node);
  1342. return -EINVAL;
  1343. }
  1344. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1345. btrfs_release_delayed_node(delayed_node);
  1346. return 0;
  1347. }
  1348. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1349. struct list_head *del_list)
  1350. {
  1351. struct btrfs_delayed_node *delayed_node;
  1352. struct btrfs_delayed_item *item;
  1353. delayed_node = btrfs_get_delayed_node(inode);
  1354. if (!delayed_node)
  1355. return;
  1356. mutex_lock(&delayed_node->mutex);
  1357. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1358. while (item) {
  1359. atomic_inc(&item->refs);
  1360. list_add_tail(&item->readdir_list, ins_list);
  1361. item = __btrfs_next_delayed_item(item);
  1362. }
  1363. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1364. while (item) {
  1365. atomic_inc(&item->refs);
  1366. list_add_tail(&item->readdir_list, del_list);
  1367. item = __btrfs_next_delayed_item(item);
  1368. }
  1369. mutex_unlock(&delayed_node->mutex);
  1370. /*
  1371. * This delayed node is still cached in the btrfs inode, so refs
  1372. * must be > 1 now, and we needn't check it is going to be freed
  1373. * or not.
  1374. *
  1375. * Besides that, this function is used to read dir, we do not
  1376. * insert/delete delayed items in this period. So we also needn't
  1377. * requeue or dequeue this delayed node.
  1378. */
  1379. atomic_dec(&delayed_node->refs);
  1380. }
  1381. void btrfs_put_delayed_items(struct list_head *ins_list,
  1382. struct list_head *del_list)
  1383. {
  1384. struct btrfs_delayed_item *curr, *next;
  1385. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1386. list_del(&curr->readdir_list);
  1387. if (atomic_dec_and_test(&curr->refs))
  1388. kfree(curr);
  1389. }
  1390. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1391. list_del(&curr->readdir_list);
  1392. if (atomic_dec_and_test(&curr->refs))
  1393. kfree(curr);
  1394. }
  1395. }
  1396. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1397. u64 index)
  1398. {
  1399. struct btrfs_delayed_item *curr, *next;
  1400. int ret;
  1401. if (list_empty(del_list))
  1402. return 0;
  1403. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1404. if (curr->key.offset > index)
  1405. break;
  1406. list_del(&curr->readdir_list);
  1407. ret = (curr->key.offset == index);
  1408. if (atomic_dec_and_test(&curr->refs))
  1409. kfree(curr);
  1410. if (ret)
  1411. return 1;
  1412. else
  1413. continue;
  1414. }
  1415. return 0;
  1416. }
  1417. /*
  1418. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1419. *
  1420. */
  1421. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1422. filldir_t filldir,
  1423. struct list_head *ins_list)
  1424. {
  1425. struct btrfs_dir_item *di;
  1426. struct btrfs_delayed_item *curr, *next;
  1427. struct btrfs_key location;
  1428. char *name;
  1429. int name_len;
  1430. int over = 0;
  1431. unsigned char d_type;
  1432. if (list_empty(ins_list))
  1433. return 0;
  1434. /*
  1435. * Changing the data of the delayed item is impossible. So
  1436. * we needn't lock them. And we have held i_mutex of the
  1437. * directory, nobody can delete any directory indexes now.
  1438. */
  1439. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1440. list_del(&curr->readdir_list);
  1441. if (curr->key.offset < filp->f_pos) {
  1442. if (atomic_dec_and_test(&curr->refs))
  1443. kfree(curr);
  1444. continue;
  1445. }
  1446. filp->f_pos = curr->key.offset;
  1447. di = (struct btrfs_dir_item *)curr->data;
  1448. name = (char *)(di + 1);
  1449. name_len = le16_to_cpu(di->name_len);
  1450. d_type = btrfs_filetype_table[di->type];
  1451. btrfs_disk_key_to_cpu(&location, &di->location);
  1452. over = filldir(dirent, name, name_len, curr->key.offset,
  1453. location.objectid, d_type);
  1454. if (atomic_dec_and_test(&curr->refs))
  1455. kfree(curr);
  1456. if (over)
  1457. return 1;
  1458. }
  1459. return 0;
  1460. }
  1461. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1462. generation, 64);
  1463. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1464. sequence, 64);
  1465. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1466. transid, 64);
  1467. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1468. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1469. nbytes, 64);
  1470. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1471. block_group, 64);
  1472. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1473. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1474. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1475. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1476. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1477. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1478. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1479. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1480. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1481. struct btrfs_inode_item *inode_item,
  1482. struct inode *inode)
  1483. {
  1484. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1485. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1486. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1487. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1488. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1489. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1490. btrfs_set_stack_inode_generation(inode_item,
  1491. BTRFS_I(inode)->generation);
  1492. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1493. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1494. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1495. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1496. btrfs_set_stack_inode_block_group(inode_item, 0);
  1497. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1498. inode->i_atime.tv_sec);
  1499. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1500. inode->i_atime.tv_nsec);
  1501. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1502. inode->i_mtime.tv_sec);
  1503. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1504. inode->i_mtime.tv_nsec);
  1505. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1506. inode->i_ctime.tv_sec);
  1507. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1508. inode->i_ctime.tv_nsec);
  1509. }
  1510. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1511. {
  1512. struct btrfs_delayed_node *delayed_node;
  1513. struct btrfs_inode_item *inode_item;
  1514. struct btrfs_timespec *tspec;
  1515. delayed_node = btrfs_get_delayed_node(inode);
  1516. if (!delayed_node)
  1517. return -ENOENT;
  1518. mutex_lock(&delayed_node->mutex);
  1519. if (!delayed_node->inode_dirty) {
  1520. mutex_unlock(&delayed_node->mutex);
  1521. btrfs_release_delayed_node(delayed_node);
  1522. return -ENOENT;
  1523. }
  1524. inode_item = &delayed_node->inode_item;
  1525. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1526. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1527. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1528. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1529. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1530. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1531. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1532. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1533. inode->i_rdev = 0;
  1534. *rdev = btrfs_stack_inode_rdev(inode_item);
  1535. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1536. tspec = btrfs_inode_atime(inode_item);
  1537. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1538. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1539. tspec = btrfs_inode_mtime(inode_item);
  1540. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1541. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1542. tspec = btrfs_inode_ctime(inode_item);
  1543. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1544. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1545. inode->i_generation = BTRFS_I(inode)->generation;
  1546. BTRFS_I(inode)->index_cnt = (u64)-1;
  1547. mutex_unlock(&delayed_node->mutex);
  1548. btrfs_release_delayed_node(delayed_node);
  1549. return 0;
  1550. }
  1551. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1552. struct btrfs_root *root, struct inode *inode)
  1553. {
  1554. struct btrfs_delayed_node *delayed_node;
  1555. int ret = 0;
  1556. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1557. if (IS_ERR(delayed_node))
  1558. return PTR_ERR(delayed_node);
  1559. mutex_lock(&delayed_node->mutex);
  1560. if (delayed_node->inode_dirty) {
  1561. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1562. goto release_node;
  1563. }
  1564. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1565. delayed_node);
  1566. if (ret)
  1567. goto release_node;
  1568. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1569. delayed_node->inode_dirty = 1;
  1570. delayed_node->count++;
  1571. atomic_inc(&root->fs_info->delayed_root->items);
  1572. release_node:
  1573. mutex_unlock(&delayed_node->mutex);
  1574. btrfs_release_delayed_node(delayed_node);
  1575. return ret;
  1576. }
  1577. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1578. {
  1579. struct btrfs_root *root = delayed_node->root;
  1580. struct btrfs_delayed_item *curr_item, *prev_item;
  1581. mutex_lock(&delayed_node->mutex);
  1582. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1583. while (curr_item) {
  1584. btrfs_delayed_item_release_metadata(root, curr_item);
  1585. prev_item = curr_item;
  1586. curr_item = __btrfs_next_delayed_item(prev_item);
  1587. btrfs_release_delayed_item(prev_item);
  1588. }
  1589. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1590. while (curr_item) {
  1591. btrfs_delayed_item_release_metadata(root, curr_item);
  1592. prev_item = curr_item;
  1593. curr_item = __btrfs_next_delayed_item(prev_item);
  1594. btrfs_release_delayed_item(prev_item);
  1595. }
  1596. if (delayed_node->inode_dirty) {
  1597. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1598. btrfs_release_delayed_inode(delayed_node);
  1599. }
  1600. mutex_unlock(&delayed_node->mutex);
  1601. }
  1602. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1603. {
  1604. struct btrfs_delayed_node *delayed_node;
  1605. delayed_node = btrfs_get_delayed_node(inode);
  1606. if (!delayed_node)
  1607. return;
  1608. __btrfs_kill_delayed_node(delayed_node);
  1609. btrfs_release_delayed_node(delayed_node);
  1610. }
  1611. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1612. {
  1613. u64 inode_id = 0;
  1614. struct btrfs_delayed_node *delayed_nodes[8];
  1615. int i, n;
  1616. while (1) {
  1617. spin_lock(&root->inode_lock);
  1618. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1619. (void **)delayed_nodes, inode_id,
  1620. ARRAY_SIZE(delayed_nodes));
  1621. if (!n) {
  1622. spin_unlock(&root->inode_lock);
  1623. break;
  1624. }
  1625. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1626. for (i = 0; i < n; i++)
  1627. atomic_inc(&delayed_nodes[i]->refs);
  1628. spin_unlock(&root->inode_lock);
  1629. for (i = 0; i < n; i++) {
  1630. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1631. btrfs_release_delayed_node(delayed_nodes[i]);
  1632. }
  1633. }
  1634. }
  1635. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1636. {
  1637. struct btrfs_delayed_root *delayed_root;
  1638. struct btrfs_delayed_node *curr_node, *prev_node;
  1639. delayed_root = btrfs_get_delayed_root(root);
  1640. curr_node = btrfs_first_delayed_node(delayed_root);
  1641. while (curr_node) {
  1642. __btrfs_kill_delayed_node(curr_node);
  1643. prev_node = curr_node;
  1644. curr_node = btrfs_next_delayed_node(curr_node);
  1645. btrfs_release_delayed_node(prev_node);
  1646. }
  1647. }