i2c-tegra.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. /*
  2. * drivers/i2c/busses/i2c-tegra.c
  3. *
  4. * Copyright (C) 2010 Google, Inc.
  5. * Author: Colin Cross <ccross@android.com>
  6. *
  7. * This software is licensed under the terms of the GNU General Public
  8. * License version 2, as published by the Free Software Foundation, and
  9. * may be copied, distributed, and modified under those terms.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. */
  17. #include <linux/kernel.h>
  18. #include <linux/init.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/clk.h>
  21. #include <linux/err.h>
  22. #include <linux/i2c.h>
  23. #include <linux/io.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/delay.h>
  26. #include <linux/slab.h>
  27. #include <linux/of_i2c.h>
  28. #include <linux/of_device.h>
  29. #include <linux/module.h>
  30. #include <linux/clk/tegra.h>
  31. #include <asm/unaligned.h>
  32. #define TEGRA_I2C_TIMEOUT (msecs_to_jiffies(1000))
  33. #define BYTES_PER_FIFO_WORD 4
  34. #define I2C_CNFG 0x000
  35. #define I2C_CNFG_DEBOUNCE_CNT_SHIFT 12
  36. #define I2C_CNFG_PACKET_MODE_EN (1<<10)
  37. #define I2C_CNFG_NEW_MASTER_FSM (1<<11)
  38. #define I2C_STATUS 0x01C
  39. #define I2C_SL_CNFG 0x020
  40. #define I2C_SL_CNFG_NACK (1<<1)
  41. #define I2C_SL_CNFG_NEWSL (1<<2)
  42. #define I2C_SL_ADDR1 0x02c
  43. #define I2C_SL_ADDR2 0x030
  44. #define I2C_TX_FIFO 0x050
  45. #define I2C_RX_FIFO 0x054
  46. #define I2C_PACKET_TRANSFER_STATUS 0x058
  47. #define I2C_FIFO_CONTROL 0x05c
  48. #define I2C_FIFO_CONTROL_TX_FLUSH (1<<1)
  49. #define I2C_FIFO_CONTROL_RX_FLUSH (1<<0)
  50. #define I2C_FIFO_CONTROL_TX_TRIG_SHIFT 5
  51. #define I2C_FIFO_CONTROL_RX_TRIG_SHIFT 2
  52. #define I2C_FIFO_STATUS 0x060
  53. #define I2C_FIFO_STATUS_TX_MASK 0xF0
  54. #define I2C_FIFO_STATUS_TX_SHIFT 4
  55. #define I2C_FIFO_STATUS_RX_MASK 0x0F
  56. #define I2C_FIFO_STATUS_RX_SHIFT 0
  57. #define I2C_INT_MASK 0x064
  58. #define I2C_INT_STATUS 0x068
  59. #define I2C_INT_PACKET_XFER_COMPLETE (1<<7)
  60. #define I2C_INT_ALL_PACKETS_XFER_COMPLETE (1<<6)
  61. #define I2C_INT_TX_FIFO_OVERFLOW (1<<5)
  62. #define I2C_INT_RX_FIFO_UNDERFLOW (1<<4)
  63. #define I2C_INT_NO_ACK (1<<3)
  64. #define I2C_INT_ARBITRATION_LOST (1<<2)
  65. #define I2C_INT_TX_FIFO_DATA_REQ (1<<1)
  66. #define I2C_INT_RX_FIFO_DATA_REQ (1<<0)
  67. #define I2C_CLK_DIVISOR 0x06c
  68. #define I2C_CLK_DIVISOR_STD_FAST_MODE_SHIFT 16
  69. #define I2C_CLK_MULTIPLIER_STD_FAST_MODE 8
  70. #define DVC_CTRL_REG1 0x000
  71. #define DVC_CTRL_REG1_INTR_EN (1<<10)
  72. #define DVC_CTRL_REG2 0x004
  73. #define DVC_CTRL_REG3 0x008
  74. #define DVC_CTRL_REG3_SW_PROG (1<<26)
  75. #define DVC_CTRL_REG3_I2C_DONE_INTR_EN (1<<30)
  76. #define DVC_STATUS 0x00c
  77. #define DVC_STATUS_I2C_DONE_INTR (1<<30)
  78. #define I2C_ERR_NONE 0x00
  79. #define I2C_ERR_NO_ACK 0x01
  80. #define I2C_ERR_ARBITRATION_LOST 0x02
  81. #define I2C_ERR_UNKNOWN_INTERRUPT 0x04
  82. #define PACKET_HEADER0_HEADER_SIZE_SHIFT 28
  83. #define PACKET_HEADER0_PACKET_ID_SHIFT 16
  84. #define PACKET_HEADER0_CONT_ID_SHIFT 12
  85. #define PACKET_HEADER0_PROTOCOL_I2C (1<<4)
  86. #define I2C_HEADER_HIGHSPEED_MODE (1<<22)
  87. #define I2C_HEADER_CONT_ON_NAK (1<<21)
  88. #define I2C_HEADER_SEND_START_BYTE (1<<20)
  89. #define I2C_HEADER_READ (1<<19)
  90. #define I2C_HEADER_10BIT_ADDR (1<<18)
  91. #define I2C_HEADER_IE_ENABLE (1<<17)
  92. #define I2C_HEADER_REPEAT_START (1<<16)
  93. #define I2C_HEADER_CONTINUE_XFER (1<<15)
  94. #define I2C_HEADER_MASTER_ADDR_SHIFT 12
  95. #define I2C_HEADER_SLAVE_ADDR_SHIFT 1
  96. /*
  97. * msg_end_type: The bus control which need to be send at end of transfer.
  98. * @MSG_END_STOP: Send stop pulse at end of transfer.
  99. * @MSG_END_REPEAT_START: Send repeat start at end of transfer.
  100. * @MSG_END_CONTINUE: The following on message is coming and so do not send
  101. * stop or repeat start.
  102. */
  103. enum msg_end_type {
  104. MSG_END_STOP,
  105. MSG_END_REPEAT_START,
  106. MSG_END_CONTINUE,
  107. };
  108. /**
  109. * struct tegra_i2c_hw_feature : Different HW support on Tegra
  110. * @has_continue_xfer_support: Continue transfer supports.
  111. * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
  112. * complete interrupt per packet basis.
  113. * @has_single_clk_source: The i2c controller has single clock source. Tegra30
  114. * and earlier Socs has two clock sources i.e. div-clk and
  115. * fast-clk.
  116. * @clk_divisor_hs_mode: Clock divisor in HS mode.
  117. * @clk_divisor_std_fast_mode: Clock divisor in standard/fast mode. It is
  118. * applicable if there is no fast clock source i.e. single clock
  119. * source.
  120. */
  121. struct tegra_i2c_hw_feature {
  122. bool has_continue_xfer_support;
  123. bool has_per_pkt_xfer_complete_irq;
  124. bool has_single_clk_source;
  125. int clk_divisor_hs_mode;
  126. int clk_divisor_std_fast_mode;
  127. };
  128. /**
  129. * struct tegra_i2c_dev - per device i2c context
  130. * @dev: device reference for power management
  131. * @hw: Tegra i2c hw feature.
  132. * @adapter: core i2c layer adapter information
  133. * @div_clk: clock reference for div clock of i2c controller.
  134. * @fast_clk: clock reference for fast clock of i2c controller.
  135. * @base: ioremapped registers cookie
  136. * @cont_id: i2c controller id, used for for packet header
  137. * @irq: irq number of transfer complete interrupt
  138. * @is_dvc: identifies the DVC i2c controller, has a different register layout
  139. * @msg_complete: transfer completion notifier
  140. * @msg_err: error code for completed message
  141. * @msg_buf: pointer to current message data
  142. * @msg_buf_remaining: size of unsent data in the message buffer
  143. * @msg_read: identifies read transfers
  144. * @bus_clk_rate: current i2c bus clock rate
  145. * @is_suspended: prevents i2c controller accesses after suspend is called
  146. */
  147. struct tegra_i2c_dev {
  148. struct device *dev;
  149. const struct tegra_i2c_hw_feature *hw;
  150. struct i2c_adapter adapter;
  151. struct clk *div_clk;
  152. struct clk *fast_clk;
  153. void __iomem *base;
  154. int cont_id;
  155. int irq;
  156. bool irq_disabled;
  157. int is_dvc;
  158. struct completion msg_complete;
  159. int msg_err;
  160. u8 *msg_buf;
  161. size_t msg_buf_remaining;
  162. int msg_read;
  163. u32 bus_clk_rate;
  164. bool is_suspended;
  165. };
  166. static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned long reg)
  167. {
  168. writel(val, i2c_dev->base + reg);
  169. }
  170. static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned long reg)
  171. {
  172. return readl(i2c_dev->base + reg);
  173. }
  174. /*
  175. * i2c_writel and i2c_readl will offset the register if necessary to talk
  176. * to the I2C block inside the DVC block
  177. */
  178. static unsigned long tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev,
  179. unsigned long reg)
  180. {
  181. if (i2c_dev->is_dvc)
  182. reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
  183. return reg;
  184. }
  185. static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
  186. unsigned long reg)
  187. {
  188. writel(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
  189. /* Read back register to make sure that register writes completed */
  190. if (reg != I2C_TX_FIFO)
  191. readl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
  192. }
  193. static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned long reg)
  194. {
  195. return readl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
  196. }
  197. static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
  198. unsigned long reg, int len)
  199. {
  200. writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
  201. }
  202. static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
  203. unsigned long reg, int len)
  204. {
  205. readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
  206. }
  207. static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
  208. {
  209. u32 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK);
  210. int_mask &= ~mask;
  211. i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
  212. }
  213. static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
  214. {
  215. u32 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK);
  216. int_mask |= mask;
  217. i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
  218. }
  219. static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
  220. {
  221. unsigned long timeout = jiffies + HZ;
  222. u32 val = i2c_readl(i2c_dev, I2C_FIFO_CONTROL);
  223. val |= I2C_FIFO_CONTROL_TX_FLUSH | I2C_FIFO_CONTROL_RX_FLUSH;
  224. i2c_writel(i2c_dev, val, I2C_FIFO_CONTROL);
  225. while (i2c_readl(i2c_dev, I2C_FIFO_CONTROL) &
  226. (I2C_FIFO_CONTROL_TX_FLUSH | I2C_FIFO_CONTROL_RX_FLUSH)) {
  227. if (time_after(jiffies, timeout)) {
  228. dev_warn(i2c_dev->dev, "timeout waiting for fifo flush\n");
  229. return -ETIMEDOUT;
  230. }
  231. msleep(1);
  232. }
  233. return 0;
  234. }
  235. static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
  236. {
  237. u32 val;
  238. int rx_fifo_avail;
  239. u8 *buf = i2c_dev->msg_buf;
  240. size_t buf_remaining = i2c_dev->msg_buf_remaining;
  241. int words_to_transfer;
  242. val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
  243. rx_fifo_avail = (val & I2C_FIFO_STATUS_RX_MASK) >>
  244. I2C_FIFO_STATUS_RX_SHIFT;
  245. /* Rounds down to not include partial word at the end of buf */
  246. words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
  247. if (words_to_transfer > rx_fifo_avail)
  248. words_to_transfer = rx_fifo_avail;
  249. i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
  250. buf += words_to_transfer * BYTES_PER_FIFO_WORD;
  251. buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
  252. rx_fifo_avail -= words_to_transfer;
  253. /*
  254. * If there is a partial word at the end of buf, handle it manually to
  255. * prevent overwriting past the end of buf
  256. */
  257. if (rx_fifo_avail > 0 && buf_remaining > 0) {
  258. BUG_ON(buf_remaining > 3);
  259. val = i2c_readl(i2c_dev, I2C_RX_FIFO);
  260. memcpy(buf, &val, buf_remaining);
  261. buf_remaining = 0;
  262. rx_fifo_avail--;
  263. }
  264. BUG_ON(rx_fifo_avail > 0 && buf_remaining > 0);
  265. i2c_dev->msg_buf_remaining = buf_remaining;
  266. i2c_dev->msg_buf = buf;
  267. return 0;
  268. }
  269. static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
  270. {
  271. u32 val;
  272. int tx_fifo_avail;
  273. u8 *buf = i2c_dev->msg_buf;
  274. size_t buf_remaining = i2c_dev->msg_buf_remaining;
  275. int words_to_transfer;
  276. val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
  277. tx_fifo_avail = (val & I2C_FIFO_STATUS_TX_MASK) >>
  278. I2C_FIFO_STATUS_TX_SHIFT;
  279. /* Rounds down to not include partial word at the end of buf */
  280. words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
  281. /* It's very common to have < 4 bytes, so optimize that case. */
  282. if (words_to_transfer) {
  283. if (words_to_transfer > tx_fifo_avail)
  284. words_to_transfer = tx_fifo_avail;
  285. /*
  286. * Update state before writing to FIFO. If this casues us
  287. * to finish writing all bytes (AKA buf_remaining goes to 0) we
  288. * have a potential for an interrupt (PACKET_XFER_COMPLETE is
  289. * not maskable). We need to make sure that the isr sees
  290. * buf_remaining as 0 and doesn't call us back re-entrantly.
  291. */
  292. buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
  293. tx_fifo_avail -= words_to_transfer;
  294. i2c_dev->msg_buf_remaining = buf_remaining;
  295. i2c_dev->msg_buf = buf +
  296. words_to_transfer * BYTES_PER_FIFO_WORD;
  297. barrier();
  298. i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
  299. buf += words_to_transfer * BYTES_PER_FIFO_WORD;
  300. }
  301. /*
  302. * If there is a partial word at the end of buf, handle it manually to
  303. * prevent reading past the end of buf, which could cross a page
  304. * boundary and fault.
  305. */
  306. if (tx_fifo_avail > 0 && buf_remaining > 0) {
  307. BUG_ON(buf_remaining > 3);
  308. memcpy(&val, buf, buf_remaining);
  309. /* Again update before writing to FIFO to make sure isr sees. */
  310. i2c_dev->msg_buf_remaining = 0;
  311. i2c_dev->msg_buf = NULL;
  312. barrier();
  313. i2c_writel(i2c_dev, val, I2C_TX_FIFO);
  314. }
  315. return 0;
  316. }
  317. /*
  318. * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
  319. * block. This block is identical to the rest of the I2C blocks, except that
  320. * it only supports master mode, it has registers moved around, and it needs
  321. * some extra init to get it into I2C mode. The register moves are handled
  322. * by i2c_readl and i2c_writel
  323. */
  324. static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
  325. {
  326. u32 val = 0;
  327. val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
  328. val |= DVC_CTRL_REG3_SW_PROG;
  329. val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
  330. dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
  331. val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
  332. val |= DVC_CTRL_REG1_INTR_EN;
  333. dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
  334. }
  335. static inline int tegra_i2c_clock_enable(struct tegra_i2c_dev *i2c_dev)
  336. {
  337. int ret;
  338. if (!i2c_dev->hw->has_single_clk_source) {
  339. ret = clk_prepare_enable(i2c_dev->fast_clk);
  340. if (ret < 0) {
  341. dev_err(i2c_dev->dev,
  342. "Enabling fast clk failed, err %d\n", ret);
  343. return ret;
  344. }
  345. }
  346. ret = clk_prepare_enable(i2c_dev->div_clk);
  347. if (ret < 0) {
  348. dev_err(i2c_dev->dev,
  349. "Enabling div clk failed, err %d\n", ret);
  350. clk_disable_unprepare(i2c_dev->fast_clk);
  351. }
  352. return ret;
  353. }
  354. static inline void tegra_i2c_clock_disable(struct tegra_i2c_dev *i2c_dev)
  355. {
  356. clk_disable_unprepare(i2c_dev->div_clk);
  357. if (!i2c_dev->hw->has_single_clk_source)
  358. clk_disable_unprepare(i2c_dev->fast_clk);
  359. }
  360. static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
  361. {
  362. u32 val;
  363. int err = 0;
  364. int clk_multiplier = I2C_CLK_MULTIPLIER_STD_FAST_MODE;
  365. u32 clk_divisor;
  366. err = tegra_i2c_clock_enable(i2c_dev);
  367. if (err < 0) {
  368. dev_err(i2c_dev->dev, "Clock enable failed %d\n", err);
  369. return err;
  370. }
  371. tegra_periph_reset_assert(i2c_dev->div_clk);
  372. udelay(2);
  373. tegra_periph_reset_deassert(i2c_dev->div_clk);
  374. if (i2c_dev->is_dvc)
  375. tegra_dvc_init(i2c_dev);
  376. val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
  377. (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
  378. i2c_writel(i2c_dev, val, I2C_CNFG);
  379. i2c_writel(i2c_dev, 0, I2C_INT_MASK);
  380. clk_multiplier *= (i2c_dev->hw->clk_divisor_std_fast_mode + 1);
  381. clk_set_rate(i2c_dev->div_clk, i2c_dev->bus_clk_rate * clk_multiplier);
  382. /* Make sure clock divisor programmed correctly */
  383. clk_divisor = i2c_dev->hw->clk_divisor_hs_mode;
  384. clk_divisor |= i2c_dev->hw->clk_divisor_std_fast_mode <<
  385. I2C_CLK_DIVISOR_STD_FAST_MODE_SHIFT;
  386. i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
  387. if (!i2c_dev->is_dvc) {
  388. u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
  389. sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
  390. i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
  391. i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
  392. i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
  393. }
  394. val = 7 << I2C_FIFO_CONTROL_TX_TRIG_SHIFT |
  395. 0 << I2C_FIFO_CONTROL_RX_TRIG_SHIFT;
  396. i2c_writel(i2c_dev, val, I2C_FIFO_CONTROL);
  397. if (tegra_i2c_flush_fifos(i2c_dev))
  398. err = -ETIMEDOUT;
  399. tegra_i2c_clock_disable(i2c_dev);
  400. if (i2c_dev->irq_disabled) {
  401. i2c_dev->irq_disabled = 0;
  402. enable_irq(i2c_dev->irq);
  403. }
  404. return err;
  405. }
  406. static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
  407. {
  408. u32 status;
  409. const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
  410. struct tegra_i2c_dev *i2c_dev = dev_id;
  411. status = i2c_readl(i2c_dev, I2C_INT_STATUS);
  412. if (status == 0) {
  413. dev_warn(i2c_dev->dev, "irq status 0 %08x %08x %08x\n",
  414. i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
  415. i2c_readl(i2c_dev, I2C_STATUS),
  416. i2c_readl(i2c_dev, I2C_CNFG));
  417. i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
  418. if (!i2c_dev->irq_disabled) {
  419. disable_irq_nosync(i2c_dev->irq);
  420. i2c_dev->irq_disabled = 1;
  421. }
  422. goto err;
  423. }
  424. if (unlikely(status & status_err)) {
  425. if (status & I2C_INT_NO_ACK)
  426. i2c_dev->msg_err |= I2C_ERR_NO_ACK;
  427. if (status & I2C_INT_ARBITRATION_LOST)
  428. i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
  429. goto err;
  430. }
  431. if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
  432. if (i2c_dev->msg_buf_remaining)
  433. tegra_i2c_empty_rx_fifo(i2c_dev);
  434. else
  435. BUG();
  436. }
  437. if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
  438. if (i2c_dev->msg_buf_remaining)
  439. tegra_i2c_fill_tx_fifo(i2c_dev);
  440. else
  441. tegra_i2c_mask_irq(i2c_dev, I2C_INT_TX_FIFO_DATA_REQ);
  442. }
  443. i2c_writel(i2c_dev, status, I2C_INT_STATUS);
  444. if (i2c_dev->is_dvc)
  445. dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
  446. if (status & I2C_INT_PACKET_XFER_COMPLETE) {
  447. BUG_ON(i2c_dev->msg_buf_remaining);
  448. complete(&i2c_dev->msg_complete);
  449. }
  450. return IRQ_HANDLED;
  451. err:
  452. /* An error occurred, mask all interrupts */
  453. tegra_i2c_mask_irq(i2c_dev, I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST |
  454. I2C_INT_PACKET_XFER_COMPLETE | I2C_INT_TX_FIFO_DATA_REQ |
  455. I2C_INT_RX_FIFO_DATA_REQ);
  456. i2c_writel(i2c_dev, status, I2C_INT_STATUS);
  457. if (i2c_dev->is_dvc)
  458. dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
  459. complete(&i2c_dev->msg_complete);
  460. return IRQ_HANDLED;
  461. }
  462. static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
  463. struct i2c_msg *msg, enum msg_end_type end_state)
  464. {
  465. u32 packet_header;
  466. u32 int_mask;
  467. int ret;
  468. tegra_i2c_flush_fifos(i2c_dev);
  469. if (msg->len == 0)
  470. return -EINVAL;
  471. i2c_dev->msg_buf = msg->buf;
  472. i2c_dev->msg_buf_remaining = msg->len;
  473. i2c_dev->msg_err = I2C_ERR_NONE;
  474. i2c_dev->msg_read = (msg->flags & I2C_M_RD);
  475. INIT_COMPLETION(i2c_dev->msg_complete);
  476. packet_header = (0 << PACKET_HEADER0_HEADER_SIZE_SHIFT) |
  477. PACKET_HEADER0_PROTOCOL_I2C |
  478. (i2c_dev->cont_id << PACKET_HEADER0_CONT_ID_SHIFT) |
  479. (1 << PACKET_HEADER0_PACKET_ID_SHIFT);
  480. i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
  481. packet_header = msg->len - 1;
  482. i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
  483. packet_header = I2C_HEADER_IE_ENABLE;
  484. if (end_state == MSG_END_CONTINUE)
  485. packet_header |= I2C_HEADER_CONTINUE_XFER;
  486. else if (end_state == MSG_END_REPEAT_START)
  487. packet_header |= I2C_HEADER_REPEAT_START;
  488. if (msg->flags & I2C_M_TEN) {
  489. packet_header |= msg->addr;
  490. packet_header |= I2C_HEADER_10BIT_ADDR;
  491. } else {
  492. packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
  493. }
  494. if (msg->flags & I2C_M_IGNORE_NAK)
  495. packet_header |= I2C_HEADER_CONT_ON_NAK;
  496. if (msg->flags & I2C_M_RD)
  497. packet_header |= I2C_HEADER_READ;
  498. i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
  499. if (!(msg->flags & I2C_M_RD))
  500. tegra_i2c_fill_tx_fifo(i2c_dev);
  501. int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
  502. if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
  503. int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
  504. if (msg->flags & I2C_M_RD)
  505. int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
  506. else if (i2c_dev->msg_buf_remaining)
  507. int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
  508. tegra_i2c_unmask_irq(i2c_dev, int_mask);
  509. dev_dbg(i2c_dev->dev, "unmasked irq: %02x\n",
  510. i2c_readl(i2c_dev, I2C_INT_MASK));
  511. ret = wait_for_completion_timeout(&i2c_dev->msg_complete, TEGRA_I2C_TIMEOUT);
  512. tegra_i2c_mask_irq(i2c_dev, int_mask);
  513. if (ret == 0) {
  514. dev_err(i2c_dev->dev, "i2c transfer timed out\n");
  515. tegra_i2c_init(i2c_dev);
  516. return -ETIMEDOUT;
  517. }
  518. dev_dbg(i2c_dev->dev, "transfer complete: %d %d %d\n",
  519. ret, completion_done(&i2c_dev->msg_complete), i2c_dev->msg_err);
  520. if (likely(i2c_dev->msg_err == I2C_ERR_NONE))
  521. return 0;
  522. /*
  523. * NACK interrupt is generated before the I2C controller generates the
  524. * STOP condition on the bus. So wait for 2 clock periods before resetting
  525. * the controller so that STOP condition has been delivered properly.
  526. */
  527. if (i2c_dev->msg_err == I2C_ERR_NO_ACK)
  528. udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->bus_clk_rate));
  529. tegra_i2c_init(i2c_dev);
  530. if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
  531. if (msg->flags & I2C_M_IGNORE_NAK)
  532. return 0;
  533. return -EREMOTEIO;
  534. }
  535. return -EIO;
  536. }
  537. static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
  538. int num)
  539. {
  540. struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
  541. int i;
  542. int ret = 0;
  543. if (i2c_dev->is_suspended)
  544. return -EBUSY;
  545. ret = tegra_i2c_clock_enable(i2c_dev);
  546. if (ret < 0) {
  547. dev_err(i2c_dev->dev, "Clock enable failed %d\n", ret);
  548. return ret;
  549. }
  550. for (i = 0; i < num; i++) {
  551. enum msg_end_type end_type = MSG_END_STOP;
  552. if (i < (num - 1)) {
  553. if (msgs[i + 1].flags & I2C_M_NOSTART)
  554. end_type = MSG_END_CONTINUE;
  555. else
  556. end_type = MSG_END_REPEAT_START;
  557. }
  558. ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
  559. if (ret)
  560. break;
  561. }
  562. tegra_i2c_clock_disable(i2c_dev);
  563. return ret ?: i;
  564. }
  565. static u32 tegra_i2c_func(struct i2c_adapter *adap)
  566. {
  567. struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
  568. u32 ret = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR |
  569. I2C_FUNC_PROTOCOL_MANGLING;
  570. if (i2c_dev->hw->has_continue_xfer_support)
  571. ret |= I2C_FUNC_NOSTART;
  572. return ret;
  573. }
  574. static const struct i2c_algorithm tegra_i2c_algo = {
  575. .master_xfer = tegra_i2c_xfer,
  576. .functionality = tegra_i2c_func,
  577. };
  578. static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
  579. .has_continue_xfer_support = false,
  580. .has_per_pkt_xfer_complete_irq = false,
  581. .has_single_clk_source = false,
  582. .clk_divisor_hs_mode = 3,
  583. .clk_divisor_std_fast_mode = 0,
  584. };
  585. static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
  586. .has_continue_xfer_support = true,
  587. .has_per_pkt_xfer_complete_irq = false,
  588. .has_single_clk_source = false,
  589. .clk_divisor_hs_mode = 3,
  590. .clk_divisor_std_fast_mode = 0,
  591. };
  592. static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
  593. .has_continue_xfer_support = true,
  594. .has_per_pkt_xfer_complete_irq = true,
  595. .has_single_clk_source = true,
  596. .clk_divisor_hs_mode = 1,
  597. .clk_divisor_std_fast_mode = 0x19,
  598. };
  599. /* Match table for of_platform binding */
  600. static const struct of_device_id tegra_i2c_of_match[] = {
  601. { .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
  602. { .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
  603. { .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
  604. { .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
  605. {},
  606. };
  607. MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
  608. static int tegra_i2c_probe(struct platform_device *pdev)
  609. {
  610. struct tegra_i2c_dev *i2c_dev;
  611. struct resource *res;
  612. struct clk *div_clk;
  613. struct clk *fast_clk;
  614. void __iomem *base;
  615. int irq;
  616. int ret = 0;
  617. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  618. if (!res) {
  619. dev_err(&pdev->dev, "no mem resource\n");
  620. return -EINVAL;
  621. }
  622. base = devm_ioremap_resource(&pdev->dev, res);
  623. if (IS_ERR(base))
  624. return PTR_ERR(base);
  625. res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  626. if (!res) {
  627. dev_err(&pdev->dev, "no irq resource\n");
  628. return -EINVAL;
  629. }
  630. irq = res->start;
  631. div_clk = devm_clk_get(&pdev->dev, "div-clk");
  632. if (IS_ERR(div_clk)) {
  633. dev_err(&pdev->dev, "missing controller clock");
  634. return PTR_ERR(div_clk);
  635. }
  636. i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
  637. if (!i2c_dev) {
  638. dev_err(&pdev->dev, "Could not allocate struct tegra_i2c_dev");
  639. return -ENOMEM;
  640. }
  641. i2c_dev->base = base;
  642. i2c_dev->div_clk = div_clk;
  643. i2c_dev->adapter.algo = &tegra_i2c_algo;
  644. i2c_dev->irq = irq;
  645. i2c_dev->cont_id = pdev->id;
  646. i2c_dev->dev = &pdev->dev;
  647. ret = of_property_read_u32(i2c_dev->dev->of_node, "clock-frequency",
  648. &i2c_dev->bus_clk_rate);
  649. if (ret)
  650. i2c_dev->bus_clk_rate = 100000; /* default clock rate */
  651. i2c_dev->hw = &tegra20_i2c_hw;
  652. if (pdev->dev.of_node) {
  653. const struct of_device_id *match;
  654. match = of_match_device(tegra_i2c_of_match, &pdev->dev);
  655. i2c_dev->hw = match->data;
  656. i2c_dev->is_dvc = of_device_is_compatible(pdev->dev.of_node,
  657. "nvidia,tegra20-i2c-dvc");
  658. } else if (pdev->id == 3) {
  659. i2c_dev->is_dvc = 1;
  660. }
  661. init_completion(&i2c_dev->msg_complete);
  662. if (!i2c_dev->hw->has_single_clk_source) {
  663. fast_clk = devm_clk_get(&pdev->dev, "fast-clk");
  664. if (IS_ERR(fast_clk)) {
  665. dev_err(&pdev->dev, "missing fast clock");
  666. return PTR_ERR(fast_clk);
  667. }
  668. i2c_dev->fast_clk = fast_clk;
  669. }
  670. platform_set_drvdata(pdev, i2c_dev);
  671. ret = tegra_i2c_init(i2c_dev);
  672. if (ret) {
  673. dev_err(&pdev->dev, "Failed to initialize i2c controller");
  674. return ret;
  675. }
  676. ret = devm_request_irq(&pdev->dev, i2c_dev->irq,
  677. tegra_i2c_isr, 0, dev_name(&pdev->dev), i2c_dev);
  678. if (ret) {
  679. dev_err(&pdev->dev, "Failed to request irq %i\n", i2c_dev->irq);
  680. return ret;
  681. }
  682. i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
  683. i2c_dev->adapter.owner = THIS_MODULE;
  684. i2c_dev->adapter.class = I2C_CLASS_HWMON;
  685. strlcpy(i2c_dev->adapter.name, "Tegra I2C adapter",
  686. sizeof(i2c_dev->adapter.name));
  687. i2c_dev->adapter.algo = &tegra_i2c_algo;
  688. i2c_dev->adapter.dev.parent = &pdev->dev;
  689. i2c_dev->adapter.nr = pdev->id;
  690. i2c_dev->adapter.dev.of_node = pdev->dev.of_node;
  691. ret = i2c_add_numbered_adapter(&i2c_dev->adapter);
  692. if (ret) {
  693. dev_err(&pdev->dev, "Failed to add I2C adapter\n");
  694. return ret;
  695. }
  696. of_i2c_register_devices(&i2c_dev->adapter);
  697. return 0;
  698. }
  699. static int tegra_i2c_remove(struct platform_device *pdev)
  700. {
  701. struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
  702. i2c_del_adapter(&i2c_dev->adapter);
  703. return 0;
  704. }
  705. #ifdef CONFIG_PM_SLEEP
  706. static int tegra_i2c_suspend(struct device *dev)
  707. {
  708. struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
  709. i2c_lock_adapter(&i2c_dev->adapter);
  710. i2c_dev->is_suspended = true;
  711. i2c_unlock_adapter(&i2c_dev->adapter);
  712. return 0;
  713. }
  714. static int tegra_i2c_resume(struct device *dev)
  715. {
  716. struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
  717. int ret;
  718. i2c_lock_adapter(&i2c_dev->adapter);
  719. ret = tegra_i2c_init(i2c_dev);
  720. if (ret) {
  721. i2c_unlock_adapter(&i2c_dev->adapter);
  722. return ret;
  723. }
  724. i2c_dev->is_suspended = false;
  725. i2c_unlock_adapter(&i2c_dev->adapter);
  726. return 0;
  727. }
  728. static SIMPLE_DEV_PM_OPS(tegra_i2c_pm, tegra_i2c_suspend, tegra_i2c_resume);
  729. #define TEGRA_I2C_PM (&tegra_i2c_pm)
  730. #else
  731. #define TEGRA_I2C_PM NULL
  732. #endif
  733. static struct platform_driver tegra_i2c_driver = {
  734. .probe = tegra_i2c_probe,
  735. .remove = tegra_i2c_remove,
  736. .driver = {
  737. .name = "tegra-i2c",
  738. .owner = THIS_MODULE,
  739. .of_match_table = tegra_i2c_of_match,
  740. .pm = TEGRA_I2C_PM,
  741. },
  742. };
  743. static int __init tegra_i2c_init_driver(void)
  744. {
  745. return platform_driver_register(&tegra_i2c_driver);
  746. }
  747. static void __exit tegra_i2c_exit_driver(void)
  748. {
  749. platform_driver_unregister(&tegra_i2c_driver);
  750. }
  751. subsys_initcall(tegra_i2c_init_driver);
  752. module_exit(tegra_i2c_exit_driver);
  753. MODULE_DESCRIPTION("nVidia Tegra2 I2C Bus Controller driver");
  754. MODULE_AUTHOR("Colin Cross");
  755. MODULE_LICENSE("GPL v2");