camellia-aesni-avx2-asm_64.S 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368
  1. /*
  2. * x86_64/AVX2/AES-NI assembler implementation of Camellia
  3. *
  4. * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. */
  12. #include <linux/linkage.h>
  13. #define CAMELLIA_TABLE_BYTE_LEN 272
  14. /* struct camellia_ctx: */
  15. #define key_table 0
  16. #define key_length CAMELLIA_TABLE_BYTE_LEN
  17. /* register macros */
  18. #define CTX %rdi
  19. #define RIO %r8
  20. /**********************************************************************
  21. helper macros
  22. **********************************************************************/
  23. #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  24. vpand x, mask4bit, tmp0; \
  25. vpandn x, mask4bit, x; \
  26. vpsrld $4, x, x; \
  27. \
  28. vpshufb tmp0, lo_t, tmp0; \
  29. vpshufb x, hi_t, x; \
  30. vpxor tmp0, x, x;
  31. #define ymm0_x xmm0
  32. #define ymm1_x xmm1
  33. #define ymm2_x xmm2
  34. #define ymm3_x xmm3
  35. #define ymm4_x xmm4
  36. #define ymm5_x xmm5
  37. #define ymm6_x xmm6
  38. #define ymm7_x xmm7
  39. #define ymm8_x xmm8
  40. #define ymm9_x xmm9
  41. #define ymm10_x xmm10
  42. #define ymm11_x xmm11
  43. #define ymm12_x xmm12
  44. #define ymm13_x xmm13
  45. #define ymm14_x xmm14
  46. #define ymm15_x xmm15
  47. /*
  48. * AES-NI instructions do not support ymmX registers, so we need splitting and
  49. * merging.
  50. */
  51. #define vaesenclast256(zero, yreg, tmp) \
  52. vextracti128 $1, yreg, tmp##_x; \
  53. vaesenclast zero##_x, yreg##_x, yreg##_x; \
  54. vaesenclast zero##_x, tmp##_x, tmp##_x; \
  55. vinserti128 $1, tmp##_x, yreg, yreg;
  56. /**********************************************************************
  57. 32-way camellia
  58. **********************************************************************/
  59. /*
  60. * IN:
  61. * x0..x7: byte-sliced AB state
  62. * mem_cd: register pointer storing CD state
  63. * key: index for key material
  64. * OUT:
  65. * x0..x7: new byte-sliced CD state
  66. */
  67. #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  68. t7, mem_cd, key) \
  69. /* \
  70. * S-function with AES subbytes \
  71. */ \
  72. vbroadcasti128 .Linv_shift_row, t4; \
  73. vpbroadcastb .L0f0f0f0f, t7; \
  74. vbroadcasti128 .Lpre_tf_lo_s1, t0; \
  75. vbroadcasti128 .Lpre_tf_hi_s1, t1; \
  76. \
  77. /* AES inverse shift rows */ \
  78. vpshufb t4, x0, x0; \
  79. vpshufb t4, x7, x7; \
  80. vpshufb t4, x1, x1; \
  81. vpshufb t4, x4, x4; \
  82. vpshufb t4, x2, x2; \
  83. vpshufb t4, x5, x5; \
  84. vpshufb t4, x3, x3; \
  85. vpshufb t4, x6, x6; \
  86. \
  87. /* prefilter sboxes 1, 2 and 3 */ \
  88. vbroadcasti128 .Lpre_tf_lo_s4, t2; \
  89. vbroadcasti128 .Lpre_tf_hi_s4, t3; \
  90. filter_8bit(x0, t0, t1, t7, t6); \
  91. filter_8bit(x7, t0, t1, t7, t6); \
  92. filter_8bit(x1, t0, t1, t7, t6); \
  93. filter_8bit(x4, t0, t1, t7, t6); \
  94. filter_8bit(x2, t0, t1, t7, t6); \
  95. filter_8bit(x5, t0, t1, t7, t6); \
  96. \
  97. /* prefilter sbox 4 */ \
  98. vpxor t4##_x, t4##_x, t4##_x; \
  99. filter_8bit(x3, t2, t3, t7, t6); \
  100. filter_8bit(x6, t2, t3, t7, t6); \
  101. \
  102. /* AES subbytes + AES shift rows */ \
  103. vbroadcasti128 .Lpost_tf_lo_s1, t0; \
  104. vbroadcasti128 .Lpost_tf_hi_s1, t1; \
  105. vaesenclast256(t4, x0, t5); \
  106. vaesenclast256(t4, x7, t5); \
  107. vaesenclast256(t4, x1, t5); \
  108. vaesenclast256(t4, x4, t5); \
  109. vaesenclast256(t4, x2, t5); \
  110. vaesenclast256(t4, x5, t5); \
  111. vaesenclast256(t4, x3, t5); \
  112. vaesenclast256(t4, x6, t5); \
  113. \
  114. /* postfilter sboxes 1 and 4 */ \
  115. vbroadcasti128 .Lpost_tf_lo_s3, t2; \
  116. vbroadcasti128 .Lpost_tf_hi_s3, t3; \
  117. filter_8bit(x0, t0, t1, t7, t6); \
  118. filter_8bit(x7, t0, t1, t7, t6); \
  119. filter_8bit(x3, t0, t1, t7, t6); \
  120. filter_8bit(x6, t0, t1, t7, t6); \
  121. \
  122. /* postfilter sbox 3 */ \
  123. vbroadcasti128 .Lpost_tf_lo_s2, t4; \
  124. vbroadcasti128 .Lpost_tf_hi_s2, t5; \
  125. filter_8bit(x2, t2, t3, t7, t6); \
  126. filter_8bit(x5, t2, t3, t7, t6); \
  127. \
  128. vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
  129. \
  130. /* postfilter sbox 2 */ \
  131. filter_8bit(x1, t4, t5, t7, t2); \
  132. filter_8bit(x4, t4, t5, t7, t2); \
  133. \
  134. vpsrldq $1, t0, t1; \
  135. vpsrldq $2, t0, t2; \
  136. vpsrldq $3, t0, t3; \
  137. vpsrldq $4, t0, t4; \
  138. vpsrldq $5, t0, t5; \
  139. vpsrldq $6, t0, t6; \
  140. vpsrldq $7, t0, t7; \
  141. vpbroadcastb t0##_x, t0; \
  142. vpbroadcastb t1##_x, t1; \
  143. vpbroadcastb t2##_x, t2; \
  144. vpbroadcastb t3##_x, t3; \
  145. vpbroadcastb t4##_x, t4; \
  146. vpbroadcastb t6##_x, t6; \
  147. vpbroadcastb t5##_x, t5; \
  148. vpbroadcastb t7##_x, t7; \
  149. \
  150. /* P-function */ \
  151. vpxor x5, x0, x0; \
  152. vpxor x6, x1, x1; \
  153. vpxor x7, x2, x2; \
  154. vpxor x4, x3, x3; \
  155. \
  156. vpxor x2, x4, x4; \
  157. vpxor x3, x5, x5; \
  158. vpxor x0, x6, x6; \
  159. vpxor x1, x7, x7; \
  160. \
  161. vpxor x7, x0, x0; \
  162. vpxor x4, x1, x1; \
  163. vpxor x5, x2, x2; \
  164. vpxor x6, x3, x3; \
  165. \
  166. vpxor x3, x4, x4; \
  167. vpxor x0, x5, x5; \
  168. vpxor x1, x6, x6; \
  169. vpxor x2, x7, x7; /* note: high and low parts swapped */ \
  170. \
  171. /* Add key material and result to CD (x becomes new CD) */ \
  172. \
  173. vpxor t7, x0, x0; \
  174. vpxor 4 * 32(mem_cd), x0, x0; \
  175. \
  176. vpxor t6, x1, x1; \
  177. vpxor 5 * 32(mem_cd), x1, x1; \
  178. \
  179. vpxor t5, x2, x2; \
  180. vpxor 6 * 32(mem_cd), x2, x2; \
  181. \
  182. vpxor t4, x3, x3; \
  183. vpxor 7 * 32(mem_cd), x3, x3; \
  184. \
  185. vpxor t3, x4, x4; \
  186. vpxor 0 * 32(mem_cd), x4, x4; \
  187. \
  188. vpxor t2, x5, x5; \
  189. vpxor 1 * 32(mem_cd), x5, x5; \
  190. \
  191. vpxor t1, x6, x6; \
  192. vpxor 2 * 32(mem_cd), x6, x6; \
  193. \
  194. vpxor t0, x7, x7; \
  195. vpxor 3 * 32(mem_cd), x7, x7;
  196. /*
  197. * Size optimization... with inlined roundsm16 binary would be over 5 times
  198. * larger and would only marginally faster.
  199. */
  200. .align 8
  201. roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
  202. roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  203. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
  204. %rcx, (%r9));
  205. ret;
  206. ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
  207. .align 8
  208. roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
  209. roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
  210. %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
  211. %rax, (%r9));
  212. ret;
  213. ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
  214. /*
  215. * IN/OUT:
  216. * x0..x7: byte-sliced AB state preloaded
  217. * mem_ab: byte-sliced AB state in memory
  218. * mem_cb: byte-sliced CD state in memory
  219. */
  220. #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  221. y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
  222. leaq (key_table + (i) * 8)(CTX), %r9; \
  223. call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
  224. \
  225. vmovdqu x0, 4 * 32(mem_cd); \
  226. vmovdqu x1, 5 * 32(mem_cd); \
  227. vmovdqu x2, 6 * 32(mem_cd); \
  228. vmovdqu x3, 7 * 32(mem_cd); \
  229. vmovdqu x4, 0 * 32(mem_cd); \
  230. vmovdqu x5, 1 * 32(mem_cd); \
  231. vmovdqu x6, 2 * 32(mem_cd); \
  232. vmovdqu x7, 3 * 32(mem_cd); \
  233. \
  234. leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
  235. call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
  236. \
  237. store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
  238. #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
  239. #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
  240. /* Store new AB state */ \
  241. vmovdqu x4, 4 * 32(mem_ab); \
  242. vmovdqu x5, 5 * 32(mem_ab); \
  243. vmovdqu x6, 6 * 32(mem_ab); \
  244. vmovdqu x7, 7 * 32(mem_ab); \
  245. vmovdqu x0, 0 * 32(mem_ab); \
  246. vmovdqu x1, 1 * 32(mem_ab); \
  247. vmovdqu x2, 2 * 32(mem_ab); \
  248. vmovdqu x3, 3 * 32(mem_ab);
  249. #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  250. y6, y7, mem_ab, mem_cd, i) \
  251. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  252. y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
  253. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  254. y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
  255. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  256. y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
  257. #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  258. y6, y7, mem_ab, mem_cd, i) \
  259. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  260. y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
  261. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  262. y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
  263. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  264. y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
  265. /*
  266. * IN:
  267. * v0..3: byte-sliced 32-bit integers
  268. * OUT:
  269. * v0..3: (IN <<< 1)
  270. */
  271. #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
  272. vpcmpgtb v0, zero, t0; \
  273. vpaddb v0, v0, v0; \
  274. vpabsb t0, t0; \
  275. \
  276. vpcmpgtb v1, zero, t1; \
  277. vpaddb v1, v1, v1; \
  278. vpabsb t1, t1; \
  279. \
  280. vpcmpgtb v2, zero, t2; \
  281. vpaddb v2, v2, v2; \
  282. vpabsb t2, t2; \
  283. \
  284. vpor t0, v1, v1; \
  285. \
  286. vpcmpgtb v3, zero, t0; \
  287. vpaddb v3, v3, v3; \
  288. vpabsb t0, t0; \
  289. \
  290. vpor t1, v2, v2; \
  291. vpor t2, v3, v3; \
  292. vpor t0, v0, v0;
  293. /*
  294. * IN:
  295. * r: byte-sliced AB state in memory
  296. * l: byte-sliced CD state in memory
  297. * OUT:
  298. * x0..x7: new byte-sliced CD state
  299. */
  300. #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
  301. tt1, tt2, tt3, kll, klr, krl, krr) \
  302. /* \
  303. * t0 = kll; \
  304. * t0 &= ll; \
  305. * lr ^= rol32(t0, 1); \
  306. */ \
  307. vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
  308. vpxor tt0, tt0, tt0; \
  309. vpbroadcastb t0##_x, t3; \
  310. vpsrldq $1, t0, t0; \
  311. vpbroadcastb t0##_x, t2; \
  312. vpsrldq $1, t0, t0; \
  313. vpbroadcastb t0##_x, t1; \
  314. vpsrldq $1, t0, t0; \
  315. vpbroadcastb t0##_x, t0; \
  316. \
  317. vpand l0, t0, t0; \
  318. vpand l1, t1, t1; \
  319. vpand l2, t2, t2; \
  320. vpand l3, t3, t3; \
  321. \
  322. rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  323. \
  324. vpxor l4, t0, l4; \
  325. vmovdqu l4, 4 * 32(l); \
  326. vpxor l5, t1, l5; \
  327. vmovdqu l5, 5 * 32(l); \
  328. vpxor l6, t2, l6; \
  329. vmovdqu l6, 6 * 32(l); \
  330. vpxor l7, t3, l7; \
  331. vmovdqu l7, 7 * 32(l); \
  332. \
  333. /* \
  334. * t2 = krr; \
  335. * t2 |= rr; \
  336. * rl ^= t2; \
  337. */ \
  338. \
  339. vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
  340. vpbroadcastb t0##_x, t3; \
  341. vpsrldq $1, t0, t0; \
  342. vpbroadcastb t0##_x, t2; \
  343. vpsrldq $1, t0, t0; \
  344. vpbroadcastb t0##_x, t1; \
  345. vpsrldq $1, t0, t0; \
  346. vpbroadcastb t0##_x, t0; \
  347. \
  348. vpor 4 * 32(r), t0, t0; \
  349. vpor 5 * 32(r), t1, t1; \
  350. vpor 6 * 32(r), t2, t2; \
  351. vpor 7 * 32(r), t3, t3; \
  352. \
  353. vpxor 0 * 32(r), t0, t0; \
  354. vpxor 1 * 32(r), t1, t1; \
  355. vpxor 2 * 32(r), t2, t2; \
  356. vpxor 3 * 32(r), t3, t3; \
  357. vmovdqu t0, 0 * 32(r); \
  358. vmovdqu t1, 1 * 32(r); \
  359. vmovdqu t2, 2 * 32(r); \
  360. vmovdqu t3, 3 * 32(r); \
  361. \
  362. /* \
  363. * t2 = krl; \
  364. * t2 &= rl; \
  365. * rr ^= rol32(t2, 1); \
  366. */ \
  367. vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
  368. vpbroadcastb t0##_x, t3; \
  369. vpsrldq $1, t0, t0; \
  370. vpbroadcastb t0##_x, t2; \
  371. vpsrldq $1, t0, t0; \
  372. vpbroadcastb t0##_x, t1; \
  373. vpsrldq $1, t0, t0; \
  374. vpbroadcastb t0##_x, t0; \
  375. \
  376. vpand 0 * 32(r), t0, t0; \
  377. vpand 1 * 32(r), t1, t1; \
  378. vpand 2 * 32(r), t2, t2; \
  379. vpand 3 * 32(r), t3, t3; \
  380. \
  381. rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  382. \
  383. vpxor 4 * 32(r), t0, t0; \
  384. vpxor 5 * 32(r), t1, t1; \
  385. vpxor 6 * 32(r), t2, t2; \
  386. vpxor 7 * 32(r), t3, t3; \
  387. vmovdqu t0, 4 * 32(r); \
  388. vmovdqu t1, 5 * 32(r); \
  389. vmovdqu t2, 6 * 32(r); \
  390. vmovdqu t3, 7 * 32(r); \
  391. \
  392. /* \
  393. * t0 = klr; \
  394. * t0 |= lr; \
  395. * ll ^= t0; \
  396. */ \
  397. \
  398. vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
  399. vpbroadcastb t0##_x, t3; \
  400. vpsrldq $1, t0, t0; \
  401. vpbroadcastb t0##_x, t2; \
  402. vpsrldq $1, t0, t0; \
  403. vpbroadcastb t0##_x, t1; \
  404. vpsrldq $1, t0, t0; \
  405. vpbroadcastb t0##_x, t0; \
  406. \
  407. vpor l4, t0, t0; \
  408. vpor l5, t1, t1; \
  409. vpor l6, t2, t2; \
  410. vpor l7, t3, t3; \
  411. \
  412. vpxor l0, t0, l0; \
  413. vmovdqu l0, 0 * 32(l); \
  414. vpxor l1, t1, l1; \
  415. vmovdqu l1, 1 * 32(l); \
  416. vpxor l2, t2, l2; \
  417. vmovdqu l2, 2 * 32(l); \
  418. vpxor l3, t3, l3; \
  419. vmovdqu l3, 3 * 32(l);
  420. #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
  421. vpunpckhdq x1, x0, t2; \
  422. vpunpckldq x1, x0, x0; \
  423. \
  424. vpunpckldq x3, x2, t1; \
  425. vpunpckhdq x3, x2, x2; \
  426. \
  427. vpunpckhqdq t1, x0, x1; \
  428. vpunpcklqdq t1, x0, x0; \
  429. \
  430. vpunpckhqdq x2, t2, x3; \
  431. vpunpcklqdq x2, t2, x2;
  432. #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
  433. a3, b3, c3, d3, st0, st1) \
  434. vmovdqu d2, st0; \
  435. vmovdqu d3, st1; \
  436. transpose_4x4(a0, a1, a2, a3, d2, d3); \
  437. transpose_4x4(b0, b1, b2, b3, d2, d3); \
  438. vmovdqu st0, d2; \
  439. vmovdqu st1, d3; \
  440. \
  441. vmovdqu a0, st0; \
  442. vmovdqu a1, st1; \
  443. transpose_4x4(c0, c1, c2, c3, a0, a1); \
  444. transpose_4x4(d0, d1, d2, d3, a0, a1); \
  445. \
  446. vbroadcasti128 .Lshufb_16x16b, a0; \
  447. vmovdqu st1, a1; \
  448. vpshufb a0, a2, a2; \
  449. vpshufb a0, a3, a3; \
  450. vpshufb a0, b0, b0; \
  451. vpshufb a0, b1, b1; \
  452. vpshufb a0, b2, b2; \
  453. vpshufb a0, b3, b3; \
  454. vpshufb a0, a1, a1; \
  455. vpshufb a0, c0, c0; \
  456. vpshufb a0, c1, c1; \
  457. vpshufb a0, c2, c2; \
  458. vpshufb a0, c3, c3; \
  459. vpshufb a0, d0, d0; \
  460. vpshufb a0, d1, d1; \
  461. vpshufb a0, d2, d2; \
  462. vpshufb a0, d3, d3; \
  463. vmovdqu d3, st1; \
  464. vmovdqu st0, d3; \
  465. vpshufb a0, d3, a0; \
  466. vmovdqu d2, st0; \
  467. \
  468. transpose_4x4(a0, b0, c0, d0, d2, d3); \
  469. transpose_4x4(a1, b1, c1, d1, d2, d3); \
  470. vmovdqu st0, d2; \
  471. vmovdqu st1, d3; \
  472. \
  473. vmovdqu b0, st0; \
  474. vmovdqu b1, st1; \
  475. transpose_4x4(a2, b2, c2, d2, b0, b1); \
  476. transpose_4x4(a3, b3, c3, d3, b0, b1); \
  477. vmovdqu st0, b0; \
  478. vmovdqu st1, b1; \
  479. /* does not adjust output bytes inside vectors */
  480. /* load blocks to registers and apply pre-whitening */
  481. #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  482. y6, y7, rio, key) \
  483. vpbroadcastq key, x0; \
  484. vpshufb .Lpack_bswap, x0, x0; \
  485. \
  486. vpxor 0 * 32(rio), x0, y7; \
  487. vpxor 1 * 32(rio), x0, y6; \
  488. vpxor 2 * 32(rio), x0, y5; \
  489. vpxor 3 * 32(rio), x0, y4; \
  490. vpxor 4 * 32(rio), x0, y3; \
  491. vpxor 5 * 32(rio), x0, y2; \
  492. vpxor 6 * 32(rio), x0, y1; \
  493. vpxor 7 * 32(rio), x0, y0; \
  494. vpxor 8 * 32(rio), x0, x7; \
  495. vpxor 9 * 32(rio), x0, x6; \
  496. vpxor 10 * 32(rio), x0, x5; \
  497. vpxor 11 * 32(rio), x0, x4; \
  498. vpxor 12 * 32(rio), x0, x3; \
  499. vpxor 13 * 32(rio), x0, x2; \
  500. vpxor 14 * 32(rio), x0, x1; \
  501. vpxor 15 * 32(rio), x0, x0;
  502. /* byteslice pre-whitened blocks and store to temporary memory */
  503. #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  504. y6, y7, mem_ab, mem_cd) \
  505. byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
  506. y4, y5, y6, y7, (mem_ab), (mem_cd)); \
  507. \
  508. vmovdqu x0, 0 * 32(mem_ab); \
  509. vmovdqu x1, 1 * 32(mem_ab); \
  510. vmovdqu x2, 2 * 32(mem_ab); \
  511. vmovdqu x3, 3 * 32(mem_ab); \
  512. vmovdqu x4, 4 * 32(mem_ab); \
  513. vmovdqu x5, 5 * 32(mem_ab); \
  514. vmovdqu x6, 6 * 32(mem_ab); \
  515. vmovdqu x7, 7 * 32(mem_ab); \
  516. vmovdqu y0, 0 * 32(mem_cd); \
  517. vmovdqu y1, 1 * 32(mem_cd); \
  518. vmovdqu y2, 2 * 32(mem_cd); \
  519. vmovdqu y3, 3 * 32(mem_cd); \
  520. vmovdqu y4, 4 * 32(mem_cd); \
  521. vmovdqu y5, 5 * 32(mem_cd); \
  522. vmovdqu y6, 6 * 32(mem_cd); \
  523. vmovdqu y7, 7 * 32(mem_cd);
  524. /* de-byteslice, apply post-whitening and store blocks */
  525. #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
  526. y5, y6, y7, key, stack_tmp0, stack_tmp1) \
  527. byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
  528. y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
  529. \
  530. vmovdqu x0, stack_tmp0; \
  531. \
  532. vpbroadcastq key, x0; \
  533. vpshufb .Lpack_bswap, x0, x0; \
  534. \
  535. vpxor x0, y7, y7; \
  536. vpxor x0, y6, y6; \
  537. vpxor x0, y5, y5; \
  538. vpxor x0, y4, y4; \
  539. vpxor x0, y3, y3; \
  540. vpxor x0, y2, y2; \
  541. vpxor x0, y1, y1; \
  542. vpxor x0, y0, y0; \
  543. vpxor x0, x7, x7; \
  544. vpxor x0, x6, x6; \
  545. vpxor x0, x5, x5; \
  546. vpxor x0, x4, x4; \
  547. vpxor x0, x3, x3; \
  548. vpxor x0, x2, x2; \
  549. vpxor x0, x1, x1; \
  550. vpxor stack_tmp0, x0, x0;
  551. #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  552. y6, y7, rio) \
  553. vmovdqu x0, 0 * 32(rio); \
  554. vmovdqu x1, 1 * 32(rio); \
  555. vmovdqu x2, 2 * 32(rio); \
  556. vmovdqu x3, 3 * 32(rio); \
  557. vmovdqu x4, 4 * 32(rio); \
  558. vmovdqu x5, 5 * 32(rio); \
  559. vmovdqu x6, 6 * 32(rio); \
  560. vmovdqu x7, 7 * 32(rio); \
  561. vmovdqu y0, 8 * 32(rio); \
  562. vmovdqu y1, 9 * 32(rio); \
  563. vmovdqu y2, 10 * 32(rio); \
  564. vmovdqu y3, 11 * 32(rio); \
  565. vmovdqu y4, 12 * 32(rio); \
  566. vmovdqu y5, 13 * 32(rio); \
  567. vmovdqu y6, 14 * 32(rio); \
  568. vmovdqu y7, 15 * 32(rio);
  569. .data
  570. .align 32
  571. #define SHUFB_BYTES(idx) \
  572. 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
  573. .Lshufb_16x16b:
  574. .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
  575. .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
  576. .Lpack_bswap:
  577. .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
  578. .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
  579. /* For CTR-mode IV byteswap */
  580. .Lbswap128_mask:
  581. .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
  582. /* For XTS mode */
  583. .Lxts_gf128mul_and_shl1_mask_0:
  584. .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
  585. .Lxts_gf128mul_and_shl1_mask_1:
  586. .byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
  587. /*
  588. * pre-SubByte transform
  589. *
  590. * pre-lookup for sbox1, sbox2, sbox3:
  591. * swap_bitendianness(
  592. * isom_map_camellia_to_aes(
  593. * camellia_f(
  594. * swap_bitendianess(in)
  595. * )
  596. * )
  597. * )
  598. *
  599. * (note: '⊕ 0xc5' inside camellia_f())
  600. */
  601. .Lpre_tf_lo_s1:
  602. .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
  603. .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
  604. .Lpre_tf_hi_s1:
  605. .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
  606. .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
  607. /*
  608. * pre-SubByte transform
  609. *
  610. * pre-lookup for sbox4:
  611. * swap_bitendianness(
  612. * isom_map_camellia_to_aes(
  613. * camellia_f(
  614. * swap_bitendianess(in <<< 1)
  615. * )
  616. * )
  617. * )
  618. *
  619. * (note: '⊕ 0xc5' inside camellia_f())
  620. */
  621. .Lpre_tf_lo_s4:
  622. .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
  623. .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
  624. .Lpre_tf_hi_s4:
  625. .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
  626. .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
  627. /*
  628. * post-SubByte transform
  629. *
  630. * post-lookup for sbox1, sbox4:
  631. * swap_bitendianness(
  632. * camellia_h(
  633. * isom_map_aes_to_camellia(
  634. * swap_bitendianness(
  635. * aes_inverse_affine_transform(in)
  636. * )
  637. * )
  638. * )
  639. * )
  640. *
  641. * (note: '⊕ 0x6e' inside camellia_h())
  642. */
  643. .Lpost_tf_lo_s1:
  644. .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
  645. .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
  646. .Lpost_tf_hi_s1:
  647. .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
  648. .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
  649. /*
  650. * post-SubByte transform
  651. *
  652. * post-lookup for sbox2:
  653. * swap_bitendianness(
  654. * camellia_h(
  655. * isom_map_aes_to_camellia(
  656. * swap_bitendianness(
  657. * aes_inverse_affine_transform(in)
  658. * )
  659. * )
  660. * )
  661. * ) <<< 1
  662. *
  663. * (note: '⊕ 0x6e' inside camellia_h())
  664. */
  665. .Lpost_tf_lo_s2:
  666. .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
  667. .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
  668. .Lpost_tf_hi_s2:
  669. .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
  670. .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
  671. /*
  672. * post-SubByte transform
  673. *
  674. * post-lookup for sbox3:
  675. * swap_bitendianness(
  676. * camellia_h(
  677. * isom_map_aes_to_camellia(
  678. * swap_bitendianness(
  679. * aes_inverse_affine_transform(in)
  680. * )
  681. * )
  682. * )
  683. * ) >>> 1
  684. *
  685. * (note: '⊕ 0x6e' inside camellia_h())
  686. */
  687. .Lpost_tf_lo_s3:
  688. .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
  689. .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
  690. .Lpost_tf_hi_s3:
  691. .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
  692. .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
  693. /* For isolating SubBytes from AESENCLAST, inverse shift row */
  694. .Linv_shift_row:
  695. .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
  696. .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
  697. .align 4
  698. /* 4-bit mask */
  699. .L0f0f0f0f:
  700. .long 0x0f0f0f0f
  701. .text
  702. .align 8
  703. __camellia_enc_blk32:
  704. /* input:
  705. * %rdi: ctx, CTX
  706. * %rax: temporary storage, 512 bytes
  707. * %ymm0..%ymm15: 32 plaintext blocks
  708. * output:
  709. * %ymm0..%ymm15: 32 encrypted blocks, order swapped:
  710. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  711. */
  712. leaq 8 * 32(%rax), %rcx;
  713. inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  714. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  715. %ymm15, %rax, %rcx);
  716. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  717. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  718. %ymm15, %rax, %rcx, 0);
  719. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  720. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  721. %ymm15,
  722. ((key_table + (8) * 8) + 0)(CTX),
  723. ((key_table + (8) * 8) + 4)(CTX),
  724. ((key_table + (8) * 8) + 8)(CTX),
  725. ((key_table + (8) * 8) + 12)(CTX));
  726. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  727. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  728. %ymm15, %rax, %rcx, 8);
  729. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  730. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  731. %ymm15,
  732. ((key_table + (16) * 8) + 0)(CTX),
  733. ((key_table + (16) * 8) + 4)(CTX),
  734. ((key_table + (16) * 8) + 8)(CTX),
  735. ((key_table + (16) * 8) + 12)(CTX));
  736. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  737. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  738. %ymm15, %rax, %rcx, 16);
  739. movl $24, %r8d;
  740. cmpl $16, key_length(CTX);
  741. jne .Lenc_max32;
  742. .Lenc_done:
  743. /* load CD for output */
  744. vmovdqu 0 * 32(%rcx), %ymm8;
  745. vmovdqu 1 * 32(%rcx), %ymm9;
  746. vmovdqu 2 * 32(%rcx), %ymm10;
  747. vmovdqu 3 * 32(%rcx), %ymm11;
  748. vmovdqu 4 * 32(%rcx), %ymm12;
  749. vmovdqu 5 * 32(%rcx), %ymm13;
  750. vmovdqu 6 * 32(%rcx), %ymm14;
  751. vmovdqu 7 * 32(%rcx), %ymm15;
  752. outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  753. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  754. %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
  755. ret;
  756. .align 8
  757. .Lenc_max32:
  758. movl $32, %r8d;
  759. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  760. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  761. %ymm15,
  762. ((key_table + (24) * 8) + 0)(CTX),
  763. ((key_table + (24) * 8) + 4)(CTX),
  764. ((key_table + (24) * 8) + 8)(CTX),
  765. ((key_table + (24) * 8) + 12)(CTX));
  766. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  767. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  768. %ymm15, %rax, %rcx, 24);
  769. jmp .Lenc_done;
  770. ENDPROC(__camellia_enc_blk32)
  771. .align 8
  772. __camellia_dec_blk32:
  773. /* input:
  774. * %rdi: ctx, CTX
  775. * %rax: temporary storage, 512 bytes
  776. * %r8d: 24 for 16 byte key, 32 for larger
  777. * %ymm0..%ymm15: 16 encrypted blocks
  778. * output:
  779. * %ymm0..%ymm15: 16 plaintext blocks, order swapped:
  780. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  781. */
  782. leaq 8 * 32(%rax), %rcx;
  783. inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  784. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  785. %ymm15, %rax, %rcx);
  786. cmpl $32, %r8d;
  787. je .Ldec_max32;
  788. .Ldec_max24:
  789. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  790. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  791. %ymm15, %rax, %rcx, 16);
  792. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  793. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  794. %ymm15,
  795. ((key_table + (16) * 8) + 8)(CTX),
  796. ((key_table + (16) * 8) + 12)(CTX),
  797. ((key_table + (16) * 8) + 0)(CTX),
  798. ((key_table + (16) * 8) + 4)(CTX));
  799. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  800. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  801. %ymm15, %rax, %rcx, 8);
  802. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  803. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  804. %ymm15,
  805. ((key_table + (8) * 8) + 8)(CTX),
  806. ((key_table + (8) * 8) + 12)(CTX),
  807. ((key_table + (8) * 8) + 0)(CTX),
  808. ((key_table + (8) * 8) + 4)(CTX));
  809. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  810. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  811. %ymm15, %rax, %rcx, 0);
  812. /* load CD for output */
  813. vmovdqu 0 * 32(%rcx), %ymm8;
  814. vmovdqu 1 * 32(%rcx), %ymm9;
  815. vmovdqu 2 * 32(%rcx), %ymm10;
  816. vmovdqu 3 * 32(%rcx), %ymm11;
  817. vmovdqu 4 * 32(%rcx), %ymm12;
  818. vmovdqu 5 * 32(%rcx), %ymm13;
  819. vmovdqu 6 * 32(%rcx), %ymm14;
  820. vmovdqu 7 * 32(%rcx), %ymm15;
  821. outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  822. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  823. %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
  824. ret;
  825. .align 8
  826. .Ldec_max32:
  827. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  828. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  829. %ymm15, %rax, %rcx, 24);
  830. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  831. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  832. %ymm15,
  833. ((key_table + (24) * 8) + 8)(CTX),
  834. ((key_table + (24) * 8) + 12)(CTX),
  835. ((key_table + (24) * 8) + 0)(CTX),
  836. ((key_table + (24) * 8) + 4)(CTX));
  837. jmp .Ldec_max24;
  838. ENDPROC(__camellia_dec_blk32)
  839. ENTRY(camellia_ecb_enc_32way)
  840. /* input:
  841. * %rdi: ctx, CTX
  842. * %rsi: dst (32 blocks)
  843. * %rdx: src (32 blocks)
  844. */
  845. vzeroupper;
  846. inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  847. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  848. %ymm15, %rdx, (key_table)(CTX));
  849. /* now dst can be used as temporary buffer (even in src == dst case) */
  850. movq %rsi, %rax;
  851. call __camellia_enc_blk32;
  852. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  853. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  854. %ymm8, %rsi);
  855. vzeroupper;
  856. ret;
  857. ENDPROC(camellia_ecb_enc_32way)
  858. ENTRY(camellia_ecb_dec_32way)
  859. /* input:
  860. * %rdi: ctx, CTX
  861. * %rsi: dst (32 blocks)
  862. * %rdx: src (32 blocks)
  863. */
  864. vzeroupper;
  865. cmpl $16, key_length(CTX);
  866. movl $32, %r8d;
  867. movl $24, %eax;
  868. cmovel %eax, %r8d; /* max */
  869. inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  870. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  871. %ymm15, %rdx, (key_table)(CTX, %r8, 8));
  872. /* now dst can be used as temporary buffer (even in src == dst case) */
  873. movq %rsi, %rax;
  874. call __camellia_dec_blk32;
  875. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  876. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  877. %ymm8, %rsi);
  878. vzeroupper;
  879. ret;
  880. ENDPROC(camellia_ecb_dec_32way)
  881. ENTRY(camellia_cbc_dec_32way)
  882. /* input:
  883. * %rdi: ctx, CTX
  884. * %rsi: dst (32 blocks)
  885. * %rdx: src (32 blocks)
  886. */
  887. vzeroupper;
  888. cmpl $16, key_length(CTX);
  889. movl $32, %r8d;
  890. movl $24, %eax;
  891. cmovel %eax, %r8d; /* max */
  892. inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  893. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  894. %ymm15, %rdx, (key_table)(CTX, %r8, 8));
  895. movq %rsp, %r10;
  896. cmpq %rsi, %rdx;
  897. je .Lcbc_dec_use_stack;
  898. /* dst can be used as temporary storage, src is not overwritten. */
  899. movq %rsi, %rax;
  900. jmp .Lcbc_dec_continue;
  901. .Lcbc_dec_use_stack:
  902. /*
  903. * dst still in-use (because dst == src), so use stack for temporary
  904. * storage.
  905. */
  906. subq $(16 * 32), %rsp;
  907. movq %rsp, %rax;
  908. .Lcbc_dec_continue:
  909. call __camellia_dec_blk32;
  910. vmovdqu %ymm7, (%rax);
  911. vpxor %ymm7, %ymm7, %ymm7;
  912. vinserti128 $1, (%rdx), %ymm7, %ymm7;
  913. vpxor (%rax), %ymm7, %ymm7;
  914. movq %r10, %rsp;
  915. vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
  916. vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
  917. vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
  918. vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
  919. vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
  920. vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
  921. vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
  922. vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
  923. vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
  924. vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
  925. vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
  926. vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
  927. vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
  928. vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
  929. vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
  930. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  931. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  932. %ymm8, %rsi);
  933. vzeroupper;
  934. ret;
  935. ENDPROC(camellia_cbc_dec_32way)
  936. #define inc_le128(x, minus_one, tmp) \
  937. vpcmpeqq minus_one, x, tmp; \
  938. vpsubq minus_one, x, x; \
  939. vpslldq $8, tmp, tmp; \
  940. vpsubq tmp, x, x;
  941. #define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
  942. vpcmpeqq minus_one, x, tmp1; \
  943. vpcmpeqq minus_two, x, tmp2; \
  944. vpsubq minus_two, x, x; \
  945. vpor tmp2, tmp1, tmp1; \
  946. vpslldq $8, tmp1, tmp1; \
  947. vpsubq tmp1, x, x;
  948. ENTRY(camellia_ctr_32way)
  949. /* input:
  950. * %rdi: ctx, CTX
  951. * %rsi: dst (32 blocks)
  952. * %rdx: src (32 blocks)
  953. * %rcx: iv (little endian, 128bit)
  954. */
  955. vzeroupper;
  956. movq %rsp, %r10;
  957. cmpq %rsi, %rdx;
  958. je .Lctr_use_stack;
  959. /* dst can be used as temporary storage, src is not overwritten. */
  960. movq %rsi, %rax;
  961. jmp .Lctr_continue;
  962. .Lctr_use_stack:
  963. subq $(16 * 32), %rsp;
  964. movq %rsp, %rax;
  965. .Lctr_continue:
  966. vpcmpeqd %ymm15, %ymm15, %ymm15;
  967. vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
  968. vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
  969. /* load IV and byteswap */
  970. vmovdqu (%rcx), %xmm0;
  971. vmovdqa %xmm0, %xmm1;
  972. inc_le128(%xmm0, %xmm15, %xmm14);
  973. vbroadcasti128 .Lbswap128_mask, %ymm14;
  974. vinserti128 $1, %xmm0, %ymm1, %ymm0;
  975. vpshufb %ymm14, %ymm0, %ymm13;
  976. vmovdqu %ymm13, 15 * 32(%rax);
  977. /* construct IVs */
  978. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
  979. vpshufb %ymm14, %ymm0, %ymm13;
  980. vmovdqu %ymm13, 14 * 32(%rax);
  981. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  982. vpshufb %ymm14, %ymm0, %ymm13;
  983. vmovdqu %ymm13, 13 * 32(%rax);
  984. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  985. vpshufb %ymm14, %ymm0, %ymm13;
  986. vmovdqu %ymm13, 12 * 32(%rax);
  987. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  988. vpshufb %ymm14, %ymm0, %ymm13;
  989. vmovdqu %ymm13, 11 * 32(%rax);
  990. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  991. vpshufb %ymm14, %ymm0, %ymm10;
  992. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  993. vpshufb %ymm14, %ymm0, %ymm9;
  994. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  995. vpshufb %ymm14, %ymm0, %ymm8;
  996. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  997. vpshufb %ymm14, %ymm0, %ymm7;
  998. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  999. vpshufb %ymm14, %ymm0, %ymm6;
  1000. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  1001. vpshufb %ymm14, %ymm0, %ymm5;
  1002. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  1003. vpshufb %ymm14, %ymm0, %ymm4;
  1004. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  1005. vpshufb %ymm14, %ymm0, %ymm3;
  1006. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  1007. vpshufb %ymm14, %ymm0, %ymm2;
  1008. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  1009. vpshufb %ymm14, %ymm0, %ymm1;
  1010. add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
  1011. vextracti128 $1, %ymm0, %xmm13;
  1012. vpshufb %ymm14, %ymm0, %ymm0;
  1013. inc_le128(%xmm13, %xmm15, %xmm14);
  1014. vmovdqu %xmm13, (%rcx);
  1015. /* inpack32_pre: */
  1016. vpbroadcastq (key_table)(CTX), %ymm15;
  1017. vpshufb .Lpack_bswap, %ymm15, %ymm15;
  1018. vpxor %ymm0, %ymm15, %ymm0;
  1019. vpxor %ymm1, %ymm15, %ymm1;
  1020. vpxor %ymm2, %ymm15, %ymm2;
  1021. vpxor %ymm3, %ymm15, %ymm3;
  1022. vpxor %ymm4, %ymm15, %ymm4;
  1023. vpxor %ymm5, %ymm15, %ymm5;
  1024. vpxor %ymm6, %ymm15, %ymm6;
  1025. vpxor %ymm7, %ymm15, %ymm7;
  1026. vpxor %ymm8, %ymm15, %ymm8;
  1027. vpxor %ymm9, %ymm15, %ymm9;
  1028. vpxor %ymm10, %ymm15, %ymm10;
  1029. vpxor 11 * 32(%rax), %ymm15, %ymm11;
  1030. vpxor 12 * 32(%rax), %ymm15, %ymm12;
  1031. vpxor 13 * 32(%rax), %ymm15, %ymm13;
  1032. vpxor 14 * 32(%rax), %ymm15, %ymm14;
  1033. vpxor 15 * 32(%rax), %ymm15, %ymm15;
  1034. call __camellia_enc_blk32;
  1035. movq %r10, %rsp;
  1036. vpxor 0 * 32(%rdx), %ymm7, %ymm7;
  1037. vpxor 1 * 32(%rdx), %ymm6, %ymm6;
  1038. vpxor 2 * 32(%rdx), %ymm5, %ymm5;
  1039. vpxor 3 * 32(%rdx), %ymm4, %ymm4;
  1040. vpxor 4 * 32(%rdx), %ymm3, %ymm3;
  1041. vpxor 5 * 32(%rdx), %ymm2, %ymm2;
  1042. vpxor 6 * 32(%rdx), %ymm1, %ymm1;
  1043. vpxor 7 * 32(%rdx), %ymm0, %ymm0;
  1044. vpxor 8 * 32(%rdx), %ymm15, %ymm15;
  1045. vpxor 9 * 32(%rdx), %ymm14, %ymm14;
  1046. vpxor 10 * 32(%rdx), %ymm13, %ymm13;
  1047. vpxor 11 * 32(%rdx), %ymm12, %ymm12;
  1048. vpxor 12 * 32(%rdx), %ymm11, %ymm11;
  1049. vpxor 13 * 32(%rdx), %ymm10, %ymm10;
  1050. vpxor 14 * 32(%rdx), %ymm9, %ymm9;
  1051. vpxor 15 * 32(%rdx), %ymm8, %ymm8;
  1052. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  1053. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  1054. %ymm8, %rsi);
  1055. vzeroupper;
  1056. ret;
  1057. ENDPROC(camellia_ctr_32way)
  1058. #define gf128mul_x_ble(iv, mask, tmp) \
  1059. vpsrad $31, iv, tmp; \
  1060. vpaddq iv, iv, iv; \
  1061. vpshufd $0x13, tmp, tmp; \
  1062. vpand mask, tmp, tmp; \
  1063. vpxor tmp, iv, iv;
  1064. #define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
  1065. vpsrad $31, iv, tmp0; \
  1066. vpaddq iv, iv, tmp1; \
  1067. vpsllq $2, iv, iv; \
  1068. vpshufd $0x13, tmp0, tmp0; \
  1069. vpsrad $31, tmp1, tmp1; \
  1070. vpand mask2, tmp0, tmp0; \
  1071. vpshufd $0x13, tmp1, tmp1; \
  1072. vpxor tmp0, iv, iv; \
  1073. vpand mask1, tmp1, tmp1; \
  1074. vpxor tmp1, iv, iv;
  1075. .align 8
  1076. camellia_xts_crypt_32way:
  1077. /* input:
  1078. * %rdi: ctx, CTX
  1079. * %rsi: dst (32 blocks)
  1080. * %rdx: src (32 blocks)
  1081. * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
  1082. * %r8: index for input whitening key
  1083. * %r9: pointer to __camellia_enc_blk32 or __camellia_dec_blk32
  1084. */
  1085. vzeroupper;
  1086. subq $(16 * 32), %rsp;
  1087. movq %rsp, %rax;
  1088. vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
  1089. /* load IV and construct second IV */
  1090. vmovdqu (%rcx), %xmm0;
  1091. vmovdqa %xmm0, %xmm15;
  1092. gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
  1093. vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
  1094. vinserti128 $1, %xmm0, %ymm15, %ymm0;
  1095. vpxor 0 * 32(%rdx), %ymm0, %ymm15;
  1096. vmovdqu %ymm15, 15 * 32(%rax);
  1097. vmovdqu %ymm0, 0 * 32(%rsi);
  1098. /* construct IVs */
  1099. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1100. vpxor 1 * 32(%rdx), %ymm0, %ymm15;
  1101. vmovdqu %ymm15, 14 * 32(%rax);
  1102. vmovdqu %ymm0, 1 * 32(%rsi);
  1103. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1104. vpxor 2 * 32(%rdx), %ymm0, %ymm15;
  1105. vmovdqu %ymm15, 13 * 32(%rax);
  1106. vmovdqu %ymm0, 2 * 32(%rsi);
  1107. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1108. vpxor 3 * 32(%rdx), %ymm0, %ymm15;
  1109. vmovdqu %ymm15, 12 * 32(%rax);
  1110. vmovdqu %ymm0, 3 * 32(%rsi);
  1111. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1112. vpxor 4 * 32(%rdx), %ymm0, %ymm11;
  1113. vmovdqu %ymm0, 4 * 32(%rsi);
  1114. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1115. vpxor 5 * 32(%rdx), %ymm0, %ymm10;
  1116. vmovdqu %ymm0, 5 * 32(%rsi);
  1117. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1118. vpxor 6 * 32(%rdx), %ymm0, %ymm9;
  1119. vmovdqu %ymm0, 6 * 32(%rsi);
  1120. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1121. vpxor 7 * 32(%rdx), %ymm0, %ymm8;
  1122. vmovdqu %ymm0, 7 * 32(%rsi);
  1123. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1124. vpxor 8 * 32(%rdx), %ymm0, %ymm7;
  1125. vmovdqu %ymm0, 8 * 32(%rsi);
  1126. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1127. vpxor 9 * 32(%rdx), %ymm0, %ymm6;
  1128. vmovdqu %ymm0, 9 * 32(%rsi);
  1129. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1130. vpxor 10 * 32(%rdx), %ymm0, %ymm5;
  1131. vmovdqu %ymm0, 10 * 32(%rsi);
  1132. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1133. vpxor 11 * 32(%rdx), %ymm0, %ymm4;
  1134. vmovdqu %ymm0, 11 * 32(%rsi);
  1135. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1136. vpxor 12 * 32(%rdx), %ymm0, %ymm3;
  1137. vmovdqu %ymm0, 12 * 32(%rsi);
  1138. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1139. vpxor 13 * 32(%rdx), %ymm0, %ymm2;
  1140. vmovdqu %ymm0, 13 * 32(%rsi);
  1141. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1142. vpxor 14 * 32(%rdx), %ymm0, %ymm1;
  1143. vmovdqu %ymm0, 14 * 32(%rsi);
  1144. gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
  1145. vpxor 15 * 32(%rdx), %ymm0, %ymm15;
  1146. vmovdqu %ymm15, 0 * 32(%rax);
  1147. vmovdqu %ymm0, 15 * 32(%rsi);
  1148. vextracti128 $1, %ymm0, %xmm0;
  1149. gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
  1150. vmovdqu %xmm0, (%rcx);
  1151. /* inpack32_pre: */
  1152. vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
  1153. vpshufb .Lpack_bswap, %ymm15, %ymm15;
  1154. vpxor 0 * 32(%rax), %ymm15, %ymm0;
  1155. vpxor %ymm1, %ymm15, %ymm1;
  1156. vpxor %ymm2, %ymm15, %ymm2;
  1157. vpxor %ymm3, %ymm15, %ymm3;
  1158. vpxor %ymm4, %ymm15, %ymm4;
  1159. vpxor %ymm5, %ymm15, %ymm5;
  1160. vpxor %ymm6, %ymm15, %ymm6;
  1161. vpxor %ymm7, %ymm15, %ymm7;
  1162. vpxor %ymm8, %ymm15, %ymm8;
  1163. vpxor %ymm9, %ymm15, %ymm9;
  1164. vpxor %ymm10, %ymm15, %ymm10;
  1165. vpxor %ymm11, %ymm15, %ymm11;
  1166. vpxor 12 * 32(%rax), %ymm15, %ymm12;
  1167. vpxor 13 * 32(%rax), %ymm15, %ymm13;
  1168. vpxor 14 * 32(%rax), %ymm15, %ymm14;
  1169. vpxor 15 * 32(%rax), %ymm15, %ymm15;
  1170. call *%r9;
  1171. addq $(16 * 32), %rsp;
  1172. vpxor 0 * 32(%rsi), %ymm7, %ymm7;
  1173. vpxor 1 * 32(%rsi), %ymm6, %ymm6;
  1174. vpxor 2 * 32(%rsi), %ymm5, %ymm5;
  1175. vpxor 3 * 32(%rsi), %ymm4, %ymm4;
  1176. vpxor 4 * 32(%rsi), %ymm3, %ymm3;
  1177. vpxor 5 * 32(%rsi), %ymm2, %ymm2;
  1178. vpxor 6 * 32(%rsi), %ymm1, %ymm1;
  1179. vpxor 7 * 32(%rsi), %ymm0, %ymm0;
  1180. vpxor 8 * 32(%rsi), %ymm15, %ymm15;
  1181. vpxor 9 * 32(%rsi), %ymm14, %ymm14;
  1182. vpxor 10 * 32(%rsi), %ymm13, %ymm13;
  1183. vpxor 11 * 32(%rsi), %ymm12, %ymm12;
  1184. vpxor 12 * 32(%rsi), %ymm11, %ymm11;
  1185. vpxor 13 * 32(%rsi), %ymm10, %ymm10;
  1186. vpxor 14 * 32(%rsi), %ymm9, %ymm9;
  1187. vpxor 15 * 32(%rsi), %ymm8, %ymm8;
  1188. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  1189. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  1190. %ymm8, %rsi);
  1191. vzeroupper;
  1192. ret;
  1193. ENDPROC(camellia_xts_crypt_32way)
  1194. ENTRY(camellia_xts_enc_32way)
  1195. /* input:
  1196. * %rdi: ctx, CTX
  1197. * %rsi: dst (32 blocks)
  1198. * %rdx: src (32 blocks)
  1199. * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
  1200. */
  1201. xorl %r8d, %r8d; /* input whitening key, 0 for enc */
  1202. leaq __camellia_enc_blk32, %r9;
  1203. jmp camellia_xts_crypt_32way;
  1204. ENDPROC(camellia_xts_enc_32way)
  1205. ENTRY(camellia_xts_dec_32way)
  1206. /* input:
  1207. * %rdi: ctx, CTX
  1208. * %rsi: dst (32 blocks)
  1209. * %rdx: src (32 blocks)
  1210. * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
  1211. */
  1212. cmpl $16, key_length(CTX);
  1213. movl $32, %r8d;
  1214. movl $24, %eax;
  1215. cmovel %eax, %r8d; /* input whitening key, last for dec */
  1216. leaq __camellia_dec_blk32, %r9;
  1217. jmp camellia_xts_crypt_32way;
  1218. ENDPROC(camellia_xts_dec_32way)