page_alloc.c 167 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. [N_CPU] = { { [0] = 1UL } },
  89. #endif /* NUMA */
  90. };
  91. EXPORT_SYMBOL(node_states);
  92. unsigned long totalram_pages __read_mostly;
  93. unsigned long totalreserve_pages __read_mostly;
  94. /*
  95. * When calculating the number of globally allowed dirty pages, there
  96. * is a certain number of per-zone reserves that should not be
  97. * considered dirtyable memory. This is the sum of those reserves
  98. * over all existing zones that contribute dirtyable memory.
  99. */
  100. unsigned long dirty_balance_reserve __read_mostly;
  101. int percpu_pagelist_fraction;
  102. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  103. #ifdef CONFIG_PM_SLEEP
  104. /*
  105. * The following functions are used by the suspend/hibernate code to temporarily
  106. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  107. * while devices are suspended. To avoid races with the suspend/hibernate code,
  108. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  109. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  110. * guaranteed not to run in parallel with that modification).
  111. */
  112. static gfp_t saved_gfp_mask;
  113. void pm_restore_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. if (saved_gfp_mask) {
  117. gfp_allowed_mask = saved_gfp_mask;
  118. saved_gfp_mask = 0;
  119. }
  120. }
  121. void pm_restrict_gfp_mask(void)
  122. {
  123. WARN_ON(!mutex_is_locked(&pm_mutex));
  124. WARN_ON(saved_gfp_mask);
  125. saved_gfp_mask = gfp_allowed_mask;
  126. gfp_allowed_mask &= ~GFP_IOFS;
  127. }
  128. bool pm_suspended_storage(void)
  129. {
  130. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  131. return false;
  132. return true;
  133. }
  134. #endif /* CONFIG_PM_SLEEP */
  135. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  136. int pageblock_order __read_mostly;
  137. #endif
  138. static void __free_pages_ok(struct page *page, unsigned int order);
  139. /*
  140. * results with 256, 32 in the lowmem_reserve sysctl:
  141. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  142. * 1G machine -> (16M dma, 784M normal, 224M high)
  143. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  144. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  145. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  146. *
  147. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  148. * don't need any ZONE_NORMAL reservation
  149. */
  150. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  151. #ifdef CONFIG_ZONE_DMA
  152. 256,
  153. #endif
  154. #ifdef CONFIG_ZONE_DMA32
  155. 256,
  156. #endif
  157. #ifdef CONFIG_HIGHMEM
  158. 32,
  159. #endif
  160. 32,
  161. };
  162. EXPORT_SYMBOL(totalram_pages);
  163. static char * const zone_names[MAX_NR_ZONES] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. "DMA",
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. "DMA32",
  169. #endif
  170. "Normal",
  171. #ifdef CONFIG_HIGHMEM
  172. "HighMem",
  173. #endif
  174. "Movable",
  175. };
  176. int min_free_kbytes = 1024;
  177. static unsigned long __meminitdata nr_kernel_pages;
  178. static unsigned long __meminitdata nr_all_pages;
  179. static unsigned long __meminitdata dma_reserve;
  180. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  181. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  182. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  183. static unsigned long __initdata required_kernelcore;
  184. static unsigned long __initdata required_movablecore;
  185. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  186. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  187. int movable_zone;
  188. EXPORT_SYMBOL(movable_zone);
  189. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  190. #if MAX_NUMNODES > 1
  191. int nr_node_ids __read_mostly = MAX_NUMNODES;
  192. int nr_online_nodes __read_mostly = 1;
  193. EXPORT_SYMBOL(nr_node_ids);
  194. EXPORT_SYMBOL(nr_online_nodes);
  195. #endif
  196. int page_group_by_mobility_disabled __read_mostly;
  197. /*
  198. * NOTE:
  199. * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
  200. * Instead, use {un}set_pageblock_isolate.
  201. */
  202. void set_pageblock_migratetype(struct page *page, int migratetype)
  203. {
  204. if (unlikely(page_group_by_mobility_disabled))
  205. migratetype = MIGRATE_UNMOVABLE;
  206. set_pageblock_flags_group(page, (unsigned long)migratetype,
  207. PB_migrate, PB_migrate_end);
  208. }
  209. bool oom_killer_disabled __read_mostly;
  210. #ifdef CONFIG_DEBUG_VM
  211. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  212. {
  213. int ret = 0;
  214. unsigned seq;
  215. unsigned long pfn = page_to_pfn(page);
  216. do {
  217. seq = zone_span_seqbegin(zone);
  218. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  219. ret = 1;
  220. else if (pfn < zone->zone_start_pfn)
  221. ret = 1;
  222. } while (zone_span_seqretry(zone, seq));
  223. return ret;
  224. }
  225. static int page_is_consistent(struct zone *zone, struct page *page)
  226. {
  227. if (!pfn_valid_within(page_to_pfn(page)))
  228. return 0;
  229. if (zone != page_zone(page))
  230. return 0;
  231. return 1;
  232. }
  233. /*
  234. * Temporary debugging check for pages not lying within a given zone.
  235. */
  236. static int bad_range(struct zone *zone, struct page *page)
  237. {
  238. if (page_outside_zone_boundaries(zone, page))
  239. return 1;
  240. if (!page_is_consistent(zone, page))
  241. return 1;
  242. return 0;
  243. }
  244. #else
  245. static inline int bad_range(struct zone *zone, struct page *page)
  246. {
  247. return 0;
  248. }
  249. #endif
  250. static void bad_page(struct page *page)
  251. {
  252. static unsigned long resume;
  253. static unsigned long nr_shown;
  254. static unsigned long nr_unshown;
  255. /* Don't complain about poisoned pages */
  256. if (PageHWPoison(page)) {
  257. reset_page_mapcount(page); /* remove PageBuddy */
  258. return;
  259. }
  260. /*
  261. * Allow a burst of 60 reports, then keep quiet for that minute;
  262. * or allow a steady drip of one report per second.
  263. */
  264. if (nr_shown == 60) {
  265. if (time_before(jiffies, resume)) {
  266. nr_unshown++;
  267. goto out;
  268. }
  269. if (nr_unshown) {
  270. printk(KERN_ALERT
  271. "BUG: Bad page state: %lu messages suppressed\n",
  272. nr_unshown);
  273. nr_unshown = 0;
  274. }
  275. nr_shown = 0;
  276. }
  277. if (nr_shown++ == 0)
  278. resume = jiffies + 60 * HZ;
  279. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  280. current->comm, page_to_pfn(page));
  281. dump_page(page);
  282. print_modules();
  283. dump_stack();
  284. out:
  285. /* Leave bad fields for debug, except PageBuddy could make trouble */
  286. reset_page_mapcount(page); /* remove PageBuddy */
  287. add_taint(TAINT_BAD_PAGE);
  288. }
  289. /*
  290. * Higher-order pages are called "compound pages". They are structured thusly:
  291. *
  292. * The first PAGE_SIZE page is called the "head page".
  293. *
  294. * The remaining PAGE_SIZE pages are called "tail pages".
  295. *
  296. * All pages have PG_compound set. All tail pages have their ->first_page
  297. * pointing at the head page.
  298. *
  299. * The first tail page's ->lru.next holds the address of the compound page's
  300. * put_page() function. Its ->lru.prev holds the order of allocation.
  301. * This usage means that zero-order pages may not be compound.
  302. */
  303. static void free_compound_page(struct page *page)
  304. {
  305. __free_pages_ok(page, compound_order(page));
  306. }
  307. void prep_compound_page(struct page *page, unsigned long order)
  308. {
  309. int i;
  310. int nr_pages = 1 << order;
  311. set_compound_page_dtor(page, free_compound_page);
  312. set_compound_order(page, order);
  313. __SetPageHead(page);
  314. for (i = 1; i < nr_pages; i++) {
  315. struct page *p = page + i;
  316. __SetPageTail(p);
  317. set_page_count(p, 0);
  318. p->first_page = page;
  319. }
  320. }
  321. /* update __split_huge_page_refcount if you change this function */
  322. static int destroy_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. int bad = 0;
  327. if (unlikely(compound_order(page) != order) ||
  328. unlikely(!PageHead(page))) {
  329. bad_page(page);
  330. bad++;
  331. }
  332. __ClearPageHead(page);
  333. for (i = 1; i < nr_pages; i++) {
  334. struct page *p = page + i;
  335. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  336. bad_page(page);
  337. bad++;
  338. }
  339. __ClearPageTail(p);
  340. }
  341. return bad;
  342. }
  343. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  344. {
  345. int i;
  346. /*
  347. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  348. * and __GFP_HIGHMEM from hard or soft interrupt context.
  349. */
  350. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  351. for (i = 0; i < (1 << order); i++)
  352. clear_highpage(page + i);
  353. }
  354. #ifdef CONFIG_DEBUG_PAGEALLOC
  355. unsigned int _debug_guardpage_minorder;
  356. static int __init debug_guardpage_minorder_setup(char *buf)
  357. {
  358. unsigned long res;
  359. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  360. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  361. return 0;
  362. }
  363. _debug_guardpage_minorder = res;
  364. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  365. return 0;
  366. }
  367. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  368. static inline void set_page_guard_flag(struct page *page)
  369. {
  370. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  371. }
  372. static inline void clear_page_guard_flag(struct page *page)
  373. {
  374. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  375. }
  376. #else
  377. static inline void set_page_guard_flag(struct page *page) { }
  378. static inline void clear_page_guard_flag(struct page *page) { }
  379. #endif
  380. static inline void set_page_order(struct page *page, int order)
  381. {
  382. set_page_private(page, order);
  383. __SetPageBuddy(page);
  384. }
  385. static inline void rmv_page_order(struct page *page)
  386. {
  387. __ClearPageBuddy(page);
  388. set_page_private(page, 0);
  389. }
  390. /*
  391. * Locate the struct page for both the matching buddy in our
  392. * pair (buddy1) and the combined O(n+1) page they form (page).
  393. *
  394. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  395. * the following equation:
  396. * B2 = B1 ^ (1 << O)
  397. * For example, if the starting buddy (buddy2) is #8 its order
  398. * 1 buddy is #10:
  399. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  400. *
  401. * 2) Any buddy B will have an order O+1 parent P which
  402. * satisfies the following equation:
  403. * P = B & ~(1 << O)
  404. *
  405. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  406. */
  407. static inline unsigned long
  408. __find_buddy_index(unsigned long page_idx, unsigned int order)
  409. {
  410. return page_idx ^ (1 << order);
  411. }
  412. /*
  413. * This function checks whether a page is free && is the buddy
  414. * we can do coalesce a page and its buddy if
  415. * (a) the buddy is not in a hole &&
  416. * (b) the buddy is in the buddy system &&
  417. * (c) a page and its buddy have the same order &&
  418. * (d) a page and its buddy are in the same zone.
  419. *
  420. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  421. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  422. *
  423. * For recording page's order, we use page_private(page).
  424. */
  425. static inline int page_is_buddy(struct page *page, struct page *buddy,
  426. int order)
  427. {
  428. if (!pfn_valid_within(page_to_pfn(buddy)))
  429. return 0;
  430. if (page_zone_id(page) != page_zone_id(buddy))
  431. return 0;
  432. if (page_is_guard(buddy) && page_order(buddy) == order) {
  433. VM_BUG_ON(page_count(buddy) != 0);
  434. return 1;
  435. }
  436. if (PageBuddy(buddy) && page_order(buddy) == order) {
  437. VM_BUG_ON(page_count(buddy) != 0);
  438. return 1;
  439. }
  440. return 0;
  441. }
  442. /*
  443. * Freeing function for a buddy system allocator.
  444. *
  445. * The concept of a buddy system is to maintain direct-mapped table
  446. * (containing bit values) for memory blocks of various "orders".
  447. * The bottom level table contains the map for the smallest allocatable
  448. * units of memory (here, pages), and each level above it describes
  449. * pairs of units from the levels below, hence, "buddies".
  450. * At a high level, all that happens here is marking the table entry
  451. * at the bottom level available, and propagating the changes upward
  452. * as necessary, plus some accounting needed to play nicely with other
  453. * parts of the VM system.
  454. * At each level, we keep a list of pages, which are heads of continuous
  455. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  456. * order is recorded in page_private(page) field.
  457. * So when we are allocating or freeing one, we can derive the state of the
  458. * other. That is, if we allocate a small block, and both were
  459. * free, the remainder of the region must be split into blocks.
  460. * If a block is freed, and its buddy is also free, then this
  461. * triggers coalescing into a block of larger size.
  462. *
  463. * -- wli
  464. */
  465. static inline void __free_one_page(struct page *page,
  466. struct zone *zone, unsigned int order,
  467. int migratetype)
  468. {
  469. unsigned long page_idx;
  470. unsigned long combined_idx;
  471. unsigned long uninitialized_var(buddy_idx);
  472. struct page *buddy;
  473. if (unlikely(PageCompound(page)))
  474. if (unlikely(destroy_compound_page(page, order)))
  475. return;
  476. VM_BUG_ON(migratetype == -1);
  477. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  478. VM_BUG_ON(page_idx & ((1 << order) - 1));
  479. VM_BUG_ON(bad_range(zone, page));
  480. while (order < MAX_ORDER-1) {
  481. buddy_idx = __find_buddy_index(page_idx, order);
  482. buddy = page + (buddy_idx - page_idx);
  483. if (!page_is_buddy(page, buddy, order))
  484. break;
  485. /*
  486. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  487. * merge with it and move up one order.
  488. */
  489. if (page_is_guard(buddy)) {
  490. clear_page_guard_flag(buddy);
  491. set_page_private(page, 0);
  492. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  493. } else {
  494. list_del(&buddy->lru);
  495. zone->free_area[order].nr_free--;
  496. rmv_page_order(buddy);
  497. }
  498. combined_idx = buddy_idx & page_idx;
  499. page = page + (combined_idx - page_idx);
  500. page_idx = combined_idx;
  501. order++;
  502. }
  503. set_page_order(page, order);
  504. /*
  505. * If this is not the largest possible page, check if the buddy
  506. * of the next-highest order is free. If it is, it's possible
  507. * that pages are being freed that will coalesce soon. In case,
  508. * that is happening, add the free page to the tail of the list
  509. * so it's less likely to be used soon and more likely to be merged
  510. * as a higher order page
  511. */
  512. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  513. struct page *higher_page, *higher_buddy;
  514. combined_idx = buddy_idx & page_idx;
  515. higher_page = page + (combined_idx - page_idx);
  516. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  517. higher_buddy = page + (buddy_idx - combined_idx);
  518. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  519. list_add_tail(&page->lru,
  520. &zone->free_area[order].free_list[migratetype]);
  521. goto out;
  522. }
  523. }
  524. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  525. out:
  526. zone->free_area[order].nr_free++;
  527. }
  528. /*
  529. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  530. * Page should not be on lru, so no need to fix that up.
  531. * free_pages_check() will verify...
  532. */
  533. static inline void free_page_mlock(struct page *page)
  534. {
  535. __dec_zone_page_state(page, NR_MLOCK);
  536. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  537. }
  538. static inline int free_pages_check(struct page *page)
  539. {
  540. if (unlikely(page_mapcount(page) |
  541. (page->mapping != NULL) |
  542. (atomic_read(&page->_count) != 0) |
  543. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  544. (mem_cgroup_bad_page_check(page)))) {
  545. bad_page(page);
  546. return 1;
  547. }
  548. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  549. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  550. return 0;
  551. }
  552. /*
  553. * Frees a number of pages from the PCP lists
  554. * Assumes all pages on list are in same zone, and of same order.
  555. * count is the number of pages to free.
  556. *
  557. * If the zone was previously in an "all pages pinned" state then look to
  558. * see if this freeing clears that state.
  559. *
  560. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  561. * pinned" detection logic.
  562. */
  563. static void free_pcppages_bulk(struct zone *zone, int count,
  564. struct per_cpu_pages *pcp)
  565. {
  566. int migratetype = 0;
  567. int batch_free = 0;
  568. int to_free = count;
  569. spin_lock(&zone->lock);
  570. zone->all_unreclaimable = 0;
  571. zone->pages_scanned = 0;
  572. while (to_free) {
  573. struct page *page;
  574. struct list_head *list;
  575. /*
  576. * Remove pages from lists in a round-robin fashion. A
  577. * batch_free count is maintained that is incremented when an
  578. * empty list is encountered. This is so more pages are freed
  579. * off fuller lists instead of spinning excessively around empty
  580. * lists
  581. */
  582. do {
  583. batch_free++;
  584. if (++migratetype == MIGRATE_PCPTYPES)
  585. migratetype = 0;
  586. list = &pcp->lists[migratetype];
  587. } while (list_empty(list));
  588. /* This is the only non-empty list. Free them all. */
  589. if (batch_free == MIGRATE_PCPTYPES)
  590. batch_free = to_free;
  591. do {
  592. page = list_entry(list->prev, struct page, lru);
  593. /* must delete as __free_one_page list manipulates */
  594. list_del(&page->lru);
  595. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  596. __free_one_page(page, zone, 0, page_private(page));
  597. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  598. } while (--to_free && --batch_free && !list_empty(list));
  599. }
  600. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  601. spin_unlock(&zone->lock);
  602. }
  603. static void free_one_page(struct zone *zone, struct page *page, int order,
  604. int migratetype)
  605. {
  606. spin_lock(&zone->lock);
  607. zone->all_unreclaimable = 0;
  608. zone->pages_scanned = 0;
  609. __free_one_page(page, zone, order, migratetype);
  610. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  611. spin_unlock(&zone->lock);
  612. }
  613. static bool free_pages_prepare(struct page *page, unsigned int order)
  614. {
  615. int i;
  616. int bad = 0;
  617. trace_mm_page_free(page, order);
  618. kmemcheck_free_shadow(page, order);
  619. if (PageAnon(page))
  620. page->mapping = NULL;
  621. for (i = 0; i < (1 << order); i++)
  622. bad += free_pages_check(page + i);
  623. if (bad)
  624. return false;
  625. if (!PageHighMem(page)) {
  626. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  627. debug_check_no_obj_freed(page_address(page),
  628. PAGE_SIZE << order);
  629. }
  630. arch_free_page(page, order);
  631. kernel_map_pages(page, 1 << order, 0);
  632. return true;
  633. }
  634. static void __free_pages_ok(struct page *page, unsigned int order)
  635. {
  636. unsigned long flags;
  637. int wasMlocked = __TestClearPageMlocked(page);
  638. if (!free_pages_prepare(page, order))
  639. return;
  640. local_irq_save(flags);
  641. if (unlikely(wasMlocked))
  642. free_page_mlock(page);
  643. __count_vm_events(PGFREE, 1 << order);
  644. free_one_page(page_zone(page), page, order,
  645. get_pageblock_migratetype(page));
  646. local_irq_restore(flags);
  647. }
  648. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  649. {
  650. unsigned int nr_pages = 1 << order;
  651. unsigned int loop;
  652. prefetchw(page);
  653. for (loop = 0; loop < nr_pages; loop++) {
  654. struct page *p = &page[loop];
  655. if (loop + 1 < nr_pages)
  656. prefetchw(p + 1);
  657. __ClearPageReserved(p);
  658. set_page_count(p, 0);
  659. }
  660. set_page_refcounted(page);
  661. __free_pages(page, order);
  662. }
  663. #ifdef CONFIG_CMA
  664. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  665. void __init init_cma_reserved_pageblock(struct page *page)
  666. {
  667. unsigned i = pageblock_nr_pages;
  668. struct page *p = page;
  669. do {
  670. __ClearPageReserved(p);
  671. set_page_count(p, 0);
  672. } while (++p, --i);
  673. set_page_refcounted(page);
  674. set_pageblock_migratetype(page, MIGRATE_CMA);
  675. __free_pages(page, pageblock_order);
  676. totalram_pages += pageblock_nr_pages;
  677. }
  678. #endif
  679. /*
  680. * The order of subdivision here is critical for the IO subsystem.
  681. * Please do not alter this order without good reasons and regression
  682. * testing. Specifically, as large blocks of memory are subdivided,
  683. * the order in which smaller blocks are delivered depends on the order
  684. * they're subdivided in this function. This is the primary factor
  685. * influencing the order in which pages are delivered to the IO
  686. * subsystem according to empirical testing, and this is also justified
  687. * by considering the behavior of a buddy system containing a single
  688. * large block of memory acted on by a series of small allocations.
  689. * This behavior is a critical factor in sglist merging's success.
  690. *
  691. * -- wli
  692. */
  693. static inline void expand(struct zone *zone, struct page *page,
  694. int low, int high, struct free_area *area,
  695. int migratetype)
  696. {
  697. unsigned long size = 1 << high;
  698. while (high > low) {
  699. area--;
  700. high--;
  701. size >>= 1;
  702. VM_BUG_ON(bad_range(zone, &page[size]));
  703. #ifdef CONFIG_DEBUG_PAGEALLOC
  704. if (high < debug_guardpage_minorder()) {
  705. /*
  706. * Mark as guard pages (or page), that will allow to
  707. * merge back to allocator when buddy will be freed.
  708. * Corresponding page table entries will not be touched,
  709. * pages will stay not present in virtual address space
  710. */
  711. INIT_LIST_HEAD(&page[size].lru);
  712. set_page_guard_flag(&page[size]);
  713. set_page_private(&page[size], high);
  714. /* Guard pages are not available for any usage */
  715. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
  716. continue;
  717. }
  718. #endif
  719. list_add(&page[size].lru, &area->free_list[migratetype]);
  720. area->nr_free++;
  721. set_page_order(&page[size], high);
  722. }
  723. }
  724. /*
  725. * This page is about to be returned from the page allocator
  726. */
  727. static inline int check_new_page(struct page *page)
  728. {
  729. if (unlikely(page_mapcount(page) |
  730. (page->mapping != NULL) |
  731. (atomic_read(&page->_count) != 0) |
  732. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  733. (mem_cgroup_bad_page_check(page)))) {
  734. bad_page(page);
  735. return 1;
  736. }
  737. return 0;
  738. }
  739. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  740. {
  741. int i;
  742. for (i = 0; i < (1 << order); i++) {
  743. struct page *p = page + i;
  744. if (unlikely(check_new_page(p)))
  745. return 1;
  746. }
  747. set_page_private(page, 0);
  748. set_page_refcounted(page);
  749. arch_alloc_page(page, order);
  750. kernel_map_pages(page, 1 << order, 1);
  751. if (gfp_flags & __GFP_ZERO)
  752. prep_zero_page(page, order, gfp_flags);
  753. if (order && (gfp_flags & __GFP_COMP))
  754. prep_compound_page(page, order);
  755. return 0;
  756. }
  757. /*
  758. * Go through the free lists for the given migratetype and remove
  759. * the smallest available page from the freelists
  760. */
  761. static inline
  762. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  763. int migratetype)
  764. {
  765. unsigned int current_order;
  766. struct free_area * area;
  767. struct page *page;
  768. /* Find a page of the appropriate size in the preferred list */
  769. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  770. area = &(zone->free_area[current_order]);
  771. if (list_empty(&area->free_list[migratetype]))
  772. continue;
  773. page = list_entry(area->free_list[migratetype].next,
  774. struct page, lru);
  775. list_del(&page->lru);
  776. rmv_page_order(page);
  777. area->nr_free--;
  778. expand(zone, page, order, current_order, area, migratetype);
  779. return page;
  780. }
  781. return NULL;
  782. }
  783. /*
  784. * This array describes the order lists are fallen back to when
  785. * the free lists for the desirable migrate type are depleted
  786. */
  787. static int fallbacks[MIGRATE_TYPES][4] = {
  788. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  789. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  790. #ifdef CONFIG_CMA
  791. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  792. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  793. #else
  794. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  795. #endif
  796. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  797. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  798. };
  799. /*
  800. * Move the free pages in a range to the free lists of the requested type.
  801. * Note that start_page and end_pages are not aligned on a pageblock
  802. * boundary. If alignment is required, use move_freepages_block()
  803. */
  804. static int move_freepages(struct zone *zone,
  805. struct page *start_page, struct page *end_page,
  806. int migratetype)
  807. {
  808. struct page *page;
  809. unsigned long order;
  810. int pages_moved = 0;
  811. #ifndef CONFIG_HOLES_IN_ZONE
  812. /*
  813. * page_zone is not safe to call in this context when
  814. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  815. * anyway as we check zone boundaries in move_freepages_block().
  816. * Remove at a later date when no bug reports exist related to
  817. * grouping pages by mobility
  818. */
  819. BUG_ON(page_zone(start_page) != page_zone(end_page));
  820. #endif
  821. for (page = start_page; page <= end_page;) {
  822. /* Make sure we are not inadvertently changing nodes */
  823. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  824. if (!pfn_valid_within(page_to_pfn(page))) {
  825. page++;
  826. continue;
  827. }
  828. if (!PageBuddy(page)) {
  829. page++;
  830. continue;
  831. }
  832. order = page_order(page);
  833. list_move(&page->lru,
  834. &zone->free_area[order].free_list[migratetype]);
  835. page += 1 << order;
  836. pages_moved += 1 << order;
  837. }
  838. return pages_moved;
  839. }
  840. int move_freepages_block(struct zone *zone, struct page *page,
  841. int migratetype)
  842. {
  843. unsigned long start_pfn, end_pfn;
  844. struct page *start_page, *end_page;
  845. start_pfn = page_to_pfn(page);
  846. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  847. start_page = pfn_to_page(start_pfn);
  848. end_page = start_page + pageblock_nr_pages - 1;
  849. end_pfn = start_pfn + pageblock_nr_pages - 1;
  850. /* Do not cross zone boundaries */
  851. if (start_pfn < zone->zone_start_pfn)
  852. start_page = page;
  853. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  854. return 0;
  855. return move_freepages(zone, start_page, end_page, migratetype);
  856. }
  857. static void change_pageblock_range(struct page *pageblock_page,
  858. int start_order, int migratetype)
  859. {
  860. int nr_pageblocks = 1 << (start_order - pageblock_order);
  861. while (nr_pageblocks--) {
  862. set_pageblock_migratetype(pageblock_page, migratetype);
  863. pageblock_page += pageblock_nr_pages;
  864. }
  865. }
  866. /* Remove an element from the buddy allocator from the fallback list */
  867. static inline struct page *
  868. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  869. {
  870. struct free_area * area;
  871. int current_order;
  872. struct page *page;
  873. int migratetype, i;
  874. /* Find the largest possible block of pages in the other list */
  875. for (current_order = MAX_ORDER-1; current_order >= order;
  876. --current_order) {
  877. for (i = 0;; i++) {
  878. migratetype = fallbacks[start_migratetype][i];
  879. /* MIGRATE_RESERVE handled later if necessary */
  880. if (migratetype == MIGRATE_RESERVE)
  881. break;
  882. area = &(zone->free_area[current_order]);
  883. if (list_empty(&area->free_list[migratetype]))
  884. continue;
  885. page = list_entry(area->free_list[migratetype].next,
  886. struct page, lru);
  887. area->nr_free--;
  888. /*
  889. * If breaking a large block of pages, move all free
  890. * pages to the preferred allocation list. If falling
  891. * back for a reclaimable kernel allocation, be more
  892. * aggressive about taking ownership of free pages
  893. *
  894. * On the other hand, never change migration
  895. * type of MIGRATE_CMA pageblocks nor move CMA
  896. * pages on different free lists. We don't
  897. * want unmovable pages to be allocated from
  898. * MIGRATE_CMA areas.
  899. */
  900. if (!is_migrate_cma(migratetype) &&
  901. (unlikely(current_order >= pageblock_order / 2) ||
  902. start_migratetype == MIGRATE_RECLAIMABLE ||
  903. page_group_by_mobility_disabled)) {
  904. int pages;
  905. pages = move_freepages_block(zone, page,
  906. start_migratetype);
  907. /* Claim the whole block if over half of it is free */
  908. if (pages >= (1 << (pageblock_order-1)) ||
  909. page_group_by_mobility_disabled)
  910. set_pageblock_migratetype(page,
  911. start_migratetype);
  912. migratetype = start_migratetype;
  913. }
  914. /* Remove the page from the freelists */
  915. list_del(&page->lru);
  916. rmv_page_order(page);
  917. /* Take ownership for orders >= pageblock_order */
  918. if (current_order >= pageblock_order &&
  919. !is_migrate_cma(migratetype))
  920. change_pageblock_range(page, current_order,
  921. start_migratetype);
  922. expand(zone, page, order, current_order, area,
  923. is_migrate_cma(migratetype)
  924. ? migratetype : start_migratetype);
  925. trace_mm_page_alloc_extfrag(page, order, current_order,
  926. start_migratetype, migratetype);
  927. return page;
  928. }
  929. }
  930. return NULL;
  931. }
  932. /*
  933. * Do the hard work of removing an element from the buddy allocator.
  934. * Call me with the zone->lock already held.
  935. */
  936. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  937. int migratetype)
  938. {
  939. struct page *page;
  940. retry_reserve:
  941. page = __rmqueue_smallest(zone, order, migratetype);
  942. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  943. page = __rmqueue_fallback(zone, order, migratetype);
  944. /*
  945. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  946. * is used because __rmqueue_smallest is an inline function
  947. * and we want just one call site
  948. */
  949. if (!page) {
  950. migratetype = MIGRATE_RESERVE;
  951. goto retry_reserve;
  952. }
  953. }
  954. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  955. return page;
  956. }
  957. /*
  958. * Obtain a specified number of elements from the buddy allocator, all under
  959. * a single hold of the lock, for efficiency. Add them to the supplied list.
  960. * Returns the number of new pages which were placed at *list.
  961. */
  962. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  963. unsigned long count, struct list_head *list,
  964. int migratetype, int cold)
  965. {
  966. int mt = migratetype, i;
  967. spin_lock(&zone->lock);
  968. for (i = 0; i < count; ++i) {
  969. struct page *page = __rmqueue(zone, order, migratetype);
  970. if (unlikely(page == NULL))
  971. break;
  972. /*
  973. * Split buddy pages returned by expand() are received here
  974. * in physical page order. The page is added to the callers and
  975. * list and the list head then moves forward. From the callers
  976. * perspective, the linked list is ordered by page number in
  977. * some conditions. This is useful for IO devices that can
  978. * merge IO requests if the physical pages are ordered
  979. * properly.
  980. */
  981. if (likely(cold == 0))
  982. list_add(&page->lru, list);
  983. else
  984. list_add_tail(&page->lru, list);
  985. if (IS_ENABLED(CONFIG_CMA)) {
  986. mt = get_pageblock_migratetype(page);
  987. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  988. mt = migratetype;
  989. }
  990. set_page_private(page, mt);
  991. list = &page->lru;
  992. }
  993. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  994. spin_unlock(&zone->lock);
  995. return i;
  996. }
  997. #ifdef CONFIG_NUMA
  998. /*
  999. * Called from the vmstat counter updater to drain pagesets of this
  1000. * currently executing processor on remote nodes after they have
  1001. * expired.
  1002. *
  1003. * Note that this function must be called with the thread pinned to
  1004. * a single processor.
  1005. */
  1006. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1007. {
  1008. unsigned long flags;
  1009. int to_drain;
  1010. local_irq_save(flags);
  1011. if (pcp->count >= pcp->batch)
  1012. to_drain = pcp->batch;
  1013. else
  1014. to_drain = pcp->count;
  1015. if (to_drain > 0) {
  1016. free_pcppages_bulk(zone, to_drain, pcp);
  1017. pcp->count -= to_drain;
  1018. }
  1019. local_irq_restore(flags);
  1020. }
  1021. #endif
  1022. /*
  1023. * Drain pages of the indicated processor.
  1024. *
  1025. * The processor must either be the current processor and the
  1026. * thread pinned to the current processor or a processor that
  1027. * is not online.
  1028. */
  1029. static void drain_pages(unsigned int cpu)
  1030. {
  1031. unsigned long flags;
  1032. struct zone *zone;
  1033. for_each_populated_zone(zone) {
  1034. struct per_cpu_pageset *pset;
  1035. struct per_cpu_pages *pcp;
  1036. local_irq_save(flags);
  1037. pset = per_cpu_ptr(zone->pageset, cpu);
  1038. pcp = &pset->pcp;
  1039. if (pcp->count) {
  1040. free_pcppages_bulk(zone, pcp->count, pcp);
  1041. pcp->count = 0;
  1042. }
  1043. local_irq_restore(flags);
  1044. }
  1045. }
  1046. /*
  1047. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1048. */
  1049. void drain_local_pages(void *arg)
  1050. {
  1051. drain_pages(smp_processor_id());
  1052. }
  1053. /*
  1054. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1055. *
  1056. * Note that this code is protected against sending an IPI to an offline
  1057. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1058. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1059. * nothing keeps CPUs from showing up after we populated the cpumask and
  1060. * before the call to on_each_cpu_mask().
  1061. */
  1062. void drain_all_pages(void)
  1063. {
  1064. int cpu;
  1065. struct per_cpu_pageset *pcp;
  1066. struct zone *zone;
  1067. /*
  1068. * Allocate in the BSS so we wont require allocation in
  1069. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1070. */
  1071. static cpumask_t cpus_with_pcps;
  1072. /*
  1073. * We don't care about racing with CPU hotplug event
  1074. * as offline notification will cause the notified
  1075. * cpu to drain that CPU pcps and on_each_cpu_mask
  1076. * disables preemption as part of its processing
  1077. */
  1078. for_each_online_cpu(cpu) {
  1079. bool has_pcps = false;
  1080. for_each_populated_zone(zone) {
  1081. pcp = per_cpu_ptr(zone->pageset, cpu);
  1082. if (pcp->pcp.count) {
  1083. has_pcps = true;
  1084. break;
  1085. }
  1086. }
  1087. if (has_pcps)
  1088. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1089. else
  1090. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1091. }
  1092. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1093. }
  1094. #ifdef CONFIG_HIBERNATION
  1095. void mark_free_pages(struct zone *zone)
  1096. {
  1097. unsigned long pfn, max_zone_pfn;
  1098. unsigned long flags;
  1099. int order, t;
  1100. struct list_head *curr;
  1101. if (!zone->spanned_pages)
  1102. return;
  1103. spin_lock_irqsave(&zone->lock, flags);
  1104. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1105. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1106. if (pfn_valid(pfn)) {
  1107. struct page *page = pfn_to_page(pfn);
  1108. if (!swsusp_page_is_forbidden(page))
  1109. swsusp_unset_page_free(page);
  1110. }
  1111. for_each_migratetype_order(order, t) {
  1112. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1113. unsigned long i;
  1114. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1115. for (i = 0; i < (1UL << order); i++)
  1116. swsusp_set_page_free(pfn_to_page(pfn + i));
  1117. }
  1118. }
  1119. spin_unlock_irqrestore(&zone->lock, flags);
  1120. }
  1121. #endif /* CONFIG_PM */
  1122. /*
  1123. * Free a 0-order page
  1124. * cold == 1 ? free a cold page : free a hot page
  1125. */
  1126. void free_hot_cold_page(struct page *page, int cold)
  1127. {
  1128. struct zone *zone = page_zone(page);
  1129. struct per_cpu_pages *pcp;
  1130. unsigned long flags;
  1131. int migratetype;
  1132. int wasMlocked = __TestClearPageMlocked(page);
  1133. if (!free_pages_prepare(page, 0))
  1134. return;
  1135. migratetype = get_pageblock_migratetype(page);
  1136. set_page_private(page, migratetype);
  1137. local_irq_save(flags);
  1138. if (unlikely(wasMlocked))
  1139. free_page_mlock(page);
  1140. __count_vm_event(PGFREE);
  1141. /*
  1142. * We only track unmovable, reclaimable and movable on pcp lists.
  1143. * Free ISOLATE pages back to the allocator because they are being
  1144. * offlined but treat RESERVE as movable pages so we can get those
  1145. * areas back if necessary. Otherwise, we may have to free
  1146. * excessively into the page allocator
  1147. */
  1148. if (migratetype >= MIGRATE_PCPTYPES) {
  1149. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1150. free_one_page(zone, page, 0, migratetype);
  1151. goto out;
  1152. }
  1153. migratetype = MIGRATE_MOVABLE;
  1154. }
  1155. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1156. if (cold)
  1157. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1158. else
  1159. list_add(&page->lru, &pcp->lists[migratetype]);
  1160. pcp->count++;
  1161. if (pcp->count >= pcp->high) {
  1162. free_pcppages_bulk(zone, pcp->batch, pcp);
  1163. pcp->count -= pcp->batch;
  1164. }
  1165. out:
  1166. local_irq_restore(flags);
  1167. }
  1168. /*
  1169. * Free a list of 0-order pages
  1170. */
  1171. void free_hot_cold_page_list(struct list_head *list, int cold)
  1172. {
  1173. struct page *page, *next;
  1174. list_for_each_entry_safe(page, next, list, lru) {
  1175. trace_mm_page_free_batched(page, cold);
  1176. free_hot_cold_page(page, cold);
  1177. }
  1178. }
  1179. /*
  1180. * split_page takes a non-compound higher-order page, and splits it into
  1181. * n (1<<order) sub-pages: page[0..n]
  1182. * Each sub-page must be freed individually.
  1183. *
  1184. * Note: this is probably too low level an operation for use in drivers.
  1185. * Please consult with lkml before using this in your driver.
  1186. */
  1187. void split_page(struct page *page, unsigned int order)
  1188. {
  1189. int i;
  1190. VM_BUG_ON(PageCompound(page));
  1191. VM_BUG_ON(!page_count(page));
  1192. #ifdef CONFIG_KMEMCHECK
  1193. /*
  1194. * Split shadow pages too, because free(page[0]) would
  1195. * otherwise free the whole shadow.
  1196. */
  1197. if (kmemcheck_page_is_tracked(page))
  1198. split_page(virt_to_page(page[0].shadow), order);
  1199. #endif
  1200. for (i = 1; i < (1 << order); i++)
  1201. set_page_refcounted(page + i);
  1202. }
  1203. /*
  1204. * Similar to split_page except the page is already free. As this is only
  1205. * being used for migration, the migratetype of the block also changes.
  1206. * As this is called with interrupts disabled, the caller is responsible
  1207. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1208. * are enabled.
  1209. *
  1210. * Note: this is probably too low level an operation for use in drivers.
  1211. * Please consult with lkml before using this in your driver.
  1212. */
  1213. int split_free_page(struct page *page)
  1214. {
  1215. unsigned int order;
  1216. unsigned long watermark;
  1217. struct zone *zone;
  1218. BUG_ON(!PageBuddy(page));
  1219. zone = page_zone(page);
  1220. order = page_order(page);
  1221. /* Obey watermarks as if the page was being allocated */
  1222. watermark = low_wmark_pages(zone) + (1 << order);
  1223. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1224. return 0;
  1225. /* Remove page from free list */
  1226. list_del(&page->lru);
  1227. zone->free_area[order].nr_free--;
  1228. rmv_page_order(page);
  1229. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1230. /* Split into individual pages */
  1231. set_page_refcounted(page);
  1232. split_page(page, order);
  1233. if (order >= pageblock_order - 1) {
  1234. struct page *endpage = page + (1 << order) - 1;
  1235. for (; page < endpage; page += pageblock_nr_pages) {
  1236. int mt = get_pageblock_migratetype(page);
  1237. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1238. set_pageblock_migratetype(page,
  1239. MIGRATE_MOVABLE);
  1240. }
  1241. }
  1242. return 1 << order;
  1243. }
  1244. /*
  1245. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1246. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1247. * or two.
  1248. */
  1249. static inline
  1250. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1251. struct zone *zone, int order, gfp_t gfp_flags,
  1252. int migratetype)
  1253. {
  1254. unsigned long flags;
  1255. struct page *page;
  1256. int cold = !!(gfp_flags & __GFP_COLD);
  1257. again:
  1258. if (likely(order == 0)) {
  1259. struct per_cpu_pages *pcp;
  1260. struct list_head *list;
  1261. local_irq_save(flags);
  1262. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1263. list = &pcp->lists[migratetype];
  1264. if (list_empty(list)) {
  1265. pcp->count += rmqueue_bulk(zone, 0,
  1266. pcp->batch, list,
  1267. migratetype, cold);
  1268. if (unlikely(list_empty(list)))
  1269. goto failed;
  1270. }
  1271. if (cold)
  1272. page = list_entry(list->prev, struct page, lru);
  1273. else
  1274. page = list_entry(list->next, struct page, lru);
  1275. list_del(&page->lru);
  1276. pcp->count--;
  1277. } else {
  1278. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1279. /*
  1280. * __GFP_NOFAIL is not to be used in new code.
  1281. *
  1282. * All __GFP_NOFAIL callers should be fixed so that they
  1283. * properly detect and handle allocation failures.
  1284. *
  1285. * We most definitely don't want callers attempting to
  1286. * allocate greater than order-1 page units with
  1287. * __GFP_NOFAIL.
  1288. */
  1289. WARN_ON_ONCE(order > 1);
  1290. }
  1291. spin_lock_irqsave(&zone->lock, flags);
  1292. page = __rmqueue(zone, order, migratetype);
  1293. spin_unlock(&zone->lock);
  1294. if (!page)
  1295. goto failed;
  1296. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1297. }
  1298. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1299. zone_statistics(preferred_zone, zone, gfp_flags);
  1300. local_irq_restore(flags);
  1301. VM_BUG_ON(bad_range(zone, page));
  1302. if (prep_new_page(page, order, gfp_flags))
  1303. goto again;
  1304. return page;
  1305. failed:
  1306. local_irq_restore(flags);
  1307. return NULL;
  1308. }
  1309. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1310. #define ALLOC_WMARK_MIN WMARK_MIN
  1311. #define ALLOC_WMARK_LOW WMARK_LOW
  1312. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1313. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1314. /* Mask to get the watermark bits */
  1315. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1316. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1317. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1318. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1319. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1320. static struct {
  1321. struct fault_attr attr;
  1322. u32 ignore_gfp_highmem;
  1323. u32 ignore_gfp_wait;
  1324. u32 min_order;
  1325. } fail_page_alloc = {
  1326. .attr = FAULT_ATTR_INITIALIZER,
  1327. .ignore_gfp_wait = 1,
  1328. .ignore_gfp_highmem = 1,
  1329. .min_order = 1,
  1330. };
  1331. static int __init setup_fail_page_alloc(char *str)
  1332. {
  1333. return setup_fault_attr(&fail_page_alloc.attr, str);
  1334. }
  1335. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1336. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1337. {
  1338. if (order < fail_page_alloc.min_order)
  1339. return false;
  1340. if (gfp_mask & __GFP_NOFAIL)
  1341. return false;
  1342. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1343. return false;
  1344. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1345. return false;
  1346. return should_fail(&fail_page_alloc.attr, 1 << order);
  1347. }
  1348. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1349. static int __init fail_page_alloc_debugfs(void)
  1350. {
  1351. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1352. struct dentry *dir;
  1353. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1354. &fail_page_alloc.attr);
  1355. if (IS_ERR(dir))
  1356. return PTR_ERR(dir);
  1357. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1358. &fail_page_alloc.ignore_gfp_wait))
  1359. goto fail;
  1360. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1361. &fail_page_alloc.ignore_gfp_highmem))
  1362. goto fail;
  1363. if (!debugfs_create_u32("min-order", mode, dir,
  1364. &fail_page_alloc.min_order))
  1365. goto fail;
  1366. return 0;
  1367. fail:
  1368. debugfs_remove_recursive(dir);
  1369. return -ENOMEM;
  1370. }
  1371. late_initcall(fail_page_alloc_debugfs);
  1372. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1373. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1374. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1375. {
  1376. return false;
  1377. }
  1378. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1379. /*
  1380. * Return true if free pages are above 'mark'. This takes into account the order
  1381. * of the allocation.
  1382. */
  1383. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1384. int classzone_idx, int alloc_flags, long free_pages)
  1385. {
  1386. /* free_pages my go negative - that's OK */
  1387. long min = mark;
  1388. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1389. int o;
  1390. free_pages -= (1 << order) - 1;
  1391. if (alloc_flags & ALLOC_HIGH)
  1392. min -= min / 2;
  1393. if (alloc_flags & ALLOC_HARDER)
  1394. min -= min / 4;
  1395. if (free_pages <= min + lowmem_reserve)
  1396. return false;
  1397. for (o = 0; o < order; o++) {
  1398. /* At the next order, this order's pages become unavailable */
  1399. free_pages -= z->free_area[o].nr_free << o;
  1400. /* Require fewer higher order pages to be free */
  1401. min >>= 1;
  1402. if (free_pages <= min)
  1403. return false;
  1404. }
  1405. return true;
  1406. }
  1407. #ifdef CONFIG_MEMORY_ISOLATION
  1408. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1409. {
  1410. if (unlikely(zone->nr_pageblock_isolate))
  1411. return zone->nr_pageblock_isolate * pageblock_nr_pages;
  1412. return 0;
  1413. }
  1414. #else
  1415. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1416. {
  1417. return 0;
  1418. }
  1419. #endif
  1420. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1421. int classzone_idx, int alloc_flags)
  1422. {
  1423. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1424. zone_page_state(z, NR_FREE_PAGES));
  1425. }
  1426. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1427. int classzone_idx, int alloc_flags)
  1428. {
  1429. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1430. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1431. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1432. /*
  1433. * If the zone has MIGRATE_ISOLATE type free pages, we should consider
  1434. * it. nr_zone_isolate_freepages is never accurate so kswapd might not
  1435. * sleep although it could do so. But this is more desirable for memory
  1436. * hotplug than sleeping which can cause a livelock in the direct
  1437. * reclaim path.
  1438. */
  1439. free_pages -= nr_zone_isolate_freepages(z);
  1440. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1441. free_pages);
  1442. }
  1443. #ifdef CONFIG_NUMA
  1444. /*
  1445. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1446. * skip over zones that are not allowed by the cpuset, or that have
  1447. * been recently (in last second) found to be nearly full. See further
  1448. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1449. * that have to skip over a lot of full or unallowed zones.
  1450. *
  1451. * If the zonelist cache is present in the passed in zonelist, then
  1452. * returns a pointer to the allowed node mask (either the current
  1453. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1454. *
  1455. * If the zonelist cache is not available for this zonelist, does
  1456. * nothing and returns NULL.
  1457. *
  1458. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1459. * a second since last zap'd) then we zap it out (clear its bits.)
  1460. *
  1461. * We hold off even calling zlc_setup, until after we've checked the
  1462. * first zone in the zonelist, on the theory that most allocations will
  1463. * be satisfied from that first zone, so best to examine that zone as
  1464. * quickly as we can.
  1465. */
  1466. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1467. {
  1468. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1469. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1470. zlc = zonelist->zlcache_ptr;
  1471. if (!zlc)
  1472. return NULL;
  1473. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1474. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1475. zlc->last_full_zap = jiffies;
  1476. }
  1477. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1478. &cpuset_current_mems_allowed :
  1479. &node_states[N_HIGH_MEMORY];
  1480. return allowednodes;
  1481. }
  1482. /*
  1483. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1484. * if it is worth looking at further for free memory:
  1485. * 1) Check that the zone isn't thought to be full (doesn't have its
  1486. * bit set in the zonelist_cache fullzones BITMAP).
  1487. * 2) Check that the zones node (obtained from the zonelist_cache
  1488. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1489. * Return true (non-zero) if zone is worth looking at further, or
  1490. * else return false (zero) if it is not.
  1491. *
  1492. * This check -ignores- the distinction between various watermarks,
  1493. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1494. * found to be full for any variation of these watermarks, it will
  1495. * be considered full for up to one second by all requests, unless
  1496. * we are so low on memory on all allowed nodes that we are forced
  1497. * into the second scan of the zonelist.
  1498. *
  1499. * In the second scan we ignore this zonelist cache and exactly
  1500. * apply the watermarks to all zones, even it is slower to do so.
  1501. * We are low on memory in the second scan, and should leave no stone
  1502. * unturned looking for a free page.
  1503. */
  1504. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1505. nodemask_t *allowednodes)
  1506. {
  1507. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1508. int i; /* index of *z in zonelist zones */
  1509. int n; /* node that zone *z is on */
  1510. zlc = zonelist->zlcache_ptr;
  1511. if (!zlc)
  1512. return 1;
  1513. i = z - zonelist->_zonerefs;
  1514. n = zlc->z_to_n[i];
  1515. /* This zone is worth trying if it is allowed but not full */
  1516. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1517. }
  1518. /*
  1519. * Given 'z' scanning a zonelist, set the corresponding bit in
  1520. * zlc->fullzones, so that subsequent attempts to allocate a page
  1521. * from that zone don't waste time re-examining it.
  1522. */
  1523. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1524. {
  1525. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1526. int i; /* index of *z in zonelist zones */
  1527. zlc = zonelist->zlcache_ptr;
  1528. if (!zlc)
  1529. return;
  1530. i = z - zonelist->_zonerefs;
  1531. set_bit(i, zlc->fullzones);
  1532. }
  1533. /*
  1534. * clear all zones full, called after direct reclaim makes progress so that
  1535. * a zone that was recently full is not skipped over for up to a second
  1536. */
  1537. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1538. {
  1539. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1540. zlc = zonelist->zlcache_ptr;
  1541. if (!zlc)
  1542. return;
  1543. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1544. }
  1545. #else /* CONFIG_NUMA */
  1546. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1547. {
  1548. return NULL;
  1549. }
  1550. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1551. nodemask_t *allowednodes)
  1552. {
  1553. return 1;
  1554. }
  1555. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1556. {
  1557. }
  1558. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1559. {
  1560. }
  1561. #endif /* CONFIG_NUMA */
  1562. /*
  1563. * get_page_from_freelist goes through the zonelist trying to allocate
  1564. * a page.
  1565. */
  1566. static struct page *
  1567. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1568. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1569. struct zone *preferred_zone, int migratetype)
  1570. {
  1571. struct zoneref *z;
  1572. struct page *page = NULL;
  1573. int classzone_idx;
  1574. struct zone *zone;
  1575. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1576. int zlc_active = 0; /* set if using zonelist_cache */
  1577. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1578. classzone_idx = zone_idx(preferred_zone);
  1579. zonelist_scan:
  1580. /*
  1581. * Scan zonelist, looking for a zone with enough free.
  1582. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1583. */
  1584. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1585. high_zoneidx, nodemask) {
  1586. if (NUMA_BUILD && zlc_active &&
  1587. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1588. continue;
  1589. if ((alloc_flags & ALLOC_CPUSET) &&
  1590. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1591. continue;
  1592. /*
  1593. * When allocating a page cache page for writing, we
  1594. * want to get it from a zone that is within its dirty
  1595. * limit, such that no single zone holds more than its
  1596. * proportional share of globally allowed dirty pages.
  1597. * The dirty limits take into account the zone's
  1598. * lowmem reserves and high watermark so that kswapd
  1599. * should be able to balance it without having to
  1600. * write pages from its LRU list.
  1601. *
  1602. * This may look like it could increase pressure on
  1603. * lower zones by failing allocations in higher zones
  1604. * before they are full. But the pages that do spill
  1605. * over are limited as the lower zones are protected
  1606. * by this very same mechanism. It should not become
  1607. * a practical burden to them.
  1608. *
  1609. * XXX: For now, allow allocations to potentially
  1610. * exceed the per-zone dirty limit in the slowpath
  1611. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1612. * which is important when on a NUMA setup the allowed
  1613. * zones are together not big enough to reach the
  1614. * global limit. The proper fix for these situations
  1615. * will require awareness of zones in the
  1616. * dirty-throttling and the flusher threads.
  1617. */
  1618. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1619. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1620. goto this_zone_full;
  1621. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1622. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1623. unsigned long mark;
  1624. int ret;
  1625. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1626. if (zone_watermark_ok(zone, order, mark,
  1627. classzone_idx, alloc_flags))
  1628. goto try_this_zone;
  1629. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1630. /*
  1631. * we do zlc_setup if there are multiple nodes
  1632. * and before considering the first zone allowed
  1633. * by the cpuset.
  1634. */
  1635. allowednodes = zlc_setup(zonelist, alloc_flags);
  1636. zlc_active = 1;
  1637. did_zlc_setup = 1;
  1638. }
  1639. if (zone_reclaim_mode == 0)
  1640. goto this_zone_full;
  1641. /*
  1642. * As we may have just activated ZLC, check if the first
  1643. * eligible zone has failed zone_reclaim recently.
  1644. */
  1645. if (NUMA_BUILD && zlc_active &&
  1646. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1647. continue;
  1648. ret = zone_reclaim(zone, gfp_mask, order);
  1649. switch (ret) {
  1650. case ZONE_RECLAIM_NOSCAN:
  1651. /* did not scan */
  1652. continue;
  1653. case ZONE_RECLAIM_FULL:
  1654. /* scanned but unreclaimable */
  1655. continue;
  1656. default:
  1657. /* did we reclaim enough */
  1658. if (!zone_watermark_ok(zone, order, mark,
  1659. classzone_idx, alloc_flags))
  1660. goto this_zone_full;
  1661. }
  1662. }
  1663. try_this_zone:
  1664. page = buffered_rmqueue(preferred_zone, zone, order,
  1665. gfp_mask, migratetype);
  1666. if (page)
  1667. break;
  1668. this_zone_full:
  1669. if (NUMA_BUILD)
  1670. zlc_mark_zone_full(zonelist, z);
  1671. }
  1672. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1673. /* Disable zlc cache for second zonelist scan */
  1674. zlc_active = 0;
  1675. goto zonelist_scan;
  1676. }
  1677. if (page)
  1678. /*
  1679. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1680. * necessary to allocate the page. The expectation is
  1681. * that the caller is taking steps that will free more
  1682. * memory. The caller should avoid the page being used
  1683. * for !PFMEMALLOC purposes.
  1684. */
  1685. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1686. return page;
  1687. }
  1688. /*
  1689. * Large machines with many possible nodes should not always dump per-node
  1690. * meminfo in irq context.
  1691. */
  1692. static inline bool should_suppress_show_mem(void)
  1693. {
  1694. bool ret = false;
  1695. #if NODES_SHIFT > 8
  1696. ret = in_interrupt();
  1697. #endif
  1698. return ret;
  1699. }
  1700. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1701. DEFAULT_RATELIMIT_INTERVAL,
  1702. DEFAULT_RATELIMIT_BURST);
  1703. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1704. {
  1705. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1706. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1707. debug_guardpage_minorder() > 0)
  1708. return;
  1709. /*
  1710. * This documents exceptions given to allocations in certain
  1711. * contexts that are allowed to allocate outside current's set
  1712. * of allowed nodes.
  1713. */
  1714. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1715. if (test_thread_flag(TIF_MEMDIE) ||
  1716. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1717. filter &= ~SHOW_MEM_FILTER_NODES;
  1718. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1719. filter &= ~SHOW_MEM_FILTER_NODES;
  1720. if (fmt) {
  1721. struct va_format vaf;
  1722. va_list args;
  1723. va_start(args, fmt);
  1724. vaf.fmt = fmt;
  1725. vaf.va = &args;
  1726. pr_warn("%pV", &vaf);
  1727. va_end(args);
  1728. }
  1729. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1730. current->comm, order, gfp_mask);
  1731. dump_stack();
  1732. if (!should_suppress_show_mem())
  1733. show_mem(filter);
  1734. }
  1735. static inline int
  1736. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1737. unsigned long did_some_progress,
  1738. unsigned long pages_reclaimed)
  1739. {
  1740. /* Do not loop if specifically requested */
  1741. if (gfp_mask & __GFP_NORETRY)
  1742. return 0;
  1743. /* Always retry if specifically requested */
  1744. if (gfp_mask & __GFP_NOFAIL)
  1745. return 1;
  1746. /*
  1747. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1748. * making forward progress without invoking OOM. Suspend also disables
  1749. * storage devices so kswapd will not help. Bail if we are suspending.
  1750. */
  1751. if (!did_some_progress && pm_suspended_storage())
  1752. return 0;
  1753. /*
  1754. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1755. * means __GFP_NOFAIL, but that may not be true in other
  1756. * implementations.
  1757. */
  1758. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1759. return 1;
  1760. /*
  1761. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1762. * specified, then we retry until we no longer reclaim any pages
  1763. * (above), or we've reclaimed an order of pages at least as
  1764. * large as the allocation's order. In both cases, if the
  1765. * allocation still fails, we stop retrying.
  1766. */
  1767. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1768. return 1;
  1769. return 0;
  1770. }
  1771. static inline struct page *
  1772. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1773. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1774. nodemask_t *nodemask, struct zone *preferred_zone,
  1775. int migratetype)
  1776. {
  1777. struct page *page;
  1778. /* Acquire the OOM killer lock for the zones in zonelist */
  1779. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1780. schedule_timeout_uninterruptible(1);
  1781. return NULL;
  1782. }
  1783. /*
  1784. * Go through the zonelist yet one more time, keep very high watermark
  1785. * here, this is only to catch a parallel oom killing, we must fail if
  1786. * we're still under heavy pressure.
  1787. */
  1788. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1789. order, zonelist, high_zoneidx,
  1790. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1791. preferred_zone, migratetype);
  1792. if (page)
  1793. goto out;
  1794. if (!(gfp_mask & __GFP_NOFAIL)) {
  1795. /* The OOM killer will not help higher order allocs */
  1796. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1797. goto out;
  1798. /* The OOM killer does not needlessly kill tasks for lowmem */
  1799. if (high_zoneidx < ZONE_NORMAL)
  1800. goto out;
  1801. /*
  1802. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1803. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1804. * The caller should handle page allocation failure by itself if
  1805. * it specifies __GFP_THISNODE.
  1806. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1807. */
  1808. if (gfp_mask & __GFP_THISNODE)
  1809. goto out;
  1810. }
  1811. /* Exhausted what can be done so it's blamo time */
  1812. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1813. out:
  1814. clear_zonelist_oom(zonelist, gfp_mask);
  1815. return page;
  1816. }
  1817. #ifdef CONFIG_COMPACTION
  1818. /* Try memory compaction for high-order allocations before reclaim */
  1819. static struct page *
  1820. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1821. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1822. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1823. int migratetype, bool sync_migration,
  1824. bool *deferred_compaction,
  1825. unsigned long *did_some_progress)
  1826. {
  1827. struct page *page;
  1828. if (!order)
  1829. return NULL;
  1830. if (compaction_deferred(preferred_zone, order)) {
  1831. *deferred_compaction = true;
  1832. return NULL;
  1833. }
  1834. current->flags |= PF_MEMALLOC;
  1835. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1836. nodemask, sync_migration);
  1837. current->flags &= ~PF_MEMALLOC;
  1838. if (*did_some_progress != COMPACT_SKIPPED) {
  1839. /* Page migration frees to the PCP lists but we want merging */
  1840. drain_pages(get_cpu());
  1841. put_cpu();
  1842. page = get_page_from_freelist(gfp_mask, nodemask,
  1843. order, zonelist, high_zoneidx,
  1844. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1845. preferred_zone, migratetype);
  1846. if (page) {
  1847. preferred_zone->compact_considered = 0;
  1848. preferred_zone->compact_defer_shift = 0;
  1849. if (order >= preferred_zone->compact_order_failed)
  1850. preferred_zone->compact_order_failed = order + 1;
  1851. count_vm_event(COMPACTSUCCESS);
  1852. return page;
  1853. }
  1854. /*
  1855. * It's bad if compaction run occurs and fails.
  1856. * The most likely reason is that pages exist,
  1857. * but not enough to satisfy watermarks.
  1858. */
  1859. count_vm_event(COMPACTFAIL);
  1860. /*
  1861. * As async compaction considers a subset of pageblocks, only
  1862. * defer if the failure was a sync compaction failure.
  1863. */
  1864. if (sync_migration)
  1865. defer_compaction(preferred_zone, order);
  1866. cond_resched();
  1867. }
  1868. return NULL;
  1869. }
  1870. #else
  1871. static inline struct page *
  1872. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1873. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1874. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1875. int migratetype, bool sync_migration,
  1876. bool *deferred_compaction,
  1877. unsigned long *did_some_progress)
  1878. {
  1879. return NULL;
  1880. }
  1881. #endif /* CONFIG_COMPACTION */
  1882. /* Perform direct synchronous page reclaim */
  1883. static int
  1884. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1885. nodemask_t *nodemask)
  1886. {
  1887. struct reclaim_state reclaim_state;
  1888. int progress;
  1889. cond_resched();
  1890. /* We now go into synchronous reclaim */
  1891. cpuset_memory_pressure_bump();
  1892. current->flags |= PF_MEMALLOC;
  1893. lockdep_set_current_reclaim_state(gfp_mask);
  1894. reclaim_state.reclaimed_slab = 0;
  1895. current->reclaim_state = &reclaim_state;
  1896. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1897. current->reclaim_state = NULL;
  1898. lockdep_clear_current_reclaim_state();
  1899. current->flags &= ~PF_MEMALLOC;
  1900. cond_resched();
  1901. return progress;
  1902. }
  1903. /* The really slow allocator path where we enter direct reclaim */
  1904. static inline struct page *
  1905. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1906. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1907. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1908. int migratetype, unsigned long *did_some_progress)
  1909. {
  1910. struct page *page = NULL;
  1911. bool drained = false;
  1912. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1913. nodemask);
  1914. if (unlikely(!(*did_some_progress)))
  1915. return NULL;
  1916. /* After successful reclaim, reconsider all zones for allocation */
  1917. if (NUMA_BUILD)
  1918. zlc_clear_zones_full(zonelist);
  1919. retry:
  1920. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1921. zonelist, high_zoneidx,
  1922. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1923. preferred_zone, migratetype);
  1924. /*
  1925. * If an allocation failed after direct reclaim, it could be because
  1926. * pages are pinned on the per-cpu lists. Drain them and try again
  1927. */
  1928. if (!page && !drained) {
  1929. drain_all_pages();
  1930. drained = true;
  1931. goto retry;
  1932. }
  1933. return page;
  1934. }
  1935. /*
  1936. * This is called in the allocator slow-path if the allocation request is of
  1937. * sufficient urgency to ignore watermarks and take other desperate measures
  1938. */
  1939. static inline struct page *
  1940. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1941. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1942. nodemask_t *nodemask, struct zone *preferred_zone,
  1943. int migratetype)
  1944. {
  1945. struct page *page;
  1946. do {
  1947. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1948. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1949. preferred_zone, migratetype);
  1950. if (!page && gfp_mask & __GFP_NOFAIL)
  1951. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1952. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1953. return page;
  1954. }
  1955. static inline
  1956. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1957. enum zone_type high_zoneidx,
  1958. enum zone_type classzone_idx)
  1959. {
  1960. struct zoneref *z;
  1961. struct zone *zone;
  1962. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1963. wakeup_kswapd(zone, order, classzone_idx);
  1964. }
  1965. static inline int
  1966. gfp_to_alloc_flags(gfp_t gfp_mask)
  1967. {
  1968. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1969. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1970. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1971. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1972. /*
  1973. * The caller may dip into page reserves a bit more if the caller
  1974. * cannot run direct reclaim, or if the caller has realtime scheduling
  1975. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1976. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1977. */
  1978. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1979. if (!wait) {
  1980. /*
  1981. * Not worth trying to allocate harder for
  1982. * __GFP_NOMEMALLOC even if it can't schedule.
  1983. */
  1984. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1985. alloc_flags |= ALLOC_HARDER;
  1986. /*
  1987. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1988. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1989. */
  1990. alloc_flags &= ~ALLOC_CPUSET;
  1991. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1992. alloc_flags |= ALLOC_HARDER;
  1993. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1994. if (gfp_mask & __GFP_MEMALLOC)
  1995. alloc_flags |= ALLOC_NO_WATERMARKS;
  1996. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  1997. alloc_flags |= ALLOC_NO_WATERMARKS;
  1998. else if (!in_interrupt() &&
  1999. ((current->flags & PF_MEMALLOC) ||
  2000. unlikely(test_thread_flag(TIF_MEMDIE))))
  2001. alloc_flags |= ALLOC_NO_WATERMARKS;
  2002. }
  2003. return alloc_flags;
  2004. }
  2005. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2006. {
  2007. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2008. }
  2009. static inline struct page *
  2010. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2011. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2012. nodemask_t *nodemask, struct zone *preferred_zone,
  2013. int migratetype)
  2014. {
  2015. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2016. struct page *page = NULL;
  2017. int alloc_flags;
  2018. unsigned long pages_reclaimed = 0;
  2019. unsigned long did_some_progress;
  2020. bool sync_migration = false;
  2021. bool deferred_compaction = false;
  2022. /*
  2023. * In the slowpath, we sanity check order to avoid ever trying to
  2024. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2025. * be using allocators in order of preference for an area that is
  2026. * too large.
  2027. */
  2028. if (order >= MAX_ORDER) {
  2029. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2030. return NULL;
  2031. }
  2032. /*
  2033. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2034. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2035. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2036. * using a larger set of nodes after it has established that the
  2037. * allowed per node queues are empty and that nodes are
  2038. * over allocated.
  2039. */
  2040. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2041. goto nopage;
  2042. restart:
  2043. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2044. wake_all_kswapd(order, zonelist, high_zoneidx,
  2045. zone_idx(preferred_zone));
  2046. /*
  2047. * OK, we're below the kswapd watermark and have kicked background
  2048. * reclaim. Now things get more complex, so set up alloc_flags according
  2049. * to how we want to proceed.
  2050. */
  2051. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2052. /*
  2053. * Find the true preferred zone if the allocation is unconstrained by
  2054. * cpusets.
  2055. */
  2056. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2057. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2058. &preferred_zone);
  2059. rebalance:
  2060. /* This is the last chance, in general, before the goto nopage. */
  2061. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2062. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2063. preferred_zone, migratetype);
  2064. if (page)
  2065. goto got_pg;
  2066. /* Allocate without watermarks if the context allows */
  2067. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2068. /*
  2069. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2070. * the allocation is high priority and these type of
  2071. * allocations are system rather than user orientated
  2072. */
  2073. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2074. page = __alloc_pages_high_priority(gfp_mask, order,
  2075. zonelist, high_zoneidx, nodemask,
  2076. preferred_zone, migratetype);
  2077. if (page) {
  2078. goto got_pg;
  2079. }
  2080. }
  2081. /* Atomic allocations - we can't balance anything */
  2082. if (!wait)
  2083. goto nopage;
  2084. /* Avoid recursion of direct reclaim */
  2085. if (current->flags & PF_MEMALLOC)
  2086. goto nopage;
  2087. /* Avoid allocations with no watermarks from looping endlessly */
  2088. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2089. goto nopage;
  2090. /*
  2091. * Try direct compaction. The first pass is asynchronous. Subsequent
  2092. * attempts after direct reclaim are synchronous
  2093. */
  2094. page = __alloc_pages_direct_compact(gfp_mask, order,
  2095. zonelist, high_zoneidx,
  2096. nodemask,
  2097. alloc_flags, preferred_zone,
  2098. migratetype, sync_migration,
  2099. &deferred_compaction,
  2100. &did_some_progress);
  2101. if (page)
  2102. goto got_pg;
  2103. sync_migration = true;
  2104. /*
  2105. * If compaction is deferred for high-order allocations, it is because
  2106. * sync compaction recently failed. In this is the case and the caller
  2107. * has requested the system not be heavily disrupted, fail the
  2108. * allocation now instead of entering direct reclaim
  2109. */
  2110. if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
  2111. goto nopage;
  2112. /* Try direct reclaim and then allocating */
  2113. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2114. zonelist, high_zoneidx,
  2115. nodemask,
  2116. alloc_flags, preferred_zone,
  2117. migratetype, &did_some_progress);
  2118. if (page)
  2119. goto got_pg;
  2120. /*
  2121. * If we failed to make any progress reclaiming, then we are
  2122. * running out of options and have to consider going OOM
  2123. */
  2124. if (!did_some_progress) {
  2125. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2126. if (oom_killer_disabled)
  2127. goto nopage;
  2128. /* Coredumps can quickly deplete all memory reserves */
  2129. if ((current->flags & PF_DUMPCORE) &&
  2130. !(gfp_mask & __GFP_NOFAIL))
  2131. goto nopage;
  2132. page = __alloc_pages_may_oom(gfp_mask, order,
  2133. zonelist, high_zoneidx,
  2134. nodemask, preferred_zone,
  2135. migratetype);
  2136. if (page)
  2137. goto got_pg;
  2138. if (!(gfp_mask & __GFP_NOFAIL)) {
  2139. /*
  2140. * The oom killer is not called for high-order
  2141. * allocations that may fail, so if no progress
  2142. * is being made, there are no other options and
  2143. * retrying is unlikely to help.
  2144. */
  2145. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2146. goto nopage;
  2147. /*
  2148. * The oom killer is not called for lowmem
  2149. * allocations to prevent needlessly killing
  2150. * innocent tasks.
  2151. */
  2152. if (high_zoneidx < ZONE_NORMAL)
  2153. goto nopage;
  2154. }
  2155. goto restart;
  2156. }
  2157. }
  2158. /* Check if we should retry the allocation */
  2159. pages_reclaimed += did_some_progress;
  2160. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2161. pages_reclaimed)) {
  2162. /* Wait for some write requests to complete then retry */
  2163. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2164. goto rebalance;
  2165. } else {
  2166. /*
  2167. * High-order allocations do not necessarily loop after
  2168. * direct reclaim and reclaim/compaction depends on compaction
  2169. * being called after reclaim so call directly if necessary
  2170. */
  2171. page = __alloc_pages_direct_compact(gfp_mask, order,
  2172. zonelist, high_zoneidx,
  2173. nodemask,
  2174. alloc_flags, preferred_zone,
  2175. migratetype, sync_migration,
  2176. &deferred_compaction,
  2177. &did_some_progress);
  2178. if (page)
  2179. goto got_pg;
  2180. }
  2181. nopage:
  2182. warn_alloc_failed(gfp_mask, order, NULL);
  2183. return page;
  2184. got_pg:
  2185. if (kmemcheck_enabled)
  2186. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2187. return page;
  2188. }
  2189. /*
  2190. * This is the 'heart' of the zoned buddy allocator.
  2191. */
  2192. struct page *
  2193. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2194. struct zonelist *zonelist, nodemask_t *nodemask)
  2195. {
  2196. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2197. struct zone *preferred_zone;
  2198. struct page *page = NULL;
  2199. int migratetype = allocflags_to_migratetype(gfp_mask);
  2200. unsigned int cpuset_mems_cookie;
  2201. gfp_mask &= gfp_allowed_mask;
  2202. lockdep_trace_alloc(gfp_mask);
  2203. might_sleep_if(gfp_mask & __GFP_WAIT);
  2204. if (should_fail_alloc_page(gfp_mask, order))
  2205. return NULL;
  2206. /*
  2207. * Check the zones suitable for the gfp_mask contain at least one
  2208. * valid zone. It's possible to have an empty zonelist as a result
  2209. * of GFP_THISNODE and a memoryless node
  2210. */
  2211. if (unlikely(!zonelist->_zonerefs->zone))
  2212. return NULL;
  2213. retry_cpuset:
  2214. cpuset_mems_cookie = get_mems_allowed();
  2215. /* The preferred zone is used for statistics later */
  2216. first_zones_zonelist(zonelist, high_zoneidx,
  2217. nodemask ? : &cpuset_current_mems_allowed,
  2218. &preferred_zone);
  2219. if (!preferred_zone)
  2220. goto out;
  2221. /* First allocation attempt */
  2222. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2223. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  2224. preferred_zone, migratetype);
  2225. if (unlikely(!page))
  2226. page = __alloc_pages_slowpath(gfp_mask, order,
  2227. zonelist, high_zoneidx, nodemask,
  2228. preferred_zone, migratetype);
  2229. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2230. out:
  2231. /*
  2232. * When updating a task's mems_allowed, it is possible to race with
  2233. * parallel threads in such a way that an allocation can fail while
  2234. * the mask is being updated. If a page allocation is about to fail,
  2235. * check if the cpuset changed during allocation and if so, retry.
  2236. */
  2237. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2238. goto retry_cpuset;
  2239. return page;
  2240. }
  2241. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2242. /*
  2243. * Common helper functions.
  2244. */
  2245. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2246. {
  2247. struct page *page;
  2248. /*
  2249. * __get_free_pages() returns a 32-bit address, which cannot represent
  2250. * a highmem page
  2251. */
  2252. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2253. page = alloc_pages(gfp_mask, order);
  2254. if (!page)
  2255. return 0;
  2256. return (unsigned long) page_address(page);
  2257. }
  2258. EXPORT_SYMBOL(__get_free_pages);
  2259. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2260. {
  2261. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2262. }
  2263. EXPORT_SYMBOL(get_zeroed_page);
  2264. void __free_pages(struct page *page, unsigned int order)
  2265. {
  2266. if (put_page_testzero(page)) {
  2267. if (order == 0)
  2268. free_hot_cold_page(page, 0);
  2269. else
  2270. __free_pages_ok(page, order);
  2271. }
  2272. }
  2273. EXPORT_SYMBOL(__free_pages);
  2274. void free_pages(unsigned long addr, unsigned int order)
  2275. {
  2276. if (addr != 0) {
  2277. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2278. __free_pages(virt_to_page((void *)addr), order);
  2279. }
  2280. }
  2281. EXPORT_SYMBOL(free_pages);
  2282. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2283. {
  2284. if (addr) {
  2285. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2286. unsigned long used = addr + PAGE_ALIGN(size);
  2287. split_page(virt_to_page((void *)addr), order);
  2288. while (used < alloc_end) {
  2289. free_page(used);
  2290. used += PAGE_SIZE;
  2291. }
  2292. }
  2293. return (void *)addr;
  2294. }
  2295. /**
  2296. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2297. * @size: the number of bytes to allocate
  2298. * @gfp_mask: GFP flags for the allocation
  2299. *
  2300. * This function is similar to alloc_pages(), except that it allocates the
  2301. * minimum number of pages to satisfy the request. alloc_pages() can only
  2302. * allocate memory in power-of-two pages.
  2303. *
  2304. * This function is also limited by MAX_ORDER.
  2305. *
  2306. * Memory allocated by this function must be released by free_pages_exact().
  2307. */
  2308. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2309. {
  2310. unsigned int order = get_order(size);
  2311. unsigned long addr;
  2312. addr = __get_free_pages(gfp_mask, order);
  2313. return make_alloc_exact(addr, order, size);
  2314. }
  2315. EXPORT_SYMBOL(alloc_pages_exact);
  2316. /**
  2317. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2318. * pages on a node.
  2319. * @nid: the preferred node ID where memory should be allocated
  2320. * @size: the number of bytes to allocate
  2321. * @gfp_mask: GFP flags for the allocation
  2322. *
  2323. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2324. * back.
  2325. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2326. * but is not exact.
  2327. */
  2328. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2329. {
  2330. unsigned order = get_order(size);
  2331. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2332. if (!p)
  2333. return NULL;
  2334. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2335. }
  2336. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2337. /**
  2338. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2339. * @virt: the value returned by alloc_pages_exact.
  2340. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2341. *
  2342. * Release the memory allocated by a previous call to alloc_pages_exact.
  2343. */
  2344. void free_pages_exact(void *virt, size_t size)
  2345. {
  2346. unsigned long addr = (unsigned long)virt;
  2347. unsigned long end = addr + PAGE_ALIGN(size);
  2348. while (addr < end) {
  2349. free_page(addr);
  2350. addr += PAGE_SIZE;
  2351. }
  2352. }
  2353. EXPORT_SYMBOL(free_pages_exact);
  2354. static unsigned int nr_free_zone_pages(int offset)
  2355. {
  2356. struct zoneref *z;
  2357. struct zone *zone;
  2358. /* Just pick one node, since fallback list is circular */
  2359. unsigned int sum = 0;
  2360. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2361. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2362. unsigned long size = zone->present_pages;
  2363. unsigned long high = high_wmark_pages(zone);
  2364. if (size > high)
  2365. sum += size - high;
  2366. }
  2367. return sum;
  2368. }
  2369. /*
  2370. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2371. */
  2372. unsigned int nr_free_buffer_pages(void)
  2373. {
  2374. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2375. }
  2376. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2377. /*
  2378. * Amount of free RAM allocatable within all zones
  2379. */
  2380. unsigned int nr_free_pagecache_pages(void)
  2381. {
  2382. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2383. }
  2384. static inline void show_node(struct zone *zone)
  2385. {
  2386. if (NUMA_BUILD)
  2387. printk("Node %d ", zone_to_nid(zone));
  2388. }
  2389. void si_meminfo(struct sysinfo *val)
  2390. {
  2391. val->totalram = totalram_pages;
  2392. val->sharedram = 0;
  2393. val->freeram = global_page_state(NR_FREE_PAGES);
  2394. val->bufferram = nr_blockdev_pages();
  2395. val->totalhigh = totalhigh_pages;
  2396. val->freehigh = nr_free_highpages();
  2397. val->mem_unit = PAGE_SIZE;
  2398. }
  2399. EXPORT_SYMBOL(si_meminfo);
  2400. #ifdef CONFIG_NUMA
  2401. void si_meminfo_node(struct sysinfo *val, int nid)
  2402. {
  2403. pg_data_t *pgdat = NODE_DATA(nid);
  2404. val->totalram = pgdat->node_present_pages;
  2405. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2406. #ifdef CONFIG_HIGHMEM
  2407. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2408. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2409. NR_FREE_PAGES);
  2410. #else
  2411. val->totalhigh = 0;
  2412. val->freehigh = 0;
  2413. #endif
  2414. val->mem_unit = PAGE_SIZE;
  2415. }
  2416. #endif
  2417. /*
  2418. * Determine whether the node should be displayed or not, depending on whether
  2419. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2420. */
  2421. bool skip_free_areas_node(unsigned int flags, int nid)
  2422. {
  2423. bool ret = false;
  2424. unsigned int cpuset_mems_cookie;
  2425. if (!(flags & SHOW_MEM_FILTER_NODES))
  2426. goto out;
  2427. do {
  2428. cpuset_mems_cookie = get_mems_allowed();
  2429. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2430. } while (!put_mems_allowed(cpuset_mems_cookie));
  2431. out:
  2432. return ret;
  2433. }
  2434. #define K(x) ((x) << (PAGE_SHIFT-10))
  2435. /*
  2436. * Show free area list (used inside shift_scroll-lock stuff)
  2437. * We also calculate the percentage fragmentation. We do this by counting the
  2438. * memory on each free list with the exception of the first item on the list.
  2439. * Suppresses nodes that are not allowed by current's cpuset if
  2440. * SHOW_MEM_FILTER_NODES is passed.
  2441. */
  2442. void show_free_areas(unsigned int filter)
  2443. {
  2444. int cpu;
  2445. struct zone *zone;
  2446. for_each_populated_zone(zone) {
  2447. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2448. continue;
  2449. show_node(zone);
  2450. printk("%s per-cpu:\n", zone->name);
  2451. for_each_online_cpu(cpu) {
  2452. struct per_cpu_pageset *pageset;
  2453. pageset = per_cpu_ptr(zone->pageset, cpu);
  2454. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2455. cpu, pageset->pcp.high,
  2456. pageset->pcp.batch, pageset->pcp.count);
  2457. }
  2458. }
  2459. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2460. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2461. " unevictable:%lu"
  2462. " dirty:%lu writeback:%lu unstable:%lu\n"
  2463. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2464. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2465. global_page_state(NR_ACTIVE_ANON),
  2466. global_page_state(NR_INACTIVE_ANON),
  2467. global_page_state(NR_ISOLATED_ANON),
  2468. global_page_state(NR_ACTIVE_FILE),
  2469. global_page_state(NR_INACTIVE_FILE),
  2470. global_page_state(NR_ISOLATED_FILE),
  2471. global_page_state(NR_UNEVICTABLE),
  2472. global_page_state(NR_FILE_DIRTY),
  2473. global_page_state(NR_WRITEBACK),
  2474. global_page_state(NR_UNSTABLE_NFS),
  2475. global_page_state(NR_FREE_PAGES),
  2476. global_page_state(NR_SLAB_RECLAIMABLE),
  2477. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2478. global_page_state(NR_FILE_MAPPED),
  2479. global_page_state(NR_SHMEM),
  2480. global_page_state(NR_PAGETABLE),
  2481. global_page_state(NR_BOUNCE));
  2482. for_each_populated_zone(zone) {
  2483. int i;
  2484. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2485. continue;
  2486. show_node(zone);
  2487. printk("%s"
  2488. " free:%lukB"
  2489. " min:%lukB"
  2490. " low:%lukB"
  2491. " high:%lukB"
  2492. " active_anon:%lukB"
  2493. " inactive_anon:%lukB"
  2494. " active_file:%lukB"
  2495. " inactive_file:%lukB"
  2496. " unevictable:%lukB"
  2497. " isolated(anon):%lukB"
  2498. " isolated(file):%lukB"
  2499. " present:%lukB"
  2500. " mlocked:%lukB"
  2501. " dirty:%lukB"
  2502. " writeback:%lukB"
  2503. " mapped:%lukB"
  2504. " shmem:%lukB"
  2505. " slab_reclaimable:%lukB"
  2506. " slab_unreclaimable:%lukB"
  2507. " kernel_stack:%lukB"
  2508. " pagetables:%lukB"
  2509. " unstable:%lukB"
  2510. " bounce:%lukB"
  2511. " writeback_tmp:%lukB"
  2512. " pages_scanned:%lu"
  2513. " all_unreclaimable? %s"
  2514. "\n",
  2515. zone->name,
  2516. K(zone_page_state(zone, NR_FREE_PAGES)),
  2517. K(min_wmark_pages(zone)),
  2518. K(low_wmark_pages(zone)),
  2519. K(high_wmark_pages(zone)),
  2520. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2521. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2522. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2523. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2524. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2525. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2526. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2527. K(zone->present_pages),
  2528. K(zone_page_state(zone, NR_MLOCK)),
  2529. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2530. K(zone_page_state(zone, NR_WRITEBACK)),
  2531. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2532. K(zone_page_state(zone, NR_SHMEM)),
  2533. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2534. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2535. zone_page_state(zone, NR_KERNEL_STACK) *
  2536. THREAD_SIZE / 1024,
  2537. K(zone_page_state(zone, NR_PAGETABLE)),
  2538. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2539. K(zone_page_state(zone, NR_BOUNCE)),
  2540. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2541. zone->pages_scanned,
  2542. (zone->all_unreclaimable ? "yes" : "no")
  2543. );
  2544. printk("lowmem_reserve[]:");
  2545. for (i = 0; i < MAX_NR_ZONES; i++)
  2546. printk(" %lu", zone->lowmem_reserve[i]);
  2547. printk("\n");
  2548. }
  2549. for_each_populated_zone(zone) {
  2550. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2551. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2552. continue;
  2553. show_node(zone);
  2554. printk("%s: ", zone->name);
  2555. spin_lock_irqsave(&zone->lock, flags);
  2556. for (order = 0; order < MAX_ORDER; order++) {
  2557. nr[order] = zone->free_area[order].nr_free;
  2558. total += nr[order] << order;
  2559. }
  2560. spin_unlock_irqrestore(&zone->lock, flags);
  2561. for (order = 0; order < MAX_ORDER; order++)
  2562. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2563. printk("= %lukB\n", K(total));
  2564. }
  2565. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2566. show_swap_cache_info();
  2567. }
  2568. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2569. {
  2570. zoneref->zone = zone;
  2571. zoneref->zone_idx = zone_idx(zone);
  2572. }
  2573. /*
  2574. * Builds allocation fallback zone lists.
  2575. *
  2576. * Add all populated zones of a node to the zonelist.
  2577. */
  2578. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2579. int nr_zones, enum zone_type zone_type)
  2580. {
  2581. struct zone *zone;
  2582. BUG_ON(zone_type >= MAX_NR_ZONES);
  2583. zone_type++;
  2584. do {
  2585. zone_type--;
  2586. zone = pgdat->node_zones + zone_type;
  2587. if (populated_zone(zone)) {
  2588. zoneref_set_zone(zone,
  2589. &zonelist->_zonerefs[nr_zones++]);
  2590. check_highest_zone(zone_type);
  2591. }
  2592. } while (zone_type);
  2593. return nr_zones;
  2594. }
  2595. /*
  2596. * zonelist_order:
  2597. * 0 = automatic detection of better ordering.
  2598. * 1 = order by ([node] distance, -zonetype)
  2599. * 2 = order by (-zonetype, [node] distance)
  2600. *
  2601. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2602. * the same zonelist. So only NUMA can configure this param.
  2603. */
  2604. #define ZONELIST_ORDER_DEFAULT 0
  2605. #define ZONELIST_ORDER_NODE 1
  2606. #define ZONELIST_ORDER_ZONE 2
  2607. /* zonelist order in the kernel.
  2608. * set_zonelist_order() will set this to NODE or ZONE.
  2609. */
  2610. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2611. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2612. #ifdef CONFIG_NUMA
  2613. /* The value user specified ....changed by config */
  2614. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2615. /* string for sysctl */
  2616. #define NUMA_ZONELIST_ORDER_LEN 16
  2617. char numa_zonelist_order[16] = "default";
  2618. /*
  2619. * interface for configure zonelist ordering.
  2620. * command line option "numa_zonelist_order"
  2621. * = "[dD]efault - default, automatic configuration.
  2622. * = "[nN]ode - order by node locality, then by zone within node
  2623. * = "[zZ]one - order by zone, then by locality within zone
  2624. */
  2625. static int __parse_numa_zonelist_order(char *s)
  2626. {
  2627. if (*s == 'd' || *s == 'D') {
  2628. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2629. } else if (*s == 'n' || *s == 'N') {
  2630. user_zonelist_order = ZONELIST_ORDER_NODE;
  2631. } else if (*s == 'z' || *s == 'Z') {
  2632. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2633. } else {
  2634. printk(KERN_WARNING
  2635. "Ignoring invalid numa_zonelist_order value: "
  2636. "%s\n", s);
  2637. return -EINVAL;
  2638. }
  2639. return 0;
  2640. }
  2641. static __init int setup_numa_zonelist_order(char *s)
  2642. {
  2643. int ret;
  2644. if (!s)
  2645. return 0;
  2646. ret = __parse_numa_zonelist_order(s);
  2647. if (ret == 0)
  2648. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2649. return ret;
  2650. }
  2651. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2652. /*
  2653. * sysctl handler for numa_zonelist_order
  2654. */
  2655. int numa_zonelist_order_handler(ctl_table *table, int write,
  2656. void __user *buffer, size_t *length,
  2657. loff_t *ppos)
  2658. {
  2659. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2660. int ret;
  2661. static DEFINE_MUTEX(zl_order_mutex);
  2662. mutex_lock(&zl_order_mutex);
  2663. if (write)
  2664. strcpy(saved_string, (char*)table->data);
  2665. ret = proc_dostring(table, write, buffer, length, ppos);
  2666. if (ret)
  2667. goto out;
  2668. if (write) {
  2669. int oldval = user_zonelist_order;
  2670. if (__parse_numa_zonelist_order((char*)table->data)) {
  2671. /*
  2672. * bogus value. restore saved string
  2673. */
  2674. strncpy((char*)table->data, saved_string,
  2675. NUMA_ZONELIST_ORDER_LEN);
  2676. user_zonelist_order = oldval;
  2677. } else if (oldval != user_zonelist_order) {
  2678. mutex_lock(&zonelists_mutex);
  2679. build_all_zonelists(NULL, NULL);
  2680. mutex_unlock(&zonelists_mutex);
  2681. }
  2682. }
  2683. out:
  2684. mutex_unlock(&zl_order_mutex);
  2685. return ret;
  2686. }
  2687. #define MAX_NODE_LOAD (nr_online_nodes)
  2688. static int node_load[MAX_NUMNODES];
  2689. /**
  2690. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2691. * @node: node whose fallback list we're appending
  2692. * @used_node_mask: nodemask_t of already used nodes
  2693. *
  2694. * We use a number of factors to determine which is the next node that should
  2695. * appear on a given node's fallback list. The node should not have appeared
  2696. * already in @node's fallback list, and it should be the next closest node
  2697. * according to the distance array (which contains arbitrary distance values
  2698. * from each node to each node in the system), and should also prefer nodes
  2699. * with no CPUs, since presumably they'll have very little allocation pressure
  2700. * on them otherwise.
  2701. * It returns -1 if no node is found.
  2702. */
  2703. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2704. {
  2705. int n, val;
  2706. int min_val = INT_MAX;
  2707. int best_node = -1;
  2708. const struct cpumask *tmp = cpumask_of_node(0);
  2709. /* Use the local node if we haven't already */
  2710. if (!node_isset(node, *used_node_mask)) {
  2711. node_set(node, *used_node_mask);
  2712. return node;
  2713. }
  2714. for_each_node_state(n, N_HIGH_MEMORY) {
  2715. /* Don't want a node to appear more than once */
  2716. if (node_isset(n, *used_node_mask))
  2717. continue;
  2718. /* Use the distance array to find the distance */
  2719. val = node_distance(node, n);
  2720. /* Penalize nodes under us ("prefer the next node") */
  2721. val += (n < node);
  2722. /* Give preference to headless and unused nodes */
  2723. tmp = cpumask_of_node(n);
  2724. if (!cpumask_empty(tmp))
  2725. val += PENALTY_FOR_NODE_WITH_CPUS;
  2726. /* Slight preference for less loaded node */
  2727. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2728. val += node_load[n];
  2729. if (val < min_val) {
  2730. min_val = val;
  2731. best_node = n;
  2732. }
  2733. }
  2734. if (best_node >= 0)
  2735. node_set(best_node, *used_node_mask);
  2736. return best_node;
  2737. }
  2738. /*
  2739. * Build zonelists ordered by node and zones within node.
  2740. * This results in maximum locality--normal zone overflows into local
  2741. * DMA zone, if any--but risks exhausting DMA zone.
  2742. */
  2743. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2744. {
  2745. int j;
  2746. struct zonelist *zonelist;
  2747. zonelist = &pgdat->node_zonelists[0];
  2748. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2749. ;
  2750. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2751. MAX_NR_ZONES - 1);
  2752. zonelist->_zonerefs[j].zone = NULL;
  2753. zonelist->_zonerefs[j].zone_idx = 0;
  2754. }
  2755. /*
  2756. * Build gfp_thisnode zonelists
  2757. */
  2758. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2759. {
  2760. int j;
  2761. struct zonelist *zonelist;
  2762. zonelist = &pgdat->node_zonelists[1];
  2763. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2764. zonelist->_zonerefs[j].zone = NULL;
  2765. zonelist->_zonerefs[j].zone_idx = 0;
  2766. }
  2767. /*
  2768. * Build zonelists ordered by zone and nodes within zones.
  2769. * This results in conserving DMA zone[s] until all Normal memory is
  2770. * exhausted, but results in overflowing to remote node while memory
  2771. * may still exist in local DMA zone.
  2772. */
  2773. static int node_order[MAX_NUMNODES];
  2774. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2775. {
  2776. int pos, j, node;
  2777. int zone_type; /* needs to be signed */
  2778. struct zone *z;
  2779. struct zonelist *zonelist;
  2780. zonelist = &pgdat->node_zonelists[0];
  2781. pos = 0;
  2782. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2783. for (j = 0; j < nr_nodes; j++) {
  2784. node = node_order[j];
  2785. z = &NODE_DATA(node)->node_zones[zone_type];
  2786. if (populated_zone(z)) {
  2787. zoneref_set_zone(z,
  2788. &zonelist->_zonerefs[pos++]);
  2789. check_highest_zone(zone_type);
  2790. }
  2791. }
  2792. }
  2793. zonelist->_zonerefs[pos].zone = NULL;
  2794. zonelist->_zonerefs[pos].zone_idx = 0;
  2795. }
  2796. static int default_zonelist_order(void)
  2797. {
  2798. int nid, zone_type;
  2799. unsigned long low_kmem_size,total_size;
  2800. struct zone *z;
  2801. int average_size;
  2802. /*
  2803. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2804. * If they are really small and used heavily, the system can fall
  2805. * into OOM very easily.
  2806. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2807. */
  2808. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2809. low_kmem_size = 0;
  2810. total_size = 0;
  2811. for_each_online_node(nid) {
  2812. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2813. z = &NODE_DATA(nid)->node_zones[zone_type];
  2814. if (populated_zone(z)) {
  2815. if (zone_type < ZONE_NORMAL)
  2816. low_kmem_size += z->present_pages;
  2817. total_size += z->present_pages;
  2818. } else if (zone_type == ZONE_NORMAL) {
  2819. /*
  2820. * If any node has only lowmem, then node order
  2821. * is preferred to allow kernel allocations
  2822. * locally; otherwise, they can easily infringe
  2823. * on other nodes when there is an abundance of
  2824. * lowmem available to allocate from.
  2825. */
  2826. return ZONELIST_ORDER_NODE;
  2827. }
  2828. }
  2829. }
  2830. if (!low_kmem_size || /* there are no DMA area. */
  2831. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2832. return ZONELIST_ORDER_NODE;
  2833. /*
  2834. * look into each node's config.
  2835. * If there is a node whose DMA/DMA32 memory is very big area on
  2836. * local memory, NODE_ORDER may be suitable.
  2837. */
  2838. average_size = total_size /
  2839. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2840. for_each_online_node(nid) {
  2841. low_kmem_size = 0;
  2842. total_size = 0;
  2843. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2844. z = &NODE_DATA(nid)->node_zones[zone_type];
  2845. if (populated_zone(z)) {
  2846. if (zone_type < ZONE_NORMAL)
  2847. low_kmem_size += z->present_pages;
  2848. total_size += z->present_pages;
  2849. }
  2850. }
  2851. if (low_kmem_size &&
  2852. total_size > average_size && /* ignore small node */
  2853. low_kmem_size > total_size * 70/100)
  2854. return ZONELIST_ORDER_NODE;
  2855. }
  2856. return ZONELIST_ORDER_ZONE;
  2857. }
  2858. static void set_zonelist_order(void)
  2859. {
  2860. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2861. current_zonelist_order = default_zonelist_order();
  2862. else
  2863. current_zonelist_order = user_zonelist_order;
  2864. }
  2865. static void build_zonelists(pg_data_t *pgdat)
  2866. {
  2867. int j, node, load;
  2868. enum zone_type i;
  2869. nodemask_t used_mask;
  2870. int local_node, prev_node;
  2871. struct zonelist *zonelist;
  2872. int order = current_zonelist_order;
  2873. /* initialize zonelists */
  2874. for (i = 0; i < MAX_ZONELISTS; i++) {
  2875. zonelist = pgdat->node_zonelists + i;
  2876. zonelist->_zonerefs[0].zone = NULL;
  2877. zonelist->_zonerefs[0].zone_idx = 0;
  2878. }
  2879. /* NUMA-aware ordering of nodes */
  2880. local_node = pgdat->node_id;
  2881. load = nr_online_nodes;
  2882. prev_node = local_node;
  2883. nodes_clear(used_mask);
  2884. memset(node_order, 0, sizeof(node_order));
  2885. j = 0;
  2886. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2887. int distance = node_distance(local_node, node);
  2888. /*
  2889. * If another node is sufficiently far away then it is better
  2890. * to reclaim pages in a zone before going off node.
  2891. */
  2892. if (distance > RECLAIM_DISTANCE)
  2893. zone_reclaim_mode = 1;
  2894. /*
  2895. * We don't want to pressure a particular node.
  2896. * So adding penalty to the first node in same
  2897. * distance group to make it round-robin.
  2898. */
  2899. if (distance != node_distance(local_node, prev_node))
  2900. node_load[node] = load;
  2901. prev_node = node;
  2902. load--;
  2903. if (order == ZONELIST_ORDER_NODE)
  2904. build_zonelists_in_node_order(pgdat, node);
  2905. else
  2906. node_order[j++] = node; /* remember order */
  2907. }
  2908. if (order == ZONELIST_ORDER_ZONE) {
  2909. /* calculate node order -- i.e., DMA last! */
  2910. build_zonelists_in_zone_order(pgdat, j);
  2911. }
  2912. build_thisnode_zonelists(pgdat);
  2913. }
  2914. /* Construct the zonelist performance cache - see further mmzone.h */
  2915. static void build_zonelist_cache(pg_data_t *pgdat)
  2916. {
  2917. struct zonelist *zonelist;
  2918. struct zonelist_cache *zlc;
  2919. struct zoneref *z;
  2920. zonelist = &pgdat->node_zonelists[0];
  2921. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2922. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2923. for (z = zonelist->_zonerefs; z->zone; z++)
  2924. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2925. }
  2926. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2927. /*
  2928. * Return node id of node used for "local" allocations.
  2929. * I.e., first node id of first zone in arg node's generic zonelist.
  2930. * Used for initializing percpu 'numa_mem', which is used primarily
  2931. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2932. */
  2933. int local_memory_node(int node)
  2934. {
  2935. struct zone *zone;
  2936. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2937. gfp_zone(GFP_KERNEL),
  2938. NULL,
  2939. &zone);
  2940. return zone->node;
  2941. }
  2942. #endif
  2943. #else /* CONFIG_NUMA */
  2944. static void set_zonelist_order(void)
  2945. {
  2946. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2947. }
  2948. static void build_zonelists(pg_data_t *pgdat)
  2949. {
  2950. int node, local_node;
  2951. enum zone_type j;
  2952. struct zonelist *zonelist;
  2953. local_node = pgdat->node_id;
  2954. zonelist = &pgdat->node_zonelists[0];
  2955. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2956. /*
  2957. * Now we build the zonelist so that it contains the zones
  2958. * of all the other nodes.
  2959. * We don't want to pressure a particular node, so when
  2960. * building the zones for node N, we make sure that the
  2961. * zones coming right after the local ones are those from
  2962. * node N+1 (modulo N)
  2963. */
  2964. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2965. if (!node_online(node))
  2966. continue;
  2967. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2968. MAX_NR_ZONES - 1);
  2969. }
  2970. for (node = 0; node < local_node; node++) {
  2971. if (!node_online(node))
  2972. continue;
  2973. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2974. MAX_NR_ZONES - 1);
  2975. }
  2976. zonelist->_zonerefs[j].zone = NULL;
  2977. zonelist->_zonerefs[j].zone_idx = 0;
  2978. }
  2979. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2980. static void build_zonelist_cache(pg_data_t *pgdat)
  2981. {
  2982. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2983. }
  2984. #endif /* CONFIG_NUMA */
  2985. /*
  2986. * Boot pageset table. One per cpu which is going to be used for all
  2987. * zones and all nodes. The parameters will be set in such a way
  2988. * that an item put on a list will immediately be handed over to
  2989. * the buddy list. This is safe since pageset manipulation is done
  2990. * with interrupts disabled.
  2991. *
  2992. * The boot_pagesets must be kept even after bootup is complete for
  2993. * unused processors and/or zones. They do play a role for bootstrapping
  2994. * hotplugged processors.
  2995. *
  2996. * zoneinfo_show() and maybe other functions do
  2997. * not check if the processor is online before following the pageset pointer.
  2998. * Other parts of the kernel may not check if the zone is available.
  2999. */
  3000. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3001. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3002. static void setup_zone_pageset(struct zone *zone);
  3003. /*
  3004. * Global mutex to protect against size modification of zonelists
  3005. * as well as to serialize pageset setup for the new populated zone.
  3006. */
  3007. DEFINE_MUTEX(zonelists_mutex);
  3008. /* return values int ....just for stop_machine() */
  3009. static int __build_all_zonelists(void *data)
  3010. {
  3011. int nid;
  3012. int cpu;
  3013. pg_data_t *self = data;
  3014. #ifdef CONFIG_NUMA
  3015. memset(node_load, 0, sizeof(node_load));
  3016. #endif
  3017. if (self && !node_online(self->node_id)) {
  3018. build_zonelists(self);
  3019. build_zonelist_cache(self);
  3020. }
  3021. for_each_online_node(nid) {
  3022. pg_data_t *pgdat = NODE_DATA(nid);
  3023. build_zonelists(pgdat);
  3024. build_zonelist_cache(pgdat);
  3025. }
  3026. /*
  3027. * Initialize the boot_pagesets that are going to be used
  3028. * for bootstrapping processors. The real pagesets for
  3029. * each zone will be allocated later when the per cpu
  3030. * allocator is available.
  3031. *
  3032. * boot_pagesets are used also for bootstrapping offline
  3033. * cpus if the system is already booted because the pagesets
  3034. * are needed to initialize allocators on a specific cpu too.
  3035. * F.e. the percpu allocator needs the page allocator which
  3036. * needs the percpu allocator in order to allocate its pagesets
  3037. * (a chicken-egg dilemma).
  3038. */
  3039. for_each_possible_cpu(cpu) {
  3040. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3041. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3042. /*
  3043. * We now know the "local memory node" for each node--
  3044. * i.e., the node of the first zone in the generic zonelist.
  3045. * Set up numa_mem percpu variable for on-line cpus. During
  3046. * boot, only the boot cpu should be on-line; we'll init the
  3047. * secondary cpus' numa_mem as they come on-line. During
  3048. * node/memory hotplug, we'll fixup all on-line cpus.
  3049. */
  3050. if (cpu_online(cpu))
  3051. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3052. #endif
  3053. }
  3054. return 0;
  3055. }
  3056. /*
  3057. * Called with zonelists_mutex held always
  3058. * unless system_state == SYSTEM_BOOTING.
  3059. */
  3060. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3061. {
  3062. set_zonelist_order();
  3063. if (system_state == SYSTEM_BOOTING) {
  3064. __build_all_zonelists(NULL);
  3065. mminit_verify_zonelist();
  3066. cpuset_init_current_mems_allowed();
  3067. } else {
  3068. /* we have to stop all cpus to guarantee there is no user
  3069. of zonelist */
  3070. #ifdef CONFIG_MEMORY_HOTPLUG
  3071. if (zone)
  3072. setup_zone_pageset(zone);
  3073. #endif
  3074. stop_machine(__build_all_zonelists, pgdat, NULL);
  3075. /* cpuset refresh routine should be here */
  3076. }
  3077. vm_total_pages = nr_free_pagecache_pages();
  3078. /*
  3079. * Disable grouping by mobility if the number of pages in the
  3080. * system is too low to allow the mechanism to work. It would be
  3081. * more accurate, but expensive to check per-zone. This check is
  3082. * made on memory-hotadd so a system can start with mobility
  3083. * disabled and enable it later
  3084. */
  3085. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3086. page_group_by_mobility_disabled = 1;
  3087. else
  3088. page_group_by_mobility_disabled = 0;
  3089. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3090. "Total pages: %ld\n",
  3091. nr_online_nodes,
  3092. zonelist_order_name[current_zonelist_order],
  3093. page_group_by_mobility_disabled ? "off" : "on",
  3094. vm_total_pages);
  3095. #ifdef CONFIG_NUMA
  3096. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3097. #endif
  3098. }
  3099. /*
  3100. * Helper functions to size the waitqueue hash table.
  3101. * Essentially these want to choose hash table sizes sufficiently
  3102. * large so that collisions trying to wait on pages are rare.
  3103. * But in fact, the number of active page waitqueues on typical
  3104. * systems is ridiculously low, less than 200. So this is even
  3105. * conservative, even though it seems large.
  3106. *
  3107. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3108. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3109. */
  3110. #define PAGES_PER_WAITQUEUE 256
  3111. #ifndef CONFIG_MEMORY_HOTPLUG
  3112. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3113. {
  3114. unsigned long size = 1;
  3115. pages /= PAGES_PER_WAITQUEUE;
  3116. while (size < pages)
  3117. size <<= 1;
  3118. /*
  3119. * Once we have dozens or even hundreds of threads sleeping
  3120. * on IO we've got bigger problems than wait queue collision.
  3121. * Limit the size of the wait table to a reasonable size.
  3122. */
  3123. size = min(size, 4096UL);
  3124. return max(size, 4UL);
  3125. }
  3126. #else
  3127. /*
  3128. * A zone's size might be changed by hot-add, so it is not possible to determine
  3129. * a suitable size for its wait_table. So we use the maximum size now.
  3130. *
  3131. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3132. *
  3133. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3134. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3135. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3136. *
  3137. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3138. * or more by the traditional way. (See above). It equals:
  3139. *
  3140. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3141. * ia64(16K page size) : = ( 8G + 4M)byte.
  3142. * powerpc (64K page size) : = (32G +16M)byte.
  3143. */
  3144. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3145. {
  3146. return 4096UL;
  3147. }
  3148. #endif
  3149. /*
  3150. * This is an integer logarithm so that shifts can be used later
  3151. * to extract the more random high bits from the multiplicative
  3152. * hash function before the remainder is taken.
  3153. */
  3154. static inline unsigned long wait_table_bits(unsigned long size)
  3155. {
  3156. return ffz(~size);
  3157. }
  3158. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3159. /*
  3160. * Check if a pageblock contains reserved pages
  3161. */
  3162. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3163. {
  3164. unsigned long pfn;
  3165. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3166. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3167. return 1;
  3168. }
  3169. return 0;
  3170. }
  3171. /*
  3172. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3173. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3174. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3175. * higher will lead to a bigger reserve which will get freed as contiguous
  3176. * blocks as reclaim kicks in
  3177. */
  3178. static void setup_zone_migrate_reserve(struct zone *zone)
  3179. {
  3180. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3181. struct page *page;
  3182. unsigned long block_migratetype;
  3183. int reserve;
  3184. /*
  3185. * Get the start pfn, end pfn and the number of blocks to reserve
  3186. * We have to be careful to be aligned to pageblock_nr_pages to
  3187. * make sure that we always check pfn_valid for the first page in
  3188. * the block.
  3189. */
  3190. start_pfn = zone->zone_start_pfn;
  3191. end_pfn = start_pfn + zone->spanned_pages;
  3192. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3193. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3194. pageblock_order;
  3195. /*
  3196. * Reserve blocks are generally in place to help high-order atomic
  3197. * allocations that are short-lived. A min_free_kbytes value that
  3198. * would result in more than 2 reserve blocks for atomic allocations
  3199. * is assumed to be in place to help anti-fragmentation for the
  3200. * future allocation of hugepages at runtime.
  3201. */
  3202. reserve = min(2, reserve);
  3203. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3204. if (!pfn_valid(pfn))
  3205. continue;
  3206. page = pfn_to_page(pfn);
  3207. /* Watch out for overlapping nodes */
  3208. if (page_to_nid(page) != zone_to_nid(zone))
  3209. continue;
  3210. block_migratetype = get_pageblock_migratetype(page);
  3211. /* Only test what is necessary when the reserves are not met */
  3212. if (reserve > 0) {
  3213. /*
  3214. * Blocks with reserved pages will never free, skip
  3215. * them.
  3216. */
  3217. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3218. if (pageblock_is_reserved(pfn, block_end_pfn))
  3219. continue;
  3220. /* If this block is reserved, account for it */
  3221. if (block_migratetype == MIGRATE_RESERVE) {
  3222. reserve--;
  3223. continue;
  3224. }
  3225. /* Suitable for reserving if this block is movable */
  3226. if (block_migratetype == MIGRATE_MOVABLE) {
  3227. set_pageblock_migratetype(page,
  3228. MIGRATE_RESERVE);
  3229. move_freepages_block(zone, page,
  3230. MIGRATE_RESERVE);
  3231. reserve--;
  3232. continue;
  3233. }
  3234. }
  3235. /*
  3236. * If the reserve is met and this is a previous reserved block,
  3237. * take it back
  3238. */
  3239. if (block_migratetype == MIGRATE_RESERVE) {
  3240. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3241. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3242. }
  3243. }
  3244. }
  3245. /*
  3246. * Initially all pages are reserved - free ones are freed
  3247. * up by free_all_bootmem() once the early boot process is
  3248. * done. Non-atomic initialization, single-pass.
  3249. */
  3250. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3251. unsigned long start_pfn, enum memmap_context context)
  3252. {
  3253. struct page *page;
  3254. unsigned long end_pfn = start_pfn + size;
  3255. unsigned long pfn;
  3256. struct zone *z;
  3257. if (highest_memmap_pfn < end_pfn - 1)
  3258. highest_memmap_pfn = end_pfn - 1;
  3259. z = &NODE_DATA(nid)->node_zones[zone];
  3260. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3261. /*
  3262. * There can be holes in boot-time mem_map[]s
  3263. * handed to this function. They do not
  3264. * exist on hotplugged memory.
  3265. */
  3266. if (context == MEMMAP_EARLY) {
  3267. if (!early_pfn_valid(pfn))
  3268. continue;
  3269. if (!early_pfn_in_nid(pfn, nid))
  3270. continue;
  3271. }
  3272. page = pfn_to_page(pfn);
  3273. set_page_links(page, zone, nid, pfn);
  3274. mminit_verify_page_links(page, zone, nid, pfn);
  3275. init_page_count(page);
  3276. reset_page_mapcount(page);
  3277. SetPageReserved(page);
  3278. /*
  3279. * Mark the block movable so that blocks are reserved for
  3280. * movable at startup. This will force kernel allocations
  3281. * to reserve their blocks rather than leaking throughout
  3282. * the address space during boot when many long-lived
  3283. * kernel allocations are made. Later some blocks near
  3284. * the start are marked MIGRATE_RESERVE by
  3285. * setup_zone_migrate_reserve()
  3286. *
  3287. * bitmap is created for zone's valid pfn range. but memmap
  3288. * can be created for invalid pages (for alignment)
  3289. * check here not to call set_pageblock_migratetype() against
  3290. * pfn out of zone.
  3291. */
  3292. if ((z->zone_start_pfn <= pfn)
  3293. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3294. && !(pfn & (pageblock_nr_pages - 1)))
  3295. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3296. INIT_LIST_HEAD(&page->lru);
  3297. #ifdef WANT_PAGE_VIRTUAL
  3298. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3299. if (!is_highmem_idx(zone))
  3300. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3301. #endif
  3302. }
  3303. }
  3304. static void __meminit zone_init_free_lists(struct zone *zone)
  3305. {
  3306. int order, t;
  3307. for_each_migratetype_order(order, t) {
  3308. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3309. zone->free_area[order].nr_free = 0;
  3310. }
  3311. }
  3312. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3313. #define memmap_init(size, nid, zone, start_pfn) \
  3314. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3315. #endif
  3316. static int __meminit zone_batchsize(struct zone *zone)
  3317. {
  3318. #ifdef CONFIG_MMU
  3319. int batch;
  3320. /*
  3321. * The per-cpu-pages pools are set to around 1000th of the
  3322. * size of the zone. But no more than 1/2 of a meg.
  3323. *
  3324. * OK, so we don't know how big the cache is. So guess.
  3325. */
  3326. batch = zone->present_pages / 1024;
  3327. if (batch * PAGE_SIZE > 512 * 1024)
  3328. batch = (512 * 1024) / PAGE_SIZE;
  3329. batch /= 4; /* We effectively *= 4 below */
  3330. if (batch < 1)
  3331. batch = 1;
  3332. /*
  3333. * Clamp the batch to a 2^n - 1 value. Having a power
  3334. * of 2 value was found to be more likely to have
  3335. * suboptimal cache aliasing properties in some cases.
  3336. *
  3337. * For example if 2 tasks are alternately allocating
  3338. * batches of pages, one task can end up with a lot
  3339. * of pages of one half of the possible page colors
  3340. * and the other with pages of the other colors.
  3341. */
  3342. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3343. return batch;
  3344. #else
  3345. /* The deferral and batching of frees should be suppressed under NOMMU
  3346. * conditions.
  3347. *
  3348. * The problem is that NOMMU needs to be able to allocate large chunks
  3349. * of contiguous memory as there's no hardware page translation to
  3350. * assemble apparent contiguous memory from discontiguous pages.
  3351. *
  3352. * Queueing large contiguous runs of pages for batching, however,
  3353. * causes the pages to actually be freed in smaller chunks. As there
  3354. * can be a significant delay between the individual batches being
  3355. * recycled, this leads to the once large chunks of space being
  3356. * fragmented and becoming unavailable for high-order allocations.
  3357. */
  3358. return 0;
  3359. #endif
  3360. }
  3361. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3362. {
  3363. struct per_cpu_pages *pcp;
  3364. int migratetype;
  3365. memset(p, 0, sizeof(*p));
  3366. pcp = &p->pcp;
  3367. pcp->count = 0;
  3368. pcp->high = 6 * batch;
  3369. pcp->batch = max(1UL, 1 * batch);
  3370. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3371. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3372. }
  3373. /*
  3374. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3375. * to the value high for the pageset p.
  3376. */
  3377. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3378. unsigned long high)
  3379. {
  3380. struct per_cpu_pages *pcp;
  3381. pcp = &p->pcp;
  3382. pcp->high = high;
  3383. pcp->batch = max(1UL, high/4);
  3384. if ((high/4) > (PAGE_SHIFT * 8))
  3385. pcp->batch = PAGE_SHIFT * 8;
  3386. }
  3387. static void __meminit setup_zone_pageset(struct zone *zone)
  3388. {
  3389. int cpu;
  3390. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3391. for_each_possible_cpu(cpu) {
  3392. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3393. setup_pageset(pcp, zone_batchsize(zone));
  3394. if (percpu_pagelist_fraction)
  3395. setup_pagelist_highmark(pcp,
  3396. (zone->present_pages /
  3397. percpu_pagelist_fraction));
  3398. }
  3399. }
  3400. /*
  3401. * Allocate per cpu pagesets and initialize them.
  3402. * Before this call only boot pagesets were available.
  3403. */
  3404. void __init setup_per_cpu_pageset(void)
  3405. {
  3406. struct zone *zone;
  3407. for_each_populated_zone(zone)
  3408. setup_zone_pageset(zone);
  3409. }
  3410. static noinline __init_refok
  3411. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3412. {
  3413. int i;
  3414. struct pglist_data *pgdat = zone->zone_pgdat;
  3415. size_t alloc_size;
  3416. /*
  3417. * The per-page waitqueue mechanism uses hashed waitqueues
  3418. * per zone.
  3419. */
  3420. zone->wait_table_hash_nr_entries =
  3421. wait_table_hash_nr_entries(zone_size_pages);
  3422. zone->wait_table_bits =
  3423. wait_table_bits(zone->wait_table_hash_nr_entries);
  3424. alloc_size = zone->wait_table_hash_nr_entries
  3425. * sizeof(wait_queue_head_t);
  3426. if (!slab_is_available()) {
  3427. zone->wait_table = (wait_queue_head_t *)
  3428. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3429. } else {
  3430. /*
  3431. * This case means that a zone whose size was 0 gets new memory
  3432. * via memory hot-add.
  3433. * But it may be the case that a new node was hot-added. In
  3434. * this case vmalloc() will not be able to use this new node's
  3435. * memory - this wait_table must be initialized to use this new
  3436. * node itself as well.
  3437. * To use this new node's memory, further consideration will be
  3438. * necessary.
  3439. */
  3440. zone->wait_table = vmalloc(alloc_size);
  3441. }
  3442. if (!zone->wait_table)
  3443. return -ENOMEM;
  3444. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3445. init_waitqueue_head(zone->wait_table + i);
  3446. return 0;
  3447. }
  3448. static __meminit void zone_pcp_init(struct zone *zone)
  3449. {
  3450. /*
  3451. * per cpu subsystem is not up at this point. The following code
  3452. * relies on the ability of the linker to provide the
  3453. * offset of a (static) per cpu variable into the per cpu area.
  3454. */
  3455. zone->pageset = &boot_pageset;
  3456. if (zone->present_pages)
  3457. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3458. zone->name, zone->present_pages,
  3459. zone_batchsize(zone));
  3460. }
  3461. int __meminit init_currently_empty_zone(struct zone *zone,
  3462. unsigned long zone_start_pfn,
  3463. unsigned long size,
  3464. enum memmap_context context)
  3465. {
  3466. struct pglist_data *pgdat = zone->zone_pgdat;
  3467. int ret;
  3468. ret = zone_wait_table_init(zone, size);
  3469. if (ret)
  3470. return ret;
  3471. pgdat->nr_zones = zone_idx(zone) + 1;
  3472. zone->zone_start_pfn = zone_start_pfn;
  3473. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3474. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3475. pgdat->node_id,
  3476. (unsigned long)zone_idx(zone),
  3477. zone_start_pfn, (zone_start_pfn + size));
  3478. zone_init_free_lists(zone);
  3479. return 0;
  3480. }
  3481. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3482. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3483. /*
  3484. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3485. * Architectures may implement their own version but if add_active_range()
  3486. * was used and there are no special requirements, this is a convenient
  3487. * alternative
  3488. */
  3489. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3490. {
  3491. unsigned long start_pfn, end_pfn;
  3492. int i, nid;
  3493. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3494. if (start_pfn <= pfn && pfn < end_pfn)
  3495. return nid;
  3496. /* This is a memory hole */
  3497. return -1;
  3498. }
  3499. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3500. int __meminit early_pfn_to_nid(unsigned long pfn)
  3501. {
  3502. int nid;
  3503. nid = __early_pfn_to_nid(pfn);
  3504. if (nid >= 0)
  3505. return nid;
  3506. /* just returns 0 */
  3507. return 0;
  3508. }
  3509. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3510. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3511. {
  3512. int nid;
  3513. nid = __early_pfn_to_nid(pfn);
  3514. if (nid >= 0 && nid != node)
  3515. return false;
  3516. return true;
  3517. }
  3518. #endif
  3519. /**
  3520. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3521. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3522. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3523. *
  3524. * If an architecture guarantees that all ranges registered with
  3525. * add_active_ranges() contain no holes and may be freed, this
  3526. * this function may be used instead of calling free_bootmem() manually.
  3527. */
  3528. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3529. {
  3530. unsigned long start_pfn, end_pfn;
  3531. int i, this_nid;
  3532. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3533. start_pfn = min(start_pfn, max_low_pfn);
  3534. end_pfn = min(end_pfn, max_low_pfn);
  3535. if (start_pfn < end_pfn)
  3536. free_bootmem_node(NODE_DATA(this_nid),
  3537. PFN_PHYS(start_pfn),
  3538. (end_pfn - start_pfn) << PAGE_SHIFT);
  3539. }
  3540. }
  3541. /**
  3542. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3543. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3544. *
  3545. * If an architecture guarantees that all ranges registered with
  3546. * add_active_ranges() contain no holes and may be freed, this
  3547. * function may be used instead of calling memory_present() manually.
  3548. */
  3549. void __init sparse_memory_present_with_active_regions(int nid)
  3550. {
  3551. unsigned long start_pfn, end_pfn;
  3552. int i, this_nid;
  3553. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3554. memory_present(this_nid, start_pfn, end_pfn);
  3555. }
  3556. /**
  3557. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3558. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3559. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3560. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3561. *
  3562. * It returns the start and end page frame of a node based on information
  3563. * provided by an arch calling add_active_range(). If called for a node
  3564. * with no available memory, a warning is printed and the start and end
  3565. * PFNs will be 0.
  3566. */
  3567. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3568. unsigned long *start_pfn, unsigned long *end_pfn)
  3569. {
  3570. unsigned long this_start_pfn, this_end_pfn;
  3571. int i;
  3572. *start_pfn = -1UL;
  3573. *end_pfn = 0;
  3574. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3575. *start_pfn = min(*start_pfn, this_start_pfn);
  3576. *end_pfn = max(*end_pfn, this_end_pfn);
  3577. }
  3578. if (*start_pfn == -1UL)
  3579. *start_pfn = 0;
  3580. }
  3581. /*
  3582. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3583. * assumption is made that zones within a node are ordered in monotonic
  3584. * increasing memory addresses so that the "highest" populated zone is used
  3585. */
  3586. static void __init find_usable_zone_for_movable(void)
  3587. {
  3588. int zone_index;
  3589. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3590. if (zone_index == ZONE_MOVABLE)
  3591. continue;
  3592. if (arch_zone_highest_possible_pfn[zone_index] >
  3593. arch_zone_lowest_possible_pfn[zone_index])
  3594. break;
  3595. }
  3596. VM_BUG_ON(zone_index == -1);
  3597. movable_zone = zone_index;
  3598. }
  3599. /*
  3600. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3601. * because it is sized independent of architecture. Unlike the other zones,
  3602. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3603. * in each node depending on the size of each node and how evenly kernelcore
  3604. * is distributed. This helper function adjusts the zone ranges
  3605. * provided by the architecture for a given node by using the end of the
  3606. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3607. * zones within a node are in order of monotonic increases memory addresses
  3608. */
  3609. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3610. unsigned long zone_type,
  3611. unsigned long node_start_pfn,
  3612. unsigned long node_end_pfn,
  3613. unsigned long *zone_start_pfn,
  3614. unsigned long *zone_end_pfn)
  3615. {
  3616. /* Only adjust if ZONE_MOVABLE is on this node */
  3617. if (zone_movable_pfn[nid]) {
  3618. /* Size ZONE_MOVABLE */
  3619. if (zone_type == ZONE_MOVABLE) {
  3620. *zone_start_pfn = zone_movable_pfn[nid];
  3621. *zone_end_pfn = min(node_end_pfn,
  3622. arch_zone_highest_possible_pfn[movable_zone]);
  3623. /* Adjust for ZONE_MOVABLE starting within this range */
  3624. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3625. *zone_end_pfn > zone_movable_pfn[nid]) {
  3626. *zone_end_pfn = zone_movable_pfn[nid];
  3627. /* Check if this whole range is within ZONE_MOVABLE */
  3628. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3629. *zone_start_pfn = *zone_end_pfn;
  3630. }
  3631. }
  3632. /*
  3633. * Return the number of pages a zone spans in a node, including holes
  3634. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3635. */
  3636. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3637. unsigned long zone_type,
  3638. unsigned long *ignored)
  3639. {
  3640. unsigned long node_start_pfn, node_end_pfn;
  3641. unsigned long zone_start_pfn, zone_end_pfn;
  3642. /* Get the start and end of the node and zone */
  3643. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3644. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3645. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3646. adjust_zone_range_for_zone_movable(nid, zone_type,
  3647. node_start_pfn, node_end_pfn,
  3648. &zone_start_pfn, &zone_end_pfn);
  3649. /* Check that this node has pages within the zone's required range */
  3650. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3651. return 0;
  3652. /* Move the zone boundaries inside the node if necessary */
  3653. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3654. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3655. /* Return the spanned pages */
  3656. return zone_end_pfn - zone_start_pfn;
  3657. }
  3658. /*
  3659. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3660. * then all holes in the requested range will be accounted for.
  3661. */
  3662. unsigned long __meminit __absent_pages_in_range(int nid,
  3663. unsigned long range_start_pfn,
  3664. unsigned long range_end_pfn)
  3665. {
  3666. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3667. unsigned long start_pfn, end_pfn;
  3668. int i;
  3669. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3670. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3671. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3672. nr_absent -= end_pfn - start_pfn;
  3673. }
  3674. return nr_absent;
  3675. }
  3676. /**
  3677. * absent_pages_in_range - Return number of page frames in holes within a range
  3678. * @start_pfn: The start PFN to start searching for holes
  3679. * @end_pfn: The end PFN to stop searching for holes
  3680. *
  3681. * It returns the number of pages frames in memory holes within a range.
  3682. */
  3683. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3684. unsigned long end_pfn)
  3685. {
  3686. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3687. }
  3688. /* Return the number of page frames in holes in a zone on a node */
  3689. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3690. unsigned long zone_type,
  3691. unsigned long *ignored)
  3692. {
  3693. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3694. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3695. unsigned long node_start_pfn, node_end_pfn;
  3696. unsigned long zone_start_pfn, zone_end_pfn;
  3697. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3698. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3699. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3700. adjust_zone_range_for_zone_movable(nid, zone_type,
  3701. node_start_pfn, node_end_pfn,
  3702. &zone_start_pfn, &zone_end_pfn);
  3703. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3704. }
  3705. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3706. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3707. unsigned long zone_type,
  3708. unsigned long *zones_size)
  3709. {
  3710. return zones_size[zone_type];
  3711. }
  3712. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3713. unsigned long zone_type,
  3714. unsigned long *zholes_size)
  3715. {
  3716. if (!zholes_size)
  3717. return 0;
  3718. return zholes_size[zone_type];
  3719. }
  3720. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3721. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3722. unsigned long *zones_size, unsigned long *zholes_size)
  3723. {
  3724. unsigned long realtotalpages, totalpages = 0;
  3725. enum zone_type i;
  3726. for (i = 0; i < MAX_NR_ZONES; i++)
  3727. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3728. zones_size);
  3729. pgdat->node_spanned_pages = totalpages;
  3730. realtotalpages = totalpages;
  3731. for (i = 0; i < MAX_NR_ZONES; i++)
  3732. realtotalpages -=
  3733. zone_absent_pages_in_node(pgdat->node_id, i,
  3734. zholes_size);
  3735. pgdat->node_present_pages = realtotalpages;
  3736. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3737. realtotalpages);
  3738. }
  3739. #ifndef CONFIG_SPARSEMEM
  3740. /*
  3741. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3742. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3743. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3744. * round what is now in bits to nearest long in bits, then return it in
  3745. * bytes.
  3746. */
  3747. static unsigned long __init usemap_size(unsigned long zonesize)
  3748. {
  3749. unsigned long usemapsize;
  3750. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3751. usemapsize = usemapsize >> pageblock_order;
  3752. usemapsize *= NR_PAGEBLOCK_BITS;
  3753. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3754. return usemapsize / 8;
  3755. }
  3756. static void __init setup_usemap(struct pglist_data *pgdat,
  3757. struct zone *zone, unsigned long zonesize)
  3758. {
  3759. unsigned long usemapsize = usemap_size(zonesize);
  3760. zone->pageblock_flags = NULL;
  3761. if (usemapsize)
  3762. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3763. usemapsize);
  3764. }
  3765. #else
  3766. static inline void setup_usemap(struct pglist_data *pgdat,
  3767. struct zone *zone, unsigned long zonesize) {}
  3768. #endif /* CONFIG_SPARSEMEM */
  3769. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3770. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3771. void __init set_pageblock_order(void)
  3772. {
  3773. unsigned int order;
  3774. /* Check that pageblock_nr_pages has not already been setup */
  3775. if (pageblock_order)
  3776. return;
  3777. if (HPAGE_SHIFT > PAGE_SHIFT)
  3778. order = HUGETLB_PAGE_ORDER;
  3779. else
  3780. order = MAX_ORDER - 1;
  3781. /*
  3782. * Assume the largest contiguous order of interest is a huge page.
  3783. * This value may be variable depending on boot parameters on IA64 and
  3784. * powerpc.
  3785. */
  3786. pageblock_order = order;
  3787. }
  3788. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3789. /*
  3790. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3791. * is unused as pageblock_order is set at compile-time. See
  3792. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  3793. * the kernel config
  3794. */
  3795. void __init set_pageblock_order(void)
  3796. {
  3797. }
  3798. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3799. /*
  3800. * Set up the zone data structures:
  3801. * - mark all pages reserved
  3802. * - mark all memory queues empty
  3803. * - clear the memory bitmaps
  3804. *
  3805. * NOTE: pgdat should get zeroed by caller.
  3806. */
  3807. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3808. unsigned long *zones_size, unsigned long *zholes_size)
  3809. {
  3810. enum zone_type j;
  3811. int nid = pgdat->node_id;
  3812. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3813. int ret;
  3814. pgdat_resize_init(pgdat);
  3815. init_waitqueue_head(&pgdat->kswapd_wait);
  3816. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  3817. pgdat_page_cgroup_init(pgdat);
  3818. for (j = 0; j < MAX_NR_ZONES; j++) {
  3819. struct zone *zone = pgdat->node_zones + j;
  3820. unsigned long size, realsize, memmap_pages;
  3821. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3822. realsize = size - zone_absent_pages_in_node(nid, j,
  3823. zholes_size);
  3824. /*
  3825. * Adjust realsize so that it accounts for how much memory
  3826. * is used by this zone for memmap. This affects the watermark
  3827. * and per-cpu initialisations
  3828. */
  3829. memmap_pages =
  3830. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3831. if (realsize >= memmap_pages) {
  3832. realsize -= memmap_pages;
  3833. if (memmap_pages)
  3834. printk(KERN_DEBUG
  3835. " %s zone: %lu pages used for memmap\n",
  3836. zone_names[j], memmap_pages);
  3837. } else
  3838. printk(KERN_WARNING
  3839. " %s zone: %lu pages exceeds realsize %lu\n",
  3840. zone_names[j], memmap_pages, realsize);
  3841. /* Account for reserved pages */
  3842. if (j == 0 && realsize > dma_reserve) {
  3843. realsize -= dma_reserve;
  3844. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3845. zone_names[0], dma_reserve);
  3846. }
  3847. if (!is_highmem_idx(j))
  3848. nr_kernel_pages += realsize;
  3849. nr_all_pages += realsize;
  3850. zone->spanned_pages = size;
  3851. zone->present_pages = realsize;
  3852. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  3853. zone->compact_cached_free_pfn = zone->zone_start_pfn +
  3854. zone->spanned_pages;
  3855. zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
  3856. #endif
  3857. #ifdef CONFIG_NUMA
  3858. zone->node = nid;
  3859. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3860. / 100;
  3861. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3862. #endif
  3863. zone->name = zone_names[j];
  3864. spin_lock_init(&zone->lock);
  3865. spin_lock_init(&zone->lru_lock);
  3866. zone_seqlock_init(zone);
  3867. zone->zone_pgdat = pgdat;
  3868. zone_pcp_init(zone);
  3869. lruvec_init(&zone->lruvec, zone);
  3870. if (!size)
  3871. continue;
  3872. set_pageblock_order();
  3873. setup_usemap(pgdat, zone, size);
  3874. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3875. size, MEMMAP_EARLY);
  3876. BUG_ON(ret);
  3877. memmap_init(size, nid, j, zone_start_pfn);
  3878. zone_start_pfn += size;
  3879. }
  3880. }
  3881. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3882. {
  3883. /* Skip empty nodes */
  3884. if (!pgdat->node_spanned_pages)
  3885. return;
  3886. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3887. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3888. if (!pgdat->node_mem_map) {
  3889. unsigned long size, start, end;
  3890. struct page *map;
  3891. /*
  3892. * The zone's endpoints aren't required to be MAX_ORDER
  3893. * aligned but the node_mem_map endpoints must be in order
  3894. * for the buddy allocator to function correctly.
  3895. */
  3896. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3897. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3898. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3899. size = (end - start) * sizeof(struct page);
  3900. map = alloc_remap(pgdat->node_id, size);
  3901. if (!map)
  3902. map = alloc_bootmem_node_nopanic(pgdat, size);
  3903. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3904. }
  3905. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3906. /*
  3907. * With no DISCONTIG, the global mem_map is just set as node 0's
  3908. */
  3909. if (pgdat == NODE_DATA(0)) {
  3910. mem_map = NODE_DATA(0)->node_mem_map;
  3911. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3912. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3913. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3914. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3915. }
  3916. #endif
  3917. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3918. }
  3919. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3920. unsigned long node_start_pfn, unsigned long *zholes_size)
  3921. {
  3922. pg_data_t *pgdat = NODE_DATA(nid);
  3923. /* pg_data_t should be reset to zero when it's allocated */
  3924. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  3925. pgdat->node_id = nid;
  3926. pgdat->node_start_pfn = node_start_pfn;
  3927. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3928. alloc_node_mem_map(pgdat);
  3929. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3930. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3931. nid, (unsigned long)pgdat,
  3932. (unsigned long)pgdat->node_mem_map);
  3933. #endif
  3934. free_area_init_core(pgdat, zones_size, zholes_size);
  3935. }
  3936. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3937. #if MAX_NUMNODES > 1
  3938. /*
  3939. * Figure out the number of possible node ids.
  3940. */
  3941. static void __init setup_nr_node_ids(void)
  3942. {
  3943. unsigned int node;
  3944. unsigned int highest = 0;
  3945. for_each_node_mask(node, node_possible_map)
  3946. highest = node;
  3947. nr_node_ids = highest + 1;
  3948. }
  3949. #else
  3950. static inline void setup_nr_node_ids(void)
  3951. {
  3952. }
  3953. #endif
  3954. /**
  3955. * node_map_pfn_alignment - determine the maximum internode alignment
  3956. *
  3957. * This function should be called after node map is populated and sorted.
  3958. * It calculates the maximum power of two alignment which can distinguish
  3959. * all the nodes.
  3960. *
  3961. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  3962. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  3963. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  3964. * shifted, 1GiB is enough and this function will indicate so.
  3965. *
  3966. * This is used to test whether pfn -> nid mapping of the chosen memory
  3967. * model has fine enough granularity to avoid incorrect mapping for the
  3968. * populated node map.
  3969. *
  3970. * Returns the determined alignment in pfn's. 0 if there is no alignment
  3971. * requirement (single node).
  3972. */
  3973. unsigned long __init node_map_pfn_alignment(void)
  3974. {
  3975. unsigned long accl_mask = 0, last_end = 0;
  3976. unsigned long start, end, mask;
  3977. int last_nid = -1;
  3978. int i, nid;
  3979. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  3980. if (!start || last_nid < 0 || last_nid == nid) {
  3981. last_nid = nid;
  3982. last_end = end;
  3983. continue;
  3984. }
  3985. /*
  3986. * Start with a mask granular enough to pin-point to the
  3987. * start pfn and tick off bits one-by-one until it becomes
  3988. * too coarse to separate the current node from the last.
  3989. */
  3990. mask = ~((1 << __ffs(start)) - 1);
  3991. while (mask && last_end <= (start & (mask << 1)))
  3992. mask <<= 1;
  3993. /* accumulate all internode masks */
  3994. accl_mask |= mask;
  3995. }
  3996. /* convert mask to number of pages */
  3997. return ~accl_mask + 1;
  3998. }
  3999. /* Find the lowest pfn for a node */
  4000. static unsigned long __init find_min_pfn_for_node(int nid)
  4001. {
  4002. unsigned long min_pfn = ULONG_MAX;
  4003. unsigned long start_pfn;
  4004. int i;
  4005. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4006. min_pfn = min(min_pfn, start_pfn);
  4007. if (min_pfn == ULONG_MAX) {
  4008. printk(KERN_WARNING
  4009. "Could not find start_pfn for node %d\n", nid);
  4010. return 0;
  4011. }
  4012. return min_pfn;
  4013. }
  4014. /**
  4015. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4016. *
  4017. * It returns the minimum PFN based on information provided via
  4018. * add_active_range().
  4019. */
  4020. unsigned long __init find_min_pfn_with_active_regions(void)
  4021. {
  4022. return find_min_pfn_for_node(MAX_NUMNODES);
  4023. }
  4024. /*
  4025. * early_calculate_totalpages()
  4026. * Sum pages in active regions for movable zone.
  4027. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  4028. */
  4029. static unsigned long __init early_calculate_totalpages(void)
  4030. {
  4031. unsigned long totalpages = 0;
  4032. unsigned long start_pfn, end_pfn;
  4033. int i, nid;
  4034. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4035. unsigned long pages = end_pfn - start_pfn;
  4036. totalpages += pages;
  4037. if (pages)
  4038. node_set_state(nid, N_HIGH_MEMORY);
  4039. }
  4040. return totalpages;
  4041. }
  4042. /*
  4043. * Find the PFN the Movable zone begins in each node. Kernel memory
  4044. * is spread evenly between nodes as long as the nodes have enough
  4045. * memory. When they don't, some nodes will have more kernelcore than
  4046. * others
  4047. */
  4048. static void __init find_zone_movable_pfns_for_nodes(void)
  4049. {
  4050. int i, nid;
  4051. unsigned long usable_startpfn;
  4052. unsigned long kernelcore_node, kernelcore_remaining;
  4053. /* save the state before borrow the nodemask */
  4054. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4055. unsigned long totalpages = early_calculate_totalpages();
  4056. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4057. /*
  4058. * If movablecore was specified, calculate what size of
  4059. * kernelcore that corresponds so that memory usable for
  4060. * any allocation type is evenly spread. If both kernelcore
  4061. * and movablecore are specified, then the value of kernelcore
  4062. * will be used for required_kernelcore if it's greater than
  4063. * what movablecore would have allowed.
  4064. */
  4065. if (required_movablecore) {
  4066. unsigned long corepages;
  4067. /*
  4068. * Round-up so that ZONE_MOVABLE is at least as large as what
  4069. * was requested by the user
  4070. */
  4071. required_movablecore =
  4072. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4073. corepages = totalpages - required_movablecore;
  4074. required_kernelcore = max(required_kernelcore, corepages);
  4075. }
  4076. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4077. if (!required_kernelcore)
  4078. goto out;
  4079. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4080. find_usable_zone_for_movable();
  4081. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4082. restart:
  4083. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4084. kernelcore_node = required_kernelcore / usable_nodes;
  4085. for_each_node_state(nid, N_HIGH_MEMORY) {
  4086. unsigned long start_pfn, end_pfn;
  4087. /*
  4088. * Recalculate kernelcore_node if the division per node
  4089. * now exceeds what is necessary to satisfy the requested
  4090. * amount of memory for the kernel
  4091. */
  4092. if (required_kernelcore < kernelcore_node)
  4093. kernelcore_node = required_kernelcore / usable_nodes;
  4094. /*
  4095. * As the map is walked, we track how much memory is usable
  4096. * by the kernel using kernelcore_remaining. When it is
  4097. * 0, the rest of the node is usable by ZONE_MOVABLE
  4098. */
  4099. kernelcore_remaining = kernelcore_node;
  4100. /* Go through each range of PFNs within this node */
  4101. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4102. unsigned long size_pages;
  4103. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4104. if (start_pfn >= end_pfn)
  4105. continue;
  4106. /* Account for what is only usable for kernelcore */
  4107. if (start_pfn < usable_startpfn) {
  4108. unsigned long kernel_pages;
  4109. kernel_pages = min(end_pfn, usable_startpfn)
  4110. - start_pfn;
  4111. kernelcore_remaining -= min(kernel_pages,
  4112. kernelcore_remaining);
  4113. required_kernelcore -= min(kernel_pages,
  4114. required_kernelcore);
  4115. /* Continue if range is now fully accounted */
  4116. if (end_pfn <= usable_startpfn) {
  4117. /*
  4118. * Push zone_movable_pfn to the end so
  4119. * that if we have to rebalance
  4120. * kernelcore across nodes, we will
  4121. * not double account here
  4122. */
  4123. zone_movable_pfn[nid] = end_pfn;
  4124. continue;
  4125. }
  4126. start_pfn = usable_startpfn;
  4127. }
  4128. /*
  4129. * The usable PFN range for ZONE_MOVABLE is from
  4130. * start_pfn->end_pfn. Calculate size_pages as the
  4131. * number of pages used as kernelcore
  4132. */
  4133. size_pages = end_pfn - start_pfn;
  4134. if (size_pages > kernelcore_remaining)
  4135. size_pages = kernelcore_remaining;
  4136. zone_movable_pfn[nid] = start_pfn + size_pages;
  4137. /*
  4138. * Some kernelcore has been met, update counts and
  4139. * break if the kernelcore for this node has been
  4140. * satisified
  4141. */
  4142. required_kernelcore -= min(required_kernelcore,
  4143. size_pages);
  4144. kernelcore_remaining -= size_pages;
  4145. if (!kernelcore_remaining)
  4146. break;
  4147. }
  4148. }
  4149. /*
  4150. * If there is still required_kernelcore, we do another pass with one
  4151. * less node in the count. This will push zone_movable_pfn[nid] further
  4152. * along on the nodes that still have memory until kernelcore is
  4153. * satisified
  4154. */
  4155. usable_nodes--;
  4156. if (usable_nodes && required_kernelcore > usable_nodes)
  4157. goto restart;
  4158. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4159. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4160. zone_movable_pfn[nid] =
  4161. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4162. out:
  4163. /* restore the node_state */
  4164. node_states[N_HIGH_MEMORY] = saved_node_state;
  4165. }
  4166. /* Any regular memory on that node ? */
  4167. static void __init check_for_regular_memory(pg_data_t *pgdat)
  4168. {
  4169. #ifdef CONFIG_HIGHMEM
  4170. enum zone_type zone_type;
  4171. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4172. struct zone *zone = &pgdat->node_zones[zone_type];
  4173. if (zone->present_pages) {
  4174. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4175. break;
  4176. }
  4177. }
  4178. #endif
  4179. }
  4180. /**
  4181. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4182. * @max_zone_pfn: an array of max PFNs for each zone
  4183. *
  4184. * This will call free_area_init_node() for each active node in the system.
  4185. * Using the page ranges provided by add_active_range(), the size of each
  4186. * zone in each node and their holes is calculated. If the maximum PFN
  4187. * between two adjacent zones match, it is assumed that the zone is empty.
  4188. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4189. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4190. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4191. * at arch_max_dma_pfn.
  4192. */
  4193. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4194. {
  4195. unsigned long start_pfn, end_pfn;
  4196. int i, nid;
  4197. /* Record where the zone boundaries are */
  4198. memset(arch_zone_lowest_possible_pfn, 0,
  4199. sizeof(arch_zone_lowest_possible_pfn));
  4200. memset(arch_zone_highest_possible_pfn, 0,
  4201. sizeof(arch_zone_highest_possible_pfn));
  4202. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4203. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4204. for (i = 1; i < MAX_NR_ZONES; i++) {
  4205. if (i == ZONE_MOVABLE)
  4206. continue;
  4207. arch_zone_lowest_possible_pfn[i] =
  4208. arch_zone_highest_possible_pfn[i-1];
  4209. arch_zone_highest_possible_pfn[i] =
  4210. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4211. }
  4212. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4213. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4214. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4215. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4216. find_zone_movable_pfns_for_nodes();
  4217. /* Print out the zone ranges */
  4218. printk("Zone ranges:\n");
  4219. for (i = 0; i < MAX_NR_ZONES; i++) {
  4220. if (i == ZONE_MOVABLE)
  4221. continue;
  4222. printk(KERN_CONT " %-8s ", zone_names[i]);
  4223. if (arch_zone_lowest_possible_pfn[i] ==
  4224. arch_zone_highest_possible_pfn[i])
  4225. printk(KERN_CONT "empty\n");
  4226. else
  4227. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4228. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4229. (arch_zone_highest_possible_pfn[i]
  4230. << PAGE_SHIFT) - 1);
  4231. }
  4232. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4233. printk("Movable zone start for each node\n");
  4234. for (i = 0; i < MAX_NUMNODES; i++) {
  4235. if (zone_movable_pfn[i])
  4236. printk(" Node %d: %#010lx\n", i,
  4237. zone_movable_pfn[i] << PAGE_SHIFT);
  4238. }
  4239. /* Print out the early_node_map[] */
  4240. printk("Early memory node ranges\n");
  4241. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4242. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4243. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4244. /* Initialise every node */
  4245. mminit_verify_pageflags_layout();
  4246. setup_nr_node_ids();
  4247. for_each_online_node(nid) {
  4248. pg_data_t *pgdat = NODE_DATA(nid);
  4249. free_area_init_node(nid, NULL,
  4250. find_min_pfn_for_node(nid), NULL);
  4251. /* Any memory on that node */
  4252. if (pgdat->node_present_pages)
  4253. node_set_state(nid, N_HIGH_MEMORY);
  4254. check_for_regular_memory(pgdat);
  4255. }
  4256. }
  4257. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4258. {
  4259. unsigned long long coremem;
  4260. if (!p)
  4261. return -EINVAL;
  4262. coremem = memparse(p, &p);
  4263. *core = coremem >> PAGE_SHIFT;
  4264. /* Paranoid check that UL is enough for the coremem value */
  4265. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4266. return 0;
  4267. }
  4268. /*
  4269. * kernelcore=size sets the amount of memory for use for allocations that
  4270. * cannot be reclaimed or migrated.
  4271. */
  4272. static int __init cmdline_parse_kernelcore(char *p)
  4273. {
  4274. return cmdline_parse_core(p, &required_kernelcore);
  4275. }
  4276. /*
  4277. * movablecore=size sets the amount of memory for use for allocations that
  4278. * can be reclaimed or migrated.
  4279. */
  4280. static int __init cmdline_parse_movablecore(char *p)
  4281. {
  4282. return cmdline_parse_core(p, &required_movablecore);
  4283. }
  4284. early_param("kernelcore", cmdline_parse_kernelcore);
  4285. early_param("movablecore", cmdline_parse_movablecore);
  4286. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4287. /**
  4288. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4289. * @new_dma_reserve: The number of pages to mark reserved
  4290. *
  4291. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4292. * In the DMA zone, a significant percentage may be consumed by kernel image
  4293. * and other unfreeable allocations which can skew the watermarks badly. This
  4294. * function may optionally be used to account for unfreeable pages in the
  4295. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4296. * smaller per-cpu batchsize.
  4297. */
  4298. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4299. {
  4300. dma_reserve = new_dma_reserve;
  4301. }
  4302. void __init free_area_init(unsigned long *zones_size)
  4303. {
  4304. free_area_init_node(0, zones_size,
  4305. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4306. }
  4307. static int page_alloc_cpu_notify(struct notifier_block *self,
  4308. unsigned long action, void *hcpu)
  4309. {
  4310. int cpu = (unsigned long)hcpu;
  4311. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4312. lru_add_drain_cpu(cpu);
  4313. drain_pages(cpu);
  4314. /*
  4315. * Spill the event counters of the dead processor
  4316. * into the current processors event counters.
  4317. * This artificially elevates the count of the current
  4318. * processor.
  4319. */
  4320. vm_events_fold_cpu(cpu);
  4321. /*
  4322. * Zero the differential counters of the dead processor
  4323. * so that the vm statistics are consistent.
  4324. *
  4325. * This is only okay since the processor is dead and cannot
  4326. * race with what we are doing.
  4327. */
  4328. refresh_cpu_vm_stats(cpu);
  4329. }
  4330. return NOTIFY_OK;
  4331. }
  4332. void __init page_alloc_init(void)
  4333. {
  4334. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4335. }
  4336. /*
  4337. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4338. * or min_free_kbytes changes.
  4339. */
  4340. static void calculate_totalreserve_pages(void)
  4341. {
  4342. struct pglist_data *pgdat;
  4343. unsigned long reserve_pages = 0;
  4344. enum zone_type i, j;
  4345. for_each_online_pgdat(pgdat) {
  4346. for (i = 0; i < MAX_NR_ZONES; i++) {
  4347. struct zone *zone = pgdat->node_zones + i;
  4348. unsigned long max = 0;
  4349. /* Find valid and maximum lowmem_reserve in the zone */
  4350. for (j = i; j < MAX_NR_ZONES; j++) {
  4351. if (zone->lowmem_reserve[j] > max)
  4352. max = zone->lowmem_reserve[j];
  4353. }
  4354. /* we treat the high watermark as reserved pages. */
  4355. max += high_wmark_pages(zone);
  4356. if (max > zone->present_pages)
  4357. max = zone->present_pages;
  4358. reserve_pages += max;
  4359. /*
  4360. * Lowmem reserves are not available to
  4361. * GFP_HIGHUSER page cache allocations and
  4362. * kswapd tries to balance zones to their high
  4363. * watermark. As a result, neither should be
  4364. * regarded as dirtyable memory, to prevent a
  4365. * situation where reclaim has to clean pages
  4366. * in order to balance the zones.
  4367. */
  4368. zone->dirty_balance_reserve = max;
  4369. }
  4370. }
  4371. dirty_balance_reserve = reserve_pages;
  4372. totalreserve_pages = reserve_pages;
  4373. }
  4374. /*
  4375. * setup_per_zone_lowmem_reserve - called whenever
  4376. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4377. * has a correct pages reserved value, so an adequate number of
  4378. * pages are left in the zone after a successful __alloc_pages().
  4379. */
  4380. static void setup_per_zone_lowmem_reserve(void)
  4381. {
  4382. struct pglist_data *pgdat;
  4383. enum zone_type j, idx;
  4384. for_each_online_pgdat(pgdat) {
  4385. for (j = 0; j < MAX_NR_ZONES; j++) {
  4386. struct zone *zone = pgdat->node_zones + j;
  4387. unsigned long present_pages = zone->present_pages;
  4388. zone->lowmem_reserve[j] = 0;
  4389. idx = j;
  4390. while (idx) {
  4391. struct zone *lower_zone;
  4392. idx--;
  4393. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4394. sysctl_lowmem_reserve_ratio[idx] = 1;
  4395. lower_zone = pgdat->node_zones + idx;
  4396. lower_zone->lowmem_reserve[j] = present_pages /
  4397. sysctl_lowmem_reserve_ratio[idx];
  4398. present_pages += lower_zone->present_pages;
  4399. }
  4400. }
  4401. }
  4402. /* update totalreserve_pages */
  4403. calculate_totalreserve_pages();
  4404. }
  4405. static void __setup_per_zone_wmarks(void)
  4406. {
  4407. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4408. unsigned long lowmem_pages = 0;
  4409. struct zone *zone;
  4410. unsigned long flags;
  4411. /* Calculate total number of !ZONE_HIGHMEM pages */
  4412. for_each_zone(zone) {
  4413. if (!is_highmem(zone))
  4414. lowmem_pages += zone->present_pages;
  4415. }
  4416. for_each_zone(zone) {
  4417. u64 tmp;
  4418. spin_lock_irqsave(&zone->lock, flags);
  4419. tmp = (u64)pages_min * zone->present_pages;
  4420. do_div(tmp, lowmem_pages);
  4421. if (is_highmem(zone)) {
  4422. /*
  4423. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4424. * need highmem pages, so cap pages_min to a small
  4425. * value here.
  4426. *
  4427. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4428. * deltas controls asynch page reclaim, and so should
  4429. * not be capped for highmem.
  4430. */
  4431. int min_pages;
  4432. min_pages = zone->present_pages / 1024;
  4433. if (min_pages < SWAP_CLUSTER_MAX)
  4434. min_pages = SWAP_CLUSTER_MAX;
  4435. if (min_pages > 128)
  4436. min_pages = 128;
  4437. zone->watermark[WMARK_MIN] = min_pages;
  4438. } else {
  4439. /*
  4440. * If it's a lowmem zone, reserve a number of pages
  4441. * proportionate to the zone's size.
  4442. */
  4443. zone->watermark[WMARK_MIN] = tmp;
  4444. }
  4445. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4446. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4447. zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
  4448. zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
  4449. zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
  4450. setup_zone_migrate_reserve(zone);
  4451. spin_unlock_irqrestore(&zone->lock, flags);
  4452. }
  4453. /* update totalreserve_pages */
  4454. calculate_totalreserve_pages();
  4455. }
  4456. /**
  4457. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4458. * or when memory is hot-{added|removed}
  4459. *
  4460. * Ensures that the watermark[min,low,high] values for each zone are set
  4461. * correctly with respect to min_free_kbytes.
  4462. */
  4463. void setup_per_zone_wmarks(void)
  4464. {
  4465. mutex_lock(&zonelists_mutex);
  4466. __setup_per_zone_wmarks();
  4467. mutex_unlock(&zonelists_mutex);
  4468. }
  4469. /*
  4470. * The inactive anon list should be small enough that the VM never has to
  4471. * do too much work, but large enough that each inactive page has a chance
  4472. * to be referenced again before it is swapped out.
  4473. *
  4474. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4475. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4476. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4477. * the anonymous pages are kept on the inactive list.
  4478. *
  4479. * total target max
  4480. * memory ratio inactive anon
  4481. * -------------------------------------
  4482. * 10MB 1 5MB
  4483. * 100MB 1 50MB
  4484. * 1GB 3 250MB
  4485. * 10GB 10 0.9GB
  4486. * 100GB 31 3GB
  4487. * 1TB 101 10GB
  4488. * 10TB 320 32GB
  4489. */
  4490. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4491. {
  4492. unsigned int gb, ratio;
  4493. /* Zone size in gigabytes */
  4494. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4495. if (gb)
  4496. ratio = int_sqrt(10 * gb);
  4497. else
  4498. ratio = 1;
  4499. zone->inactive_ratio = ratio;
  4500. }
  4501. static void __meminit setup_per_zone_inactive_ratio(void)
  4502. {
  4503. struct zone *zone;
  4504. for_each_zone(zone)
  4505. calculate_zone_inactive_ratio(zone);
  4506. }
  4507. /*
  4508. * Initialise min_free_kbytes.
  4509. *
  4510. * For small machines we want it small (128k min). For large machines
  4511. * we want it large (64MB max). But it is not linear, because network
  4512. * bandwidth does not increase linearly with machine size. We use
  4513. *
  4514. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4515. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4516. *
  4517. * which yields
  4518. *
  4519. * 16MB: 512k
  4520. * 32MB: 724k
  4521. * 64MB: 1024k
  4522. * 128MB: 1448k
  4523. * 256MB: 2048k
  4524. * 512MB: 2896k
  4525. * 1024MB: 4096k
  4526. * 2048MB: 5792k
  4527. * 4096MB: 8192k
  4528. * 8192MB: 11584k
  4529. * 16384MB: 16384k
  4530. */
  4531. int __meminit init_per_zone_wmark_min(void)
  4532. {
  4533. unsigned long lowmem_kbytes;
  4534. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4535. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4536. if (min_free_kbytes < 128)
  4537. min_free_kbytes = 128;
  4538. if (min_free_kbytes > 65536)
  4539. min_free_kbytes = 65536;
  4540. setup_per_zone_wmarks();
  4541. refresh_zone_stat_thresholds();
  4542. setup_per_zone_lowmem_reserve();
  4543. setup_per_zone_inactive_ratio();
  4544. return 0;
  4545. }
  4546. module_init(init_per_zone_wmark_min)
  4547. /*
  4548. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4549. * that we can call two helper functions whenever min_free_kbytes
  4550. * changes.
  4551. */
  4552. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4553. void __user *buffer, size_t *length, loff_t *ppos)
  4554. {
  4555. proc_dointvec(table, write, buffer, length, ppos);
  4556. if (write)
  4557. setup_per_zone_wmarks();
  4558. return 0;
  4559. }
  4560. #ifdef CONFIG_NUMA
  4561. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4562. void __user *buffer, size_t *length, loff_t *ppos)
  4563. {
  4564. struct zone *zone;
  4565. int rc;
  4566. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4567. if (rc)
  4568. return rc;
  4569. for_each_zone(zone)
  4570. zone->min_unmapped_pages = (zone->present_pages *
  4571. sysctl_min_unmapped_ratio) / 100;
  4572. return 0;
  4573. }
  4574. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4575. void __user *buffer, size_t *length, loff_t *ppos)
  4576. {
  4577. struct zone *zone;
  4578. int rc;
  4579. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4580. if (rc)
  4581. return rc;
  4582. for_each_zone(zone)
  4583. zone->min_slab_pages = (zone->present_pages *
  4584. sysctl_min_slab_ratio) / 100;
  4585. return 0;
  4586. }
  4587. #endif
  4588. /*
  4589. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4590. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4591. * whenever sysctl_lowmem_reserve_ratio changes.
  4592. *
  4593. * The reserve ratio obviously has absolutely no relation with the
  4594. * minimum watermarks. The lowmem reserve ratio can only make sense
  4595. * if in function of the boot time zone sizes.
  4596. */
  4597. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4598. void __user *buffer, size_t *length, loff_t *ppos)
  4599. {
  4600. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4601. setup_per_zone_lowmem_reserve();
  4602. return 0;
  4603. }
  4604. /*
  4605. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4606. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4607. * can have before it gets flushed back to buddy allocator.
  4608. */
  4609. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4610. void __user *buffer, size_t *length, loff_t *ppos)
  4611. {
  4612. struct zone *zone;
  4613. unsigned int cpu;
  4614. int ret;
  4615. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4616. if (!write || (ret < 0))
  4617. return ret;
  4618. for_each_populated_zone(zone) {
  4619. for_each_possible_cpu(cpu) {
  4620. unsigned long high;
  4621. high = zone->present_pages / percpu_pagelist_fraction;
  4622. setup_pagelist_highmark(
  4623. per_cpu_ptr(zone->pageset, cpu), high);
  4624. }
  4625. }
  4626. return 0;
  4627. }
  4628. int hashdist = HASHDIST_DEFAULT;
  4629. #ifdef CONFIG_NUMA
  4630. static int __init set_hashdist(char *str)
  4631. {
  4632. if (!str)
  4633. return 0;
  4634. hashdist = simple_strtoul(str, &str, 0);
  4635. return 1;
  4636. }
  4637. __setup("hashdist=", set_hashdist);
  4638. #endif
  4639. /*
  4640. * allocate a large system hash table from bootmem
  4641. * - it is assumed that the hash table must contain an exact power-of-2
  4642. * quantity of entries
  4643. * - limit is the number of hash buckets, not the total allocation size
  4644. */
  4645. void *__init alloc_large_system_hash(const char *tablename,
  4646. unsigned long bucketsize,
  4647. unsigned long numentries,
  4648. int scale,
  4649. int flags,
  4650. unsigned int *_hash_shift,
  4651. unsigned int *_hash_mask,
  4652. unsigned long low_limit,
  4653. unsigned long high_limit)
  4654. {
  4655. unsigned long long max = high_limit;
  4656. unsigned long log2qty, size;
  4657. void *table = NULL;
  4658. /* allow the kernel cmdline to have a say */
  4659. if (!numentries) {
  4660. /* round applicable memory size up to nearest megabyte */
  4661. numentries = nr_kernel_pages;
  4662. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4663. numentries >>= 20 - PAGE_SHIFT;
  4664. numentries <<= 20 - PAGE_SHIFT;
  4665. /* limit to 1 bucket per 2^scale bytes of low memory */
  4666. if (scale > PAGE_SHIFT)
  4667. numentries >>= (scale - PAGE_SHIFT);
  4668. else
  4669. numentries <<= (PAGE_SHIFT - scale);
  4670. /* Make sure we've got at least a 0-order allocation.. */
  4671. if (unlikely(flags & HASH_SMALL)) {
  4672. /* Makes no sense without HASH_EARLY */
  4673. WARN_ON(!(flags & HASH_EARLY));
  4674. if (!(numentries >> *_hash_shift)) {
  4675. numentries = 1UL << *_hash_shift;
  4676. BUG_ON(!numentries);
  4677. }
  4678. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4679. numentries = PAGE_SIZE / bucketsize;
  4680. }
  4681. numentries = roundup_pow_of_two(numentries);
  4682. /* limit allocation size to 1/16 total memory by default */
  4683. if (max == 0) {
  4684. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4685. do_div(max, bucketsize);
  4686. }
  4687. max = min(max, 0x80000000ULL);
  4688. if (numentries < low_limit)
  4689. numentries = low_limit;
  4690. if (numentries > max)
  4691. numentries = max;
  4692. log2qty = ilog2(numentries);
  4693. do {
  4694. size = bucketsize << log2qty;
  4695. if (flags & HASH_EARLY)
  4696. table = alloc_bootmem_nopanic(size);
  4697. else if (hashdist)
  4698. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4699. else {
  4700. /*
  4701. * If bucketsize is not a power-of-two, we may free
  4702. * some pages at the end of hash table which
  4703. * alloc_pages_exact() automatically does
  4704. */
  4705. if (get_order(size) < MAX_ORDER) {
  4706. table = alloc_pages_exact(size, GFP_ATOMIC);
  4707. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4708. }
  4709. }
  4710. } while (!table && size > PAGE_SIZE && --log2qty);
  4711. if (!table)
  4712. panic("Failed to allocate %s hash table\n", tablename);
  4713. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4714. tablename,
  4715. (1UL << log2qty),
  4716. ilog2(size) - PAGE_SHIFT,
  4717. size);
  4718. if (_hash_shift)
  4719. *_hash_shift = log2qty;
  4720. if (_hash_mask)
  4721. *_hash_mask = (1 << log2qty) - 1;
  4722. return table;
  4723. }
  4724. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4725. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4726. unsigned long pfn)
  4727. {
  4728. #ifdef CONFIG_SPARSEMEM
  4729. return __pfn_to_section(pfn)->pageblock_flags;
  4730. #else
  4731. return zone->pageblock_flags;
  4732. #endif /* CONFIG_SPARSEMEM */
  4733. }
  4734. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4735. {
  4736. #ifdef CONFIG_SPARSEMEM
  4737. pfn &= (PAGES_PER_SECTION-1);
  4738. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4739. #else
  4740. pfn = pfn - zone->zone_start_pfn;
  4741. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4742. #endif /* CONFIG_SPARSEMEM */
  4743. }
  4744. /**
  4745. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4746. * @page: The page within the block of interest
  4747. * @start_bitidx: The first bit of interest to retrieve
  4748. * @end_bitidx: The last bit of interest
  4749. * returns pageblock_bits flags
  4750. */
  4751. unsigned long get_pageblock_flags_group(struct page *page,
  4752. int start_bitidx, int end_bitidx)
  4753. {
  4754. struct zone *zone;
  4755. unsigned long *bitmap;
  4756. unsigned long pfn, bitidx;
  4757. unsigned long flags = 0;
  4758. unsigned long value = 1;
  4759. zone = page_zone(page);
  4760. pfn = page_to_pfn(page);
  4761. bitmap = get_pageblock_bitmap(zone, pfn);
  4762. bitidx = pfn_to_bitidx(zone, pfn);
  4763. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4764. if (test_bit(bitidx + start_bitidx, bitmap))
  4765. flags |= value;
  4766. return flags;
  4767. }
  4768. /**
  4769. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4770. * @page: The page within the block of interest
  4771. * @start_bitidx: The first bit of interest
  4772. * @end_bitidx: The last bit of interest
  4773. * @flags: The flags to set
  4774. */
  4775. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4776. int start_bitidx, int end_bitidx)
  4777. {
  4778. struct zone *zone;
  4779. unsigned long *bitmap;
  4780. unsigned long pfn, bitidx;
  4781. unsigned long value = 1;
  4782. zone = page_zone(page);
  4783. pfn = page_to_pfn(page);
  4784. bitmap = get_pageblock_bitmap(zone, pfn);
  4785. bitidx = pfn_to_bitidx(zone, pfn);
  4786. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4787. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4788. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4789. if (flags & value)
  4790. __set_bit(bitidx + start_bitidx, bitmap);
  4791. else
  4792. __clear_bit(bitidx + start_bitidx, bitmap);
  4793. }
  4794. /*
  4795. * This function checks whether pageblock includes unmovable pages or not.
  4796. * If @count is not zero, it is okay to include less @count unmovable pages
  4797. *
  4798. * PageLRU check wihtout isolation or lru_lock could race so that
  4799. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  4800. * expect this function should be exact.
  4801. */
  4802. bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
  4803. {
  4804. unsigned long pfn, iter, found;
  4805. int mt;
  4806. /*
  4807. * For avoiding noise data, lru_add_drain_all() should be called
  4808. * If ZONE_MOVABLE, the zone never contains unmovable pages
  4809. */
  4810. if (zone_idx(zone) == ZONE_MOVABLE)
  4811. return false;
  4812. mt = get_pageblock_migratetype(page);
  4813. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  4814. return false;
  4815. pfn = page_to_pfn(page);
  4816. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4817. unsigned long check = pfn + iter;
  4818. if (!pfn_valid_within(check))
  4819. continue;
  4820. page = pfn_to_page(check);
  4821. /*
  4822. * We can't use page_count without pin a page
  4823. * because another CPU can free compound page.
  4824. * This check already skips compound tails of THP
  4825. * because their page->_count is zero at all time.
  4826. */
  4827. if (!atomic_read(&page->_count)) {
  4828. if (PageBuddy(page))
  4829. iter += (1 << page_order(page)) - 1;
  4830. continue;
  4831. }
  4832. if (!PageLRU(page))
  4833. found++;
  4834. /*
  4835. * If there are RECLAIMABLE pages, we need to check it.
  4836. * But now, memory offline itself doesn't call shrink_slab()
  4837. * and it still to be fixed.
  4838. */
  4839. /*
  4840. * If the page is not RAM, page_count()should be 0.
  4841. * we don't need more check. This is an _used_ not-movable page.
  4842. *
  4843. * The problematic thing here is PG_reserved pages. PG_reserved
  4844. * is set to both of a memory hole page and a _used_ kernel
  4845. * page at boot.
  4846. */
  4847. if (found > count)
  4848. return true;
  4849. }
  4850. return false;
  4851. }
  4852. bool is_pageblock_removable_nolock(struct page *page)
  4853. {
  4854. struct zone *zone;
  4855. unsigned long pfn;
  4856. /*
  4857. * We have to be careful here because we are iterating over memory
  4858. * sections which are not zone aware so we might end up outside of
  4859. * the zone but still within the section.
  4860. * We have to take care about the node as well. If the node is offline
  4861. * its NODE_DATA will be NULL - see page_zone.
  4862. */
  4863. if (!node_online(page_to_nid(page)))
  4864. return false;
  4865. zone = page_zone(page);
  4866. pfn = page_to_pfn(page);
  4867. if (zone->zone_start_pfn > pfn ||
  4868. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  4869. return false;
  4870. return !has_unmovable_pages(zone, page, 0);
  4871. }
  4872. #ifdef CONFIG_CMA
  4873. static unsigned long pfn_max_align_down(unsigned long pfn)
  4874. {
  4875. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4876. pageblock_nr_pages) - 1);
  4877. }
  4878. static unsigned long pfn_max_align_up(unsigned long pfn)
  4879. {
  4880. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4881. pageblock_nr_pages));
  4882. }
  4883. static struct page *
  4884. __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
  4885. int **resultp)
  4886. {
  4887. gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
  4888. if (PageHighMem(page))
  4889. gfp_mask |= __GFP_HIGHMEM;
  4890. return alloc_page(gfp_mask);
  4891. }
  4892. /* [start, end) must belong to a single zone. */
  4893. static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
  4894. {
  4895. /* This function is based on compact_zone() from compaction.c. */
  4896. unsigned long pfn = start;
  4897. unsigned int tries = 0;
  4898. int ret = 0;
  4899. struct compact_control cc = {
  4900. .nr_migratepages = 0,
  4901. .order = -1,
  4902. .zone = page_zone(pfn_to_page(start)),
  4903. .sync = true,
  4904. };
  4905. INIT_LIST_HEAD(&cc.migratepages);
  4906. migrate_prep_local();
  4907. while (pfn < end || !list_empty(&cc.migratepages)) {
  4908. if (fatal_signal_pending(current)) {
  4909. ret = -EINTR;
  4910. break;
  4911. }
  4912. if (list_empty(&cc.migratepages)) {
  4913. cc.nr_migratepages = 0;
  4914. pfn = isolate_migratepages_range(cc.zone, &cc,
  4915. pfn, end);
  4916. if (!pfn) {
  4917. ret = -EINTR;
  4918. break;
  4919. }
  4920. tries = 0;
  4921. } else if (++tries == 5) {
  4922. ret = ret < 0 ? ret : -EBUSY;
  4923. break;
  4924. }
  4925. ret = migrate_pages(&cc.migratepages,
  4926. __alloc_contig_migrate_alloc,
  4927. 0, false, MIGRATE_SYNC);
  4928. }
  4929. putback_lru_pages(&cc.migratepages);
  4930. return ret > 0 ? 0 : ret;
  4931. }
  4932. /*
  4933. * Update zone's cma pages counter used for watermark level calculation.
  4934. */
  4935. static inline void __update_cma_watermarks(struct zone *zone, int count)
  4936. {
  4937. unsigned long flags;
  4938. spin_lock_irqsave(&zone->lock, flags);
  4939. zone->min_cma_pages += count;
  4940. spin_unlock_irqrestore(&zone->lock, flags);
  4941. setup_per_zone_wmarks();
  4942. }
  4943. /*
  4944. * Trigger memory pressure bump to reclaim some pages in order to be able to
  4945. * allocate 'count' pages in single page units. Does similar work as
  4946. *__alloc_pages_slowpath() function.
  4947. */
  4948. static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
  4949. {
  4950. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  4951. struct zonelist *zonelist = node_zonelist(0, gfp_mask);
  4952. int did_some_progress = 0;
  4953. int order = 1;
  4954. /*
  4955. * Increase level of watermarks to force kswapd do his job
  4956. * to stabilise at new watermark level.
  4957. */
  4958. __update_cma_watermarks(zone, count);
  4959. /* Obey watermarks as if the page was being allocated */
  4960. while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
  4961. wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
  4962. did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  4963. NULL);
  4964. if (!did_some_progress) {
  4965. /* Exhausted what can be done so it's blamo time */
  4966. out_of_memory(zonelist, gfp_mask, order, NULL, false);
  4967. }
  4968. }
  4969. /* Restore original watermark levels. */
  4970. __update_cma_watermarks(zone, -count);
  4971. return count;
  4972. }
  4973. /**
  4974. * alloc_contig_range() -- tries to allocate given range of pages
  4975. * @start: start PFN to allocate
  4976. * @end: one-past-the-last PFN to allocate
  4977. * @migratetype: migratetype of the underlaying pageblocks (either
  4978. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  4979. * in range must have the same migratetype and it must
  4980. * be either of the two.
  4981. *
  4982. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  4983. * aligned, however it's the caller's responsibility to guarantee that
  4984. * we are the only thread that changes migrate type of pageblocks the
  4985. * pages fall in.
  4986. *
  4987. * The PFN range must belong to a single zone.
  4988. *
  4989. * Returns zero on success or negative error code. On success all
  4990. * pages which PFN is in [start, end) are allocated for the caller and
  4991. * need to be freed with free_contig_range().
  4992. */
  4993. int alloc_contig_range(unsigned long start, unsigned long end,
  4994. unsigned migratetype)
  4995. {
  4996. struct zone *zone = page_zone(pfn_to_page(start));
  4997. unsigned long outer_start, outer_end;
  4998. int ret = 0, order;
  4999. /*
  5000. * What we do here is we mark all pageblocks in range as
  5001. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5002. * have different sizes, and due to the way page allocator
  5003. * work, we align the range to biggest of the two pages so
  5004. * that page allocator won't try to merge buddies from
  5005. * different pageblocks and change MIGRATE_ISOLATE to some
  5006. * other migration type.
  5007. *
  5008. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5009. * migrate the pages from an unaligned range (ie. pages that
  5010. * we are interested in). This will put all the pages in
  5011. * range back to page allocator as MIGRATE_ISOLATE.
  5012. *
  5013. * When this is done, we take the pages in range from page
  5014. * allocator removing them from the buddy system. This way
  5015. * page allocator will never consider using them.
  5016. *
  5017. * This lets us mark the pageblocks back as
  5018. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5019. * aligned range but not in the unaligned, original range are
  5020. * put back to page allocator so that buddy can use them.
  5021. */
  5022. ret = start_isolate_page_range(pfn_max_align_down(start),
  5023. pfn_max_align_up(end), migratetype);
  5024. if (ret)
  5025. goto done;
  5026. ret = __alloc_contig_migrate_range(start, end);
  5027. if (ret)
  5028. goto done;
  5029. /*
  5030. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5031. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5032. * more, all pages in [start, end) are free in page allocator.
  5033. * What we are going to do is to allocate all pages from
  5034. * [start, end) (that is remove them from page allocator).
  5035. *
  5036. * The only problem is that pages at the beginning and at the
  5037. * end of interesting range may be not aligned with pages that
  5038. * page allocator holds, ie. they can be part of higher order
  5039. * pages. Because of this, we reserve the bigger range and
  5040. * once this is done free the pages we are not interested in.
  5041. *
  5042. * We don't have to hold zone->lock here because the pages are
  5043. * isolated thus they won't get removed from buddy.
  5044. */
  5045. lru_add_drain_all();
  5046. drain_all_pages();
  5047. order = 0;
  5048. outer_start = start;
  5049. while (!PageBuddy(pfn_to_page(outer_start))) {
  5050. if (++order >= MAX_ORDER) {
  5051. ret = -EBUSY;
  5052. goto done;
  5053. }
  5054. outer_start &= ~0UL << order;
  5055. }
  5056. /* Make sure the range is really isolated. */
  5057. if (test_pages_isolated(outer_start, end)) {
  5058. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5059. outer_start, end);
  5060. ret = -EBUSY;
  5061. goto done;
  5062. }
  5063. /*
  5064. * Reclaim enough pages to make sure that contiguous allocation
  5065. * will not starve the system.
  5066. */
  5067. __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
  5068. /* Grab isolated pages from freelists. */
  5069. outer_end = isolate_freepages_range(outer_start, end);
  5070. if (!outer_end) {
  5071. ret = -EBUSY;
  5072. goto done;
  5073. }
  5074. /* Free head and tail (if any) */
  5075. if (start != outer_start)
  5076. free_contig_range(outer_start, start - outer_start);
  5077. if (end != outer_end)
  5078. free_contig_range(end, outer_end - end);
  5079. done:
  5080. undo_isolate_page_range(pfn_max_align_down(start),
  5081. pfn_max_align_up(end), migratetype);
  5082. return ret;
  5083. }
  5084. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5085. {
  5086. for (; nr_pages--; ++pfn)
  5087. __free_page(pfn_to_page(pfn));
  5088. }
  5089. #endif
  5090. #ifdef CONFIG_MEMORY_HOTPLUG
  5091. static int __meminit __zone_pcp_update(void *data)
  5092. {
  5093. struct zone *zone = data;
  5094. int cpu;
  5095. unsigned long batch = zone_batchsize(zone), flags;
  5096. for_each_possible_cpu(cpu) {
  5097. struct per_cpu_pageset *pset;
  5098. struct per_cpu_pages *pcp;
  5099. pset = per_cpu_ptr(zone->pageset, cpu);
  5100. pcp = &pset->pcp;
  5101. local_irq_save(flags);
  5102. if (pcp->count > 0)
  5103. free_pcppages_bulk(zone, pcp->count, pcp);
  5104. setup_pageset(pset, batch);
  5105. local_irq_restore(flags);
  5106. }
  5107. return 0;
  5108. }
  5109. void __meminit zone_pcp_update(struct zone *zone)
  5110. {
  5111. stop_machine(__zone_pcp_update, zone, NULL);
  5112. }
  5113. #endif
  5114. #ifdef CONFIG_MEMORY_HOTREMOVE
  5115. void zone_pcp_reset(struct zone *zone)
  5116. {
  5117. unsigned long flags;
  5118. /* avoid races with drain_pages() */
  5119. local_irq_save(flags);
  5120. if (zone->pageset != &boot_pageset) {
  5121. free_percpu(zone->pageset);
  5122. zone->pageset = &boot_pageset;
  5123. }
  5124. local_irq_restore(flags);
  5125. }
  5126. /*
  5127. * All pages in the range must be isolated before calling this.
  5128. */
  5129. void
  5130. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5131. {
  5132. struct page *page;
  5133. struct zone *zone;
  5134. int order, i;
  5135. unsigned long pfn;
  5136. unsigned long flags;
  5137. /* find the first valid pfn */
  5138. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5139. if (pfn_valid(pfn))
  5140. break;
  5141. if (pfn == end_pfn)
  5142. return;
  5143. zone = page_zone(pfn_to_page(pfn));
  5144. spin_lock_irqsave(&zone->lock, flags);
  5145. pfn = start_pfn;
  5146. while (pfn < end_pfn) {
  5147. if (!pfn_valid(pfn)) {
  5148. pfn++;
  5149. continue;
  5150. }
  5151. page = pfn_to_page(pfn);
  5152. BUG_ON(page_count(page));
  5153. BUG_ON(!PageBuddy(page));
  5154. order = page_order(page);
  5155. #ifdef CONFIG_DEBUG_VM
  5156. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5157. pfn, 1 << order, end_pfn);
  5158. #endif
  5159. list_del(&page->lru);
  5160. rmv_page_order(page);
  5161. zone->free_area[order].nr_free--;
  5162. __mod_zone_page_state(zone, NR_FREE_PAGES,
  5163. - (1UL << order));
  5164. for (i = 0; i < (1 << order); i++)
  5165. SetPageReserved((page+i));
  5166. pfn += (1 << order);
  5167. }
  5168. spin_unlock_irqrestore(&zone->lock, flags);
  5169. }
  5170. #endif
  5171. #ifdef CONFIG_MEMORY_FAILURE
  5172. bool is_free_buddy_page(struct page *page)
  5173. {
  5174. struct zone *zone = page_zone(page);
  5175. unsigned long pfn = page_to_pfn(page);
  5176. unsigned long flags;
  5177. int order;
  5178. spin_lock_irqsave(&zone->lock, flags);
  5179. for (order = 0; order < MAX_ORDER; order++) {
  5180. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5181. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5182. break;
  5183. }
  5184. spin_unlock_irqrestore(&zone->lock, flags);
  5185. return order < MAX_ORDER;
  5186. }
  5187. #endif
  5188. static const struct trace_print_flags pageflag_names[] = {
  5189. {1UL << PG_locked, "locked" },
  5190. {1UL << PG_error, "error" },
  5191. {1UL << PG_referenced, "referenced" },
  5192. {1UL << PG_uptodate, "uptodate" },
  5193. {1UL << PG_dirty, "dirty" },
  5194. {1UL << PG_lru, "lru" },
  5195. {1UL << PG_active, "active" },
  5196. {1UL << PG_slab, "slab" },
  5197. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5198. {1UL << PG_arch_1, "arch_1" },
  5199. {1UL << PG_reserved, "reserved" },
  5200. {1UL << PG_private, "private" },
  5201. {1UL << PG_private_2, "private_2" },
  5202. {1UL << PG_writeback, "writeback" },
  5203. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5204. {1UL << PG_head, "head" },
  5205. {1UL << PG_tail, "tail" },
  5206. #else
  5207. {1UL << PG_compound, "compound" },
  5208. #endif
  5209. {1UL << PG_swapcache, "swapcache" },
  5210. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5211. {1UL << PG_reclaim, "reclaim" },
  5212. {1UL << PG_swapbacked, "swapbacked" },
  5213. {1UL << PG_unevictable, "unevictable" },
  5214. #ifdef CONFIG_MMU
  5215. {1UL << PG_mlocked, "mlocked" },
  5216. #endif
  5217. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5218. {1UL << PG_uncached, "uncached" },
  5219. #endif
  5220. #ifdef CONFIG_MEMORY_FAILURE
  5221. {1UL << PG_hwpoison, "hwpoison" },
  5222. #endif
  5223. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5224. {1UL << PG_compound_lock, "compound_lock" },
  5225. #endif
  5226. };
  5227. static void dump_page_flags(unsigned long flags)
  5228. {
  5229. const char *delim = "";
  5230. unsigned long mask;
  5231. int i;
  5232. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5233. printk(KERN_ALERT "page flags: %#lx(", flags);
  5234. /* remove zone id */
  5235. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5236. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5237. mask = pageflag_names[i].mask;
  5238. if ((flags & mask) != mask)
  5239. continue;
  5240. flags &= ~mask;
  5241. printk("%s%s", delim, pageflag_names[i].name);
  5242. delim = "|";
  5243. }
  5244. /* check for left over flags */
  5245. if (flags)
  5246. printk("%s%#lx", delim, flags);
  5247. printk(")\n");
  5248. }
  5249. void dump_page(struct page *page)
  5250. {
  5251. printk(KERN_ALERT
  5252. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5253. page, atomic_read(&page->_count), page_mapcount(page),
  5254. page->mapping, page->index);
  5255. dump_page_flags(page->flags);
  5256. mem_cgroup_print_bad_page(page);
  5257. }