xfs_inode.c 139 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. #include <linux/log2.h>
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. kmem_zone_t *xfs_chashlist_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. int disk,
  75. xfs_exntfmt_t fmt)
  76. {
  77. xfs_bmbt_rec_t *ep;
  78. xfs_bmbt_irec_t irec;
  79. xfs_bmbt_rec_t rec;
  80. int i;
  81. for (i = 0; i < nrecs; i++) {
  82. ep = xfs_iext_get_ext(ifp, i);
  83. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  84. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  85. if (disk)
  86. xfs_bmbt_disk_get_all(&rec, &irec);
  87. else
  88. xfs_bmbt_get_all(&rec, &irec);
  89. if (fmt == XFS_EXTFMT_NOSTATE)
  90. ASSERT(irec.br_state == XFS_EXT_NORM);
  91. }
  92. }
  93. #else /* DEBUG */
  94. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  95. #endif /* DEBUG */
  96. /*
  97. * Check that none of the inode's in the buffer have a next
  98. * unlinked field of 0.
  99. */
  100. #if defined(DEBUG)
  101. void
  102. xfs_inobp_check(
  103. xfs_mount_t *mp,
  104. xfs_buf_t *bp)
  105. {
  106. int i;
  107. int j;
  108. xfs_dinode_t *dip;
  109. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  110. for (i = 0; i < j; i++) {
  111. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  112. i * mp->m_sb.sb_inodesize);
  113. if (!dip->di_next_unlinked) {
  114. xfs_fs_cmn_err(CE_ALERT, mp,
  115. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  116. bp);
  117. ASSERT(dip->di_next_unlinked);
  118. }
  119. }
  120. }
  121. #endif
  122. /*
  123. * This routine is called to map an inode number within a file
  124. * system to the buffer containing the on-disk version of the
  125. * inode. It returns a pointer to the buffer containing the
  126. * on-disk inode in the bpp parameter, and in the dip parameter
  127. * it returns a pointer to the on-disk inode within that buffer.
  128. *
  129. * If a non-zero error is returned, then the contents of bpp and
  130. * dipp are undefined.
  131. *
  132. * Use xfs_imap() to determine the size and location of the
  133. * buffer to read from disk.
  134. */
  135. STATIC int
  136. xfs_inotobp(
  137. xfs_mount_t *mp,
  138. xfs_trans_t *tp,
  139. xfs_ino_t ino,
  140. xfs_dinode_t **dipp,
  141. xfs_buf_t **bpp,
  142. int *offset)
  143. {
  144. int di_ok;
  145. xfs_imap_t imap;
  146. xfs_buf_t *bp;
  147. int error;
  148. xfs_dinode_t *dip;
  149. /*
  150. * Call the space management code to find the location of the
  151. * inode on disk.
  152. */
  153. imap.im_blkno = 0;
  154. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  155. if (error != 0) {
  156. cmn_err(CE_WARN,
  157. "xfs_inotobp: xfs_imap() returned an "
  158. "error %d on %s. Returning error.", error, mp->m_fsname);
  159. return error;
  160. }
  161. /*
  162. * If the inode number maps to a block outside the bounds of the
  163. * file system then return NULL rather than calling read_buf
  164. * and panicing when we get an error from the driver.
  165. */
  166. if ((imap.im_blkno + imap.im_len) >
  167. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  168. cmn_err(CE_WARN,
  169. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  170. "of the file system %s. Returning EINVAL.",
  171. (unsigned long long)imap.im_blkno,
  172. imap.im_len, mp->m_fsname);
  173. return XFS_ERROR(EINVAL);
  174. }
  175. /*
  176. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  177. * default to just a read_buf() call.
  178. */
  179. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  180. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  181. if (error) {
  182. cmn_err(CE_WARN,
  183. "xfs_inotobp: xfs_trans_read_buf() returned an "
  184. "error %d on %s. Returning error.", error, mp->m_fsname);
  185. return error;
  186. }
  187. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  188. di_ok =
  189. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  190. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  191. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  192. XFS_RANDOM_ITOBP_INOTOBP))) {
  193. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  194. xfs_trans_brelse(tp, bp);
  195. cmn_err(CE_WARN,
  196. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  197. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  198. return XFS_ERROR(EFSCORRUPTED);
  199. }
  200. xfs_inobp_check(mp, bp);
  201. /*
  202. * Set *dipp to point to the on-disk inode in the buffer.
  203. */
  204. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  205. *bpp = bp;
  206. *offset = imap.im_boffset;
  207. return 0;
  208. }
  209. /*
  210. * This routine is called to map an inode to the buffer containing
  211. * the on-disk version of the inode. It returns a pointer to the
  212. * buffer containing the on-disk inode in the bpp parameter, and in
  213. * the dip parameter it returns a pointer to the on-disk inode within
  214. * that buffer.
  215. *
  216. * If a non-zero error is returned, then the contents of bpp and
  217. * dipp are undefined.
  218. *
  219. * If the inode is new and has not yet been initialized, use xfs_imap()
  220. * to determine the size and location of the buffer to read from disk.
  221. * If the inode has already been mapped to its buffer and read in once,
  222. * then use the mapping information stored in the inode rather than
  223. * calling xfs_imap(). This allows us to avoid the overhead of looking
  224. * at the inode btree for small block file systems (see xfs_dilocate()).
  225. * We can tell whether the inode has been mapped in before by comparing
  226. * its disk block address to 0. Only uninitialized inodes will have
  227. * 0 for the disk block address.
  228. */
  229. int
  230. xfs_itobp(
  231. xfs_mount_t *mp,
  232. xfs_trans_t *tp,
  233. xfs_inode_t *ip,
  234. xfs_dinode_t **dipp,
  235. xfs_buf_t **bpp,
  236. xfs_daddr_t bno,
  237. uint imap_flags)
  238. {
  239. xfs_imap_t imap;
  240. xfs_buf_t *bp;
  241. int error;
  242. int i;
  243. int ni;
  244. if (ip->i_blkno == (xfs_daddr_t)0) {
  245. /*
  246. * Call the space management code to find the location of the
  247. * inode on disk.
  248. */
  249. imap.im_blkno = bno;
  250. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  251. XFS_IMAP_LOOKUP | imap_flags)))
  252. return error;
  253. /*
  254. * If the inode number maps to a block outside the bounds
  255. * of the file system then return NULL rather than calling
  256. * read_buf and panicing when we get an error from the
  257. * driver.
  258. */
  259. if ((imap.im_blkno + imap.im_len) >
  260. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  261. #ifdef DEBUG
  262. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  263. "(imap.im_blkno (0x%llx) "
  264. "+ imap.im_len (0x%llx)) > "
  265. " XFS_FSB_TO_BB(mp, "
  266. "mp->m_sb.sb_dblocks) (0x%llx)",
  267. (unsigned long long) imap.im_blkno,
  268. (unsigned long long) imap.im_len,
  269. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  270. #endif /* DEBUG */
  271. return XFS_ERROR(EINVAL);
  272. }
  273. /*
  274. * Fill in the fields in the inode that will be used to
  275. * map the inode to its buffer from now on.
  276. */
  277. ip->i_blkno = imap.im_blkno;
  278. ip->i_len = imap.im_len;
  279. ip->i_boffset = imap.im_boffset;
  280. } else {
  281. /*
  282. * We've already mapped the inode once, so just use the
  283. * mapping that we saved the first time.
  284. */
  285. imap.im_blkno = ip->i_blkno;
  286. imap.im_len = ip->i_len;
  287. imap.im_boffset = ip->i_boffset;
  288. }
  289. ASSERT(bno == 0 || bno == imap.im_blkno);
  290. /*
  291. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  292. * default to just a read_buf() call.
  293. */
  294. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  295. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  296. if (error) {
  297. #ifdef DEBUG
  298. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  299. "xfs_trans_read_buf() returned error %d, "
  300. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  301. error, (unsigned long long) imap.im_blkno,
  302. (unsigned long long) imap.im_len);
  303. #endif /* DEBUG */
  304. return error;
  305. }
  306. /*
  307. * Validate the magic number and version of every inode in the buffer
  308. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  309. * No validation is done here in userspace (xfs_repair).
  310. */
  311. #if !defined(__KERNEL__)
  312. ni = 0;
  313. #elif defined(DEBUG)
  314. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  315. #else /* usual case */
  316. ni = 1;
  317. #endif
  318. for (i = 0; i < ni; i++) {
  319. int di_ok;
  320. xfs_dinode_t *dip;
  321. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  322. (i << mp->m_sb.sb_inodelog));
  323. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  324. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  325. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  326. XFS_ERRTAG_ITOBP_INOTOBP,
  327. XFS_RANDOM_ITOBP_INOTOBP))) {
  328. if (imap_flags & XFS_IMAP_BULKSTAT) {
  329. xfs_trans_brelse(tp, bp);
  330. return XFS_ERROR(EINVAL);
  331. }
  332. #ifdef DEBUG
  333. cmn_err(CE_ALERT,
  334. "Device %s - bad inode magic/vsn "
  335. "daddr %lld #%d (magic=%x)",
  336. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  337. (unsigned long long)imap.im_blkno, i,
  338. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  339. #endif
  340. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  341. mp, dip);
  342. xfs_trans_brelse(tp, bp);
  343. return XFS_ERROR(EFSCORRUPTED);
  344. }
  345. }
  346. xfs_inobp_check(mp, bp);
  347. /*
  348. * Mark the buffer as an inode buffer now that it looks good
  349. */
  350. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  351. /*
  352. * Set *dipp to point to the on-disk inode in the buffer.
  353. */
  354. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  355. *bpp = bp;
  356. return 0;
  357. }
  358. /*
  359. * Move inode type and inode format specific information from the
  360. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  361. * this means set if_rdev to the proper value. For files, directories,
  362. * and symlinks this means to bring in the in-line data or extent
  363. * pointers. For a file in B-tree format, only the root is immediately
  364. * brought in-core. The rest will be in-lined in if_extents when it
  365. * is first referenced (see xfs_iread_extents()).
  366. */
  367. STATIC int
  368. xfs_iformat(
  369. xfs_inode_t *ip,
  370. xfs_dinode_t *dip)
  371. {
  372. xfs_attr_shortform_t *atp;
  373. int size;
  374. int error;
  375. xfs_fsize_t di_size;
  376. ip->i_df.if_ext_max =
  377. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  378. error = 0;
  379. if (unlikely(
  380. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  381. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  382. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  383. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  384. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  385. (unsigned long long)ip->i_ino,
  386. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  387. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  388. (unsigned long long)
  389. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  390. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  391. ip->i_mount, dip);
  392. return XFS_ERROR(EFSCORRUPTED);
  393. }
  394. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  395. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  396. "corrupt dinode %Lu, forkoff = 0x%x.",
  397. (unsigned long long)ip->i_ino,
  398. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  399. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  400. ip->i_mount, dip);
  401. return XFS_ERROR(EFSCORRUPTED);
  402. }
  403. switch (ip->i_d.di_mode & S_IFMT) {
  404. case S_IFIFO:
  405. case S_IFCHR:
  406. case S_IFBLK:
  407. case S_IFSOCK:
  408. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  409. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  410. ip->i_mount, dip);
  411. return XFS_ERROR(EFSCORRUPTED);
  412. }
  413. ip->i_d.di_size = 0;
  414. ip->i_size = 0;
  415. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  416. break;
  417. case S_IFREG:
  418. case S_IFLNK:
  419. case S_IFDIR:
  420. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  421. case XFS_DINODE_FMT_LOCAL:
  422. /*
  423. * no local regular files yet
  424. */
  425. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  426. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  427. "corrupt inode %Lu "
  428. "(local format for regular file).",
  429. (unsigned long long) ip->i_ino);
  430. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  431. XFS_ERRLEVEL_LOW,
  432. ip->i_mount, dip);
  433. return XFS_ERROR(EFSCORRUPTED);
  434. }
  435. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  436. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  437. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  438. "corrupt inode %Lu "
  439. "(bad size %Ld for local inode).",
  440. (unsigned long long) ip->i_ino,
  441. (long long) di_size);
  442. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  443. XFS_ERRLEVEL_LOW,
  444. ip->i_mount, dip);
  445. return XFS_ERROR(EFSCORRUPTED);
  446. }
  447. size = (int)di_size;
  448. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  449. break;
  450. case XFS_DINODE_FMT_EXTENTS:
  451. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  452. break;
  453. case XFS_DINODE_FMT_BTREE:
  454. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  455. break;
  456. default:
  457. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  458. ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. break;
  462. default:
  463. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  464. return XFS_ERROR(EFSCORRUPTED);
  465. }
  466. if (error) {
  467. return error;
  468. }
  469. if (!XFS_DFORK_Q(dip))
  470. return 0;
  471. ASSERT(ip->i_afp == NULL);
  472. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  473. ip->i_afp->if_ext_max =
  474. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  475. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  476. case XFS_DINODE_FMT_LOCAL:
  477. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  478. size = be16_to_cpu(atp->hdr.totsize);
  479. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  480. break;
  481. case XFS_DINODE_FMT_EXTENTS:
  482. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  483. break;
  484. case XFS_DINODE_FMT_BTREE:
  485. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  486. break;
  487. default:
  488. error = XFS_ERROR(EFSCORRUPTED);
  489. break;
  490. }
  491. if (error) {
  492. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  493. ip->i_afp = NULL;
  494. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  495. }
  496. return error;
  497. }
  498. /*
  499. * The file is in-lined in the on-disk inode.
  500. * If it fits into if_inline_data, then copy
  501. * it there, otherwise allocate a buffer for it
  502. * and copy the data there. Either way, set
  503. * if_data to point at the data.
  504. * If we allocate a buffer for the data, make
  505. * sure that its size is a multiple of 4 and
  506. * record the real size in i_real_bytes.
  507. */
  508. STATIC int
  509. xfs_iformat_local(
  510. xfs_inode_t *ip,
  511. xfs_dinode_t *dip,
  512. int whichfork,
  513. int size)
  514. {
  515. xfs_ifork_t *ifp;
  516. int real_size;
  517. /*
  518. * If the size is unreasonable, then something
  519. * is wrong and we just bail out rather than crash in
  520. * kmem_alloc() or memcpy() below.
  521. */
  522. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  523. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  524. "corrupt inode %Lu "
  525. "(bad size %d for local fork, size = %d).",
  526. (unsigned long long) ip->i_ino, size,
  527. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  528. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  529. ip->i_mount, dip);
  530. return XFS_ERROR(EFSCORRUPTED);
  531. }
  532. ifp = XFS_IFORK_PTR(ip, whichfork);
  533. real_size = 0;
  534. if (size == 0)
  535. ifp->if_u1.if_data = NULL;
  536. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  537. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  538. else {
  539. real_size = roundup(size, 4);
  540. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  541. }
  542. ifp->if_bytes = size;
  543. ifp->if_real_bytes = real_size;
  544. if (size)
  545. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  546. ifp->if_flags &= ~XFS_IFEXTENTS;
  547. ifp->if_flags |= XFS_IFINLINE;
  548. return 0;
  549. }
  550. /*
  551. * The file consists of a set of extents all
  552. * of which fit into the on-disk inode.
  553. * If there are few enough extents to fit into
  554. * the if_inline_ext, then copy them there.
  555. * Otherwise allocate a buffer for them and copy
  556. * them into it. Either way, set if_extents
  557. * to point at the extents.
  558. */
  559. STATIC int
  560. xfs_iformat_extents(
  561. xfs_inode_t *ip,
  562. xfs_dinode_t *dip,
  563. int whichfork)
  564. {
  565. xfs_bmbt_rec_t *ep, *dp;
  566. xfs_ifork_t *ifp;
  567. int nex;
  568. int size;
  569. int i;
  570. ifp = XFS_IFORK_PTR(ip, whichfork);
  571. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  572. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  573. /*
  574. * If the number of extents is unreasonable, then something
  575. * is wrong and we just bail out rather than crash in
  576. * kmem_alloc() or memcpy() below.
  577. */
  578. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  579. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  580. "corrupt inode %Lu ((a)extents = %d).",
  581. (unsigned long long) ip->i_ino, nex);
  582. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  583. ip->i_mount, dip);
  584. return XFS_ERROR(EFSCORRUPTED);
  585. }
  586. ifp->if_real_bytes = 0;
  587. if (nex == 0)
  588. ifp->if_u1.if_extents = NULL;
  589. else if (nex <= XFS_INLINE_EXTS)
  590. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  591. else
  592. xfs_iext_add(ifp, 0, nex);
  593. ifp->if_bytes = size;
  594. if (size) {
  595. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  596. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  597. for (i = 0; i < nex; i++, dp++) {
  598. ep = xfs_iext_get_ext(ifp, i);
  599. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  600. ARCH_CONVERT);
  601. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  602. ARCH_CONVERT);
  603. }
  604. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  605. whichfork);
  606. if (whichfork != XFS_DATA_FORK ||
  607. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  608. if (unlikely(xfs_check_nostate_extents(
  609. ifp, 0, nex))) {
  610. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  611. XFS_ERRLEVEL_LOW,
  612. ip->i_mount);
  613. return XFS_ERROR(EFSCORRUPTED);
  614. }
  615. }
  616. ifp->if_flags |= XFS_IFEXTENTS;
  617. return 0;
  618. }
  619. /*
  620. * The file has too many extents to fit into
  621. * the inode, so they are in B-tree format.
  622. * Allocate a buffer for the root of the B-tree
  623. * and copy the root into it. The i_extents
  624. * field will remain NULL until all of the
  625. * extents are read in (when they are needed).
  626. */
  627. STATIC int
  628. xfs_iformat_btree(
  629. xfs_inode_t *ip,
  630. xfs_dinode_t *dip,
  631. int whichfork)
  632. {
  633. xfs_bmdr_block_t *dfp;
  634. xfs_ifork_t *ifp;
  635. /* REFERENCED */
  636. int nrecs;
  637. int size;
  638. ifp = XFS_IFORK_PTR(ip, whichfork);
  639. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  640. size = XFS_BMAP_BROOT_SPACE(dfp);
  641. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  642. /*
  643. * blow out if -- fork has less extents than can fit in
  644. * fork (fork shouldn't be a btree format), root btree
  645. * block has more records than can fit into the fork,
  646. * or the number of extents is greater than the number of
  647. * blocks.
  648. */
  649. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  650. || XFS_BMDR_SPACE_CALC(nrecs) >
  651. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  652. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  653. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  654. "corrupt inode %Lu (btree).",
  655. (unsigned long long) ip->i_ino);
  656. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  657. ip->i_mount);
  658. return XFS_ERROR(EFSCORRUPTED);
  659. }
  660. ifp->if_broot_bytes = size;
  661. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  662. ASSERT(ifp->if_broot != NULL);
  663. /*
  664. * Copy and convert from the on-disk structure
  665. * to the in-memory structure.
  666. */
  667. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  668. ifp->if_broot, size);
  669. ifp->if_flags &= ~XFS_IFEXTENTS;
  670. ifp->if_flags |= XFS_IFBROOT;
  671. return 0;
  672. }
  673. /*
  674. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  675. * and native format
  676. *
  677. * buf = on-disk representation
  678. * dip = native representation
  679. * dir = direction - +ve -> disk to native
  680. * -ve -> native to disk
  681. */
  682. void
  683. xfs_xlate_dinode_core(
  684. xfs_caddr_t buf,
  685. xfs_dinode_core_t *dip,
  686. int dir)
  687. {
  688. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  689. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  690. xfs_arch_t arch = ARCH_CONVERT;
  691. ASSERT(dir);
  692. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  693. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  694. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  695. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  696. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  697. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  698. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  699. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  700. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  701. if (dir > 0) {
  702. memcpy(mem_core->di_pad, buf_core->di_pad,
  703. sizeof(buf_core->di_pad));
  704. } else {
  705. memcpy(buf_core->di_pad, mem_core->di_pad,
  706. sizeof(buf_core->di_pad));
  707. }
  708. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  709. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  710. dir, arch);
  711. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  712. dir, arch);
  713. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  714. dir, arch);
  715. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  716. dir, arch);
  717. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  718. dir, arch);
  719. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  720. dir, arch);
  721. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  722. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  723. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  724. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  725. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  726. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  727. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  728. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  729. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  730. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  731. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  732. }
  733. STATIC uint
  734. _xfs_dic2xflags(
  735. __uint16_t di_flags)
  736. {
  737. uint flags = 0;
  738. if (di_flags & XFS_DIFLAG_ANY) {
  739. if (di_flags & XFS_DIFLAG_REALTIME)
  740. flags |= XFS_XFLAG_REALTIME;
  741. if (di_flags & XFS_DIFLAG_PREALLOC)
  742. flags |= XFS_XFLAG_PREALLOC;
  743. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  744. flags |= XFS_XFLAG_IMMUTABLE;
  745. if (di_flags & XFS_DIFLAG_APPEND)
  746. flags |= XFS_XFLAG_APPEND;
  747. if (di_flags & XFS_DIFLAG_SYNC)
  748. flags |= XFS_XFLAG_SYNC;
  749. if (di_flags & XFS_DIFLAG_NOATIME)
  750. flags |= XFS_XFLAG_NOATIME;
  751. if (di_flags & XFS_DIFLAG_NODUMP)
  752. flags |= XFS_XFLAG_NODUMP;
  753. if (di_flags & XFS_DIFLAG_RTINHERIT)
  754. flags |= XFS_XFLAG_RTINHERIT;
  755. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  756. flags |= XFS_XFLAG_PROJINHERIT;
  757. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  758. flags |= XFS_XFLAG_NOSYMLINKS;
  759. if (di_flags & XFS_DIFLAG_EXTSIZE)
  760. flags |= XFS_XFLAG_EXTSIZE;
  761. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  762. flags |= XFS_XFLAG_EXTSZINHERIT;
  763. if (di_flags & XFS_DIFLAG_NODEFRAG)
  764. flags |= XFS_XFLAG_NODEFRAG;
  765. if (di_flags & XFS_DIFLAG_FILESTREAM)
  766. flags |= XFS_XFLAG_FILESTREAM;
  767. }
  768. return flags;
  769. }
  770. uint
  771. xfs_ip2xflags(
  772. xfs_inode_t *ip)
  773. {
  774. xfs_dinode_core_t *dic = &ip->i_d;
  775. return _xfs_dic2xflags(dic->di_flags) |
  776. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  777. }
  778. uint
  779. xfs_dic2xflags(
  780. xfs_dinode_core_t *dic)
  781. {
  782. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  783. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  784. }
  785. /*
  786. * Given a mount structure and an inode number, return a pointer
  787. * to a newly allocated in-core inode corresponding to the given
  788. * inode number.
  789. *
  790. * Initialize the inode's attributes and extent pointers if it
  791. * already has them (it will not if the inode has no links).
  792. */
  793. int
  794. xfs_iread(
  795. xfs_mount_t *mp,
  796. xfs_trans_t *tp,
  797. xfs_ino_t ino,
  798. xfs_inode_t **ipp,
  799. xfs_daddr_t bno,
  800. uint imap_flags)
  801. {
  802. xfs_buf_t *bp;
  803. xfs_dinode_t *dip;
  804. xfs_inode_t *ip;
  805. int error;
  806. ASSERT(xfs_inode_zone != NULL);
  807. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  808. ip->i_ino = ino;
  809. ip->i_mount = mp;
  810. spin_lock_init(&ip->i_flags_lock);
  811. /*
  812. * Get pointer's to the on-disk inode and the buffer containing it.
  813. * If the inode number refers to a block outside the file system
  814. * then xfs_itobp() will return NULL. In this case we should
  815. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  816. * know that this is a new incore inode.
  817. */
  818. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  819. if (error) {
  820. kmem_zone_free(xfs_inode_zone, ip);
  821. return error;
  822. }
  823. /*
  824. * Initialize inode's trace buffers.
  825. * Do this before xfs_iformat in case it adds entries.
  826. */
  827. #ifdef XFS_BMAP_TRACE
  828. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  829. #endif
  830. #ifdef XFS_BMBT_TRACE
  831. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  832. #endif
  833. #ifdef XFS_RW_TRACE
  834. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  835. #endif
  836. #ifdef XFS_ILOCK_TRACE
  837. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  838. #endif
  839. #ifdef XFS_DIR2_TRACE
  840. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  841. #endif
  842. /*
  843. * If we got something that isn't an inode it means someone
  844. * (nfs or dmi) has a stale handle.
  845. */
  846. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  847. kmem_zone_free(xfs_inode_zone, ip);
  848. xfs_trans_brelse(tp, bp);
  849. #ifdef DEBUG
  850. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  851. "dip->di_core.di_magic (0x%x) != "
  852. "XFS_DINODE_MAGIC (0x%x)",
  853. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  854. XFS_DINODE_MAGIC);
  855. #endif /* DEBUG */
  856. return XFS_ERROR(EINVAL);
  857. }
  858. /*
  859. * If the on-disk inode is already linked to a directory
  860. * entry, copy all of the inode into the in-core inode.
  861. * xfs_iformat() handles copying in the inode format
  862. * specific information.
  863. * Otherwise, just get the truly permanent information.
  864. */
  865. if (dip->di_core.di_mode) {
  866. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  867. &(ip->i_d), 1);
  868. error = xfs_iformat(ip, dip);
  869. if (error) {
  870. kmem_zone_free(xfs_inode_zone, ip);
  871. xfs_trans_brelse(tp, bp);
  872. #ifdef DEBUG
  873. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  874. "xfs_iformat() returned error %d",
  875. error);
  876. #endif /* DEBUG */
  877. return error;
  878. }
  879. } else {
  880. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  881. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  882. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  883. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  884. /*
  885. * Make sure to pull in the mode here as well in
  886. * case the inode is released without being used.
  887. * This ensures that xfs_inactive() will see that
  888. * the inode is already free and not try to mess
  889. * with the uninitialized part of it.
  890. */
  891. ip->i_d.di_mode = 0;
  892. /*
  893. * Initialize the per-fork minima and maxima for a new
  894. * inode here. xfs_iformat will do it for old inodes.
  895. */
  896. ip->i_df.if_ext_max =
  897. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  898. }
  899. INIT_LIST_HEAD(&ip->i_reclaim);
  900. /*
  901. * The inode format changed when we moved the link count and
  902. * made it 32 bits long. If this is an old format inode,
  903. * convert it in memory to look like a new one. If it gets
  904. * flushed to disk we will convert back before flushing or
  905. * logging it. We zero out the new projid field and the old link
  906. * count field. We'll handle clearing the pad field (the remains
  907. * of the old uuid field) when we actually convert the inode to
  908. * the new format. We don't change the version number so that we
  909. * can distinguish this from a real new format inode.
  910. */
  911. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  912. ip->i_d.di_nlink = ip->i_d.di_onlink;
  913. ip->i_d.di_onlink = 0;
  914. ip->i_d.di_projid = 0;
  915. }
  916. ip->i_delayed_blks = 0;
  917. ip->i_size = ip->i_d.di_size;
  918. /*
  919. * Mark the buffer containing the inode as something to keep
  920. * around for a while. This helps to keep recently accessed
  921. * meta-data in-core longer.
  922. */
  923. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  924. /*
  925. * Use xfs_trans_brelse() to release the buffer containing the
  926. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  927. * in xfs_itobp() above. If tp is NULL, this is just a normal
  928. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  929. * will only release the buffer if it is not dirty within the
  930. * transaction. It will be OK to release the buffer in this case,
  931. * because inodes on disk are never destroyed and we will be
  932. * locking the new in-core inode before putting it in the hash
  933. * table where other processes can find it. Thus we don't have
  934. * to worry about the inode being changed just because we released
  935. * the buffer.
  936. */
  937. xfs_trans_brelse(tp, bp);
  938. *ipp = ip;
  939. return 0;
  940. }
  941. /*
  942. * Read in extents from a btree-format inode.
  943. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  944. */
  945. int
  946. xfs_iread_extents(
  947. xfs_trans_t *tp,
  948. xfs_inode_t *ip,
  949. int whichfork)
  950. {
  951. int error;
  952. xfs_ifork_t *ifp;
  953. xfs_extnum_t nextents;
  954. size_t size;
  955. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  956. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  957. ip->i_mount);
  958. return XFS_ERROR(EFSCORRUPTED);
  959. }
  960. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  961. size = nextents * sizeof(xfs_bmbt_rec_t);
  962. ifp = XFS_IFORK_PTR(ip, whichfork);
  963. /*
  964. * We know that the size is valid (it's checked in iformat_btree)
  965. */
  966. ifp->if_lastex = NULLEXTNUM;
  967. ifp->if_bytes = ifp->if_real_bytes = 0;
  968. ifp->if_flags |= XFS_IFEXTENTS;
  969. xfs_iext_add(ifp, 0, nextents);
  970. error = xfs_bmap_read_extents(tp, ip, whichfork);
  971. if (error) {
  972. xfs_iext_destroy(ifp);
  973. ifp->if_flags &= ~XFS_IFEXTENTS;
  974. return error;
  975. }
  976. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  977. return 0;
  978. }
  979. /*
  980. * Allocate an inode on disk and return a copy of its in-core version.
  981. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  982. * appropriately within the inode. The uid and gid for the inode are
  983. * set according to the contents of the given cred structure.
  984. *
  985. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  986. * has a free inode available, call xfs_iget()
  987. * to obtain the in-core version of the allocated inode. Finally,
  988. * fill in the inode and log its initial contents. In this case,
  989. * ialloc_context would be set to NULL and call_again set to false.
  990. *
  991. * If xfs_dialloc() does not have an available inode,
  992. * it will replenish its supply by doing an allocation. Since we can
  993. * only do one allocation within a transaction without deadlocks, we
  994. * must commit the current transaction before returning the inode itself.
  995. * In this case, therefore, we will set call_again to true and return.
  996. * The caller should then commit the current transaction, start a new
  997. * transaction, and call xfs_ialloc() again to actually get the inode.
  998. *
  999. * To ensure that some other process does not grab the inode that
  1000. * was allocated during the first call to xfs_ialloc(), this routine
  1001. * also returns the [locked] bp pointing to the head of the freelist
  1002. * as ialloc_context. The caller should hold this buffer across
  1003. * the commit and pass it back into this routine on the second call.
  1004. *
  1005. * If we are allocating quota inodes, we do not have a parent inode
  1006. * to attach to or associate with (i.e. pip == NULL) because they
  1007. * are not linked into the directory structure - they are attached
  1008. * directly to the superblock - and so have no parent.
  1009. */
  1010. int
  1011. xfs_ialloc(
  1012. xfs_trans_t *tp,
  1013. xfs_inode_t *pip,
  1014. mode_t mode,
  1015. xfs_nlink_t nlink,
  1016. xfs_dev_t rdev,
  1017. cred_t *cr,
  1018. xfs_prid_t prid,
  1019. int okalloc,
  1020. xfs_buf_t **ialloc_context,
  1021. boolean_t *call_again,
  1022. xfs_inode_t **ipp)
  1023. {
  1024. xfs_ino_t ino;
  1025. xfs_inode_t *ip;
  1026. bhv_vnode_t *vp;
  1027. uint flags;
  1028. int error;
  1029. /*
  1030. * Call the space management code to pick
  1031. * the on-disk inode to be allocated.
  1032. */
  1033. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1034. ialloc_context, call_again, &ino);
  1035. if (error != 0) {
  1036. return error;
  1037. }
  1038. if (*call_again || ino == NULLFSINO) {
  1039. *ipp = NULL;
  1040. return 0;
  1041. }
  1042. ASSERT(*ialloc_context == NULL);
  1043. /*
  1044. * Get the in-core inode with the lock held exclusively.
  1045. * This is because we're setting fields here we need
  1046. * to prevent others from looking at until we're done.
  1047. */
  1048. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1049. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1050. if (error != 0) {
  1051. return error;
  1052. }
  1053. ASSERT(ip != NULL);
  1054. vp = XFS_ITOV(ip);
  1055. ip->i_d.di_mode = (__uint16_t)mode;
  1056. ip->i_d.di_onlink = 0;
  1057. ip->i_d.di_nlink = nlink;
  1058. ASSERT(ip->i_d.di_nlink == nlink);
  1059. ip->i_d.di_uid = current_fsuid(cr);
  1060. ip->i_d.di_gid = current_fsgid(cr);
  1061. ip->i_d.di_projid = prid;
  1062. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1063. /*
  1064. * If the superblock version is up to where we support new format
  1065. * inodes and this is currently an old format inode, then change
  1066. * the inode version number now. This way we only do the conversion
  1067. * here rather than here and in the flush/logging code.
  1068. */
  1069. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1070. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1071. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1072. /*
  1073. * We've already zeroed the old link count, the projid field,
  1074. * and the pad field.
  1075. */
  1076. }
  1077. /*
  1078. * Project ids won't be stored on disk if we are using a version 1 inode.
  1079. */
  1080. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1081. xfs_bump_ino_vers2(tp, ip);
  1082. if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1083. ip->i_d.di_gid = pip->i_d.di_gid;
  1084. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1085. ip->i_d.di_mode |= S_ISGID;
  1086. }
  1087. }
  1088. /*
  1089. * If the group ID of the new file does not match the effective group
  1090. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1091. * (and only if the irix_sgid_inherit compatibility variable is set).
  1092. */
  1093. if ((irix_sgid_inherit) &&
  1094. (ip->i_d.di_mode & S_ISGID) &&
  1095. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1096. ip->i_d.di_mode &= ~S_ISGID;
  1097. }
  1098. ip->i_d.di_size = 0;
  1099. ip->i_size = 0;
  1100. ip->i_d.di_nextents = 0;
  1101. ASSERT(ip->i_d.di_nblocks == 0);
  1102. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1103. /*
  1104. * di_gen will have been taken care of in xfs_iread.
  1105. */
  1106. ip->i_d.di_extsize = 0;
  1107. ip->i_d.di_dmevmask = 0;
  1108. ip->i_d.di_dmstate = 0;
  1109. ip->i_d.di_flags = 0;
  1110. flags = XFS_ILOG_CORE;
  1111. switch (mode & S_IFMT) {
  1112. case S_IFIFO:
  1113. case S_IFCHR:
  1114. case S_IFBLK:
  1115. case S_IFSOCK:
  1116. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1117. ip->i_df.if_u2.if_rdev = rdev;
  1118. ip->i_df.if_flags = 0;
  1119. flags |= XFS_ILOG_DEV;
  1120. break;
  1121. case S_IFREG:
  1122. if (pip && xfs_inode_is_filestream(pip)) {
  1123. error = xfs_filestream_associate(pip, ip);
  1124. if (error < 0)
  1125. return -error;
  1126. if (!error)
  1127. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1128. }
  1129. /* fall through */
  1130. case S_IFDIR:
  1131. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1132. uint di_flags = 0;
  1133. if ((mode & S_IFMT) == S_IFDIR) {
  1134. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1135. di_flags |= XFS_DIFLAG_RTINHERIT;
  1136. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1137. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1138. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1139. }
  1140. } else if ((mode & S_IFMT) == S_IFREG) {
  1141. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1142. di_flags |= XFS_DIFLAG_REALTIME;
  1143. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1144. }
  1145. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1146. di_flags |= XFS_DIFLAG_EXTSIZE;
  1147. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1148. }
  1149. }
  1150. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1151. xfs_inherit_noatime)
  1152. di_flags |= XFS_DIFLAG_NOATIME;
  1153. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1154. xfs_inherit_nodump)
  1155. di_flags |= XFS_DIFLAG_NODUMP;
  1156. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1157. xfs_inherit_sync)
  1158. di_flags |= XFS_DIFLAG_SYNC;
  1159. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1160. xfs_inherit_nosymlinks)
  1161. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1162. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1163. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1164. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1165. xfs_inherit_nodefrag)
  1166. di_flags |= XFS_DIFLAG_NODEFRAG;
  1167. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1168. di_flags |= XFS_DIFLAG_FILESTREAM;
  1169. ip->i_d.di_flags |= di_flags;
  1170. }
  1171. /* FALLTHROUGH */
  1172. case S_IFLNK:
  1173. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1174. ip->i_df.if_flags = XFS_IFEXTENTS;
  1175. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1176. ip->i_df.if_u1.if_extents = NULL;
  1177. break;
  1178. default:
  1179. ASSERT(0);
  1180. }
  1181. /*
  1182. * Attribute fork settings for new inode.
  1183. */
  1184. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1185. ip->i_d.di_anextents = 0;
  1186. /*
  1187. * Log the new values stuffed into the inode.
  1188. */
  1189. xfs_trans_log_inode(tp, ip, flags);
  1190. /* now that we have an i_mode we can setup inode ops and unlock */
  1191. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1192. *ipp = ip;
  1193. return 0;
  1194. }
  1195. /*
  1196. * Check to make sure that there are no blocks allocated to the
  1197. * file beyond the size of the file. We don't check this for
  1198. * files with fixed size extents or real time extents, but we
  1199. * at least do it for regular files.
  1200. */
  1201. #ifdef DEBUG
  1202. void
  1203. xfs_isize_check(
  1204. xfs_mount_t *mp,
  1205. xfs_inode_t *ip,
  1206. xfs_fsize_t isize)
  1207. {
  1208. xfs_fileoff_t map_first;
  1209. int nimaps;
  1210. xfs_bmbt_irec_t imaps[2];
  1211. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1212. return;
  1213. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1214. return;
  1215. nimaps = 2;
  1216. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1217. /*
  1218. * The filesystem could be shutting down, so bmapi may return
  1219. * an error.
  1220. */
  1221. if (xfs_bmapi(NULL, ip, map_first,
  1222. (XFS_B_TO_FSB(mp,
  1223. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1224. map_first),
  1225. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1226. NULL, NULL))
  1227. return;
  1228. ASSERT(nimaps == 1);
  1229. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1230. }
  1231. #endif /* DEBUG */
  1232. /*
  1233. * Calculate the last possible buffered byte in a file. This must
  1234. * include data that was buffered beyond the EOF by the write code.
  1235. * This also needs to deal with overflowing the xfs_fsize_t type
  1236. * which can happen for sizes near the limit.
  1237. *
  1238. * We also need to take into account any blocks beyond the EOF. It
  1239. * may be the case that they were buffered by a write which failed.
  1240. * In that case the pages will still be in memory, but the inode size
  1241. * will never have been updated.
  1242. */
  1243. xfs_fsize_t
  1244. xfs_file_last_byte(
  1245. xfs_inode_t *ip)
  1246. {
  1247. xfs_mount_t *mp;
  1248. xfs_fsize_t last_byte;
  1249. xfs_fileoff_t last_block;
  1250. xfs_fileoff_t size_last_block;
  1251. int error;
  1252. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1253. mp = ip->i_mount;
  1254. /*
  1255. * Only check for blocks beyond the EOF if the extents have
  1256. * been read in. This eliminates the need for the inode lock,
  1257. * and it also saves us from looking when it really isn't
  1258. * necessary.
  1259. */
  1260. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1261. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1262. XFS_DATA_FORK);
  1263. if (error) {
  1264. last_block = 0;
  1265. }
  1266. } else {
  1267. last_block = 0;
  1268. }
  1269. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1270. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1271. last_byte = XFS_FSB_TO_B(mp, last_block);
  1272. if (last_byte < 0) {
  1273. return XFS_MAXIOFFSET(mp);
  1274. }
  1275. last_byte += (1 << mp->m_writeio_log);
  1276. if (last_byte < 0) {
  1277. return XFS_MAXIOFFSET(mp);
  1278. }
  1279. return last_byte;
  1280. }
  1281. #if defined(XFS_RW_TRACE)
  1282. STATIC void
  1283. xfs_itrunc_trace(
  1284. int tag,
  1285. xfs_inode_t *ip,
  1286. int flag,
  1287. xfs_fsize_t new_size,
  1288. xfs_off_t toss_start,
  1289. xfs_off_t toss_finish)
  1290. {
  1291. if (ip->i_rwtrace == NULL) {
  1292. return;
  1293. }
  1294. ktrace_enter(ip->i_rwtrace,
  1295. (void*)((long)tag),
  1296. (void*)ip,
  1297. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1298. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1299. (void*)((long)flag),
  1300. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1301. (void*)(unsigned long)(new_size & 0xffffffff),
  1302. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1303. (void*)(unsigned long)(toss_start & 0xffffffff),
  1304. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1305. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1306. (void*)(unsigned long)current_cpu(),
  1307. (void*)(unsigned long)current_pid(),
  1308. (void*)NULL,
  1309. (void*)NULL,
  1310. (void*)NULL);
  1311. }
  1312. #else
  1313. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1314. #endif
  1315. /*
  1316. * Start the truncation of the file to new_size. The new size
  1317. * must be smaller than the current size. This routine will
  1318. * clear the buffer and page caches of file data in the removed
  1319. * range, and xfs_itruncate_finish() will remove the underlying
  1320. * disk blocks.
  1321. *
  1322. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1323. * must NOT have the inode lock held at all. This is because we're
  1324. * calling into the buffer/page cache code and we can't hold the
  1325. * inode lock when we do so.
  1326. *
  1327. * We need to wait for any direct I/Os in flight to complete before we
  1328. * proceed with the truncate. This is needed to prevent the extents
  1329. * being read or written by the direct I/Os from being removed while the
  1330. * I/O is in flight as there is no other method of synchronising
  1331. * direct I/O with the truncate operation. Also, because we hold
  1332. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1333. * started until the truncate completes and drops the lock. Essentially,
  1334. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1335. * between direct I/Os and the truncate operation.
  1336. *
  1337. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1338. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1339. * in the case that the caller is locking things out of order and
  1340. * may not be able to call xfs_itruncate_finish() with the inode lock
  1341. * held without dropping the I/O lock. If the caller must drop the
  1342. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1343. * must be called again with all the same restrictions as the initial
  1344. * call.
  1345. */
  1346. int
  1347. xfs_itruncate_start(
  1348. xfs_inode_t *ip,
  1349. uint flags,
  1350. xfs_fsize_t new_size)
  1351. {
  1352. xfs_fsize_t last_byte;
  1353. xfs_off_t toss_start;
  1354. xfs_mount_t *mp;
  1355. bhv_vnode_t *vp;
  1356. int error = 0;
  1357. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1358. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1359. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1360. (flags == XFS_ITRUNC_MAYBE));
  1361. mp = ip->i_mount;
  1362. vp = XFS_ITOV(ip);
  1363. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1364. /*
  1365. * Call toss_pages or flushinval_pages to get rid of pages
  1366. * overlapping the region being removed. We have to use
  1367. * the less efficient flushinval_pages in the case that the
  1368. * caller may not be able to finish the truncate without
  1369. * dropping the inode's I/O lock. Make sure
  1370. * to catch any pages brought in by buffers overlapping
  1371. * the EOF by searching out beyond the isize by our
  1372. * block size. We round new_size up to a block boundary
  1373. * so that we don't toss things on the same block as
  1374. * new_size but before it.
  1375. *
  1376. * Before calling toss_page or flushinval_pages, make sure to
  1377. * call remapf() over the same region if the file is mapped.
  1378. * This frees up mapped file references to the pages in the
  1379. * given range and for the flushinval_pages case it ensures
  1380. * that we get the latest mapped changes flushed out.
  1381. */
  1382. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1383. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1384. if (toss_start < 0) {
  1385. /*
  1386. * The place to start tossing is beyond our maximum
  1387. * file size, so there is no way that the data extended
  1388. * out there.
  1389. */
  1390. return 0;
  1391. }
  1392. last_byte = xfs_file_last_byte(ip);
  1393. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1394. last_byte);
  1395. if (last_byte > toss_start) {
  1396. if (flags & XFS_ITRUNC_DEFINITE) {
  1397. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1398. } else {
  1399. error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1400. }
  1401. }
  1402. #ifdef DEBUG
  1403. if (new_size == 0) {
  1404. ASSERT(VN_CACHED(vp) == 0);
  1405. }
  1406. #endif
  1407. return error;
  1408. }
  1409. /*
  1410. * Shrink the file to the given new_size. The new
  1411. * size must be smaller than the current size.
  1412. * This will free up the underlying blocks
  1413. * in the removed range after a call to xfs_itruncate_start()
  1414. * or xfs_atruncate_start().
  1415. *
  1416. * The transaction passed to this routine must have made
  1417. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1418. * This routine may commit the given transaction and
  1419. * start new ones, so make sure everything involved in
  1420. * the transaction is tidy before calling here.
  1421. * Some transaction will be returned to the caller to be
  1422. * committed. The incoming transaction must already include
  1423. * the inode, and both inode locks must be held exclusively.
  1424. * The inode must also be "held" within the transaction. On
  1425. * return the inode will be "held" within the returned transaction.
  1426. * This routine does NOT require any disk space to be reserved
  1427. * for it within the transaction.
  1428. *
  1429. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1430. * and it indicates the fork which is to be truncated. For the
  1431. * attribute fork we only support truncation to size 0.
  1432. *
  1433. * We use the sync parameter to indicate whether or not the first
  1434. * transaction we perform might have to be synchronous. For the attr fork,
  1435. * it needs to be so if the unlink of the inode is not yet known to be
  1436. * permanent in the log. This keeps us from freeing and reusing the
  1437. * blocks of the attribute fork before the unlink of the inode becomes
  1438. * permanent.
  1439. *
  1440. * For the data fork, we normally have to run synchronously if we're
  1441. * being called out of the inactive path or we're being called
  1442. * out of the create path where we're truncating an existing file.
  1443. * Either way, the truncate needs to be sync so blocks don't reappear
  1444. * in the file with altered data in case of a crash. wsync filesystems
  1445. * can run the first case async because anything that shrinks the inode
  1446. * has to run sync so by the time we're called here from inactive, the
  1447. * inode size is permanently set to 0.
  1448. *
  1449. * Calls from the truncate path always need to be sync unless we're
  1450. * in a wsync filesystem and the file has already been unlinked.
  1451. *
  1452. * The caller is responsible for correctly setting the sync parameter.
  1453. * It gets too hard for us to guess here which path we're being called
  1454. * out of just based on inode state.
  1455. */
  1456. int
  1457. xfs_itruncate_finish(
  1458. xfs_trans_t **tp,
  1459. xfs_inode_t *ip,
  1460. xfs_fsize_t new_size,
  1461. int fork,
  1462. int sync)
  1463. {
  1464. xfs_fsblock_t first_block;
  1465. xfs_fileoff_t first_unmap_block;
  1466. xfs_fileoff_t last_block;
  1467. xfs_filblks_t unmap_len=0;
  1468. xfs_mount_t *mp;
  1469. xfs_trans_t *ntp;
  1470. int done;
  1471. int committed;
  1472. xfs_bmap_free_t free_list;
  1473. int error;
  1474. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1475. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1476. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1477. ASSERT(*tp != NULL);
  1478. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1479. ASSERT(ip->i_transp == *tp);
  1480. ASSERT(ip->i_itemp != NULL);
  1481. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1482. ntp = *tp;
  1483. mp = (ntp)->t_mountp;
  1484. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1485. /*
  1486. * We only support truncating the entire attribute fork.
  1487. */
  1488. if (fork == XFS_ATTR_FORK) {
  1489. new_size = 0LL;
  1490. }
  1491. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1492. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1493. /*
  1494. * The first thing we do is set the size to new_size permanently
  1495. * on disk. This way we don't have to worry about anyone ever
  1496. * being able to look at the data being freed even in the face
  1497. * of a crash. What we're getting around here is the case where
  1498. * we free a block, it is allocated to another file, it is written
  1499. * to, and then we crash. If the new data gets written to the
  1500. * file but the log buffers containing the free and reallocation
  1501. * don't, then we'd end up with garbage in the blocks being freed.
  1502. * As long as we make the new_size permanent before actually
  1503. * freeing any blocks it doesn't matter if they get writtten to.
  1504. *
  1505. * The callers must signal into us whether or not the size
  1506. * setting here must be synchronous. There are a few cases
  1507. * where it doesn't have to be synchronous. Those cases
  1508. * occur if the file is unlinked and we know the unlink is
  1509. * permanent or if the blocks being truncated are guaranteed
  1510. * to be beyond the inode eof (regardless of the link count)
  1511. * and the eof value is permanent. Both of these cases occur
  1512. * only on wsync-mounted filesystems. In those cases, we're
  1513. * guaranteed that no user will ever see the data in the blocks
  1514. * that are being truncated so the truncate can run async.
  1515. * In the free beyond eof case, the file may wind up with
  1516. * more blocks allocated to it than it needs if we crash
  1517. * and that won't get fixed until the next time the file
  1518. * is re-opened and closed but that's ok as that shouldn't
  1519. * be too many blocks.
  1520. *
  1521. * However, we can't just make all wsync xactions run async
  1522. * because there's one call out of the create path that needs
  1523. * to run sync where it's truncating an existing file to size
  1524. * 0 whose size is > 0.
  1525. *
  1526. * It's probably possible to come up with a test in this
  1527. * routine that would correctly distinguish all the above
  1528. * cases from the values of the function parameters and the
  1529. * inode state but for sanity's sake, I've decided to let the
  1530. * layers above just tell us. It's simpler to correctly figure
  1531. * out in the layer above exactly under what conditions we
  1532. * can run async and I think it's easier for others read and
  1533. * follow the logic in case something has to be changed.
  1534. * cscope is your friend -- rcc.
  1535. *
  1536. * The attribute fork is much simpler.
  1537. *
  1538. * For the attribute fork we allow the caller to tell us whether
  1539. * the unlink of the inode that led to this call is yet permanent
  1540. * in the on disk log. If it is not and we will be freeing extents
  1541. * in this inode then we make the first transaction synchronous
  1542. * to make sure that the unlink is permanent by the time we free
  1543. * the blocks.
  1544. */
  1545. if (fork == XFS_DATA_FORK) {
  1546. if (ip->i_d.di_nextents > 0) {
  1547. /*
  1548. * If we are not changing the file size then do
  1549. * not update the on-disk file size - we may be
  1550. * called from xfs_inactive_free_eofblocks(). If we
  1551. * update the on-disk file size and then the system
  1552. * crashes before the contents of the file are
  1553. * flushed to disk then the files may be full of
  1554. * holes (ie NULL files bug).
  1555. */
  1556. if (ip->i_size != new_size) {
  1557. ip->i_d.di_size = new_size;
  1558. ip->i_size = new_size;
  1559. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1560. }
  1561. }
  1562. } else if (sync) {
  1563. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1564. if (ip->i_d.di_anextents > 0)
  1565. xfs_trans_set_sync(ntp);
  1566. }
  1567. ASSERT(fork == XFS_DATA_FORK ||
  1568. (fork == XFS_ATTR_FORK &&
  1569. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1570. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1571. /*
  1572. * Since it is possible for space to become allocated beyond
  1573. * the end of the file (in a crash where the space is allocated
  1574. * but the inode size is not yet updated), simply remove any
  1575. * blocks which show up between the new EOF and the maximum
  1576. * possible file size. If the first block to be removed is
  1577. * beyond the maximum file size (ie it is the same as last_block),
  1578. * then there is nothing to do.
  1579. */
  1580. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1581. ASSERT(first_unmap_block <= last_block);
  1582. done = 0;
  1583. if (last_block == first_unmap_block) {
  1584. done = 1;
  1585. } else {
  1586. unmap_len = last_block - first_unmap_block + 1;
  1587. }
  1588. while (!done) {
  1589. /*
  1590. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1591. * will tell us whether it freed the entire range or
  1592. * not. If this is a synchronous mount (wsync),
  1593. * then we can tell bunmapi to keep all the
  1594. * transactions asynchronous since the unlink
  1595. * transaction that made this inode inactive has
  1596. * already hit the disk. There's no danger of
  1597. * the freed blocks being reused, there being a
  1598. * crash, and the reused blocks suddenly reappearing
  1599. * in this file with garbage in them once recovery
  1600. * runs.
  1601. */
  1602. XFS_BMAP_INIT(&free_list, &first_block);
  1603. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1604. first_unmap_block, unmap_len,
  1605. XFS_BMAPI_AFLAG(fork) |
  1606. (sync ? 0 : XFS_BMAPI_ASYNC),
  1607. XFS_ITRUNC_MAX_EXTENTS,
  1608. &first_block, &free_list,
  1609. NULL, &done);
  1610. if (error) {
  1611. /*
  1612. * If the bunmapi call encounters an error,
  1613. * return to the caller where the transaction
  1614. * can be properly aborted. We just need to
  1615. * make sure we're not holding any resources
  1616. * that we were not when we came in.
  1617. */
  1618. xfs_bmap_cancel(&free_list);
  1619. return error;
  1620. }
  1621. /*
  1622. * Duplicate the transaction that has the permanent
  1623. * reservation and commit the old transaction.
  1624. */
  1625. error = xfs_bmap_finish(tp, &free_list, &committed);
  1626. ntp = *tp;
  1627. if (error) {
  1628. /*
  1629. * If the bmap finish call encounters an error,
  1630. * return to the caller where the transaction
  1631. * can be properly aborted. We just need to
  1632. * make sure we're not holding any resources
  1633. * that we were not when we came in.
  1634. *
  1635. * Aborting from this point might lose some
  1636. * blocks in the file system, but oh well.
  1637. */
  1638. xfs_bmap_cancel(&free_list);
  1639. if (committed) {
  1640. /*
  1641. * If the passed in transaction committed
  1642. * in xfs_bmap_finish(), then we want to
  1643. * add the inode to this one before returning.
  1644. * This keeps things simple for the higher
  1645. * level code, because it always knows that
  1646. * the inode is locked and held in the
  1647. * transaction that returns to it whether
  1648. * errors occur or not. We don't mark the
  1649. * inode dirty so that this transaction can
  1650. * be easily aborted if possible.
  1651. */
  1652. xfs_trans_ijoin(ntp, ip,
  1653. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1654. xfs_trans_ihold(ntp, ip);
  1655. }
  1656. return error;
  1657. }
  1658. if (committed) {
  1659. /*
  1660. * The first xact was committed,
  1661. * so add the inode to the new one.
  1662. * Mark it dirty so it will be logged
  1663. * and moved forward in the log as
  1664. * part of every commit.
  1665. */
  1666. xfs_trans_ijoin(ntp, ip,
  1667. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1668. xfs_trans_ihold(ntp, ip);
  1669. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1670. }
  1671. ntp = xfs_trans_dup(ntp);
  1672. (void) xfs_trans_commit(*tp, 0);
  1673. *tp = ntp;
  1674. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1675. XFS_TRANS_PERM_LOG_RES,
  1676. XFS_ITRUNCATE_LOG_COUNT);
  1677. /*
  1678. * Add the inode being truncated to the next chained
  1679. * transaction.
  1680. */
  1681. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1682. xfs_trans_ihold(ntp, ip);
  1683. if (error)
  1684. return (error);
  1685. }
  1686. /*
  1687. * Only update the size in the case of the data fork, but
  1688. * always re-log the inode so that our permanent transaction
  1689. * can keep on rolling it forward in the log.
  1690. */
  1691. if (fork == XFS_DATA_FORK) {
  1692. xfs_isize_check(mp, ip, new_size);
  1693. /*
  1694. * If we are not changing the file size then do
  1695. * not update the on-disk file size - we may be
  1696. * called from xfs_inactive_free_eofblocks(). If we
  1697. * update the on-disk file size and then the system
  1698. * crashes before the contents of the file are
  1699. * flushed to disk then the files may be full of
  1700. * holes (ie NULL files bug).
  1701. */
  1702. if (ip->i_size != new_size) {
  1703. ip->i_d.di_size = new_size;
  1704. ip->i_size = new_size;
  1705. }
  1706. }
  1707. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1708. ASSERT((new_size != 0) ||
  1709. (fork == XFS_ATTR_FORK) ||
  1710. (ip->i_delayed_blks == 0));
  1711. ASSERT((new_size != 0) ||
  1712. (fork == XFS_ATTR_FORK) ||
  1713. (ip->i_d.di_nextents == 0));
  1714. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1715. return 0;
  1716. }
  1717. /*
  1718. * xfs_igrow_start
  1719. *
  1720. * Do the first part of growing a file: zero any data in the last
  1721. * block that is beyond the old EOF. We need to do this before
  1722. * the inode is joined to the transaction to modify the i_size.
  1723. * That way we can drop the inode lock and call into the buffer
  1724. * cache to get the buffer mapping the EOF.
  1725. */
  1726. int
  1727. xfs_igrow_start(
  1728. xfs_inode_t *ip,
  1729. xfs_fsize_t new_size,
  1730. cred_t *credp)
  1731. {
  1732. int error;
  1733. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1734. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1735. ASSERT(new_size > ip->i_size);
  1736. /*
  1737. * Zero any pages that may have been created by
  1738. * xfs_write_file() beyond the end of the file
  1739. * and any blocks between the old and new file sizes.
  1740. */
  1741. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1742. ip->i_size);
  1743. return error;
  1744. }
  1745. /*
  1746. * xfs_igrow_finish
  1747. *
  1748. * This routine is called to extend the size of a file.
  1749. * The inode must have both the iolock and the ilock locked
  1750. * for update and it must be a part of the current transaction.
  1751. * The xfs_igrow_start() function must have been called previously.
  1752. * If the change_flag is not zero, the inode change timestamp will
  1753. * be updated.
  1754. */
  1755. void
  1756. xfs_igrow_finish(
  1757. xfs_trans_t *tp,
  1758. xfs_inode_t *ip,
  1759. xfs_fsize_t new_size,
  1760. int change_flag)
  1761. {
  1762. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1763. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1764. ASSERT(ip->i_transp == tp);
  1765. ASSERT(new_size > ip->i_size);
  1766. /*
  1767. * Update the file size. Update the inode change timestamp
  1768. * if change_flag set.
  1769. */
  1770. ip->i_d.di_size = new_size;
  1771. ip->i_size = new_size;
  1772. if (change_flag)
  1773. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1774. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1775. }
  1776. /*
  1777. * This is called when the inode's link count goes to 0.
  1778. * We place the on-disk inode on a list in the AGI. It
  1779. * will be pulled from this list when the inode is freed.
  1780. */
  1781. int
  1782. xfs_iunlink(
  1783. xfs_trans_t *tp,
  1784. xfs_inode_t *ip)
  1785. {
  1786. xfs_mount_t *mp;
  1787. xfs_agi_t *agi;
  1788. xfs_dinode_t *dip;
  1789. xfs_buf_t *agibp;
  1790. xfs_buf_t *ibp;
  1791. xfs_agnumber_t agno;
  1792. xfs_daddr_t agdaddr;
  1793. xfs_agino_t agino;
  1794. short bucket_index;
  1795. int offset;
  1796. int error;
  1797. int agi_ok;
  1798. ASSERT(ip->i_d.di_nlink == 0);
  1799. ASSERT(ip->i_d.di_mode != 0);
  1800. ASSERT(ip->i_transp == tp);
  1801. mp = tp->t_mountp;
  1802. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1803. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1804. /*
  1805. * Get the agi buffer first. It ensures lock ordering
  1806. * on the list.
  1807. */
  1808. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1809. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1810. if (error) {
  1811. return error;
  1812. }
  1813. /*
  1814. * Validate the magic number of the agi block.
  1815. */
  1816. agi = XFS_BUF_TO_AGI(agibp);
  1817. agi_ok =
  1818. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1819. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1820. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1821. XFS_RANDOM_IUNLINK))) {
  1822. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1823. xfs_trans_brelse(tp, agibp);
  1824. return XFS_ERROR(EFSCORRUPTED);
  1825. }
  1826. /*
  1827. * Get the index into the agi hash table for the
  1828. * list this inode will go on.
  1829. */
  1830. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1831. ASSERT(agino != 0);
  1832. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1833. ASSERT(agi->agi_unlinked[bucket_index]);
  1834. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1835. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1836. /*
  1837. * There is already another inode in the bucket we need
  1838. * to add ourselves to. Add us at the front of the list.
  1839. * Here we put the head pointer into our next pointer,
  1840. * and then we fall through to point the head at us.
  1841. */
  1842. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1843. if (error) {
  1844. return error;
  1845. }
  1846. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1847. ASSERT(dip->di_next_unlinked);
  1848. /* both on-disk, don't endian flip twice */
  1849. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1850. offset = ip->i_boffset +
  1851. offsetof(xfs_dinode_t, di_next_unlinked);
  1852. xfs_trans_inode_buf(tp, ibp);
  1853. xfs_trans_log_buf(tp, ibp, offset,
  1854. (offset + sizeof(xfs_agino_t) - 1));
  1855. xfs_inobp_check(mp, ibp);
  1856. }
  1857. /*
  1858. * Point the bucket head pointer at the inode being inserted.
  1859. */
  1860. ASSERT(agino != 0);
  1861. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1862. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1863. (sizeof(xfs_agino_t) * bucket_index);
  1864. xfs_trans_log_buf(tp, agibp, offset,
  1865. (offset + sizeof(xfs_agino_t) - 1));
  1866. return 0;
  1867. }
  1868. /*
  1869. * Pull the on-disk inode from the AGI unlinked list.
  1870. */
  1871. STATIC int
  1872. xfs_iunlink_remove(
  1873. xfs_trans_t *tp,
  1874. xfs_inode_t *ip)
  1875. {
  1876. xfs_ino_t next_ino;
  1877. xfs_mount_t *mp;
  1878. xfs_agi_t *agi;
  1879. xfs_dinode_t *dip;
  1880. xfs_buf_t *agibp;
  1881. xfs_buf_t *ibp;
  1882. xfs_agnumber_t agno;
  1883. xfs_daddr_t agdaddr;
  1884. xfs_agino_t agino;
  1885. xfs_agino_t next_agino;
  1886. xfs_buf_t *last_ibp;
  1887. xfs_dinode_t *last_dip = NULL;
  1888. short bucket_index;
  1889. int offset, last_offset = 0;
  1890. int error;
  1891. int agi_ok;
  1892. /*
  1893. * First pull the on-disk inode from the AGI unlinked list.
  1894. */
  1895. mp = tp->t_mountp;
  1896. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1897. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1898. /*
  1899. * Get the agi buffer first. It ensures lock ordering
  1900. * on the list.
  1901. */
  1902. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1903. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1904. if (error) {
  1905. cmn_err(CE_WARN,
  1906. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1907. error, mp->m_fsname);
  1908. return error;
  1909. }
  1910. /*
  1911. * Validate the magic number of the agi block.
  1912. */
  1913. agi = XFS_BUF_TO_AGI(agibp);
  1914. agi_ok =
  1915. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1916. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1917. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1918. XFS_RANDOM_IUNLINK_REMOVE))) {
  1919. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1920. mp, agi);
  1921. xfs_trans_brelse(tp, agibp);
  1922. cmn_err(CE_WARN,
  1923. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1924. mp->m_fsname);
  1925. return XFS_ERROR(EFSCORRUPTED);
  1926. }
  1927. /*
  1928. * Get the index into the agi hash table for the
  1929. * list this inode will go on.
  1930. */
  1931. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1932. ASSERT(agino != 0);
  1933. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1934. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1935. ASSERT(agi->agi_unlinked[bucket_index]);
  1936. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1937. /*
  1938. * We're at the head of the list. Get the inode's
  1939. * on-disk buffer to see if there is anyone after us
  1940. * on the list. Only modify our next pointer if it
  1941. * is not already NULLAGINO. This saves us the overhead
  1942. * of dealing with the buffer when there is no need to
  1943. * change it.
  1944. */
  1945. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1946. if (error) {
  1947. cmn_err(CE_WARN,
  1948. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1949. error, mp->m_fsname);
  1950. return error;
  1951. }
  1952. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1953. ASSERT(next_agino != 0);
  1954. if (next_agino != NULLAGINO) {
  1955. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1956. offset = ip->i_boffset +
  1957. offsetof(xfs_dinode_t, di_next_unlinked);
  1958. xfs_trans_inode_buf(tp, ibp);
  1959. xfs_trans_log_buf(tp, ibp, offset,
  1960. (offset + sizeof(xfs_agino_t) - 1));
  1961. xfs_inobp_check(mp, ibp);
  1962. } else {
  1963. xfs_trans_brelse(tp, ibp);
  1964. }
  1965. /*
  1966. * Point the bucket head pointer at the next inode.
  1967. */
  1968. ASSERT(next_agino != 0);
  1969. ASSERT(next_agino != agino);
  1970. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1971. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1972. (sizeof(xfs_agino_t) * bucket_index);
  1973. xfs_trans_log_buf(tp, agibp, offset,
  1974. (offset + sizeof(xfs_agino_t) - 1));
  1975. } else {
  1976. /*
  1977. * We need to search the list for the inode being freed.
  1978. */
  1979. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1980. last_ibp = NULL;
  1981. while (next_agino != agino) {
  1982. /*
  1983. * If the last inode wasn't the one pointing to
  1984. * us, then release its buffer since we're not
  1985. * going to do anything with it.
  1986. */
  1987. if (last_ibp != NULL) {
  1988. xfs_trans_brelse(tp, last_ibp);
  1989. }
  1990. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1991. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1992. &last_ibp, &last_offset);
  1993. if (error) {
  1994. cmn_err(CE_WARN,
  1995. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1996. error, mp->m_fsname);
  1997. return error;
  1998. }
  1999. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  2000. ASSERT(next_agino != NULLAGINO);
  2001. ASSERT(next_agino != 0);
  2002. }
  2003. /*
  2004. * Now last_ibp points to the buffer previous to us on
  2005. * the unlinked list. Pull us from the list.
  2006. */
  2007. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2008. if (error) {
  2009. cmn_err(CE_WARN,
  2010. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2011. error, mp->m_fsname);
  2012. return error;
  2013. }
  2014. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  2015. ASSERT(next_agino != 0);
  2016. ASSERT(next_agino != agino);
  2017. if (next_agino != NULLAGINO) {
  2018. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  2019. offset = ip->i_boffset +
  2020. offsetof(xfs_dinode_t, di_next_unlinked);
  2021. xfs_trans_inode_buf(tp, ibp);
  2022. xfs_trans_log_buf(tp, ibp, offset,
  2023. (offset + sizeof(xfs_agino_t) - 1));
  2024. xfs_inobp_check(mp, ibp);
  2025. } else {
  2026. xfs_trans_brelse(tp, ibp);
  2027. }
  2028. /*
  2029. * Point the previous inode on the list to the next inode.
  2030. */
  2031. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  2032. ASSERT(next_agino != 0);
  2033. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2034. xfs_trans_inode_buf(tp, last_ibp);
  2035. xfs_trans_log_buf(tp, last_ibp, offset,
  2036. (offset + sizeof(xfs_agino_t) - 1));
  2037. xfs_inobp_check(mp, last_ibp);
  2038. }
  2039. return 0;
  2040. }
  2041. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2042. {
  2043. return (((ip->i_itemp == NULL) ||
  2044. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2045. (ip->i_update_core == 0));
  2046. }
  2047. STATIC void
  2048. xfs_ifree_cluster(
  2049. xfs_inode_t *free_ip,
  2050. xfs_trans_t *tp,
  2051. xfs_ino_t inum)
  2052. {
  2053. xfs_mount_t *mp = free_ip->i_mount;
  2054. int blks_per_cluster;
  2055. int nbufs;
  2056. int ninodes;
  2057. int i, j, found, pre_flushed;
  2058. xfs_daddr_t blkno;
  2059. xfs_buf_t *bp;
  2060. xfs_ihash_t *ih;
  2061. xfs_inode_t *ip, **ip_found;
  2062. xfs_inode_log_item_t *iip;
  2063. xfs_log_item_t *lip;
  2064. SPLDECL(s);
  2065. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2066. blks_per_cluster = 1;
  2067. ninodes = mp->m_sb.sb_inopblock;
  2068. nbufs = XFS_IALLOC_BLOCKS(mp);
  2069. } else {
  2070. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2071. mp->m_sb.sb_blocksize;
  2072. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2073. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2074. }
  2075. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2076. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2077. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2078. XFS_INO_TO_AGBNO(mp, inum));
  2079. /*
  2080. * Look for each inode in memory and attempt to lock it,
  2081. * we can be racing with flush and tail pushing here.
  2082. * any inode we get the locks on, add to an array of
  2083. * inode items to process later.
  2084. *
  2085. * The get the buffer lock, we could beat a flush
  2086. * or tail pushing thread to the lock here, in which
  2087. * case they will go looking for the inode buffer
  2088. * and fail, we need some other form of interlock
  2089. * here.
  2090. */
  2091. found = 0;
  2092. for (i = 0; i < ninodes; i++) {
  2093. ih = XFS_IHASH(mp, inum + i);
  2094. read_lock(&ih->ih_lock);
  2095. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2096. if (ip->i_ino == inum + i)
  2097. break;
  2098. }
  2099. /* Inode not in memory or we found it already,
  2100. * nothing to do
  2101. */
  2102. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2103. read_unlock(&ih->ih_lock);
  2104. continue;
  2105. }
  2106. if (xfs_inode_clean(ip)) {
  2107. read_unlock(&ih->ih_lock);
  2108. continue;
  2109. }
  2110. /* If we can get the locks then add it to the
  2111. * list, otherwise by the time we get the bp lock
  2112. * below it will already be attached to the
  2113. * inode buffer.
  2114. */
  2115. /* This inode will already be locked - by us, lets
  2116. * keep it that way.
  2117. */
  2118. if (ip == free_ip) {
  2119. if (xfs_iflock_nowait(ip)) {
  2120. xfs_iflags_set(ip, XFS_ISTALE);
  2121. if (xfs_inode_clean(ip)) {
  2122. xfs_ifunlock(ip);
  2123. } else {
  2124. ip_found[found++] = ip;
  2125. }
  2126. }
  2127. read_unlock(&ih->ih_lock);
  2128. continue;
  2129. }
  2130. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2131. if (xfs_iflock_nowait(ip)) {
  2132. xfs_iflags_set(ip, XFS_ISTALE);
  2133. if (xfs_inode_clean(ip)) {
  2134. xfs_ifunlock(ip);
  2135. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2136. } else {
  2137. ip_found[found++] = ip;
  2138. }
  2139. } else {
  2140. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2141. }
  2142. }
  2143. read_unlock(&ih->ih_lock);
  2144. }
  2145. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2146. mp->m_bsize * blks_per_cluster,
  2147. XFS_BUF_LOCK);
  2148. pre_flushed = 0;
  2149. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2150. while (lip) {
  2151. if (lip->li_type == XFS_LI_INODE) {
  2152. iip = (xfs_inode_log_item_t *)lip;
  2153. ASSERT(iip->ili_logged == 1);
  2154. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2155. AIL_LOCK(mp,s);
  2156. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2157. AIL_UNLOCK(mp, s);
  2158. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2159. pre_flushed++;
  2160. }
  2161. lip = lip->li_bio_list;
  2162. }
  2163. for (i = 0; i < found; i++) {
  2164. ip = ip_found[i];
  2165. iip = ip->i_itemp;
  2166. if (!iip) {
  2167. ip->i_update_core = 0;
  2168. xfs_ifunlock(ip);
  2169. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2170. continue;
  2171. }
  2172. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2173. iip->ili_format.ilf_fields = 0;
  2174. iip->ili_logged = 1;
  2175. AIL_LOCK(mp,s);
  2176. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2177. AIL_UNLOCK(mp, s);
  2178. xfs_buf_attach_iodone(bp,
  2179. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2180. xfs_istale_done, (xfs_log_item_t *)iip);
  2181. if (ip != free_ip) {
  2182. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2183. }
  2184. }
  2185. if (found || pre_flushed)
  2186. xfs_trans_stale_inode_buf(tp, bp);
  2187. xfs_trans_binval(tp, bp);
  2188. }
  2189. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2190. }
  2191. /*
  2192. * This is called to return an inode to the inode free list.
  2193. * The inode should already be truncated to 0 length and have
  2194. * no pages associated with it. This routine also assumes that
  2195. * the inode is already a part of the transaction.
  2196. *
  2197. * The on-disk copy of the inode will have been added to the list
  2198. * of unlinked inodes in the AGI. We need to remove the inode from
  2199. * that list atomically with respect to freeing it here.
  2200. */
  2201. int
  2202. xfs_ifree(
  2203. xfs_trans_t *tp,
  2204. xfs_inode_t *ip,
  2205. xfs_bmap_free_t *flist)
  2206. {
  2207. int error;
  2208. int delete;
  2209. xfs_ino_t first_ino;
  2210. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2211. ASSERT(ip->i_transp == tp);
  2212. ASSERT(ip->i_d.di_nlink == 0);
  2213. ASSERT(ip->i_d.di_nextents == 0);
  2214. ASSERT(ip->i_d.di_anextents == 0);
  2215. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2216. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2217. ASSERT(ip->i_d.di_nblocks == 0);
  2218. /*
  2219. * Pull the on-disk inode from the AGI unlinked list.
  2220. */
  2221. error = xfs_iunlink_remove(tp, ip);
  2222. if (error != 0) {
  2223. return error;
  2224. }
  2225. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2226. if (error != 0) {
  2227. return error;
  2228. }
  2229. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2230. ip->i_d.di_flags = 0;
  2231. ip->i_d.di_dmevmask = 0;
  2232. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2233. ip->i_df.if_ext_max =
  2234. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2235. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2236. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2237. /*
  2238. * Bump the generation count so no one will be confused
  2239. * by reincarnations of this inode.
  2240. */
  2241. ip->i_d.di_gen++;
  2242. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2243. if (delete) {
  2244. xfs_ifree_cluster(ip, tp, first_ino);
  2245. }
  2246. return 0;
  2247. }
  2248. /*
  2249. * Reallocate the space for if_broot based on the number of records
  2250. * being added or deleted as indicated in rec_diff. Move the records
  2251. * and pointers in if_broot to fit the new size. When shrinking this
  2252. * will eliminate holes between the records and pointers created by
  2253. * the caller. When growing this will create holes to be filled in
  2254. * by the caller.
  2255. *
  2256. * The caller must not request to add more records than would fit in
  2257. * the on-disk inode root. If the if_broot is currently NULL, then
  2258. * if we adding records one will be allocated. The caller must also
  2259. * not request that the number of records go below zero, although
  2260. * it can go to zero.
  2261. *
  2262. * ip -- the inode whose if_broot area is changing
  2263. * ext_diff -- the change in the number of records, positive or negative,
  2264. * requested for the if_broot array.
  2265. */
  2266. void
  2267. xfs_iroot_realloc(
  2268. xfs_inode_t *ip,
  2269. int rec_diff,
  2270. int whichfork)
  2271. {
  2272. int cur_max;
  2273. xfs_ifork_t *ifp;
  2274. xfs_bmbt_block_t *new_broot;
  2275. int new_max;
  2276. size_t new_size;
  2277. char *np;
  2278. char *op;
  2279. /*
  2280. * Handle the degenerate case quietly.
  2281. */
  2282. if (rec_diff == 0) {
  2283. return;
  2284. }
  2285. ifp = XFS_IFORK_PTR(ip, whichfork);
  2286. if (rec_diff > 0) {
  2287. /*
  2288. * If there wasn't any memory allocated before, just
  2289. * allocate it now and get out.
  2290. */
  2291. if (ifp->if_broot_bytes == 0) {
  2292. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2293. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2294. KM_SLEEP);
  2295. ifp->if_broot_bytes = (int)new_size;
  2296. return;
  2297. }
  2298. /*
  2299. * If there is already an existing if_broot, then we need
  2300. * to realloc() it and shift the pointers to their new
  2301. * location. The records don't change location because
  2302. * they are kept butted up against the btree block header.
  2303. */
  2304. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2305. new_max = cur_max + rec_diff;
  2306. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2307. ifp->if_broot = (xfs_bmbt_block_t *)
  2308. kmem_realloc(ifp->if_broot,
  2309. new_size,
  2310. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2311. KM_SLEEP);
  2312. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2313. ifp->if_broot_bytes);
  2314. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2315. (int)new_size);
  2316. ifp->if_broot_bytes = (int)new_size;
  2317. ASSERT(ifp->if_broot_bytes <=
  2318. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2319. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2320. return;
  2321. }
  2322. /*
  2323. * rec_diff is less than 0. In this case, we are shrinking the
  2324. * if_broot buffer. It must already exist. If we go to zero
  2325. * records, just get rid of the root and clear the status bit.
  2326. */
  2327. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2328. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2329. new_max = cur_max + rec_diff;
  2330. ASSERT(new_max >= 0);
  2331. if (new_max > 0)
  2332. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2333. else
  2334. new_size = 0;
  2335. if (new_size > 0) {
  2336. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2337. /*
  2338. * First copy over the btree block header.
  2339. */
  2340. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2341. } else {
  2342. new_broot = NULL;
  2343. ifp->if_flags &= ~XFS_IFBROOT;
  2344. }
  2345. /*
  2346. * Only copy the records and pointers if there are any.
  2347. */
  2348. if (new_max > 0) {
  2349. /*
  2350. * First copy the records.
  2351. */
  2352. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2353. ifp->if_broot_bytes);
  2354. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2355. (int)new_size);
  2356. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2357. /*
  2358. * Then copy the pointers.
  2359. */
  2360. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2361. ifp->if_broot_bytes);
  2362. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2363. (int)new_size);
  2364. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2365. }
  2366. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2367. ifp->if_broot = new_broot;
  2368. ifp->if_broot_bytes = (int)new_size;
  2369. ASSERT(ifp->if_broot_bytes <=
  2370. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2371. return;
  2372. }
  2373. /*
  2374. * This is called when the amount of space needed for if_data
  2375. * is increased or decreased. The change in size is indicated by
  2376. * the number of bytes that need to be added or deleted in the
  2377. * byte_diff parameter.
  2378. *
  2379. * If the amount of space needed has decreased below the size of the
  2380. * inline buffer, then switch to using the inline buffer. Otherwise,
  2381. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2382. * to what is needed.
  2383. *
  2384. * ip -- the inode whose if_data area is changing
  2385. * byte_diff -- the change in the number of bytes, positive or negative,
  2386. * requested for the if_data array.
  2387. */
  2388. void
  2389. xfs_idata_realloc(
  2390. xfs_inode_t *ip,
  2391. int byte_diff,
  2392. int whichfork)
  2393. {
  2394. xfs_ifork_t *ifp;
  2395. int new_size;
  2396. int real_size;
  2397. if (byte_diff == 0) {
  2398. return;
  2399. }
  2400. ifp = XFS_IFORK_PTR(ip, whichfork);
  2401. new_size = (int)ifp->if_bytes + byte_diff;
  2402. ASSERT(new_size >= 0);
  2403. if (new_size == 0) {
  2404. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2405. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2406. }
  2407. ifp->if_u1.if_data = NULL;
  2408. real_size = 0;
  2409. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2410. /*
  2411. * If the valid extents/data can fit in if_inline_ext/data,
  2412. * copy them from the malloc'd vector and free it.
  2413. */
  2414. if (ifp->if_u1.if_data == NULL) {
  2415. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2416. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2417. ASSERT(ifp->if_real_bytes != 0);
  2418. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2419. new_size);
  2420. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2421. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2422. }
  2423. real_size = 0;
  2424. } else {
  2425. /*
  2426. * Stuck with malloc/realloc.
  2427. * For inline data, the underlying buffer must be
  2428. * a multiple of 4 bytes in size so that it can be
  2429. * logged and stay on word boundaries. We enforce
  2430. * that here.
  2431. */
  2432. real_size = roundup(new_size, 4);
  2433. if (ifp->if_u1.if_data == NULL) {
  2434. ASSERT(ifp->if_real_bytes == 0);
  2435. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2436. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2437. /*
  2438. * Only do the realloc if the underlying size
  2439. * is really changing.
  2440. */
  2441. if (ifp->if_real_bytes != real_size) {
  2442. ifp->if_u1.if_data =
  2443. kmem_realloc(ifp->if_u1.if_data,
  2444. real_size,
  2445. ifp->if_real_bytes,
  2446. KM_SLEEP);
  2447. }
  2448. } else {
  2449. ASSERT(ifp->if_real_bytes == 0);
  2450. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2451. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2452. ifp->if_bytes);
  2453. }
  2454. }
  2455. ifp->if_real_bytes = real_size;
  2456. ifp->if_bytes = new_size;
  2457. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2458. }
  2459. /*
  2460. * Map inode to disk block and offset.
  2461. *
  2462. * mp -- the mount point structure for the current file system
  2463. * tp -- the current transaction
  2464. * ino -- the inode number of the inode to be located
  2465. * imap -- this structure is filled in with the information necessary
  2466. * to retrieve the given inode from disk
  2467. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2468. * lookups in the inode btree were OK or not
  2469. */
  2470. int
  2471. xfs_imap(
  2472. xfs_mount_t *mp,
  2473. xfs_trans_t *tp,
  2474. xfs_ino_t ino,
  2475. xfs_imap_t *imap,
  2476. uint flags)
  2477. {
  2478. xfs_fsblock_t fsbno;
  2479. int len;
  2480. int off;
  2481. int error;
  2482. fsbno = imap->im_blkno ?
  2483. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2484. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2485. if (error != 0) {
  2486. return error;
  2487. }
  2488. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2489. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2490. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2491. imap->im_ioffset = (ushort)off;
  2492. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2493. return 0;
  2494. }
  2495. void
  2496. xfs_idestroy_fork(
  2497. xfs_inode_t *ip,
  2498. int whichfork)
  2499. {
  2500. xfs_ifork_t *ifp;
  2501. ifp = XFS_IFORK_PTR(ip, whichfork);
  2502. if (ifp->if_broot != NULL) {
  2503. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2504. ifp->if_broot = NULL;
  2505. }
  2506. /*
  2507. * If the format is local, then we can't have an extents
  2508. * array so just look for an inline data array. If we're
  2509. * not local then we may or may not have an extents list,
  2510. * so check and free it up if we do.
  2511. */
  2512. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2513. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2514. (ifp->if_u1.if_data != NULL)) {
  2515. ASSERT(ifp->if_real_bytes != 0);
  2516. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2517. ifp->if_u1.if_data = NULL;
  2518. ifp->if_real_bytes = 0;
  2519. }
  2520. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2521. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2522. ((ifp->if_u1.if_extents != NULL) &&
  2523. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2524. ASSERT(ifp->if_real_bytes != 0);
  2525. xfs_iext_destroy(ifp);
  2526. }
  2527. ASSERT(ifp->if_u1.if_extents == NULL ||
  2528. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2529. ASSERT(ifp->if_real_bytes == 0);
  2530. if (whichfork == XFS_ATTR_FORK) {
  2531. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2532. ip->i_afp = NULL;
  2533. }
  2534. }
  2535. /*
  2536. * This is called free all the memory associated with an inode.
  2537. * It must free the inode itself and any buffers allocated for
  2538. * if_extents/if_data and if_broot. It must also free the lock
  2539. * associated with the inode.
  2540. */
  2541. void
  2542. xfs_idestroy(
  2543. xfs_inode_t *ip)
  2544. {
  2545. switch (ip->i_d.di_mode & S_IFMT) {
  2546. case S_IFREG:
  2547. case S_IFDIR:
  2548. case S_IFLNK:
  2549. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2550. break;
  2551. }
  2552. if (ip->i_afp)
  2553. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2554. mrfree(&ip->i_lock);
  2555. mrfree(&ip->i_iolock);
  2556. freesema(&ip->i_flock);
  2557. #ifdef XFS_BMAP_TRACE
  2558. ktrace_free(ip->i_xtrace);
  2559. #endif
  2560. #ifdef XFS_BMBT_TRACE
  2561. ktrace_free(ip->i_btrace);
  2562. #endif
  2563. #ifdef XFS_RW_TRACE
  2564. ktrace_free(ip->i_rwtrace);
  2565. #endif
  2566. #ifdef XFS_ILOCK_TRACE
  2567. ktrace_free(ip->i_lock_trace);
  2568. #endif
  2569. #ifdef XFS_DIR2_TRACE
  2570. ktrace_free(ip->i_dir_trace);
  2571. #endif
  2572. if (ip->i_itemp) {
  2573. /*
  2574. * Only if we are shutting down the fs will we see an
  2575. * inode still in the AIL. If it is there, we should remove
  2576. * it to prevent a use-after-free from occurring.
  2577. */
  2578. xfs_mount_t *mp = ip->i_mount;
  2579. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2580. int s;
  2581. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2582. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2583. if (lip->li_flags & XFS_LI_IN_AIL) {
  2584. AIL_LOCK(mp, s);
  2585. if (lip->li_flags & XFS_LI_IN_AIL)
  2586. xfs_trans_delete_ail(mp, lip, s);
  2587. else
  2588. AIL_UNLOCK(mp, s);
  2589. }
  2590. xfs_inode_item_destroy(ip);
  2591. }
  2592. kmem_zone_free(xfs_inode_zone, ip);
  2593. }
  2594. /*
  2595. * Increment the pin count of the given buffer.
  2596. * This value is protected by ipinlock spinlock in the mount structure.
  2597. */
  2598. void
  2599. xfs_ipin(
  2600. xfs_inode_t *ip)
  2601. {
  2602. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2603. atomic_inc(&ip->i_pincount);
  2604. }
  2605. /*
  2606. * Decrement the pin count of the given inode, and wake up
  2607. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2608. * inode must have been previously pinned with a call to xfs_ipin().
  2609. */
  2610. void
  2611. xfs_iunpin(
  2612. xfs_inode_t *ip)
  2613. {
  2614. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2615. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2616. /*
  2617. * If the inode is currently being reclaimed, the link between
  2618. * the bhv_vnode and the xfs_inode will be broken after the
  2619. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2620. * set, then we can move forward and mark the linux inode dirty
  2621. * knowing that it is still valid as it won't freed until after
  2622. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2623. * i_flags_lock is used to synchronise the setting of the
  2624. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2625. * can execute atomically w.r.t to reclaim by holding this lock
  2626. * here.
  2627. *
  2628. * However, we still need to issue the unpin wakeup call as the
  2629. * inode reclaim may be blocked waiting for the inode to become
  2630. * unpinned.
  2631. */
  2632. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2633. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2634. struct inode *inode = NULL;
  2635. BUG_ON(vp == NULL);
  2636. inode = vn_to_inode(vp);
  2637. BUG_ON(inode->i_state & I_CLEAR);
  2638. /* make sync come back and flush this inode */
  2639. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2640. mark_inode_dirty_sync(inode);
  2641. }
  2642. spin_unlock(&ip->i_flags_lock);
  2643. wake_up(&ip->i_ipin_wait);
  2644. }
  2645. }
  2646. /*
  2647. * This is called to wait for the given inode to be unpinned.
  2648. * It will sleep until this happens. The caller must have the
  2649. * inode locked in at least shared mode so that the buffer cannot
  2650. * be subsequently pinned once someone is waiting for it to be
  2651. * unpinned.
  2652. */
  2653. STATIC void
  2654. xfs_iunpin_wait(
  2655. xfs_inode_t *ip)
  2656. {
  2657. xfs_inode_log_item_t *iip;
  2658. xfs_lsn_t lsn;
  2659. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2660. if (atomic_read(&ip->i_pincount) == 0) {
  2661. return;
  2662. }
  2663. iip = ip->i_itemp;
  2664. if (iip && iip->ili_last_lsn) {
  2665. lsn = iip->ili_last_lsn;
  2666. } else {
  2667. lsn = (xfs_lsn_t)0;
  2668. }
  2669. /*
  2670. * Give the log a push so we don't wait here too long.
  2671. */
  2672. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2673. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2674. }
  2675. /*
  2676. * xfs_iextents_copy()
  2677. *
  2678. * This is called to copy the REAL extents (as opposed to the delayed
  2679. * allocation extents) from the inode into the given buffer. It
  2680. * returns the number of bytes copied into the buffer.
  2681. *
  2682. * If there are no delayed allocation extents, then we can just
  2683. * memcpy() the extents into the buffer. Otherwise, we need to
  2684. * examine each extent in turn and skip those which are delayed.
  2685. */
  2686. int
  2687. xfs_iextents_copy(
  2688. xfs_inode_t *ip,
  2689. xfs_bmbt_rec_t *buffer,
  2690. int whichfork)
  2691. {
  2692. int copied;
  2693. xfs_bmbt_rec_t *dest_ep;
  2694. xfs_bmbt_rec_t *ep;
  2695. #ifdef XFS_BMAP_TRACE
  2696. static char fname[] = "xfs_iextents_copy";
  2697. #endif
  2698. int i;
  2699. xfs_ifork_t *ifp;
  2700. int nrecs;
  2701. xfs_fsblock_t start_block;
  2702. ifp = XFS_IFORK_PTR(ip, whichfork);
  2703. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2704. ASSERT(ifp->if_bytes > 0);
  2705. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2706. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2707. ASSERT(nrecs > 0);
  2708. /*
  2709. * There are some delayed allocation extents in the
  2710. * inode, so copy the extents one at a time and skip
  2711. * the delayed ones. There must be at least one
  2712. * non-delayed extent.
  2713. */
  2714. dest_ep = buffer;
  2715. copied = 0;
  2716. for (i = 0; i < nrecs; i++) {
  2717. ep = xfs_iext_get_ext(ifp, i);
  2718. start_block = xfs_bmbt_get_startblock(ep);
  2719. if (ISNULLSTARTBLOCK(start_block)) {
  2720. /*
  2721. * It's a delayed allocation extent, so skip it.
  2722. */
  2723. continue;
  2724. }
  2725. /* Translate to on disk format */
  2726. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2727. (__uint64_t*)&dest_ep->l0);
  2728. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2729. (__uint64_t*)&dest_ep->l1);
  2730. dest_ep++;
  2731. copied++;
  2732. }
  2733. ASSERT(copied != 0);
  2734. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2735. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2736. }
  2737. /*
  2738. * Each of the following cases stores data into the same region
  2739. * of the on-disk inode, so only one of them can be valid at
  2740. * any given time. While it is possible to have conflicting formats
  2741. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2742. * in EXTENTS format, this can only happen when the fork has
  2743. * changed formats after being modified but before being flushed.
  2744. * In these cases, the format always takes precedence, because the
  2745. * format indicates the current state of the fork.
  2746. */
  2747. /*ARGSUSED*/
  2748. STATIC int
  2749. xfs_iflush_fork(
  2750. xfs_inode_t *ip,
  2751. xfs_dinode_t *dip,
  2752. xfs_inode_log_item_t *iip,
  2753. int whichfork,
  2754. xfs_buf_t *bp)
  2755. {
  2756. char *cp;
  2757. xfs_ifork_t *ifp;
  2758. xfs_mount_t *mp;
  2759. #ifdef XFS_TRANS_DEBUG
  2760. int first;
  2761. #endif
  2762. static const short brootflag[2] =
  2763. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2764. static const short dataflag[2] =
  2765. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2766. static const short extflag[2] =
  2767. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2768. if (iip == NULL)
  2769. return 0;
  2770. ifp = XFS_IFORK_PTR(ip, whichfork);
  2771. /*
  2772. * This can happen if we gave up in iformat in an error path,
  2773. * for the attribute fork.
  2774. */
  2775. if (ifp == NULL) {
  2776. ASSERT(whichfork == XFS_ATTR_FORK);
  2777. return 0;
  2778. }
  2779. cp = XFS_DFORK_PTR(dip, whichfork);
  2780. mp = ip->i_mount;
  2781. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2782. case XFS_DINODE_FMT_LOCAL:
  2783. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2784. (ifp->if_bytes > 0)) {
  2785. ASSERT(ifp->if_u1.if_data != NULL);
  2786. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2787. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2788. }
  2789. break;
  2790. case XFS_DINODE_FMT_EXTENTS:
  2791. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2792. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2793. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2794. (ifp->if_bytes == 0));
  2795. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2796. (ifp->if_bytes > 0));
  2797. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2798. (ifp->if_bytes > 0)) {
  2799. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2800. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2801. whichfork);
  2802. }
  2803. break;
  2804. case XFS_DINODE_FMT_BTREE:
  2805. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2806. (ifp->if_broot_bytes > 0)) {
  2807. ASSERT(ifp->if_broot != NULL);
  2808. ASSERT(ifp->if_broot_bytes <=
  2809. (XFS_IFORK_SIZE(ip, whichfork) +
  2810. XFS_BROOT_SIZE_ADJ));
  2811. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2812. (xfs_bmdr_block_t *)cp,
  2813. XFS_DFORK_SIZE(dip, mp, whichfork));
  2814. }
  2815. break;
  2816. case XFS_DINODE_FMT_DEV:
  2817. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2818. ASSERT(whichfork == XFS_DATA_FORK);
  2819. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2820. }
  2821. break;
  2822. case XFS_DINODE_FMT_UUID:
  2823. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2824. ASSERT(whichfork == XFS_DATA_FORK);
  2825. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2826. sizeof(uuid_t));
  2827. }
  2828. break;
  2829. default:
  2830. ASSERT(0);
  2831. break;
  2832. }
  2833. return 0;
  2834. }
  2835. /*
  2836. * xfs_iflush() will write a modified inode's changes out to the
  2837. * inode's on disk home. The caller must have the inode lock held
  2838. * in at least shared mode and the inode flush semaphore must be
  2839. * held as well. The inode lock will still be held upon return from
  2840. * the call and the caller is free to unlock it.
  2841. * The inode flush lock will be unlocked when the inode reaches the disk.
  2842. * The flags indicate how the inode's buffer should be written out.
  2843. */
  2844. int
  2845. xfs_iflush(
  2846. xfs_inode_t *ip,
  2847. uint flags)
  2848. {
  2849. xfs_inode_log_item_t *iip;
  2850. xfs_buf_t *bp;
  2851. xfs_dinode_t *dip;
  2852. xfs_mount_t *mp;
  2853. int error;
  2854. /* REFERENCED */
  2855. xfs_chash_t *ch;
  2856. xfs_inode_t *iq;
  2857. int clcount; /* count of inodes clustered */
  2858. int bufwasdelwri;
  2859. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2860. SPLDECL(s);
  2861. XFS_STATS_INC(xs_iflush_count);
  2862. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2863. ASSERT(issemalocked(&(ip->i_flock)));
  2864. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2865. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2866. iip = ip->i_itemp;
  2867. mp = ip->i_mount;
  2868. /*
  2869. * If the inode isn't dirty, then just release the inode
  2870. * flush lock and do nothing.
  2871. */
  2872. if ((ip->i_update_core == 0) &&
  2873. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2874. ASSERT((iip != NULL) ?
  2875. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2876. xfs_ifunlock(ip);
  2877. return 0;
  2878. }
  2879. /*
  2880. * We can't flush the inode until it is unpinned, so
  2881. * wait for it. We know noone new can pin it, because
  2882. * we are holding the inode lock shared and you need
  2883. * to hold it exclusively to pin the inode.
  2884. */
  2885. xfs_iunpin_wait(ip);
  2886. /*
  2887. * This may have been unpinned because the filesystem is shutting
  2888. * down forcibly. If that's the case we must not write this inode
  2889. * to disk, because the log record didn't make it to disk!
  2890. */
  2891. if (XFS_FORCED_SHUTDOWN(mp)) {
  2892. ip->i_update_core = 0;
  2893. if (iip)
  2894. iip->ili_format.ilf_fields = 0;
  2895. xfs_ifunlock(ip);
  2896. return XFS_ERROR(EIO);
  2897. }
  2898. /*
  2899. * Get the buffer containing the on-disk inode.
  2900. */
  2901. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2902. if (error) {
  2903. xfs_ifunlock(ip);
  2904. return error;
  2905. }
  2906. /*
  2907. * Decide how buffer will be flushed out. This is done before
  2908. * the call to xfs_iflush_int because this field is zeroed by it.
  2909. */
  2910. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2911. /*
  2912. * Flush out the inode buffer according to the directions
  2913. * of the caller. In the cases where the caller has given
  2914. * us a choice choose the non-delwri case. This is because
  2915. * the inode is in the AIL and we need to get it out soon.
  2916. */
  2917. switch (flags) {
  2918. case XFS_IFLUSH_SYNC:
  2919. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2920. flags = 0;
  2921. break;
  2922. case XFS_IFLUSH_ASYNC:
  2923. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2924. flags = INT_ASYNC;
  2925. break;
  2926. case XFS_IFLUSH_DELWRI:
  2927. flags = INT_DELWRI;
  2928. break;
  2929. default:
  2930. ASSERT(0);
  2931. flags = 0;
  2932. break;
  2933. }
  2934. } else {
  2935. switch (flags) {
  2936. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2937. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2938. case XFS_IFLUSH_DELWRI:
  2939. flags = INT_DELWRI;
  2940. break;
  2941. case XFS_IFLUSH_ASYNC:
  2942. flags = INT_ASYNC;
  2943. break;
  2944. case XFS_IFLUSH_SYNC:
  2945. flags = 0;
  2946. break;
  2947. default:
  2948. ASSERT(0);
  2949. flags = 0;
  2950. break;
  2951. }
  2952. }
  2953. /*
  2954. * First flush out the inode that xfs_iflush was called with.
  2955. */
  2956. error = xfs_iflush_int(ip, bp);
  2957. if (error) {
  2958. goto corrupt_out;
  2959. }
  2960. /*
  2961. * inode clustering:
  2962. * see if other inodes can be gathered into this write
  2963. */
  2964. ip->i_chash->chl_buf = bp;
  2965. ch = XFS_CHASH(mp, ip->i_blkno);
  2966. s = mutex_spinlock(&ch->ch_lock);
  2967. clcount = 0;
  2968. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2969. /*
  2970. * Do an un-protected check to see if the inode is dirty and
  2971. * is a candidate for flushing. These checks will be repeated
  2972. * later after the appropriate locks are acquired.
  2973. */
  2974. iip = iq->i_itemp;
  2975. if ((iq->i_update_core == 0) &&
  2976. ((iip == NULL) ||
  2977. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2978. xfs_ipincount(iq) == 0) {
  2979. continue;
  2980. }
  2981. /*
  2982. * Try to get locks. If any are unavailable,
  2983. * then this inode cannot be flushed and is skipped.
  2984. */
  2985. /* get inode locks (just i_lock) */
  2986. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2987. /* get inode flush lock */
  2988. if (xfs_iflock_nowait(iq)) {
  2989. /* check if pinned */
  2990. if (xfs_ipincount(iq) == 0) {
  2991. /* arriving here means that
  2992. * this inode can be flushed.
  2993. * first re-check that it's
  2994. * dirty
  2995. */
  2996. iip = iq->i_itemp;
  2997. if ((iq->i_update_core != 0)||
  2998. ((iip != NULL) &&
  2999. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3000. clcount++;
  3001. error = xfs_iflush_int(iq, bp);
  3002. if (error) {
  3003. xfs_iunlock(iq,
  3004. XFS_ILOCK_SHARED);
  3005. goto cluster_corrupt_out;
  3006. }
  3007. } else {
  3008. xfs_ifunlock(iq);
  3009. }
  3010. } else {
  3011. xfs_ifunlock(iq);
  3012. }
  3013. }
  3014. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  3015. }
  3016. }
  3017. mutex_spinunlock(&ch->ch_lock, s);
  3018. if (clcount) {
  3019. XFS_STATS_INC(xs_icluster_flushcnt);
  3020. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3021. }
  3022. /*
  3023. * If the buffer is pinned then push on the log so we won't
  3024. * get stuck waiting in the write for too long.
  3025. */
  3026. if (XFS_BUF_ISPINNED(bp)){
  3027. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3028. }
  3029. if (flags & INT_DELWRI) {
  3030. xfs_bdwrite(mp, bp);
  3031. } else if (flags & INT_ASYNC) {
  3032. xfs_bawrite(mp, bp);
  3033. } else {
  3034. error = xfs_bwrite(mp, bp);
  3035. }
  3036. return error;
  3037. corrupt_out:
  3038. xfs_buf_relse(bp);
  3039. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3040. xfs_iflush_abort(ip);
  3041. /*
  3042. * Unlocks the flush lock
  3043. */
  3044. return XFS_ERROR(EFSCORRUPTED);
  3045. cluster_corrupt_out:
  3046. /* Corruption detected in the clustering loop. Invalidate the
  3047. * inode buffer and shut down the filesystem.
  3048. */
  3049. mutex_spinunlock(&ch->ch_lock, s);
  3050. /*
  3051. * Clean up the buffer. If it was B_DELWRI, just release it --
  3052. * brelse can handle it with no problems. If not, shut down the
  3053. * filesystem before releasing the buffer.
  3054. */
  3055. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3056. xfs_buf_relse(bp);
  3057. }
  3058. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3059. if(!bufwasdelwri) {
  3060. /*
  3061. * Just like incore_relse: if we have b_iodone functions,
  3062. * mark the buffer as an error and call them. Otherwise
  3063. * mark it as stale and brelse.
  3064. */
  3065. if (XFS_BUF_IODONE_FUNC(bp)) {
  3066. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3067. XFS_BUF_UNDONE(bp);
  3068. XFS_BUF_STALE(bp);
  3069. XFS_BUF_SHUT(bp);
  3070. XFS_BUF_ERROR(bp,EIO);
  3071. xfs_biodone(bp);
  3072. } else {
  3073. XFS_BUF_STALE(bp);
  3074. xfs_buf_relse(bp);
  3075. }
  3076. }
  3077. xfs_iflush_abort(iq);
  3078. /*
  3079. * Unlocks the flush lock
  3080. */
  3081. return XFS_ERROR(EFSCORRUPTED);
  3082. }
  3083. STATIC int
  3084. xfs_iflush_int(
  3085. xfs_inode_t *ip,
  3086. xfs_buf_t *bp)
  3087. {
  3088. xfs_inode_log_item_t *iip;
  3089. xfs_dinode_t *dip;
  3090. xfs_mount_t *mp;
  3091. #ifdef XFS_TRANS_DEBUG
  3092. int first;
  3093. #endif
  3094. SPLDECL(s);
  3095. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3096. ASSERT(issemalocked(&(ip->i_flock)));
  3097. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3098. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3099. iip = ip->i_itemp;
  3100. mp = ip->i_mount;
  3101. /*
  3102. * If the inode isn't dirty, then just release the inode
  3103. * flush lock and do nothing.
  3104. */
  3105. if ((ip->i_update_core == 0) &&
  3106. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3107. xfs_ifunlock(ip);
  3108. return 0;
  3109. }
  3110. /* set *dip = inode's place in the buffer */
  3111. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3112. /*
  3113. * Clear i_update_core before copying out the data.
  3114. * This is for coordination with our timestamp updates
  3115. * that don't hold the inode lock. They will always
  3116. * update the timestamps BEFORE setting i_update_core,
  3117. * so if we clear i_update_core after they set it we
  3118. * are guaranteed to see their updates to the timestamps.
  3119. * I believe that this depends on strongly ordered memory
  3120. * semantics, but we have that. We use the SYNCHRONIZE
  3121. * macro to make sure that the compiler does not reorder
  3122. * the i_update_core access below the data copy below.
  3123. */
  3124. ip->i_update_core = 0;
  3125. SYNCHRONIZE();
  3126. /*
  3127. * Make sure to get the latest atime from the Linux inode.
  3128. */
  3129. xfs_synchronize_atime(ip);
  3130. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3131. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3132. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3133. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3134. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3135. goto corrupt_out;
  3136. }
  3137. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3138. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3139. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3140. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3141. ip->i_ino, ip, ip->i_d.di_magic);
  3142. goto corrupt_out;
  3143. }
  3144. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3145. if (XFS_TEST_ERROR(
  3146. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3147. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3148. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3149. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3150. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3151. ip->i_ino, ip);
  3152. goto corrupt_out;
  3153. }
  3154. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3155. if (XFS_TEST_ERROR(
  3156. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3157. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3158. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3159. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3160. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3161. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3162. ip->i_ino, ip);
  3163. goto corrupt_out;
  3164. }
  3165. }
  3166. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3167. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3168. XFS_RANDOM_IFLUSH_5)) {
  3169. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3170. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3171. ip->i_ino,
  3172. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3173. ip->i_d.di_nblocks,
  3174. ip);
  3175. goto corrupt_out;
  3176. }
  3177. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3178. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3179. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3180. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3181. ip->i_ino, ip->i_d.di_forkoff, ip);
  3182. goto corrupt_out;
  3183. }
  3184. /*
  3185. * bump the flush iteration count, used to detect flushes which
  3186. * postdate a log record during recovery.
  3187. */
  3188. ip->i_d.di_flushiter++;
  3189. /*
  3190. * Copy the dirty parts of the inode into the on-disk
  3191. * inode. We always copy out the core of the inode,
  3192. * because if the inode is dirty at all the core must
  3193. * be.
  3194. */
  3195. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3196. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3197. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3198. ip->i_d.di_flushiter = 0;
  3199. /*
  3200. * If this is really an old format inode and the superblock version
  3201. * has not been updated to support only new format inodes, then
  3202. * convert back to the old inode format. If the superblock version
  3203. * has been updated, then make the conversion permanent.
  3204. */
  3205. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3206. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3207. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3208. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3209. /*
  3210. * Convert it back.
  3211. */
  3212. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3213. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3214. } else {
  3215. /*
  3216. * The superblock version has already been bumped,
  3217. * so just make the conversion to the new inode
  3218. * format permanent.
  3219. */
  3220. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3221. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3222. ip->i_d.di_onlink = 0;
  3223. dip->di_core.di_onlink = 0;
  3224. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3225. memset(&(dip->di_core.di_pad[0]), 0,
  3226. sizeof(dip->di_core.di_pad));
  3227. ASSERT(ip->i_d.di_projid == 0);
  3228. }
  3229. }
  3230. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3231. goto corrupt_out;
  3232. }
  3233. if (XFS_IFORK_Q(ip)) {
  3234. /*
  3235. * The only error from xfs_iflush_fork is on the data fork.
  3236. */
  3237. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3238. }
  3239. xfs_inobp_check(mp, bp);
  3240. /*
  3241. * We've recorded everything logged in the inode, so we'd
  3242. * like to clear the ilf_fields bits so we don't log and
  3243. * flush things unnecessarily. However, we can't stop
  3244. * logging all this information until the data we've copied
  3245. * into the disk buffer is written to disk. If we did we might
  3246. * overwrite the copy of the inode in the log with all the
  3247. * data after re-logging only part of it, and in the face of
  3248. * a crash we wouldn't have all the data we need to recover.
  3249. *
  3250. * What we do is move the bits to the ili_last_fields field.
  3251. * When logging the inode, these bits are moved back to the
  3252. * ilf_fields field. In the xfs_iflush_done() routine we
  3253. * clear ili_last_fields, since we know that the information
  3254. * those bits represent is permanently on disk. As long as
  3255. * the flush completes before the inode is logged again, then
  3256. * both ilf_fields and ili_last_fields will be cleared.
  3257. *
  3258. * We can play with the ilf_fields bits here, because the inode
  3259. * lock must be held exclusively in order to set bits there
  3260. * and the flush lock protects the ili_last_fields bits.
  3261. * Set ili_logged so the flush done
  3262. * routine can tell whether or not to look in the AIL.
  3263. * Also, store the current LSN of the inode so that we can tell
  3264. * whether the item has moved in the AIL from xfs_iflush_done().
  3265. * In order to read the lsn we need the AIL lock, because
  3266. * it is a 64 bit value that cannot be read atomically.
  3267. */
  3268. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3269. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3270. iip->ili_format.ilf_fields = 0;
  3271. iip->ili_logged = 1;
  3272. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3273. AIL_LOCK(mp,s);
  3274. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3275. AIL_UNLOCK(mp, s);
  3276. /*
  3277. * Attach the function xfs_iflush_done to the inode's
  3278. * buffer. This will remove the inode from the AIL
  3279. * and unlock the inode's flush lock when the inode is
  3280. * completely written to disk.
  3281. */
  3282. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3283. xfs_iflush_done, (xfs_log_item_t *)iip);
  3284. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3285. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3286. } else {
  3287. /*
  3288. * We're flushing an inode which is not in the AIL and has
  3289. * not been logged but has i_update_core set. For this
  3290. * case we can use a B_DELWRI flush and immediately drop
  3291. * the inode flush lock because we can avoid the whole
  3292. * AIL state thing. It's OK to drop the flush lock now,
  3293. * because we've already locked the buffer and to do anything
  3294. * you really need both.
  3295. */
  3296. if (iip != NULL) {
  3297. ASSERT(iip->ili_logged == 0);
  3298. ASSERT(iip->ili_last_fields == 0);
  3299. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3300. }
  3301. xfs_ifunlock(ip);
  3302. }
  3303. return 0;
  3304. corrupt_out:
  3305. return XFS_ERROR(EFSCORRUPTED);
  3306. }
  3307. /*
  3308. * Flush all inactive inodes in mp.
  3309. */
  3310. void
  3311. xfs_iflush_all(
  3312. xfs_mount_t *mp)
  3313. {
  3314. xfs_inode_t *ip;
  3315. bhv_vnode_t *vp;
  3316. again:
  3317. XFS_MOUNT_ILOCK(mp);
  3318. ip = mp->m_inodes;
  3319. if (ip == NULL)
  3320. goto out;
  3321. do {
  3322. /* Make sure we skip markers inserted by sync */
  3323. if (ip->i_mount == NULL) {
  3324. ip = ip->i_mnext;
  3325. continue;
  3326. }
  3327. vp = XFS_ITOV_NULL(ip);
  3328. if (!vp) {
  3329. XFS_MOUNT_IUNLOCK(mp);
  3330. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3331. goto again;
  3332. }
  3333. ASSERT(vn_count(vp) == 0);
  3334. ip = ip->i_mnext;
  3335. } while (ip != mp->m_inodes);
  3336. out:
  3337. XFS_MOUNT_IUNLOCK(mp);
  3338. }
  3339. /*
  3340. * xfs_iaccess: check accessibility of inode for mode.
  3341. */
  3342. int
  3343. xfs_iaccess(
  3344. xfs_inode_t *ip,
  3345. mode_t mode,
  3346. cred_t *cr)
  3347. {
  3348. int error;
  3349. mode_t orgmode = mode;
  3350. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3351. if (mode & S_IWUSR) {
  3352. umode_t imode = inode->i_mode;
  3353. if (IS_RDONLY(inode) &&
  3354. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3355. return XFS_ERROR(EROFS);
  3356. if (IS_IMMUTABLE(inode))
  3357. return XFS_ERROR(EACCES);
  3358. }
  3359. /*
  3360. * If there's an Access Control List it's used instead of
  3361. * the mode bits.
  3362. */
  3363. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3364. return error ? XFS_ERROR(error) : 0;
  3365. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3366. mode >>= 3;
  3367. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3368. mode >>= 3;
  3369. }
  3370. /*
  3371. * If the DACs are ok we don't need any capability check.
  3372. */
  3373. if ((ip->i_d.di_mode & mode) == mode)
  3374. return 0;
  3375. /*
  3376. * Read/write DACs are always overridable.
  3377. * Executable DACs are overridable if at least one exec bit is set.
  3378. */
  3379. if (!(orgmode & S_IXUSR) ||
  3380. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3381. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3382. return 0;
  3383. if ((orgmode == S_IRUSR) ||
  3384. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3385. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3386. return 0;
  3387. #ifdef NOISE
  3388. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3389. #endif /* NOISE */
  3390. return XFS_ERROR(EACCES);
  3391. }
  3392. return XFS_ERROR(EACCES);
  3393. }
  3394. /*
  3395. * xfs_iroundup: round up argument to next power of two
  3396. */
  3397. uint
  3398. xfs_iroundup(
  3399. uint v)
  3400. {
  3401. int i;
  3402. uint m;
  3403. if ((v & (v - 1)) == 0)
  3404. return v;
  3405. ASSERT((v & 0x80000000) == 0);
  3406. if ((v & (v + 1)) == 0)
  3407. return v + 1;
  3408. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3409. if (v & m)
  3410. continue;
  3411. v |= m;
  3412. if ((v & (v + 1)) == 0)
  3413. return v + 1;
  3414. }
  3415. ASSERT(0);
  3416. return( 0 );
  3417. }
  3418. #ifdef XFS_ILOCK_TRACE
  3419. ktrace_t *xfs_ilock_trace_buf;
  3420. void
  3421. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3422. {
  3423. ktrace_enter(ip->i_lock_trace,
  3424. (void *)ip,
  3425. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3426. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3427. (void *)ra, /* caller of ilock */
  3428. (void *)(unsigned long)current_cpu(),
  3429. (void *)(unsigned long)current_pid(),
  3430. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3431. }
  3432. #endif
  3433. /*
  3434. * Return a pointer to the extent record at file index idx.
  3435. */
  3436. xfs_bmbt_rec_t *
  3437. xfs_iext_get_ext(
  3438. xfs_ifork_t *ifp, /* inode fork pointer */
  3439. xfs_extnum_t idx) /* index of target extent */
  3440. {
  3441. ASSERT(idx >= 0);
  3442. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3443. return ifp->if_u1.if_ext_irec->er_extbuf;
  3444. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3445. xfs_ext_irec_t *erp; /* irec pointer */
  3446. int erp_idx = 0; /* irec index */
  3447. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3448. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3449. return &erp->er_extbuf[page_idx];
  3450. } else if (ifp->if_bytes) {
  3451. return &ifp->if_u1.if_extents[idx];
  3452. } else {
  3453. return NULL;
  3454. }
  3455. }
  3456. /*
  3457. * Insert new item(s) into the extent records for incore inode
  3458. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3459. */
  3460. void
  3461. xfs_iext_insert(
  3462. xfs_ifork_t *ifp, /* inode fork pointer */
  3463. xfs_extnum_t idx, /* starting index of new items */
  3464. xfs_extnum_t count, /* number of inserted items */
  3465. xfs_bmbt_irec_t *new) /* items to insert */
  3466. {
  3467. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3468. xfs_extnum_t i; /* extent record index */
  3469. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3470. xfs_iext_add(ifp, idx, count);
  3471. for (i = idx; i < idx + count; i++, new++) {
  3472. ep = xfs_iext_get_ext(ifp, i);
  3473. xfs_bmbt_set_all(ep, new);
  3474. }
  3475. }
  3476. /*
  3477. * This is called when the amount of space required for incore file
  3478. * extents needs to be increased. The ext_diff parameter stores the
  3479. * number of new extents being added and the idx parameter contains
  3480. * the extent index where the new extents will be added. If the new
  3481. * extents are being appended, then we just need to (re)allocate and
  3482. * initialize the space. Otherwise, if the new extents are being
  3483. * inserted into the middle of the existing entries, a bit more work
  3484. * is required to make room for the new extents to be inserted. The
  3485. * caller is responsible for filling in the new extent entries upon
  3486. * return.
  3487. */
  3488. void
  3489. xfs_iext_add(
  3490. xfs_ifork_t *ifp, /* inode fork pointer */
  3491. xfs_extnum_t idx, /* index to begin adding exts */
  3492. int ext_diff) /* number of extents to add */
  3493. {
  3494. int byte_diff; /* new bytes being added */
  3495. int new_size; /* size of extents after adding */
  3496. xfs_extnum_t nextents; /* number of extents in file */
  3497. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3498. ASSERT((idx >= 0) && (idx <= nextents));
  3499. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3500. new_size = ifp->if_bytes + byte_diff;
  3501. /*
  3502. * If the new number of extents (nextents + ext_diff)
  3503. * fits inside the inode, then continue to use the inline
  3504. * extent buffer.
  3505. */
  3506. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3507. if (idx < nextents) {
  3508. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3509. &ifp->if_u2.if_inline_ext[idx],
  3510. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3511. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3512. }
  3513. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3514. ifp->if_real_bytes = 0;
  3515. ifp->if_lastex = nextents + ext_diff;
  3516. }
  3517. /*
  3518. * Otherwise use a linear (direct) extent list.
  3519. * If the extents are currently inside the inode,
  3520. * xfs_iext_realloc_direct will switch us from
  3521. * inline to direct extent allocation mode.
  3522. */
  3523. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3524. xfs_iext_realloc_direct(ifp, new_size);
  3525. if (idx < nextents) {
  3526. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3527. &ifp->if_u1.if_extents[idx],
  3528. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3529. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3530. }
  3531. }
  3532. /* Indirection array */
  3533. else {
  3534. xfs_ext_irec_t *erp;
  3535. int erp_idx = 0;
  3536. int page_idx = idx;
  3537. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3538. if (ifp->if_flags & XFS_IFEXTIREC) {
  3539. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3540. } else {
  3541. xfs_iext_irec_init(ifp);
  3542. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3543. erp = ifp->if_u1.if_ext_irec;
  3544. }
  3545. /* Extents fit in target extent page */
  3546. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3547. if (page_idx < erp->er_extcount) {
  3548. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3549. &erp->er_extbuf[page_idx],
  3550. (erp->er_extcount - page_idx) *
  3551. sizeof(xfs_bmbt_rec_t));
  3552. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3553. }
  3554. erp->er_extcount += ext_diff;
  3555. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3556. }
  3557. /* Insert a new extent page */
  3558. else if (erp) {
  3559. xfs_iext_add_indirect_multi(ifp,
  3560. erp_idx, page_idx, ext_diff);
  3561. }
  3562. /*
  3563. * If extent(s) are being appended to the last page in
  3564. * the indirection array and the new extent(s) don't fit
  3565. * in the page, then erp is NULL and erp_idx is set to
  3566. * the next index needed in the indirection array.
  3567. */
  3568. else {
  3569. int count = ext_diff;
  3570. while (count) {
  3571. erp = xfs_iext_irec_new(ifp, erp_idx);
  3572. erp->er_extcount = count;
  3573. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3574. if (count) {
  3575. erp_idx++;
  3576. }
  3577. }
  3578. }
  3579. }
  3580. ifp->if_bytes = new_size;
  3581. }
  3582. /*
  3583. * This is called when incore extents are being added to the indirection
  3584. * array and the new extents do not fit in the target extent list. The
  3585. * erp_idx parameter contains the irec index for the target extent list
  3586. * in the indirection array, and the idx parameter contains the extent
  3587. * index within the list. The number of extents being added is stored
  3588. * in the count parameter.
  3589. *
  3590. * |-------| |-------|
  3591. * | | | | idx - number of extents before idx
  3592. * | idx | | count |
  3593. * | | | | count - number of extents being inserted at idx
  3594. * |-------| |-------|
  3595. * | count | | nex2 | nex2 - number of extents after idx + count
  3596. * |-------| |-------|
  3597. */
  3598. void
  3599. xfs_iext_add_indirect_multi(
  3600. xfs_ifork_t *ifp, /* inode fork pointer */
  3601. int erp_idx, /* target extent irec index */
  3602. xfs_extnum_t idx, /* index within target list */
  3603. int count) /* new extents being added */
  3604. {
  3605. int byte_diff; /* new bytes being added */
  3606. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3607. xfs_extnum_t ext_diff; /* number of extents to add */
  3608. xfs_extnum_t ext_cnt; /* new extents still needed */
  3609. xfs_extnum_t nex2; /* extents after idx + count */
  3610. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3611. int nlists; /* number of irec's (lists) */
  3612. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3613. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3614. nex2 = erp->er_extcount - idx;
  3615. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3616. /*
  3617. * Save second part of target extent list
  3618. * (all extents past */
  3619. if (nex2) {
  3620. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3621. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3622. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3623. erp->er_extcount -= nex2;
  3624. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3625. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3626. }
  3627. /*
  3628. * Add the new extents to the end of the target
  3629. * list, then allocate new irec record(s) and
  3630. * extent buffer(s) as needed to store the rest
  3631. * of the new extents.
  3632. */
  3633. ext_cnt = count;
  3634. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3635. if (ext_diff) {
  3636. erp->er_extcount += ext_diff;
  3637. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3638. ext_cnt -= ext_diff;
  3639. }
  3640. while (ext_cnt) {
  3641. erp_idx++;
  3642. erp = xfs_iext_irec_new(ifp, erp_idx);
  3643. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3644. erp->er_extcount = ext_diff;
  3645. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3646. ext_cnt -= ext_diff;
  3647. }
  3648. /* Add nex2 extents back to indirection array */
  3649. if (nex2) {
  3650. xfs_extnum_t ext_avail;
  3651. int i;
  3652. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3653. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3654. i = 0;
  3655. /*
  3656. * If nex2 extents fit in the current page, append
  3657. * nex2_ep after the new extents.
  3658. */
  3659. if (nex2 <= ext_avail) {
  3660. i = erp->er_extcount;
  3661. }
  3662. /*
  3663. * Otherwise, check if space is available in the
  3664. * next page.
  3665. */
  3666. else if ((erp_idx < nlists - 1) &&
  3667. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3668. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3669. erp_idx++;
  3670. erp++;
  3671. /* Create a hole for nex2 extents */
  3672. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3673. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3674. }
  3675. /*
  3676. * Final choice, create a new extent page for
  3677. * nex2 extents.
  3678. */
  3679. else {
  3680. erp_idx++;
  3681. erp = xfs_iext_irec_new(ifp, erp_idx);
  3682. }
  3683. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3684. kmem_free(nex2_ep, byte_diff);
  3685. erp->er_extcount += nex2;
  3686. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3687. }
  3688. }
  3689. /*
  3690. * This is called when the amount of space required for incore file
  3691. * extents needs to be decreased. The ext_diff parameter stores the
  3692. * number of extents to be removed and the idx parameter contains
  3693. * the extent index where the extents will be removed from.
  3694. *
  3695. * If the amount of space needed has decreased below the linear
  3696. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3697. * extent array. Otherwise, use kmem_realloc() to adjust the
  3698. * size to what is needed.
  3699. */
  3700. void
  3701. xfs_iext_remove(
  3702. xfs_ifork_t *ifp, /* inode fork pointer */
  3703. xfs_extnum_t idx, /* index to begin removing exts */
  3704. int ext_diff) /* number of extents to remove */
  3705. {
  3706. xfs_extnum_t nextents; /* number of extents in file */
  3707. int new_size; /* size of extents after removal */
  3708. ASSERT(ext_diff > 0);
  3709. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3710. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3711. if (new_size == 0) {
  3712. xfs_iext_destroy(ifp);
  3713. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3714. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3715. } else if (ifp->if_real_bytes) {
  3716. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3717. } else {
  3718. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3719. }
  3720. ifp->if_bytes = new_size;
  3721. }
  3722. /*
  3723. * This removes ext_diff extents from the inline buffer, beginning
  3724. * at extent index idx.
  3725. */
  3726. void
  3727. xfs_iext_remove_inline(
  3728. xfs_ifork_t *ifp, /* inode fork pointer */
  3729. xfs_extnum_t idx, /* index to begin removing exts */
  3730. int ext_diff) /* number of extents to remove */
  3731. {
  3732. int nextents; /* number of extents in file */
  3733. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3734. ASSERT(idx < XFS_INLINE_EXTS);
  3735. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3736. ASSERT(((nextents - ext_diff) > 0) &&
  3737. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3738. if (idx + ext_diff < nextents) {
  3739. memmove(&ifp->if_u2.if_inline_ext[idx],
  3740. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3741. (nextents - (idx + ext_diff)) *
  3742. sizeof(xfs_bmbt_rec_t));
  3743. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3744. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3745. } else {
  3746. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3747. ext_diff * sizeof(xfs_bmbt_rec_t));
  3748. }
  3749. }
  3750. /*
  3751. * This removes ext_diff extents from a linear (direct) extent list,
  3752. * beginning at extent index idx. If the extents are being removed
  3753. * from the end of the list (ie. truncate) then we just need to re-
  3754. * allocate the list to remove the extra space. Otherwise, if the
  3755. * extents are being removed from the middle of the existing extent
  3756. * entries, then we first need to move the extent records beginning
  3757. * at idx + ext_diff up in the list to overwrite the records being
  3758. * removed, then remove the extra space via kmem_realloc.
  3759. */
  3760. void
  3761. xfs_iext_remove_direct(
  3762. xfs_ifork_t *ifp, /* inode fork pointer */
  3763. xfs_extnum_t idx, /* index to begin removing exts */
  3764. int ext_diff) /* number of extents to remove */
  3765. {
  3766. xfs_extnum_t nextents; /* number of extents in file */
  3767. int new_size; /* size of extents after removal */
  3768. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3769. new_size = ifp->if_bytes -
  3770. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3771. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3772. if (new_size == 0) {
  3773. xfs_iext_destroy(ifp);
  3774. return;
  3775. }
  3776. /* Move extents up in the list (if needed) */
  3777. if (idx + ext_diff < nextents) {
  3778. memmove(&ifp->if_u1.if_extents[idx],
  3779. &ifp->if_u1.if_extents[idx + ext_diff],
  3780. (nextents - (idx + ext_diff)) *
  3781. sizeof(xfs_bmbt_rec_t));
  3782. }
  3783. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3784. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3785. /*
  3786. * Reallocate the direct extent list. If the extents
  3787. * will fit inside the inode then xfs_iext_realloc_direct
  3788. * will switch from direct to inline extent allocation
  3789. * mode for us.
  3790. */
  3791. xfs_iext_realloc_direct(ifp, new_size);
  3792. ifp->if_bytes = new_size;
  3793. }
  3794. /*
  3795. * This is called when incore extents are being removed from the
  3796. * indirection array and the extents being removed span multiple extent
  3797. * buffers. The idx parameter contains the file extent index where we
  3798. * want to begin removing extents, and the count parameter contains
  3799. * how many extents need to be removed.
  3800. *
  3801. * |-------| |-------|
  3802. * | nex1 | | | nex1 - number of extents before idx
  3803. * |-------| | count |
  3804. * | | | | count - number of extents being removed at idx
  3805. * | count | |-------|
  3806. * | | | nex2 | nex2 - number of extents after idx + count
  3807. * |-------| |-------|
  3808. */
  3809. void
  3810. xfs_iext_remove_indirect(
  3811. xfs_ifork_t *ifp, /* inode fork pointer */
  3812. xfs_extnum_t idx, /* index to begin removing extents */
  3813. int count) /* number of extents to remove */
  3814. {
  3815. xfs_ext_irec_t *erp; /* indirection array pointer */
  3816. int erp_idx = 0; /* indirection array index */
  3817. xfs_extnum_t ext_cnt; /* extents left to remove */
  3818. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3819. xfs_extnum_t nex1; /* number of extents before idx */
  3820. xfs_extnum_t nex2; /* extents after idx + count */
  3821. int nlists; /* entries in indirection array */
  3822. int page_idx = idx; /* index in target extent list */
  3823. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3824. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3825. ASSERT(erp != NULL);
  3826. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3827. nex1 = page_idx;
  3828. ext_cnt = count;
  3829. while (ext_cnt) {
  3830. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3831. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3832. /*
  3833. * Check for deletion of entire list;
  3834. * xfs_iext_irec_remove() updates extent offsets.
  3835. */
  3836. if (ext_diff == erp->er_extcount) {
  3837. xfs_iext_irec_remove(ifp, erp_idx);
  3838. ext_cnt -= ext_diff;
  3839. nex1 = 0;
  3840. if (ext_cnt) {
  3841. ASSERT(erp_idx < ifp->if_real_bytes /
  3842. XFS_IEXT_BUFSZ);
  3843. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3844. nex1 = 0;
  3845. continue;
  3846. } else {
  3847. break;
  3848. }
  3849. }
  3850. /* Move extents up (if needed) */
  3851. if (nex2) {
  3852. memmove(&erp->er_extbuf[nex1],
  3853. &erp->er_extbuf[nex1 + ext_diff],
  3854. nex2 * sizeof(xfs_bmbt_rec_t));
  3855. }
  3856. /* Zero out rest of page */
  3857. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3858. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3859. /* Update remaining counters */
  3860. erp->er_extcount -= ext_diff;
  3861. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3862. ext_cnt -= ext_diff;
  3863. nex1 = 0;
  3864. erp_idx++;
  3865. erp++;
  3866. }
  3867. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3868. xfs_iext_irec_compact(ifp);
  3869. }
  3870. /*
  3871. * Create, destroy, or resize a linear (direct) block of extents.
  3872. */
  3873. void
  3874. xfs_iext_realloc_direct(
  3875. xfs_ifork_t *ifp, /* inode fork pointer */
  3876. int new_size) /* new size of extents */
  3877. {
  3878. int rnew_size; /* real new size of extents */
  3879. rnew_size = new_size;
  3880. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3881. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3882. (new_size != ifp->if_real_bytes)));
  3883. /* Free extent records */
  3884. if (new_size == 0) {
  3885. xfs_iext_destroy(ifp);
  3886. }
  3887. /* Resize direct extent list and zero any new bytes */
  3888. else if (ifp->if_real_bytes) {
  3889. /* Check if extents will fit inside the inode */
  3890. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3891. xfs_iext_direct_to_inline(ifp, new_size /
  3892. (uint)sizeof(xfs_bmbt_rec_t));
  3893. ifp->if_bytes = new_size;
  3894. return;
  3895. }
  3896. if (!is_power_of_2(new_size)){
  3897. rnew_size = xfs_iroundup(new_size);
  3898. }
  3899. if (rnew_size != ifp->if_real_bytes) {
  3900. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3901. kmem_realloc(ifp->if_u1.if_extents,
  3902. rnew_size,
  3903. ifp->if_real_bytes,
  3904. KM_SLEEP);
  3905. }
  3906. if (rnew_size > ifp->if_real_bytes) {
  3907. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3908. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3909. rnew_size - ifp->if_real_bytes);
  3910. }
  3911. }
  3912. /*
  3913. * Switch from the inline extent buffer to a direct
  3914. * extent list. Be sure to include the inline extent
  3915. * bytes in new_size.
  3916. */
  3917. else {
  3918. new_size += ifp->if_bytes;
  3919. if (!is_power_of_2(new_size)) {
  3920. rnew_size = xfs_iroundup(new_size);
  3921. }
  3922. xfs_iext_inline_to_direct(ifp, rnew_size);
  3923. }
  3924. ifp->if_real_bytes = rnew_size;
  3925. ifp->if_bytes = new_size;
  3926. }
  3927. /*
  3928. * Switch from linear (direct) extent records to inline buffer.
  3929. */
  3930. void
  3931. xfs_iext_direct_to_inline(
  3932. xfs_ifork_t *ifp, /* inode fork pointer */
  3933. xfs_extnum_t nextents) /* number of extents in file */
  3934. {
  3935. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3936. ASSERT(nextents <= XFS_INLINE_EXTS);
  3937. /*
  3938. * The inline buffer was zeroed when we switched
  3939. * from inline to direct extent allocation mode,
  3940. * so we don't need to clear it here.
  3941. */
  3942. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3943. nextents * sizeof(xfs_bmbt_rec_t));
  3944. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3945. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3946. ifp->if_real_bytes = 0;
  3947. }
  3948. /*
  3949. * Switch from inline buffer to linear (direct) extent records.
  3950. * new_size should already be rounded up to the next power of 2
  3951. * by the caller (when appropriate), so use new_size as it is.
  3952. * However, since new_size may be rounded up, we can't update
  3953. * if_bytes here. It is the caller's responsibility to update
  3954. * if_bytes upon return.
  3955. */
  3956. void
  3957. xfs_iext_inline_to_direct(
  3958. xfs_ifork_t *ifp, /* inode fork pointer */
  3959. int new_size) /* number of extents in file */
  3960. {
  3961. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3962. kmem_alloc(new_size, KM_SLEEP);
  3963. memset(ifp->if_u1.if_extents, 0, new_size);
  3964. if (ifp->if_bytes) {
  3965. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3966. ifp->if_bytes);
  3967. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3968. sizeof(xfs_bmbt_rec_t));
  3969. }
  3970. ifp->if_real_bytes = new_size;
  3971. }
  3972. /*
  3973. * Resize an extent indirection array to new_size bytes.
  3974. */
  3975. void
  3976. xfs_iext_realloc_indirect(
  3977. xfs_ifork_t *ifp, /* inode fork pointer */
  3978. int new_size) /* new indirection array size */
  3979. {
  3980. int nlists; /* number of irec's (ex lists) */
  3981. int size; /* current indirection array size */
  3982. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3983. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3984. size = nlists * sizeof(xfs_ext_irec_t);
  3985. ASSERT(ifp->if_real_bytes);
  3986. ASSERT((new_size >= 0) && (new_size != size));
  3987. if (new_size == 0) {
  3988. xfs_iext_destroy(ifp);
  3989. } else {
  3990. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3991. kmem_realloc(ifp->if_u1.if_ext_irec,
  3992. new_size, size, KM_SLEEP);
  3993. }
  3994. }
  3995. /*
  3996. * Switch from indirection array to linear (direct) extent allocations.
  3997. */
  3998. void
  3999. xfs_iext_indirect_to_direct(
  4000. xfs_ifork_t *ifp) /* inode fork pointer */
  4001. {
  4002. xfs_bmbt_rec_t *ep; /* extent record pointer */
  4003. xfs_extnum_t nextents; /* number of extents in file */
  4004. int size; /* size of file extents */
  4005. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4006. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4007. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4008. size = nextents * sizeof(xfs_bmbt_rec_t);
  4009. xfs_iext_irec_compact_full(ifp);
  4010. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  4011. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  4012. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  4013. ifp->if_flags &= ~XFS_IFEXTIREC;
  4014. ifp->if_u1.if_extents = ep;
  4015. ifp->if_bytes = size;
  4016. if (nextents < XFS_LINEAR_EXTS) {
  4017. xfs_iext_realloc_direct(ifp, size);
  4018. }
  4019. }
  4020. /*
  4021. * Free incore file extents.
  4022. */
  4023. void
  4024. xfs_iext_destroy(
  4025. xfs_ifork_t *ifp) /* inode fork pointer */
  4026. {
  4027. if (ifp->if_flags & XFS_IFEXTIREC) {
  4028. int erp_idx;
  4029. int nlists;
  4030. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4031. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4032. xfs_iext_irec_remove(ifp, erp_idx);
  4033. }
  4034. ifp->if_flags &= ~XFS_IFEXTIREC;
  4035. } else if (ifp->if_real_bytes) {
  4036. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4037. } else if (ifp->if_bytes) {
  4038. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4039. sizeof(xfs_bmbt_rec_t));
  4040. }
  4041. ifp->if_u1.if_extents = NULL;
  4042. ifp->if_real_bytes = 0;
  4043. ifp->if_bytes = 0;
  4044. }
  4045. /*
  4046. * Return a pointer to the extent record for file system block bno.
  4047. */
  4048. xfs_bmbt_rec_t * /* pointer to found extent record */
  4049. xfs_iext_bno_to_ext(
  4050. xfs_ifork_t *ifp, /* inode fork pointer */
  4051. xfs_fileoff_t bno, /* block number to search for */
  4052. xfs_extnum_t *idxp) /* index of target extent */
  4053. {
  4054. xfs_bmbt_rec_t *base; /* pointer to first extent */
  4055. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4056. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  4057. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4058. int high; /* upper boundary in search */
  4059. xfs_extnum_t idx = 0; /* index of target extent */
  4060. int low; /* lower boundary in search */
  4061. xfs_extnum_t nextents; /* number of file extents */
  4062. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4063. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4064. if (nextents == 0) {
  4065. *idxp = 0;
  4066. return NULL;
  4067. }
  4068. low = 0;
  4069. if (ifp->if_flags & XFS_IFEXTIREC) {
  4070. /* Find target extent list */
  4071. int erp_idx = 0;
  4072. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4073. base = erp->er_extbuf;
  4074. high = erp->er_extcount - 1;
  4075. } else {
  4076. base = ifp->if_u1.if_extents;
  4077. high = nextents - 1;
  4078. }
  4079. /* Binary search extent records */
  4080. while (low <= high) {
  4081. idx = (low + high) >> 1;
  4082. ep = base + idx;
  4083. startoff = xfs_bmbt_get_startoff(ep);
  4084. blockcount = xfs_bmbt_get_blockcount(ep);
  4085. if (bno < startoff) {
  4086. high = idx - 1;
  4087. } else if (bno >= startoff + blockcount) {
  4088. low = idx + 1;
  4089. } else {
  4090. /* Convert back to file-based extent index */
  4091. if (ifp->if_flags & XFS_IFEXTIREC) {
  4092. idx += erp->er_extoff;
  4093. }
  4094. *idxp = idx;
  4095. return ep;
  4096. }
  4097. }
  4098. /* Convert back to file-based extent index */
  4099. if (ifp->if_flags & XFS_IFEXTIREC) {
  4100. idx += erp->er_extoff;
  4101. }
  4102. if (bno >= startoff + blockcount) {
  4103. if (++idx == nextents) {
  4104. ep = NULL;
  4105. } else {
  4106. ep = xfs_iext_get_ext(ifp, idx);
  4107. }
  4108. }
  4109. *idxp = idx;
  4110. return ep;
  4111. }
  4112. /*
  4113. * Return a pointer to the indirection array entry containing the
  4114. * extent record for filesystem block bno. Store the index of the
  4115. * target irec in *erp_idxp.
  4116. */
  4117. xfs_ext_irec_t * /* pointer to found extent record */
  4118. xfs_iext_bno_to_irec(
  4119. xfs_ifork_t *ifp, /* inode fork pointer */
  4120. xfs_fileoff_t bno, /* block number to search for */
  4121. int *erp_idxp) /* irec index of target ext list */
  4122. {
  4123. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4124. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4125. int erp_idx; /* indirection array index */
  4126. int nlists; /* number of extent irec's (lists) */
  4127. int high; /* binary search upper limit */
  4128. int low; /* binary search lower limit */
  4129. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4130. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4131. erp_idx = 0;
  4132. low = 0;
  4133. high = nlists - 1;
  4134. while (low <= high) {
  4135. erp_idx = (low + high) >> 1;
  4136. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4137. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4138. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4139. high = erp_idx - 1;
  4140. } else if (erp_next && bno >=
  4141. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4142. low = erp_idx + 1;
  4143. } else {
  4144. break;
  4145. }
  4146. }
  4147. *erp_idxp = erp_idx;
  4148. return erp;
  4149. }
  4150. /*
  4151. * Return a pointer to the indirection array entry containing the
  4152. * extent record at file extent index *idxp. Store the index of the
  4153. * target irec in *erp_idxp and store the page index of the target
  4154. * extent record in *idxp.
  4155. */
  4156. xfs_ext_irec_t *
  4157. xfs_iext_idx_to_irec(
  4158. xfs_ifork_t *ifp, /* inode fork pointer */
  4159. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4160. int *erp_idxp, /* pointer to target irec */
  4161. int realloc) /* new bytes were just added */
  4162. {
  4163. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4164. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4165. int erp_idx; /* indirection array index */
  4166. int nlists; /* number of irec's (ex lists) */
  4167. int high; /* binary search upper limit */
  4168. int low; /* binary search lower limit */
  4169. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4170. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4171. ASSERT(page_idx >= 0 && page_idx <=
  4172. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4173. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4174. erp_idx = 0;
  4175. low = 0;
  4176. high = nlists - 1;
  4177. /* Binary search extent irec's */
  4178. while (low <= high) {
  4179. erp_idx = (low + high) >> 1;
  4180. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4181. prev = erp_idx > 0 ? erp - 1 : NULL;
  4182. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4183. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4184. high = erp_idx - 1;
  4185. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4186. (page_idx == erp->er_extoff + erp->er_extcount &&
  4187. !realloc)) {
  4188. low = erp_idx + 1;
  4189. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4190. erp->er_extcount == XFS_LINEAR_EXTS) {
  4191. ASSERT(realloc);
  4192. page_idx = 0;
  4193. erp_idx++;
  4194. erp = erp_idx < nlists ? erp + 1 : NULL;
  4195. break;
  4196. } else {
  4197. page_idx -= erp->er_extoff;
  4198. break;
  4199. }
  4200. }
  4201. *idxp = page_idx;
  4202. *erp_idxp = erp_idx;
  4203. return(erp);
  4204. }
  4205. /*
  4206. * Allocate and initialize an indirection array once the space needed
  4207. * for incore extents increases above XFS_IEXT_BUFSZ.
  4208. */
  4209. void
  4210. xfs_iext_irec_init(
  4211. xfs_ifork_t *ifp) /* inode fork pointer */
  4212. {
  4213. xfs_ext_irec_t *erp; /* indirection array pointer */
  4214. xfs_extnum_t nextents; /* number of extents in file */
  4215. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4216. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4217. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4218. erp = (xfs_ext_irec_t *)
  4219. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4220. if (nextents == 0) {
  4221. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4222. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4223. } else if (!ifp->if_real_bytes) {
  4224. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4225. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4226. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4227. }
  4228. erp->er_extbuf = ifp->if_u1.if_extents;
  4229. erp->er_extcount = nextents;
  4230. erp->er_extoff = 0;
  4231. ifp->if_flags |= XFS_IFEXTIREC;
  4232. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4233. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4234. ifp->if_u1.if_ext_irec = erp;
  4235. return;
  4236. }
  4237. /*
  4238. * Allocate and initialize a new entry in the indirection array.
  4239. */
  4240. xfs_ext_irec_t *
  4241. xfs_iext_irec_new(
  4242. xfs_ifork_t *ifp, /* inode fork pointer */
  4243. int erp_idx) /* index for new irec */
  4244. {
  4245. xfs_ext_irec_t *erp; /* indirection array pointer */
  4246. int i; /* loop counter */
  4247. int nlists; /* number of irec's (ex lists) */
  4248. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4249. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4250. /* Resize indirection array */
  4251. xfs_iext_realloc_indirect(ifp, ++nlists *
  4252. sizeof(xfs_ext_irec_t));
  4253. /*
  4254. * Move records down in the array so the
  4255. * new page can use erp_idx.
  4256. */
  4257. erp = ifp->if_u1.if_ext_irec;
  4258. for (i = nlists - 1; i > erp_idx; i--) {
  4259. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4260. }
  4261. ASSERT(i == erp_idx);
  4262. /* Initialize new extent record */
  4263. erp = ifp->if_u1.if_ext_irec;
  4264. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4265. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4266. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4267. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4268. erp[erp_idx].er_extcount = 0;
  4269. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4270. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4271. return (&erp[erp_idx]);
  4272. }
  4273. /*
  4274. * Remove a record from the indirection array.
  4275. */
  4276. void
  4277. xfs_iext_irec_remove(
  4278. xfs_ifork_t *ifp, /* inode fork pointer */
  4279. int erp_idx) /* irec index to remove */
  4280. {
  4281. xfs_ext_irec_t *erp; /* indirection array pointer */
  4282. int i; /* loop counter */
  4283. int nlists; /* number of irec's (ex lists) */
  4284. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4285. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4286. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4287. if (erp->er_extbuf) {
  4288. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4289. -erp->er_extcount);
  4290. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4291. }
  4292. /* Compact extent records */
  4293. erp = ifp->if_u1.if_ext_irec;
  4294. for (i = erp_idx; i < nlists - 1; i++) {
  4295. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4296. }
  4297. /*
  4298. * Manually free the last extent record from the indirection
  4299. * array. A call to xfs_iext_realloc_indirect() with a size
  4300. * of zero would result in a call to xfs_iext_destroy() which
  4301. * would in turn call this function again, creating a nasty
  4302. * infinite loop.
  4303. */
  4304. if (--nlists) {
  4305. xfs_iext_realloc_indirect(ifp,
  4306. nlists * sizeof(xfs_ext_irec_t));
  4307. } else {
  4308. kmem_free(ifp->if_u1.if_ext_irec,
  4309. sizeof(xfs_ext_irec_t));
  4310. }
  4311. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4312. }
  4313. /*
  4314. * This is called to clean up large amounts of unused memory allocated
  4315. * by the indirection array. Before compacting anything though, verify
  4316. * that the indirection array is still needed and switch back to the
  4317. * linear extent list (or even the inline buffer) if possible. The
  4318. * compaction policy is as follows:
  4319. *
  4320. * Full Compaction: Extents fit into a single page (or inline buffer)
  4321. * Full Compaction: Extents occupy less than 10% of allocated space
  4322. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4323. * No Compaction: Extents occupy at least 50% of allocated space
  4324. */
  4325. void
  4326. xfs_iext_irec_compact(
  4327. xfs_ifork_t *ifp) /* inode fork pointer */
  4328. {
  4329. xfs_extnum_t nextents; /* number of extents in file */
  4330. int nlists; /* number of irec's (ex lists) */
  4331. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4332. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4333. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4334. if (nextents == 0) {
  4335. xfs_iext_destroy(ifp);
  4336. } else if (nextents <= XFS_INLINE_EXTS) {
  4337. xfs_iext_indirect_to_direct(ifp);
  4338. xfs_iext_direct_to_inline(ifp, nextents);
  4339. } else if (nextents <= XFS_LINEAR_EXTS) {
  4340. xfs_iext_indirect_to_direct(ifp);
  4341. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4342. xfs_iext_irec_compact_full(ifp);
  4343. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4344. xfs_iext_irec_compact_pages(ifp);
  4345. }
  4346. }
  4347. /*
  4348. * Combine extents from neighboring extent pages.
  4349. */
  4350. void
  4351. xfs_iext_irec_compact_pages(
  4352. xfs_ifork_t *ifp) /* inode fork pointer */
  4353. {
  4354. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4355. int erp_idx = 0; /* indirection array index */
  4356. int nlists; /* number of irec's (ex lists) */
  4357. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4358. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4359. while (erp_idx < nlists - 1) {
  4360. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4361. erp_next = erp + 1;
  4362. if (erp_next->er_extcount <=
  4363. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4364. memmove(&erp->er_extbuf[erp->er_extcount],
  4365. erp_next->er_extbuf, erp_next->er_extcount *
  4366. sizeof(xfs_bmbt_rec_t));
  4367. erp->er_extcount += erp_next->er_extcount;
  4368. /*
  4369. * Free page before removing extent record
  4370. * so er_extoffs don't get modified in
  4371. * xfs_iext_irec_remove.
  4372. */
  4373. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4374. erp_next->er_extbuf = NULL;
  4375. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4376. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4377. } else {
  4378. erp_idx++;
  4379. }
  4380. }
  4381. }
  4382. /*
  4383. * Fully compact the extent records managed by the indirection array.
  4384. */
  4385. void
  4386. xfs_iext_irec_compact_full(
  4387. xfs_ifork_t *ifp) /* inode fork pointer */
  4388. {
  4389. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4390. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4391. int erp_idx = 0; /* extent irec index */
  4392. int ext_avail; /* empty entries in ex list */
  4393. int ext_diff; /* number of exts to add */
  4394. int nlists; /* number of irec's (ex lists) */
  4395. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4396. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4397. erp = ifp->if_u1.if_ext_irec;
  4398. ep = &erp->er_extbuf[erp->er_extcount];
  4399. erp_next = erp + 1;
  4400. ep_next = erp_next->er_extbuf;
  4401. while (erp_idx < nlists - 1) {
  4402. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4403. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4404. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4405. erp->er_extcount += ext_diff;
  4406. erp_next->er_extcount -= ext_diff;
  4407. /* Remove next page */
  4408. if (erp_next->er_extcount == 0) {
  4409. /*
  4410. * Free page before removing extent record
  4411. * so er_extoffs don't get modified in
  4412. * xfs_iext_irec_remove.
  4413. */
  4414. kmem_free(erp_next->er_extbuf,
  4415. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4416. erp_next->er_extbuf = NULL;
  4417. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4418. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4419. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4420. /* Update next page */
  4421. } else {
  4422. /* Move rest of page up to become next new page */
  4423. memmove(erp_next->er_extbuf, ep_next,
  4424. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4425. ep_next = erp_next->er_extbuf;
  4426. memset(&ep_next[erp_next->er_extcount], 0,
  4427. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4428. sizeof(xfs_bmbt_rec_t));
  4429. }
  4430. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4431. erp_idx++;
  4432. if (erp_idx < nlists)
  4433. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4434. else
  4435. break;
  4436. }
  4437. ep = &erp->er_extbuf[erp->er_extcount];
  4438. erp_next = erp + 1;
  4439. ep_next = erp_next->er_extbuf;
  4440. }
  4441. }
  4442. /*
  4443. * This is called to update the er_extoff field in the indirection
  4444. * array when extents have been added or removed from one of the
  4445. * extent lists. erp_idx contains the irec index to begin updating
  4446. * at and ext_diff contains the number of extents that were added
  4447. * or removed.
  4448. */
  4449. void
  4450. xfs_iext_irec_update_extoffs(
  4451. xfs_ifork_t *ifp, /* inode fork pointer */
  4452. int erp_idx, /* irec index to update */
  4453. int ext_diff) /* number of new extents */
  4454. {
  4455. int i; /* loop counter */
  4456. int nlists; /* number of irec's (ex lists */
  4457. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4458. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4459. for (i = erp_idx; i < nlists; i++) {
  4460. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4461. }
  4462. }