sched.c 250 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. int overloaded;
  416. struct plist_head pushable_tasks;
  417. #endif
  418. int rt_throttled;
  419. u64 rt_time;
  420. u64 rt_runtime;
  421. /* Nests inside the rq lock: */
  422. spinlock_t rt_runtime_lock;
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. unsigned long rt_nr_boosted;
  425. struct rq *rq;
  426. struct list_head leaf_rt_rq_list;
  427. struct task_group *tg;
  428. struct sched_rt_entity *rt_se;
  429. #endif
  430. };
  431. #ifdef CONFIG_SMP
  432. /*
  433. * We add the notion of a root-domain which will be used to define per-domain
  434. * variables. Each exclusive cpuset essentially defines an island domain by
  435. * fully partitioning the member cpus from any other cpuset. Whenever a new
  436. * exclusive cpuset is created, we also create and attach a new root-domain
  437. * object.
  438. *
  439. */
  440. struct root_domain {
  441. atomic_t refcount;
  442. cpumask_var_t span;
  443. cpumask_var_t online;
  444. /*
  445. * The "RT overload" flag: it gets set if a CPU has more than
  446. * one runnable RT task.
  447. */
  448. cpumask_var_t rto_mask;
  449. atomic_t rto_count;
  450. #ifdef CONFIG_SMP
  451. struct cpupri cpupri;
  452. #endif
  453. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  454. /*
  455. * Preferred wake up cpu nominated by sched_mc balance that will be
  456. * used when most cpus are idle in the system indicating overall very
  457. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  458. */
  459. unsigned int sched_mc_preferred_wakeup_cpu;
  460. #endif
  461. };
  462. /*
  463. * By default the system creates a single root-domain with all cpus as
  464. * members (mimicking the global state we have today).
  465. */
  466. static struct root_domain def_root_domain;
  467. #endif
  468. /*
  469. * This is the main, per-CPU runqueue data structure.
  470. *
  471. * Locking rule: those places that want to lock multiple runqueues
  472. * (such as the load balancing or the thread migration code), lock
  473. * acquire operations must be ordered by ascending &runqueue.
  474. */
  475. struct rq {
  476. /* runqueue lock: */
  477. spinlock_t lock;
  478. /*
  479. * nr_running and cpu_load should be in the same cacheline because
  480. * remote CPUs use both these fields when doing load calculation.
  481. */
  482. unsigned long nr_running;
  483. #define CPU_LOAD_IDX_MAX 5
  484. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  485. #ifdef CONFIG_NO_HZ
  486. unsigned long last_tick_seen;
  487. unsigned char in_nohz_recently;
  488. #endif
  489. /* capture load from *all* tasks on this cpu: */
  490. struct load_weight load;
  491. unsigned long nr_load_updates;
  492. u64 nr_switches;
  493. struct cfs_rq cfs;
  494. struct rt_rq rt;
  495. #ifdef CONFIG_FAIR_GROUP_SCHED
  496. /* list of leaf cfs_rq on this cpu: */
  497. struct list_head leaf_cfs_rq_list;
  498. #endif
  499. #ifdef CONFIG_RT_GROUP_SCHED
  500. struct list_head leaf_rt_rq_list;
  501. #endif
  502. /*
  503. * This is part of a global counter where only the total sum
  504. * over all CPUs matters. A task can increase this counter on
  505. * one CPU and if it got migrated afterwards it may decrease
  506. * it on another CPU. Always updated under the runqueue lock:
  507. */
  508. unsigned long nr_uninterruptible;
  509. struct task_struct *curr, *idle;
  510. unsigned long next_balance;
  511. struct mm_struct *prev_mm;
  512. u64 clock;
  513. atomic_t nr_iowait;
  514. #ifdef CONFIG_SMP
  515. struct root_domain *rd;
  516. struct sched_domain *sd;
  517. unsigned char idle_at_tick;
  518. /* For active balancing */
  519. int active_balance;
  520. int push_cpu;
  521. /* cpu of this runqueue: */
  522. int cpu;
  523. int online;
  524. unsigned long avg_load_per_task;
  525. struct task_struct *migration_thread;
  526. struct list_head migration_queue;
  527. #endif
  528. #ifdef CONFIG_SCHED_HRTICK
  529. #ifdef CONFIG_SMP
  530. int hrtick_csd_pending;
  531. struct call_single_data hrtick_csd;
  532. #endif
  533. struct hrtimer hrtick_timer;
  534. #endif
  535. #ifdef CONFIG_SCHEDSTATS
  536. /* latency stats */
  537. struct sched_info rq_sched_info;
  538. unsigned long long rq_cpu_time;
  539. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  540. /* sys_sched_yield() stats */
  541. unsigned int yld_count;
  542. /* schedule() stats */
  543. unsigned int sched_switch;
  544. unsigned int sched_count;
  545. unsigned int sched_goidle;
  546. /* try_to_wake_up() stats */
  547. unsigned int ttwu_count;
  548. unsigned int ttwu_local;
  549. /* BKL stats */
  550. unsigned int bkl_count;
  551. #endif
  552. };
  553. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  554. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  555. {
  556. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  557. }
  558. static inline int cpu_of(struct rq *rq)
  559. {
  560. #ifdef CONFIG_SMP
  561. return rq->cpu;
  562. #else
  563. return 0;
  564. #endif
  565. }
  566. /*
  567. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  568. * See detach_destroy_domains: synchronize_sched for details.
  569. *
  570. * The domain tree of any CPU may only be accessed from within
  571. * preempt-disabled sections.
  572. */
  573. #define for_each_domain(cpu, __sd) \
  574. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  575. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  576. #define this_rq() (&__get_cpu_var(runqueues))
  577. #define task_rq(p) cpu_rq(task_cpu(p))
  578. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  579. static inline void update_rq_clock(struct rq *rq)
  580. {
  581. rq->clock = sched_clock_cpu(cpu_of(rq));
  582. }
  583. /*
  584. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  585. */
  586. #ifdef CONFIG_SCHED_DEBUG
  587. # define const_debug __read_mostly
  588. #else
  589. # define const_debug static const
  590. #endif
  591. /**
  592. * runqueue_is_locked
  593. *
  594. * Returns true if the current cpu runqueue is locked.
  595. * This interface allows printk to be called with the runqueue lock
  596. * held and know whether or not it is OK to wake up the klogd.
  597. */
  598. int runqueue_is_locked(void)
  599. {
  600. int cpu = get_cpu();
  601. struct rq *rq = cpu_rq(cpu);
  602. int ret;
  603. ret = spin_is_locked(&rq->lock);
  604. put_cpu();
  605. return ret;
  606. }
  607. /*
  608. * Debugging: various feature bits
  609. */
  610. #define SCHED_FEAT(name, enabled) \
  611. __SCHED_FEAT_##name ,
  612. enum {
  613. #include "sched_features.h"
  614. };
  615. #undef SCHED_FEAT
  616. #define SCHED_FEAT(name, enabled) \
  617. (1UL << __SCHED_FEAT_##name) * enabled |
  618. const_debug unsigned int sysctl_sched_features =
  619. #include "sched_features.h"
  620. 0;
  621. #undef SCHED_FEAT
  622. #ifdef CONFIG_SCHED_DEBUG
  623. #define SCHED_FEAT(name, enabled) \
  624. #name ,
  625. static __read_mostly char *sched_feat_names[] = {
  626. #include "sched_features.h"
  627. NULL
  628. };
  629. #undef SCHED_FEAT
  630. static int sched_feat_show(struct seq_file *m, void *v)
  631. {
  632. int i;
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. if (!(sysctl_sched_features & (1UL << i)))
  635. seq_puts(m, "NO_");
  636. seq_printf(m, "%s ", sched_feat_names[i]);
  637. }
  638. seq_puts(m, "\n");
  639. return 0;
  640. }
  641. static ssize_t
  642. sched_feat_write(struct file *filp, const char __user *ubuf,
  643. size_t cnt, loff_t *ppos)
  644. {
  645. char buf[64];
  646. char *cmp = buf;
  647. int neg = 0;
  648. int i;
  649. if (cnt > 63)
  650. cnt = 63;
  651. if (copy_from_user(&buf, ubuf, cnt))
  652. return -EFAULT;
  653. buf[cnt] = 0;
  654. if (strncmp(buf, "NO_", 3) == 0) {
  655. neg = 1;
  656. cmp += 3;
  657. }
  658. for (i = 0; sched_feat_names[i]; i++) {
  659. int len = strlen(sched_feat_names[i]);
  660. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  661. if (neg)
  662. sysctl_sched_features &= ~(1UL << i);
  663. else
  664. sysctl_sched_features |= (1UL << i);
  665. break;
  666. }
  667. }
  668. if (!sched_feat_names[i])
  669. return -EINVAL;
  670. filp->f_pos += cnt;
  671. return cnt;
  672. }
  673. static int sched_feat_open(struct inode *inode, struct file *filp)
  674. {
  675. return single_open(filp, sched_feat_show, NULL);
  676. }
  677. static struct file_operations sched_feat_fops = {
  678. .open = sched_feat_open,
  679. .write = sched_feat_write,
  680. .read = seq_read,
  681. .llseek = seq_lseek,
  682. .release = single_release,
  683. };
  684. static __init int sched_init_debug(void)
  685. {
  686. debugfs_create_file("sched_features", 0644, NULL, NULL,
  687. &sched_feat_fops);
  688. return 0;
  689. }
  690. late_initcall(sched_init_debug);
  691. #endif
  692. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  693. /*
  694. * Number of tasks to iterate in a single balance run.
  695. * Limited because this is done with IRQs disabled.
  696. */
  697. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  698. /*
  699. * ratelimit for updating the group shares.
  700. * default: 0.25ms
  701. */
  702. unsigned int sysctl_sched_shares_ratelimit = 250000;
  703. /*
  704. * Inject some fuzzyness into changing the per-cpu group shares
  705. * this avoids remote rq-locks at the expense of fairness.
  706. * default: 4
  707. */
  708. unsigned int sysctl_sched_shares_thresh = 4;
  709. /*
  710. * period over which we measure -rt task cpu usage in us.
  711. * default: 1s
  712. */
  713. unsigned int sysctl_sched_rt_period = 1000000;
  714. static __read_mostly int scheduler_running;
  715. /*
  716. * part of the period that we allow rt tasks to run in us.
  717. * default: 0.95s
  718. */
  719. int sysctl_sched_rt_runtime = 950000;
  720. static inline u64 global_rt_period(void)
  721. {
  722. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  723. }
  724. static inline u64 global_rt_runtime(void)
  725. {
  726. if (sysctl_sched_rt_runtime < 0)
  727. return RUNTIME_INF;
  728. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  729. }
  730. #ifndef prepare_arch_switch
  731. # define prepare_arch_switch(next) do { } while (0)
  732. #endif
  733. #ifndef finish_arch_switch
  734. # define finish_arch_switch(prev) do { } while (0)
  735. #endif
  736. static inline int task_current(struct rq *rq, struct task_struct *p)
  737. {
  738. return rq->curr == p;
  739. }
  740. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. return task_current(rq, p);
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. }
  748. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  749. {
  750. #ifdef CONFIG_DEBUG_SPINLOCK
  751. /* this is a valid case when another task releases the spinlock */
  752. rq->lock.owner = current;
  753. #endif
  754. /*
  755. * If we are tracking spinlock dependencies then we have to
  756. * fix up the runqueue lock - which gets 'carried over' from
  757. * prev into current:
  758. */
  759. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  760. spin_unlock_irq(&rq->lock);
  761. }
  762. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  763. static inline int task_running(struct rq *rq, struct task_struct *p)
  764. {
  765. #ifdef CONFIG_SMP
  766. return p->oncpu;
  767. #else
  768. return task_current(rq, p);
  769. #endif
  770. }
  771. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * We can optimise this out completely for !SMP, because the
  776. * SMP rebalancing from interrupt is the only thing that cares
  777. * here.
  778. */
  779. next->oncpu = 1;
  780. #endif
  781. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  782. spin_unlock_irq(&rq->lock);
  783. #else
  784. spin_unlock(&rq->lock);
  785. #endif
  786. }
  787. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  788. {
  789. #ifdef CONFIG_SMP
  790. /*
  791. * After ->oncpu is cleared, the task can be moved to a different CPU.
  792. * We must ensure this doesn't happen until the switch is completely
  793. * finished.
  794. */
  795. smp_wmb();
  796. prev->oncpu = 0;
  797. #endif
  798. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  799. local_irq_enable();
  800. #endif
  801. }
  802. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  803. /*
  804. * __task_rq_lock - lock the runqueue a given task resides on.
  805. * Must be called interrupts disabled.
  806. */
  807. static inline struct rq *__task_rq_lock(struct task_struct *p)
  808. __acquires(rq->lock)
  809. {
  810. for (;;) {
  811. struct rq *rq = task_rq(p);
  812. spin_lock(&rq->lock);
  813. if (likely(rq == task_rq(p)))
  814. return rq;
  815. spin_unlock(&rq->lock);
  816. }
  817. }
  818. /*
  819. * task_rq_lock - lock the runqueue a given task resides on and disable
  820. * interrupts. Note the ordering: we can safely lookup the task_rq without
  821. * explicitly disabling preemption.
  822. */
  823. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. for (;;) {
  828. local_irq_save(*flags);
  829. rq = task_rq(p);
  830. spin_lock(&rq->lock);
  831. if (likely(rq == task_rq(p)))
  832. return rq;
  833. spin_unlock_irqrestore(&rq->lock, *flags);
  834. }
  835. }
  836. void task_rq_unlock_wait(struct task_struct *p)
  837. {
  838. struct rq *rq = task_rq(p);
  839. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  840. spin_unlock_wait(&rq->lock);
  841. }
  842. static void __task_rq_unlock(struct rq *rq)
  843. __releases(rq->lock)
  844. {
  845. spin_unlock(&rq->lock);
  846. }
  847. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  848. __releases(rq->lock)
  849. {
  850. spin_unlock_irqrestore(&rq->lock, *flags);
  851. }
  852. /*
  853. * this_rq_lock - lock this runqueue and disable interrupts.
  854. */
  855. static struct rq *this_rq_lock(void)
  856. __acquires(rq->lock)
  857. {
  858. struct rq *rq;
  859. local_irq_disable();
  860. rq = this_rq();
  861. spin_lock(&rq->lock);
  862. return rq;
  863. }
  864. #ifdef CONFIG_SCHED_HRTICK
  865. /*
  866. * Use HR-timers to deliver accurate preemption points.
  867. *
  868. * Its all a bit involved since we cannot program an hrt while holding the
  869. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  870. * reschedule event.
  871. *
  872. * When we get rescheduled we reprogram the hrtick_timer outside of the
  873. * rq->lock.
  874. */
  875. /*
  876. * Use hrtick when:
  877. * - enabled by features
  878. * - hrtimer is actually high res
  879. */
  880. static inline int hrtick_enabled(struct rq *rq)
  881. {
  882. if (!sched_feat(HRTICK))
  883. return 0;
  884. if (!cpu_active(cpu_of(rq)))
  885. return 0;
  886. return hrtimer_is_hres_active(&rq->hrtick_timer);
  887. }
  888. static void hrtick_clear(struct rq *rq)
  889. {
  890. if (hrtimer_active(&rq->hrtick_timer))
  891. hrtimer_cancel(&rq->hrtick_timer);
  892. }
  893. /*
  894. * High-resolution timer tick.
  895. * Runs from hardirq context with interrupts disabled.
  896. */
  897. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  898. {
  899. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  900. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  901. spin_lock(&rq->lock);
  902. update_rq_clock(rq);
  903. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  904. spin_unlock(&rq->lock);
  905. return HRTIMER_NORESTART;
  906. }
  907. #ifdef CONFIG_SMP
  908. /*
  909. * called from hardirq (IPI) context
  910. */
  911. static void __hrtick_start(void *arg)
  912. {
  913. struct rq *rq = arg;
  914. spin_lock(&rq->lock);
  915. hrtimer_restart(&rq->hrtick_timer);
  916. rq->hrtick_csd_pending = 0;
  917. spin_unlock(&rq->lock);
  918. }
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. struct hrtimer *timer = &rq->hrtick_timer;
  927. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  928. hrtimer_set_expires(timer, time);
  929. if (rq == this_rq()) {
  930. hrtimer_restart(timer);
  931. } else if (!rq->hrtick_csd_pending) {
  932. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  933. rq->hrtick_csd_pending = 1;
  934. }
  935. }
  936. static int
  937. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  938. {
  939. int cpu = (int)(long)hcpu;
  940. switch (action) {
  941. case CPU_UP_CANCELED:
  942. case CPU_UP_CANCELED_FROZEN:
  943. case CPU_DOWN_PREPARE:
  944. case CPU_DOWN_PREPARE_FROZEN:
  945. case CPU_DEAD:
  946. case CPU_DEAD_FROZEN:
  947. hrtick_clear(cpu_rq(cpu));
  948. return NOTIFY_OK;
  949. }
  950. return NOTIFY_DONE;
  951. }
  952. static __init void init_hrtick(void)
  953. {
  954. hotcpu_notifier(hotplug_hrtick, 0);
  955. }
  956. #else
  957. /*
  958. * Called to set the hrtick timer state.
  959. *
  960. * called with rq->lock held and irqs disabled
  961. */
  962. static void hrtick_start(struct rq *rq, u64 delay)
  963. {
  964. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  965. HRTIMER_MODE_REL, 0);
  966. }
  967. static inline void init_hrtick(void)
  968. {
  969. }
  970. #endif /* CONFIG_SMP */
  971. static void init_rq_hrtick(struct rq *rq)
  972. {
  973. #ifdef CONFIG_SMP
  974. rq->hrtick_csd_pending = 0;
  975. rq->hrtick_csd.flags = 0;
  976. rq->hrtick_csd.func = __hrtick_start;
  977. rq->hrtick_csd.info = rq;
  978. #endif
  979. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  980. rq->hrtick_timer.function = hrtick;
  981. }
  982. #else /* CONFIG_SCHED_HRTICK */
  983. static inline void hrtick_clear(struct rq *rq)
  984. {
  985. }
  986. static inline void init_rq_hrtick(struct rq *rq)
  987. {
  988. }
  989. static inline void init_hrtick(void)
  990. {
  991. }
  992. #endif /* CONFIG_SCHED_HRTICK */
  993. /*
  994. * resched_task - mark a task 'to be rescheduled now'.
  995. *
  996. * On UP this means the setting of the need_resched flag, on SMP it
  997. * might also involve a cross-CPU call to trigger the scheduler on
  998. * the target CPU.
  999. */
  1000. #ifdef CONFIG_SMP
  1001. #ifndef tsk_is_polling
  1002. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1003. #endif
  1004. static void resched_task(struct task_struct *p)
  1005. {
  1006. int cpu;
  1007. assert_spin_locked(&task_rq(p)->lock);
  1008. if (test_tsk_need_resched(p))
  1009. return;
  1010. set_tsk_need_resched(p);
  1011. cpu = task_cpu(p);
  1012. if (cpu == smp_processor_id())
  1013. return;
  1014. /* NEED_RESCHED must be visible before we test polling */
  1015. smp_mb();
  1016. if (!tsk_is_polling(p))
  1017. smp_send_reschedule(cpu);
  1018. }
  1019. static void resched_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. unsigned long flags;
  1023. if (!spin_trylock_irqsave(&rq->lock, flags))
  1024. return;
  1025. resched_task(cpu_curr(cpu));
  1026. spin_unlock_irqrestore(&rq->lock, flags);
  1027. }
  1028. #ifdef CONFIG_NO_HZ
  1029. /*
  1030. * When add_timer_on() enqueues a timer into the timer wheel of an
  1031. * idle CPU then this timer might expire before the next timer event
  1032. * which is scheduled to wake up that CPU. In case of a completely
  1033. * idle system the next event might even be infinite time into the
  1034. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1035. * leaves the inner idle loop so the newly added timer is taken into
  1036. * account when the CPU goes back to idle and evaluates the timer
  1037. * wheel for the next timer event.
  1038. */
  1039. void wake_up_idle_cpu(int cpu)
  1040. {
  1041. struct rq *rq = cpu_rq(cpu);
  1042. if (cpu == smp_processor_id())
  1043. return;
  1044. /*
  1045. * This is safe, as this function is called with the timer
  1046. * wheel base lock of (cpu) held. When the CPU is on the way
  1047. * to idle and has not yet set rq->curr to idle then it will
  1048. * be serialized on the timer wheel base lock and take the new
  1049. * timer into account automatically.
  1050. */
  1051. if (rq->curr != rq->idle)
  1052. return;
  1053. /*
  1054. * We can set TIF_RESCHED on the idle task of the other CPU
  1055. * lockless. The worst case is that the other CPU runs the
  1056. * idle task through an additional NOOP schedule()
  1057. */
  1058. set_tsk_need_resched(rq->idle);
  1059. /* NEED_RESCHED must be visible before we test polling */
  1060. smp_mb();
  1061. if (!tsk_is_polling(rq->idle))
  1062. smp_send_reschedule(cpu);
  1063. }
  1064. #endif /* CONFIG_NO_HZ */
  1065. #else /* !CONFIG_SMP */
  1066. static void resched_task(struct task_struct *p)
  1067. {
  1068. assert_spin_locked(&task_rq(p)->lock);
  1069. set_tsk_need_resched(p);
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. static unsigned long source_load(int cpu, int type);
  1252. static unsigned long target_load(int cpu, int type);
  1253. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1254. static unsigned long cpu_avg_load_per_task(int cpu)
  1255. {
  1256. struct rq *rq = cpu_rq(cpu);
  1257. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1258. if (nr_running)
  1259. rq->avg_load_per_task = rq->load.weight / nr_running;
  1260. else
  1261. rq->avg_load_per_task = 0;
  1262. return rq->avg_load_per_task;
  1263. }
  1264. #ifdef CONFIG_FAIR_GROUP_SCHED
  1265. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1266. /*
  1267. * Calculate and set the cpu's group shares.
  1268. */
  1269. static void
  1270. update_group_shares_cpu(struct task_group *tg, int cpu,
  1271. unsigned long sd_shares, unsigned long sd_rq_weight)
  1272. {
  1273. unsigned long shares;
  1274. unsigned long rq_weight;
  1275. if (!tg->se[cpu])
  1276. return;
  1277. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1278. /*
  1279. * \Sum shares * rq_weight
  1280. * shares = -----------------------
  1281. * \Sum rq_weight
  1282. *
  1283. */
  1284. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1285. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1286. if (abs(shares - tg->se[cpu]->load.weight) >
  1287. sysctl_sched_shares_thresh) {
  1288. struct rq *rq = cpu_rq(cpu);
  1289. unsigned long flags;
  1290. spin_lock_irqsave(&rq->lock, flags);
  1291. tg->cfs_rq[cpu]->shares = shares;
  1292. __set_se_shares(tg->se[cpu], shares);
  1293. spin_unlock_irqrestore(&rq->lock, flags);
  1294. }
  1295. }
  1296. /*
  1297. * Re-compute the task group their per cpu shares over the given domain.
  1298. * This needs to be done in a bottom-up fashion because the rq weight of a
  1299. * parent group depends on the shares of its child groups.
  1300. */
  1301. static int tg_shares_up(struct task_group *tg, void *data)
  1302. {
  1303. unsigned long weight, rq_weight = 0;
  1304. unsigned long shares = 0;
  1305. struct sched_domain *sd = data;
  1306. int i;
  1307. for_each_cpu(i, sched_domain_span(sd)) {
  1308. /*
  1309. * If there are currently no tasks on the cpu pretend there
  1310. * is one of average load so that when a new task gets to
  1311. * run here it will not get delayed by group starvation.
  1312. */
  1313. weight = tg->cfs_rq[i]->load.weight;
  1314. if (!weight)
  1315. weight = NICE_0_LOAD;
  1316. tg->cfs_rq[i]->rq_weight = weight;
  1317. rq_weight += weight;
  1318. shares += tg->cfs_rq[i]->shares;
  1319. }
  1320. if ((!shares && rq_weight) || shares > tg->shares)
  1321. shares = tg->shares;
  1322. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1323. shares = tg->shares;
  1324. for_each_cpu(i, sched_domain_span(sd))
  1325. update_group_shares_cpu(tg, i, shares, rq_weight);
  1326. return 0;
  1327. }
  1328. /*
  1329. * Compute the cpu's hierarchical load factor for each task group.
  1330. * This needs to be done in a top-down fashion because the load of a child
  1331. * group is a fraction of its parents load.
  1332. */
  1333. static int tg_load_down(struct task_group *tg, void *data)
  1334. {
  1335. unsigned long load;
  1336. long cpu = (long)data;
  1337. if (!tg->parent) {
  1338. load = cpu_rq(cpu)->load.weight;
  1339. } else {
  1340. load = tg->parent->cfs_rq[cpu]->h_load;
  1341. load *= tg->cfs_rq[cpu]->shares;
  1342. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1343. }
  1344. tg->cfs_rq[cpu]->h_load = load;
  1345. return 0;
  1346. }
  1347. static void update_shares(struct sched_domain *sd)
  1348. {
  1349. u64 now = cpu_clock(raw_smp_processor_id());
  1350. s64 elapsed = now - sd->last_update;
  1351. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1352. sd->last_update = now;
  1353. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1354. }
  1355. }
  1356. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1357. {
  1358. spin_unlock(&rq->lock);
  1359. update_shares(sd);
  1360. spin_lock(&rq->lock);
  1361. }
  1362. static void update_h_load(long cpu)
  1363. {
  1364. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1365. }
  1366. #else
  1367. static inline void update_shares(struct sched_domain *sd)
  1368. {
  1369. }
  1370. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1371. {
  1372. }
  1373. #endif
  1374. #ifdef CONFIG_PREEMPT
  1375. /*
  1376. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1377. * way at the expense of forcing extra atomic operations in all
  1378. * invocations. This assures that the double_lock is acquired using the
  1379. * same underlying policy as the spinlock_t on this architecture, which
  1380. * reduces latency compared to the unfair variant below. However, it
  1381. * also adds more overhead and therefore may reduce throughput.
  1382. */
  1383. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1384. __releases(this_rq->lock)
  1385. __acquires(busiest->lock)
  1386. __acquires(this_rq->lock)
  1387. {
  1388. spin_unlock(&this_rq->lock);
  1389. double_rq_lock(this_rq, busiest);
  1390. return 1;
  1391. }
  1392. #else
  1393. /*
  1394. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1395. * latency by eliminating extra atomic operations when the locks are
  1396. * already in proper order on entry. This favors lower cpu-ids and will
  1397. * grant the double lock to lower cpus over higher ids under contention,
  1398. * regardless of entry order into the function.
  1399. */
  1400. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1401. __releases(this_rq->lock)
  1402. __acquires(busiest->lock)
  1403. __acquires(this_rq->lock)
  1404. {
  1405. int ret = 0;
  1406. if (unlikely(!spin_trylock(&busiest->lock))) {
  1407. if (busiest < this_rq) {
  1408. spin_unlock(&this_rq->lock);
  1409. spin_lock(&busiest->lock);
  1410. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1411. ret = 1;
  1412. } else
  1413. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1414. }
  1415. return ret;
  1416. }
  1417. #endif /* CONFIG_PREEMPT */
  1418. /*
  1419. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1420. */
  1421. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1422. {
  1423. if (unlikely(!irqs_disabled())) {
  1424. /* printk() doesn't work good under rq->lock */
  1425. spin_unlock(&this_rq->lock);
  1426. BUG_ON(1);
  1427. }
  1428. return _double_lock_balance(this_rq, busiest);
  1429. }
  1430. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1431. __releases(busiest->lock)
  1432. {
  1433. spin_unlock(&busiest->lock);
  1434. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1435. }
  1436. #endif
  1437. #ifdef CONFIG_FAIR_GROUP_SCHED
  1438. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1439. {
  1440. #ifdef CONFIG_SMP
  1441. cfs_rq->shares = shares;
  1442. #endif
  1443. }
  1444. #endif
  1445. #include "sched_stats.h"
  1446. #include "sched_idletask.c"
  1447. #include "sched_fair.c"
  1448. #include "sched_rt.c"
  1449. #ifdef CONFIG_SCHED_DEBUG
  1450. # include "sched_debug.c"
  1451. #endif
  1452. #define sched_class_highest (&rt_sched_class)
  1453. #define for_each_class(class) \
  1454. for (class = sched_class_highest; class; class = class->next)
  1455. static void inc_nr_running(struct rq *rq)
  1456. {
  1457. rq->nr_running++;
  1458. }
  1459. static void dec_nr_running(struct rq *rq)
  1460. {
  1461. rq->nr_running--;
  1462. }
  1463. static void set_load_weight(struct task_struct *p)
  1464. {
  1465. if (task_has_rt_policy(p)) {
  1466. p->se.load.weight = prio_to_weight[0] * 2;
  1467. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1468. return;
  1469. }
  1470. /*
  1471. * SCHED_IDLE tasks get minimal weight:
  1472. */
  1473. if (p->policy == SCHED_IDLE) {
  1474. p->se.load.weight = WEIGHT_IDLEPRIO;
  1475. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1476. return;
  1477. }
  1478. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1479. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1480. }
  1481. static void update_avg(u64 *avg, u64 sample)
  1482. {
  1483. s64 diff = sample - *avg;
  1484. *avg += diff >> 3;
  1485. }
  1486. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1487. {
  1488. if (wakeup)
  1489. p->se.start_runtime = p->se.sum_exec_runtime;
  1490. sched_info_queued(p);
  1491. p->sched_class->enqueue_task(rq, p, wakeup);
  1492. p->se.on_rq = 1;
  1493. }
  1494. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1495. {
  1496. if (sleep) {
  1497. if (p->se.last_wakeup) {
  1498. update_avg(&p->se.avg_overlap,
  1499. p->se.sum_exec_runtime - p->se.last_wakeup);
  1500. p->se.last_wakeup = 0;
  1501. } else {
  1502. update_avg(&p->se.avg_wakeup,
  1503. sysctl_sched_wakeup_granularity);
  1504. }
  1505. }
  1506. sched_info_dequeued(p);
  1507. p->sched_class->dequeue_task(rq, p, sleep);
  1508. p->se.on_rq = 0;
  1509. }
  1510. /*
  1511. * __normal_prio - return the priority that is based on the static prio
  1512. */
  1513. static inline int __normal_prio(struct task_struct *p)
  1514. {
  1515. return p->static_prio;
  1516. }
  1517. /*
  1518. * Calculate the expected normal priority: i.e. priority
  1519. * without taking RT-inheritance into account. Might be
  1520. * boosted by interactivity modifiers. Changes upon fork,
  1521. * setprio syscalls, and whenever the interactivity
  1522. * estimator recalculates.
  1523. */
  1524. static inline int normal_prio(struct task_struct *p)
  1525. {
  1526. int prio;
  1527. if (task_has_rt_policy(p))
  1528. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1529. else
  1530. prio = __normal_prio(p);
  1531. return prio;
  1532. }
  1533. /*
  1534. * Calculate the current priority, i.e. the priority
  1535. * taken into account by the scheduler. This value might
  1536. * be boosted by RT tasks, or might be boosted by
  1537. * interactivity modifiers. Will be RT if the task got
  1538. * RT-boosted. If not then it returns p->normal_prio.
  1539. */
  1540. static int effective_prio(struct task_struct *p)
  1541. {
  1542. p->normal_prio = normal_prio(p);
  1543. /*
  1544. * If we are RT tasks or we were boosted to RT priority,
  1545. * keep the priority unchanged. Otherwise, update priority
  1546. * to the normal priority:
  1547. */
  1548. if (!rt_prio(p->prio))
  1549. return p->normal_prio;
  1550. return p->prio;
  1551. }
  1552. /*
  1553. * activate_task - move a task to the runqueue.
  1554. */
  1555. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1556. {
  1557. if (task_contributes_to_load(p))
  1558. rq->nr_uninterruptible--;
  1559. enqueue_task(rq, p, wakeup);
  1560. inc_nr_running(rq);
  1561. }
  1562. /*
  1563. * deactivate_task - remove a task from the runqueue.
  1564. */
  1565. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1566. {
  1567. if (task_contributes_to_load(p))
  1568. rq->nr_uninterruptible++;
  1569. dequeue_task(rq, p, sleep);
  1570. dec_nr_running(rq);
  1571. }
  1572. /**
  1573. * task_curr - is this task currently executing on a CPU?
  1574. * @p: the task in question.
  1575. */
  1576. inline int task_curr(const struct task_struct *p)
  1577. {
  1578. return cpu_curr(task_cpu(p)) == p;
  1579. }
  1580. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1581. {
  1582. set_task_rq(p, cpu);
  1583. #ifdef CONFIG_SMP
  1584. /*
  1585. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1586. * successfuly executed on another CPU. We must ensure that updates of
  1587. * per-task data have been completed by this moment.
  1588. */
  1589. smp_wmb();
  1590. task_thread_info(p)->cpu = cpu;
  1591. #endif
  1592. }
  1593. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1594. const struct sched_class *prev_class,
  1595. int oldprio, int running)
  1596. {
  1597. if (prev_class != p->sched_class) {
  1598. if (prev_class->switched_from)
  1599. prev_class->switched_from(rq, p, running);
  1600. p->sched_class->switched_to(rq, p, running);
  1601. } else
  1602. p->sched_class->prio_changed(rq, p, oldprio, running);
  1603. }
  1604. #ifdef CONFIG_SMP
  1605. /* Used instead of source_load when we know the type == 0 */
  1606. static unsigned long weighted_cpuload(const int cpu)
  1607. {
  1608. return cpu_rq(cpu)->load.weight;
  1609. }
  1610. /*
  1611. * Is this task likely cache-hot:
  1612. */
  1613. static int
  1614. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1615. {
  1616. s64 delta;
  1617. /*
  1618. * Buddy candidates are cache hot:
  1619. */
  1620. if (sched_feat(CACHE_HOT_BUDDY) &&
  1621. (&p->se == cfs_rq_of(&p->se)->next ||
  1622. &p->se == cfs_rq_of(&p->se)->last))
  1623. return 1;
  1624. if (p->sched_class != &fair_sched_class)
  1625. return 0;
  1626. if (sysctl_sched_migration_cost == -1)
  1627. return 1;
  1628. if (sysctl_sched_migration_cost == 0)
  1629. return 0;
  1630. delta = now - p->se.exec_start;
  1631. return delta < (s64)sysctl_sched_migration_cost;
  1632. }
  1633. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1634. {
  1635. int old_cpu = task_cpu(p);
  1636. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1637. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1638. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1639. u64 clock_offset;
  1640. clock_offset = old_rq->clock - new_rq->clock;
  1641. trace_sched_migrate_task(p, new_cpu);
  1642. #ifdef CONFIG_SCHEDSTATS
  1643. if (p->se.wait_start)
  1644. p->se.wait_start -= clock_offset;
  1645. if (p->se.sleep_start)
  1646. p->se.sleep_start -= clock_offset;
  1647. if (p->se.block_start)
  1648. p->se.block_start -= clock_offset;
  1649. if (old_cpu != new_cpu) {
  1650. schedstat_inc(p, se.nr_migrations);
  1651. if (task_hot(p, old_rq->clock, NULL))
  1652. schedstat_inc(p, se.nr_forced2_migrations);
  1653. }
  1654. #endif
  1655. p->se.vruntime -= old_cfsrq->min_vruntime -
  1656. new_cfsrq->min_vruntime;
  1657. __set_task_cpu(p, new_cpu);
  1658. }
  1659. struct migration_req {
  1660. struct list_head list;
  1661. struct task_struct *task;
  1662. int dest_cpu;
  1663. struct completion done;
  1664. };
  1665. /*
  1666. * The task's runqueue lock must be held.
  1667. * Returns true if you have to wait for migration thread.
  1668. */
  1669. static int
  1670. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1671. {
  1672. struct rq *rq = task_rq(p);
  1673. /*
  1674. * If the task is not on a runqueue (and not running), then
  1675. * it is sufficient to simply update the task's cpu field.
  1676. */
  1677. if (!p->se.on_rq && !task_running(rq, p)) {
  1678. set_task_cpu(p, dest_cpu);
  1679. return 0;
  1680. }
  1681. init_completion(&req->done);
  1682. req->task = p;
  1683. req->dest_cpu = dest_cpu;
  1684. list_add(&req->list, &rq->migration_queue);
  1685. return 1;
  1686. }
  1687. /*
  1688. * wait_task_context_switch - wait for a thread to complete at least one
  1689. * context switch.
  1690. *
  1691. * @p must not be current.
  1692. */
  1693. void wait_task_context_switch(struct task_struct *p)
  1694. {
  1695. unsigned long nvcsw, nivcsw, flags;
  1696. int running;
  1697. struct rq *rq;
  1698. nvcsw = p->nvcsw;
  1699. nivcsw = p->nivcsw;
  1700. for (;;) {
  1701. /*
  1702. * The runqueue is assigned before the actual context
  1703. * switch. We need to take the runqueue lock.
  1704. *
  1705. * We could check initially without the lock but it is
  1706. * very likely that we need to take the lock in every
  1707. * iteration.
  1708. */
  1709. rq = task_rq_lock(p, &flags);
  1710. running = task_running(rq, p);
  1711. task_rq_unlock(rq, &flags);
  1712. if (likely(!running))
  1713. break;
  1714. /*
  1715. * The switch count is incremented before the actual
  1716. * context switch. We thus wait for two switches to be
  1717. * sure at least one completed.
  1718. */
  1719. if ((p->nvcsw - nvcsw) > 1)
  1720. break;
  1721. if ((p->nivcsw - nivcsw) > 1)
  1722. break;
  1723. cpu_relax();
  1724. }
  1725. }
  1726. /*
  1727. * wait_task_inactive - wait for a thread to unschedule.
  1728. *
  1729. * If @match_state is nonzero, it's the @p->state value just checked and
  1730. * not expected to change. If it changes, i.e. @p might have woken up,
  1731. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1732. * we return a positive number (its total switch count). If a second call
  1733. * a short while later returns the same number, the caller can be sure that
  1734. * @p has remained unscheduled the whole time.
  1735. *
  1736. * The caller must ensure that the task *will* unschedule sometime soon,
  1737. * else this function might spin for a *long* time. This function can't
  1738. * be called with interrupts off, or it may introduce deadlock with
  1739. * smp_call_function() if an IPI is sent by the same process we are
  1740. * waiting to become inactive.
  1741. */
  1742. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1743. {
  1744. unsigned long flags;
  1745. int running, on_rq;
  1746. unsigned long ncsw;
  1747. struct rq *rq;
  1748. for (;;) {
  1749. /*
  1750. * We do the initial early heuristics without holding
  1751. * any task-queue locks at all. We'll only try to get
  1752. * the runqueue lock when things look like they will
  1753. * work out!
  1754. */
  1755. rq = task_rq(p);
  1756. /*
  1757. * If the task is actively running on another CPU
  1758. * still, just relax and busy-wait without holding
  1759. * any locks.
  1760. *
  1761. * NOTE! Since we don't hold any locks, it's not
  1762. * even sure that "rq" stays as the right runqueue!
  1763. * But we don't care, since "task_running()" will
  1764. * return false if the runqueue has changed and p
  1765. * is actually now running somewhere else!
  1766. */
  1767. while (task_running(rq, p)) {
  1768. if (match_state && unlikely(p->state != match_state))
  1769. return 0;
  1770. cpu_relax();
  1771. }
  1772. /*
  1773. * Ok, time to look more closely! We need the rq
  1774. * lock now, to be *sure*. If we're wrong, we'll
  1775. * just go back and repeat.
  1776. */
  1777. rq = task_rq_lock(p, &flags);
  1778. trace_sched_wait_task(rq, p);
  1779. running = task_running(rq, p);
  1780. on_rq = p->se.on_rq;
  1781. ncsw = 0;
  1782. if (!match_state || p->state == match_state)
  1783. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1784. task_rq_unlock(rq, &flags);
  1785. /*
  1786. * If it changed from the expected state, bail out now.
  1787. */
  1788. if (unlikely(!ncsw))
  1789. break;
  1790. /*
  1791. * Was it really running after all now that we
  1792. * checked with the proper locks actually held?
  1793. *
  1794. * Oops. Go back and try again..
  1795. */
  1796. if (unlikely(running)) {
  1797. cpu_relax();
  1798. continue;
  1799. }
  1800. /*
  1801. * It's not enough that it's not actively running,
  1802. * it must be off the runqueue _entirely_, and not
  1803. * preempted!
  1804. *
  1805. * So if it was still runnable (but just not actively
  1806. * running right now), it's preempted, and we should
  1807. * yield - it could be a while.
  1808. */
  1809. if (unlikely(on_rq)) {
  1810. schedule_timeout_uninterruptible(1);
  1811. continue;
  1812. }
  1813. /*
  1814. * Ahh, all good. It wasn't running, and it wasn't
  1815. * runnable, which means that it will never become
  1816. * running in the future either. We're all done!
  1817. */
  1818. break;
  1819. }
  1820. return ncsw;
  1821. }
  1822. /***
  1823. * kick_process - kick a running thread to enter/exit the kernel
  1824. * @p: the to-be-kicked thread
  1825. *
  1826. * Cause a process which is running on another CPU to enter
  1827. * kernel-mode, without any delay. (to get signals handled.)
  1828. *
  1829. * NOTE: this function doesnt have to take the runqueue lock,
  1830. * because all it wants to ensure is that the remote task enters
  1831. * the kernel. If the IPI races and the task has been migrated
  1832. * to another CPU then no harm is done and the purpose has been
  1833. * achieved as well.
  1834. */
  1835. void kick_process(struct task_struct *p)
  1836. {
  1837. int cpu;
  1838. preempt_disable();
  1839. cpu = task_cpu(p);
  1840. if ((cpu != smp_processor_id()) && task_curr(p))
  1841. smp_send_reschedule(cpu);
  1842. preempt_enable();
  1843. }
  1844. /*
  1845. * Return a low guess at the load of a migration-source cpu weighted
  1846. * according to the scheduling class and "nice" value.
  1847. *
  1848. * We want to under-estimate the load of migration sources, to
  1849. * balance conservatively.
  1850. */
  1851. static unsigned long source_load(int cpu, int type)
  1852. {
  1853. struct rq *rq = cpu_rq(cpu);
  1854. unsigned long total = weighted_cpuload(cpu);
  1855. if (type == 0 || !sched_feat(LB_BIAS))
  1856. return total;
  1857. return min(rq->cpu_load[type-1], total);
  1858. }
  1859. /*
  1860. * Return a high guess at the load of a migration-target cpu weighted
  1861. * according to the scheduling class and "nice" value.
  1862. */
  1863. static unsigned long target_load(int cpu, int type)
  1864. {
  1865. struct rq *rq = cpu_rq(cpu);
  1866. unsigned long total = weighted_cpuload(cpu);
  1867. if (type == 0 || !sched_feat(LB_BIAS))
  1868. return total;
  1869. return max(rq->cpu_load[type-1], total);
  1870. }
  1871. /*
  1872. * find_idlest_group finds and returns the least busy CPU group within the
  1873. * domain.
  1874. */
  1875. static struct sched_group *
  1876. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1877. {
  1878. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1879. unsigned long min_load = ULONG_MAX, this_load = 0;
  1880. int load_idx = sd->forkexec_idx;
  1881. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1882. do {
  1883. unsigned long load, avg_load;
  1884. int local_group;
  1885. int i;
  1886. /* Skip over this group if it has no CPUs allowed */
  1887. if (!cpumask_intersects(sched_group_cpus(group),
  1888. &p->cpus_allowed))
  1889. continue;
  1890. local_group = cpumask_test_cpu(this_cpu,
  1891. sched_group_cpus(group));
  1892. /* Tally up the load of all CPUs in the group */
  1893. avg_load = 0;
  1894. for_each_cpu(i, sched_group_cpus(group)) {
  1895. /* Bias balancing toward cpus of our domain */
  1896. if (local_group)
  1897. load = source_load(i, load_idx);
  1898. else
  1899. load = target_load(i, load_idx);
  1900. avg_load += load;
  1901. }
  1902. /* Adjust by relative CPU power of the group */
  1903. avg_load = sg_div_cpu_power(group,
  1904. avg_load * SCHED_LOAD_SCALE);
  1905. if (local_group) {
  1906. this_load = avg_load;
  1907. this = group;
  1908. } else if (avg_load < min_load) {
  1909. min_load = avg_load;
  1910. idlest = group;
  1911. }
  1912. } while (group = group->next, group != sd->groups);
  1913. if (!idlest || 100*this_load < imbalance*min_load)
  1914. return NULL;
  1915. return idlest;
  1916. }
  1917. /*
  1918. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1919. */
  1920. static int
  1921. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1922. {
  1923. unsigned long load, min_load = ULONG_MAX;
  1924. int idlest = -1;
  1925. int i;
  1926. /* Traverse only the allowed CPUs */
  1927. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1928. load = weighted_cpuload(i);
  1929. if (load < min_load || (load == min_load && i == this_cpu)) {
  1930. min_load = load;
  1931. idlest = i;
  1932. }
  1933. }
  1934. return idlest;
  1935. }
  1936. /*
  1937. * sched_balance_self: balance the current task (running on cpu) in domains
  1938. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1939. * SD_BALANCE_EXEC.
  1940. *
  1941. * Balance, ie. select the least loaded group.
  1942. *
  1943. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1944. *
  1945. * preempt must be disabled.
  1946. */
  1947. static int sched_balance_self(int cpu, int flag)
  1948. {
  1949. struct task_struct *t = current;
  1950. struct sched_domain *tmp, *sd = NULL;
  1951. for_each_domain(cpu, tmp) {
  1952. /*
  1953. * If power savings logic is enabled for a domain, stop there.
  1954. */
  1955. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1956. break;
  1957. if (tmp->flags & flag)
  1958. sd = tmp;
  1959. }
  1960. if (sd)
  1961. update_shares(sd);
  1962. while (sd) {
  1963. struct sched_group *group;
  1964. int new_cpu, weight;
  1965. if (!(sd->flags & flag)) {
  1966. sd = sd->child;
  1967. continue;
  1968. }
  1969. group = find_idlest_group(sd, t, cpu);
  1970. if (!group) {
  1971. sd = sd->child;
  1972. continue;
  1973. }
  1974. new_cpu = find_idlest_cpu(group, t, cpu);
  1975. if (new_cpu == -1 || new_cpu == cpu) {
  1976. /* Now try balancing at a lower domain level of cpu */
  1977. sd = sd->child;
  1978. continue;
  1979. }
  1980. /* Now try balancing at a lower domain level of new_cpu */
  1981. cpu = new_cpu;
  1982. weight = cpumask_weight(sched_domain_span(sd));
  1983. sd = NULL;
  1984. for_each_domain(cpu, tmp) {
  1985. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1986. break;
  1987. if (tmp->flags & flag)
  1988. sd = tmp;
  1989. }
  1990. /* while loop will break here if sd == NULL */
  1991. }
  1992. return cpu;
  1993. }
  1994. #endif /* CONFIG_SMP */
  1995. /***
  1996. * try_to_wake_up - wake up a thread
  1997. * @p: the to-be-woken-up thread
  1998. * @state: the mask of task states that can be woken
  1999. * @sync: do a synchronous wakeup?
  2000. *
  2001. * Put it on the run-queue if it's not already there. The "current"
  2002. * thread is always on the run-queue (except when the actual
  2003. * re-schedule is in progress), and as such you're allowed to do
  2004. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2005. * runnable without the overhead of this.
  2006. *
  2007. * returns failure only if the task is already active.
  2008. */
  2009. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2010. {
  2011. int cpu, orig_cpu, this_cpu, success = 0;
  2012. unsigned long flags;
  2013. long old_state;
  2014. struct rq *rq;
  2015. if (!sched_feat(SYNC_WAKEUPS))
  2016. sync = 0;
  2017. #ifdef CONFIG_SMP
  2018. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2019. struct sched_domain *sd;
  2020. this_cpu = raw_smp_processor_id();
  2021. cpu = task_cpu(p);
  2022. for_each_domain(this_cpu, sd) {
  2023. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2024. update_shares(sd);
  2025. break;
  2026. }
  2027. }
  2028. }
  2029. #endif
  2030. smp_wmb();
  2031. rq = task_rq_lock(p, &flags);
  2032. update_rq_clock(rq);
  2033. old_state = p->state;
  2034. if (!(old_state & state))
  2035. goto out;
  2036. if (p->se.on_rq)
  2037. goto out_running;
  2038. cpu = task_cpu(p);
  2039. orig_cpu = cpu;
  2040. this_cpu = smp_processor_id();
  2041. #ifdef CONFIG_SMP
  2042. if (unlikely(task_running(rq, p)))
  2043. goto out_activate;
  2044. cpu = p->sched_class->select_task_rq(p, sync);
  2045. if (cpu != orig_cpu) {
  2046. set_task_cpu(p, cpu);
  2047. task_rq_unlock(rq, &flags);
  2048. /* might preempt at this point */
  2049. rq = task_rq_lock(p, &flags);
  2050. old_state = p->state;
  2051. if (!(old_state & state))
  2052. goto out;
  2053. if (p->se.on_rq)
  2054. goto out_running;
  2055. this_cpu = smp_processor_id();
  2056. cpu = task_cpu(p);
  2057. }
  2058. #ifdef CONFIG_SCHEDSTATS
  2059. schedstat_inc(rq, ttwu_count);
  2060. if (cpu == this_cpu)
  2061. schedstat_inc(rq, ttwu_local);
  2062. else {
  2063. struct sched_domain *sd;
  2064. for_each_domain(this_cpu, sd) {
  2065. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2066. schedstat_inc(sd, ttwu_wake_remote);
  2067. break;
  2068. }
  2069. }
  2070. }
  2071. #endif /* CONFIG_SCHEDSTATS */
  2072. out_activate:
  2073. #endif /* CONFIG_SMP */
  2074. schedstat_inc(p, se.nr_wakeups);
  2075. if (sync)
  2076. schedstat_inc(p, se.nr_wakeups_sync);
  2077. if (orig_cpu != cpu)
  2078. schedstat_inc(p, se.nr_wakeups_migrate);
  2079. if (cpu == this_cpu)
  2080. schedstat_inc(p, se.nr_wakeups_local);
  2081. else
  2082. schedstat_inc(p, se.nr_wakeups_remote);
  2083. activate_task(rq, p, 1);
  2084. success = 1;
  2085. /*
  2086. * Only attribute actual wakeups done by this task.
  2087. */
  2088. if (!in_interrupt()) {
  2089. struct sched_entity *se = &current->se;
  2090. u64 sample = se->sum_exec_runtime;
  2091. if (se->last_wakeup)
  2092. sample -= se->last_wakeup;
  2093. else
  2094. sample -= se->start_runtime;
  2095. update_avg(&se->avg_wakeup, sample);
  2096. se->last_wakeup = se->sum_exec_runtime;
  2097. }
  2098. out_running:
  2099. trace_sched_wakeup(rq, p, success);
  2100. check_preempt_curr(rq, p, sync);
  2101. p->state = TASK_RUNNING;
  2102. #ifdef CONFIG_SMP
  2103. if (p->sched_class->task_wake_up)
  2104. p->sched_class->task_wake_up(rq, p);
  2105. #endif
  2106. out:
  2107. task_rq_unlock(rq, &flags);
  2108. return success;
  2109. }
  2110. int wake_up_process(struct task_struct *p)
  2111. {
  2112. return try_to_wake_up(p, TASK_ALL, 0);
  2113. }
  2114. EXPORT_SYMBOL(wake_up_process);
  2115. int wake_up_state(struct task_struct *p, unsigned int state)
  2116. {
  2117. return try_to_wake_up(p, state, 0);
  2118. }
  2119. /*
  2120. * Perform scheduler related setup for a newly forked process p.
  2121. * p is forked by current.
  2122. *
  2123. * __sched_fork() is basic setup used by init_idle() too:
  2124. */
  2125. static void __sched_fork(struct task_struct *p)
  2126. {
  2127. p->se.exec_start = 0;
  2128. p->se.sum_exec_runtime = 0;
  2129. p->se.prev_sum_exec_runtime = 0;
  2130. p->se.last_wakeup = 0;
  2131. p->se.avg_overlap = 0;
  2132. p->se.start_runtime = 0;
  2133. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2134. #ifdef CONFIG_SCHEDSTATS
  2135. p->se.wait_start = 0;
  2136. p->se.sum_sleep_runtime = 0;
  2137. p->se.sleep_start = 0;
  2138. p->se.block_start = 0;
  2139. p->se.sleep_max = 0;
  2140. p->se.block_max = 0;
  2141. p->se.exec_max = 0;
  2142. p->se.slice_max = 0;
  2143. p->se.wait_max = 0;
  2144. #endif
  2145. INIT_LIST_HEAD(&p->rt.run_list);
  2146. p->se.on_rq = 0;
  2147. INIT_LIST_HEAD(&p->se.group_node);
  2148. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2149. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2150. #endif
  2151. /*
  2152. * We mark the process as running here, but have not actually
  2153. * inserted it onto the runqueue yet. This guarantees that
  2154. * nobody will actually run it, and a signal or other external
  2155. * event cannot wake it up and insert it on the runqueue either.
  2156. */
  2157. p->state = TASK_RUNNING;
  2158. }
  2159. /*
  2160. * fork()/clone()-time setup:
  2161. */
  2162. void sched_fork(struct task_struct *p, int clone_flags)
  2163. {
  2164. int cpu = get_cpu();
  2165. __sched_fork(p);
  2166. #ifdef CONFIG_SMP
  2167. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2168. #endif
  2169. set_task_cpu(p, cpu);
  2170. /*
  2171. * Make sure we do not leak PI boosting priority to the child:
  2172. */
  2173. p->prio = current->normal_prio;
  2174. if (!rt_prio(p->prio))
  2175. p->sched_class = &fair_sched_class;
  2176. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2177. if (likely(sched_info_on()))
  2178. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2179. #endif
  2180. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2181. p->oncpu = 0;
  2182. #endif
  2183. #ifdef CONFIG_PREEMPT
  2184. /* Want to start with kernel preemption disabled. */
  2185. task_thread_info(p)->preempt_count = 1;
  2186. #endif
  2187. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2188. put_cpu();
  2189. }
  2190. /*
  2191. * wake_up_new_task - wake up a newly created task for the first time.
  2192. *
  2193. * This function will do some initial scheduler statistics housekeeping
  2194. * that must be done for every newly created context, then puts the task
  2195. * on the runqueue and wakes it.
  2196. */
  2197. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2198. {
  2199. unsigned long flags;
  2200. struct rq *rq;
  2201. rq = task_rq_lock(p, &flags);
  2202. BUG_ON(p->state != TASK_RUNNING);
  2203. update_rq_clock(rq);
  2204. p->prio = effective_prio(p);
  2205. if (!p->sched_class->task_new || !current->se.on_rq) {
  2206. activate_task(rq, p, 0);
  2207. } else {
  2208. /*
  2209. * Let the scheduling class do new task startup
  2210. * management (if any):
  2211. */
  2212. p->sched_class->task_new(rq, p);
  2213. inc_nr_running(rq);
  2214. }
  2215. trace_sched_wakeup_new(rq, p, 1);
  2216. check_preempt_curr(rq, p, 0);
  2217. #ifdef CONFIG_SMP
  2218. if (p->sched_class->task_wake_up)
  2219. p->sched_class->task_wake_up(rq, p);
  2220. #endif
  2221. task_rq_unlock(rq, &flags);
  2222. }
  2223. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2224. /**
  2225. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2226. * @notifier: notifier struct to register
  2227. */
  2228. void preempt_notifier_register(struct preempt_notifier *notifier)
  2229. {
  2230. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2231. }
  2232. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2233. /**
  2234. * preempt_notifier_unregister - no longer interested in preemption notifications
  2235. * @notifier: notifier struct to unregister
  2236. *
  2237. * This is safe to call from within a preemption notifier.
  2238. */
  2239. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2240. {
  2241. hlist_del(&notifier->link);
  2242. }
  2243. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2244. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2245. {
  2246. struct preempt_notifier *notifier;
  2247. struct hlist_node *node;
  2248. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2249. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2250. }
  2251. static void
  2252. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2253. struct task_struct *next)
  2254. {
  2255. struct preempt_notifier *notifier;
  2256. struct hlist_node *node;
  2257. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2258. notifier->ops->sched_out(notifier, next);
  2259. }
  2260. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2261. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2262. {
  2263. }
  2264. static void
  2265. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2266. struct task_struct *next)
  2267. {
  2268. }
  2269. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2270. /**
  2271. * prepare_task_switch - prepare to switch tasks
  2272. * @rq: the runqueue preparing to switch
  2273. * @prev: the current task that is being switched out
  2274. * @next: the task we are going to switch to.
  2275. *
  2276. * This is called with the rq lock held and interrupts off. It must
  2277. * be paired with a subsequent finish_task_switch after the context
  2278. * switch.
  2279. *
  2280. * prepare_task_switch sets up locking and calls architecture specific
  2281. * hooks.
  2282. */
  2283. static inline void
  2284. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2285. struct task_struct *next)
  2286. {
  2287. fire_sched_out_preempt_notifiers(prev, next);
  2288. prepare_lock_switch(rq, next);
  2289. prepare_arch_switch(next);
  2290. }
  2291. /**
  2292. * finish_task_switch - clean up after a task-switch
  2293. * @rq: runqueue associated with task-switch
  2294. * @prev: the thread we just switched away from.
  2295. *
  2296. * finish_task_switch must be called after the context switch, paired
  2297. * with a prepare_task_switch call before the context switch.
  2298. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2299. * and do any other architecture-specific cleanup actions.
  2300. *
  2301. * Note that we may have delayed dropping an mm in context_switch(). If
  2302. * so, we finish that here outside of the runqueue lock. (Doing it
  2303. * with the lock held can cause deadlocks; see schedule() for
  2304. * details.)
  2305. */
  2306. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2307. __releases(rq->lock)
  2308. {
  2309. struct mm_struct *mm = rq->prev_mm;
  2310. long prev_state;
  2311. #ifdef CONFIG_SMP
  2312. int post_schedule = 0;
  2313. if (current->sched_class->needs_post_schedule)
  2314. post_schedule = current->sched_class->needs_post_schedule(rq);
  2315. #endif
  2316. rq->prev_mm = NULL;
  2317. /*
  2318. * A task struct has one reference for the use as "current".
  2319. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2320. * schedule one last time. The schedule call will never return, and
  2321. * the scheduled task must drop that reference.
  2322. * The test for TASK_DEAD must occur while the runqueue locks are
  2323. * still held, otherwise prev could be scheduled on another cpu, die
  2324. * there before we look at prev->state, and then the reference would
  2325. * be dropped twice.
  2326. * Manfred Spraul <manfred@colorfullife.com>
  2327. */
  2328. prev_state = prev->state;
  2329. finish_arch_switch(prev);
  2330. finish_lock_switch(rq, prev);
  2331. #ifdef CONFIG_SMP
  2332. if (post_schedule)
  2333. current->sched_class->post_schedule(rq);
  2334. #endif
  2335. fire_sched_in_preempt_notifiers(current);
  2336. if (mm)
  2337. mmdrop(mm);
  2338. if (unlikely(prev_state == TASK_DEAD)) {
  2339. /*
  2340. * Remove function-return probe instances associated with this
  2341. * task and put them back on the free list.
  2342. */
  2343. kprobe_flush_task(prev);
  2344. put_task_struct(prev);
  2345. }
  2346. }
  2347. /**
  2348. * schedule_tail - first thing a freshly forked thread must call.
  2349. * @prev: the thread we just switched away from.
  2350. */
  2351. asmlinkage void schedule_tail(struct task_struct *prev)
  2352. __releases(rq->lock)
  2353. {
  2354. struct rq *rq = this_rq();
  2355. finish_task_switch(rq, prev);
  2356. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2357. /* In this case, finish_task_switch does not reenable preemption */
  2358. preempt_enable();
  2359. #endif
  2360. if (current->set_child_tid)
  2361. put_user(task_pid_vnr(current), current->set_child_tid);
  2362. }
  2363. /*
  2364. * context_switch - switch to the new MM and the new
  2365. * thread's register state.
  2366. */
  2367. static inline void
  2368. context_switch(struct rq *rq, struct task_struct *prev,
  2369. struct task_struct *next)
  2370. {
  2371. struct mm_struct *mm, *oldmm;
  2372. prepare_task_switch(rq, prev, next);
  2373. trace_sched_switch(rq, prev, next);
  2374. mm = next->mm;
  2375. oldmm = prev->active_mm;
  2376. /*
  2377. * For paravirt, this is coupled with an exit in switch_to to
  2378. * combine the page table reload and the switch backend into
  2379. * one hypercall.
  2380. */
  2381. arch_enter_lazy_cpu_mode();
  2382. if (unlikely(!mm)) {
  2383. next->active_mm = oldmm;
  2384. atomic_inc(&oldmm->mm_count);
  2385. enter_lazy_tlb(oldmm, next);
  2386. } else
  2387. switch_mm(oldmm, mm, next);
  2388. if (unlikely(!prev->mm)) {
  2389. prev->active_mm = NULL;
  2390. rq->prev_mm = oldmm;
  2391. }
  2392. /*
  2393. * Since the runqueue lock will be released by the next
  2394. * task (which is an invalid locking op but in the case
  2395. * of the scheduler it's an obvious special-case), so we
  2396. * do an early lockdep release here:
  2397. */
  2398. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2399. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2400. #endif
  2401. /* Here we just switch the register state and the stack. */
  2402. switch_to(prev, next, prev);
  2403. barrier();
  2404. /*
  2405. * this_rq must be evaluated again because prev may have moved
  2406. * CPUs since it called schedule(), thus the 'rq' on its stack
  2407. * frame will be invalid.
  2408. */
  2409. finish_task_switch(this_rq(), prev);
  2410. }
  2411. /*
  2412. * nr_running, nr_uninterruptible and nr_context_switches:
  2413. *
  2414. * externally visible scheduler statistics: current number of runnable
  2415. * threads, current number of uninterruptible-sleeping threads, total
  2416. * number of context switches performed since bootup.
  2417. */
  2418. unsigned long nr_running(void)
  2419. {
  2420. unsigned long i, sum = 0;
  2421. for_each_online_cpu(i)
  2422. sum += cpu_rq(i)->nr_running;
  2423. return sum;
  2424. }
  2425. unsigned long nr_uninterruptible(void)
  2426. {
  2427. unsigned long i, sum = 0;
  2428. for_each_possible_cpu(i)
  2429. sum += cpu_rq(i)->nr_uninterruptible;
  2430. /*
  2431. * Since we read the counters lockless, it might be slightly
  2432. * inaccurate. Do not allow it to go below zero though:
  2433. */
  2434. if (unlikely((long)sum < 0))
  2435. sum = 0;
  2436. return sum;
  2437. }
  2438. unsigned long long nr_context_switches(void)
  2439. {
  2440. int i;
  2441. unsigned long long sum = 0;
  2442. for_each_possible_cpu(i)
  2443. sum += cpu_rq(i)->nr_switches;
  2444. return sum;
  2445. }
  2446. unsigned long nr_iowait(void)
  2447. {
  2448. unsigned long i, sum = 0;
  2449. for_each_possible_cpu(i)
  2450. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2451. return sum;
  2452. }
  2453. unsigned long nr_active(void)
  2454. {
  2455. unsigned long i, running = 0, uninterruptible = 0;
  2456. for_each_online_cpu(i) {
  2457. running += cpu_rq(i)->nr_running;
  2458. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2459. }
  2460. if (unlikely((long)uninterruptible < 0))
  2461. uninterruptible = 0;
  2462. return running + uninterruptible;
  2463. }
  2464. /*
  2465. * Update rq->cpu_load[] statistics. This function is usually called every
  2466. * scheduler tick (TICK_NSEC).
  2467. */
  2468. static void update_cpu_load(struct rq *this_rq)
  2469. {
  2470. unsigned long this_load = this_rq->load.weight;
  2471. int i, scale;
  2472. this_rq->nr_load_updates++;
  2473. /* Update our load: */
  2474. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2475. unsigned long old_load, new_load;
  2476. /* scale is effectively 1 << i now, and >> i divides by scale */
  2477. old_load = this_rq->cpu_load[i];
  2478. new_load = this_load;
  2479. /*
  2480. * Round up the averaging division if load is increasing. This
  2481. * prevents us from getting stuck on 9 if the load is 10, for
  2482. * example.
  2483. */
  2484. if (new_load > old_load)
  2485. new_load += scale-1;
  2486. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2487. }
  2488. }
  2489. #ifdef CONFIG_SMP
  2490. /*
  2491. * double_rq_lock - safely lock two runqueues
  2492. *
  2493. * Note this does not disable interrupts like task_rq_lock,
  2494. * you need to do so manually before calling.
  2495. */
  2496. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2497. __acquires(rq1->lock)
  2498. __acquires(rq2->lock)
  2499. {
  2500. BUG_ON(!irqs_disabled());
  2501. if (rq1 == rq2) {
  2502. spin_lock(&rq1->lock);
  2503. __acquire(rq2->lock); /* Fake it out ;) */
  2504. } else {
  2505. if (rq1 < rq2) {
  2506. spin_lock(&rq1->lock);
  2507. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2508. } else {
  2509. spin_lock(&rq2->lock);
  2510. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2511. }
  2512. }
  2513. update_rq_clock(rq1);
  2514. update_rq_clock(rq2);
  2515. }
  2516. /*
  2517. * double_rq_unlock - safely unlock two runqueues
  2518. *
  2519. * Note this does not restore interrupts like task_rq_unlock,
  2520. * you need to do so manually after calling.
  2521. */
  2522. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2523. __releases(rq1->lock)
  2524. __releases(rq2->lock)
  2525. {
  2526. spin_unlock(&rq1->lock);
  2527. if (rq1 != rq2)
  2528. spin_unlock(&rq2->lock);
  2529. else
  2530. __release(rq2->lock);
  2531. }
  2532. /*
  2533. * If dest_cpu is allowed for this process, migrate the task to it.
  2534. * This is accomplished by forcing the cpu_allowed mask to only
  2535. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2536. * the cpu_allowed mask is restored.
  2537. */
  2538. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2539. {
  2540. struct migration_req req;
  2541. unsigned long flags;
  2542. struct rq *rq;
  2543. rq = task_rq_lock(p, &flags);
  2544. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2545. || unlikely(!cpu_active(dest_cpu)))
  2546. goto out;
  2547. /* force the process onto the specified CPU */
  2548. if (migrate_task(p, dest_cpu, &req)) {
  2549. /* Need to wait for migration thread (might exit: take ref). */
  2550. struct task_struct *mt = rq->migration_thread;
  2551. get_task_struct(mt);
  2552. task_rq_unlock(rq, &flags);
  2553. wake_up_process(mt);
  2554. put_task_struct(mt);
  2555. wait_for_completion(&req.done);
  2556. return;
  2557. }
  2558. out:
  2559. task_rq_unlock(rq, &flags);
  2560. }
  2561. /*
  2562. * sched_exec - execve() is a valuable balancing opportunity, because at
  2563. * this point the task has the smallest effective memory and cache footprint.
  2564. */
  2565. void sched_exec(void)
  2566. {
  2567. int new_cpu, this_cpu = get_cpu();
  2568. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2569. put_cpu();
  2570. if (new_cpu != this_cpu)
  2571. sched_migrate_task(current, new_cpu);
  2572. }
  2573. /*
  2574. * pull_task - move a task from a remote runqueue to the local runqueue.
  2575. * Both runqueues must be locked.
  2576. */
  2577. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2578. struct rq *this_rq, int this_cpu)
  2579. {
  2580. deactivate_task(src_rq, p, 0);
  2581. set_task_cpu(p, this_cpu);
  2582. activate_task(this_rq, p, 0);
  2583. /*
  2584. * Note that idle threads have a prio of MAX_PRIO, for this test
  2585. * to be always true for them.
  2586. */
  2587. check_preempt_curr(this_rq, p, 0);
  2588. }
  2589. /*
  2590. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2591. */
  2592. static
  2593. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2594. struct sched_domain *sd, enum cpu_idle_type idle,
  2595. int *all_pinned)
  2596. {
  2597. int tsk_cache_hot = 0;
  2598. /*
  2599. * We do not migrate tasks that are:
  2600. * 1) running (obviously), or
  2601. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2602. * 3) are cache-hot on their current CPU.
  2603. */
  2604. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2605. schedstat_inc(p, se.nr_failed_migrations_affine);
  2606. return 0;
  2607. }
  2608. *all_pinned = 0;
  2609. if (task_running(rq, p)) {
  2610. schedstat_inc(p, se.nr_failed_migrations_running);
  2611. return 0;
  2612. }
  2613. /*
  2614. * Aggressive migration if:
  2615. * 1) task is cache cold, or
  2616. * 2) too many balance attempts have failed.
  2617. */
  2618. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2619. if (!tsk_cache_hot ||
  2620. sd->nr_balance_failed > sd->cache_nice_tries) {
  2621. #ifdef CONFIG_SCHEDSTATS
  2622. if (tsk_cache_hot) {
  2623. schedstat_inc(sd, lb_hot_gained[idle]);
  2624. schedstat_inc(p, se.nr_forced_migrations);
  2625. }
  2626. #endif
  2627. return 1;
  2628. }
  2629. if (tsk_cache_hot) {
  2630. schedstat_inc(p, se.nr_failed_migrations_hot);
  2631. return 0;
  2632. }
  2633. return 1;
  2634. }
  2635. static unsigned long
  2636. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2637. unsigned long max_load_move, struct sched_domain *sd,
  2638. enum cpu_idle_type idle, int *all_pinned,
  2639. int *this_best_prio, struct rq_iterator *iterator)
  2640. {
  2641. int loops = 0, pulled = 0, pinned = 0;
  2642. struct task_struct *p;
  2643. long rem_load_move = max_load_move;
  2644. if (max_load_move == 0)
  2645. goto out;
  2646. pinned = 1;
  2647. /*
  2648. * Start the load-balancing iterator:
  2649. */
  2650. p = iterator->start(iterator->arg);
  2651. next:
  2652. if (!p || loops++ > sysctl_sched_nr_migrate)
  2653. goto out;
  2654. if ((p->se.load.weight >> 1) > rem_load_move ||
  2655. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2656. p = iterator->next(iterator->arg);
  2657. goto next;
  2658. }
  2659. pull_task(busiest, p, this_rq, this_cpu);
  2660. pulled++;
  2661. rem_load_move -= p->se.load.weight;
  2662. #ifdef CONFIG_PREEMPT
  2663. /*
  2664. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2665. * will stop after the first task is pulled to minimize the critical
  2666. * section.
  2667. */
  2668. if (idle == CPU_NEWLY_IDLE)
  2669. goto out;
  2670. #endif
  2671. /*
  2672. * We only want to steal up to the prescribed amount of weighted load.
  2673. */
  2674. if (rem_load_move > 0) {
  2675. if (p->prio < *this_best_prio)
  2676. *this_best_prio = p->prio;
  2677. p = iterator->next(iterator->arg);
  2678. goto next;
  2679. }
  2680. out:
  2681. /*
  2682. * Right now, this is one of only two places pull_task() is called,
  2683. * so we can safely collect pull_task() stats here rather than
  2684. * inside pull_task().
  2685. */
  2686. schedstat_add(sd, lb_gained[idle], pulled);
  2687. if (all_pinned)
  2688. *all_pinned = pinned;
  2689. return max_load_move - rem_load_move;
  2690. }
  2691. /*
  2692. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2693. * this_rq, as part of a balancing operation within domain "sd".
  2694. * Returns 1 if successful and 0 otherwise.
  2695. *
  2696. * Called with both runqueues locked.
  2697. */
  2698. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2699. unsigned long max_load_move,
  2700. struct sched_domain *sd, enum cpu_idle_type idle,
  2701. int *all_pinned)
  2702. {
  2703. const struct sched_class *class = sched_class_highest;
  2704. unsigned long total_load_moved = 0;
  2705. int this_best_prio = this_rq->curr->prio;
  2706. do {
  2707. total_load_moved +=
  2708. class->load_balance(this_rq, this_cpu, busiest,
  2709. max_load_move - total_load_moved,
  2710. sd, idle, all_pinned, &this_best_prio);
  2711. class = class->next;
  2712. #ifdef CONFIG_PREEMPT
  2713. /*
  2714. * NEWIDLE balancing is a source of latency, so preemptible
  2715. * kernels will stop after the first task is pulled to minimize
  2716. * the critical section.
  2717. */
  2718. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2719. break;
  2720. #endif
  2721. } while (class && max_load_move > total_load_moved);
  2722. return total_load_moved > 0;
  2723. }
  2724. static int
  2725. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2726. struct sched_domain *sd, enum cpu_idle_type idle,
  2727. struct rq_iterator *iterator)
  2728. {
  2729. struct task_struct *p = iterator->start(iterator->arg);
  2730. int pinned = 0;
  2731. while (p) {
  2732. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2733. pull_task(busiest, p, this_rq, this_cpu);
  2734. /*
  2735. * Right now, this is only the second place pull_task()
  2736. * is called, so we can safely collect pull_task()
  2737. * stats here rather than inside pull_task().
  2738. */
  2739. schedstat_inc(sd, lb_gained[idle]);
  2740. return 1;
  2741. }
  2742. p = iterator->next(iterator->arg);
  2743. }
  2744. return 0;
  2745. }
  2746. /*
  2747. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2748. * part of active balancing operations within "domain".
  2749. * Returns 1 if successful and 0 otherwise.
  2750. *
  2751. * Called with both runqueues locked.
  2752. */
  2753. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2754. struct sched_domain *sd, enum cpu_idle_type idle)
  2755. {
  2756. const struct sched_class *class;
  2757. for (class = sched_class_highest; class; class = class->next)
  2758. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2759. return 1;
  2760. return 0;
  2761. }
  2762. /********** Helpers for find_busiest_group ************************/
  2763. /*
  2764. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2765. * during load balancing.
  2766. */
  2767. struct sd_lb_stats {
  2768. struct sched_group *busiest; /* Busiest group in this sd */
  2769. struct sched_group *this; /* Local group in this sd */
  2770. unsigned long total_load; /* Total load of all groups in sd */
  2771. unsigned long total_pwr; /* Total power of all groups in sd */
  2772. unsigned long avg_load; /* Average load across all groups in sd */
  2773. /** Statistics of this group */
  2774. unsigned long this_load;
  2775. unsigned long this_load_per_task;
  2776. unsigned long this_nr_running;
  2777. /* Statistics of the busiest group */
  2778. unsigned long max_load;
  2779. unsigned long busiest_load_per_task;
  2780. unsigned long busiest_nr_running;
  2781. int group_imb; /* Is there imbalance in this sd */
  2782. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2783. int power_savings_balance; /* Is powersave balance needed for this sd */
  2784. struct sched_group *group_min; /* Least loaded group in sd */
  2785. struct sched_group *group_leader; /* Group which relieves group_min */
  2786. unsigned long min_load_per_task; /* load_per_task in group_min */
  2787. unsigned long leader_nr_running; /* Nr running of group_leader */
  2788. unsigned long min_nr_running; /* Nr running of group_min */
  2789. #endif
  2790. };
  2791. /*
  2792. * sg_lb_stats - stats of a sched_group required for load_balancing
  2793. */
  2794. struct sg_lb_stats {
  2795. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2796. unsigned long group_load; /* Total load over the CPUs of the group */
  2797. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2798. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2799. unsigned long group_capacity;
  2800. int group_imb; /* Is there an imbalance in the group ? */
  2801. };
  2802. /**
  2803. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2804. * @group: The group whose first cpu is to be returned.
  2805. */
  2806. static inline unsigned int group_first_cpu(struct sched_group *group)
  2807. {
  2808. return cpumask_first(sched_group_cpus(group));
  2809. }
  2810. /**
  2811. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2812. * @sd: The sched_domain whose load_idx is to be obtained.
  2813. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2814. */
  2815. static inline int get_sd_load_idx(struct sched_domain *sd,
  2816. enum cpu_idle_type idle)
  2817. {
  2818. int load_idx;
  2819. switch (idle) {
  2820. case CPU_NOT_IDLE:
  2821. load_idx = sd->busy_idx;
  2822. break;
  2823. case CPU_NEWLY_IDLE:
  2824. load_idx = sd->newidle_idx;
  2825. break;
  2826. default:
  2827. load_idx = sd->idle_idx;
  2828. break;
  2829. }
  2830. return load_idx;
  2831. }
  2832. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2833. /**
  2834. * init_sd_power_savings_stats - Initialize power savings statistics for
  2835. * the given sched_domain, during load balancing.
  2836. *
  2837. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2838. * @sds: Variable containing the statistics for sd.
  2839. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2840. */
  2841. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2842. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2843. {
  2844. /*
  2845. * Busy processors will not participate in power savings
  2846. * balance.
  2847. */
  2848. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2849. sds->power_savings_balance = 0;
  2850. else {
  2851. sds->power_savings_balance = 1;
  2852. sds->min_nr_running = ULONG_MAX;
  2853. sds->leader_nr_running = 0;
  2854. }
  2855. }
  2856. /**
  2857. * update_sd_power_savings_stats - Update the power saving stats for a
  2858. * sched_domain while performing load balancing.
  2859. *
  2860. * @group: sched_group belonging to the sched_domain under consideration.
  2861. * @sds: Variable containing the statistics of the sched_domain
  2862. * @local_group: Does group contain the CPU for which we're performing
  2863. * load balancing ?
  2864. * @sgs: Variable containing the statistics of the group.
  2865. */
  2866. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2867. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2868. {
  2869. if (!sds->power_savings_balance)
  2870. return;
  2871. /*
  2872. * If the local group is idle or completely loaded
  2873. * no need to do power savings balance at this domain
  2874. */
  2875. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2876. !sds->this_nr_running))
  2877. sds->power_savings_balance = 0;
  2878. /*
  2879. * If a group is already running at full capacity or idle,
  2880. * don't include that group in power savings calculations
  2881. */
  2882. if (!sds->power_savings_balance ||
  2883. sgs->sum_nr_running >= sgs->group_capacity ||
  2884. !sgs->sum_nr_running)
  2885. return;
  2886. /*
  2887. * Calculate the group which has the least non-idle load.
  2888. * This is the group from where we need to pick up the load
  2889. * for saving power
  2890. */
  2891. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2892. (sgs->sum_nr_running == sds->min_nr_running &&
  2893. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2894. sds->group_min = group;
  2895. sds->min_nr_running = sgs->sum_nr_running;
  2896. sds->min_load_per_task = sgs->sum_weighted_load /
  2897. sgs->sum_nr_running;
  2898. }
  2899. /*
  2900. * Calculate the group which is almost near its
  2901. * capacity but still has some space to pick up some load
  2902. * from other group and save more power
  2903. */
  2904. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2905. return;
  2906. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2907. (sgs->sum_nr_running == sds->leader_nr_running &&
  2908. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2909. sds->group_leader = group;
  2910. sds->leader_nr_running = sgs->sum_nr_running;
  2911. }
  2912. }
  2913. /**
  2914. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2915. * @sds: Variable containing the statistics of the sched_domain
  2916. * under consideration.
  2917. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2918. * @imbalance: Variable to store the imbalance.
  2919. *
  2920. * Description:
  2921. * Check if we have potential to perform some power-savings balance.
  2922. * If yes, set the busiest group to be the least loaded group in the
  2923. * sched_domain, so that it's CPUs can be put to idle.
  2924. *
  2925. * Returns 1 if there is potential to perform power-savings balance.
  2926. * Else returns 0.
  2927. */
  2928. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2929. int this_cpu, unsigned long *imbalance)
  2930. {
  2931. if (!sds->power_savings_balance)
  2932. return 0;
  2933. if (sds->this != sds->group_leader ||
  2934. sds->group_leader == sds->group_min)
  2935. return 0;
  2936. *imbalance = sds->min_load_per_task;
  2937. sds->busiest = sds->group_min;
  2938. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2939. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2940. group_first_cpu(sds->group_leader);
  2941. }
  2942. return 1;
  2943. }
  2944. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2945. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2946. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2947. {
  2948. return;
  2949. }
  2950. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2951. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2952. {
  2953. return;
  2954. }
  2955. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2956. int this_cpu, unsigned long *imbalance)
  2957. {
  2958. return 0;
  2959. }
  2960. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2961. /**
  2962. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2963. * @group: sched_group whose statistics are to be updated.
  2964. * @this_cpu: Cpu for which load balance is currently performed.
  2965. * @idle: Idle status of this_cpu
  2966. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2967. * @sd_idle: Idle status of the sched_domain containing group.
  2968. * @local_group: Does group contain this_cpu.
  2969. * @cpus: Set of cpus considered for load balancing.
  2970. * @balance: Should we balance.
  2971. * @sgs: variable to hold the statistics for this group.
  2972. */
  2973. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2974. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2975. int local_group, const struct cpumask *cpus,
  2976. int *balance, struct sg_lb_stats *sgs)
  2977. {
  2978. unsigned long load, max_cpu_load, min_cpu_load;
  2979. int i;
  2980. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2981. unsigned long sum_avg_load_per_task;
  2982. unsigned long avg_load_per_task;
  2983. if (local_group)
  2984. balance_cpu = group_first_cpu(group);
  2985. /* Tally up the load of all CPUs in the group */
  2986. sum_avg_load_per_task = avg_load_per_task = 0;
  2987. max_cpu_load = 0;
  2988. min_cpu_load = ~0UL;
  2989. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2990. struct rq *rq = cpu_rq(i);
  2991. if (*sd_idle && rq->nr_running)
  2992. *sd_idle = 0;
  2993. /* Bias balancing toward cpus of our domain */
  2994. if (local_group) {
  2995. if (idle_cpu(i) && !first_idle_cpu) {
  2996. first_idle_cpu = 1;
  2997. balance_cpu = i;
  2998. }
  2999. load = target_load(i, load_idx);
  3000. } else {
  3001. load = source_load(i, load_idx);
  3002. if (load > max_cpu_load)
  3003. max_cpu_load = load;
  3004. if (min_cpu_load > load)
  3005. min_cpu_load = load;
  3006. }
  3007. sgs->group_load += load;
  3008. sgs->sum_nr_running += rq->nr_running;
  3009. sgs->sum_weighted_load += weighted_cpuload(i);
  3010. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3011. }
  3012. /*
  3013. * First idle cpu or the first cpu(busiest) in this sched group
  3014. * is eligible for doing load balancing at this and above
  3015. * domains. In the newly idle case, we will allow all the cpu's
  3016. * to do the newly idle load balance.
  3017. */
  3018. if (idle != CPU_NEWLY_IDLE && local_group &&
  3019. balance_cpu != this_cpu && balance) {
  3020. *balance = 0;
  3021. return;
  3022. }
  3023. /* Adjust by relative CPU power of the group */
  3024. sgs->avg_load = sg_div_cpu_power(group,
  3025. sgs->group_load * SCHED_LOAD_SCALE);
  3026. /*
  3027. * Consider the group unbalanced when the imbalance is larger
  3028. * than the average weight of two tasks.
  3029. *
  3030. * APZ: with cgroup the avg task weight can vary wildly and
  3031. * might not be a suitable number - should we keep a
  3032. * normalized nr_running number somewhere that negates
  3033. * the hierarchy?
  3034. */
  3035. avg_load_per_task = sg_div_cpu_power(group,
  3036. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3037. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3038. sgs->group_imb = 1;
  3039. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3040. }
  3041. /**
  3042. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3043. * @sd: sched_domain whose statistics are to be updated.
  3044. * @this_cpu: Cpu for which load balance is currently performed.
  3045. * @idle: Idle status of this_cpu
  3046. * @sd_idle: Idle status of the sched_domain containing group.
  3047. * @cpus: Set of cpus considered for load balancing.
  3048. * @balance: Should we balance.
  3049. * @sds: variable to hold the statistics for this sched_domain.
  3050. */
  3051. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3052. enum cpu_idle_type idle, int *sd_idle,
  3053. const struct cpumask *cpus, int *balance,
  3054. struct sd_lb_stats *sds)
  3055. {
  3056. struct sched_group *group = sd->groups;
  3057. struct sg_lb_stats sgs;
  3058. int load_idx;
  3059. init_sd_power_savings_stats(sd, sds, idle);
  3060. load_idx = get_sd_load_idx(sd, idle);
  3061. do {
  3062. int local_group;
  3063. local_group = cpumask_test_cpu(this_cpu,
  3064. sched_group_cpus(group));
  3065. memset(&sgs, 0, sizeof(sgs));
  3066. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3067. local_group, cpus, balance, &sgs);
  3068. if (local_group && balance && !(*balance))
  3069. return;
  3070. sds->total_load += sgs.group_load;
  3071. sds->total_pwr += group->__cpu_power;
  3072. if (local_group) {
  3073. sds->this_load = sgs.avg_load;
  3074. sds->this = group;
  3075. sds->this_nr_running = sgs.sum_nr_running;
  3076. sds->this_load_per_task = sgs.sum_weighted_load;
  3077. } else if (sgs.avg_load > sds->max_load &&
  3078. (sgs.sum_nr_running > sgs.group_capacity ||
  3079. sgs.group_imb)) {
  3080. sds->max_load = sgs.avg_load;
  3081. sds->busiest = group;
  3082. sds->busiest_nr_running = sgs.sum_nr_running;
  3083. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3084. sds->group_imb = sgs.group_imb;
  3085. }
  3086. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3087. group = group->next;
  3088. } while (group != sd->groups);
  3089. }
  3090. /**
  3091. * fix_small_imbalance - Calculate the minor imbalance that exists
  3092. * amongst the groups of a sched_domain, during
  3093. * load balancing.
  3094. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3095. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3096. * @imbalance: Variable to store the imbalance.
  3097. */
  3098. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3099. int this_cpu, unsigned long *imbalance)
  3100. {
  3101. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3102. unsigned int imbn = 2;
  3103. if (sds->this_nr_running) {
  3104. sds->this_load_per_task /= sds->this_nr_running;
  3105. if (sds->busiest_load_per_task >
  3106. sds->this_load_per_task)
  3107. imbn = 1;
  3108. } else
  3109. sds->this_load_per_task =
  3110. cpu_avg_load_per_task(this_cpu);
  3111. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3112. sds->busiest_load_per_task * imbn) {
  3113. *imbalance = sds->busiest_load_per_task;
  3114. return;
  3115. }
  3116. /*
  3117. * OK, we don't have enough imbalance to justify moving tasks,
  3118. * however we may be able to increase total CPU power used by
  3119. * moving them.
  3120. */
  3121. pwr_now += sds->busiest->__cpu_power *
  3122. min(sds->busiest_load_per_task, sds->max_load);
  3123. pwr_now += sds->this->__cpu_power *
  3124. min(sds->this_load_per_task, sds->this_load);
  3125. pwr_now /= SCHED_LOAD_SCALE;
  3126. /* Amount of load we'd subtract */
  3127. tmp = sg_div_cpu_power(sds->busiest,
  3128. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3129. if (sds->max_load > tmp)
  3130. pwr_move += sds->busiest->__cpu_power *
  3131. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3132. /* Amount of load we'd add */
  3133. if (sds->max_load * sds->busiest->__cpu_power <
  3134. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3135. tmp = sg_div_cpu_power(sds->this,
  3136. sds->max_load * sds->busiest->__cpu_power);
  3137. else
  3138. tmp = sg_div_cpu_power(sds->this,
  3139. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3140. pwr_move += sds->this->__cpu_power *
  3141. min(sds->this_load_per_task, sds->this_load + tmp);
  3142. pwr_move /= SCHED_LOAD_SCALE;
  3143. /* Move if we gain throughput */
  3144. if (pwr_move > pwr_now)
  3145. *imbalance = sds->busiest_load_per_task;
  3146. }
  3147. /**
  3148. * calculate_imbalance - Calculate the amount of imbalance present within the
  3149. * groups of a given sched_domain during load balance.
  3150. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3151. * @this_cpu: Cpu for which currently load balance is being performed.
  3152. * @imbalance: The variable to store the imbalance.
  3153. */
  3154. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3155. unsigned long *imbalance)
  3156. {
  3157. unsigned long max_pull;
  3158. /*
  3159. * In the presence of smp nice balancing, certain scenarios can have
  3160. * max load less than avg load(as we skip the groups at or below
  3161. * its cpu_power, while calculating max_load..)
  3162. */
  3163. if (sds->max_load < sds->avg_load) {
  3164. *imbalance = 0;
  3165. return fix_small_imbalance(sds, this_cpu, imbalance);
  3166. }
  3167. /* Don't want to pull so many tasks that a group would go idle */
  3168. max_pull = min(sds->max_load - sds->avg_load,
  3169. sds->max_load - sds->busiest_load_per_task);
  3170. /* How much load to actually move to equalise the imbalance */
  3171. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3172. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3173. / SCHED_LOAD_SCALE;
  3174. /*
  3175. * if *imbalance is less than the average load per runnable task
  3176. * there is no gaurantee that any tasks will be moved so we'll have
  3177. * a think about bumping its value to force at least one task to be
  3178. * moved
  3179. */
  3180. if (*imbalance < sds->busiest_load_per_task)
  3181. return fix_small_imbalance(sds, this_cpu, imbalance);
  3182. }
  3183. /******* find_busiest_group() helpers end here *********************/
  3184. /**
  3185. * find_busiest_group - Returns the busiest group within the sched_domain
  3186. * if there is an imbalance. If there isn't an imbalance, and
  3187. * the user has opted for power-savings, it returns a group whose
  3188. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3189. * such a group exists.
  3190. *
  3191. * Also calculates the amount of weighted load which should be moved
  3192. * to restore balance.
  3193. *
  3194. * @sd: The sched_domain whose busiest group is to be returned.
  3195. * @this_cpu: The cpu for which load balancing is currently being performed.
  3196. * @imbalance: Variable which stores amount of weighted load which should
  3197. * be moved to restore balance/put a group to idle.
  3198. * @idle: The idle status of this_cpu.
  3199. * @sd_idle: The idleness of sd
  3200. * @cpus: The set of CPUs under consideration for load-balancing.
  3201. * @balance: Pointer to a variable indicating if this_cpu
  3202. * is the appropriate cpu to perform load balancing at this_level.
  3203. *
  3204. * Returns: - the busiest group if imbalance exists.
  3205. * - If no imbalance and user has opted for power-savings balance,
  3206. * return the least loaded group whose CPUs can be
  3207. * put to idle by rebalancing its tasks onto our group.
  3208. */
  3209. static struct sched_group *
  3210. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3211. unsigned long *imbalance, enum cpu_idle_type idle,
  3212. int *sd_idle, const struct cpumask *cpus, int *balance)
  3213. {
  3214. struct sd_lb_stats sds;
  3215. memset(&sds, 0, sizeof(sds));
  3216. /*
  3217. * Compute the various statistics relavent for load balancing at
  3218. * this level.
  3219. */
  3220. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3221. balance, &sds);
  3222. /* Cases where imbalance does not exist from POV of this_cpu */
  3223. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3224. * at this level.
  3225. * 2) There is no busy sibling group to pull from.
  3226. * 3) This group is the busiest group.
  3227. * 4) This group is more busy than the avg busieness at this
  3228. * sched_domain.
  3229. * 5) The imbalance is within the specified limit.
  3230. * 6) Any rebalance would lead to ping-pong
  3231. */
  3232. if (balance && !(*balance))
  3233. goto ret;
  3234. if (!sds.busiest || sds.busiest_nr_running == 0)
  3235. goto out_balanced;
  3236. if (sds.this_load >= sds.max_load)
  3237. goto out_balanced;
  3238. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3239. if (sds.this_load >= sds.avg_load)
  3240. goto out_balanced;
  3241. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3242. goto out_balanced;
  3243. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3244. if (sds.group_imb)
  3245. sds.busiest_load_per_task =
  3246. min(sds.busiest_load_per_task, sds.avg_load);
  3247. /*
  3248. * We're trying to get all the cpus to the average_load, so we don't
  3249. * want to push ourselves above the average load, nor do we wish to
  3250. * reduce the max loaded cpu below the average load, as either of these
  3251. * actions would just result in more rebalancing later, and ping-pong
  3252. * tasks around. Thus we look for the minimum possible imbalance.
  3253. * Negative imbalances (*we* are more loaded than anyone else) will
  3254. * be counted as no imbalance for these purposes -- we can't fix that
  3255. * by pulling tasks to us. Be careful of negative numbers as they'll
  3256. * appear as very large values with unsigned longs.
  3257. */
  3258. if (sds.max_load <= sds.busiest_load_per_task)
  3259. goto out_balanced;
  3260. /* Looks like there is an imbalance. Compute it */
  3261. calculate_imbalance(&sds, this_cpu, imbalance);
  3262. return sds.busiest;
  3263. out_balanced:
  3264. /*
  3265. * There is no obvious imbalance. But check if we can do some balancing
  3266. * to save power.
  3267. */
  3268. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3269. return sds.busiest;
  3270. ret:
  3271. *imbalance = 0;
  3272. return NULL;
  3273. }
  3274. /*
  3275. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3276. */
  3277. static struct rq *
  3278. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3279. unsigned long imbalance, const struct cpumask *cpus)
  3280. {
  3281. struct rq *busiest = NULL, *rq;
  3282. unsigned long max_load = 0;
  3283. int i;
  3284. for_each_cpu(i, sched_group_cpus(group)) {
  3285. unsigned long wl;
  3286. if (!cpumask_test_cpu(i, cpus))
  3287. continue;
  3288. rq = cpu_rq(i);
  3289. wl = weighted_cpuload(i);
  3290. if (rq->nr_running == 1 && wl > imbalance)
  3291. continue;
  3292. if (wl > max_load) {
  3293. max_load = wl;
  3294. busiest = rq;
  3295. }
  3296. }
  3297. return busiest;
  3298. }
  3299. /*
  3300. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3301. * so long as it is large enough.
  3302. */
  3303. #define MAX_PINNED_INTERVAL 512
  3304. /* Working cpumask for load_balance and load_balance_newidle. */
  3305. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3306. /*
  3307. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3308. * tasks if there is an imbalance.
  3309. */
  3310. static int load_balance(int this_cpu, struct rq *this_rq,
  3311. struct sched_domain *sd, enum cpu_idle_type idle,
  3312. int *balance)
  3313. {
  3314. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3315. struct sched_group *group;
  3316. unsigned long imbalance;
  3317. struct rq *busiest;
  3318. unsigned long flags;
  3319. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3320. cpumask_setall(cpus);
  3321. /*
  3322. * When power savings policy is enabled for the parent domain, idle
  3323. * sibling can pick up load irrespective of busy siblings. In this case,
  3324. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3325. * portraying it as CPU_NOT_IDLE.
  3326. */
  3327. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3328. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3329. sd_idle = 1;
  3330. schedstat_inc(sd, lb_count[idle]);
  3331. redo:
  3332. update_shares(sd);
  3333. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3334. cpus, balance);
  3335. if (*balance == 0)
  3336. goto out_balanced;
  3337. if (!group) {
  3338. schedstat_inc(sd, lb_nobusyg[idle]);
  3339. goto out_balanced;
  3340. }
  3341. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3342. if (!busiest) {
  3343. schedstat_inc(sd, lb_nobusyq[idle]);
  3344. goto out_balanced;
  3345. }
  3346. BUG_ON(busiest == this_rq);
  3347. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3348. ld_moved = 0;
  3349. if (busiest->nr_running > 1) {
  3350. /*
  3351. * Attempt to move tasks. If find_busiest_group has found
  3352. * an imbalance but busiest->nr_running <= 1, the group is
  3353. * still unbalanced. ld_moved simply stays zero, so it is
  3354. * correctly treated as an imbalance.
  3355. */
  3356. local_irq_save(flags);
  3357. double_rq_lock(this_rq, busiest);
  3358. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3359. imbalance, sd, idle, &all_pinned);
  3360. double_rq_unlock(this_rq, busiest);
  3361. local_irq_restore(flags);
  3362. /*
  3363. * some other cpu did the load balance for us.
  3364. */
  3365. if (ld_moved && this_cpu != smp_processor_id())
  3366. resched_cpu(this_cpu);
  3367. /* All tasks on this runqueue were pinned by CPU affinity */
  3368. if (unlikely(all_pinned)) {
  3369. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3370. if (!cpumask_empty(cpus))
  3371. goto redo;
  3372. goto out_balanced;
  3373. }
  3374. }
  3375. if (!ld_moved) {
  3376. schedstat_inc(sd, lb_failed[idle]);
  3377. sd->nr_balance_failed++;
  3378. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3379. spin_lock_irqsave(&busiest->lock, flags);
  3380. /* don't kick the migration_thread, if the curr
  3381. * task on busiest cpu can't be moved to this_cpu
  3382. */
  3383. if (!cpumask_test_cpu(this_cpu,
  3384. &busiest->curr->cpus_allowed)) {
  3385. spin_unlock_irqrestore(&busiest->lock, flags);
  3386. all_pinned = 1;
  3387. goto out_one_pinned;
  3388. }
  3389. if (!busiest->active_balance) {
  3390. busiest->active_balance = 1;
  3391. busiest->push_cpu = this_cpu;
  3392. active_balance = 1;
  3393. }
  3394. spin_unlock_irqrestore(&busiest->lock, flags);
  3395. if (active_balance)
  3396. wake_up_process(busiest->migration_thread);
  3397. /*
  3398. * We've kicked active balancing, reset the failure
  3399. * counter.
  3400. */
  3401. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3402. }
  3403. } else
  3404. sd->nr_balance_failed = 0;
  3405. if (likely(!active_balance)) {
  3406. /* We were unbalanced, so reset the balancing interval */
  3407. sd->balance_interval = sd->min_interval;
  3408. } else {
  3409. /*
  3410. * If we've begun active balancing, start to back off. This
  3411. * case may not be covered by the all_pinned logic if there
  3412. * is only 1 task on the busy runqueue (because we don't call
  3413. * move_tasks).
  3414. */
  3415. if (sd->balance_interval < sd->max_interval)
  3416. sd->balance_interval *= 2;
  3417. }
  3418. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3419. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3420. ld_moved = -1;
  3421. goto out;
  3422. out_balanced:
  3423. schedstat_inc(sd, lb_balanced[idle]);
  3424. sd->nr_balance_failed = 0;
  3425. out_one_pinned:
  3426. /* tune up the balancing interval */
  3427. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3428. (sd->balance_interval < sd->max_interval))
  3429. sd->balance_interval *= 2;
  3430. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3431. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3432. ld_moved = -1;
  3433. else
  3434. ld_moved = 0;
  3435. out:
  3436. if (ld_moved)
  3437. update_shares(sd);
  3438. return ld_moved;
  3439. }
  3440. /*
  3441. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3442. * tasks if there is an imbalance.
  3443. *
  3444. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3445. * this_rq is locked.
  3446. */
  3447. static int
  3448. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3449. {
  3450. struct sched_group *group;
  3451. struct rq *busiest = NULL;
  3452. unsigned long imbalance;
  3453. int ld_moved = 0;
  3454. int sd_idle = 0;
  3455. int all_pinned = 0;
  3456. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3457. cpumask_setall(cpus);
  3458. /*
  3459. * When power savings policy is enabled for the parent domain, idle
  3460. * sibling can pick up load irrespective of busy siblings. In this case,
  3461. * let the state of idle sibling percolate up as IDLE, instead of
  3462. * portraying it as CPU_NOT_IDLE.
  3463. */
  3464. if (sd->flags & SD_SHARE_CPUPOWER &&
  3465. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3466. sd_idle = 1;
  3467. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3468. redo:
  3469. update_shares_locked(this_rq, sd);
  3470. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3471. &sd_idle, cpus, NULL);
  3472. if (!group) {
  3473. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3474. goto out_balanced;
  3475. }
  3476. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3477. if (!busiest) {
  3478. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3479. goto out_balanced;
  3480. }
  3481. BUG_ON(busiest == this_rq);
  3482. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3483. ld_moved = 0;
  3484. if (busiest->nr_running > 1) {
  3485. /* Attempt to move tasks */
  3486. double_lock_balance(this_rq, busiest);
  3487. /* this_rq->clock is already updated */
  3488. update_rq_clock(busiest);
  3489. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3490. imbalance, sd, CPU_NEWLY_IDLE,
  3491. &all_pinned);
  3492. double_unlock_balance(this_rq, busiest);
  3493. if (unlikely(all_pinned)) {
  3494. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3495. if (!cpumask_empty(cpus))
  3496. goto redo;
  3497. }
  3498. }
  3499. if (!ld_moved) {
  3500. int active_balance = 0;
  3501. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3502. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3503. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3504. return -1;
  3505. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3506. return -1;
  3507. if (sd->nr_balance_failed++ < 2)
  3508. return -1;
  3509. /*
  3510. * The only task running in a non-idle cpu can be moved to this
  3511. * cpu in an attempt to completely freeup the other CPU
  3512. * package. The same method used to move task in load_balance()
  3513. * have been extended for load_balance_newidle() to speedup
  3514. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3515. *
  3516. * The package power saving logic comes from
  3517. * find_busiest_group(). If there are no imbalance, then
  3518. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3519. * f_b_g() will select a group from which a running task may be
  3520. * pulled to this cpu in order to make the other package idle.
  3521. * If there is no opportunity to make a package idle and if
  3522. * there are no imbalance, then f_b_g() will return NULL and no
  3523. * action will be taken in load_balance_newidle().
  3524. *
  3525. * Under normal task pull operation due to imbalance, there
  3526. * will be more than one task in the source run queue and
  3527. * move_tasks() will succeed. ld_moved will be true and this
  3528. * active balance code will not be triggered.
  3529. */
  3530. /* Lock busiest in correct order while this_rq is held */
  3531. double_lock_balance(this_rq, busiest);
  3532. /*
  3533. * don't kick the migration_thread, if the curr
  3534. * task on busiest cpu can't be moved to this_cpu
  3535. */
  3536. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3537. double_unlock_balance(this_rq, busiest);
  3538. all_pinned = 1;
  3539. return ld_moved;
  3540. }
  3541. if (!busiest->active_balance) {
  3542. busiest->active_balance = 1;
  3543. busiest->push_cpu = this_cpu;
  3544. active_balance = 1;
  3545. }
  3546. double_unlock_balance(this_rq, busiest);
  3547. /*
  3548. * Should not call ttwu while holding a rq->lock
  3549. */
  3550. spin_unlock(&this_rq->lock);
  3551. if (active_balance)
  3552. wake_up_process(busiest->migration_thread);
  3553. spin_lock(&this_rq->lock);
  3554. } else
  3555. sd->nr_balance_failed = 0;
  3556. update_shares_locked(this_rq, sd);
  3557. return ld_moved;
  3558. out_balanced:
  3559. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3560. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3561. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3562. return -1;
  3563. sd->nr_balance_failed = 0;
  3564. return 0;
  3565. }
  3566. /*
  3567. * idle_balance is called by schedule() if this_cpu is about to become
  3568. * idle. Attempts to pull tasks from other CPUs.
  3569. */
  3570. static void idle_balance(int this_cpu, struct rq *this_rq)
  3571. {
  3572. struct sched_domain *sd;
  3573. int pulled_task = 0;
  3574. unsigned long next_balance = jiffies + HZ;
  3575. for_each_domain(this_cpu, sd) {
  3576. unsigned long interval;
  3577. if (!(sd->flags & SD_LOAD_BALANCE))
  3578. continue;
  3579. if (sd->flags & SD_BALANCE_NEWIDLE)
  3580. /* If we've pulled tasks over stop searching: */
  3581. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3582. sd);
  3583. interval = msecs_to_jiffies(sd->balance_interval);
  3584. if (time_after(next_balance, sd->last_balance + interval))
  3585. next_balance = sd->last_balance + interval;
  3586. if (pulled_task)
  3587. break;
  3588. }
  3589. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3590. /*
  3591. * We are going idle. next_balance may be set based on
  3592. * a busy processor. So reset next_balance.
  3593. */
  3594. this_rq->next_balance = next_balance;
  3595. }
  3596. }
  3597. /*
  3598. * active_load_balance is run by migration threads. It pushes running tasks
  3599. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3600. * running on each physical CPU where possible, and avoids physical /
  3601. * logical imbalances.
  3602. *
  3603. * Called with busiest_rq locked.
  3604. */
  3605. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3606. {
  3607. int target_cpu = busiest_rq->push_cpu;
  3608. struct sched_domain *sd;
  3609. struct rq *target_rq;
  3610. /* Is there any task to move? */
  3611. if (busiest_rq->nr_running <= 1)
  3612. return;
  3613. target_rq = cpu_rq(target_cpu);
  3614. /*
  3615. * This condition is "impossible", if it occurs
  3616. * we need to fix it. Originally reported by
  3617. * Bjorn Helgaas on a 128-cpu setup.
  3618. */
  3619. BUG_ON(busiest_rq == target_rq);
  3620. /* move a task from busiest_rq to target_rq */
  3621. double_lock_balance(busiest_rq, target_rq);
  3622. update_rq_clock(busiest_rq);
  3623. update_rq_clock(target_rq);
  3624. /* Search for an sd spanning us and the target CPU. */
  3625. for_each_domain(target_cpu, sd) {
  3626. if ((sd->flags & SD_LOAD_BALANCE) &&
  3627. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3628. break;
  3629. }
  3630. if (likely(sd)) {
  3631. schedstat_inc(sd, alb_count);
  3632. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3633. sd, CPU_IDLE))
  3634. schedstat_inc(sd, alb_pushed);
  3635. else
  3636. schedstat_inc(sd, alb_failed);
  3637. }
  3638. double_unlock_balance(busiest_rq, target_rq);
  3639. }
  3640. #ifdef CONFIG_NO_HZ
  3641. static struct {
  3642. atomic_t load_balancer;
  3643. cpumask_var_t cpu_mask;
  3644. } nohz ____cacheline_aligned = {
  3645. .load_balancer = ATOMIC_INIT(-1),
  3646. };
  3647. /*
  3648. * This routine will try to nominate the ilb (idle load balancing)
  3649. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3650. * load balancing on behalf of all those cpus. If all the cpus in the system
  3651. * go into this tickless mode, then there will be no ilb owner (as there is
  3652. * no need for one) and all the cpus will sleep till the next wakeup event
  3653. * arrives...
  3654. *
  3655. * For the ilb owner, tick is not stopped. And this tick will be used
  3656. * for idle load balancing. ilb owner will still be part of
  3657. * nohz.cpu_mask..
  3658. *
  3659. * While stopping the tick, this cpu will become the ilb owner if there
  3660. * is no other owner. And will be the owner till that cpu becomes busy
  3661. * or if all cpus in the system stop their ticks at which point
  3662. * there is no need for ilb owner.
  3663. *
  3664. * When the ilb owner becomes busy, it nominates another owner, during the
  3665. * next busy scheduler_tick()
  3666. */
  3667. int select_nohz_load_balancer(int stop_tick)
  3668. {
  3669. int cpu = smp_processor_id();
  3670. if (stop_tick) {
  3671. cpu_rq(cpu)->in_nohz_recently = 1;
  3672. if (!cpu_active(cpu)) {
  3673. if (atomic_read(&nohz.load_balancer) != cpu)
  3674. return 0;
  3675. /*
  3676. * If we are going offline and still the leader,
  3677. * give up!
  3678. */
  3679. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3680. BUG();
  3681. return 0;
  3682. }
  3683. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3684. /* time for ilb owner also to sleep */
  3685. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3686. if (atomic_read(&nohz.load_balancer) == cpu)
  3687. atomic_set(&nohz.load_balancer, -1);
  3688. return 0;
  3689. }
  3690. if (atomic_read(&nohz.load_balancer) == -1) {
  3691. /* make me the ilb owner */
  3692. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3693. return 1;
  3694. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3695. return 1;
  3696. } else {
  3697. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3698. return 0;
  3699. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3700. if (atomic_read(&nohz.load_balancer) == cpu)
  3701. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3702. BUG();
  3703. }
  3704. return 0;
  3705. }
  3706. #endif
  3707. static DEFINE_SPINLOCK(balancing);
  3708. /*
  3709. * It checks each scheduling domain to see if it is due to be balanced,
  3710. * and initiates a balancing operation if so.
  3711. *
  3712. * Balancing parameters are set up in arch_init_sched_domains.
  3713. */
  3714. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3715. {
  3716. int balance = 1;
  3717. struct rq *rq = cpu_rq(cpu);
  3718. unsigned long interval;
  3719. struct sched_domain *sd;
  3720. /* Earliest time when we have to do rebalance again */
  3721. unsigned long next_balance = jiffies + 60*HZ;
  3722. int update_next_balance = 0;
  3723. int need_serialize;
  3724. for_each_domain(cpu, sd) {
  3725. if (!(sd->flags & SD_LOAD_BALANCE))
  3726. continue;
  3727. interval = sd->balance_interval;
  3728. if (idle != CPU_IDLE)
  3729. interval *= sd->busy_factor;
  3730. /* scale ms to jiffies */
  3731. interval = msecs_to_jiffies(interval);
  3732. if (unlikely(!interval))
  3733. interval = 1;
  3734. if (interval > HZ*NR_CPUS/10)
  3735. interval = HZ*NR_CPUS/10;
  3736. need_serialize = sd->flags & SD_SERIALIZE;
  3737. if (need_serialize) {
  3738. if (!spin_trylock(&balancing))
  3739. goto out;
  3740. }
  3741. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3742. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3743. /*
  3744. * We've pulled tasks over so either we're no
  3745. * longer idle, or one of our SMT siblings is
  3746. * not idle.
  3747. */
  3748. idle = CPU_NOT_IDLE;
  3749. }
  3750. sd->last_balance = jiffies;
  3751. }
  3752. if (need_serialize)
  3753. spin_unlock(&balancing);
  3754. out:
  3755. if (time_after(next_balance, sd->last_balance + interval)) {
  3756. next_balance = sd->last_balance + interval;
  3757. update_next_balance = 1;
  3758. }
  3759. /*
  3760. * Stop the load balance at this level. There is another
  3761. * CPU in our sched group which is doing load balancing more
  3762. * actively.
  3763. */
  3764. if (!balance)
  3765. break;
  3766. }
  3767. /*
  3768. * next_balance will be updated only when there is a need.
  3769. * When the cpu is attached to null domain for ex, it will not be
  3770. * updated.
  3771. */
  3772. if (likely(update_next_balance))
  3773. rq->next_balance = next_balance;
  3774. }
  3775. /*
  3776. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3777. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3778. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3779. */
  3780. static void run_rebalance_domains(struct softirq_action *h)
  3781. {
  3782. int this_cpu = smp_processor_id();
  3783. struct rq *this_rq = cpu_rq(this_cpu);
  3784. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3785. CPU_IDLE : CPU_NOT_IDLE;
  3786. rebalance_domains(this_cpu, idle);
  3787. #ifdef CONFIG_NO_HZ
  3788. /*
  3789. * If this cpu is the owner for idle load balancing, then do the
  3790. * balancing on behalf of the other idle cpus whose ticks are
  3791. * stopped.
  3792. */
  3793. if (this_rq->idle_at_tick &&
  3794. atomic_read(&nohz.load_balancer) == this_cpu) {
  3795. struct rq *rq;
  3796. int balance_cpu;
  3797. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3798. if (balance_cpu == this_cpu)
  3799. continue;
  3800. /*
  3801. * If this cpu gets work to do, stop the load balancing
  3802. * work being done for other cpus. Next load
  3803. * balancing owner will pick it up.
  3804. */
  3805. if (need_resched())
  3806. break;
  3807. rebalance_domains(balance_cpu, CPU_IDLE);
  3808. rq = cpu_rq(balance_cpu);
  3809. if (time_after(this_rq->next_balance, rq->next_balance))
  3810. this_rq->next_balance = rq->next_balance;
  3811. }
  3812. }
  3813. #endif
  3814. }
  3815. static inline int on_null_domain(int cpu)
  3816. {
  3817. return !rcu_dereference(cpu_rq(cpu)->sd);
  3818. }
  3819. /*
  3820. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3821. *
  3822. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3823. * idle load balancing owner or decide to stop the periodic load balancing,
  3824. * if the whole system is idle.
  3825. */
  3826. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3827. {
  3828. #ifdef CONFIG_NO_HZ
  3829. /*
  3830. * If we were in the nohz mode recently and busy at the current
  3831. * scheduler tick, then check if we need to nominate new idle
  3832. * load balancer.
  3833. */
  3834. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3835. rq->in_nohz_recently = 0;
  3836. if (atomic_read(&nohz.load_balancer) == cpu) {
  3837. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3838. atomic_set(&nohz.load_balancer, -1);
  3839. }
  3840. if (atomic_read(&nohz.load_balancer) == -1) {
  3841. /*
  3842. * simple selection for now: Nominate the
  3843. * first cpu in the nohz list to be the next
  3844. * ilb owner.
  3845. *
  3846. * TBD: Traverse the sched domains and nominate
  3847. * the nearest cpu in the nohz.cpu_mask.
  3848. */
  3849. int ilb = cpumask_first(nohz.cpu_mask);
  3850. if (ilb < nr_cpu_ids)
  3851. resched_cpu(ilb);
  3852. }
  3853. }
  3854. /*
  3855. * If this cpu is idle and doing idle load balancing for all the
  3856. * cpus with ticks stopped, is it time for that to stop?
  3857. */
  3858. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3859. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3860. resched_cpu(cpu);
  3861. return;
  3862. }
  3863. /*
  3864. * If this cpu is idle and the idle load balancing is done by
  3865. * someone else, then no need raise the SCHED_SOFTIRQ
  3866. */
  3867. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3868. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3869. return;
  3870. #endif
  3871. /* Don't need to rebalance while attached to NULL domain */
  3872. if (time_after_eq(jiffies, rq->next_balance) &&
  3873. likely(!on_null_domain(cpu)))
  3874. raise_softirq(SCHED_SOFTIRQ);
  3875. }
  3876. #else /* CONFIG_SMP */
  3877. /*
  3878. * on UP we do not need to balance between CPUs:
  3879. */
  3880. static inline void idle_balance(int cpu, struct rq *rq)
  3881. {
  3882. }
  3883. #endif
  3884. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3885. EXPORT_PER_CPU_SYMBOL(kstat);
  3886. /*
  3887. * Return any ns on the sched_clock that have not yet been accounted in
  3888. * @p in case that task is currently running.
  3889. *
  3890. * Called with task_rq_lock() held on @rq.
  3891. */
  3892. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3893. {
  3894. u64 ns = 0;
  3895. if (task_current(rq, p)) {
  3896. update_rq_clock(rq);
  3897. ns = rq->clock - p->se.exec_start;
  3898. if ((s64)ns < 0)
  3899. ns = 0;
  3900. }
  3901. return ns;
  3902. }
  3903. unsigned long long task_delta_exec(struct task_struct *p)
  3904. {
  3905. unsigned long flags;
  3906. struct rq *rq;
  3907. u64 ns = 0;
  3908. rq = task_rq_lock(p, &flags);
  3909. ns = do_task_delta_exec(p, rq);
  3910. task_rq_unlock(rq, &flags);
  3911. return ns;
  3912. }
  3913. /*
  3914. * Return accounted runtime for the task.
  3915. * In case the task is currently running, return the runtime plus current's
  3916. * pending runtime that have not been accounted yet.
  3917. */
  3918. unsigned long long task_sched_runtime(struct task_struct *p)
  3919. {
  3920. unsigned long flags;
  3921. struct rq *rq;
  3922. u64 ns = 0;
  3923. rq = task_rq_lock(p, &flags);
  3924. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3925. task_rq_unlock(rq, &flags);
  3926. return ns;
  3927. }
  3928. /*
  3929. * Return sum_exec_runtime for the thread group.
  3930. * In case the task is currently running, return the sum plus current's
  3931. * pending runtime that have not been accounted yet.
  3932. *
  3933. * Note that the thread group might have other running tasks as well,
  3934. * so the return value not includes other pending runtime that other
  3935. * running tasks might have.
  3936. */
  3937. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3938. {
  3939. struct task_cputime totals;
  3940. unsigned long flags;
  3941. struct rq *rq;
  3942. u64 ns;
  3943. rq = task_rq_lock(p, &flags);
  3944. thread_group_cputime(p, &totals);
  3945. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3946. task_rq_unlock(rq, &flags);
  3947. return ns;
  3948. }
  3949. /*
  3950. * Account user cpu time to a process.
  3951. * @p: the process that the cpu time gets accounted to
  3952. * @cputime: the cpu time spent in user space since the last update
  3953. * @cputime_scaled: cputime scaled by cpu frequency
  3954. */
  3955. void account_user_time(struct task_struct *p, cputime_t cputime,
  3956. cputime_t cputime_scaled)
  3957. {
  3958. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3959. cputime64_t tmp;
  3960. /* Add user time to process. */
  3961. p->utime = cputime_add(p->utime, cputime);
  3962. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3963. account_group_user_time(p, cputime);
  3964. /* Add user time to cpustat. */
  3965. tmp = cputime_to_cputime64(cputime);
  3966. if (TASK_NICE(p) > 0)
  3967. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3968. else
  3969. cpustat->user = cputime64_add(cpustat->user, tmp);
  3970. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3971. /* Account for user time used */
  3972. acct_update_integrals(p);
  3973. }
  3974. /*
  3975. * Account guest cpu time to a process.
  3976. * @p: the process that the cpu time gets accounted to
  3977. * @cputime: the cpu time spent in virtual machine since the last update
  3978. * @cputime_scaled: cputime scaled by cpu frequency
  3979. */
  3980. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3981. cputime_t cputime_scaled)
  3982. {
  3983. cputime64_t tmp;
  3984. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3985. tmp = cputime_to_cputime64(cputime);
  3986. /* Add guest time to process. */
  3987. p->utime = cputime_add(p->utime, cputime);
  3988. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3989. account_group_user_time(p, cputime);
  3990. p->gtime = cputime_add(p->gtime, cputime);
  3991. /* Add guest time to cpustat. */
  3992. cpustat->user = cputime64_add(cpustat->user, tmp);
  3993. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3994. }
  3995. /*
  3996. * Account system cpu time to a process.
  3997. * @p: the process that the cpu time gets accounted to
  3998. * @hardirq_offset: the offset to subtract from hardirq_count()
  3999. * @cputime: the cpu time spent in kernel space since the last update
  4000. * @cputime_scaled: cputime scaled by cpu frequency
  4001. */
  4002. void account_system_time(struct task_struct *p, int hardirq_offset,
  4003. cputime_t cputime, cputime_t cputime_scaled)
  4004. {
  4005. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4006. cputime64_t tmp;
  4007. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4008. account_guest_time(p, cputime, cputime_scaled);
  4009. return;
  4010. }
  4011. /* Add system time to process. */
  4012. p->stime = cputime_add(p->stime, cputime);
  4013. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4014. account_group_system_time(p, cputime);
  4015. /* Add system time to cpustat. */
  4016. tmp = cputime_to_cputime64(cputime);
  4017. if (hardirq_count() - hardirq_offset)
  4018. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4019. else if (softirq_count())
  4020. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4021. else
  4022. cpustat->system = cputime64_add(cpustat->system, tmp);
  4023. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4024. /* Account for system time used */
  4025. acct_update_integrals(p);
  4026. }
  4027. /*
  4028. * Account for involuntary wait time.
  4029. * @steal: the cpu time spent in involuntary wait
  4030. */
  4031. void account_steal_time(cputime_t cputime)
  4032. {
  4033. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4034. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4035. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4036. }
  4037. /*
  4038. * Account for idle time.
  4039. * @cputime: the cpu time spent in idle wait
  4040. */
  4041. void account_idle_time(cputime_t cputime)
  4042. {
  4043. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4044. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4045. struct rq *rq = this_rq();
  4046. if (atomic_read(&rq->nr_iowait) > 0)
  4047. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4048. else
  4049. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4050. }
  4051. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4052. /*
  4053. * Account a single tick of cpu time.
  4054. * @p: the process that the cpu time gets accounted to
  4055. * @user_tick: indicates if the tick is a user or a system tick
  4056. */
  4057. void account_process_tick(struct task_struct *p, int user_tick)
  4058. {
  4059. cputime_t one_jiffy = jiffies_to_cputime(1);
  4060. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4061. struct rq *rq = this_rq();
  4062. if (user_tick)
  4063. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4064. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4065. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4066. one_jiffy_scaled);
  4067. else
  4068. account_idle_time(one_jiffy);
  4069. }
  4070. /*
  4071. * Account multiple ticks of steal time.
  4072. * @p: the process from which the cpu time has been stolen
  4073. * @ticks: number of stolen ticks
  4074. */
  4075. void account_steal_ticks(unsigned long ticks)
  4076. {
  4077. account_steal_time(jiffies_to_cputime(ticks));
  4078. }
  4079. /*
  4080. * Account multiple ticks of idle time.
  4081. * @ticks: number of stolen ticks
  4082. */
  4083. void account_idle_ticks(unsigned long ticks)
  4084. {
  4085. account_idle_time(jiffies_to_cputime(ticks));
  4086. }
  4087. #endif
  4088. /*
  4089. * Use precise platform statistics if available:
  4090. */
  4091. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4092. cputime_t task_utime(struct task_struct *p)
  4093. {
  4094. return p->utime;
  4095. }
  4096. cputime_t task_stime(struct task_struct *p)
  4097. {
  4098. return p->stime;
  4099. }
  4100. #else
  4101. cputime_t task_utime(struct task_struct *p)
  4102. {
  4103. clock_t utime = cputime_to_clock_t(p->utime),
  4104. total = utime + cputime_to_clock_t(p->stime);
  4105. u64 temp;
  4106. /*
  4107. * Use CFS's precise accounting:
  4108. */
  4109. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4110. if (total) {
  4111. temp *= utime;
  4112. do_div(temp, total);
  4113. }
  4114. utime = (clock_t)temp;
  4115. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4116. return p->prev_utime;
  4117. }
  4118. cputime_t task_stime(struct task_struct *p)
  4119. {
  4120. clock_t stime;
  4121. /*
  4122. * Use CFS's precise accounting. (we subtract utime from
  4123. * the total, to make sure the total observed by userspace
  4124. * grows monotonically - apps rely on that):
  4125. */
  4126. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4127. cputime_to_clock_t(task_utime(p));
  4128. if (stime >= 0)
  4129. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4130. return p->prev_stime;
  4131. }
  4132. #endif
  4133. inline cputime_t task_gtime(struct task_struct *p)
  4134. {
  4135. return p->gtime;
  4136. }
  4137. /*
  4138. * This function gets called by the timer code, with HZ frequency.
  4139. * We call it with interrupts disabled.
  4140. *
  4141. * It also gets called by the fork code, when changing the parent's
  4142. * timeslices.
  4143. */
  4144. void scheduler_tick(void)
  4145. {
  4146. int cpu = smp_processor_id();
  4147. struct rq *rq = cpu_rq(cpu);
  4148. struct task_struct *curr = rq->curr;
  4149. sched_clock_tick();
  4150. spin_lock(&rq->lock);
  4151. update_rq_clock(rq);
  4152. update_cpu_load(rq);
  4153. curr->sched_class->task_tick(rq, curr, 0);
  4154. spin_unlock(&rq->lock);
  4155. #ifdef CONFIG_SMP
  4156. rq->idle_at_tick = idle_cpu(cpu);
  4157. trigger_load_balance(rq, cpu);
  4158. #endif
  4159. }
  4160. notrace unsigned long get_parent_ip(unsigned long addr)
  4161. {
  4162. if (in_lock_functions(addr)) {
  4163. addr = CALLER_ADDR2;
  4164. if (in_lock_functions(addr))
  4165. addr = CALLER_ADDR3;
  4166. }
  4167. return addr;
  4168. }
  4169. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4170. defined(CONFIG_PREEMPT_TRACER))
  4171. void __kprobes add_preempt_count(int val)
  4172. {
  4173. #ifdef CONFIG_DEBUG_PREEMPT
  4174. /*
  4175. * Underflow?
  4176. */
  4177. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4178. return;
  4179. #endif
  4180. preempt_count() += val;
  4181. #ifdef CONFIG_DEBUG_PREEMPT
  4182. /*
  4183. * Spinlock count overflowing soon?
  4184. */
  4185. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4186. PREEMPT_MASK - 10);
  4187. #endif
  4188. if (preempt_count() == val)
  4189. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4190. }
  4191. EXPORT_SYMBOL(add_preempt_count);
  4192. void __kprobes sub_preempt_count(int val)
  4193. {
  4194. #ifdef CONFIG_DEBUG_PREEMPT
  4195. /*
  4196. * Underflow?
  4197. */
  4198. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4199. return;
  4200. /*
  4201. * Is the spinlock portion underflowing?
  4202. */
  4203. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4204. !(preempt_count() & PREEMPT_MASK)))
  4205. return;
  4206. #endif
  4207. if (preempt_count() == val)
  4208. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4209. preempt_count() -= val;
  4210. }
  4211. EXPORT_SYMBOL(sub_preempt_count);
  4212. #endif
  4213. /*
  4214. * Print scheduling while atomic bug:
  4215. */
  4216. static noinline void __schedule_bug(struct task_struct *prev)
  4217. {
  4218. struct pt_regs *regs = get_irq_regs();
  4219. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4220. prev->comm, prev->pid, preempt_count());
  4221. debug_show_held_locks(prev);
  4222. print_modules();
  4223. if (irqs_disabled())
  4224. print_irqtrace_events(prev);
  4225. if (regs)
  4226. show_regs(regs);
  4227. else
  4228. dump_stack();
  4229. }
  4230. /*
  4231. * Various schedule()-time debugging checks and statistics:
  4232. */
  4233. static inline void schedule_debug(struct task_struct *prev)
  4234. {
  4235. /*
  4236. * Test if we are atomic. Since do_exit() needs to call into
  4237. * schedule() atomically, we ignore that path for now.
  4238. * Otherwise, whine if we are scheduling when we should not be.
  4239. */
  4240. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4241. __schedule_bug(prev);
  4242. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4243. schedstat_inc(this_rq(), sched_count);
  4244. #ifdef CONFIG_SCHEDSTATS
  4245. if (unlikely(prev->lock_depth >= 0)) {
  4246. schedstat_inc(this_rq(), bkl_count);
  4247. schedstat_inc(prev, sched_info.bkl_count);
  4248. }
  4249. #endif
  4250. }
  4251. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4252. {
  4253. if (prev->state == TASK_RUNNING) {
  4254. u64 runtime = prev->se.sum_exec_runtime;
  4255. runtime -= prev->se.prev_sum_exec_runtime;
  4256. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4257. /*
  4258. * In order to avoid avg_overlap growing stale when we are
  4259. * indeed overlapping and hence not getting put to sleep, grow
  4260. * the avg_overlap on preemption.
  4261. *
  4262. * We use the average preemption runtime because that
  4263. * correlates to the amount of cache footprint a task can
  4264. * build up.
  4265. */
  4266. update_avg(&prev->se.avg_overlap, runtime);
  4267. }
  4268. prev->sched_class->put_prev_task(rq, prev);
  4269. }
  4270. /*
  4271. * Pick up the highest-prio task:
  4272. */
  4273. static inline struct task_struct *
  4274. pick_next_task(struct rq *rq)
  4275. {
  4276. const struct sched_class *class;
  4277. struct task_struct *p;
  4278. /*
  4279. * Optimization: we know that if all tasks are in
  4280. * the fair class we can call that function directly:
  4281. */
  4282. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4283. p = fair_sched_class.pick_next_task(rq);
  4284. if (likely(p))
  4285. return p;
  4286. }
  4287. class = sched_class_highest;
  4288. for ( ; ; ) {
  4289. p = class->pick_next_task(rq);
  4290. if (p)
  4291. return p;
  4292. /*
  4293. * Will never be NULL as the idle class always
  4294. * returns a non-NULL p:
  4295. */
  4296. class = class->next;
  4297. }
  4298. }
  4299. /*
  4300. * schedule() is the main scheduler function.
  4301. */
  4302. asmlinkage void __sched __schedule(void)
  4303. {
  4304. struct task_struct *prev, *next;
  4305. unsigned long *switch_count;
  4306. struct rq *rq;
  4307. int cpu;
  4308. cpu = smp_processor_id();
  4309. rq = cpu_rq(cpu);
  4310. rcu_qsctr_inc(cpu);
  4311. prev = rq->curr;
  4312. switch_count = &prev->nivcsw;
  4313. release_kernel_lock(prev);
  4314. need_resched_nonpreemptible:
  4315. schedule_debug(prev);
  4316. if (sched_feat(HRTICK))
  4317. hrtick_clear(rq);
  4318. spin_lock_irq(&rq->lock);
  4319. update_rq_clock(rq);
  4320. clear_tsk_need_resched(prev);
  4321. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4322. if (unlikely(signal_pending_state(prev->state, prev)))
  4323. prev->state = TASK_RUNNING;
  4324. else
  4325. deactivate_task(rq, prev, 1);
  4326. switch_count = &prev->nvcsw;
  4327. }
  4328. #ifdef CONFIG_SMP
  4329. if (prev->sched_class->pre_schedule)
  4330. prev->sched_class->pre_schedule(rq, prev);
  4331. #endif
  4332. if (unlikely(!rq->nr_running))
  4333. idle_balance(cpu, rq);
  4334. put_prev_task(rq, prev);
  4335. next = pick_next_task(rq);
  4336. if (likely(prev != next)) {
  4337. sched_info_switch(prev, next);
  4338. rq->nr_switches++;
  4339. rq->curr = next;
  4340. ++*switch_count;
  4341. context_switch(rq, prev, next); /* unlocks the rq */
  4342. /*
  4343. * the context switch might have flipped the stack from under
  4344. * us, hence refresh the local variables.
  4345. */
  4346. cpu = smp_processor_id();
  4347. rq = cpu_rq(cpu);
  4348. } else
  4349. spin_unlock_irq(&rq->lock);
  4350. if (unlikely(reacquire_kernel_lock(current) < 0))
  4351. goto need_resched_nonpreemptible;
  4352. }
  4353. asmlinkage void __sched schedule(void)
  4354. {
  4355. need_resched:
  4356. preempt_disable();
  4357. __schedule();
  4358. preempt_enable_no_resched();
  4359. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4360. goto need_resched;
  4361. }
  4362. EXPORT_SYMBOL(schedule);
  4363. #ifdef CONFIG_SMP
  4364. /*
  4365. * Look out! "owner" is an entirely speculative pointer
  4366. * access and not reliable.
  4367. */
  4368. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4369. {
  4370. unsigned int cpu;
  4371. struct rq *rq;
  4372. if (!sched_feat(OWNER_SPIN))
  4373. return 0;
  4374. #ifdef CONFIG_DEBUG_PAGEALLOC
  4375. /*
  4376. * Need to access the cpu field knowing that
  4377. * DEBUG_PAGEALLOC could have unmapped it if
  4378. * the mutex owner just released it and exited.
  4379. */
  4380. if (probe_kernel_address(&owner->cpu, cpu))
  4381. goto out;
  4382. #else
  4383. cpu = owner->cpu;
  4384. #endif
  4385. /*
  4386. * Even if the access succeeded (likely case),
  4387. * the cpu field may no longer be valid.
  4388. */
  4389. if (cpu >= nr_cpumask_bits)
  4390. goto out;
  4391. /*
  4392. * We need to validate that we can do a
  4393. * get_cpu() and that we have the percpu area.
  4394. */
  4395. if (!cpu_online(cpu))
  4396. goto out;
  4397. rq = cpu_rq(cpu);
  4398. for (;;) {
  4399. /*
  4400. * Owner changed, break to re-assess state.
  4401. */
  4402. if (lock->owner != owner)
  4403. break;
  4404. /*
  4405. * Is that owner really running on that cpu?
  4406. */
  4407. if (task_thread_info(rq->curr) != owner || need_resched())
  4408. return 0;
  4409. cpu_relax();
  4410. }
  4411. out:
  4412. return 1;
  4413. }
  4414. #endif
  4415. #ifdef CONFIG_PREEMPT
  4416. /*
  4417. * this is the entry point to schedule() from in-kernel preemption
  4418. * off of preempt_enable. Kernel preemptions off return from interrupt
  4419. * occur there and call schedule directly.
  4420. */
  4421. asmlinkage void __sched preempt_schedule(void)
  4422. {
  4423. struct thread_info *ti = current_thread_info();
  4424. /*
  4425. * If there is a non-zero preempt_count or interrupts are disabled,
  4426. * we do not want to preempt the current task. Just return..
  4427. */
  4428. if (likely(ti->preempt_count || irqs_disabled()))
  4429. return;
  4430. do {
  4431. add_preempt_count(PREEMPT_ACTIVE);
  4432. schedule();
  4433. sub_preempt_count(PREEMPT_ACTIVE);
  4434. /*
  4435. * Check again in case we missed a preemption opportunity
  4436. * between schedule and now.
  4437. */
  4438. barrier();
  4439. } while (need_resched());
  4440. }
  4441. EXPORT_SYMBOL(preempt_schedule);
  4442. /*
  4443. * this is the entry point to schedule() from kernel preemption
  4444. * off of irq context.
  4445. * Note, that this is called and return with irqs disabled. This will
  4446. * protect us against recursive calling from irq.
  4447. */
  4448. asmlinkage void __sched preempt_schedule_irq(void)
  4449. {
  4450. struct thread_info *ti = current_thread_info();
  4451. /* Catch callers which need to be fixed */
  4452. BUG_ON(ti->preempt_count || !irqs_disabled());
  4453. do {
  4454. add_preempt_count(PREEMPT_ACTIVE);
  4455. local_irq_enable();
  4456. schedule();
  4457. local_irq_disable();
  4458. sub_preempt_count(PREEMPT_ACTIVE);
  4459. /*
  4460. * Check again in case we missed a preemption opportunity
  4461. * between schedule and now.
  4462. */
  4463. barrier();
  4464. } while (need_resched());
  4465. }
  4466. #endif /* CONFIG_PREEMPT */
  4467. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4468. void *key)
  4469. {
  4470. return try_to_wake_up(curr->private, mode, sync);
  4471. }
  4472. EXPORT_SYMBOL(default_wake_function);
  4473. /*
  4474. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4475. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4476. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4477. *
  4478. * There are circumstances in which we can try to wake a task which has already
  4479. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4480. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4481. */
  4482. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4483. int nr_exclusive, int sync, void *key)
  4484. {
  4485. wait_queue_t *curr, *next;
  4486. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4487. unsigned flags = curr->flags;
  4488. if (curr->func(curr, mode, sync, key) &&
  4489. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4490. break;
  4491. }
  4492. }
  4493. /**
  4494. * __wake_up - wake up threads blocked on a waitqueue.
  4495. * @q: the waitqueue
  4496. * @mode: which threads
  4497. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4498. * @key: is directly passed to the wakeup function
  4499. */
  4500. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4501. int nr_exclusive, void *key)
  4502. {
  4503. unsigned long flags;
  4504. spin_lock_irqsave(&q->lock, flags);
  4505. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4506. spin_unlock_irqrestore(&q->lock, flags);
  4507. }
  4508. EXPORT_SYMBOL(__wake_up);
  4509. /*
  4510. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4511. */
  4512. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4513. {
  4514. __wake_up_common(q, mode, 1, 0, NULL);
  4515. }
  4516. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4517. {
  4518. __wake_up_common(q, mode, 1, 0, key);
  4519. }
  4520. /**
  4521. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4522. * @q: the waitqueue
  4523. * @mode: which threads
  4524. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4525. * @key: opaque value to be passed to wakeup targets
  4526. *
  4527. * The sync wakeup differs that the waker knows that it will schedule
  4528. * away soon, so while the target thread will be woken up, it will not
  4529. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4530. * with each other. This can prevent needless bouncing between CPUs.
  4531. *
  4532. * On UP it can prevent extra preemption.
  4533. */
  4534. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4535. int nr_exclusive, void *key)
  4536. {
  4537. unsigned long flags;
  4538. int sync = 1;
  4539. if (unlikely(!q))
  4540. return;
  4541. if (unlikely(!nr_exclusive))
  4542. sync = 0;
  4543. spin_lock_irqsave(&q->lock, flags);
  4544. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4545. spin_unlock_irqrestore(&q->lock, flags);
  4546. }
  4547. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4548. /*
  4549. * __wake_up_sync - see __wake_up_sync_key()
  4550. */
  4551. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4552. {
  4553. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4554. }
  4555. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4556. /**
  4557. * complete: - signals a single thread waiting on this completion
  4558. * @x: holds the state of this particular completion
  4559. *
  4560. * This will wake up a single thread waiting on this completion. Threads will be
  4561. * awakened in the same order in which they were queued.
  4562. *
  4563. * See also complete_all(), wait_for_completion() and related routines.
  4564. */
  4565. void complete(struct completion *x)
  4566. {
  4567. unsigned long flags;
  4568. spin_lock_irqsave(&x->wait.lock, flags);
  4569. x->done++;
  4570. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4571. spin_unlock_irqrestore(&x->wait.lock, flags);
  4572. }
  4573. EXPORT_SYMBOL(complete);
  4574. /**
  4575. * complete_all: - signals all threads waiting on this completion
  4576. * @x: holds the state of this particular completion
  4577. *
  4578. * This will wake up all threads waiting on this particular completion event.
  4579. */
  4580. void complete_all(struct completion *x)
  4581. {
  4582. unsigned long flags;
  4583. spin_lock_irqsave(&x->wait.lock, flags);
  4584. x->done += UINT_MAX/2;
  4585. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4586. spin_unlock_irqrestore(&x->wait.lock, flags);
  4587. }
  4588. EXPORT_SYMBOL(complete_all);
  4589. static inline long __sched
  4590. do_wait_for_common(struct completion *x, long timeout, int state)
  4591. {
  4592. if (!x->done) {
  4593. DECLARE_WAITQUEUE(wait, current);
  4594. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4595. __add_wait_queue_tail(&x->wait, &wait);
  4596. do {
  4597. if (signal_pending_state(state, current)) {
  4598. timeout = -ERESTARTSYS;
  4599. break;
  4600. }
  4601. __set_current_state(state);
  4602. spin_unlock_irq(&x->wait.lock);
  4603. timeout = schedule_timeout(timeout);
  4604. spin_lock_irq(&x->wait.lock);
  4605. } while (!x->done && timeout);
  4606. __remove_wait_queue(&x->wait, &wait);
  4607. if (!x->done)
  4608. return timeout;
  4609. }
  4610. x->done--;
  4611. return timeout ?: 1;
  4612. }
  4613. static long __sched
  4614. wait_for_common(struct completion *x, long timeout, int state)
  4615. {
  4616. might_sleep();
  4617. spin_lock_irq(&x->wait.lock);
  4618. timeout = do_wait_for_common(x, timeout, state);
  4619. spin_unlock_irq(&x->wait.lock);
  4620. return timeout;
  4621. }
  4622. /**
  4623. * wait_for_completion: - waits for completion of a task
  4624. * @x: holds the state of this particular completion
  4625. *
  4626. * This waits to be signaled for completion of a specific task. It is NOT
  4627. * interruptible and there is no timeout.
  4628. *
  4629. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4630. * and interrupt capability. Also see complete().
  4631. */
  4632. void __sched wait_for_completion(struct completion *x)
  4633. {
  4634. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4635. }
  4636. EXPORT_SYMBOL(wait_for_completion);
  4637. /**
  4638. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4639. * @x: holds the state of this particular completion
  4640. * @timeout: timeout value in jiffies
  4641. *
  4642. * This waits for either a completion of a specific task to be signaled or for a
  4643. * specified timeout to expire. The timeout is in jiffies. It is not
  4644. * interruptible.
  4645. */
  4646. unsigned long __sched
  4647. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4648. {
  4649. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4650. }
  4651. EXPORT_SYMBOL(wait_for_completion_timeout);
  4652. /**
  4653. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4654. * @x: holds the state of this particular completion
  4655. *
  4656. * This waits for completion of a specific task to be signaled. It is
  4657. * interruptible.
  4658. */
  4659. int __sched wait_for_completion_interruptible(struct completion *x)
  4660. {
  4661. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4662. if (t == -ERESTARTSYS)
  4663. return t;
  4664. return 0;
  4665. }
  4666. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4667. /**
  4668. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4669. * @x: holds the state of this particular completion
  4670. * @timeout: timeout value in jiffies
  4671. *
  4672. * This waits for either a completion of a specific task to be signaled or for a
  4673. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4674. */
  4675. unsigned long __sched
  4676. wait_for_completion_interruptible_timeout(struct completion *x,
  4677. unsigned long timeout)
  4678. {
  4679. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4680. }
  4681. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4682. /**
  4683. * wait_for_completion_killable: - waits for completion of a task (killable)
  4684. * @x: holds the state of this particular completion
  4685. *
  4686. * This waits to be signaled for completion of a specific task. It can be
  4687. * interrupted by a kill signal.
  4688. */
  4689. int __sched wait_for_completion_killable(struct completion *x)
  4690. {
  4691. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4692. if (t == -ERESTARTSYS)
  4693. return t;
  4694. return 0;
  4695. }
  4696. EXPORT_SYMBOL(wait_for_completion_killable);
  4697. /**
  4698. * try_wait_for_completion - try to decrement a completion without blocking
  4699. * @x: completion structure
  4700. *
  4701. * Returns: 0 if a decrement cannot be done without blocking
  4702. * 1 if a decrement succeeded.
  4703. *
  4704. * If a completion is being used as a counting completion,
  4705. * attempt to decrement the counter without blocking. This
  4706. * enables us to avoid waiting if the resource the completion
  4707. * is protecting is not available.
  4708. */
  4709. bool try_wait_for_completion(struct completion *x)
  4710. {
  4711. int ret = 1;
  4712. spin_lock_irq(&x->wait.lock);
  4713. if (!x->done)
  4714. ret = 0;
  4715. else
  4716. x->done--;
  4717. spin_unlock_irq(&x->wait.lock);
  4718. return ret;
  4719. }
  4720. EXPORT_SYMBOL(try_wait_for_completion);
  4721. /**
  4722. * completion_done - Test to see if a completion has any waiters
  4723. * @x: completion structure
  4724. *
  4725. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4726. * 1 if there are no waiters.
  4727. *
  4728. */
  4729. bool completion_done(struct completion *x)
  4730. {
  4731. int ret = 1;
  4732. spin_lock_irq(&x->wait.lock);
  4733. if (!x->done)
  4734. ret = 0;
  4735. spin_unlock_irq(&x->wait.lock);
  4736. return ret;
  4737. }
  4738. EXPORT_SYMBOL(completion_done);
  4739. static long __sched
  4740. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4741. {
  4742. unsigned long flags;
  4743. wait_queue_t wait;
  4744. init_waitqueue_entry(&wait, current);
  4745. __set_current_state(state);
  4746. spin_lock_irqsave(&q->lock, flags);
  4747. __add_wait_queue(q, &wait);
  4748. spin_unlock(&q->lock);
  4749. timeout = schedule_timeout(timeout);
  4750. spin_lock_irq(&q->lock);
  4751. __remove_wait_queue(q, &wait);
  4752. spin_unlock_irqrestore(&q->lock, flags);
  4753. return timeout;
  4754. }
  4755. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4756. {
  4757. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4758. }
  4759. EXPORT_SYMBOL(interruptible_sleep_on);
  4760. long __sched
  4761. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4762. {
  4763. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4764. }
  4765. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4766. void __sched sleep_on(wait_queue_head_t *q)
  4767. {
  4768. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4769. }
  4770. EXPORT_SYMBOL(sleep_on);
  4771. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4772. {
  4773. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4774. }
  4775. EXPORT_SYMBOL(sleep_on_timeout);
  4776. #ifdef CONFIG_RT_MUTEXES
  4777. /*
  4778. * rt_mutex_setprio - set the current priority of a task
  4779. * @p: task
  4780. * @prio: prio value (kernel-internal form)
  4781. *
  4782. * This function changes the 'effective' priority of a task. It does
  4783. * not touch ->normal_prio like __setscheduler().
  4784. *
  4785. * Used by the rt_mutex code to implement priority inheritance logic.
  4786. */
  4787. void rt_mutex_setprio(struct task_struct *p, int prio)
  4788. {
  4789. unsigned long flags;
  4790. int oldprio, on_rq, running;
  4791. struct rq *rq;
  4792. const struct sched_class *prev_class = p->sched_class;
  4793. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4794. rq = task_rq_lock(p, &flags);
  4795. update_rq_clock(rq);
  4796. oldprio = p->prio;
  4797. on_rq = p->se.on_rq;
  4798. running = task_current(rq, p);
  4799. if (on_rq)
  4800. dequeue_task(rq, p, 0);
  4801. if (running)
  4802. p->sched_class->put_prev_task(rq, p);
  4803. if (rt_prio(prio))
  4804. p->sched_class = &rt_sched_class;
  4805. else
  4806. p->sched_class = &fair_sched_class;
  4807. p->prio = prio;
  4808. if (running)
  4809. p->sched_class->set_curr_task(rq);
  4810. if (on_rq) {
  4811. enqueue_task(rq, p, 0);
  4812. check_class_changed(rq, p, prev_class, oldprio, running);
  4813. }
  4814. task_rq_unlock(rq, &flags);
  4815. }
  4816. #endif
  4817. void set_user_nice(struct task_struct *p, long nice)
  4818. {
  4819. int old_prio, delta, on_rq;
  4820. unsigned long flags;
  4821. struct rq *rq;
  4822. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4823. return;
  4824. /*
  4825. * We have to be careful, if called from sys_setpriority(),
  4826. * the task might be in the middle of scheduling on another CPU.
  4827. */
  4828. rq = task_rq_lock(p, &flags);
  4829. update_rq_clock(rq);
  4830. /*
  4831. * The RT priorities are set via sched_setscheduler(), but we still
  4832. * allow the 'normal' nice value to be set - but as expected
  4833. * it wont have any effect on scheduling until the task is
  4834. * SCHED_FIFO/SCHED_RR:
  4835. */
  4836. if (task_has_rt_policy(p)) {
  4837. p->static_prio = NICE_TO_PRIO(nice);
  4838. goto out_unlock;
  4839. }
  4840. on_rq = p->se.on_rq;
  4841. if (on_rq)
  4842. dequeue_task(rq, p, 0);
  4843. p->static_prio = NICE_TO_PRIO(nice);
  4844. set_load_weight(p);
  4845. old_prio = p->prio;
  4846. p->prio = effective_prio(p);
  4847. delta = p->prio - old_prio;
  4848. if (on_rq) {
  4849. enqueue_task(rq, p, 0);
  4850. /*
  4851. * If the task increased its priority or is running and
  4852. * lowered its priority, then reschedule its CPU:
  4853. */
  4854. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4855. resched_task(rq->curr);
  4856. }
  4857. out_unlock:
  4858. task_rq_unlock(rq, &flags);
  4859. }
  4860. EXPORT_SYMBOL(set_user_nice);
  4861. /*
  4862. * can_nice - check if a task can reduce its nice value
  4863. * @p: task
  4864. * @nice: nice value
  4865. */
  4866. int can_nice(const struct task_struct *p, const int nice)
  4867. {
  4868. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4869. int nice_rlim = 20 - nice;
  4870. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4871. capable(CAP_SYS_NICE));
  4872. }
  4873. #ifdef __ARCH_WANT_SYS_NICE
  4874. /*
  4875. * sys_nice - change the priority of the current process.
  4876. * @increment: priority increment
  4877. *
  4878. * sys_setpriority is a more generic, but much slower function that
  4879. * does similar things.
  4880. */
  4881. SYSCALL_DEFINE1(nice, int, increment)
  4882. {
  4883. long nice, retval;
  4884. /*
  4885. * Setpriority might change our priority at the same moment.
  4886. * We don't have to worry. Conceptually one call occurs first
  4887. * and we have a single winner.
  4888. */
  4889. if (increment < -40)
  4890. increment = -40;
  4891. if (increment > 40)
  4892. increment = 40;
  4893. nice = TASK_NICE(current) + increment;
  4894. if (nice < -20)
  4895. nice = -20;
  4896. if (nice > 19)
  4897. nice = 19;
  4898. if (increment < 0 && !can_nice(current, nice))
  4899. return -EPERM;
  4900. retval = security_task_setnice(current, nice);
  4901. if (retval)
  4902. return retval;
  4903. set_user_nice(current, nice);
  4904. return 0;
  4905. }
  4906. #endif
  4907. /**
  4908. * task_prio - return the priority value of a given task.
  4909. * @p: the task in question.
  4910. *
  4911. * This is the priority value as seen by users in /proc.
  4912. * RT tasks are offset by -200. Normal tasks are centered
  4913. * around 0, value goes from -16 to +15.
  4914. */
  4915. int task_prio(const struct task_struct *p)
  4916. {
  4917. return p->prio - MAX_RT_PRIO;
  4918. }
  4919. /**
  4920. * task_nice - return the nice value of a given task.
  4921. * @p: the task in question.
  4922. */
  4923. int task_nice(const struct task_struct *p)
  4924. {
  4925. return TASK_NICE(p);
  4926. }
  4927. EXPORT_SYMBOL(task_nice);
  4928. /**
  4929. * idle_cpu - is a given cpu idle currently?
  4930. * @cpu: the processor in question.
  4931. */
  4932. int idle_cpu(int cpu)
  4933. {
  4934. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4935. }
  4936. /**
  4937. * idle_task - return the idle task for a given cpu.
  4938. * @cpu: the processor in question.
  4939. */
  4940. struct task_struct *idle_task(int cpu)
  4941. {
  4942. return cpu_rq(cpu)->idle;
  4943. }
  4944. /**
  4945. * find_process_by_pid - find a process with a matching PID value.
  4946. * @pid: the pid in question.
  4947. */
  4948. static struct task_struct *find_process_by_pid(pid_t pid)
  4949. {
  4950. return pid ? find_task_by_vpid(pid) : current;
  4951. }
  4952. /* Actually do priority change: must hold rq lock. */
  4953. static void
  4954. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4955. {
  4956. BUG_ON(p->se.on_rq);
  4957. p->policy = policy;
  4958. switch (p->policy) {
  4959. case SCHED_NORMAL:
  4960. case SCHED_BATCH:
  4961. case SCHED_IDLE:
  4962. p->sched_class = &fair_sched_class;
  4963. break;
  4964. case SCHED_FIFO:
  4965. case SCHED_RR:
  4966. p->sched_class = &rt_sched_class;
  4967. break;
  4968. }
  4969. p->rt_priority = prio;
  4970. p->normal_prio = normal_prio(p);
  4971. /* we are holding p->pi_lock already */
  4972. p->prio = rt_mutex_getprio(p);
  4973. set_load_weight(p);
  4974. }
  4975. /*
  4976. * check the target process has a UID that matches the current process's
  4977. */
  4978. static bool check_same_owner(struct task_struct *p)
  4979. {
  4980. const struct cred *cred = current_cred(), *pcred;
  4981. bool match;
  4982. rcu_read_lock();
  4983. pcred = __task_cred(p);
  4984. match = (cred->euid == pcred->euid ||
  4985. cred->euid == pcred->uid);
  4986. rcu_read_unlock();
  4987. return match;
  4988. }
  4989. static int __sched_setscheduler(struct task_struct *p, int policy,
  4990. struct sched_param *param, bool user)
  4991. {
  4992. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4993. unsigned long flags;
  4994. const struct sched_class *prev_class = p->sched_class;
  4995. struct rq *rq;
  4996. /* may grab non-irq protected spin_locks */
  4997. BUG_ON(in_interrupt());
  4998. recheck:
  4999. /* double check policy once rq lock held */
  5000. if (policy < 0)
  5001. policy = oldpolicy = p->policy;
  5002. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5003. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5004. policy != SCHED_IDLE)
  5005. return -EINVAL;
  5006. /*
  5007. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5008. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5009. * SCHED_BATCH and SCHED_IDLE is 0.
  5010. */
  5011. if (param->sched_priority < 0 ||
  5012. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5013. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5014. return -EINVAL;
  5015. if (rt_policy(policy) != (param->sched_priority != 0))
  5016. return -EINVAL;
  5017. /*
  5018. * Allow unprivileged RT tasks to decrease priority:
  5019. */
  5020. if (user && !capable(CAP_SYS_NICE)) {
  5021. if (rt_policy(policy)) {
  5022. unsigned long rlim_rtprio;
  5023. if (!lock_task_sighand(p, &flags))
  5024. return -ESRCH;
  5025. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5026. unlock_task_sighand(p, &flags);
  5027. /* can't set/change the rt policy */
  5028. if (policy != p->policy && !rlim_rtprio)
  5029. return -EPERM;
  5030. /* can't increase priority */
  5031. if (param->sched_priority > p->rt_priority &&
  5032. param->sched_priority > rlim_rtprio)
  5033. return -EPERM;
  5034. }
  5035. /*
  5036. * Like positive nice levels, dont allow tasks to
  5037. * move out of SCHED_IDLE either:
  5038. */
  5039. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5040. return -EPERM;
  5041. /* can't change other user's priorities */
  5042. if (!check_same_owner(p))
  5043. return -EPERM;
  5044. }
  5045. if (user) {
  5046. #ifdef CONFIG_RT_GROUP_SCHED
  5047. /*
  5048. * Do not allow realtime tasks into groups that have no runtime
  5049. * assigned.
  5050. */
  5051. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5052. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5053. return -EPERM;
  5054. #endif
  5055. retval = security_task_setscheduler(p, policy, param);
  5056. if (retval)
  5057. return retval;
  5058. }
  5059. /*
  5060. * make sure no PI-waiters arrive (or leave) while we are
  5061. * changing the priority of the task:
  5062. */
  5063. spin_lock_irqsave(&p->pi_lock, flags);
  5064. /*
  5065. * To be able to change p->policy safely, the apropriate
  5066. * runqueue lock must be held.
  5067. */
  5068. rq = __task_rq_lock(p);
  5069. /* recheck policy now with rq lock held */
  5070. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5071. policy = oldpolicy = -1;
  5072. __task_rq_unlock(rq);
  5073. spin_unlock_irqrestore(&p->pi_lock, flags);
  5074. goto recheck;
  5075. }
  5076. update_rq_clock(rq);
  5077. on_rq = p->se.on_rq;
  5078. running = task_current(rq, p);
  5079. if (on_rq)
  5080. deactivate_task(rq, p, 0);
  5081. if (running)
  5082. p->sched_class->put_prev_task(rq, p);
  5083. oldprio = p->prio;
  5084. __setscheduler(rq, p, policy, param->sched_priority);
  5085. if (running)
  5086. p->sched_class->set_curr_task(rq);
  5087. if (on_rq) {
  5088. activate_task(rq, p, 0);
  5089. check_class_changed(rq, p, prev_class, oldprio, running);
  5090. }
  5091. __task_rq_unlock(rq);
  5092. spin_unlock_irqrestore(&p->pi_lock, flags);
  5093. rt_mutex_adjust_pi(p);
  5094. return 0;
  5095. }
  5096. /**
  5097. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5098. * @p: the task in question.
  5099. * @policy: new policy.
  5100. * @param: structure containing the new RT priority.
  5101. *
  5102. * NOTE that the task may be already dead.
  5103. */
  5104. int sched_setscheduler(struct task_struct *p, int policy,
  5105. struct sched_param *param)
  5106. {
  5107. return __sched_setscheduler(p, policy, param, true);
  5108. }
  5109. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5110. /**
  5111. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5112. * @p: the task in question.
  5113. * @policy: new policy.
  5114. * @param: structure containing the new RT priority.
  5115. *
  5116. * Just like sched_setscheduler, only don't bother checking if the
  5117. * current context has permission. For example, this is needed in
  5118. * stop_machine(): we create temporary high priority worker threads,
  5119. * but our caller might not have that capability.
  5120. */
  5121. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5122. struct sched_param *param)
  5123. {
  5124. return __sched_setscheduler(p, policy, param, false);
  5125. }
  5126. static int
  5127. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5128. {
  5129. struct sched_param lparam;
  5130. struct task_struct *p;
  5131. int retval;
  5132. if (!param || pid < 0)
  5133. return -EINVAL;
  5134. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5135. return -EFAULT;
  5136. rcu_read_lock();
  5137. retval = -ESRCH;
  5138. p = find_process_by_pid(pid);
  5139. if (p != NULL)
  5140. retval = sched_setscheduler(p, policy, &lparam);
  5141. rcu_read_unlock();
  5142. return retval;
  5143. }
  5144. /**
  5145. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5146. * @pid: the pid in question.
  5147. * @policy: new policy.
  5148. * @param: structure containing the new RT priority.
  5149. */
  5150. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5151. struct sched_param __user *, param)
  5152. {
  5153. /* negative values for policy are not valid */
  5154. if (policy < 0)
  5155. return -EINVAL;
  5156. return do_sched_setscheduler(pid, policy, param);
  5157. }
  5158. /**
  5159. * sys_sched_setparam - set/change the RT priority of a thread
  5160. * @pid: the pid in question.
  5161. * @param: structure containing the new RT priority.
  5162. */
  5163. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5164. {
  5165. return do_sched_setscheduler(pid, -1, param);
  5166. }
  5167. /**
  5168. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5169. * @pid: the pid in question.
  5170. */
  5171. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5172. {
  5173. struct task_struct *p;
  5174. int retval;
  5175. if (pid < 0)
  5176. return -EINVAL;
  5177. retval = -ESRCH;
  5178. read_lock(&tasklist_lock);
  5179. p = find_process_by_pid(pid);
  5180. if (p) {
  5181. retval = security_task_getscheduler(p);
  5182. if (!retval)
  5183. retval = p->policy;
  5184. }
  5185. read_unlock(&tasklist_lock);
  5186. return retval;
  5187. }
  5188. /**
  5189. * sys_sched_getscheduler - get the RT priority of a thread
  5190. * @pid: the pid in question.
  5191. * @param: structure containing the RT priority.
  5192. */
  5193. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5194. {
  5195. struct sched_param lp;
  5196. struct task_struct *p;
  5197. int retval;
  5198. if (!param || pid < 0)
  5199. return -EINVAL;
  5200. read_lock(&tasklist_lock);
  5201. p = find_process_by_pid(pid);
  5202. retval = -ESRCH;
  5203. if (!p)
  5204. goto out_unlock;
  5205. retval = security_task_getscheduler(p);
  5206. if (retval)
  5207. goto out_unlock;
  5208. lp.sched_priority = p->rt_priority;
  5209. read_unlock(&tasklist_lock);
  5210. /*
  5211. * This one might sleep, we cannot do it with a spinlock held ...
  5212. */
  5213. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5214. return retval;
  5215. out_unlock:
  5216. read_unlock(&tasklist_lock);
  5217. return retval;
  5218. }
  5219. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5220. {
  5221. cpumask_var_t cpus_allowed, new_mask;
  5222. struct task_struct *p;
  5223. int retval;
  5224. get_online_cpus();
  5225. read_lock(&tasklist_lock);
  5226. p = find_process_by_pid(pid);
  5227. if (!p) {
  5228. read_unlock(&tasklist_lock);
  5229. put_online_cpus();
  5230. return -ESRCH;
  5231. }
  5232. /*
  5233. * It is not safe to call set_cpus_allowed with the
  5234. * tasklist_lock held. We will bump the task_struct's
  5235. * usage count and then drop tasklist_lock.
  5236. */
  5237. get_task_struct(p);
  5238. read_unlock(&tasklist_lock);
  5239. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5240. retval = -ENOMEM;
  5241. goto out_put_task;
  5242. }
  5243. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5244. retval = -ENOMEM;
  5245. goto out_free_cpus_allowed;
  5246. }
  5247. retval = -EPERM;
  5248. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5249. goto out_unlock;
  5250. retval = security_task_setscheduler(p, 0, NULL);
  5251. if (retval)
  5252. goto out_unlock;
  5253. cpuset_cpus_allowed(p, cpus_allowed);
  5254. cpumask_and(new_mask, in_mask, cpus_allowed);
  5255. again:
  5256. retval = set_cpus_allowed_ptr(p, new_mask);
  5257. if (!retval) {
  5258. cpuset_cpus_allowed(p, cpus_allowed);
  5259. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5260. /*
  5261. * We must have raced with a concurrent cpuset
  5262. * update. Just reset the cpus_allowed to the
  5263. * cpuset's cpus_allowed
  5264. */
  5265. cpumask_copy(new_mask, cpus_allowed);
  5266. goto again;
  5267. }
  5268. }
  5269. out_unlock:
  5270. free_cpumask_var(new_mask);
  5271. out_free_cpus_allowed:
  5272. free_cpumask_var(cpus_allowed);
  5273. out_put_task:
  5274. put_task_struct(p);
  5275. put_online_cpus();
  5276. return retval;
  5277. }
  5278. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5279. struct cpumask *new_mask)
  5280. {
  5281. if (len < cpumask_size())
  5282. cpumask_clear(new_mask);
  5283. else if (len > cpumask_size())
  5284. len = cpumask_size();
  5285. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5286. }
  5287. /**
  5288. * sys_sched_setaffinity - set the cpu affinity of a process
  5289. * @pid: pid of the process
  5290. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5291. * @user_mask_ptr: user-space pointer to the new cpu mask
  5292. */
  5293. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5294. unsigned long __user *, user_mask_ptr)
  5295. {
  5296. cpumask_var_t new_mask;
  5297. int retval;
  5298. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5299. return -ENOMEM;
  5300. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5301. if (retval == 0)
  5302. retval = sched_setaffinity(pid, new_mask);
  5303. free_cpumask_var(new_mask);
  5304. return retval;
  5305. }
  5306. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5307. {
  5308. struct task_struct *p;
  5309. int retval;
  5310. get_online_cpus();
  5311. read_lock(&tasklist_lock);
  5312. retval = -ESRCH;
  5313. p = find_process_by_pid(pid);
  5314. if (!p)
  5315. goto out_unlock;
  5316. retval = security_task_getscheduler(p);
  5317. if (retval)
  5318. goto out_unlock;
  5319. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5320. out_unlock:
  5321. read_unlock(&tasklist_lock);
  5322. put_online_cpus();
  5323. return retval;
  5324. }
  5325. /**
  5326. * sys_sched_getaffinity - get the cpu affinity of a process
  5327. * @pid: pid of the process
  5328. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5329. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5330. */
  5331. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5332. unsigned long __user *, user_mask_ptr)
  5333. {
  5334. int ret;
  5335. cpumask_var_t mask;
  5336. if (len < cpumask_size())
  5337. return -EINVAL;
  5338. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5339. return -ENOMEM;
  5340. ret = sched_getaffinity(pid, mask);
  5341. if (ret == 0) {
  5342. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5343. ret = -EFAULT;
  5344. else
  5345. ret = cpumask_size();
  5346. }
  5347. free_cpumask_var(mask);
  5348. return ret;
  5349. }
  5350. /**
  5351. * sys_sched_yield - yield the current processor to other threads.
  5352. *
  5353. * This function yields the current CPU to other tasks. If there are no
  5354. * other threads running on this CPU then this function will return.
  5355. */
  5356. SYSCALL_DEFINE0(sched_yield)
  5357. {
  5358. struct rq *rq = this_rq_lock();
  5359. schedstat_inc(rq, yld_count);
  5360. current->sched_class->yield_task(rq);
  5361. /*
  5362. * Since we are going to call schedule() anyway, there's
  5363. * no need to preempt or enable interrupts:
  5364. */
  5365. __release(rq->lock);
  5366. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5367. _raw_spin_unlock(&rq->lock);
  5368. preempt_enable_no_resched();
  5369. schedule();
  5370. return 0;
  5371. }
  5372. static void __cond_resched(void)
  5373. {
  5374. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5375. __might_sleep(__FILE__, __LINE__);
  5376. #endif
  5377. /*
  5378. * The BKS might be reacquired before we have dropped
  5379. * PREEMPT_ACTIVE, which could trigger a second
  5380. * cond_resched() call.
  5381. */
  5382. do {
  5383. add_preempt_count(PREEMPT_ACTIVE);
  5384. schedule();
  5385. sub_preempt_count(PREEMPT_ACTIVE);
  5386. } while (need_resched());
  5387. }
  5388. int __sched _cond_resched(void)
  5389. {
  5390. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5391. system_state == SYSTEM_RUNNING) {
  5392. __cond_resched();
  5393. return 1;
  5394. }
  5395. return 0;
  5396. }
  5397. EXPORT_SYMBOL(_cond_resched);
  5398. /*
  5399. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5400. * call schedule, and on return reacquire the lock.
  5401. *
  5402. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5403. * operations here to prevent schedule() from being called twice (once via
  5404. * spin_unlock(), once by hand).
  5405. */
  5406. int cond_resched_lock(spinlock_t *lock)
  5407. {
  5408. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5409. int ret = 0;
  5410. if (spin_needbreak(lock) || resched) {
  5411. spin_unlock(lock);
  5412. if (resched && need_resched())
  5413. __cond_resched();
  5414. else
  5415. cpu_relax();
  5416. ret = 1;
  5417. spin_lock(lock);
  5418. }
  5419. return ret;
  5420. }
  5421. EXPORT_SYMBOL(cond_resched_lock);
  5422. int __sched cond_resched_softirq(void)
  5423. {
  5424. BUG_ON(!in_softirq());
  5425. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5426. local_bh_enable();
  5427. __cond_resched();
  5428. local_bh_disable();
  5429. return 1;
  5430. }
  5431. return 0;
  5432. }
  5433. EXPORT_SYMBOL(cond_resched_softirq);
  5434. /**
  5435. * yield - yield the current processor to other threads.
  5436. *
  5437. * This is a shortcut for kernel-space yielding - it marks the
  5438. * thread runnable and calls sys_sched_yield().
  5439. */
  5440. void __sched yield(void)
  5441. {
  5442. set_current_state(TASK_RUNNING);
  5443. sys_sched_yield();
  5444. }
  5445. EXPORT_SYMBOL(yield);
  5446. /*
  5447. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5448. * that process accounting knows that this is a task in IO wait state.
  5449. *
  5450. * But don't do that if it is a deliberate, throttling IO wait (this task
  5451. * has set its backing_dev_info: the queue against which it should throttle)
  5452. */
  5453. void __sched io_schedule(void)
  5454. {
  5455. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5456. delayacct_blkio_start();
  5457. atomic_inc(&rq->nr_iowait);
  5458. schedule();
  5459. atomic_dec(&rq->nr_iowait);
  5460. delayacct_blkio_end();
  5461. }
  5462. EXPORT_SYMBOL(io_schedule);
  5463. long __sched io_schedule_timeout(long timeout)
  5464. {
  5465. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5466. long ret;
  5467. delayacct_blkio_start();
  5468. atomic_inc(&rq->nr_iowait);
  5469. ret = schedule_timeout(timeout);
  5470. atomic_dec(&rq->nr_iowait);
  5471. delayacct_blkio_end();
  5472. return ret;
  5473. }
  5474. /**
  5475. * sys_sched_get_priority_max - return maximum RT priority.
  5476. * @policy: scheduling class.
  5477. *
  5478. * this syscall returns the maximum rt_priority that can be used
  5479. * by a given scheduling class.
  5480. */
  5481. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5482. {
  5483. int ret = -EINVAL;
  5484. switch (policy) {
  5485. case SCHED_FIFO:
  5486. case SCHED_RR:
  5487. ret = MAX_USER_RT_PRIO-1;
  5488. break;
  5489. case SCHED_NORMAL:
  5490. case SCHED_BATCH:
  5491. case SCHED_IDLE:
  5492. ret = 0;
  5493. break;
  5494. }
  5495. return ret;
  5496. }
  5497. /**
  5498. * sys_sched_get_priority_min - return minimum RT priority.
  5499. * @policy: scheduling class.
  5500. *
  5501. * this syscall returns the minimum rt_priority that can be used
  5502. * by a given scheduling class.
  5503. */
  5504. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5505. {
  5506. int ret = -EINVAL;
  5507. switch (policy) {
  5508. case SCHED_FIFO:
  5509. case SCHED_RR:
  5510. ret = 1;
  5511. break;
  5512. case SCHED_NORMAL:
  5513. case SCHED_BATCH:
  5514. case SCHED_IDLE:
  5515. ret = 0;
  5516. }
  5517. return ret;
  5518. }
  5519. /**
  5520. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5521. * @pid: pid of the process.
  5522. * @interval: userspace pointer to the timeslice value.
  5523. *
  5524. * this syscall writes the default timeslice value of a given process
  5525. * into the user-space timespec buffer. A value of '0' means infinity.
  5526. */
  5527. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5528. struct timespec __user *, interval)
  5529. {
  5530. struct task_struct *p;
  5531. unsigned int time_slice;
  5532. int retval;
  5533. struct timespec t;
  5534. if (pid < 0)
  5535. return -EINVAL;
  5536. retval = -ESRCH;
  5537. read_lock(&tasklist_lock);
  5538. p = find_process_by_pid(pid);
  5539. if (!p)
  5540. goto out_unlock;
  5541. retval = security_task_getscheduler(p);
  5542. if (retval)
  5543. goto out_unlock;
  5544. /*
  5545. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5546. * tasks that are on an otherwise idle runqueue:
  5547. */
  5548. time_slice = 0;
  5549. if (p->policy == SCHED_RR) {
  5550. time_slice = DEF_TIMESLICE;
  5551. } else if (p->policy != SCHED_FIFO) {
  5552. struct sched_entity *se = &p->se;
  5553. unsigned long flags;
  5554. struct rq *rq;
  5555. rq = task_rq_lock(p, &flags);
  5556. if (rq->cfs.load.weight)
  5557. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5558. task_rq_unlock(rq, &flags);
  5559. }
  5560. read_unlock(&tasklist_lock);
  5561. jiffies_to_timespec(time_slice, &t);
  5562. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5563. return retval;
  5564. out_unlock:
  5565. read_unlock(&tasklist_lock);
  5566. return retval;
  5567. }
  5568. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5569. void sched_show_task(struct task_struct *p)
  5570. {
  5571. unsigned long free = 0;
  5572. unsigned state;
  5573. state = p->state ? __ffs(p->state) + 1 : 0;
  5574. printk(KERN_INFO "%-13.13s %c", p->comm,
  5575. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5576. #if BITS_PER_LONG == 32
  5577. if (state == TASK_RUNNING)
  5578. printk(KERN_CONT " running ");
  5579. else
  5580. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5581. #else
  5582. if (state == TASK_RUNNING)
  5583. printk(KERN_CONT " running task ");
  5584. else
  5585. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5586. #endif
  5587. #ifdef CONFIG_DEBUG_STACK_USAGE
  5588. free = stack_not_used(p);
  5589. #endif
  5590. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5591. task_pid_nr(p), task_pid_nr(p->real_parent));
  5592. show_stack(p, NULL);
  5593. }
  5594. void show_state_filter(unsigned long state_filter)
  5595. {
  5596. struct task_struct *g, *p;
  5597. #if BITS_PER_LONG == 32
  5598. printk(KERN_INFO
  5599. " task PC stack pid father\n");
  5600. #else
  5601. printk(KERN_INFO
  5602. " task PC stack pid father\n");
  5603. #endif
  5604. read_lock(&tasklist_lock);
  5605. do_each_thread(g, p) {
  5606. /*
  5607. * reset the NMI-timeout, listing all files on a slow
  5608. * console might take alot of time:
  5609. */
  5610. touch_nmi_watchdog();
  5611. if (!state_filter || (p->state & state_filter))
  5612. sched_show_task(p);
  5613. } while_each_thread(g, p);
  5614. touch_all_softlockup_watchdogs();
  5615. #ifdef CONFIG_SCHED_DEBUG
  5616. sysrq_sched_debug_show();
  5617. #endif
  5618. read_unlock(&tasklist_lock);
  5619. /*
  5620. * Only show locks if all tasks are dumped:
  5621. */
  5622. if (state_filter == -1)
  5623. debug_show_all_locks();
  5624. }
  5625. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5626. {
  5627. idle->sched_class = &idle_sched_class;
  5628. }
  5629. /**
  5630. * init_idle - set up an idle thread for a given CPU
  5631. * @idle: task in question
  5632. * @cpu: cpu the idle task belongs to
  5633. *
  5634. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5635. * flag, to make booting more robust.
  5636. */
  5637. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5638. {
  5639. struct rq *rq = cpu_rq(cpu);
  5640. unsigned long flags;
  5641. spin_lock_irqsave(&rq->lock, flags);
  5642. __sched_fork(idle);
  5643. idle->se.exec_start = sched_clock();
  5644. idle->prio = idle->normal_prio = MAX_PRIO;
  5645. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5646. __set_task_cpu(idle, cpu);
  5647. rq->curr = rq->idle = idle;
  5648. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5649. idle->oncpu = 1;
  5650. #endif
  5651. spin_unlock_irqrestore(&rq->lock, flags);
  5652. /* Set the preempt count _outside_ the spinlocks! */
  5653. #if defined(CONFIG_PREEMPT)
  5654. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5655. #else
  5656. task_thread_info(idle)->preempt_count = 0;
  5657. #endif
  5658. /*
  5659. * The idle tasks have their own, simple scheduling class:
  5660. */
  5661. idle->sched_class = &idle_sched_class;
  5662. ftrace_graph_init_task(idle);
  5663. }
  5664. /*
  5665. * In a system that switches off the HZ timer nohz_cpu_mask
  5666. * indicates which cpus entered this state. This is used
  5667. * in the rcu update to wait only for active cpus. For system
  5668. * which do not switch off the HZ timer nohz_cpu_mask should
  5669. * always be CPU_BITS_NONE.
  5670. */
  5671. cpumask_var_t nohz_cpu_mask;
  5672. /*
  5673. * Increase the granularity value when there are more CPUs,
  5674. * because with more CPUs the 'effective latency' as visible
  5675. * to users decreases. But the relationship is not linear,
  5676. * so pick a second-best guess by going with the log2 of the
  5677. * number of CPUs.
  5678. *
  5679. * This idea comes from the SD scheduler of Con Kolivas:
  5680. */
  5681. static inline void sched_init_granularity(void)
  5682. {
  5683. unsigned int factor = 1 + ilog2(num_online_cpus());
  5684. const unsigned long limit = 200000000;
  5685. sysctl_sched_min_granularity *= factor;
  5686. if (sysctl_sched_min_granularity > limit)
  5687. sysctl_sched_min_granularity = limit;
  5688. sysctl_sched_latency *= factor;
  5689. if (sysctl_sched_latency > limit)
  5690. sysctl_sched_latency = limit;
  5691. sysctl_sched_wakeup_granularity *= factor;
  5692. sysctl_sched_shares_ratelimit *= factor;
  5693. }
  5694. #ifdef CONFIG_SMP
  5695. /*
  5696. * This is how migration works:
  5697. *
  5698. * 1) we queue a struct migration_req structure in the source CPU's
  5699. * runqueue and wake up that CPU's migration thread.
  5700. * 2) we down() the locked semaphore => thread blocks.
  5701. * 3) migration thread wakes up (implicitly it forces the migrated
  5702. * thread off the CPU)
  5703. * 4) it gets the migration request and checks whether the migrated
  5704. * task is still in the wrong runqueue.
  5705. * 5) if it's in the wrong runqueue then the migration thread removes
  5706. * it and puts it into the right queue.
  5707. * 6) migration thread up()s the semaphore.
  5708. * 7) we wake up and the migration is done.
  5709. */
  5710. /*
  5711. * Change a given task's CPU affinity. Migrate the thread to a
  5712. * proper CPU and schedule it away if the CPU it's executing on
  5713. * is removed from the allowed bitmask.
  5714. *
  5715. * NOTE: the caller must have a valid reference to the task, the
  5716. * task must not exit() & deallocate itself prematurely. The
  5717. * call is not atomic; no spinlocks may be held.
  5718. */
  5719. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5720. {
  5721. struct migration_req req;
  5722. unsigned long flags;
  5723. struct rq *rq;
  5724. int ret = 0;
  5725. rq = task_rq_lock(p, &flags);
  5726. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5727. ret = -EINVAL;
  5728. goto out;
  5729. }
  5730. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5731. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5732. ret = -EINVAL;
  5733. goto out;
  5734. }
  5735. if (p->sched_class->set_cpus_allowed)
  5736. p->sched_class->set_cpus_allowed(p, new_mask);
  5737. else {
  5738. cpumask_copy(&p->cpus_allowed, new_mask);
  5739. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5740. }
  5741. /* Can the task run on the task's current CPU? If so, we're done */
  5742. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5743. goto out;
  5744. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5745. /* Need help from migration thread: drop lock and wait. */
  5746. task_rq_unlock(rq, &flags);
  5747. wake_up_process(rq->migration_thread);
  5748. wait_for_completion(&req.done);
  5749. tlb_migrate_finish(p->mm);
  5750. return 0;
  5751. }
  5752. out:
  5753. task_rq_unlock(rq, &flags);
  5754. return ret;
  5755. }
  5756. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5757. /*
  5758. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5759. * this because either it can't run here any more (set_cpus_allowed()
  5760. * away from this CPU, or CPU going down), or because we're
  5761. * attempting to rebalance this task on exec (sched_exec).
  5762. *
  5763. * So we race with normal scheduler movements, but that's OK, as long
  5764. * as the task is no longer on this CPU.
  5765. *
  5766. * Returns non-zero if task was successfully migrated.
  5767. */
  5768. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5769. {
  5770. struct rq *rq_dest, *rq_src;
  5771. int ret = 0, on_rq;
  5772. if (unlikely(!cpu_active(dest_cpu)))
  5773. return ret;
  5774. rq_src = cpu_rq(src_cpu);
  5775. rq_dest = cpu_rq(dest_cpu);
  5776. double_rq_lock(rq_src, rq_dest);
  5777. /* Already moved. */
  5778. if (task_cpu(p) != src_cpu)
  5779. goto done;
  5780. /* Affinity changed (again). */
  5781. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5782. goto fail;
  5783. on_rq = p->se.on_rq;
  5784. if (on_rq)
  5785. deactivate_task(rq_src, p, 0);
  5786. set_task_cpu(p, dest_cpu);
  5787. if (on_rq) {
  5788. activate_task(rq_dest, p, 0);
  5789. check_preempt_curr(rq_dest, p, 0);
  5790. }
  5791. done:
  5792. ret = 1;
  5793. fail:
  5794. double_rq_unlock(rq_src, rq_dest);
  5795. return ret;
  5796. }
  5797. /*
  5798. * migration_thread - this is a highprio system thread that performs
  5799. * thread migration by bumping thread off CPU then 'pushing' onto
  5800. * another runqueue.
  5801. */
  5802. static int migration_thread(void *data)
  5803. {
  5804. int cpu = (long)data;
  5805. struct rq *rq;
  5806. rq = cpu_rq(cpu);
  5807. BUG_ON(rq->migration_thread != current);
  5808. set_current_state(TASK_INTERRUPTIBLE);
  5809. while (!kthread_should_stop()) {
  5810. struct migration_req *req;
  5811. struct list_head *head;
  5812. spin_lock_irq(&rq->lock);
  5813. if (cpu_is_offline(cpu)) {
  5814. spin_unlock_irq(&rq->lock);
  5815. goto wait_to_die;
  5816. }
  5817. if (rq->active_balance) {
  5818. active_load_balance(rq, cpu);
  5819. rq->active_balance = 0;
  5820. }
  5821. head = &rq->migration_queue;
  5822. if (list_empty(head)) {
  5823. spin_unlock_irq(&rq->lock);
  5824. schedule();
  5825. set_current_state(TASK_INTERRUPTIBLE);
  5826. continue;
  5827. }
  5828. req = list_entry(head->next, struct migration_req, list);
  5829. list_del_init(head->next);
  5830. spin_unlock(&rq->lock);
  5831. __migrate_task(req->task, cpu, req->dest_cpu);
  5832. local_irq_enable();
  5833. complete(&req->done);
  5834. }
  5835. __set_current_state(TASK_RUNNING);
  5836. return 0;
  5837. wait_to_die:
  5838. /* Wait for kthread_stop */
  5839. set_current_state(TASK_INTERRUPTIBLE);
  5840. while (!kthread_should_stop()) {
  5841. schedule();
  5842. set_current_state(TASK_INTERRUPTIBLE);
  5843. }
  5844. __set_current_state(TASK_RUNNING);
  5845. return 0;
  5846. }
  5847. #ifdef CONFIG_HOTPLUG_CPU
  5848. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5849. {
  5850. int ret;
  5851. local_irq_disable();
  5852. ret = __migrate_task(p, src_cpu, dest_cpu);
  5853. local_irq_enable();
  5854. return ret;
  5855. }
  5856. /*
  5857. * Figure out where task on dead CPU should go, use force if necessary.
  5858. */
  5859. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5860. {
  5861. int dest_cpu;
  5862. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5863. again:
  5864. /* Look for allowed, online CPU in same node. */
  5865. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5866. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5867. goto move;
  5868. /* Any allowed, online CPU? */
  5869. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5870. if (dest_cpu < nr_cpu_ids)
  5871. goto move;
  5872. /* No more Mr. Nice Guy. */
  5873. if (dest_cpu >= nr_cpu_ids) {
  5874. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5875. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5876. /*
  5877. * Don't tell them about moving exiting tasks or
  5878. * kernel threads (both mm NULL), since they never
  5879. * leave kernel.
  5880. */
  5881. if (p->mm && printk_ratelimit()) {
  5882. printk(KERN_INFO "process %d (%s) no "
  5883. "longer affine to cpu%d\n",
  5884. task_pid_nr(p), p->comm, dead_cpu);
  5885. }
  5886. }
  5887. move:
  5888. /* It can have affinity changed while we were choosing. */
  5889. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5890. goto again;
  5891. }
  5892. /*
  5893. * While a dead CPU has no uninterruptible tasks queued at this point,
  5894. * it might still have a nonzero ->nr_uninterruptible counter, because
  5895. * for performance reasons the counter is not stricly tracking tasks to
  5896. * their home CPUs. So we just add the counter to another CPU's counter,
  5897. * to keep the global sum constant after CPU-down:
  5898. */
  5899. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5900. {
  5901. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5902. unsigned long flags;
  5903. local_irq_save(flags);
  5904. double_rq_lock(rq_src, rq_dest);
  5905. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5906. rq_src->nr_uninterruptible = 0;
  5907. double_rq_unlock(rq_src, rq_dest);
  5908. local_irq_restore(flags);
  5909. }
  5910. /* Run through task list and migrate tasks from the dead cpu. */
  5911. static void migrate_live_tasks(int src_cpu)
  5912. {
  5913. struct task_struct *p, *t;
  5914. read_lock(&tasklist_lock);
  5915. do_each_thread(t, p) {
  5916. if (p == current)
  5917. continue;
  5918. if (task_cpu(p) == src_cpu)
  5919. move_task_off_dead_cpu(src_cpu, p);
  5920. } while_each_thread(t, p);
  5921. read_unlock(&tasklist_lock);
  5922. }
  5923. /*
  5924. * Schedules idle task to be the next runnable task on current CPU.
  5925. * It does so by boosting its priority to highest possible.
  5926. * Used by CPU offline code.
  5927. */
  5928. void sched_idle_next(void)
  5929. {
  5930. int this_cpu = smp_processor_id();
  5931. struct rq *rq = cpu_rq(this_cpu);
  5932. struct task_struct *p = rq->idle;
  5933. unsigned long flags;
  5934. /* cpu has to be offline */
  5935. BUG_ON(cpu_online(this_cpu));
  5936. /*
  5937. * Strictly not necessary since rest of the CPUs are stopped by now
  5938. * and interrupts disabled on the current cpu.
  5939. */
  5940. spin_lock_irqsave(&rq->lock, flags);
  5941. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5942. update_rq_clock(rq);
  5943. activate_task(rq, p, 0);
  5944. spin_unlock_irqrestore(&rq->lock, flags);
  5945. }
  5946. /*
  5947. * Ensures that the idle task is using init_mm right before its cpu goes
  5948. * offline.
  5949. */
  5950. void idle_task_exit(void)
  5951. {
  5952. struct mm_struct *mm = current->active_mm;
  5953. BUG_ON(cpu_online(smp_processor_id()));
  5954. if (mm != &init_mm)
  5955. switch_mm(mm, &init_mm, current);
  5956. mmdrop(mm);
  5957. }
  5958. /* called under rq->lock with disabled interrupts */
  5959. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5960. {
  5961. struct rq *rq = cpu_rq(dead_cpu);
  5962. /* Must be exiting, otherwise would be on tasklist. */
  5963. BUG_ON(!p->exit_state);
  5964. /* Cannot have done final schedule yet: would have vanished. */
  5965. BUG_ON(p->state == TASK_DEAD);
  5966. get_task_struct(p);
  5967. /*
  5968. * Drop lock around migration; if someone else moves it,
  5969. * that's OK. No task can be added to this CPU, so iteration is
  5970. * fine.
  5971. */
  5972. spin_unlock_irq(&rq->lock);
  5973. move_task_off_dead_cpu(dead_cpu, p);
  5974. spin_lock_irq(&rq->lock);
  5975. put_task_struct(p);
  5976. }
  5977. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5978. static void migrate_dead_tasks(unsigned int dead_cpu)
  5979. {
  5980. struct rq *rq = cpu_rq(dead_cpu);
  5981. struct task_struct *next;
  5982. for ( ; ; ) {
  5983. if (!rq->nr_running)
  5984. break;
  5985. update_rq_clock(rq);
  5986. next = pick_next_task(rq);
  5987. if (!next)
  5988. break;
  5989. next->sched_class->put_prev_task(rq, next);
  5990. migrate_dead(dead_cpu, next);
  5991. }
  5992. }
  5993. #endif /* CONFIG_HOTPLUG_CPU */
  5994. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5995. static struct ctl_table sd_ctl_dir[] = {
  5996. {
  5997. .procname = "sched_domain",
  5998. .mode = 0555,
  5999. },
  6000. {0, },
  6001. };
  6002. static struct ctl_table sd_ctl_root[] = {
  6003. {
  6004. .ctl_name = CTL_KERN,
  6005. .procname = "kernel",
  6006. .mode = 0555,
  6007. .child = sd_ctl_dir,
  6008. },
  6009. {0, },
  6010. };
  6011. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6012. {
  6013. struct ctl_table *entry =
  6014. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6015. return entry;
  6016. }
  6017. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6018. {
  6019. struct ctl_table *entry;
  6020. /*
  6021. * In the intermediate directories, both the child directory and
  6022. * procname are dynamically allocated and could fail but the mode
  6023. * will always be set. In the lowest directory the names are
  6024. * static strings and all have proc handlers.
  6025. */
  6026. for (entry = *tablep; entry->mode; entry++) {
  6027. if (entry->child)
  6028. sd_free_ctl_entry(&entry->child);
  6029. if (entry->proc_handler == NULL)
  6030. kfree(entry->procname);
  6031. }
  6032. kfree(*tablep);
  6033. *tablep = NULL;
  6034. }
  6035. static void
  6036. set_table_entry(struct ctl_table *entry,
  6037. const char *procname, void *data, int maxlen,
  6038. mode_t mode, proc_handler *proc_handler)
  6039. {
  6040. entry->procname = procname;
  6041. entry->data = data;
  6042. entry->maxlen = maxlen;
  6043. entry->mode = mode;
  6044. entry->proc_handler = proc_handler;
  6045. }
  6046. static struct ctl_table *
  6047. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6048. {
  6049. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6050. if (table == NULL)
  6051. return NULL;
  6052. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6053. sizeof(long), 0644, proc_doulongvec_minmax);
  6054. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6055. sizeof(long), 0644, proc_doulongvec_minmax);
  6056. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6057. sizeof(int), 0644, proc_dointvec_minmax);
  6058. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6059. sizeof(int), 0644, proc_dointvec_minmax);
  6060. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6061. sizeof(int), 0644, proc_dointvec_minmax);
  6062. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6063. sizeof(int), 0644, proc_dointvec_minmax);
  6064. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6065. sizeof(int), 0644, proc_dointvec_minmax);
  6066. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6067. sizeof(int), 0644, proc_dointvec_minmax);
  6068. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6069. sizeof(int), 0644, proc_dointvec_minmax);
  6070. set_table_entry(&table[9], "cache_nice_tries",
  6071. &sd->cache_nice_tries,
  6072. sizeof(int), 0644, proc_dointvec_minmax);
  6073. set_table_entry(&table[10], "flags", &sd->flags,
  6074. sizeof(int), 0644, proc_dointvec_minmax);
  6075. set_table_entry(&table[11], "name", sd->name,
  6076. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6077. /* &table[12] is terminator */
  6078. return table;
  6079. }
  6080. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6081. {
  6082. struct ctl_table *entry, *table;
  6083. struct sched_domain *sd;
  6084. int domain_num = 0, i;
  6085. char buf[32];
  6086. for_each_domain(cpu, sd)
  6087. domain_num++;
  6088. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6089. if (table == NULL)
  6090. return NULL;
  6091. i = 0;
  6092. for_each_domain(cpu, sd) {
  6093. snprintf(buf, 32, "domain%d", i);
  6094. entry->procname = kstrdup(buf, GFP_KERNEL);
  6095. entry->mode = 0555;
  6096. entry->child = sd_alloc_ctl_domain_table(sd);
  6097. entry++;
  6098. i++;
  6099. }
  6100. return table;
  6101. }
  6102. static struct ctl_table_header *sd_sysctl_header;
  6103. static void register_sched_domain_sysctl(void)
  6104. {
  6105. int i, cpu_num = num_online_cpus();
  6106. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6107. char buf[32];
  6108. WARN_ON(sd_ctl_dir[0].child);
  6109. sd_ctl_dir[0].child = entry;
  6110. if (entry == NULL)
  6111. return;
  6112. for_each_online_cpu(i) {
  6113. snprintf(buf, 32, "cpu%d", i);
  6114. entry->procname = kstrdup(buf, GFP_KERNEL);
  6115. entry->mode = 0555;
  6116. entry->child = sd_alloc_ctl_cpu_table(i);
  6117. entry++;
  6118. }
  6119. WARN_ON(sd_sysctl_header);
  6120. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6121. }
  6122. /* may be called multiple times per register */
  6123. static void unregister_sched_domain_sysctl(void)
  6124. {
  6125. if (sd_sysctl_header)
  6126. unregister_sysctl_table(sd_sysctl_header);
  6127. sd_sysctl_header = NULL;
  6128. if (sd_ctl_dir[0].child)
  6129. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6130. }
  6131. #else
  6132. static void register_sched_domain_sysctl(void)
  6133. {
  6134. }
  6135. static void unregister_sched_domain_sysctl(void)
  6136. {
  6137. }
  6138. #endif
  6139. static void set_rq_online(struct rq *rq)
  6140. {
  6141. if (!rq->online) {
  6142. const struct sched_class *class;
  6143. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6144. rq->online = 1;
  6145. for_each_class(class) {
  6146. if (class->rq_online)
  6147. class->rq_online(rq);
  6148. }
  6149. }
  6150. }
  6151. static void set_rq_offline(struct rq *rq)
  6152. {
  6153. if (rq->online) {
  6154. const struct sched_class *class;
  6155. for_each_class(class) {
  6156. if (class->rq_offline)
  6157. class->rq_offline(rq);
  6158. }
  6159. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6160. rq->online = 0;
  6161. }
  6162. }
  6163. /*
  6164. * migration_call - callback that gets triggered when a CPU is added.
  6165. * Here we can start up the necessary migration thread for the new CPU.
  6166. */
  6167. static int __cpuinit
  6168. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6169. {
  6170. struct task_struct *p;
  6171. int cpu = (long)hcpu;
  6172. unsigned long flags;
  6173. struct rq *rq;
  6174. switch (action) {
  6175. case CPU_UP_PREPARE:
  6176. case CPU_UP_PREPARE_FROZEN:
  6177. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6178. if (IS_ERR(p))
  6179. return NOTIFY_BAD;
  6180. kthread_bind(p, cpu);
  6181. /* Must be high prio: stop_machine expects to yield to it. */
  6182. rq = task_rq_lock(p, &flags);
  6183. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6184. task_rq_unlock(rq, &flags);
  6185. cpu_rq(cpu)->migration_thread = p;
  6186. break;
  6187. case CPU_ONLINE:
  6188. case CPU_ONLINE_FROZEN:
  6189. /* Strictly unnecessary, as first user will wake it. */
  6190. wake_up_process(cpu_rq(cpu)->migration_thread);
  6191. /* Update our root-domain */
  6192. rq = cpu_rq(cpu);
  6193. spin_lock_irqsave(&rq->lock, flags);
  6194. if (rq->rd) {
  6195. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6196. set_rq_online(rq);
  6197. }
  6198. spin_unlock_irqrestore(&rq->lock, flags);
  6199. break;
  6200. #ifdef CONFIG_HOTPLUG_CPU
  6201. case CPU_UP_CANCELED:
  6202. case CPU_UP_CANCELED_FROZEN:
  6203. if (!cpu_rq(cpu)->migration_thread)
  6204. break;
  6205. /* Unbind it from offline cpu so it can run. Fall thru. */
  6206. kthread_bind(cpu_rq(cpu)->migration_thread,
  6207. cpumask_any(cpu_online_mask));
  6208. kthread_stop(cpu_rq(cpu)->migration_thread);
  6209. cpu_rq(cpu)->migration_thread = NULL;
  6210. break;
  6211. case CPU_DEAD:
  6212. case CPU_DEAD_FROZEN:
  6213. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6214. migrate_live_tasks(cpu);
  6215. rq = cpu_rq(cpu);
  6216. kthread_stop(rq->migration_thread);
  6217. rq->migration_thread = NULL;
  6218. /* Idle task back to normal (off runqueue, low prio) */
  6219. spin_lock_irq(&rq->lock);
  6220. update_rq_clock(rq);
  6221. deactivate_task(rq, rq->idle, 0);
  6222. rq->idle->static_prio = MAX_PRIO;
  6223. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6224. rq->idle->sched_class = &idle_sched_class;
  6225. migrate_dead_tasks(cpu);
  6226. spin_unlock_irq(&rq->lock);
  6227. cpuset_unlock();
  6228. migrate_nr_uninterruptible(rq);
  6229. BUG_ON(rq->nr_running != 0);
  6230. /*
  6231. * No need to migrate the tasks: it was best-effort if
  6232. * they didn't take sched_hotcpu_mutex. Just wake up
  6233. * the requestors.
  6234. */
  6235. spin_lock_irq(&rq->lock);
  6236. while (!list_empty(&rq->migration_queue)) {
  6237. struct migration_req *req;
  6238. req = list_entry(rq->migration_queue.next,
  6239. struct migration_req, list);
  6240. list_del_init(&req->list);
  6241. spin_unlock_irq(&rq->lock);
  6242. complete(&req->done);
  6243. spin_lock_irq(&rq->lock);
  6244. }
  6245. spin_unlock_irq(&rq->lock);
  6246. break;
  6247. case CPU_DYING:
  6248. case CPU_DYING_FROZEN:
  6249. /* Update our root-domain */
  6250. rq = cpu_rq(cpu);
  6251. spin_lock_irqsave(&rq->lock, flags);
  6252. if (rq->rd) {
  6253. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6254. set_rq_offline(rq);
  6255. }
  6256. spin_unlock_irqrestore(&rq->lock, flags);
  6257. break;
  6258. #endif
  6259. }
  6260. return NOTIFY_OK;
  6261. }
  6262. /* Register at highest priority so that task migration (migrate_all_tasks)
  6263. * happens before everything else.
  6264. */
  6265. static struct notifier_block __cpuinitdata migration_notifier = {
  6266. .notifier_call = migration_call,
  6267. .priority = 10
  6268. };
  6269. static int __init migration_init(void)
  6270. {
  6271. void *cpu = (void *)(long)smp_processor_id();
  6272. int err;
  6273. /* Start one for the boot CPU: */
  6274. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6275. BUG_ON(err == NOTIFY_BAD);
  6276. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6277. register_cpu_notifier(&migration_notifier);
  6278. return err;
  6279. }
  6280. early_initcall(migration_init);
  6281. #endif
  6282. #ifdef CONFIG_SMP
  6283. #ifdef CONFIG_SCHED_DEBUG
  6284. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6285. struct cpumask *groupmask)
  6286. {
  6287. struct sched_group *group = sd->groups;
  6288. char str[256];
  6289. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6290. cpumask_clear(groupmask);
  6291. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6292. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6293. printk("does not load-balance\n");
  6294. if (sd->parent)
  6295. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6296. " has parent");
  6297. return -1;
  6298. }
  6299. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6300. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6301. printk(KERN_ERR "ERROR: domain->span does not contain "
  6302. "CPU%d\n", cpu);
  6303. }
  6304. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6305. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6306. " CPU%d\n", cpu);
  6307. }
  6308. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6309. do {
  6310. if (!group) {
  6311. printk("\n");
  6312. printk(KERN_ERR "ERROR: group is NULL\n");
  6313. break;
  6314. }
  6315. if (!group->__cpu_power) {
  6316. printk(KERN_CONT "\n");
  6317. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6318. "set\n");
  6319. break;
  6320. }
  6321. if (!cpumask_weight(sched_group_cpus(group))) {
  6322. printk(KERN_CONT "\n");
  6323. printk(KERN_ERR "ERROR: empty group\n");
  6324. break;
  6325. }
  6326. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6327. printk(KERN_CONT "\n");
  6328. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6329. break;
  6330. }
  6331. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6332. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6333. printk(KERN_CONT " %s", str);
  6334. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6335. printk(KERN_CONT " (__cpu_power = %d)",
  6336. group->__cpu_power);
  6337. }
  6338. group = group->next;
  6339. } while (group != sd->groups);
  6340. printk(KERN_CONT "\n");
  6341. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6342. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6343. if (sd->parent &&
  6344. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6345. printk(KERN_ERR "ERROR: parent span is not a superset "
  6346. "of domain->span\n");
  6347. return 0;
  6348. }
  6349. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6350. {
  6351. cpumask_var_t groupmask;
  6352. int level = 0;
  6353. if (!sd) {
  6354. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6355. return;
  6356. }
  6357. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6358. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6359. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6360. return;
  6361. }
  6362. for (;;) {
  6363. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6364. break;
  6365. level++;
  6366. sd = sd->parent;
  6367. if (!sd)
  6368. break;
  6369. }
  6370. free_cpumask_var(groupmask);
  6371. }
  6372. #else /* !CONFIG_SCHED_DEBUG */
  6373. # define sched_domain_debug(sd, cpu) do { } while (0)
  6374. #endif /* CONFIG_SCHED_DEBUG */
  6375. static int sd_degenerate(struct sched_domain *sd)
  6376. {
  6377. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6378. return 1;
  6379. /* Following flags need at least 2 groups */
  6380. if (sd->flags & (SD_LOAD_BALANCE |
  6381. SD_BALANCE_NEWIDLE |
  6382. SD_BALANCE_FORK |
  6383. SD_BALANCE_EXEC |
  6384. SD_SHARE_CPUPOWER |
  6385. SD_SHARE_PKG_RESOURCES)) {
  6386. if (sd->groups != sd->groups->next)
  6387. return 0;
  6388. }
  6389. /* Following flags don't use groups */
  6390. if (sd->flags & (SD_WAKE_IDLE |
  6391. SD_WAKE_AFFINE |
  6392. SD_WAKE_BALANCE))
  6393. return 0;
  6394. return 1;
  6395. }
  6396. static int
  6397. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6398. {
  6399. unsigned long cflags = sd->flags, pflags = parent->flags;
  6400. if (sd_degenerate(parent))
  6401. return 1;
  6402. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6403. return 0;
  6404. /* Does parent contain flags not in child? */
  6405. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6406. if (cflags & SD_WAKE_AFFINE)
  6407. pflags &= ~SD_WAKE_BALANCE;
  6408. /* Flags needing groups don't count if only 1 group in parent */
  6409. if (parent->groups == parent->groups->next) {
  6410. pflags &= ~(SD_LOAD_BALANCE |
  6411. SD_BALANCE_NEWIDLE |
  6412. SD_BALANCE_FORK |
  6413. SD_BALANCE_EXEC |
  6414. SD_SHARE_CPUPOWER |
  6415. SD_SHARE_PKG_RESOURCES);
  6416. if (nr_node_ids == 1)
  6417. pflags &= ~SD_SERIALIZE;
  6418. }
  6419. if (~cflags & pflags)
  6420. return 0;
  6421. return 1;
  6422. }
  6423. static void free_rootdomain(struct root_domain *rd)
  6424. {
  6425. cpupri_cleanup(&rd->cpupri);
  6426. free_cpumask_var(rd->rto_mask);
  6427. free_cpumask_var(rd->online);
  6428. free_cpumask_var(rd->span);
  6429. kfree(rd);
  6430. }
  6431. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6432. {
  6433. struct root_domain *old_rd = NULL;
  6434. unsigned long flags;
  6435. spin_lock_irqsave(&rq->lock, flags);
  6436. if (rq->rd) {
  6437. old_rd = rq->rd;
  6438. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6439. set_rq_offline(rq);
  6440. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6441. /*
  6442. * If we dont want to free the old_rt yet then
  6443. * set old_rd to NULL to skip the freeing later
  6444. * in this function:
  6445. */
  6446. if (!atomic_dec_and_test(&old_rd->refcount))
  6447. old_rd = NULL;
  6448. }
  6449. atomic_inc(&rd->refcount);
  6450. rq->rd = rd;
  6451. cpumask_set_cpu(rq->cpu, rd->span);
  6452. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6453. set_rq_online(rq);
  6454. spin_unlock_irqrestore(&rq->lock, flags);
  6455. if (old_rd)
  6456. free_rootdomain(old_rd);
  6457. }
  6458. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6459. {
  6460. memset(rd, 0, sizeof(*rd));
  6461. if (bootmem) {
  6462. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6463. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6464. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6465. cpupri_init(&rd->cpupri, true);
  6466. return 0;
  6467. }
  6468. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6469. goto out;
  6470. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6471. goto free_span;
  6472. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6473. goto free_online;
  6474. if (cpupri_init(&rd->cpupri, false) != 0)
  6475. goto free_rto_mask;
  6476. return 0;
  6477. free_rto_mask:
  6478. free_cpumask_var(rd->rto_mask);
  6479. free_online:
  6480. free_cpumask_var(rd->online);
  6481. free_span:
  6482. free_cpumask_var(rd->span);
  6483. out:
  6484. return -ENOMEM;
  6485. }
  6486. static void init_defrootdomain(void)
  6487. {
  6488. init_rootdomain(&def_root_domain, true);
  6489. atomic_set(&def_root_domain.refcount, 1);
  6490. }
  6491. static struct root_domain *alloc_rootdomain(void)
  6492. {
  6493. struct root_domain *rd;
  6494. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6495. if (!rd)
  6496. return NULL;
  6497. if (init_rootdomain(rd, false) != 0) {
  6498. kfree(rd);
  6499. return NULL;
  6500. }
  6501. return rd;
  6502. }
  6503. /*
  6504. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6505. * hold the hotplug lock.
  6506. */
  6507. static void
  6508. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6509. {
  6510. struct rq *rq = cpu_rq(cpu);
  6511. struct sched_domain *tmp;
  6512. /* Remove the sched domains which do not contribute to scheduling. */
  6513. for (tmp = sd; tmp; ) {
  6514. struct sched_domain *parent = tmp->parent;
  6515. if (!parent)
  6516. break;
  6517. if (sd_parent_degenerate(tmp, parent)) {
  6518. tmp->parent = parent->parent;
  6519. if (parent->parent)
  6520. parent->parent->child = tmp;
  6521. } else
  6522. tmp = tmp->parent;
  6523. }
  6524. if (sd && sd_degenerate(sd)) {
  6525. sd = sd->parent;
  6526. if (sd)
  6527. sd->child = NULL;
  6528. }
  6529. sched_domain_debug(sd, cpu);
  6530. rq_attach_root(rq, rd);
  6531. rcu_assign_pointer(rq->sd, sd);
  6532. }
  6533. /* cpus with isolated domains */
  6534. static cpumask_var_t cpu_isolated_map;
  6535. /* Setup the mask of cpus configured for isolated domains */
  6536. static int __init isolated_cpu_setup(char *str)
  6537. {
  6538. cpulist_parse(str, cpu_isolated_map);
  6539. return 1;
  6540. }
  6541. __setup("isolcpus=", isolated_cpu_setup);
  6542. /*
  6543. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6544. * to a function which identifies what group(along with sched group) a CPU
  6545. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6546. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6547. *
  6548. * init_sched_build_groups will build a circular linked list of the groups
  6549. * covered by the given span, and will set each group's ->cpumask correctly,
  6550. * and ->cpu_power to 0.
  6551. */
  6552. static void
  6553. init_sched_build_groups(const struct cpumask *span,
  6554. const struct cpumask *cpu_map,
  6555. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6556. struct sched_group **sg,
  6557. struct cpumask *tmpmask),
  6558. struct cpumask *covered, struct cpumask *tmpmask)
  6559. {
  6560. struct sched_group *first = NULL, *last = NULL;
  6561. int i;
  6562. cpumask_clear(covered);
  6563. for_each_cpu(i, span) {
  6564. struct sched_group *sg;
  6565. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6566. int j;
  6567. if (cpumask_test_cpu(i, covered))
  6568. continue;
  6569. cpumask_clear(sched_group_cpus(sg));
  6570. sg->__cpu_power = 0;
  6571. for_each_cpu(j, span) {
  6572. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6573. continue;
  6574. cpumask_set_cpu(j, covered);
  6575. cpumask_set_cpu(j, sched_group_cpus(sg));
  6576. }
  6577. if (!first)
  6578. first = sg;
  6579. if (last)
  6580. last->next = sg;
  6581. last = sg;
  6582. }
  6583. last->next = first;
  6584. }
  6585. #define SD_NODES_PER_DOMAIN 16
  6586. #ifdef CONFIG_NUMA
  6587. /**
  6588. * find_next_best_node - find the next node to include in a sched_domain
  6589. * @node: node whose sched_domain we're building
  6590. * @used_nodes: nodes already in the sched_domain
  6591. *
  6592. * Find the next node to include in a given scheduling domain. Simply
  6593. * finds the closest node not already in the @used_nodes map.
  6594. *
  6595. * Should use nodemask_t.
  6596. */
  6597. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6598. {
  6599. int i, n, val, min_val, best_node = 0;
  6600. min_val = INT_MAX;
  6601. for (i = 0; i < nr_node_ids; i++) {
  6602. /* Start at @node */
  6603. n = (node + i) % nr_node_ids;
  6604. if (!nr_cpus_node(n))
  6605. continue;
  6606. /* Skip already used nodes */
  6607. if (node_isset(n, *used_nodes))
  6608. continue;
  6609. /* Simple min distance search */
  6610. val = node_distance(node, n);
  6611. if (val < min_val) {
  6612. min_val = val;
  6613. best_node = n;
  6614. }
  6615. }
  6616. node_set(best_node, *used_nodes);
  6617. return best_node;
  6618. }
  6619. /**
  6620. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6621. * @node: node whose cpumask we're constructing
  6622. * @span: resulting cpumask
  6623. *
  6624. * Given a node, construct a good cpumask for its sched_domain to span. It
  6625. * should be one that prevents unnecessary balancing, but also spreads tasks
  6626. * out optimally.
  6627. */
  6628. static void sched_domain_node_span(int node, struct cpumask *span)
  6629. {
  6630. nodemask_t used_nodes;
  6631. int i;
  6632. cpumask_clear(span);
  6633. nodes_clear(used_nodes);
  6634. cpumask_or(span, span, cpumask_of_node(node));
  6635. node_set(node, used_nodes);
  6636. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6637. int next_node = find_next_best_node(node, &used_nodes);
  6638. cpumask_or(span, span, cpumask_of_node(next_node));
  6639. }
  6640. }
  6641. #endif /* CONFIG_NUMA */
  6642. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6643. /*
  6644. * The cpus mask in sched_group and sched_domain hangs off the end.
  6645. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6646. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6647. */
  6648. struct static_sched_group {
  6649. struct sched_group sg;
  6650. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6651. };
  6652. struct static_sched_domain {
  6653. struct sched_domain sd;
  6654. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6655. };
  6656. /*
  6657. * SMT sched-domains:
  6658. */
  6659. #ifdef CONFIG_SCHED_SMT
  6660. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6661. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6662. static int
  6663. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6664. struct sched_group **sg, struct cpumask *unused)
  6665. {
  6666. if (sg)
  6667. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6668. return cpu;
  6669. }
  6670. #endif /* CONFIG_SCHED_SMT */
  6671. /*
  6672. * multi-core sched-domains:
  6673. */
  6674. #ifdef CONFIG_SCHED_MC
  6675. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6676. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6677. #endif /* CONFIG_SCHED_MC */
  6678. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6679. static int
  6680. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6681. struct sched_group **sg, struct cpumask *mask)
  6682. {
  6683. int group;
  6684. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6685. group = cpumask_first(mask);
  6686. if (sg)
  6687. *sg = &per_cpu(sched_group_core, group).sg;
  6688. return group;
  6689. }
  6690. #elif defined(CONFIG_SCHED_MC)
  6691. static int
  6692. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6693. struct sched_group **sg, struct cpumask *unused)
  6694. {
  6695. if (sg)
  6696. *sg = &per_cpu(sched_group_core, cpu).sg;
  6697. return cpu;
  6698. }
  6699. #endif
  6700. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6701. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6702. static int
  6703. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6704. struct sched_group **sg, struct cpumask *mask)
  6705. {
  6706. int group;
  6707. #ifdef CONFIG_SCHED_MC
  6708. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6709. group = cpumask_first(mask);
  6710. #elif defined(CONFIG_SCHED_SMT)
  6711. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6712. group = cpumask_first(mask);
  6713. #else
  6714. group = cpu;
  6715. #endif
  6716. if (sg)
  6717. *sg = &per_cpu(sched_group_phys, group).sg;
  6718. return group;
  6719. }
  6720. #ifdef CONFIG_NUMA
  6721. /*
  6722. * The init_sched_build_groups can't handle what we want to do with node
  6723. * groups, so roll our own. Now each node has its own list of groups which
  6724. * gets dynamically allocated.
  6725. */
  6726. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6727. static struct sched_group ***sched_group_nodes_bycpu;
  6728. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6729. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6730. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6731. struct sched_group **sg,
  6732. struct cpumask *nodemask)
  6733. {
  6734. int group;
  6735. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6736. group = cpumask_first(nodemask);
  6737. if (sg)
  6738. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6739. return group;
  6740. }
  6741. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6742. {
  6743. struct sched_group *sg = group_head;
  6744. int j;
  6745. if (!sg)
  6746. return;
  6747. do {
  6748. for_each_cpu(j, sched_group_cpus(sg)) {
  6749. struct sched_domain *sd;
  6750. sd = &per_cpu(phys_domains, j).sd;
  6751. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6752. /*
  6753. * Only add "power" once for each
  6754. * physical package.
  6755. */
  6756. continue;
  6757. }
  6758. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6759. }
  6760. sg = sg->next;
  6761. } while (sg != group_head);
  6762. }
  6763. #endif /* CONFIG_NUMA */
  6764. #ifdef CONFIG_NUMA
  6765. /* Free memory allocated for various sched_group structures */
  6766. static void free_sched_groups(const struct cpumask *cpu_map,
  6767. struct cpumask *nodemask)
  6768. {
  6769. int cpu, i;
  6770. for_each_cpu(cpu, cpu_map) {
  6771. struct sched_group **sched_group_nodes
  6772. = sched_group_nodes_bycpu[cpu];
  6773. if (!sched_group_nodes)
  6774. continue;
  6775. for (i = 0; i < nr_node_ids; i++) {
  6776. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6777. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6778. if (cpumask_empty(nodemask))
  6779. continue;
  6780. if (sg == NULL)
  6781. continue;
  6782. sg = sg->next;
  6783. next_sg:
  6784. oldsg = sg;
  6785. sg = sg->next;
  6786. kfree(oldsg);
  6787. if (oldsg != sched_group_nodes[i])
  6788. goto next_sg;
  6789. }
  6790. kfree(sched_group_nodes);
  6791. sched_group_nodes_bycpu[cpu] = NULL;
  6792. }
  6793. }
  6794. #else /* !CONFIG_NUMA */
  6795. static void free_sched_groups(const struct cpumask *cpu_map,
  6796. struct cpumask *nodemask)
  6797. {
  6798. }
  6799. #endif /* CONFIG_NUMA */
  6800. /*
  6801. * Initialize sched groups cpu_power.
  6802. *
  6803. * cpu_power indicates the capacity of sched group, which is used while
  6804. * distributing the load between different sched groups in a sched domain.
  6805. * Typically cpu_power for all the groups in a sched domain will be same unless
  6806. * there are asymmetries in the topology. If there are asymmetries, group
  6807. * having more cpu_power will pickup more load compared to the group having
  6808. * less cpu_power.
  6809. *
  6810. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6811. * the maximum number of tasks a group can handle in the presence of other idle
  6812. * or lightly loaded groups in the same sched domain.
  6813. */
  6814. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6815. {
  6816. struct sched_domain *child;
  6817. struct sched_group *group;
  6818. WARN_ON(!sd || !sd->groups);
  6819. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6820. return;
  6821. child = sd->child;
  6822. sd->groups->__cpu_power = 0;
  6823. /*
  6824. * For perf policy, if the groups in child domain share resources
  6825. * (for example cores sharing some portions of the cache hierarchy
  6826. * or SMT), then set this domain groups cpu_power such that each group
  6827. * can handle only one task, when there are other idle groups in the
  6828. * same sched domain.
  6829. */
  6830. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6831. (child->flags &
  6832. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6833. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6834. return;
  6835. }
  6836. /*
  6837. * add cpu_power of each child group to this groups cpu_power
  6838. */
  6839. group = child->groups;
  6840. do {
  6841. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6842. group = group->next;
  6843. } while (group != child->groups);
  6844. }
  6845. /*
  6846. * Initializers for schedule domains
  6847. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6848. */
  6849. #ifdef CONFIG_SCHED_DEBUG
  6850. # define SD_INIT_NAME(sd, type) sd->name = #type
  6851. #else
  6852. # define SD_INIT_NAME(sd, type) do { } while (0)
  6853. #endif
  6854. #define SD_INIT(sd, type) sd_init_##type(sd)
  6855. #define SD_INIT_FUNC(type) \
  6856. static noinline void sd_init_##type(struct sched_domain *sd) \
  6857. { \
  6858. memset(sd, 0, sizeof(*sd)); \
  6859. *sd = SD_##type##_INIT; \
  6860. sd->level = SD_LV_##type; \
  6861. SD_INIT_NAME(sd, type); \
  6862. }
  6863. SD_INIT_FUNC(CPU)
  6864. #ifdef CONFIG_NUMA
  6865. SD_INIT_FUNC(ALLNODES)
  6866. SD_INIT_FUNC(NODE)
  6867. #endif
  6868. #ifdef CONFIG_SCHED_SMT
  6869. SD_INIT_FUNC(SIBLING)
  6870. #endif
  6871. #ifdef CONFIG_SCHED_MC
  6872. SD_INIT_FUNC(MC)
  6873. #endif
  6874. static int default_relax_domain_level = -1;
  6875. static int __init setup_relax_domain_level(char *str)
  6876. {
  6877. unsigned long val;
  6878. val = simple_strtoul(str, NULL, 0);
  6879. if (val < SD_LV_MAX)
  6880. default_relax_domain_level = val;
  6881. return 1;
  6882. }
  6883. __setup("relax_domain_level=", setup_relax_domain_level);
  6884. static void set_domain_attribute(struct sched_domain *sd,
  6885. struct sched_domain_attr *attr)
  6886. {
  6887. int request;
  6888. if (!attr || attr->relax_domain_level < 0) {
  6889. if (default_relax_domain_level < 0)
  6890. return;
  6891. else
  6892. request = default_relax_domain_level;
  6893. } else
  6894. request = attr->relax_domain_level;
  6895. if (request < sd->level) {
  6896. /* turn off idle balance on this domain */
  6897. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6898. } else {
  6899. /* turn on idle balance on this domain */
  6900. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6901. }
  6902. }
  6903. /*
  6904. * Build sched domains for a given set of cpus and attach the sched domains
  6905. * to the individual cpus
  6906. */
  6907. static int __build_sched_domains(const struct cpumask *cpu_map,
  6908. struct sched_domain_attr *attr)
  6909. {
  6910. int i, err = -ENOMEM;
  6911. struct root_domain *rd;
  6912. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6913. tmpmask;
  6914. #ifdef CONFIG_NUMA
  6915. cpumask_var_t domainspan, covered, notcovered;
  6916. struct sched_group **sched_group_nodes = NULL;
  6917. int sd_allnodes = 0;
  6918. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6919. goto out;
  6920. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6921. goto free_domainspan;
  6922. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6923. goto free_covered;
  6924. #endif
  6925. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6926. goto free_notcovered;
  6927. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6928. goto free_nodemask;
  6929. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6930. goto free_this_sibling_map;
  6931. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6932. goto free_this_core_map;
  6933. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6934. goto free_send_covered;
  6935. #ifdef CONFIG_NUMA
  6936. /*
  6937. * Allocate the per-node list of sched groups
  6938. */
  6939. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6940. GFP_KERNEL);
  6941. if (!sched_group_nodes) {
  6942. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6943. goto free_tmpmask;
  6944. }
  6945. #endif
  6946. rd = alloc_rootdomain();
  6947. if (!rd) {
  6948. printk(KERN_WARNING "Cannot alloc root domain\n");
  6949. goto free_sched_groups;
  6950. }
  6951. #ifdef CONFIG_NUMA
  6952. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6953. #endif
  6954. /*
  6955. * Set up domains for cpus specified by the cpu_map.
  6956. */
  6957. for_each_cpu(i, cpu_map) {
  6958. struct sched_domain *sd = NULL, *p;
  6959. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6960. #ifdef CONFIG_NUMA
  6961. if (cpumask_weight(cpu_map) >
  6962. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6963. sd = &per_cpu(allnodes_domains, i).sd;
  6964. SD_INIT(sd, ALLNODES);
  6965. set_domain_attribute(sd, attr);
  6966. cpumask_copy(sched_domain_span(sd), cpu_map);
  6967. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6968. p = sd;
  6969. sd_allnodes = 1;
  6970. } else
  6971. p = NULL;
  6972. sd = &per_cpu(node_domains, i).sd;
  6973. SD_INIT(sd, NODE);
  6974. set_domain_attribute(sd, attr);
  6975. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6976. sd->parent = p;
  6977. if (p)
  6978. p->child = sd;
  6979. cpumask_and(sched_domain_span(sd),
  6980. sched_domain_span(sd), cpu_map);
  6981. #endif
  6982. p = sd;
  6983. sd = &per_cpu(phys_domains, i).sd;
  6984. SD_INIT(sd, CPU);
  6985. set_domain_attribute(sd, attr);
  6986. cpumask_copy(sched_domain_span(sd), nodemask);
  6987. sd->parent = p;
  6988. if (p)
  6989. p->child = sd;
  6990. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6991. #ifdef CONFIG_SCHED_MC
  6992. p = sd;
  6993. sd = &per_cpu(core_domains, i).sd;
  6994. SD_INIT(sd, MC);
  6995. set_domain_attribute(sd, attr);
  6996. cpumask_and(sched_domain_span(sd), cpu_map,
  6997. cpu_coregroup_mask(i));
  6998. sd->parent = p;
  6999. p->child = sd;
  7000. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7001. #endif
  7002. #ifdef CONFIG_SCHED_SMT
  7003. p = sd;
  7004. sd = &per_cpu(cpu_domains, i).sd;
  7005. SD_INIT(sd, SIBLING);
  7006. set_domain_attribute(sd, attr);
  7007. cpumask_and(sched_domain_span(sd),
  7008. topology_thread_cpumask(i), cpu_map);
  7009. sd->parent = p;
  7010. p->child = sd;
  7011. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7012. #endif
  7013. }
  7014. #ifdef CONFIG_SCHED_SMT
  7015. /* Set up CPU (sibling) groups */
  7016. for_each_cpu(i, cpu_map) {
  7017. cpumask_and(this_sibling_map,
  7018. topology_thread_cpumask(i), cpu_map);
  7019. if (i != cpumask_first(this_sibling_map))
  7020. continue;
  7021. init_sched_build_groups(this_sibling_map, cpu_map,
  7022. &cpu_to_cpu_group,
  7023. send_covered, tmpmask);
  7024. }
  7025. #endif
  7026. #ifdef CONFIG_SCHED_MC
  7027. /* Set up multi-core groups */
  7028. for_each_cpu(i, cpu_map) {
  7029. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7030. if (i != cpumask_first(this_core_map))
  7031. continue;
  7032. init_sched_build_groups(this_core_map, cpu_map,
  7033. &cpu_to_core_group,
  7034. send_covered, tmpmask);
  7035. }
  7036. #endif
  7037. /* Set up physical groups */
  7038. for (i = 0; i < nr_node_ids; i++) {
  7039. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7040. if (cpumask_empty(nodemask))
  7041. continue;
  7042. init_sched_build_groups(nodemask, cpu_map,
  7043. &cpu_to_phys_group,
  7044. send_covered, tmpmask);
  7045. }
  7046. #ifdef CONFIG_NUMA
  7047. /* Set up node groups */
  7048. if (sd_allnodes) {
  7049. init_sched_build_groups(cpu_map, cpu_map,
  7050. &cpu_to_allnodes_group,
  7051. send_covered, tmpmask);
  7052. }
  7053. for (i = 0; i < nr_node_ids; i++) {
  7054. /* Set up node groups */
  7055. struct sched_group *sg, *prev;
  7056. int j;
  7057. cpumask_clear(covered);
  7058. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7059. if (cpumask_empty(nodemask)) {
  7060. sched_group_nodes[i] = NULL;
  7061. continue;
  7062. }
  7063. sched_domain_node_span(i, domainspan);
  7064. cpumask_and(domainspan, domainspan, cpu_map);
  7065. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7066. GFP_KERNEL, i);
  7067. if (!sg) {
  7068. printk(KERN_WARNING "Can not alloc domain group for "
  7069. "node %d\n", i);
  7070. goto error;
  7071. }
  7072. sched_group_nodes[i] = sg;
  7073. for_each_cpu(j, nodemask) {
  7074. struct sched_domain *sd;
  7075. sd = &per_cpu(node_domains, j).sd;
  7076. sd->groups = sg;
  7077. }
  7078. sg->__cpu_power = 0;
  7079. cpumask_copy(sched_group_cpus(sg), nodemask);
  7080. sg->next = sg;
  7081. cpumask_or(covered, covered, nodemask);
  7082. prev = sg;
  7083. for (j = 0; j < nr_node_ids; j++) {
  7084. int n = (i + j) % nr_node_ids;
  7085. cpumask_complement(notcovered, covered);
  7086. cpumask_and(tmpmask, notcovered, cpu_map);
  7087. cpumask_and(tmpmask, tmpmask, domainspan);
  7088. if (cpumask_empty(tmpmask))
  7089. break;
  7090. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7091. if (cpumask_empty(tmpmask))
  7092. continue;
  7093. sg = kmalloc_node(sizeof(struct sched_group) +
  7094. cpumask_size(),
  7095. GFP_KERNEL, i);
  7096. if (!sg) {
  7097. printk(KERN_WARNING
  7098. "Can not alloc domain group for node %d\n", j);
  7099. goto error;
  7100. }
  7101. sg->__cpu_power = 0;
  7102. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7103. sg->next = prev->next;
  7104. cpumask_or(covered, covered, tmpmask);
  7105. prev->next = sg;
  7106. prev = sg;
  7107. }
  7108. }
  7109. #endif
  7110. /* Calculate CPU power for physical packages and nodes */
  7111. #ifdef CONFIG_SCHED_SMT
  7112. for_each_cpu(i, cpu_map) {
  7113. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7114. init_sched_groups_power(i, sd);
  7115. }
  7116. #endif
  7117. #ifdef CONFIG_SCHED_MC
  7118. for_each_cpu(i, cpu_map) {
  7119. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7120. init_sched_groups_power(i, sd);
  7121. }
  7122. #endif
  7123. for_each_cpu(i, cpu_map) {
  7124. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7125. init_sched_groups_power(i, sd);
  7126. }
  7127. #ifdef CONFIG_NUMA
  7128. for (i = 0; i < nr_node_ids; i++)
  7129. init_numa_sched_groups_power(sched_group_nodes[i]);
  7130. if (sd_allnodes) {
  7131. struct sched_group *sg;
  7132. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7133. tmpmask);
  7134. init_numa_sched_groups_power(sg);
  7135. }
  7136. #endif
  7137. /* Attach the domains */
  7138. for_each_cpu(i, cpu_map) {
  7139. struct sched_domain *sd;
  7140. #ifdef CONFIG_SCHED_SMT
  7141. sd = &per_cpu(cpu_domains, i).sd;
  7142. #elif defined(CONFIG_SCHED_MC)
  7143. sd = &per_cpu(core_domains, i).sd;
  7144. #else
  7145. sd = &per_cpu(phys_domains, i).sd;
  7146. #endif
  7147. cpu_attach_domain(sd, rd, i);
  7148. }
  7149. err = 0;
  7150. free_tmpmask:
  7151. free_cpumask_var(tmpmask);
  7152. free_send_covered:
  7153. free_cpumask_var(send_covered);
  7154. free_this_core_map:
  7155. free_cpumask_var(this_core_map);
  7156. free_this_sibling_map:
  7157. free_cpumask_var(this_sibling_map);
  7158. free_nodemask:
  7159. free_cpumask_var(nodemask);
  7160. free_notcovered:
  7161. #ifdef CONFIG_NUMA
  7162. free_cpumask_var(notcovered);
  7163. free_covered:
  7164. free_cpumask_var(covered);
  7165. free_domainspan:
  7166. free_cpumask_var(domainspan);
  7167. out:
  7168. #endif
  7169. return err;
  7170. free_sched_groups:
  7171. #ifdef CONFIG_NUMA
  7172. kfree(sched_group_nodes);
  7173. #endif
  7174. goto free_tmpmask;
  7175. #ifdef CONFIG_NUMA
  7176. error:
  7177. free_sched_groups(cpu_map, tmpmask);
  7178. free_rootdomain(rd);
  7179. goto free_tmpmask;
  7180. #endif
  7181. }
  7182. static int build_sched_domains(const struct cpumask *cpu_map)
  7183. {
  7184. return __build_sched_domains(cpu_map, NULL);
  7185. }
  7186. static struct cpumask *doms_cur; /* current sched domains */
  7187. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7188. static struct sched_domain_attr *dattr_cur;
  7189. /* attribues of custom domains in 'doms_cur' */
  7190. /*
  7191. * Special case: If a kmalloc of a doms_cur partition (array of
  7192. * cpumask) fails, then fallback to a single sched domain,
  7193. * as determined by the single cpumask fallback_doms.
  7194. */
  7195. static cpumask_var_t fallback_doms;
  7196. /*
  7197. * arch_update_cpu_topology lets virtualized architectures update the
  7198. * cpu core maps. It is supposed to return 1 if the topology changed
  7199. * or 0 if it stayed the same.
  7200. */
  7201. int __attribute__((weak)) arch_update_cpu_topology(void)
  7202. {
  7203. return 0;
  7204. }
  7205. /*
  7206. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7207. * For now this just excludes isolated cpus, but could be used to
  7208. * exclude other special cases in the future.
  7209. */
  7210. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7211. {
  7212. int err;
  7213. arch_update_cpu_topology();
  7214. ndoms_cur = 1;
  7215. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7216. if (!doms_cur)
  7217. doms_cur = fallback_doms;
  7218. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7219. dattr_cur = NULL;
  7220. err = build_sched_domains(doms_cur);
  7221. register_sched_domain_sysctl();
  7222. return err;
  7223. }
  7224. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7225. struct cpumask *tmpmask)
  7226. {
  7227. free_sched_groups(cpu_map, tmpmask);
  7228. }
  7229. /*
  7230. * Detach sched domains from a group of cpus specified in cpu_map
  7231. * These cpus will now be attached to the NULL domain
  7232. */
  7233. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7234. {
  7235. /* Save because hotplug lock held. */
  7236. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7237. int i;
  7238. for_each_cpu(i, cpu_map)
  7239. cpu_attach_domain(NULL, &def_root_domain, i);
  7240. synchronize_sched();
  7241. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7242. }
  7243. /* handle null as "default" */
  7244. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7245. struct sched_domain_attr *new, int idx_new)
  7246. {
  7247. struct sched_domain_attr tmp;
  7248. /* fast path */
  7249. if (!new && !cur)
  7250. return 1;
  7251. tmp = SD_ATTR_INIT;
  7252. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7253. new ? (new + idx_new) : &tmp,
  7254. sizeof(struct sched_domain_attr));
  7255. }
  7256. /*
  7257. * Partition sched domains as specified by the 'ndoms_new'
  7258. * cpumasks in the array doms_new[] of cpumasks. This compares
  7259. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7260. * It destroys each deleted domain and builds each new domain.
  7261. *
  7262. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7263. * The masks don't intersect (don't overlap.) We should setup one
  7264. * sched domain for each mask. CPUs not in any of the cpumasks will
  7265. * not be load balanced. If the same cpumask appears both in the
  7266. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7267. * it as it is.
  7268. *
  7269. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7270. * ownership of it and will kfree it when done with it. If the caller
  7271. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7272. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7273. * the single partition 'fallback_doms', it also forces the domains
  7274. * to be rebuilt.
  7275. *
  7276. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7277. * ndoms_new == 0 is a special case for destroying existing domains,
  7278. * and it will not create the default domain.
  7279. *
  7280. * Call with hotplug lock held
  7281. */
  7282. /* FIXME: Change to struct cpumask *doms_new[] */
  7283. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7284. struct sched_domain_attr *dattr_new)
  7285. {
  7286. int i, j, n;
  7287. int new_topology;
  7288. mutex_lock(&sched_domains_mutex);
  7289. /* always unregister in case we don't destroy any domains */
  7290. unregister_sched_domain_sysctl();
  7291. /* Let architecture update cpu core mappings. */
  7292. new_topology = arch_update_cpu_topology();
  7293. n = doms_new ? ndoms_new : 0;
  7294. /* Destroy deleted domains */
  7295. for (i = 0; i < ndoms_cur; i++) {
  7296. for (j = 0; j < n && !new_topology; j++) {
  7297. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7298. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7299. goto match1;
  7300. }
  7301. /* no match - a current sched domain not in new doms_new[] */
  7302. detach_destroy_domains(doms_cur + i);
  7303. match1:
  7304. ;
  7305. }
  7306. if (doms_new == NULL) {
  7307. ndoms_cur = 0;
  7308. doms_new = fallback_doms;
  7309. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7310. WARN_ON_ONCE(dattr_new);
  7311. }
  7312. /* Build new domains */
  7313. for (i = 0; i < ndoms_new; i++) {
  7314. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7315. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7316. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7317. goto match2;
  7318. }
  7319. /* no match - add a new doms_new */
  7320. __build_sched_domains(doms_new + i,
  7321. dattr_new ? dattr_new + i : NULL);
  7322. match2:
  7323. ;
  7324. }
  7325. /* Remember the new sched domains */
  7326. if (doms_cur != fallback_doms)
  7327. kfree(doms_cur);
  7328. kfree(dattr_cur); /* kfree(NULL) is safe */
  7329. doms_cur = doms_new;
  7330. dattr_cur = dattr_new;
  7331. ndoms_cur = ndoms_new;
  7332. register_sched_domain_sysctl();
  7333. mutex_unlock(&sched_domains_mutex);
  7334. }
  7335. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7336. static void arch_reinit_sched_domains(void)
  7337. {
  7338. get_online_cpus();
  7339. /* Destroy domains first to force the rebuild */
  7340. partition_sched_domains(0, NULL, NULL);
  7341. rebuild_sched_domains();
  7342. put_online_cpus();
  7343. }
  7344. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7345. {
  7346. unsigned int level = 0;
  7347. if (sscanf(buf, "%u", &level) != 1)
  7348. return -EINVAL;
  7349. /*
  7350. * level is always be positive so don't check for
  7351. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7352. * What happens on 0 or 1 byte write,
  7353. * need to check for count as well?
  7354. */
  7355. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7356. return -EINVAL;
  7357. if (smt)
  7358. sched_smt_power_savings = level;
  7359. else
  7360. sched_mc_power_savings = level;
  7361. arch_reinit_sched_domains();
  7362. return count;
  7363. }
  7364. #ifdef CONFIG_SCHED_MC
  7365. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7366. char *page)
  7367. {
  7368. return sprintf(page, "%u\n", sched_mc_power_savings);
  7369. }
  7370. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7371. const char *buf, size_t count)
  7372. {
  7373. return sched_power_savings_store(buf, count, 0);
  7374. }
  7375. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7376. sched_mc_power_savings_show,
  7377. sched_mc_power_savings_store);
  7378. #endif
  7379. #ifdef CONFIG_SCHED_SMT
  7380. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7381. char *page)
  7382. {
  7383. return sprintf(page, "%u\n", sched_smt_power_savings);
  7384. }
  7385. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7386. const char *buf, size_t count)
  7387. {
  7388. return sched_power_savings_store(buf, count, 1);
  7389. }
  7390. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7391. sched_smt_power_savings_show,
  7392. sched_smt_power_savings_store);
  7393. #endif
  7394. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7395. {
  7396. int err = 0;
  7397. #ifdef CONFIG_SCHED_SMT
  7398. if (smt_capable())
  7399. err = sysfs_create_file(&cls->kset.kobj,
  7400. &attr_sched_smt_power_savings.attr);
  7401. #endif
  7402. #ifdef CONFIG_SCHED_MC
  7403. if (!err && mc_capable())
  7404. err = sysfs_create_file(&cls->kset.kobj,
  7405. &attr_sched_mc_power_savings.attr);
  7406. #endif
  7407. return err;
  7408. }
  7409. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7410. #ifndef CONFIG_CPUSETS
  7411. /*
  7412. * Add online and remove offline CPUs from the scheduler domains.
  7413. * When cpusets are enabled they take over this function.
  7414. */
  7415. static int update_sched_domains(struct notifier_block *nfb,
  7416. unsigned long action, void *hcpu)
  7417. {
  7418. switch (action) {
  7419. case CPU_ONLINE:
  7420. case CPU_ONLINE_FROZEN:
  7421. case CPU_DEAD:
  7422. case CPU_DEAD_FROZEN:
  7423. partition_sched_domains(1, NULL, NULL);
  7424. return NOTIFY_OK;
  7425. default:
  7426. return NOTIFY_DONE;
  7427. }
  7428. }
  7429. #endif
  7430. static int update_runtime(struct notifier_block *nfb,
  7431. unsigned long action, void *hcpu)
  7432. {
  7433. int cpu = (int)(long)hcpu;
  7434. switch (action) {
  7435. case CPU_DOWN_PREPARE:
  7436. case CPU_DOWN_PREPARE_FROZEN:
  7437. disable_runtime(cpu_rq(cpu));
  7438. return NOTIFY_OK;
  7439. case CPU_DOWN_FAILED:
  7440. case CPU_DOWN_FAILED_FROZEN:
  7441. case CPU_ONLINE:
  7442. case CPU_ONLINE_FROZEN:
  7443. enable_runtime(cpu_rq(cpu));
  7444. return NOTIFY_OK;
  7445. default:
  7446. return NOTIFY_DONE;
  7447. }
  7448. }
  7449. void __init sched_init_smp(void)
  7450. {
  7451. cpumask_var_t non_isolated_cpus;
  7452. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7453. #if defined(CONFIG_NUMA)
  7454. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7455. GFP_KERNEL);
  7456. BUG_ON(sched_group_nodes_bycpu == NULL);
  7457. #endif
  7458. get_online_cpus();
  7459. mutex_lock(&sched_domains_mutex);
  7460. arch_init_sched_domains(cpu_online_mask);
  7461. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7462. if (cpumask_empty(non_isolated_cpus))
  7463. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7464. mutex_unlock(&sched_domains_mutex);
  7465. put_online_cpus();
  7466. #ifndef CONFIG_CPUSETS
  7467. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7468. hotcpu_notifier(update_sched_domains, 0);
  7469. #endif
  7470. /* RT runtime code needs to handle some hotplug events */
  7471. hotcpu_notifier(update_runtime, 0);
  7472. init_hrtick();
  7473. /* Move init over to a non-isolated CPU */
  7474. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7475. BUG();
  7476. sched_init_granularity();
  7477. free_cpumask_var(non_isolated_cpus);
  7478. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7479. init_sched_rt_class();
  7480. }
  7481. #else
  7482. void __init sched_init_smp(void)
  7483. {
  7484. sched_init_granularity();
  7485. }
  7486. #endif /* CONFIG_SMP */
  7487. int in_sched_functions(unsigned long addr)
  7488. {
  7489. return in_lock_functions(addr) ||
  7490. (addr >= (unsigned long)__sched_text_start
  7491. && addr < (unsigned long)__sched_text_end);
  7492. }
  7493. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7494. {
  7495. cfs_rq->tasks_timeline = RB_ROOT;
  7496. INIT_LIST_HEAD(&cfs_rq->tasks);
  7497. #ifdef CONFIG_FAIR_GROUP_SCHED
  7498. cfs_rq->rq = rq;
  7499. #endif
  7500. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7501. }
  7502. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7503. {
  7504. struct rt_prio_array *array;
  7505. int i;
  7506. array = &rt_rq->active;
  7507. for (i = 0; i < MAX_RT_PRIO; i++) {
  7508. INIT_LIST_HEAD(array->queue + i);
  7509. __clear_bit(i, array->bitmap);
  7510. }
  7511. /* delimiter for bitsearch: */
  7512. __set_bit(MAX_RT_PRIO, array->bitmap);
  7513. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7514. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7515. #ifdef CONFIG_SMP
  7516. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7517. #endif
  7518. #endif
  7519. #ifdef CONFIG_SMP
  7520. rt_rq->rt_nr_migratory = 0;
  7521. rt_rq->overloaded = 0;
  7522. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7523. #endif
  7524. rt_rq->rt_time = 0;
  7525. rt_rq->rt_throttled = 0;
  7526. rt_rq->rt_runtime = 0;
  7527. spin_lock_init(&rt_rq->rt_runtime_lock);
  7528. #ifdef CONFIG_RT_GROUP_SCHED
  7529. rt_rq->rt_nr_boosted = 0;
  7530. rt_rq->rq = rq;
  7531. #endif
  7532. }
  7533. #ifdef CONFIG_FAIR_GROUP_SCHED
  7534. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7535. struct sched_entity *se, int cpu, int add,
  7536. struct sched_entity *parent)
  7537. {
  7538. struct rq *rq = cpu_rq(cpu);
  7539. tg->cfs_rq[cpu] = cfs_rq;
  7540. init_cfs_rq(cfs_rq, rq);
  7541. cfs_rq->tg = tg;
  7542. if (add)
  7543. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7544. tg->se[cpu] = se;
  7545. /* se could be NULL for init_task_group */
  7546. if (!se)
  7547. return;
  7548. if (!parent)
  7549. se->cfs_rq = &rq->cfs;
  7550. else
  7551. se->cfs_rq = parent->my_q;
  7552. se->my_q = cfs_rq;
  7553. se->load.weight = tg->shares;
  7554. se->load.inv_weight = 0;
  7555. se->parent = parent;
  7556. }
  7557. #endif
  7558. #ifdef CONFIG_RT_GROUP_SCHED
  7559. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7560. struct sched_rt_entity *rt_se, int cpu, int add,
  7561. struct sched_rt_entity *parent)
  7562. {
  7563. struct rq *rq = cpu_rq(cpu);
  7564. tg->rt_rq[cpu] = rt_rq;
  7565. init_rt_rq(rt_rq, rq);
  7566. rt_rq->tg = tg;
  7567. rt_rq->rt_se = rt_se;
  7568. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7569. if (add)
  7570. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7571. tg->rt_se[cpu] = rt_se;
  7572. if (!rt_se)
  7573. return;
  7574. if (!parent)
  7575. rt_se->rt_rq = &rq->rt;
  7576. else
  7577. rt_se->rt_rq = parent->my_q;
  7578. rt_se->my_q = rt_rq;
  7579. rt_se->parent = parent;
  7580. INIT_LIST_HEAD(&rt_se->run_list);
  7581. }
  7582. #endif
  7583. void __init sched_init(void)
  7584. {
  7585. int i, j;
  7586. unsigned long alloc_size = 0, ptr;
  7587. #ifdef CONFIG_FAIR_GROUP_SCHED
  7588. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7589. #endif
  7590. #ifdef CONFIG_RT_GROUP_SCHED
  7591. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7592. #endif
  7593. #ifdef CONFIG_USER_SCHED
  7594. alloc_size *= 2;
  7595. #endif
  7596. #ifdef CONFIG_CPUMASK_OFFSTACK
  7597. alloc_size += num_possible_cpus() * cpumask_size();
  7598. #endif
  7599. /*
  7600. * As sched_init() is called before page_alloc is setup,
  7601. * we use alloc_bootmem().
  7602. */
  7603. if (alloc_size) {
  7604. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7605. #ifdef CONFIG_FAIR_GROUP_SCHED
  7606. init_task_group.se = (struct sched_entity **)ptr;
  7607. ptr += nr_cpu_ids * sizeof(void **);
  7608. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7609. ptr += nr_cpu_ids * sizeof(void **);
  7610. #ifdef CONFIG_USER_SCHED
  7611. root_task_group.se = (struct sched_entity **)ptr;
  7612. ptr += nr_cpu_ids * sizeof(void **);
  7613. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7614. ptr += nr_cpu_ids * sizeof(void **);
  7615. #endif /* CONFIG_USER_SCHED */
  7616. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7617. #ifdef CONFIG_RT_GROUP_SCHED
  7618. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7619. ptr += nr_cpu_ids * sizeof(void **);
  7620. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7621. ptr += nr_cpu_ids * sizeof(void **);
  7622. #ifdef CONFIG_USER_SCHED
  7623. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7624. ptr += nr_cpu_ids * sizeof(void **);
  7625. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7626. ptr += nr_cpu_ids * sizeof(void **);
  7627. #endif /* CONFIG_USER_SCHED */
  7628. #endif /* CONFIG_RT_GROUP_SCHED */
  7629. #ifdef CONFIG_CPUMASK_OFFSTACK
  7630. for_each_possible_cpu(i) {
  7631. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7632. ptr += cpumask_size();
  7633. }
  7634. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7635. }
  7636. #ifdef CONFIG_SMP
  7637. init_defrootdomain();
  7638. #endif
  7639. init_rt_bandwidth(&def_rt_bandwidth,
  7640. global_rt_period(), global_rt_runtime());
  7641. #ifdef CONFIG_RT_GROUP_SCHED
  7642. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7643. global_rt_period(), global_rt_runtime());
  7644. #ifdef CONFIG_USER_SCHED
  7645. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7646. global_rt_period(), RUNTIME_INF);
  7647. #endif /* CONFIG_USER_SCHED */
  7648. #endif /* CONFIG_RT_GROUP_SCHED */
  7649. #ifdef CONFIG_GROUP_SCHED
  7650. list_add(&init_task_group.list, &task_groups);
  7651. INIT_LIST_HEAD(&init_task_group.children);
  7652. #ifdef CONFIG_USER_SCHED
  7653. INIT_LIST_HEAD(&root_task_group.children);
  7654. init_task_group.parent = &root_task_group;
  7655. list_add(&init_task_group.siblings, &root_task_group.children);
  7656. #endif /* CONFIG_USER_SCHED */
  7657. #endif /* CONFIG_GROUP_SCHED */
  7658. for_each_possible_cpu(i) {
  7659. struct rq *rq;
  7660. rq = cpu_rq(i);
  7661. spin_lock_init(&rq->lock);
  7662. rq->nr_running = 0;
  7663. init_cfs_rq(&rq->cfs, rq);
  7664. init_rt_rq(&rq->rt, rq);
  7665. #ifdef CONFIG_FAIR_GROUP_SCHED
  7666. init_task_group.shares = init_task_group_load;
  7667. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7668. #ifdef CONFIG_CGROUP_SCHED
  7669. /*
  7670. * How much cpu bandwidth does init_task_group get?
  7671. *
  7672. * In case of task-groups formed thr' the cgroup filesystem, it
  7673. * gets 100% of the cpu resources in the system. This overall
  7674. * system cpu resource is divided among the tasks of
  7675. * init_task_group and its child task-groups in a fair manner,
  7676. * based on each entity's (task or task-group's) weight
  7677. * (se->load.weight).
  7678. *
  7679. * In other words, if init_task_group has 10 tasks of weight
  7680. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7681. * then A0's share of the cpu resource is:
  7682. *
  7683. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7684. *
  7685. * We achieve this by letting init_task_group's tasks sit
  7686. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7687. */
  7688. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7689. #elif defined CONFIG_USER_SCHED
  7690. root_task_group.shares = NICE_0_LOAD;
  7691. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7692. /*
  7693. * In case of task-groups formed thr' the user id of tasks,
  7694. * init_task_group represents tasks belonging to root user.
  7695. * Hence it forms a sibling of all subsequent groups formed.
  7696. * In this case, init_task_group gets only a fraction of overall
  7697. * system cpu resource, based on the weight assigned to root
  7698. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7699. * by letting tasks of init_task_group sit in a separate cfs_rq
  7700. * (init_cfs_rq) and having one entity represent this group of
  7701. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7702. */
  7703. init_tg_cfs_entry(&init_task_group,
  7704. &per_cpu(init_cfs_rq, i),
  7705. &per_cpu(init_sched_entity, i), i, 1,
  7706. root_task_group.se[i]);
  7707. #endif
  7708. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7709. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7710. #ifdef CONFIG_RT_GROUP_SCHED
  7711. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7712. #ifdef CONFIG_CGROUP_SCHED
  7713. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7714. #elif defined CONFIG_USER_SCHED
  7715. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7716. init_tg_rt_entry(&init_task_group,
  7717. &per_cpu(init_rt_rq, i),
  7718. &per_cpu(init_sched_rt_entity, i), i, 1,
  7719. root_task_group.rt_se[i]);
  7720. #endif
  7721. #endif
  7722. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7723. rq->cpu_load[j] = 0;
  7724. #ifdef CONFIG_SMP
  7725. rq->sd = NULL;
  7726. rq->rd = NULL;
  7727. rq->active_balance = 0;
  7728. rq->next_balance = jiffies;
  7729. rq->push_cpu = 0;
  7730. rq->cpu = i;
  7731. rq->online = 0;
  7732. rq->migration_thread = NULL;
  7733. INIT_LIST_HEAD(&rq->migration_queue);
  7734. rq_attach_root(rq, &def_root_domain);
  7735. #endif
  7736. init_rq_hrtick(rq);
  7737. atomic_set(&rq->nr_iowait, 0);
  7738. }
  7739. set_load_weight(&init_task);
  7740. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7741. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7742. #endif
  7743. #ifdef CONFIG_SMP
  7744. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7745. #endif
  7746. #ifdef CONFIG_RT_MUTEXES
  7747. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7748. #endif
  7749. /*
  7750. * The boot idle thread does lazy MMU switching as well:
  7751. */
  7752. atomic_inc(&init_mm.mm_count);
  7753. enter_lazy_tlb(&init_mm, current);
  7754. /*
  7755. * Make us the idle thread. Technically, schedule() should not be
  7756. * called from this thread, however somewhere below it might be,
  7757. * but because we are the idle thread, we just pick up running again
  7758. * when this runqueue becomes "idle".
  7759. */
  7760. init_idle(current, smp_processor_id());
  7761. /*
  7762. * During early bootup we pretend to be a normal task:
  7763. */
  7764. current->sched_class = &fair_sched_class;
  7765. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7766. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7767. #ifdef CONFIG_SMP
  7768. #ifdef CONFIG_NO_HZ
  7769. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7770. #endif
  7771. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7772. #endif /* SMP */
  7773. scheduler_running = 1;
  7774. }
  7775. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7776. void __might_sleep(char *file, int line)
  7777. {
  7778. #ifdef in_atomic
  7779. static unsigned long prev_jiffy; /* ratelimiting */
  7780. if ((!in_atomic() && !irqs_disabled()) ||
  7781. system_state != SYSTEM_RUNNING || oops_in_progress)
  7782. return;
  7783. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7784. return;
  7785. prev_jiffy = jiffies;
  7786. printk(KERN_ERR
  7787. "BUG: sleeping function called from invalid context at %s:%d\n",
  7788. file, line);
  7789. printk(KERN_ERR
  7790. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7791. in_atomic(), irqs_disabled(),
  7792. current->pid, current->comm);
  7793. debug_show_held_locks(current);
  7794. if (irqs_disabled())
  7795. print_irqtrace_events(current);
  7796. dump_stack();
  7797. #endif
  7798. }
  7799. EXPORT_SYMBOL(__might_sleep);
  7800. #endif
  7801. #ifdef CONFIG_MAGIC_SYSRQ
  7802. static void normalize_task(struct rq *rq, struct task_struct *p)
  7803. {
  7804. int on_rq;
  7805. update_rq_clock(rq);
  7806. on_rq = p->se.on_rq;
  7807. if (on_rq)
  7808. deactivate_task(rq, p, 0);
  7809. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7810. if (on_rq) {
  7811. activate_task(rq, p, 0);
  7812. resched_task(rq->curr);
  7813. }
  7814. }
  7815. void normalize_rt_tasks(void)
  7816. {
  7817. struct task_struct *g, *p;
  7818. unsigned long flags;
  7819. struct rq *rq;
  7820. read_lock_irqsave(&tasklist_lock, flags);
  7821. do_each_thread(g, p) {
  7822. /*
  7823. * Only normalize user tasks:
  7824. */
  7825. if (!p->mm)
  7826. continue;
  7827. p->se.exec_start = 0;
  7828. #ifdef CONFIG_SCHEDSTATS
  7829. p->se.wait_start = 0;
  7830. p->se.sleep_start = 0;
  7831. p->se.block_start = 0;
  7832. #endif
  7833. if (!rt_task(p)) {
  7834. /*
  7835. * Renice negative nice level userspace
  7836. * tasks back to 0:
  7837. */
  7838. if (TASK_NICE(p) < 0 && p->mm)
  7839. set_user_nice(p, 0);
  7840. continue;
  7841. }
  7842. spin_lock(&p->pi_lock);
  7843. rq = __task_rq_lock(p);
  7844. normalize_task(rq, p);
  7845. __task_rq_unlock(rq);
  7846. spin_unlock(&p->pi_lock);
  7847. } while_each_thread(g, p);
  7848. read_unlock_irqrestore(&tasklist_lock, flags);
  7849. }
  7850. #endif /* CONFIG_MAGIC_SYSRQ */
  7851. #ifdef CONFIG_IA64
  7852. /*
  7853. * These functions are only useful for the IA64 MCA handling.
  7854. *
  7855. * They can only be called when the whole system has been
  7856. * stopped - every CPU needs to be quiescent, and no scheduling
  7857. * activity can take place. Using them for anything else would
  7858. * be a serious bug, and as a result, they aren't even visible
  7859. * under any other configuration.
  7860. */
  7861. /**
  7862. * curr_task - return the current task for a given cpu.
  7863. * @cpu: the processor in question.
  7864. *
  7865. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7866. */
  7867. struct task_struct *curr_task(int cpu)
  7868. {
  7869. return cpu_curr(cpu);
  7870. }
  7871. /**
  7872. * set_curr_task - set the current task for a given cpu.
  7873. * @cpu: the processor in question.
  7874. * @p: the task pointer to set.
  7875. *
  7876. * Description: This function must only be used when non-maskable interrupts
  7877. * are serviced on a separate stack. It allows the architecture to switch the
  7878. * notion of the current task on a cpu in a non-blocking manner. This function
  7879. * must be called with all CPU's synchronized, and interrupts disabled, the
  7880. * and caller must save the original value of the current task (see
  7881. * curr_task() above) and restore that value before reenabling interrupts and
  7882. * re-starting the system.
  7883. *
  7884. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7885. */
  7886. void set_curr_task(int cpu, struct task_struct *p)
  7887. {
  7888. cpu_curr(cpu) = p;
  7889. }
  7890. #endif
  7891. #ifdef CONFIG_FAIR_GROUP_SCHED
  7892. static void free_fair_sched_group(struct task_group *tg)
  7893. {
  7894. int i;
  7895. for_each_possible_cpu(i) {
  7896. if (tg->cfs_rq)
  7897. kfree(tg->cfs_rq[i]);
  7898. if (tg->se)
  7899. kfree(tg->se[i]);
  7900. }
  7901. kfree(tg->cfs_rq);
  7902. kfree(tg->se);
  7903. }
  7904. static
  7905. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7906. {
  7907. struct cfs_rq *cfs_rq;
  7908. struct sched_entity *se;
  7909. struct rq *rq;
  7910. int i;
  7911. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7912. if (!tg->cfs_rq)
  7913. goto err;
  7914. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7915. if (!tg->se)
  7916. goto err;
  7917. tg->shares = NICE_0_LOAD;
  7918. for_each_possible_cpu(i) {
  7919. rq = cpu_rq(i);
  7920. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7921. GFP_KERNEL, cpu_to_node(i));
  7922. if (!cfs_rq)
  7923. goto err;
  7924. se = kzalloc_node(sizeof(struct sched_entity),
  7925. GFP_KERNEL, cpu_to_node(i));
  7926. if (!se)
  7927. goto err;
  7928. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7929. }
  7930. return 1;
  7931. err:
  7932. return 0;
  7933. }
  7934. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7935. {
  7936. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7937. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7938. }
  7939. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7940. {
  7941. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7942. }
  7943. #else /* !CONFG_FAIR_GROUP_SCHED */
  7944. static inline void free_fair_sched_group(struct task_group *tg)
  7945. {
  7946. }
  7947. static inline
  7948. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7949. {
  7950. return 1;
  7951. }
  7952. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7953. {
  7954. }
  7955. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7956. {
  7957. }
  7958. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7959. #ifdef CONFIG_RT_GROUP_SCHED
  7960. static void free_rt_sched_group(struct task_group *tg)
  7961. {
  7962. int i;
  7963. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7964. for_each_possible_cpu(i) {
  7965. if (tg->rt_rq)
  7966. kfree(tg->rt_rq[i]);
  7967. if (tg->rt_se)
  7968. kfree(tg->rt_se[i]);
  7969. }
  7970. kfree(tg->rt_rq);
  7971. kfree(tg->rt_se);
  7972. }
  7973. static
  7974. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7975. {
  7976. struct rt_rq *rt_rq;
  7977. struct sched_rt_entity *rt_se;
  7978. struct rq *rq;
  7979. int i;
  7980. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7981. if (!tg->rt_rq)
  7982. goto err;
  7983. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7984. if (!tg->rt_se)
  7985. goto err;
  7986. init_rt_bandwidth(&tg->rt_bandwidth,
  7987. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7988. for_each_possible_cpu(i) {
  7989. rq = cpu_rq(i);
  7990. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7991. GFP_KERNEL, cpu_to_node(i));
  7992. if (!rt_rq)
  7993. goto err;
  7994. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7995. GFP_KERNEL, cpu_to_node(i));
  7996. if (!rt_se)
  7997. goto err;
  7998. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7999. }
  8000. return 1;
  8001. err:
  8002. return 0;
  8003. }
  8004. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8005. {
  8006. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8007. &cpu_rq(cpu)->leaf_rt_rq_list);
  8008. }
  8009. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8010. {
  8011. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8012. }
  8013. #else /* !CONFIG_RT_GROUP_SCHED */
  8014. static inline void free_rt_sched_group(struct task_group *tg)
  8015. {
  8016. }
  8017. static inline
  8018. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8019. {
  8020. return 1;
  8021. }
  8022. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8023. {
  8024. }
  8025. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8026. {
  8027. }
  8028. #endif /* CONFIG_RT_GROUP_SCHED */
  8029. #ifdef CONFIG_GROUP_SCHED
  8030. static void free_sched_group(struct task_group *tg)
  8031. {
  8032. free_fair_sched_group(tg);
  8033. free_rt_sched_group(tg);
  8034. kfree(tg);
  8035. }
  8036. /* allocate runqueue etc for a new task group */
  8037. struct task_group *sched_create_group(struct task_group *parent)
  8038. {
  8039. struct task_group *tg;
  8040. unsigned long flags;
  8041. int i;
  8042. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8043. if (!tg)
  8044. return ERR_PTR(-ENOMEM);
  8045. if (!alloc_fair_sched_group(tg, parent))
  8046. goto err;
  8047. if (!alloc_rt_sched_group(tg, parent))
  8048. goto err;
  8049. spin_lock_irqsave(&task_group_lock, flags);
  8050. for_each_possible_cpu(i) {
  8051. register_fair_sched_group(tg, i);
  8052. register_rt_sched_group(tg, i);
  8053. }
  8054. list_add_rcu(&tg->list, &task_groups);
  8055. WARN_ON(!parent); /* root should already exist */
  8056. tg->parent = parent;
  8057. INIT_LIST_HEAD(&tg->children);
  8058. list_add_rcu(&tg->siblings, &parent->children);
  8059. spin_unlock_irqrestore(&task_group_lock, flags);
  8060. return tg;
  8061. err:
  8062. free_sched_group(tg);
  8063. return ERR_PTR(-ENOMEM);
  8064. }
  8065. /* rcu callback to free various structures associated with a task group */
  8066. static void free_sched_group_rcu(struct rcu_head *rhp)
  8067. {
  8068. /* now it should be safe to free those cfs_rqs */
  8069. free_sched_group(container_of(rhp, struct task_group, rcu));
  8070. }
  8071. /* Destroy runqueue etc associated with a task group */
  8072. void sched_destroy_group(struct task_group *tg)
  8073. {
  8074. unsigned long flags;
  8075. int i;
  8076. spin_lock_irqsave(&task_group_lock, flags);
  8077. for_each_possible_cpu(i) {
  8078. unregister_fair_sched_group(tg, i);
  8079. unregister_rt_sched_group(tg, i);
  8080. }
  8081. list_del_rcu(&tg->list);
  8082. list_del_rcu(&tg->siblings);
  8083. spin_unlock_irqrestore(&task_group_lock, flags);
  8084. /* wait for possible concurrent references to cfs_rqs complete */
  8085. call_rcu(&tg->rcu, free_sched_group_rcu);
  8086. }
  8087. /* change task's runqueue when it moves between groups.
  8088. * The caller of this function should have put the task in its new group
  8089. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8090. * reflect its new group.
  8091. */
  8092. void sched_move_task(struct task_struct *tsk)
  8093. {
  8094. int on_rq, running;
  8095. unsigned long flags;
  8096. struct rq *rq;
  8097. rq = task_rq_lock(tsk, &flags);
  8098. update_rq_clock(rq);
  8099. running = task_current(rq, tsk);
  8100. on_rq = tsk->se.on_rq;
  8101. if (on_rq)
  8102. dequeue_task(rq, tsk, 0);
  8103. if (unlikely(running))
  8104. tsk->sched_class->put_prev_task(rq, tsk);
  8105. set_task_rq(tsk, task_cpu(tsk));
  8106. #ifdef CONFIG_FAIR_GROUP_SCHED
  8107. if (tsk->sched_class->moved_group)
  8108. tsk->sched_class->moved_group(tsk);
  8109. #endif
  8110. if (unlikely(running))
  8111. tsk->sched_class->set_curr_task(rq);
  8112. if (on_rq)
  8113. enqueue_task(rq, tsk, 0);
  8114. task_rq_unlock(rq, &flags);
  8115. }
  8116. #endif /* CONFIG_GROUP_SCHED */
  8117. #ifdef CONFIG_FAIR_GROUP_SCHED
  8118. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8119. {
  8120. struct cfs_rq *cfs_rq = se->cfs_rq;
  8121. int on_rq;
  8122. on_rq = se->on_rq;
  8123. if (on_rq)
  8124. dequeue_entity(cfs_rq, se, 0);
  8125. se->load.weight = shares;
  8126. se->load.inv_weight = 0;
  8127. if (on_rq)
  8128. enqueue_entity(cfs_rq, se, 0);
  8129. }
  8130. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8131. {
  8132. struct cfs_rq *cfs_rq = se->cfs_rq;
  8133. struct rq *rq = cfs_rq->rq;
  8134. unsigned long flags;
  8135. spin_lock_irqsave(&rq->lock, flags);
  8136. __set_se_shares(se, shares);
  8137. spin_unlock_irqrestore(&rq->lock, flags);
  8138. }
  8139. static DEFINE_MUTEX(shares_mutex);
  8140. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8141. {
  8142. int i;
  8143. unsigned long flags;
  8144. /*
  8145. * We can't change the weight of the root cgroup.
  8146. */
  8147. if (!tg->se[0])
  8148. return -EINVAL;
  8149. if (shares < MIN_SHARES)
  8150. shares = MIN_SHARES;
  8151. else if (shares > MAX_SHARES)
  8152. shares = MAX_SHARES;
  8153. mutex_lock(&shares_mutex);
  8154. if (tg->shares == shares)
  8155. goto done;
  8156. spin_lock_irqsave(&task_group_lock, flags);
  8157. for_each_possible_cpu(i)
  8158. unregister_fair_sched_group(tg, i);
  8159. list_del_rcu(&tg->siblings);
  8160. spin_unlock_irqrestore(&task_group_lock, flags);
  8161. /* wait for any ongoing reference to this group to finish */
  8162. synchronize_sched();
  8163. /*
  8164. * Now we are free to modify the group's share on each cpu
  8165. * w/o tripping rebalance_share or load_balance_fair.
  8166. */
  8167. tg->shares = shares;
  8168. for_each_possible_cpu(i) {
  8169. /*
  8170. * force a rebalance
  8171. */
  8172. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8173. set_se_shares(tg->se[i], shares);
  8174. }
  8175. /*
  8176. * Enable load balance activity on this group, by inserting it back on
  8177. * each cpu's rq->leaf_cfs_rq_list.
  8178. */
  8179. spin_lock_irqsave(&task_group_lock, flags);
  8180. for_each_possible_cpu(i)
  8181. register_fair_sched_group(tg, i);
  8182. list_add_rcu(&tg->siblings, &tg->parent->children);
  8183. spin_unlock_irqrestore(&task_group_lock, flags);
  8184. done:
  8185. mutex_unlock(&shares_mutex);
  8186. return 0;
  8187. }
  8188. unsigned long sched_group_shares(struct task_group *tg)
  8189. {
  8190. return tg->shares;
  8191. }
  8192. #endif
  8193. #ifdef CONFIG_RT_GROUP_SCHED
  8194. /*
  8195. * Ensure that the real time constraints are schedulable.
  8196. */
  8197. static DEFINE_MUTEX(rt_constraints_mutex);
  8198. static unsigned long to_ratio(u64 period, u64 runtime)
  8199. {
  8200. if (runtime == RUNTIME_INF)
  8201. return 1ULL << 20;
  8202. return div64_u64(runtime << 20, period);
  8203. }
  8204. /* Must be called with tasklist_lock held */
  8205. static inline int tg_has_rt_tasks(struct task_group *tg)
  8206. {
  8207. struct task_struct *g, *p;
  8208. do_each_thread(g, p) {
  8209. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8210. return 1;
  8211. } while_each_thread(g, p);
  8212. return 0;
  8213. }
  8214. struct rt_schedulable_data {
  8215. struct task_group *tg;
  8216. u64 rt_period;
  8217. u64 rt_runtime;
  8218. };
  8219. static int tg_schedulable(struct task_group *tg, void *data)
  8220. {
  8221. struct rt_schedulable_data *d = data;
  8222. struct task_group *child;
  8223. unsigned long total, sum = 0;
  8224. u64 period, runtime;
  8225. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8226. runtime = tg->rt_bandwidth.rt_runtime;
  8227. if (tg == d->tg) {
  8228. period = d->rt_period;
  8229. runtime = d->rt_runtime;
  8230. }
  8231. #ifdef CONFIG_USER_SCHED
  8232. if (tg == &root_task_group) {
  8233. period = global_rt_period();
  8234. runtime = global_rt_runtime();
  8235. }
  8236. #endif
  8237. /*
  8238. * Cannot have more runtime than the period.
  8239. */
  8240. if (runtime > period && runtime != RUNTIME_INF)
  8241. return -EINVAL;
  8242. /*
  8243. * Ensure we don't starve existing RT tasks.
  8244. */
  8245. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8246. return -EBUSY;
  8247. total = to_ratio(period, runtime);
  8248. /*
  8249. * Nobody can have more than the global setting allows.
  8250. */
  8251. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8252. return -EINVAL;
  8253. /*
  8254. * The sum of our children's runtime should not exceed our own.
  8255. */
  8256. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8257. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8258. runtime = child->rt_bandwidth.rt_runtime;
  8259. if (child == d->tg) {
  8260. period = d->rt_period;
  8261. runtime = d->rt_runtime;
  8262. }
  8263. sum += to_ratio(period, runtime);
  8264. }
  8265. if (sum > total)
  8266. return -EINVAL;
  8267. return 0;
  8268. }
  8269. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8270. {
  8271. struct rt_schedulable_data data = {
  8272. .tg = tg,
  8273. .rt_period = period,
  8274. .rt_runtime = runtime,
  8275. };
  8276. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8277. }
  8278. static int tg_set_bandwidth(struct task_group *tg,
  8279. u64 rt_period, u64 rt_runtime)
  8280. {
  8281. int i, err = 0;
  8282. mutex_lock(&rt_constraints_mutex);
  8283. read_lock(&tasklist_lock);
  8284. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8285. if (err)
  8286. goto unlock;
  8287. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8288. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8289. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8290. for_each_possible_cpu(i) {
  8291. struct rt_rq *rt_rq = tg->rt_rq[i];
  8292. spin_lock(&rt_rq->rt_runtime_lock);
  8293. rt_rq->rt_runtime = rt_runtime;
  8294. spin_unlock(&rt_rq->rt_runtime_lock);
  8295. }
  8296. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8297. unlock:
  8298. read_unlock(&tasklist_lock);
  8299. mutex_unlock(&rt_constraints_mutex);
  8300. return err;
  8301. }
  8302. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8303. {
  8304. u64 rt_runtime, rt_period;
  8305. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8306. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8307. if (rt_runtime_us < 0)
  8308. rt_runtime = RUNTIME_INF;
  8309. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8310. }
  8311. long sched_group_rt_runtime(struct task_group *tg)
  8312. {
  8313. u64 rt_runtime_us;
  8314. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8315. return -1;
  8316. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8317. do_div(rt_runtime_us, NSEC_PER_USEC);
  8318. return rt_runtime_us;
  8319. }
  8320. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8321. {
  8322. u64 rt_runtime, rt_period;
  8323. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8324. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8325. if (rt_period == 0)
  8326. return -EINVAL;
  8327. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8328. }
  8329. long sched_group_rt_period(struct task_group *tg)
  8330. {
  8331. u64 rt_period_us;
  8332. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8333. do_div(rt_period_us, NSEC_PER_USEC);
  8334. return rt_period_us;
  8335. }
  8336. static int sched_rt_global_constraints(void)
  8337. {
  8338. u64 runtime, period;
  8339. int ret = 0;
  8340. if (sysctl_sched_rt_period <= 0)
  8341. return -EINVAL;
  8342. runtime = global_rt_runtime();
  8343. period = global_rt_period();
  8344. /*
  8345. * Sanity check on the sysctl variables.
  8346. */
  8347. if (runtime > period && runtime != RUNTIME_INF)
  8348. return -EINVAL;
  8349. mutex_lock(&rt_constraints_mutex);
  8350. read_lock(&tasklist_lock);
  8351. ret = __rt_schedulable(NULL, 0, 0);
  8352. read_unlock(&tasklist_lock);
  8353. mutex_unlock(&rt_constraints_mutex);
  8354. return ret;
  8355. }
  8356. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8357. {
  8358. /* Don't accept realtime tasks when there is no way for them to run */
  8359. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8360. return 0;
  8361. return 1;
  8362. }
  8363. #else /* !CONFIG_RT_GROUP_SCHED */
  8364. static int sched_rt_global_constraints(void)
  8365. {
  8366. unsigned long flags;
  8367. int i;
  8368. if (sysctl_sched_rt_period <= 0)
  8369. return -EINVAL;
  8370. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8371. for_each_possible_cpu(i) {
  8372. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8373. spin_lock(&rt_rq->rt_runtime_lock);
  8374. rt_rq->rt_runtime = global_rt_runtime();
  8375. spin_unlock(&rt_rq->rt_runtime_lock);
  8376. }
  8377. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8378. return 0;
  8379. }
  8380. #endif /* CONFIG_RT_GROUP_SCHED */
  8381. int sched_rt_handler(struct ctl_table *table, int write,
  8382. struct file *filp, void __user *buffer, size_t *lenp,
  8383. loff_t *ppos)
  8384. {
  8385. int ret;
  8386. int old_period, old_runtime;
  8387. static DEFINE_MUTEX(mutex);
  8388. mutex_lock(&mutex);
  8389. old_period = sysctl_sched_rt_period;
  8390. old_runtime = sysctl_sched_rt_runtime;
  8391. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8392. if (!ret && write) {
  8393. ret = sched_rt_global_constraints();
  8394. if (ret) {
  8395. sysctl_sched_rt_period = old_period;
  8396. sysctl_sched_rt_runtime = old_runtime;
  8397. } else {
  8398. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8399. def_rt_bandwidth.rt_period =
  8400. ns_to_ktime(global_rt_period());
  8401. }
  8402. }
  8403. mutex_unlock(&mutex);
  8404. return ret;
  8405. }
  8406. #ifdef CONFIG_CGROUP_SCHED
  8407. /* return corresponding task_group object of a cgroup */
  8408. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8409. {
  8410. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8411. struct task_group, css);
  8412. }
  8413. static struct cgroup_subsys_state *
  8414. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8415. {
  8416. struct task_group *tg, *parent;
  8417. if (!cgrp->parent) {
  8418. /* This is early initialization for the top cgroup */
  8419. return &init_task_group.css;
  8420. }
  8421. parent = cgroup_tg(cgrp->parent);
  8422. tg = sched_create_group(parent);
  8423. if (IS_ERR(tg))
  8424. return ERR_PTR(-ENOMEM);
  8425. return &tg->css;
  8426. }
  8427. static void
  8428. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8429. {
  8430. struct task_group *tg = cgroup_tg(cgrp);
  8431. sched_destroy_group(tg);
  8432. }
  8433. static int
  8434. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8435. struct task_struct *tsk)
  8436. {
  8437. #ifdef CONFIG_RT_GROUP_SCHED
  8438. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8439. return -EINVAL;
  8440. #else
  8441. /* We don't support RT-tasks being in separate groups */
  8442. if (tsk->sched_class != &fair_sched_class)
  8443. return -EINVAL;
  8444. #endif
  8445. return 0;
  8446. }
  8447. static void
  8448. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8449. struct cgroup *old_cont, struct task_struct *tsk)
  8450. {
  8451. sched_move_task(tsk);
  8452. }
  8453. #ifdef CONFIG_FAIR_GROUP_SCHED
  8454. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8455. u64 shareval)
  8456. {
  8457. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8458. }
  8459. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8460. {
  8461. struct task_group *tg = cgroup_tg(cgrp);
  8462. return (u64) tg->shares;
  8463. }
  8464. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8465. #ifdef CONFIG_RT_GROUP_SCHED
  8466. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8467. s64 val)
  8468. {
  8469. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8470. }
  8471. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8472. {
  8473. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8474. }
  8475. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8476. u64 rt_period_us)
  8477. {
  8478. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8479. }
  8480. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8481. {
  8482. return sched_group_rt_period(cgroup_tg(cgrp));
  8483. }
  8484. #endif /* CONFIG_RT_GROUP_SCHED */
  8485. static struct cftype cpu_files[] = {
  8486. #ifdef CONFIG_FAIR_GROUP_SCHED
  8487. {
  8488. .name = "shares",
  8489. .read_u64 = cpu_shares_read_u64,
  8490. .write_u64 = cpu_shares_write_u64,
  8491. },
  8492. #endif
  8493. #ifdef CONFIG_RT_GROUP_SCHED
  8494. {
  8495. .name = "rt_runtime_us",
  8496. .read_s64 = cpu_rt_runtime_read,
  8497. .write_s64 = cpu_rt_runtime_write,
  8498. },
  8499. {
  8500. .name = "rt_period_us",
  8501. .read_u64 = cpu_rt_period_read_uint,
  8502. .write_u64 = cpu_rt_period_write_uint,
  8503. },
  8504. #endif
  8505. };
  8506. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8507. {
  8508. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8509. }
  8510. struct cgroup_subsys cpu_cgroup_subsys = {
  8511. .name = "cpu",
  8512. .create = cpu_cgroup_create,
  8513. .destroy = cpu_cgroup_destroy,
  8514. .can_attach = cpu_cgroup_can_attach,
  8515. .attach = cpu_cgroup_attach,
  8516. .populate = cpu_cgroup_populate,
  8517. .subsys_id = cpu_cgroup_subsys_id,
  8518. .early_init = 1,
  8519. };
  8520. #endif /* CONFIG_CGROUP_SCHED */
  8521. #ifdef CONFIG_CGROUP_CPUACCT
  8522. /*
  8523. * CPU accounting code for task groups.
  8524. *
  8525. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8526. * (balbir@in.ibm.com).
  8527. */
  8528. /* track cpu usage of a group of tasks and its child groups */
  8529. struct cpuacct {
  8530. struct cgroup_subsys_state css;
  8531. /* cpuusage holds pointer to a u64-type object on every cpu */
  8532. u64 *cpuusage;
  8533. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8534. struct cpuacct *parent;
  8535. };
  8536. struct cgroup_subsys cpuacct_subsys;
  8537. /* return cpu accounting group corresponding to this container */
  8538. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8539. {
  8540. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8541. struct cpuacct, css);
  8542. }
  8543. /* return cpu accounting group to which this task belongs */
  8544. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8545. {
  8546. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8547. struct cpuacct, css);
  8548. }
  8549. /* create a new cpu accounting group */
  8550. static struct cgroup_subsys_state *cpuacct_create(
  8551. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8552. {
  8553. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8554. int i;
  8555. if (!ca)
  8556. goto out;
  8557. ca->cpuusage = alloc_percpu(u64);
  8558. if (!ca->cpuusage)
  8559. goto out_free_ca;
  8560. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8561. if (percpu_counter_init(&ca->cpustat[i], 0))
  8562. goto out_free_counters;
  8563. if (cgrp->parent)
  8564. ca->parent = cgroup_ca(cgrp->parent);
  8565. return &ca->css;
  8566. out_free_counters:
  8567. while (--i >= 0)
  8568. percpu_counter_destroy(&ca->cpustat[i]);
  8569. free_percpu(ca->cpuusage);
  8570. out_free_ca:
  8571. kfree(ca);
  8572. out:
  8573. return ERR_PTR(-ENOMEM);
  8574. }
  8575. /* destroy an existing cpu accounting group */
  8576. static void
  8577. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8578. {
  8579. struct cpuacct *ca = cgroup_ca(cgrp);
  8580. int i;
  8581. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8582. percpu_counter_destroy(&ca->cpustat[i]);
  8583. free_percpu(ca->cpuusage);
  8584. kfree(ca);
  8585. }
  8586. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8587. {
  8588. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8589. u64 data;
  8590. #ifndef CONFIG_64BIT
  8591. /*
  8592. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8593. */
  8594. spin_lock_irq(&cpu_rq(cpu)->lock);
  8595. data = *cpuusage;
  8596. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8597. #else
  8598. data = *cpuusage;
  8599. #endif
  8600. return data;
  8601. }
  8602. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8603. {
  8604. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8605. #ifndef CONFIG_64BIT
  8606. /*
  8607. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8608. */
  8609. spin_lock_irq(&cpu_rq(cpu)->lock);
  8610. *cpuusage = val;
  8611. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8612. #else
  8613. *cpuusage = val;
  8614. #endif
  8615. }
  8616. /* return total cpu usage (in nanoseconds) of a group */
  8617. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8618. {
  8619. struct cpuacct *ca = cgroup_ca(cgrp);
  8620. u64 totalcpuusage = 0;
  8621. int i;
  8622. for_each_present_cpu(i)
  8623. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8624. return totalcpuusage;
  8625. }
  8626. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8627. u64 reset)
  8628. {
  8629. struct cpuacct *ca = cgroup_ca(cgrp);
  8630. int err = 0;
  8631. int i;
  8632. if (reset) {
  8633. err = -EINVAL;
  8634. goto out;
  8635. }
  8636. for_each_present_cpu(i)
  8637. cpuacct_cpuusage_write(ca, i, 0);
  8638. out:
  8639. return err;
  8640. }
  8641. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8642. struct seq_file *m)
  8643. {
  8644. struct cpuacct *ca = cgroup_ca(cgroup);
  8645. u64 percpu;
  8646. int i;
  8647. for_each_present_cpu(i) {
  8648. percpu = cpuacct_cpuusage_read(ca, i);
  8649. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8650. }
  8651. seq_printf(m, "\n");
  8652. return 0;
  8653. }
  8654. static const char *cpuacct_stat_desc[] = {
  8655. [CPUACCT_STAT_USER] = "user",
  8656. [CPUACCT_STAT_SYSTEM] = "system",
  8657. };
  8658. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8659. struct cgroup_map_cb *cb)
  8660. {
  8661. struct cpuacct *ca = cgroup_ca(cgrp);
  8662. int i;
  8663. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8664. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8665. val = cputime64_to_clock_t(val);
  8666. cb->fill(cb, cpuacct_stat_desc[i], val);
  8667. }
  8668. return 0;
  8669. }
  8670. static struct cftype files[] = {
  8671. {
  8672. .name = "usage",
  8673. .read_u64 = cpuusage_read,
  8674. .write_u64 = cpuusage_write,
  8675. },
  8676. {
  8677. .name = "usage_percpu",
  8678. .read_seq_string = cpuacct_percpu_seq_read,
  8679. },
  8680. {
  8681. .name = "stat",
  8682. .read_map = cpuacct_stats_show,
  8683. },
  8684. };
  8685. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8686. {
  8687. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8688. }
  8689. /*
  8690. * charge this task's execution time to its accounting group.
  8691. *
  8692. * called with rq->lock held.
  8693. */
  8694. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8695. {
  8696. struct cpuacct *ca;
  8697. int cpu;
  8698. if (unlikely(!cpuacct_subsys.active))
  8699. return;
  8700. cpu = task_cpu(tsk);
  8701. rcu_read_lock();
  8702. ca = task_ca(tsk);
  8703. for (; ca; ca = ca->parent) {
  8704. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8705. *cpuusage += cputime;
  8706. }
  8707. rcu_read_unlock();
  8708. }
  8709. /*
  8710. * Charge the system/user time to the task's accounting group.
  8711. */
  8712. static void cpuacct_update_stats(struct task_struct *tsk,
  8713. enum cpuacct_stat_index idx, cputime_t val)
  8714. {
  8715. struct cpuacct *ca;
  8716. if (unlikely(!cpuacct_subsys.active))
  8717. return;
  8718. rcu_read_lock();
  8719. ca = task_ca(tsk);
  8720. do {
  8721. percpu_counter_add(&ca->cpustat[idx], val);
  8722. ca = ca->parent;
  8723. } while (ca);
  8724. rcu_read_unlock();
  8725. }
  8726. struct cgroup_subsys cpuacct_subsys = {
  8727. .name = "cpuacct",
  8728. .create = cpuacct_create,
  8729. .destroy = cpuacct_destroy,
  8730. .populate = cpuacct_populate,
  8731. .subsys_id = cpuacct_subsys_id,
  8732. };
  8733. #endif /* CONFIG_CGROUP_CPUACCT */