kvm_main.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. struct kmem_cache *kvm_vcpu_cache;
  50. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  51. static __read_mostly struct preempt_ops kvm_preempt_ops;
  52. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  53. static struct kvm_stats_debugfs_item {
  54. const char *name;
  55. int offset;
  56. struct dentry *dentry;
  57. } debugfs_entries[] = {
  58. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  59. { "pf_guest", STAT_OFFSET(pf_guest) },
  60. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  61. { "invlpg", STAT_OFFSET(invlpg) },
  62. { "exits", STAT_OFFSET(exits) },
  63. { "io_exits", STAT_OFFSET(io_exits) },
  64. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  65. { "signal_exits", STAT_OFFSET(signal_exits) },
  66. { "irq_window", STAT_OFFSET(irq_window_exits) },
  67. { "halt_exits", STAT_OFFSET(halt_exits) },
  68. { "request_irq", STAT_OFFSET(request_irq_exits) },
  69. { "irq_exits", STAT_OFFSET(irq_exits) },
  70. { "light_exits", STAT_OFFSET(light_exits) },
  71. { "efer_reload", STAT_OFFSET(efer_reload) },
  72. { NULL }
  73. };
  74. static struct dentry *debugfs_dir;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESERVED_BITS \
  77. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  78. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  79. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  80. #define CR4_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  82. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  83. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  84. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  85. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  86. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  87. #ifdef CONFIG_X86_64
  88. // LDT or TSS descriptor in the GDT. 16 bytes.
  89. struct segment_descriptor_64 {
  90. struct segment_descriptor s;
  91. u32 base_higher;
  92. u32 pad_zero;
  93. };
  94. #endif
  95. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  96. unsigned long arg);
  97. unsigned long segment_base(u16 selector)
  98. {
  99. struct descriptor_table gdt;
  100. struct segment_descriptor *d;
  101. unsigned long table_base;
  102. typedef unsigned long ul;
  103. unsigned long v;
  104. if (selector == 0)
  105. return 0;
  106. asm ("sgdt %0" : "=m"(gdt));
  107. table_base = gdt.base;
  108. if (selector & 4) { /* from ldt */
  109. u16 ldt_selector;
  110. asm ("sldt %0" : "=g"(ldt_selector));
  111. table_base = segment_base(ldt_selector);
  112. }
  113. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  114. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  115. #ifdef CONFIG_X86_64
  116. if (d->system == 0
  117. && (d->type == 2 || d->type == 9 || d->type == 11))
  118. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  119. #endif
  120. return v;
  121. }
  122. EXPORT_SYMBOL_GPL(segment_base);
  123. static inline int valid_vcpu(int n)
  124. {
  125. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  126. }
  127. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  128. {
  129. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  130. return;
  131. vcpu->guest_fpu_loaded = 1;
  132. fx_save(&vcpu->host_fx_image);
  133. fx_restore(&vcpu->guest_fx_image);
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  136. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  137. {
  138. if (!vcpu->guest_fpu_loaded)
  139. return;
  140. vcpu->guest_fpu_loaded = 0;
  141. fx_save(&vcpu->guest_fx_image);
  142. fx_restore(&vcpu->host_fx_image);
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  145. /*
  146. * Switches to specified vcpu, until a matching vcpu_put()
  147. */
  148. static void vcpu_load(struct kvm_vcpu *vcpu)
  149. {
  150. int cpu;
  151. mutex_lock(&vcpu->mutex);
  152. cpu = get_cpu();
  153. preempt_notifier_register(&vcpu->preempt_notifier);
  154. kvm_arch_ops->vcpu_load(vcpu, cpu);
  155. put_cpu();
  156. }
  157. static void vcpu_put(struct kvm_vcpu *vcpu)
  158. {
  159. preempt_disable();
  160. kvm_arch_ops->vcpu_put(vcpu);
  161. preempt_notifier_unregister(&vcpu->preempt_notifier);
  162. preempt_enable();
  163. mutex_unlock(&vcpu->mutex);
  164. }
  165. static void ack_flush(void *_completed)
  166. {
  167. atomic_t *completed = _completed;
  168. atomic_inc(completed);
  169. }
  170. void kvm_flush_remote_tlbs(struct kvm *kvm)
  171. {
  172. int i, cpu, needed;
  173. cpumask_t cpus;
  174. struct kvm_vcpu *vcpu;
  175. atomic_t completed;
  176. atomic_set(&completed, 0);
  177. cpus_clear(cpus);
  178. needed = 0;
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. if (!cpu_isset(cpu, cpus)) {
  188. cpu_set(cpu, cpus);
  189. ++needed;
  190. }
  191. }
  192. /*
  193. * We really want smp_call_function_mask() here. But that's not
  194. * available, so ipi all cpus in parallel and wait for them
  195. * to complete.
  196. */
  197. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  198. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  199. while (atomic_read(&completed) != needed) {
  200. cpu_relax();
  201. barrier();
  202. }
  203. }
  204. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  205. {
  206. struct page *page;
  207. int r;
  208. mutex_init(&vcpu->mutex);
  209. vcpu->cpu = -1;
  210. vcpu->mmu.root_hpa = INVALID_PAGE;
  211. vcpu->kvm = kvm;
  212. vcpu->vcpu_id = id;
  213. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  214. if (!page) {
  215. r = -ENOMEM;
  216. goto fail;
  217. }
  218. vcpu->run = page_address(page);
  219. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  220. if (!page) {
  221. r = -ENOMEM;
  222. goto fail_free_run;
  223. }
  224. vcpu->pio_data = page_address(page);
  225. r = kvm_mmu_create(vcpu);
  226. if (r < 0)
  227. goto fail_free_pio_data;
  228. return 0;
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return -ENOMEM;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_mmu_destroy(vcpu);
  240. free_page((unsigned long)vcpu->pio_data);
  241. free_page((unsigned long)vcpu->run);
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. kvm_io_bus_init(&kvm->pio_bus);
  250. mutex_init(&kvm->lock);
  251. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  252. kvm_io_bus_init(&kvm->mmio_bus);
  253. spin_lock(&kvm_lock);
  254. list_add(&kvm->vm_list, &vm_list);
  255. spin_unlock(&kvm_lock);
  256. return kvm;
  257. }
  258. static int kvm_dev_open(struct inode *inode, struct file *filp)
  259. {
  260. return 0;
  261. }
  262. /*
  263. * Free any memory in @free but not in @dont.
  264. */
  265. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  266. struct kvm_memory_slot *dont)
  267. {
  268. int i;
  269. if (!dont || free->phys_mem != dont->phys_mem)
  270. if (free->phys_mem) {
  271. for (i = 0; i < free->npages; ++i)
  272. if (free->phys_mem[i])
  273. __free_page(free->phys_mem[i]);
  274. vfree(free->phys_mem);
  275. }
  276. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  277. vfree(free->dirty_bitmap);
  278. free->phys_mem = NULL;
  279. free->npages = 0;
  280. free->dirty_bitmap = NULL;
  281. }
  282. static void kvm_free_physmem(struct kvm *kvm)
  283. {
  284. int i;
  285. for (i = 0; i < kvm->nmemslots; ++i)
  286. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  287. }
  288. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  289. {
  290. int i;
  291. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  292. if (vcpu->pio.guest_pages[i]) {
  293. __free_page(vcpu->pio.guest_pages[i]);
  294. vcpu->pio.guest_pages[i] = NULL;
  295. }
  296. }
  297. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu_load(vcpu);
  300. kvm_mmu_unload(vcpu);
  301. vcpu_put(vcpu);
  302. }
  303. static void kvm_free_vcpus(struct kvm *kvm)
  304. {
  305. unsigned int i;
  306. /*
  307. * Unpin any mmu pages first.
  308. */
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  310. if (kvm->vcpus[i])
  311. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  312. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  313. if (kvm->vcpus[i]) {
  314. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  315. kvm->vcpus[i] = NULL;
  316. }
  317. }
  318. }
  319. static int kvm_dev_release(struct inode *inode, struct file *filp)
  320. {
  321. return 0;
  322. }
  323. static void kvm_destroy_vm(struct kvm *kvm)
  324. {
  325. spin_lock(&kvm_lock);
  326. list_del(&kvm->vm_list);
  327. spin_unlock(&kvm_lock);
  328. kvm_io_bus_destroy(&kvm->pio_bus);
  329. kvm_io_bus_destroy(&kvm->mmio_bus);
  330. kvm_free_vcpus(kvm);
  331. kvm_free_physmem(kvm);
  332. kfree(kvm);
  333. }
  334. static int kvm_vm_release(struct inode *inode, struct file *filp)
  335. {
  336. struct kvm *kvm = filp->private_data;
  337. kvm_destroy_vm(kvm);
  338. return 0;
  339. }
  340. static void inject_gp(struct kvm_vcpu *vcpu)
  341. {
  342. kvm_arch_ops->inject_gp(vcpu, 0);
  343. }
  344. /*
  345. * Load the pae pdptrs. Return true is they are all valid.
  346. */
  347. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  348. {
  349. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  350. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  351. int i;
  352. u64 *pdpt;
  353. int ret;
  354. struct page *page;
  355. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  356. mutex_lock(&vcpu->kvm->lock);
  357. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  358. if (!page) {
  359. ret = 0;
  360. goto out;
  361. }
  362. pdpt = kmap_atomic(page, KM_USER0);
  363. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  364. kunmap_atomic(pdpt, KM_USER0);
  365. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  366. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  367. ret = 0;
  368. goto out;
  369. }
  370. }
  371. ret = 1;
  372. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  373. out:
  374. mutex_unlock(&vcpu->kvm->lock);
  375. return ret;
  376. }
  377. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  378. {
  379. if (cr0 & CR0_RESERVED_BITS) {
  380. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  381. cr0, vcpu->cr0);
  382. inject_gp(vcpu);
  383. return;
  384. }
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  391. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  392. "and a clear PE flag\n");
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  397. #ifdef CONFIG_X86_64
  398. if ((vcpu->shadow_efer & EFER_LME)) {
  399. int cs_db, cs_l;
  400. if (!is_pae(vcpu)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  402. "in long mode while PAE is disabled\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  407. if (cs_l) {
  408. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  409. "in long mode while CS.L == 1\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. } else
  414. #endif
  415. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  416. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  417. "reserved bits\n");
  418. inject_gp(vcpu);
  419. return;
  420. }
  421. }
  422. kvm_arch_ops->set_cr0(vcpu, cr0);
  423. vcpu->cr0 = cr0;
  424. mutex_lock(&vcpu->kvm->lock);
  425. kvm_mmu_reset_context(vcpu);
  426. mutex_unlock(&vcpu->kvm->lock);
  427. return;
  428. }
  429. EXPORT_SYMBOL_GPL(set_cr0);
  430. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  431. {
  432. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  433. }
  434. EXPORT_SYMBOL_GPL(lmsw);
  435. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  436. {
  437. if (cr4 & CR4_RESERVED_BITS) {
  438. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  439. inject_gp(vcpu);
  440. return;
  441. }
  442. if (is_long_mode(vcpu)) {
  443. if (!(cr4 & X86_CR4_PAE)) {
  444. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  445. "in long mode\n");
  446. inject_gp(vcpu);
  447. return;
  448. }
  449. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  450. && !load_pdptrs(vcpu, vcpu->cr3)) {
  451. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  452. inject_gp(vcpu);
  453. return;
  454. }
  455. if (cr4 & X86_CR4_VMXE) {
  456. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. kvm_arch_ops->set_cr4(vcpu, cr4);
  461. mutex_lock(&vcpu->kvm->lock);
  462. kvm_mmu_reset_context(vcpu);
  463. mutex_unlock(&vcpu->kvm->lock);
  464. }
  465. EXPORT_SYMBOL_GPL(set_cr4);
  466. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  467. {
  468. if (is_long_mode(vcpu)) {
  469. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  470. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. } else {
  475. if (is_pae(vcpu)) {
  476. if (cr3 & CR3_PAE_RESERVED_BITS) {
  477. printk(KERN_DEBUG
  478. "set_cr3: #GP, reserved bits\n");
  479. inject_gp(vcpu);
  480. return;
  481. }
  482. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  483. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  484. "reserved bits\n");
  485. inject_gp(vcpu);
  486. return;
  487. }
  488. } else {
  489. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  490. printk(KERN_DEBUG
  491. "set_cr3: #GP, reserved bits\n");
  492. inject_gp(vcpu);
  493. return;
  494. }
  495. }
  496. }
  497. vcpu->cr3 = cr3;
  498. mutex_lock(&vcpu->kvm->lock);
  499. /*
  500. * Does the new cr3 value map to physical memory? (Note, we
  501. * catch an invalid cr3 even in real-mode, because it would
  502. * cause trouble later on when we turn on paging anyway.)
  503. *
  504. * A real CPU would silently accept an invalid cr3 and would
  505. * attempt to use it - with largely undefined (and often hard
  506. * to debug) behavior on the guest side.
  507. */
  508. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  509. inject_gp(vcpu);
  510. else
  511. vcpu->mmu.new_cr3(vcpu);
  512. mutex_unlock(&vcpu->kvm->lock);
  513. }
  514. EXPORT_SYMBOL_GPL(set_cr3);
  515. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  516. {
  517. if (cr8 & CR8_RESERVED_BITS) {
  518. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  519. inject_gp(vcpu);
  520. return;
  521. }
  522. vcpu->cr8 = cr8;
  523. }
  524. EXPORT_SYMBOL_GPL(set_cr8);
  525. void fx_init(struct kvm_vcpu *vcpu)
  526. {
  527. unsigned after_mxcsr_mask;
  528. /* Initialize guest FPU by resetting ours and saving into guest's */
  529. preempt_disable();
  530. fx_save(&vcpu->host_fx_image);
  531. fpu_init();
  532. fx_save(&vcpu->guest_fx_image);
  533. fx_restore(&vcpu->host_fx_image);
  534. preempt_enable();
  535. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  536. vcpu->guest_fx_image.mxcsr = 0x1f80;
  537. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  538. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  539. }
  540. EXPORT_SYMBOL_GPL(fx_init);
  541. /*
  542. * Allocate some memory and give it an address in the guest physical address
  543. * space.
  544. *
  545. * Discontiguous memory is allowed, mostly for framebuffers.
  546. */
  547. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  548. struct kvm_memory_region *mem)
  549. {
  550. int r;
  551. gfn_t base_gfn;
  552. unsigned long npages;
  553. unsigned long i;
  554. struct kvm_memory_slot *memslot;
  555. struct kvm_memory_slot old, new;
  556. int memory_config_version;
  557. r = -EINVAL;
  558. /* General sanity checks */
  559. if (mem->memory_size & (PAGE_SIZE - 1))
  560. goto out;
  561. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  562. goto out;
  563. if (mem->slot >= KVM_MEMORY_SLOTS)
  564. goto out;
  565. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  566. goto out;
  567. memslot = &kvm->memslots[mem->slot];
  568. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  569. npages = mem->memory_size >> PAGE_SHIFT;
  570. if (!npages)
  571. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  572. raced:
  573. mutex_lock(&kvm->lock);
  574. memory_config_version = kvm->memory_config_version;
  575. new = old = *memslot;
  576. new.base_gfn = base_gfn;
  577. new.npages = npages;
  578. new.flags = mem->flags;
  579. /* Disallow changing a memory slot's size. */
  580. r = -EINVAL;
  581. if (npages && old.npages && npages != old.npages)
  582. goto out_unlock;
  583. /* Check for overlaps */
  584. r = -EEXIST;
  585. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  586. struct kvm_memory_slot *s = &kvm->memslots[i];
  587. if (s == memslot)
  588. continue;
  589. if (!((base_gfn + npages <= s->base_gfn) ||
  590. (base_gfn >= s->base_gfn + s->npages)))
  591. goto out_unlock;
  592. }
  593. /*
  594. * Do memory allocations outside lock. memory_config_version will
  595. * detect any races.
  596. */
  597. mutex_unlock(&kvm->lock);
  598. /* Deallocate if slot is being removed */
  599. if (!npages)
  600. new.phys_mem = NULL;
  601. /* Free page dirty bitmap if unneeded */
  602. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  603. new.dirty_bitmap = NULL;
  604. r = -ENOMEM;
  605. /* Allocate if a slot is being created */
  606. if (npages && !new.phys_mem) {
  607. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  608. if (!new.phys_mem)
  609. goto out_free;
  610. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  611. for (i = 0; i < npages; ++i) {
  612. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  613. | __GFP_ZERO);
  614. if (!new.phys_mem[i])
  615. goto out_free;
  616. set_page_private(new.phys_mem[i],0);
  617. }
  618. }
  619. /* Allocate page dirty bitmap if needed */
  620. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  621. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  622. new.dirty_bitmap = vmalloc(dirty_bytes);
  623. if (!new.dirty_bitmap)
  624. goto out_free;
  625. memset(new.dirty_bitmap, 0, dirty_bytes);
  626. }
  627. mutex_lock(&kvm->lock);
  628. if (memory_config_version != kvm->memory_config_version) {
  629. mutex_unlock(&kvm->lock);
  630. kvm_free_physmem_slot(&new, &old);
  631. goto raced;
  632. }
  633. r = -EAGAIN;
  634. if (kvm->busy)
  635. goto out_unlock;
  636. if (mem->slot >= kvm->nmemslots)
  637. kvm->nmemslots = mem->slot + 1;
  638. *memslot = new;
  639. ++kvm->memory_config_version;
  640. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  641. kvm_flush_remote_tlbs(kvm);
  642. mutex_unlock(&kvm->lock);
  643. kvm_free_physmem_slot(&old, &new);
  644. return 0;
  645. out_unlock:
  646. mutex_unlock(&kvm->lock);
  647. out_free:
  648. kvm_free_physmem_slot(&new, &old);
  649. out:
  650. return r;
  651. }
  652. /*
  653. * Get (and clear) the dirty memory log for a memory slot.
  654. */
  655. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  656. struct kvm_dirty_log *log)
  657. {
  658. struct kvm_memory_slot *memslot;
  659. int r, i;
  660. int n;
  661. unsigned long any = 0;
  662. mutex_lock(&kvm->lock);
  663. /*
  664. * Prevent changes to guest memory configuration even while the lock
  665. * is not taken.
  666. */
  667. ++kvm->busy;
  668. mutex_unlock(&kvm->lock);
  669. r = -EINVAL;
  670. if (log->slot >= KVM_MEMORY_SLOTS)
  671. goto out;
  672. memslot = &kvm->memslots[log->slot];
  673. r = -ENOENT;
  674. if (!memslot->dirty_bitmap)
  675. goto out;
  676. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  677. for (i = 0; !any && i < n/sizeof(long); ++i)
  678. any = memslot->dirty_bitmap[i];
  679. r = -EFAULT;
  680. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  681. goto out;
  682. mutex_lock(&kvm->lock);
  683. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  684. kvm_flush_remote_tlbs(kvm);
  685. memset(memslot->dirty_bitmap, 0, n);
  686. mutex_unlock(&kvm->lock);
  687. r = 0;
  688. out:
  689. mutex_lock(&kvm->lock);
  690. --kvm->busy;
  691. mutex_unlock(&kvm->lock);
  692. return r;
  693. }
  694. /*
  695. * Set a new alias region. Aliases map a portion of physical memory into
  696. * another portion. This is useful for memory windows, for example the PC
  697. * VGA region.
  698. */
  699. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  700. struct kvm_memory_alias *alias)
  701. {
  702. int r, n;
  703. struct kvm_mem_alias *p;
  704. r = -EINVAL;
  705. /* General sanity checks */
  706. if (alias->memory_size & (PAGE_SIZE - 1))
  707. goto out;
  708. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  709. goto out;
  710. if (alias->slot >= KVM_ALIAS_SLOTS)
  711. goto out;
  712. if (alias->guest_phys_addr + alias->memory_size
  713. < alias->guest_phys_addr)
  714. goto out;
  715. if (alias->target_phys_addr + alias->memory_size
  716. < alias->target_phys_addr)
  717. goto out;
  718. mutex_lock(&kvm->lock);
  719. p = &kvm->aliases[alias->slot];
  720. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  721. p->npages = alias->memory_size >> PAGE_SHIFT;
  722. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  723. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  724. if (kvm->aliases[n - 1].npages)
  725. break;
  726. kvm->naliases = n;
  727. kvm_mmu_zap_all(kvm);
  728. mutex_unlock(&kvm->lock);
  729. return 0;
  730. out:
  731. return r;
  732. }
  733. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  734. {
  735. int i;
  736. struct kvm_mem_alias *alias;
  737. for (i = 0; i < kvm->naliases; ++i) {
  738. alias = &kvm->aliases[i];
  739. if (gfn >= alias->base_gfn
  740. && gfn < alias->base_gfn + alias->npages)
  741. return alias->target_gfn + gfn - alias->base_gfn;
  742. }
  743. return gfn;
  744. }
  745. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  746. {
  747. int i;
  748. for (i = 0; i < kvm->nmemslots; ++i) {
  749. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  750. if (gfn >= memslot->base_gfn
  751. && gfn < memslot->base_gfn + memslot->npages)
  752. return memslot;
  753. }
  754. return NULL;
  755. }
  756. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  757. {
  758. gfn = unalias_gfn(kvm, gfn);
  759. return __gfn_to_memslot(kvm, gfn);
  760. }
  761. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  762. {
  763. struct kvm_memory_slot *slot;
  764. gfn = unalias_gfn(kvm, gfn);
  765. slot = __gfn_to_memslot(kvm, gfn);
  766. if (!slot)
  767. return NULL;
  768. return slot->phys_mem[gfn - slot->base_gfn];
  769. }
  770. EXPORT_SYMBOL_GPL(gfn_to_page);
  771. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  772. {
  773. int i;
  774. struct kvm_memory_slot *memslot;
  775. unsigned long rel_gfn;
  776. for (i = 0; i < kvm->nmemslots; ++i) {
  777. memslot = &kvm->memslots[i];
  778. if (gfn >= memslot->base_gfn
  779. && gfn < memslot->base_gfn + memslot->npages) {
  780. if (!memslot->dirty_bitmap)
  781. return;
  782. rel_gfn = gfn - memslot->base_gfn;
  783. /* avoid RMW */
  784. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  785. set_bit(rel_gfn, memslot->dirty_bitmap);
  786. return;
  787. }
  788. }
  789. }
  790. int emulator_read_std(unsigned long addr,
  791. void *val,
  792. unsigned int bytes,
  793. struct kvm_vcpu *vcpu)
  794. {
  795. void *data = val;
  796. while (bytes) {
  797. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  798. unsigned offset = addr & (PAGE_SIZE-1);
  799. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  800. unsigned long pfn;
  801. struct page *page;
  802. void *page_virt;
  803. if (gpa == UNMAPPED_GVA)
  804. return X86EMUL_PROPAGATE_FAULT;
  805. pfn = gpa >> PAGE_SHIFT;
  806. page = gfn_to_page(vcpu->kvm, pfn);
  807. if (!page)
  808. return X86EMUL_UNHANDLEABLE;
  809. page_virt = kmap_atomic(page, KM_USER0);
  810. memcpy(data, page_virt + offset, tocopy);
  811. kunmap_atomic(page_virt, KM_USER0);
  812. bytes -= tocopy;
  813. data += tocopy;
  814. addr += tocopy;
  815. }
  816. return X86EMUL_CONTINUE;
  817. }
  818. EXPORT_SYMBOL_GPL(emulator_read_std);
  819. static int emulator_write_std(unsigned long addr,
  820. const void *val,
  821. unsigned int bytes,
  822. struct kvm_vcpu *vcpu)
  823. {
  824. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  825. addr, bytes);
  826. return X86EMUL_UNHANDLEABLE;
  827. }
  828. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  829. gpa_t addr)
  830. {
  831. /*
  832. * Note that its important to have this wrapper function because
  833. * in the very near future we will be checking for MMIOs against
  834. * the LAPIC as well as the general MMIO bus
  835. */
  836. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  837. }
  838. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  839. gpa_t addr)
  840. {
  841. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  842. }
  843. static int emulator_read_emulated(unsigned long addr,
  844. void *val,
  845. unsigned int bytes,
  846. struct kvm_vcpu *vcpu)
  847. {
  848. struct kvm_io_device *mmio_dev;
  849. gpa_t gpa;
  850. if (vcpu->mmio_read_completed) {
  851. memcpy(val, vcpu->mmio_data, bytes);
  852. vcpu->mmio_read_completed = 0;
  853. return X86EMUL_CONTINUE;
  854. } else if (emulator_read_std(addr, val, bytes, vcpu)
  855. == X86EMUL_CONTINUE)
  856. return X86EMUL_CONTINUE;
  857. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  858. if (gpa == UNMAPPED_GVA)
  859. return X86EMUL_PROPAGATE_FAULT;
  860. /*
  861. * Is this MMIO handled locally?
  862. */
  863. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  864. if (mmio_dev) {
  865. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  866. return X86EMUL_CONTINUE;
  867. }
  868. vcpu->mmio_needed = 1;
  869. vcpu->mmio_phys_addr = gpa;
  870. vcpu->mmio_size = bytes;
  871. vcpu->mmio_is_write = 0;
  872. return X86EMUL_UNHANDLEABLE;
  873. }
  874. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  875. const void *val, int bytes)
  876. {
  877. struct page *page;
  878. void *virt;
  879. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  880. return 0;
  881. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  882. if (!page)
  883. return 0;
  884. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  885. virt = kmap_atomic(page, KM_USER0);
  886. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  887. memcpy(virt + offset_in_page(gpa), val, bytes);
  888. kunmap_atomic(virt, KM_USER0);
  889. return 1;
  890. }
  891. static int emulator_write_emulated_onepage(unsigned long addr,
  892. const void *val,
  893. unsigned int bytes,
  894. struct kvm_vcpu *vcpu)
  895. {
  896. struct kvm_io_device *mmio_dev;
  897. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  898. if (gpa == UNMAPPED_GVA) {
  899. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  900. return X86EMUL_PROPAGATE_FAULT;
  901. }
  902. if (emulator_write_phys(vcpu, gpa, val, bytes))
  903. return X86EMUL_CONTINUE;
  904. /*
  905. * Is this MMIO handled locally?
  906. */
  907. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  908. if (mmio_dev) {
  909. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  910. return X86EMUL_CONTINUE;
  911. }
  912. vcpu->mmio_needed = 1;
  913. vcpu->mmio_phys_addr = gpa;
  914. vcpu->mmio_size = bytes;
  915. vcpu->mmio_is_write = 1;
  916. memcpy(vcpu->mmio_data, val, bytes);
  917. return X86EMUL_CONTINUE;
  918. }
  919. int emulator_write_emulated(unsigned long addr,
  920. const void *val,
  921. unsigned int bytes,
  922. struct kvm_vcpu *vcpu)
  923. {
  924. /* Crossing a page boundary? */
  925. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  926. int rc, now;
  927. now = -addr & ~PAGE_MASK;
  928. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  929. if (rc != X86EMUL_CONTINUE)
  930. return rc;
  931. addr += now;
  932. val += now;
  933. bytes -= now;
  934. }
  935. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  936. }
  937. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  938. static int emulator_cmpxchg_emulated(unsigned long addr,
  939. const void *old,
  940. const void *new,
  941. unsigned int bytes,
  942. struct kvm_vcpu *vcpu)
  943. {
  944. static int reported;
  945. if (!reported) {
  946. reported = 1;
  947. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  948. }
  949. return emulator_write_emulated(addr, new, bytes, vcpu);
  950. }
  951. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  952. {
  953. return kvm_arch_ops->get_segment_base(vcpu, seg);
  954. }
  955. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  956. {
  957. return X86EMUL_CONTINUE;
  958. }
  959. int emulate_clts(struct kvm_vcpu *vcpu)
  960. {
  961. unsigned long cr0;
  962. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  963. kvm_arch_ops->set_cr0(vcpu, cr0);
  964. return X86EMUL_CONTINUE;
  965. }
  966. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  967. {
  968. struct kvm_vcpu *vcpu = ctxt->vcpu;
  969. switch (dr) {
  970. case 0 ... 3:
  971. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  972. return X86EMUL_CONTINUE;
  973. default:
  974. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  975. __FUNCTION__, dr);
  976. return X86EMUL_UNHANDLEABLE;
  977. }
  978. }
  979. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  980. {
  981. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  982. int exception;
  983. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  984. if (exception) {
  985. /* FIXME: better handling */
  986. return X86EMUL_UNHANDLEABLE;
  987. }
  988. return X86EMUL_CONTINUE;
  989. }
  990. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  991. {
  992. static int reported;
  993. u8 opcodes[4];
  994. unsigned long rip = ctxt->vcpu->rip;
  995. unsigned long rip_linear;
  996. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  997. if (reported)
  998. return;
  999. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1000. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1001. " rip %lx %02x %02x %02x %02x\n",
  1002. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1003. reported = 1;
  1004. }
  1005. struct x86_emulate_ops emulate_ops = {
  1006. .read_std = emulator_read_std,
  1007. .write_std = emulator_write_std,
  1008. .read_emulated = emulator_read_emulated,
  1009. .write_emulated = emulator_write_emulated,
  1010. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1011. };
  1012. int emulate_instruction(struct kvm_vcpu *vcpu,
  1013. struct kvm_run *run,
  1014. unsigned long cr2,
  1015. u16 error_code)
  1016. {
  1017. struct x86_emulate_ctxt emulate_ctxt;
  1018. int r;
  1019. int cs_db, cs_l;
  1020. vcpu->mmio_fault_cr2 = cr2;
  1021. kvm_arch_ops->cache_regs(vcpu);
  1022. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1023. emulate_ctxt.vcpu = vcpu;
  1024. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1025. emulate_ctxt.cr2 = cr2;
  1026. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1027. ? X86EMUL_MODE_REAL : cs_l
  1028. ? X86EMUL_MODE_PROT64 : cs_db
  1029. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1030. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1031. emulate_ctxt.cs_base = 0;
  1032. emulate_ctxt.ds_base = 0;
  1033. emulate_ctxt.es_base = 0;
  1034. emulate_ctxt.ss_base = 0;
  1035. } else {
  1036. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1037. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1038. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1039. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1040. }
  1041. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1042. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1043. vcpu->mmio_is_write = 0;
  1044. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1045. if ((r || vcpu->mmio_is_write) && run) {
  1046. run->exit_reason = KVM_EXIT_MMIO;
  1047. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1048. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1049. run->mmio.len = vcpu->mmio_size;
  1050. run->mmio.is_write = vcpu->mmio_is_write;
  1051. }
  1052. if (r) {
  1053. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1054. return EMULATE_DONE;
  1055. if (!vcpu->mmio_needed) {
  1056. report_emulation_failure(&emulate_ctxt);
  1057. return EMULATE_FAIL;
  1058. }
  1059. return EMULATE_DO_MMIO;
  1060. }
  1061. kvm_arch_ops->decache_regs(vcpu);
  1062. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1063. if (vcpu->mmio_is_write) {
  1064. vcpu->mmio_needed = 0;
  1065. return EMULATE_DO_MMIO;
  1066. }
  1067. return EMULATE_DONE;
  1068. }
  1069. EXPORT_SYMBOL_GPL(emulate_instruction);
  1070. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1071. {
  1072. if (vcpu->irq_summary)
  1073. return 1;
  1074. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1075. ++vcpu->stat.halt_exits;
  1076. return 0;
  1077. }
  1078. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1079. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1080. {
  1081. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1082. kvm_arch_ops->cache_regs(vcpu);
  1083. ret = -KVM_EINVAL;
  1084. #ifdef CONFIG_X86_64
  1085. if (is_long_mode(vcpu)) {
  1086. nr = vcpu->regs[VCPU_REGS_RAX];
  1087. a0 = vcpu->regs[VCPU_REGS_RDI];
  1088. a1 = vcpu->regs[VCPU_REGS_RSI];
  1089. a2 = vcpu->regs[VCPU_REGS_RDX];
  1090. a3 = vcpu->regs[VCPU_REGS_RCX];
  1091. a4 = vcpu->regs[VCPU_REGS_R8];
  1092. a5 = vcpu->regs[VCPU_REGS_R9];
  1093. } else
  1094. #endif
  1095. {
  1096. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1097. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1098. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1099. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1100. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1101. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1102. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1103. }
  1104. switch (nr) {
  1105. default:
  1106. run->hypercall.nr = nr;
  1107. run->hypercall.args[0] = a0;
  1108. run->hypercall.args[1] = a1;
  1109. run->hypercall.args[2] = a2;
  1110. run->hypercall.args[3] = a3;
  1111. run->hypercall.args[4] = a4;
  1112. run->hypercall.args[5] = a5;
  1113. run->hypercall.ret = ret;
  1114. run->hypercall.longmode = is_long_mode(vcpu);
  1115. kvm_arch_ops->decache_regs(vcpu);
  1116. return 0;
  1117. }
  1118. vcpu->regs[VCPU_REGS_RAX] = ret;
  1119. kvm_arch_ops->decache_regs(vcpu);
  1120. return 1;
  1121. }
  1122. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1123. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1124. {
  1125. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1126. }
  1127. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1128. {
  1129. struct descriptor_table dt = { limit, base };
  1130. kvm_arch_ops->set_gdt(vcpu, &dt);
  1131. }
  1132. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1133. {
  1134. struct descriptor_table dt = { limit, base };
  1135. kvm_arch_ops->set_idt(vcpu, &dt);
  1136. }
  1137. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1138. unsigned long *rflags)
  1139. {
  1140. lmsw(vcpu, msw);
  1141. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1142. }
  1143. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1144. {
  1145. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1146. switch (cr) {
  1147. case 0:
  1148. return vcpu->cr0;
  1149. case 2:
  1150. return vcpu->cr2;
  1151. case 3:
  1152. return vcpu->cr3;
  1153. case 4:
  1154. return vcpu->cr4;
  1155. default:
  1156. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1157. return 0;
  1158. }
  1159. }
  1160. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1161. unsigned long *rflags)
  1162. {
  1163. switch (cr) {
  1164. case 0:
  1165. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1166. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1167. break;
  1168. case 2:
  1169. vcpu->cr2 = val;
  1170. break;
  1171. case 3:
  1172. set_cr3(vcpu, val);
  1173. break;
  1174. case 4:
  1175. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1176. break;
  1177. default:
  1178. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1179. }
  1180. }
  1181. /*
  1182. * Register the para guest with the host:
  1183. */
  1184. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1185. {
  1186. struct kvm_vcpu_para_state *para_state;
  1187. hpa_t para_state_hpa, hypercall_hpa;
  1188. struct page *para_state_page;
  1189. unsigned char *hypercall;
  1190. gpa_t hypercall_gpa;
  1191. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1192. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1193. /*
  1194. * Needs to be page aligned:
  1195. */
  1196. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1197. goto err_gp;
  1198. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1199. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1200. if (is_error_hpa(para_state_hpa))
  1201. goto err_gp;
  1202. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1203. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1204. para_state = kmap(para_state_page);
  1205. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1206. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1207. para_state->host_version = KVM_PARA_API_VERSION;
  1208. /*
  1209. * We cannot support guests that try to register themselves
  1210. * with a newer API version than the host supports:
  1211. */
  1212. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1213. para_state->ret = -KVM_EINVAL;
  1214. goto err_kunmap_skip;
  1215. }
  1216. hypercall_gpa = para_state->hypercall_gpa;
  1217. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1218. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1219. if (is_error_hpa(hypercall_hpa)) {
  1220. para_state->ret = -KVM_EINVAL;
  1221. goto err_kunmap_skip;
  1222. }
  1223. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1224. vcpu->para_state_page = para_state_page;
  1225. vcpu->para_state_gpa = para_state_gpa;
  1226. vcpu->hypercall_gpa = hypercall_gpa;
  1227. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1228. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1229. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1230. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1231. kunmap_atomic(hypercall, KM_USER1);
  1232. para_state->ret = 0;
  1233. err_kunmap_skip:
  1234. kunmap(para_state_page);
  1235. return 0;
  1236. err_gp:
  1237. return 1;
  1238. }
  1239. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1240. {
  1241. u64 data;
  1242. switch (msr) {
  1243. case 0xc0010010: /* SYSCFG */
  1244. case 0xc0010015: /* HWCR */
  1245. case MSR_IA32_PLATFORM_ID:
  1246. case MSR_IA32_P5_MC_ADDR:
  1247. case MSR_IA32_P5_MC_TYPE:
  1248. case MSR_IA32_MC0_CTL:
  1249. case MSR_IA32_MCG_STATUS:
  1250. case MSR_IA32_MCG_CAP:
  1251. case MSR_IA32_MC0_MISC:
  1252. case MSR_IA32_MC0_MISC+4:
  1253. case MSR_IA32_MC0_MISC+8:
  1254. case MSR_IA32_MC0_MISC+12:
  1255. case MSR_IA32_MC0_MISC+16:
  1256. case MSR_IA32_UCODE_REV:
  1257. case MSR_IA32_PERF_STATUS:
  1258. case MSR_IA32_EBL_CR_POWERON:
  1259. /* MTRR registers */
  1260. case 0xfe:
  1261. case 0x200 ... 0x2ff:
  1262. data = 0;
  1263. break;
  1264. case 0xcd: /* fsb frequency */
  1265. data = 3;
  1266. break;
  1267. case MSR_IA32_APICBASE:
  1268. data = vcpu->apic_base;
  1269. break;
  1270. case MSR_IA32_MISC_ENABLE:
  1271. data = vcpu->ia32_misc_enable_msr;
  1272. break;
  1273. #ifdef CONFIG_X86_64
  1274. case MSR_EFER:
  1275. data = vcpu->shadow_efer;
  1276. break;
  1277. #endif
  1278. default:
  1279. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1280. return 1;
  1281. }
  1282. *pdata = data;
  1283. return 0;
  1284. }
  1285. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1286. /*
  1287. * Reads an msr value (of 'msr_index') into 'pdata'.
  1288. * Returns 0 on success, non-0 otherwise.
  1289. * Assumes vcpu_load() was already called.
  1290. */
  1291. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1292. {
  1293. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1294. }
  1295. #ifdef CONFIG_X86_64
  1296. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1297. {
  1298. if (efer & EFER_RESERVED_BITS) {
  1299. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1300. efer);
  1301. inject_gp(vcpu);
  1302. return;
  1303. }
  1304. if (is_paging(vcpu)
  1305. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1306. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1307. inject_gp(vcpu);
  1308. return;
  1309. }
  1310. kvm_arch_ops->set_efer(vcpu, efer);
  1311. efer &= ~EFER_LMA;
  1312. efer |= vcpu->shadow_efer & EFER_LMA;
  1313. vcpu->shadow_efer = efer;
  1314. }
  1315. #endif
  1316. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1317. {
  1318. switch (msr) {
  1319. #ifdef CONFIG_X86_64
  1320. case MSR_EFER:
  1321. set_efer(vcpu, data);
  1322. break;
  1323. #endif
  1324. case MSR_IA32_MC0_STATUS:
  1325. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1326. __FUNCTION__, data);
  1327. break;
  1328. case MSR_IA32_MCG_STATUS:
  1329. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1330. __FUNCTION__, data);
  1331. break;
  1332. case MSR_IA32_UCODE_REV:
  1333. case MSR_IA32_UCODE_WRITE:
  1334. case 0x200 ... 0x2ff: /* MTRRs */
  1335. break;
  1336. case MSR_IA32_APICBASE:
  1337. vcpu->apic_base = data;
  1338. break;
  1339. case MSR_IA32_MISC_ENABLE:
  1340. vcpu->ia32_misc_enable_msr = data;
  1341. break;
  1342. /*
  1343. * This is the 'probe whether the host is KVM' logic:
  1344. */
  1345. case MSR_KVM_API_MAGIC:
  1346. return vcpu_register_para(vcpu, data);
  1347. default:
  1348. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1349. return 1;
  1350. }
  1351. return 0;
  1352. }
  1353. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1354. /*
  1355. * Writes msr value into into the appropriate "register".
  1356. * Returns 0 on success, non-0 otherwise.
  1357. * Assumes vcpu_load() was already called.
  1358. */
  1359. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1360. {
  1361. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1362. }
  1363. void kvm_resched(struct kvm_vcpu *vcpu)
  1364. {
  1365. if (!need_resched())
  1366. return;
  1367. cond_resched();
  1368. }
  1369. EXPORT_SYMBOL_GPL(kvm_resched);
  1370. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1371. {
  1372. int i;
  1373. u32 function;
  1374. struct kvm_cpuid_entry *e, *best;
  1375. kvm_arch_ops->cache_regs(vcpu);
  1376. function = vcpu->regs[VCPU_REGS_RAX];
  1377. vcpu->regs[VCPU_REGS_RAX] = 0;
  1378. vcpu->regs[VCPU_REGS_RBX] = 0;
  1379. vcpu->regs[VCPU_REGS_RCX] = 0;
  1380. vcpu->regs[VCPU_REGS_RDX] = 0;
  1381. best = NULL;
  1382. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1383. e = &vcpu->cpuid_entries[i];
  1384. if (e->function == function) {
  1385. best = e;
  1386. break;
  1387. }
  1388. /*
  1389. * Both basic or both extended?
  1390. */
  1391. if (((e->function ^ function) & 0x80000000) == 0)
  1392. if (!best || e->function > best->function)
  1393. best = e;
  1394. }
  1395. if (best) {
  1396. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1397. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1398. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1399. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1400. }
  1401. kvm_arch_ops->decache_regs(vcpu);
  1402. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1403. }
  1404. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1405. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1406. {
  1407. void *p = vcpu->pio_data;
  1408. void *q;
  1409. unsigned bytes;
  1410. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1411. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1412. PAGE_KERNEL);
  1413. if (!q) {
  1414. free_pio_guest_pages(vcpu);
  1415. return -ENOMEM;
  1416. }
  1417. q += vcpu->pio.guest_page_offset;
  1418. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1419. if (vcpu->pio.in)
  1420. memcpy(q, p, bytes);
  1421. else
  1422. memcpy(p, q, bytes);
  1423. q -= vcpu->pio.guest_page_offset;
  1424. vunmap(q);
  1425. free_pio_guest_pages(vcpu);
  1426. return 0;
  1427. }
  1428. static int complete_pio(struct kvm_vcpu *vcpu)
  1429. {
  1430. struct kvm_pio_request *io = &vcpu->pio;
  1431. long delta;
  1432. int r;
  1433. kvm_arch_ops->cache_regs(vcpu);
  1434. if (!io->string) {
  1435. if (io->in)
  1436. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1437. io->size);
  1438. } else {
  1439. if (io->in) {
  1440. r = pio_copy_data(vcpu);
  1441. if (r) {
  1442. kvm_arch_ops->cache_regs(vcpu);
  1443. return r;
  1444. }
  1445. }
  1446. delta = 1;
  1447. if (io->rep) {
  1448. delta *= io->cur_count;
  1449. /*
  1450. * The size of the register should really depend on
  1451. * current address size.
  1452. */
  1453. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1454. }
  1455. if (io->down)
  1456. delta = -delta;
  1457. delta *= io->size;
  1458. if (io->in)
  1459. vcpu->regs[VCPU_REGS_RDI] += delta;
  1460. else
  1461. vcpu->regs[VCPU_REGS_RSI] += delta;
  1462. }
  1463. kvm_arch_ops->decache_regs(vcpu);
  1464. io->count -= io->cur_count;
  1465. io->cur_count = 0;
  1466. if (!io->count)
  1467. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1468. return 0;
  1469. }
  1470. static void kernel_pio(struct kvm_io_device *pio_dev,
  1471. struct kvm_vcpu *vcpu,
  1472. void *pd)
  1473. {
  1474. /* TODO: String I/O for in kernel device */
  1475. if (vcpu->pio.in)
  1476. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1477. vcpu->pio.size,
  1478. pd);
  1479. else
  1480. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1481. vcpu->pio.size,
  1482. pd);
  1483. }
  1484. static void pio_string_write(struct kvm_io_device *pio_dev,
  1485. struct kvm_vcpu *vcpu)
  1486. {
  1487. struct kvm_pio_request *io = &vcpu->pio;
  1488. void *pd = vcpu->pio_data;
  1489. int i;
  1490. for (i = 0; i < io->cur_count; i++) {
  1491. kvm_iodevice_write(pio_dev, io->port,
  1492. io->size,
  1493. pd);
  1494. pd += io->size;
  1495. }
  1496. }
  1497. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1498. int size, unsigned long count, int string, int down,
  1499. gva_t address, int rep, unsigned port)
  1500. {
  1501. unsigned now, in_page;
  1502. int i, ret = 0;
  1503. int nr_pages = 1;
  1504. struct page *page;
  1505. struct kvm_io_device *pio_dev;
  1506. vcpu->run->exit_reason = KVM_EXIT_IO;
  1507. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1508. vcpu->run->io.size = size;
  1509. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1510. vcpu->run->io.count = count;
  1511. vcpu->run->io.port = port;
  1512. vcpu->pio.count = count;
  1513. vcpu->pio.cur_count = count;
  1514. vcpu->pio.size = size;
  1515. vcpu->pio.in = in;
  1516. vcpu->pio.port = port;
  1517. vcpu->pio.string = string;
  1518. vcpu->pio.down = down;
  1519. vcpu->pio.guest_page_offset = offset_in_page(address);
  1520. vcpu->pio.rep = rep;
  1521. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1522. if (!string) {
  1523. kvm_arch_ops->cache_regs(vcpu);
  1524. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1525. kvm_arch_ops->decache_regs(vcpu);
  1526. if (pio_dev) {
  1527. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1528. complete_pio(vcpu);
  1529. return 1;
  1530. }
  1531. return 0;
  1532. }
  1533. if (!count) {
  1534. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1535. return 1;
  1536. }
  1537. now = min(count, PAGE_SIZE / size);
  1538. if (!down)
  1539. in_page = PAGE_SIZE - offset_in_page(address);
  1540. else
  1541. in_page = offset_in_page(address) + size;
  1542. now = min(count, (unsigned long)in_page / size);
  1543. if (!now) {
  1544. /*
  1545. * String I/O straddles page boundary. Pin two guest pages
  1546. * so that we satisfy atomicity constraints. Do just one
  1547. * transaction to avoid complexity.
  1548. */
  1549. nr_pages = 2;
  1550. now = 1;
  1551. }
  1552. if (down) {
  1553. /*
  1554. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1555. */
  1556. printk(KERN_ERR "kvm: guest string pio down\n");
  1557. inject_gp(vcpu);
  1558. return 1;
  1559. }
  1560. vcpu->run->io.count = now;
  1561. vcpu->pio.cur_count = now;
  1562. for (i = 0; i < nr_pages; ++i) {
  1563. mutex_lock(&vcpu->kvm->lock);
  1564. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1565. if (page)
  1566. get_page(page);
  1567. vcpu->pio.guest_pages[i] = page;
  1568. mutex_unlock(&vcpu->kvm->lock);
  1569. if (!page) {
  1570. inject_gp(vcpu);
  1571. free_pio_guest_pages(vcpu);
  1572. return 1;
  1573. }
  1574. }
  1575. if (!vcpu->pio.in) {
  1576. /* string PIO write */
  1577. ret = pio_copy_data(vcpu);
  1578. if (ret >= 0 && pio_dev) {
  1579. pio_string_write(pio_dev, vcpu);
  1580. complete_pio(vcpu);
  1581. if (vcpu->pio.count == 0)
  1582. ret = 1;
  1583. }
  1584. } else if (pio_dev)
  1585. printk(KERN_ERR "no string pio read support yet, "
  1586. "port %x size %d count %ld\n",
  1587. port, size, count);
  1588. return ret;
  1589. }
  1590. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1591. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1592. {
  1593. int r;
  1594. sigset_t sigsaved;
  1595. vcpu_load(vcpu);
  1596. if (vcpu->sigset_active)
  1597. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1598. /* re-sync apic's tpr */
  1599. vcpu->cr8 = kvm_run->cr8;
  1600. if (vcpu->pio.cur_count) {
  1601. r = complete_pio(vcpu);
  1602. if (r)
  1603. goto out;
  1604. }
  1605. if (vcpu->mmio_needed) {
  1606. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1607. vcpu->mmio_read_completed = 1;
  1608. vcpu->mmio_needed = 0;
  1609. r = emulate_instruction(vcpu, kvm_run,
  1610. vcpu->mmio_fault_cr2, 0);
  1611. if (r == EMULATE_DO_MMIO) {
  1612. /*
  1613. * Read-modify-write. Back to userspace.
  1614. */
  1615. r = 0;
  1616. goto out;
  1617. }
  1618. }
  1619. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1620. kvm_arch_ops->cache_regs(vcpu);
  1621. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1622. kvm_arch_ops->decache_regs(vcpu);
  1623. }
  1624. r = kvm_arch_ops->run(vcpu, kvm_run);
  1625. out:
  1626. if (vcpu->sigset_active)
  1627. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1628. vcpu_put(vcpu);
  1629. return r;
  1630. }
  1631. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1632. struct kvm_regs *regs)
  1633. {
  1634. vcpu_load(vcpu);
  1635. kvm_arch_ops->cache_regs(vcpu);
  1636. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1637. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1638. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1639. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1640. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1641. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1642. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1643. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1644. #ifdef CONFIG_X86_64
  1645. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1646. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1647. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1648. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1649. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1650. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1651. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1652. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1653. #endif
  1654. regs->rip = vcpu->rip;
  1655. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1656. /*
  1657. * Don't leak debug flags in case they were set for guest debugging
  1658. */
  1659. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1660. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1661. vcpu_put(vcpu);
  1662. return 0;
  1663. }
  1664. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1665. struct kvm_regs *regs)
  1666. {
  1667. vcpu_load(vcpu);
  1668. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1669. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1670. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1671. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1672. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1673. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1674. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1675. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1676. #ifdef CONFIG_X86_64
  1677. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1678. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1679. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1680. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1681. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1682. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1683. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1684. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1685. #endif
  1686. vcpu->rip = regs->rip;
  1687. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1688. kvm_arch_ops->decache_regs(vcpu);
  1689. vcpu_put(vcpu);
  1690. return 0;
  1691. }
  1692. static void get_segment(struct kvm_vcpu *vcpu,
  1693. struct kvm_segment *var, int seg)
  1694. {
  1695. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1696. }
  1697. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1698. struct kvm_sregs *sregs)
  1699. {
  1700. struct descriptor_table dt;
  1701. vcpu_load(vcpu);
  1702. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1703. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1704. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1705. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1706. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1707. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1708. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1709. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1710. kvm_arch_ops->get_idt(vcpu, &dt);
  1711. sregs->idt.limit = dt.limit;
  1712. sregs->idt.base = dt.base;
  1713. kvm_arch_ops->get_gdt(vcpu, &dt);
  1714. sregs->gdt.limit = dt.limit;
  1715. sregs->gdt.base = dt.base;
  1716. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1717. sregs->cr0 = vcpu->cr0;
  1718. sregs->cr2 = vcpu->cr2;
  1719. sregs->cr3 = vcpu->cr3;
  1720. sregs->cr4 = vcpu->cr4;
  1721. sregs->cr8 = vcpu->cr8;
  1722. sregs->efer = vcpu->shadow_efer;
  1723. sregs->apic_base = vcpu->apic_base;
  1724. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1725. sizeof sregs->interrupt_bitmap);
  1726. vcpu_put(vcpu);
  1727. return 0;
  1728. }
  1729. static void set_segment(struct kvm_vcpu *vcpu,
  1730. struct kvm_segment *var, int seg)
  1731. {
  1732. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1733. }
  1734. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1735. struct kvm_sregs *sregs)
  1736. {
  1737. int mmu_reset_needed = 0;
  1738. int i;
  1739. struct descriptor_table dt;
  1740. vcpu_load(vcpu);
  1741. dt.limit = sregs->idt.limit;
  1742. dt.base = sregs->idt.base;
  1743. kvm_arch_ops->set_idt(vcpu, &dt);
  1744. dt.limit = sregs->gdt.limit;
  1745. dt.base = sregs->gdt.base;
  1746. kvm_arch_ops->set_gdt(vcpu, &dt);
  1747. vcpu->cr2 = sregs->cr2;
  1748. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1749. vcpu->cr3 = sregs->cr3;
  1750. vcpu->cr8 = sregs->cr8;
  1751. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1752. #ifdef CONFIG_X86_64
  1753. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1754. #endif
  1755. vcpu->apic_base = sregs->apic_base;
  1756. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1757. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1758. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1759. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1760. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1761. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1762. load_pdptrs(vcpu, vcpu->cr3);
  1763. if (mmu_reset_needed)
  1764. kvm_mmu_reset_context(vcpu);
  1765. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1766. sizeof vcpu->irq_pending);
  1767. vcpu->irq_summary = 0;
  1768. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1769. if (vcpu->irq_pending[i])
  1770. __set_bit(i, &vcpu->irq_summary);
  1771. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1772. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1773. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1774. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1775. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1776. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1777. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1778. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1779. vcpu_put(vcpu);
  1780. return 0;
  1781. }
  1782. /*
  1783. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1784. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1785. *
  1786. * This list is modified at module load time to reflect the
  1787. * capabilities of the host cpu.
  1788. */
  1789. static u32 msrs_to_save[] = {
  1790. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1791. MSR_K6_STAR,
  1792. #ifdef CONFIG_X86_64
  1793. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1794. #endif
  1795. MSR_IA32_TIME_STAMP_COUNTER,
  1796. };
  1797. static unsigned num_msrs_to_save;
  1798. static u32 emulated_msrs[] = {
  1799. MSR_IA32_MISC_ENABLE,
  1800. };
  1801. static __init void kvm_init_msr_list(void)
  1802. {
  1803. u32 dummy[2];
  1804. unsigned i, j;
  1805. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1806. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1807. continue;
  1808. if (j < i)
  1809. msrs_to_save[j] = msrs_to_save[i];
  1810. j++;
  1811. }
  1812. num_msrs_to_save = j;
  1813. }
  1814. /*
  1815. * Adapt set_msr() to msr_io()'s calling convention
  1816. */
  1817. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1818. {
  1819. return kvm_set_msr(vcpu, index, *data);
  1820. }
  1821. /*
  1822. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1823. *
  1824. * @return number of msrs set successfully.
  1825. */
  1826. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1827. struct kvm_msr_entry *entries,
  1828. int (*do_msr)(struct kvm_vcpu *vcpu,
  1829. unsigned index, u64 *data))
  1830. {
  1831. int i;
  1832. vcpu_load(vcpu);
  1833. for (i = 0; i < msrs->nmsrs; ++i)
  1834. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1835. break;
  1836. vcpu_put(vcpu);
  1837. return i;
  1838. }
  1839. /*
  1840. * Read or write a bunch of msrs. Parameters are user addresses.
  1841. *
  1842. * @return number of msrs set successfully.
  1843. */
  1844. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1845. int (*do_msr)(struct kvm_vcpu *vcpu,
  1846. unsigned index, u64 *data),
  1847. int writeback)
  1848. {
  1849. struct kvm_msrs msrs;
  1850. struct kvm_msr_entry *entries;
  1851. int r, n;
  1852. unsigned size;
  1853. r = -EFAULT;
  1854. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1855. goto out;
  1856. r = -E2BIG;
  1857. if (msrs.nmsrs >= MAX_IO_MSRS)
  1858. goto out;
  1859. r = -ENOMEM;
  1860. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1861. entries = vmalloc(size);
  1862. if (!entries)
  1863. goto out;
  1864. r = -EFAULT;
  1865. if (copy_from_user(entries, user_msrs->entries, size))
  1866. goto out_free;
  1867. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1868. if (r < 0)
  1869. goto out_free;
  1870. r = -EFAULT;
  1871. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1872. goto out_free;
  1873. r = n;
  1874. out_free:
  1875. vfree(entries);
  1876. out:
  1877. return r;
  1878. }
  1879. /*
  1880. * Translate a guest virtual address to a guest physical address.
  1881. */
  1882. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1883. struct kvm_translation *tr)
  1884. {
  1885. unsigned long vaddr = tr->linear_address;
  1886. gpa_t gpa;
  1887. vcpu_load(vcpu);
  1888. mutex_lock(&vcpu->kvm->lock);
  1889. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1890. tr->physical_address = gpa;
  1891. tr->valid = gpa != UNMAPPED_GVA;
  1892. tr->writeable = 1;
  1893. tr->usermode = 0;
  1894. mutex_unlock(&vcpu->kvm->lock);
  1895. vcpu_put(vcpu);
  1896. return 0;
  1897. }
  1898. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1899. struct kvm_interrupt *irq)
  1900. {
  1901. if (irq->irq < 0 || irq->irq >= 256)
  1902. return -EINVAL;
  1903. vcpu_load(vcpu);
  1904. set_bit(irq->irq, vcpu->irq_pending);
  1905. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1906. vcpu_put(vcpu);
  1907. return 0;
  1908. }
  1909. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1910. struct kvm_debug_guest *dbg)
  1911. {
  1912. int r;
  1913. vcpu_load(vcpu);
  1914. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1915. vcpu_put(vcpu);
  1916. return r;
  1917. }
  1918. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1919. unsigned long address,
  1920. int *type)
  1921. {
  1922. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1923. unsigned long pgoff;
  1924. struct page *page;
  1925. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1926. if (pgoff == 0)
  1927. page = virt_to_page(vcpu->run);
  1928. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1929. page = virt_to_page(vcpu->pio_data);
  1930. else
  1931. return NOPAGE_SIGBUS;
  1932. get_page(page);
  1933. if (type != NULL)
  1934. *type = VM_FAULT_MINOR;
  1935. return page;
  1936. }
  1937. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1938. .nopage = kvm_vcpu_nopage,
  1939. };
  1940. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1941. {
  1942. vma->vm_ops = &kvm_vcpu_vm_ops;
  1943. return 0;
  1944. }
  1945. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1946. {
  1947. struct kvm_vcpu *vcpu = filp->private_data;
  1948. fput(vcpu->kvm->filp);
  1949. return 0;
  1950. }
  1951. static struct file_operations kvm_vcpu_fops = {
  1952. .release = kvm_vcpu_release,
  1953. .unlocked_ioctl = kvm_vcpu_ioctl,
  1954. .compat_ioctl = kvm_vcpu_ioctl,
  1955. .mmap = kvm_vcpu_mmap,
  1956. };
  1957. /*
  1958. * Allocates an inode for the vcpu.
  1959. */
  1960. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1961. {
  1962. int fd, r;
  1963. struct inode *inode;
  1964. struct file *file;
  1965. r = anon_inode_getfd(&fd, &inode, &file,
  1966. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1967. if (r)
  1968. return r;
  1969. atomic_inc(&vcpu->kvm->filp->f_count);
  1970. return fd;
  1971. }
  1972. /*
  1973. * Creates some virtual cpus. Good luck creating more than one.
  1974. */
  1975. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1976. {
  1977. int r;
  1978. struct kvm_vcpu *vcpu;
  1979. if (!valid_vcpu(n))
  1980. return -EINVAL;
  1981. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1982. if (IS_ERR(vcpu))
  1983. return PTR_ERR(vcpu);
  1984. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1985. /* We do fxsave: this must be aligned. */
  1986. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1987. vcpu_load(vcpu);
  1988. r = kvm_mmu_setup(vcpu);
  1989. vcpu_put(vcpu);
  1990. if (r < 0)
  1991. goto free_vcpu;
  1992. mutex_lock(&kvm->lock);
  1993. if (kvm->vcpus[n]) {
  1994. r = -EEXIST;
  1995. mutex_unlock(&kvm->lock);
  1996. goto mmu_unload;
  1997. }
  1998. kvm->vcpus[n] = vcpu;
  1999. mutex_unlock(&kvm->lock);
  2000. /* Now it's all set up, let userspace reach it */
  2001. r = create_vcpu_fd(vcpu);
  2002. if (r < 0)
  2003. goto unlink;
  2004. return r;
  2005. unlink:
  2006. mutex_lock(&kvm->lock);
  2007. kvm->vcpus[n] = NULL;
  2008. mutex_unlock(&kvm->lock);
  2009. mmu_unload:
  2010. vcpu_load(vcpu);
  2011. kvm_mmu_unload(vcpu);
  2012. vcpu_put(vcpu);
  2013. free_vcpu:
  2014. kvm_arch_ops->vcpu_free(vcpu);
  2015. return r;
  2016. }
  2017. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2018. {
  2019. u64 efer;
  2020. int i;
  2021. struct kvm_cpuid_entry *e, *entry;
  2022. rdmsrl(MSR_EFER, efer);
  2023. entry = NULL;
  2024. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2025. e = &vcpu->cpuid_entries[i];
  2026. if (e->function == 0x80000001) {
  2027. entry = e;
  2028. break;
  2029. }
  2030. }
  2031. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2032. entry->edx &= ~(1 << 20);
  2033. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2034. }
  2035. }
  2036. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2037. struct kvm_cpuid *cpuid,
  2038. struct kvm_cpuid_entry __user *entries)
  2039. {
  2040. int r;
  2041. r = -E2BIG;
  2042. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2043. goto out;
  2044. r = -EFAULT;
  2045. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2046. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2047. goto out;
  2048. vcpu->cpuid_nent = cpuid->nent;
  2049. cpuid_fix_nx_cap(vcpu);
  2050. return 0;
  2051. out:
  2052. return r;
  2053. }
  2054. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2055. {
  2056. if (sigset) {
  2057. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2058. vcpu->sigset_active = 1;
  2059. vcpu->sigset = *sigset;
  2060. } else
  2061. vcpu->sigset_active = 0;
  2062. return 0;
  2063. }
  2064. /*
  2065. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2066. * we have asm/x86/processor.h
  2067. */
  2068. struct fxsave {
  2069. u16 cwd;
  2070. u16 swd;
  2071. u16 twd;
  2072. u16 fop;
  2073. u64 rip;
  2074. u64 rdp;
  2075. u32 mxcsr;
  2076. u32 mxcsr_mask;
  2077. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2078. #ifdef CONFIG_X86_64
  2079. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2080. #else
  2081. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2082. #endif
  2083. };
  2084. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2085. {
  2086. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2087. vcpu_load(vcpu);
  2088. memcpy(fpu->fpr, fxsave->st_space, 128);
  2089. fpu->fcw = fxsave->cwd;
  2090. fpu->fsw = fxsave->swd;
  2091. fpu->ftwx = fxsave->twd;
  2092. fpu->last_opcode = fxsave->fop;
  2093. fpu->last_ip = fxsave->rip;
  2094. fpu->last_dp = fxsave->rdp;
  2095. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2096. vcpu_put(vcpu);
  2097. return 0;
  2098. }
  2099. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2100. {
  2101. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2102. vcpu_load(vcpu);
  2103. memcpy(fxsave->st_space, fpu->fpr, 128);
  2104. fxsave->cwd = fpu->fcw;
  2105. fxsave->swd = fpu->fsw;
  2106. fxsave->twd = fpu->ftwx;
  2107. fxsave->fop = fpu->last_opcode;
  2108. fxsave->rip = fpu->last_ip;
  2109. fxsave->rdp = fpu->last_dp;
  2110. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2111. vcpu_put(vcpu);
  2112. return 0;
  2113. }
  2114. static long kvm_vcpu_ioctl(struct file *filp,
  2115. unsigned int ioctl, unsigned long arg)
  2116. {
  2117. struct kvm_vcpu *vcpu = filp->private_data;
  2118. void __user *argp = (void __user *)arg;
  2119. int r = -EINVAL;
  2120. switch (ioctl) {
  2121. case KVM_RUN:
  2122. r = -EINVAL;
  2123. if (arg)
  2124. goto out;
  2125. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2126. break;
  2127. case KVM_GET_REGS: {
  2128. struct kvm_regs kvm_regs;
  2129. memset(&kvm_regs, 0, sizeof kvm_regs);
  2130. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2131. if (r)
  2132. goto out;
  2133. r = -EFAULT;
  2134. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2135. goto out;
  2136. r = 0;
  2137. break;
  2138. }
  2139. case KVM_SET_REGS: {
  2140. struct kvm_regs kvm_regs;
  2141. r = -EFAULT;
  2142. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2143. goto out;
  2144. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2145. if (r)
  2146. goto out;
  2147. r = 0;
  2148. break;
  2149. }
  2150. case KVM_GET_SREGS: {
  2151. struct kvm_sregs kvm_sregs;
  2152. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2153. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2154. if (r)
  2155. goto out;
  2156. r = -EFAULT;
  2157. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2158. goto out;
  2159. r = 0;
  2160. break;
  2161. }
  2162. case KVM_SET_SREGS: {
  2163. struct kvm_sregs kvm_sregs;
  2164. r = -EFAULT;
  2165. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2166. goto out;
  2167. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2168. if (r)
  2169. goto out;
  2170. r = 0;
  2171. break;
  2172. }
  2173. case KVM_TRANSLATE: {
  2174. struct kvm_translation tr;
  2175. r = -EFAULT;
  2176. if (copy_from_user(&tr, argp, sizeof tr))
  2177. goto out;
  2178. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2179. if (r)
  2180. goto out;
  2181. r = -EFAULT;
  2182. if (copy_to_user(argp, &tr, sizeof tr))
  2183. goto out;
  2184. r = 0;
  2185. break;
  2186. }
  2187. case KVM_INTERRUPT: {
  2188. struct kvm_interrupt irq;
  2189. r = -EFAULT;
  2190. if (copy_from_user(&irq, argp, sizeof irq))
  2191. goto out;
  2192. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2193. if (r)
  2194. goto out;
  2195. r = 0;
  2196. break;
  2197. }
  2198. case KVM_DEBUG_GUEST: {
  2199. struct kvm_debug_guest dbg;
  2200. r = -EFAULT;
  2201. if (copy_from_user(&dbg, argp, sizeof dbg))
  2202. goto out;
  2203. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2204. if (r)
  2205. goto out;
  2206. r = 0;
  2207. break;
  2208. }
  2209. case KVM_GET_MSRS:
  2210. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2211. break;
  2212. case KVM_SET_MSRS:
  2213. r = msr_io(vcpu, argp, do_set_msr, 0);
  2214. break;
  2215. case KVM_SET_CPUID: {
  2216. struct kvm_cpuid __user *cpuid_arg = argp;
  2217. struct kvm_cpuid cpuid;
  2218. r = -EFAULT;
  2219. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2220. goto out;
  2221. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2222. if (r)
  2223. goto out;
  2224. break;
  2225. }
  2226. case KVM_SET_SIGNAL_MASK: {
  2227. struct kvm_signal_mask __user *sigmask_arg = argp;
  2228. struct kvm_signal_mask kvm_sigmask;
  2229. sigset_t sigset, *p;
  2230. p = NULL;
  2231. if (argp) {
  2232. r = -EFAULT;
  2233. if (copy_from_user(&kvm_sigmask, argp,
  2234. sizeof kvm_sigmask))
  2235. goto out;
  2236. r = -EINVAL;
  2237. if (kvm_sigmask.len != sizeof sigset)
  2238. goto out;
  2239. r = -EFAULT;
  2240. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2241. sizeof sigset))
  2242. goto out;
  2243. p = &sigset;
  2244. }
  2245. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2246. break;
  2247. }
  2248. case KVM_GET_FPU: {
  2249. struct kvm_fpu fpu;
  2250. memset(&fpu, 0, sizeof fpu);
  2251. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2252. if (r)
  2253. goto out;
  2254. r = -EFAULT;
  2255. if (copy_to_user(argp, &fpu, sizeof fpu))
  2256. goto out;
  2257. r = 0;
  2258. break;
  2259. }
  2260. case KVM_SET_FPU: {
  2261. struct kvm_fpu fpu;
  2262. r = -EFAULT;
  2263. if (copy_from_user(&fpu, argp, sizeof fpu))
  2264. goto out;
  2265. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2266. if (r)
  2267. goto out;
  2268. r = 0;
  2269. break;
  2270. }
  2271. default:
  2272. ;
  2273. }
  2274. out:
  2275. return r;
  2276. }
  2277. static long kvm_vm_ioctl(struct file *filp,
  2278. unsigned int ioctl, unsigned long arg)
  2279. {
  2280. struct kvm *kvm = filp->private_data;
  2281. void __user *argp = (void __user *)arg;
  2282. int r = -EINVAL;
  2283. switch (ioctl) {
  2284. case KVM_CREATE_VCPU:
  2285. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2286. if (r < 0)
  2287. goto out;
  2288. break;
  2289. case KVM_SET_MEMORY_REGION: {
  2290. struct kvm_memory_region kvm_mem;
  2291. r = -EFAULT;
  2292. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2293. goto out;
  2294. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2295. if (r)
  2296. goto out;
  2297. break;
  2298. }
  2299. case KVM_GET_DIRTY_LOG: {
  2300. struct kvm_dirty_log log;
  2301. r = -EFAULT;
  2302. if (copy_from_user(&log, argp, sizeof log))
  2303. goto out;
  2304. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2305. if (r)
  2306. goto out;
  2307. break;
  2308. }
  2309. case KVM_SET_MEMORY_ALIAS: {
  2310. struct kvm_memory_alias alias;
  2311. r = -EFAULT;
  2312. if (copy_from_user(&alias, argp, sizeof alias))
  2313. goto out;
  2314. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2315. if (r)
  2316. goto out;
  2317. break;
  2318. }
  2319. default:
  2320. ;
  2321. }
  2322. out:
  2323. return r;
  2324. }
  2325. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2326. unsigned long address,
  2327. int *type)
  2328. {
  2329. struct kvm *kvm = vma->vm_file->private_data;
  2330. unsigned long pgoff;
  2331. struct page *page;
  2332. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2333. page = gfn_to_page(kvm, pgoff);
  2334. if (!page)
  2335. return NOPAGE_SIGBUS;
  2336. get_page(page);
  2337. if (type != NULL)
  2338. *type = VM_FAULT_MINOR;
  2339. return page;
  2340. }
  2341. static struct vm_operations_struct kvm_vm_vm_ops = {
  2342. .nopage = kvm_vm_nopage,
  2343. };
  2344. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2345. {
  2346. vma->vm_ops = &kvm_vm_vm_ops;
  2347. return 0;
  2348. }
  2349. static struct file_operations kvm_vm_fops = {
  2350. .release = kvm_vm_release,
  2351. .unlocked_ioctl = kvm_vm_ioctl,
  2352. .compat_ioctl = kvm_vm_ioctl,
  2353. .mmap = kvm_vm_mmap,
  2354. };
  2355. static int kvm_dev_ioctl_create_vm(void)
  2356. {
  2357. int fd, r;
  2358. struct inode *inode;
  2359. struct file *file;
  2360. struct kvm *kvm;
  2361. kvm = kvm_create_vm();
  2362. if (IS_ERR(kvm))
  2363. return PTR_ERR(kvm);
  2364. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2365. if (r) {
  2366. kvm_destroy_vm(kvm);
  2367. return r;
  2368. }
  2369. kvm->filp = file;
  2370. return fd;
  2371. }
  2372. static long kvm_dev_ioctl(struct file *filp,
  2373. unsigned int ioctl, unsigned long arg)
  2374. {
  2375. void __user *argp = (void __user *)arg;
  2376. long r = -EINVAL;
  2377. switch (ioctl) {
  2378. case KVM_GET_API_VERSION:
  2379. r = -EINVAL;
  2380. if (arg)
  2381. goto out;
  2382. r = KVM_API_VERSION;
  2383. break;
  2384. case KVM_CREATE_VM:
  2385. r = -EINVAL;
  2386. if (arg)
  2387. goto out;
  2388. r = kvm_dev_ioctl_create_vm();
  2389. break;
  2390. case KVM_GET_MSR_INDEX_LIST: {
  2391. struct kvm_msr_list __user *user_msr_list = argp;
  2392. struct kvm_msr_list msr_list;
  2393. unsigned n;
  2394. r = -EFAULT;
  2395. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2396. goto out;
  2397. n = msr_list.nmsrs;
  2398. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2399. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2400. goto out;
  2401. r = -E2BIG;
  2402. if (n < num_msrs_to_save)
  2403. goto out;
  2404. r = -EFAULT;
  2405. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2406. num_msrs_to_save * sizeof(u32)))
  2407. goto out;
  2408. if (copy_to_user(user_msr_list->indices
  2409. + num_msrs_to_save * sizeof(u32),
  2410. &emulated_msrs,
  2411. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2412. goto out;
  2413. r = 0;
  2414. break;
  2415. }
  2416. case KVM_CHECK_EXTENSION:
  2417. /*
  2418. * No extensions defined at present.
  2419. */
  2420. r = 0;
  2421. break;
  2422. case KVM_GET_VCPU_MMAP_SIZE:
  2423. r = -EINVAL;
  2424. if (arg)
  2425. goto out;
  2426. r = 2 * PAGE_SIZE;
  2427. break;
  2428. default:
  2429. ;
  2430. }
  2431. out:
  2432. return r;
  2433. }
  2434. static struct file_operations kvm_chardev_ops = {
  2435. .open = kvm_dev_open,
  2436. .release = kvm_dev_release,
  2437. .unlocked_ioctl = kvm_dev_ioctl,
  2438. .compat_ioctl = kvm_dev_ioctl,
  2439. };
  2440. static struct miscdevice kvm_dev = {
  2441. KVM_MINOR,
  2442. "kvm",
  2443. &kvm_chardev_ops,
  2444. };
  2445. /*
  2446. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2447. * cached on it.
  2448. */
  2449. static void decache_vcpus_on_cpu(int cpu)
  2450. {
  2451. struct kvm *vm;
  2452. struct kvm_vcpu *vcpu;
  2453. int i;
  2454. spin_lock(&kvm_lock);
  2455. list_for_each_entry(vm, &vm_list, vm_list)
  2456. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2457. vcpu = vm->vcpus[i];
  2458. if (!vcpu)
  2459. continue;
  2460. /*
  2461. * If the vcpu is locked, then it is running on some
  2462. * other cpu and therefore it is not cached on the
  2463. * cpu in question.
  2464. *
  2465. * If it's not locked, check the last cpu it executed
  2466. * on.
  2467. */
  2468. if (mutex_trylock(&vcpu->mutex)) {
  2469. if (vcpu->cpu == cpu) {
  2470. kvm_arch_ops->vcpu_decache(vcpu);
  2471. vcpu->cpu = -1;
  2472. }
  2473. mutex_unlock(&vcpu->mutex);
  2474. }
  2475. }
  2476. spin_unlock(&kvm_lock);
  2477. }
  2478. static void hardware_enable(void *junk)
  2479. {
  2480. int cpu = raw_smp_processor_id();
  2481. if (cpu_isset(cpu, cpus_hardware_enabled))
  2482. return;
  2483. cpu_set(cpu, cpus_hardware_enabled);
  2484. kvm_arch_ops->hardware_enable(NULL);
  2485. }
  2486. static void hardware_disable(void *junk)
  2487. {
  2488. int cpu = raw_smp_processor_id();
  2489. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2490. return;
  2491. cpu_clear(cpu, cpus_hardware_enabled);
  2492. decache_vcpus_on_cpu(cpu);
  2493. kvm_arch_ops->hardware_disable(NULL);
  2494. }
  2495. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2496. void *v)
  2497. {
  2498. int cpu = (long)v;
  2499. switch (val) {
  2500. case CPU_DYING:
  2501. case CPU_DYING_FROZEN:
  2502. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2503. cpu);
  2504. hardware_disable(NULL);
  2505. break;
  2506. case CPU_UP_CANCELED:
  2507. case CPU_UP_CANCELED_FROZEN:
  2508. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2509. cpu);
  2510. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2511. break;
  2512. case CPU_ONLINE:
  2513. case CPU_ONLINE_FROZEN:
  2514. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2515. cpu);
  2516. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2517. break;
  2518. }
  2519. return NOTIFY_OK;
  2520. }
  2521. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2522. void *v)
  2523. {
  2524. if (val == SYS_RESTART) {
  2525. /*
  2526. * Some (well, at least mine) BIOSes hang on reboot if
  2527. * in vmx root mode.
  2528. */
  2529. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2530. on_each_cpu(hardware_disable, NULL, 0, 1);
  2531. }
  2532. return NOTIFY_OK;
  2533. }
  2534. static struct notifier_block kvm_reboot_notifier = {
  2535. .notifier_call = kvm_reboot,
  2536. .priority = 0,
  2537. };
  2538. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2539. {
  2540. memset(bus, 0, sizeof(*bus));
  2541. }
  2542. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2543. {
  2544. int i;
  2545. for (i = 0; i < bus->dev_count; i++) {
  2546. struct kvm_io_device *pos = bus->devs[i];
  2547. kvm_iodevice_destructor(pos);
  2548. }
  2549. }
  2550. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2551. {
  2552. int i;
  2553. for (i = 0; i < bus->dev_count; i++) {
  2554. struct kvm_io_device *pos = bus->devs[i];
  2555. if (pos->in_range(pos, addr))
  2556. return pos;
  2557. }
  2558. return NULL;
  2559. }
  2560. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2561. {
  2562. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2563. bus->devs[bus->dev_count++] = dev;
  2564. }
  2565. static struct notifier_block kvm_cpu_notifier = {
  2566. .notifier_call = kvm_cpu_hotplug,
  2567. .priority = 20, /* must be > scheduler priority */
  2568. };
  2569. static u64 stat_get(void *_offset)
  2570. {
  2571. unsigned offset = (long)_offset;
  2572. u64 total = 0;
  2573. struct kvm *kvm;
  2574. struct kvm_vcpu *vcpu;
  2575. int i;
  2576. spin_lock(&kvm_lock);
  2577. list_for_each_entry(kvm, &vm_list, vm_list)
  2578. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2579. vcpu = kvm->vcpus[i];
  2580. if (vcpu)
  2581. total += *(u32 *)((void *)vcpu + offset);
  2582. }
  2583. spin_unlock(&kvm_lock);
  2584. return total;
  2585. }
  2586. static void stat_set(void *offset, u64 val)
  2587. {
  2588. }
  2589. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2590. static __init void kvm_init_debug(void)
  2591. {
  2592. struct kvm_stats_debugfs_item *p;
  2593. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2594. for (p = debugfs_entries; p->name; ++p)
  2595. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2596. (void *)(long)p->offset,
  2597. &stat_fops);
  2598. }
  2599. static void kvm_exit_debug(void)
  2600. {
  2601. struct kvm_stats_debugfs_item *p;
  2602. for (p = debugfs_entries; p->name; ++p)
  2603. debugfs_remove(p->dentry);
  2604. debugfs_remove(debugfs_dir);
  2605. }
  2606. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2607. {
  2608. hardware_disable(NULL);
  2609. return 0;
  2610. }
  2611. static int kvm_resume(struct sys_device *dev)
  2612. {
  2613. hardware_enable(NULL);
  2614. return 0;
  2615. }
  2616. static struct sysdev_class kvm_sysdev_class = {
  2617. set_kset_name("kvm"),
  2618. .suspend = kvm_suspend,
  2619. .resume = kvm_resume,
  2620. };
  2621. static struct sys_device kvm_sysdev = {
  2622. .id = 0,
  2623. .cls = &kvm_sysdev_class,
  2624. };
  2625. hpa_t bad_page_address;
  2626. static inline
  2627. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2628. {
  2629. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2630. }
  2631. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2632. {
  2633. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2634. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2635. }
  2636. static void kvm_sched_out(struct preempt_notifier *pn,
  2637. struct task_struct *next)
  2638. {
  2639. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2640. kvm_arch_ops->vcpu_put(vcpu);
  2641. }
  2642. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2643. struct module *module)
  2644. {
  2645. int r;
  2646. if (kvm_arch_ops) {
  2647. printk(KERN_ERR "kvm: already loaded the other module\n");
  2648. return -EEXIST;
  2649. }
  2650. if (!ops->cpu_has_kvm_support()) {
  2651. printk(KERN_ERR "kvm: no hardware support\n");
  2652. return -EOPNOTSUPP;
  2653. }
  2654. if (ops->disabled_by_bios()) {
  2655. printk(KERN_ERR "kvm: disabled by bios\n");
  2656. return -EOPNOTSUPP;
  2657. }
  2658. kvm_arch_ops = ops;
  2659. r = kvm_arch_ops->hardware_setup();
  2660. if (r < 0)
  2661. goto out;
  2662. on_each_cpu(hardware_enable, NULL, 0, 1);
  2663. r = register_cpu_notifier(&kvm_cpu_notifier);
  2664. if (r)
  2665. goto out_free_1;
  2666. register_reboot_notifier(&kvm_reboot_notifier);
  2667. r = sysdev_class_register(&kvm_sysdev_class);
  2668. if (r)
  2669. goto out_free_2;
  2670. r = sysdev_register(&kvm_sysdev);
  2671. if (r)
  2672. goto out_free_3;
  2673. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2674. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2675. __alignof__(struct kvm_vcpu), 0, 0);
  2676. if (!kvm_vcpu_cache) {
  2677. r = -ENOMEM;
  2678. goto out_free_4;
  2679. }
  2680. kvm_chardev_ops.owner = module;
  2681. r = misc_register(&kvm_dev);
  2682. if (r) {
  2683. printk (KERN_ERR "kvm: misc device register failed\n");
  2684. goto out_free;
  2685. }
  2686. kvm_preempt_ops.sched_in = kvm_sched_in;
  2687. kvm_preempt_ops.sched_out = kvm_sched_out;
  2688. return r;
  2689. out_free:
  2690. kmem_cache_destroy(kvm_vcpu_cache);
  2691. out_free_4:
  2692. sysdev_unregister(&kvm_sysdev);
  2693. out_free_3:
  2694. sysdev_class_unregister(&kvm_sysdev_class);
  2695. out_free_2:
  2696. unregister_reboot_notifier(&kvm_reboot_notifier);
  2697. unregister_cpu_notifier(&kvm_cpu_notifier);
  2698. out_free_1:
  2699. on_each_cpu(hardware_disable, NULL, 0, 1);
  2700. kvm_arch_ops->hardware_unsetup();
  2701. out:
  2702. kvm_arch_ops = NULL;
  2703. return r;
  2704. }
  2705. void kvm_exit_arch(void)
  2706. {
  2707. misc_deregister(&kvm_dev);
  2708. kmem_cache_destroy(kvm_vcpu_cache);
  2709. sysdev_unregister(&kvm_sysdev);
  2710. sysdev_class_unregister(&kvm_sysdev_class);
  2711. unregister_reboot_notifier(&kvm_reboot_notifier);
  2712. unregister_cpu_notifier(&kvm_cpu_notifier);
  2713. on_each_cpu(hardware_disable, NULL, 0, 1);
  2714. kvm_arch_ops->hardware_unsetup();
  2715. kvm_arch_ops = NULL;
  2716. }
  2717. static __init int kvm_init(void)
  2718. {
  2719. static struct page *bad_page;
  2720. int r;
  2721. r = kvm_mmu_module_init();
  2722. if (r)
  2723. goto out4;
  2724. kvm_init_debug();
  2725. kvm_init_msr_list();
  2726. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2727. r = -ENOMEM;
  2728. goto out;
  2729. }
  2730. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2731. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2732. return 0;
  2733. out:
  2734. kvm_exit_debug();
  2735. kvm_mmu_module_exit();
  2736. out4:
  2737. return r;
  2738. }
  2739. static __exit void kvm_exit(void)
  2740. {
  2741. kvm_exit_debug();
  2742. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2743. kvm_mmu_module_exit();
  2744. }
  2745. module_init(kvm_init)
  2746. module_exit(kvm_exit)
  2747. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2748. EXPORT_SYMBOL_GPL(kvm_exit_arch);