disk-io.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <asm/unaligned.h>
  34. #include "compat.h"
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * Return 0 if the superblock checksum type matches the checksum value of that
  329. * algorithm. Pass the raw disk superblock data.
  330. */
  331. static int btrfs_check_super_csum(char *raw_disk_sb)
  332. {
  333. struct btrfs_super_block *disk_sb =
  334. (struct btrfs_super_block *)raw_disk_sb;
  335. u16 csum_type = btrfs_super_csum_type(disk_sb);
  336. int ret = 0;
  337. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  338. u32 crc = ~(u32)0;
  339. const int csum_size = sizeof(crc);
  340. char result[csum_size];
  341. /*
  342. * The super_block structure does not span the whole
  343. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  344. * is filled with zeros and is included in the checkum.
  345. */
  346. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  347. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  348. btrfs_csum_final(crc, result);
  349. if (memcmp(raw_disk_sb, result, csum_size))
  350. ret = 1;
  351. if (ret && btrfs_super_generation(disk_sb) < 10) {
  352. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  353. ret = 0;
  354. }
  355. }
  356. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  357. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  358. csum_type);
  359. ret = 1;
  360. }
  361. return ret;
  362. }
  363. /*
  364. * helper to read a given tree block, doing retries as required when
  365. * the checksums don't match and we have alternate mirrors to try.
  366. */
  367. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  368. struct extent_buffer *eb,
  369. u64 start, u64 parent_transid)
  370. {
  371. struct extent_io_tree *io_tree;
  372. int failed = 0;
  373. int ret;
  374. int num_copies = 0;
  375. int mirror_num = 0;
  376. int failed_mirror = 0;
  377. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  378. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  379. while (1) {
  380. ret = read_extent_buffer_pages(io_tree, eb, start,
  381. WAIT_COMPLETE,
  382. btree_get_extent, mirror_num);
  383. if (!ret) {
  384. if (!verify_parent_transid(io_tree, eb,
  385. parent_transid, 0))
  386. break;
  387. else
  388. ret = -EIO;
  389. }
  390. /*
  391. * This buffer's crc is fine, but its contents are corrupted, so
  392. * there is no reason to read the other copies, they won't be
  393. * any less wrong.
  394. */
  395. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  396. break;
  397. num_copies = btrfs_num_copies(root->fs_info,
  398. eb->start, eb->len);
  399. if (num_copies == 1)
  400. break;
  401. if (!failed_mirror) {
  402. failed = 1;
  403. failed_mirror = eb->read_mirror;
  404. }
  405. mirror_num++;
  406. if (mirror_num == failed_mirror)
  407. mirror_num++;
  408. if (mirror_num > num_copies)
  409. break;
  410. }
  411. if (failed && !ret && failed_mirror)
  412. repair_eb_io_failure(root, eb, failed_mirror);
  413. return ret;
  414. }
  415. /*
  416. * checksum a dirty tree block before IO. This has extra checks to make sure
  417. * we only fill in the checksum field in the first page of a multi-page block
  418. */
  419. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  420. {
  421. struct extent_io_tree *tree;
  422. u64 start = page_offset(page);
  423. u64 found_start;
  424. struct extent_buffer *eb;
  425. tree = &BTRFS_I(page->mapping->host)->io_tree;
  426. eb = (struct extent_buffer *)page->private;
  427. if (page != eb->pages[0])
  428. return 0;
  429. found_start = btrfs_header_bytenr(eb);
  430. if (found_start != start) {
  431. WARN_ON(1);
  432. return 0;
  433. }
  434. if (!PageUptodate(page)) {
  435. WARN_ON(1);
  436. return 0;
  437. }
  438. csum_tree_block(root, eb, 0);
  439. return 0;
  440. }
  441. static int check_tree_block_fsid(struct btrfs_root *root,
  442. struct extent_buffer *eb)
  443. {
  444. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  445. u8 fsid[BTRFS_UUID_SIZE];
  446. int ret = 1;
  447. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  448. BTRFS_FSID_SIZE);
  449. while (fs_devices) {
  450. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  451. ret = 0;
  452. break;
  453. }
  454. fs_devices = fs_devices->seed;
  455. }
  456. return ret;
  457. }
  458. #define CORRUPT(reason, eb, root, slot) \
  459. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  460. "root=%llu, slot=%d\n", reason, \
  461. (unsigned long long)btrfs_header_bytenr(eb), \
  462. (unsigned long long)root->objectid, slot)
  463. static noinline int check_leaf(struct btrfs_root *root,
  464. struct extent_buffer *leaf)
  465. {
  466. struct btrfs_key key;
  467. struct btrfs_key leaf_key;
  468. u32 nritems = btrfs_header_nritems(leaf);
  469. int slot;
  470. if (nritems == 0)
  471. return 0;
  472. /* Check the 0 item */
  473. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  474. BTRFS_LEAF_DATA_SIZE(root)) {
  475. CORRUPT("invalid item offset size pair", leaf, root, 0);
  476. return -EIO;
  477. }
  478. /*
  479. * Check to make sure each items keys are in the correct order and their
  480. * offsets make sense. We only have to loop through nritems-1 because
  481. * we check the current slot against the next slot, which verifies the
  482. * next slot's offset+size makes sense and that the current's slot
  483. * offset is correct.
  484. */
  485. for (slot = 0; slot < nritems - 1; slot++) {
  486. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  487. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  488. /* Make sure the keys are in the right order */
  489. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  490. CORRUPT("bad key order", leaf, root, slot);
  491. return -EIO;
  492. }
  493. /*
  494. * Make sure the offset and ends are right, remember that the
  495. * item data starts at the end of the leaf and grows towards the
  496. * front.
  497. */
  498. if (btrfs_item_offset_nr(leaf, slot) !=
  499. btrfs_item_end_nr(leaf, slot + 1)) {
  500. CORRUPT("slot offset bad", leaf, root, slot);
  501. return -EIO;
  502. }
  503. /*
  504. * Check to make sure that we don't point outside of the leaf,
  505. * just incase all the items are consistent to eachother, but
  506. * all point outside of the leaf.
  507. */
  508. if (btrfs_item_end_nr(leaf, slot) >
  509. BTRFS_LEAF_DATA_SIZE(root)) {
  510. CORRUPT("slot end outside of leaf", leaf, root, slot);
  511. return -EIO;
  512. }
  513. }
  514. return 0;
  515. }
  516. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  517. struct extent_state *state, int mirror)
  518. {
  519. struct extent_io_tree *tree;
  520. u64 found_start;
  521. int found_level;
  522. struct extent_buffer *eb;
  523. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  524. int ret = 0;
  525. int reads_done;
  526. if (!page->private)
  527. goto out;
  528. tree = &BTRFS_I(page->mapping->host)->io_tree;
  529. eb = (struct extent_buffer *)page->private;
  530. /* the pending IO might have been the only thing that kept this buffer
  531. * in memory. Make sure we have a ref for all this other checks
  532. */
  533. extent_buffer_get(eb);
  534. reads_done = atomic_dec_and_test(&eb->io_pages);
  535. if (!reads_done)
  536. goto err;
  537. eb->read_mirror = mirror;
  538. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  539. ret = -EIO;
  540. goto err;
  541. }
  542. found_start = btrfs_header_bytenr(eb);
  543. if (found_start != eb->start) {
  544. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  545. "%llu %llu\n",
  546. (unsigned long long)found_start,
  547. (unsigned long long)eb->start);
  548. ret = -EIO;
  549. goto err;
  550. }
  551. if (check_tree_block_fsid(root, eb)) {
  552. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  553. (unsigned long long)eb->start);
  554. ret = -EIO;
  555. goto err;
  556. }
  557. found_level = btrfs_header_level(eb);
  558. if (found_level >= BTRFS_MAX_LEVEL) {
  559. btrfs_info(root->fs_info, "bad tree block level %d\n",
  560. (int)btrfs_header_level(eb));
  561. ret = -EIO;
  562. goto err;
  563. }
  564. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  565. eb, found_level);
  566. ret = csum_tree_block(root, eb, 1);
  567. if (ret) {
  568. ret = -EIO;
  569. goto err;
  570. }
  571. /*
  572. * If this is a leaf block and it is corrupt, set the corrupt bit so
  573. * that we don't try and read the other copies of this block, just
  574. * return -EIO.
  575. */
  576. if (found_level == 0 && check_leaf(root, eb)) {
  577. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  578. ret = -EIO;
  579. }
  580. if (!ret)
  581. set_extent_buffer_uptodate(eb);
  582. err:
  583. if (reads_done &&
  584. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, ret);
  586. if (ret) {
  587. /*
  588. * our io error hook is going to dec the io pages
  589. * again, we have to make sure it has something
  590. * to decrement
  591. */
  592. atomic_inc(&eb->io_pages);
  593. clear_extent_buffer_uptodate(eb);
  594. }
  595. free_extent_buffer(eb);
  596. out:
  597. return ret;
  598. }
  599. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  600. {
  601. struct extent_buffer *eb;
  602. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  603. eb = (struct extent_buffer *)page->private;
  604. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  605. eb->read_mirror = failed_mirror;
  606. atomic_dec(&eb->io_pages);
  607. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  608. btree_readahead_hook(root, eb, eb->start, -EIO);
  609. return -EIO; /* we fixed nothing */
  610. }
  611. static void end_workqueue_bio(struct bio *bio, int err)
  612. {
  613. struct end_io_wq *end_io_wq = bio->bi_private;
  614. struct btrfs_fs_info *fs_info;
  615. fs_info = end_io_wq->info;
  616. end_io_wq->error = err;
  617. end_io_wq->work.func = end_workqueue_fn;
  618. end_io_wq->work.flags = 0;
  619. if (bio->bi_rw & REQ_WRITE) {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  621. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  624. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  625. &end_io_wq->work);
  626. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  627. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  628. &end_io_wq->work);
  629. else
  630. btrfs_queue_worker(&fs_info->endio_write_workers,
  631. &end_io_wq->work);
  632. } else {
  633. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  634. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  635. &end_io_wq->work);
  636. else if (end_io_wq->metadata)
  637. btrfs_queue_worker(&fs_info->endio_meta_workers,
  638. &end_io_wq->work);
  639. else
  640. btrfs_queue_worker(&fs_info->endio_workers,
  641. &end_io_wq->work);
  642. }
  643. }
  644. /*
  645. * For the metadata arg you want
  646. *
  647. * 0 - if data
  648. * 1 - if normal metadta
  649. * 2 - if writing to the free space cache area
  650. * 3 - raid parity work
  651. */
  652. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  653. int metadata)
  654. {
  655. struct end_io_wq *end_io_wq;
  656. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  657. if (!end_io_wq)
  658. return -ENOMEM;
  659. end_io_wq->private = bio->bi_private;
  660. end_io_wq->end_io = bio->bi_end_io;
  661. end_io_wq->info = info;
  662. end_io_wq->error = 0;
  663. end_io_wq->bio = bio;
  664. end_io_wq->metadata = metadata;
  665. bio->bi_private = end_io_wq;
  666. bio->bi_end_io = end_workqueue_bio;
  667. return 0;
  668. }
  669. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  670. {
  671. unsigned long limit = min_t(unsigned long,
  672. info->workers.max_workers,
  673. info->fs_devices->open_devices);
  674. return 256 * limit;
  675. }
  676. static void run_one_async_start(struct btrfs_work *work)
  677. {
  678. struct async_submit_bio *async;
  679. int ret;
  680. async = container_of(work, struct async_submit_bio, work);
  681. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  682. async->mirror_num, async->bio_flags,
  683. async->bio_offset);
  684. if (ret)
  685. async->error = ret;
  686. }
  687. static void run_one_async_done(struct btrfs_work *work)
  688. {
  689. struct btrfs_fs_info *fs_info;
  690. struct async_submit_bio *async;
  691. int limit;
  692. async = container_of(work, struct async_submit_bio, work);
  693. fs_info = BTRFS_I(async->inode)->root->fs_info;
  694. limit = btrfs_async_submit_limit(fs_info);
  695. limit = limit * 2 / 3;
  696. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  697. waitqueue_active(&fs_info->async_submit_wait))
  698. wake_up(&fs_info->async_submit_wait);
  699. /* If an error occured we just want to clean up the bio and move on */
  700. if (async->error) {
  701. bio_endio(async->bio, async->error);
  702. return;
  703. }
  704. async->submit_bio_done(async->inode, async->rw, async->bio,
  705. async->mirror_num, async->bio_flags,
  706. async->bio_offset);
  707. }
  708. static void run_one_async_free(struct btrfs_work *work)
  709. {
  710. struct async_submit_bio *async;
  711. async = container_of(work, struct async_submit_bio, work);
  712. kfree(async);
  713. }
  714. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  715. int rw, struct bio *bio, int mirror_num,
  716. unsigned long bio_flags,
  717. u64 bio_offset,
  718. extent_submit_bio_hook_t *submit_bio_start,
  719. extent_submit_bio_hook_t *submit_bio_done)
  720. {
  721. struct async_submit_bio *async;
  722. async = kmalloc(sizeof(*async), GFP_NOFS);
  723. if (!async)
  724. return -ENOMEM;
  725. async->inode = inode;
  726. async->rw = rw;
  727. async->bio = bio;
  728. async->mirror_num = mirror_num;
  729. async->submit_bio_start = submit_bio_start;
  730. async->submit_bio_done = submit_bio_done;
  731. async->work.func = run_one_async_start;
  732. async->work.ordered_func = run_one_async_done;
  733. async->work.ordered_free = run_one_async_free;
  734. async->work.flags = 0;
  735. async->bio_flags = bio_flags;
  736. async->bio_offset = bio_offset;
  737. async->error = 0;
  738. atomic_inc(&fs_info->nr_async_submits);
  739. if (rw & REQ_SYNC)
  740. btrfs_set_work_high_prio(&async->work);
  741. btrfs_queue_worker(&fs_info->workers, &async->work);
  742. while (atomic_read(&fs_info->async_submit_draining) &&
  743. atomic_read(&fs_info->nr_async_submits)) {
  744. wait_event(fs_info->async_submit_wait,
  745. (atomic_read(&fs_info->nr_async_submits) == 0));
  746. }
  747. return 0;
  748. }
  749. static int btree_csum_one_bio(struct bio *bio)
  750. {
  751. struct bio_vec *bvec = bio->bi_io_vec;
  752. int bio_index = 0;
  753. struct btrfs_root *root;
  754. int ret = 0;
  755. WARN_ON(bio->bi_vcnt <= 0);
  756. while (bio_index < bio->bi_vcnt) {
  757. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  758. ret = csum_dirty_buffer(root, bvec->bv_page);
  759. if (ret)
  760. break;
  761. bio_index++;
  762. bvec++;
  763. }
  764. return ret;
  765. }
  766. static int __btree_submit_bio_start(struct inode *inode, int rw,
  767. struct bio *bio, int mirror_num,
  768. unsigned long bio_flags,
  769. u64 bio_offset)
  770. {
  771. /*
  772. * when we're called for a write, we're already in the async
  773. * submission context. Just jump into btrfs_map_bio
  774. */
  775. return btree_csum_one_bio(bio);
  776. }
  777. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  778. int mirror_num, unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. int ret;
  782. /*
  783. * when we're called for a write, we're already in the async
  784. * submission context. Just jump into btrfs_map_bio
  785. */
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  787. if (ret)
  788. bio_endio(bio, ret);
  789. return ret;
  790. }
  791. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  792. {
  793. if (bio_flags & EXTENT_BIO_TREE_LOG)
  794. return 0;
  795. #ifdef CONFIG_X86
  796. if (cpu_has_xmm4_2)
  797. return 0;
  798. #endif
  799. return 1;
  800. }
  801. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  802. int mirror_num, unsigned long bio_flags,
  803. u64 bio_offset)
  804. {
  805. int async = check_async_write(inode, bio_flags);
  806. int ret;
  807. if (!(rw & REQ_WRITE)) {
  808. /*
  809. * called for a read, do the setup so that checksum validation
  810. * can happen in the async kernel threads
  811. */
  812. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  813. bio, 1);
  814. if (ret)
  815. goto out_w_error;
  816. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  817. mirror_num, 0);
  818. } else if (!async) {
  819. ret = btree_csum_one_bio(bio);
  820. if (ret)
  821. goto out_w_error;
  822. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  823. mirror_num, 0);
  824. } else {
  825. /*
  826. * kthread helpers are used to submit writes so that
  827. * checksumming can happen in parallel across all CPUs
  828. */
  829. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  830. inode, rw, bio, mirror_num, 0,
  831. bio_offset,
  832. __btree_submit_bio_start,
  833. __btree_submit_bio_done);
  834. }
  835. if (ret) {
  836. out_w_error:
  837. bio_endio(bio, ret);
  838. }
  839. return ret;
  840. }
  841. #ifdef CONFIG_MIGRATION
  842. static int btree_migratepage(struct address_space *mapping,
  843. struct page *newpage, struct page *page,
  844. enum migrate_mode mode)
  845. {
  846. /*
  847. * we can't safely write a btree page from here,
  848. * we haven't done the locking hook
  849. */
  850. if (PageDirty(page))
  851. return -EAGAIN;
  852. /*
  853. * Buffers may be managed in a filesystem specific way.
  854. * We must have no buffers or drop them.
  855. */
  856. if (page_has_private(page) &&
  857. !try_to_release_page(page, GFP_KERNEL))
  858. return -EAGAIN;
  859. return migrate_page(mapping, newpage, page, mode);
  860. }
  861. #endif
  862. static int btree_writepages(struct address_space *mapping,
  863. struct writeback_control *wbc)
  864. {
  865. struct extent_io_tree *tree;
  866. struct btrfs_fs_info *fs_info;
  867. int ret;
  868. tree = &BTRFS_I(mapping->host)->io_tree;
  869. if (wbc->sync_mode == WB_SYNC_NONE) {
  870. if (wbc->for_kupdate)
  871. return 0;
  872. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  873. /* this is a bit racy, but that's ok */
  874. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  875. BTRFS_DIRTY_METADATA_THRESH);
  876. if (ret < 0)
  877. return 0;
  878. }
  879. return btree_write_cache_pages(mapping, wbc);
  880. }
  881. static int btree_readpage(struct file *file, struct page *page)
  882. {
  883. struct extent_io_tree *tree;
  884. tree = &BTRFS_I(page->mapping->host)->io_tree;
  885. return extent_read_full_page(tree, page, btree_get_extent, 0);
  886. }
  887. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  888. {
  889. if (PageWriteback(page) || PageDirty(page))
  890. return 0;
  891. return try_release_extent_buffer(page);
  892. }
  893. static void btree_invalidatepage(struct page *page, unsigned long offset)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. extent_invalidatepage(tree, page, offset);
  898. btree_releasepage(page, GFP_NOFS);
  899. if (PagePrivate(page)) {
  900. printk(KERN_WARNING "btrfs warning page private not zero "
  901. "on page %llu\n", (unsigned long long)page_offset(page));
  902. ClearPagePrivate(page);
  903. set_page_private(page, 0);
  904. page_cache_release(page);
  905. }
  906. }
  907. static int btree_set_page_dirty(struct page *page)
  908. {
  909. #ifdef DEBUG
  910. struct extent_buffer *eb;
  911. BUG_ON(!PagePrivate(page));
  912. eb = (struct extent_buffer *)page->private;
  913. BUG_ON(!eb);
  914. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  915. BUG_ON(!atomic_read(&eb->refs));
  916. btrfs_assert_tree_locked(eb);
  917. #endif
  918. return __set_page_dirty_nobuffers(page);
  919. }
  920. static const struct address_space_operations btree_aops = {
  921. .readpage = btree_readpage,
  922. .writepages = btree_writepages,
  923. .releasepage = btree_releasepage,
  924. .invalidatepage = btree_invalidatepage,
  925. #ifdef CONFIG_MIGRATION
  926. .migratepage = btree_migratepage,
  927. #endif
  928. .set_page_dirty = btree_set_page_dirty,
  929. };
  930. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  931. u64 parent_transid)
  932. {
  933. struct extent_buffer *buf = NULL;
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. int ret = 0;
  936. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  937. if (!buf)
  938. return 0;
  939. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  940. buf, 0, WAIT_NONE, btree_get_extent, 0);
  941. free_extent_buffer(buf);
  942. return ret;
  943. }
  944. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  945. int mirror_num, struct extent_buffer **eb)
  946. {
  947. struct extent_buffer *buf = NULL;
  948. struct inode *btree_inode = root->fs_info->btree_inode;
  949. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  952. if (!buf)
  953. return 0;
  954. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  955. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  956. btree_get_extent, mirror_num);
  957. if (ret) {
  958. free_extent_buffer(buf);
  959. return ret;
  960. }
  961. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  962. free_extent_buffer(buf);
  963. return -EIO;
  964. } else if (extent_buffer_uptodate(buf)) {
  965. *eb = buf;
  966. } else {
  967. free_extent_buffer(buf);
  968. }
  969. return 0;
  970. }
  971. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  972. u64 bytenr, u32 blocksize)
  973. {
  974. struct inode *btree_inode = root->fs_info->btree_inode;
  975. struct extent_buffer *eb;
  976. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  977. bytenr, blocksize);
  978. return eb;
  979. }
  980. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  981. u64 bytenr, u32 blocksize)
  982. {
  983. struct inode *btree_inode = root->fs_info->btree_inode;
  984. struct extent_buffer *eb;
  985. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  986. bytenr, blocksize);
  987. return eb;
  988. }
  989. int btrfs_write_tree_block(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  992. buf->start + buf->len - 1);
  993. }
  994. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawait_range(buf->pages[0]->mapping,
  997. buf->start, buf->start + buf->len - 1);
  998. }
  999. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1000. u32 blocksize, u64 parent_transid)
  1001. {
  1002. struct extent_buffer *buf = NULL;
  1003. int ret;
  1004. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1005. if (!buf)
  1006. return NULL;
  1007. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1008. return buf;
  1009. }
  1010. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1011. struct extent_buffer *buf)
  1012. {
  1013. struct btrfs_fs_info *fs_info = root->fs_info;
  1014. if (btrfs_header_generation(buf) ==
  1015. fs_info->running_transaction->transid) {
  1016. btrfs_assert_tree_locked(buf);
  1017. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1018. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1019. -buf->len,
  1020. fs_info->dirty_metadata_batch);
  1021. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1022. btrfs_set_lock_blocking(buf);
  1023. clear_extent_buffer_dirty(buf);
  1024. }
  1025. }
  1026. }
  1027. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1028. u32 stripesize, struct btrfs_root *root,
  1029. struct btrfs_fs_info *fs_info,
  1030. u64 objectid)
  1031. {
  1032. root->node = NULL;
  1033. root->commit_root = NULL;
  1034. root->sectorsize = sectorsize;
  1035. root->nodesize = nodesize;
  1036. root->leafsize = leafsize;
  1037. root->stripesize = stripesize;
  1038. root->ref_cows = 0;
  1039. root->track_dirty = 0;
  1040. root->in_radix = 0;
  1041. root->orphan_item_inserted = 0;
  1042. root->orphan_cleanup_state = 0;
  1043. root->objectid = objectid;
  1044. root->last_trans = 0;
  1045. root->highest_objectid = 0;
  1046. root->name = NULL;
  1047. root->inode_tree = RB_ROOT;
  1048. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1049. root->block_rsv = NULL;
  1050. root->orphan_block_rsv = NULL;
  1051. INIT_LIST_HEAD(&root->dirty_list);
  1052. INIT_LIST_HEAD(&root->root_list);
  1053. INIT_LIST_HEAD(&root->logged_list[0]);
  1054. INIT_LIST_HEAD(&root->logged_list[1]);
  1055. spin_lock_init(&root->orphan_lock);
  1056. spin_lock_init(&root->inode_lock);
  1057. spin_lock_init(&root->accounting_lock);
  1058. spin_lock_init(&root->log_extents_lock[0]);
  1059. spin_lock_init(&root->log_extents_lock[1]);
  1060. mutex_init(&root->objectid_mutex);
  1061. mutex_init(&root->log_mutex);
  1062. init_waitqueue_head(&root->log_writer_wait);
  1063. init_waitqueue_head(&root->log_commit_wait[0]);
  1064. init_waitqueue_head(&root->log_commit_wait[1]);
  1065. atomic_set(&root->log_commit[0], 0);
  1066. atomic_set(&root->log_commit[1], 0);
  1067. atomic_set(&root->log_writers, 0);
  1068. atomic_set(&root->log_batch, 0);
  1069. atomic_set(&root->orphan_inodes, 0);
  1070. atomic_set(&root->refs, 1);
  1071. root->log_transid = 0;
  1072. root->last_log_commit = 0;
  1073. extent_io_tree_init(&root->dirty_log_pages,
  1074. fs_info->btree_inode->i_mapping);
  1075. memset(&root->root_key, 0, sizeof(root->root_key));
  1076. memset(&root->root_item, 0, sizeof(root->root_item));
  1077. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1078. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1079. root->defrag_trans_start = fs_info->generation;
  1080. init_completion(&root->kobj_unregister);
  1081. root->defrag_running = 0;
  1082. root->root_key.objectid = objectid;
  1083. root->anon_dev = 0;
  1084. spin_lock_init(&root->root_item_lock);
  1085. }
  1086. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1087. {
  1088. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1089. if (root)
  1090. root->fs_info = fs_info;
  1091. return root;
  1092. }
  1093. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1094. struct btrfs_fs_info *fs_info,
  1095. u64 objectid)
  1096. {
  1097. struct extent_buffer *leaf;
  1098. struct btrfs_root *tree_root = fs_info->tree_root;
  1099. struct btrfs_root *root;
  1100. struct btrfs_key key;
  1101. int ret = 0;
  1102. u64 bytenr;
  1103. uuid_le uuid;
  1104. root = btrfs_alloc_root(fs_info);
  1105. if (!root)
  1106. return ERR_PTR(-ENOMEM);
  1107. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1108. tree_root->sectorsize, tree_root->stripesize,
  1109. root, fs_info, objectid);
  1110. root->root_key.objectid = objectid;
  1111. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1112. root->root_key.offset = 0;
  1113. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1114. 0, objectid, NULL, 0, 0, 0);
  1115. if (IS_ERR(leaf)) {
  1116. ret = PTR_ERR(leaf);
  1117. leaf = NULL;
  1118. goto fail;
  1119. }
  1120. bytenr = leaf->start;
  1121. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1122. btrfs_set_header_bytenr(leaf, leaf->start);
  1123. btrfs_set_header_generation(leaf, trans->transid);
  1124. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1125. btrfs_set_header_owner(leaf, objectid);
  1126. root->node = leaf;
  1127. write_extent_buffer(leaf, fs_info->fsid,
  1128. (unsigned long)btrfs_header_fsid(leaf),
  1129. BTRFS_FSID_SIZE);
  1130. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1131. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1132. BTRFS_UUID_SIZE);
  1133. btrfs_mark_buffer_dirty(leaf);
  1134. root->commit_root = btrfs_root_node(root);
  1135. root->track_dirty = 1;
  1136. root->root_item.flags = 0;
  1137. root->root_item.byte_limit = 0;
  1138. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1139. btrfs_set_root_generation(&root->root_item, trans->transid);
  1140. btrfs_set_root_level(&root->root_item, 0);
  1141. btrfs_set_root_refs(&root->root_item, 1);
  1142. btrfs_set_root_used(&root->root_item, leaf->len);
  1143. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1144. btrfs_set_root_dirid(&root->root_item, 0);
  1145. uuid_le_gen(&uuid);
  1146. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1147. root->root_item.drop_level = 0;
  1148. key.objectid = objectid;
  1149. key.type = BTRFS_ROOT_ITEM_KEY;
  1150. key.offset = 0;
  1151. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1152. if (ret)
  1153. goto fail;
  1154. btrfs_tree_unlock(leaf);
  1155. return root;
  1156. fail:
  1157. if (leaf) {
  1158. btrfs_tree_unlock(leaf);
  1159. free_extent_buffer(leaf);
  1160. }
  1161. kfree(root);
  1162. return ERR_PTR(ret);
  1163. }
  1164. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1165. struct btrfs_fs_info *fs_info)
  1166. {
  1167. struct btrfs_root *root;
  1168. struct btrfs_root *tree_root = fs_info->tree_root;
  1169. struct extent_buffer *leaf;
  1170. root = btrfs_alloc_root(fs_info);
  1171. if (!root)
  1172. return ERR_PTR(-ENOMEM);
  1173. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1174. tree_root->sectorsize, tree_root->stripesize,
  1175. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1176. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1177. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1178. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1179. /*
  1180. * log trees do not get reference counted because they go away
  1181. * before a real commit is actually done. They do store pointers
  1182. * to file data extents, and those reference counts still get
  1183. * updated (along with back refs to the log tree).
  1184. */
  1185. root->ref_cows = 0;
  1186. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1187. BTRFS_TREE_LOG_OBJECTID, NULL,
  1188. 0, 0, 0);
  1189. if (IS_ERR(leaf)) {
  1190. kfree(root);
  1191. return ERR_CAST(leaf);
  1192. }
  1193. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1194. btrfs_set_header_bytenr(leaf, leaf->start);
  1195. btrfs_set_header_generation(leaf, trans->transid);
  1196. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1197. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1198. root->node = leaf;
  1199. write_extent_buffer(root->node, root->fs_info->fsid,
  1200. (unsigned long)btrfs_header_fsid(root->node),
  1201. BTRFS_FSID_SIZE);
  1202. btrfs_mark_buffer_dirty(root->node);
  1203. btrfs_tree_unlock(root->node);
  1204. return root;
  1205. }
  1206. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1207. struct btrfs_fs_info *fs_info)
  1208. {
  1209. struct btrfs_root *log_root;
  1210. log_root = alloc_log_tree(trans, fs_info);
  1211. if (IS_ERR(log_root))
  1212. return PTR_ERR(log_root);
  1213. WARN_ON(fs_info->log_root_tree);
  1214. fs_info->log_root_tree = log_root;
  1215. return 0;
  1216. }
  1217. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1218. struct btrfs_root *root)
  1219. {
  1220. struct btrfs_root *log_root;
  1221. struct btrfs_inode_item *inode_item;
  1222. log_root = alloc_log_tree(trans, root->fs_info);
  1223. if (IS_ERR(log_root))
  1224. return PTR_ERR(log_root);
  1225. log_root->last_trans = trans->transid;
  1226. log_root->root_key.offset = root->root_key.objectid;
  1227. inode_item = &log_root->root_item.inode;
  1228. inode_item->generation = cpu_to_le64(1);
  1229. inode_item->size = cpu_to_le64(3);
  1230. inode_item->nlink = cpu_to_le32(1);
  1231. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1232. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1233. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1234. WARN_ON(root->log_root);
  1235. root->log_root = log_root;
  1236. root->log_transid = 0;
  1237. root->last_log_commit = 0;
  1238. return 0;
  1239. }
  1240. struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1241. struct btrfs_key *key)
  1242. {
  1243. struct btrfs_root *root;
  1244. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1245. struct btrfs_path *path;
  1246. u64 generation;
  1247. u32 blocksize;
  1248. int ret;
  1249. path = btrfs_alloc_path();
  1250. if (!path)
  1251. return ERR_PTR(-ENOMEM);
  1252. root = btrfs_alloc_root(fs_info);
  1253. if (!root) {
  1254. ret = -ENOMEM;
  1255. goto alloc_fail;
  1256. }
  1257. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1258. tree_root->sectorsize, tree_root->stripesize,
  1259. root, fs_info, key->objectid);
  1260. ret = btrfs_find_root(tree_root, key, path,
  1261. &root->root_item, &root->root_key);
  1262. if (ret) {
  1263. if (ret > 0)
  1264. ret = -ENOENT;
  1265. goto find_fail;
  1266. }
  1267. generation = btrfs_root_generation(&root->root_item);
  1268. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1269. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1270. blocksize, generation);
  1271. if (!root->node) {
  1272. ret = -ENOMEM;
  1273. goto find_fail;
  1274. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1275. ret = -EIO;
  1276. goto read_fail;
  1277. }
  1278. root->commit_root = btrfs_root_node(root);
  1279. out:
  1280. btrfs_free_path(path);
  1281. return root;
  1282. read_fail:
  1283. free_extent_buffer(root->node);
  1284. find_fail:
  1285. kfree(root);
  1286. alloc_fail:
  1287. root = ERR_PTR(ret);
  1288. goto out;
  1289. }
  1290. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1291. struct btrfs_key *location)
  1292. {
  1293. struct btrfs_root *root;
  1294. root = btrfs_read_tree_root(tree_root, location);
  1295. if (IS_ERR(root))
  1296. return root;
  1297. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1298. root->ref_cows = 1;
  1299. btrfs_check_and_init_root_item(&root->root_item);
  1300. }
  1301. return root;
  1302. }
  1303. int btrfs_init_fs_root(struct btrfs_root *root)
  1304. {
  1305. int ret;
  1306. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1307. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1308. GFP_NOFS);
  1309. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1310. ret = -ENOMEM;
  1311. goto fail;
  1312. }
  1313. btrfs_init_free_ino_ctl(root);
  1314. mutex_init(&root->fs_commit_mutex);
  1315. spin_lock_init(&root->cache_lock);
  1316. init_waitqueue_head(&root->cache_wait);
  1317. ret = get_anon_bdev(&root->anon_dev);
  1318. if (ret)
  1319. goto fail;
  1320. return 0;
  1321. fail:
  1322. kfree(root->free_ino_ctl);
  1323. kfree(root->free_ino_pinned);
  1324. return ret;
  1325. }
  1326. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1327. u64 root_id)
  1328. {
  1329. struct btrfs_root *root;
  1330. spin_lock(&fs_info->fs_roots_radix_lock);
  1331. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1332. (unsigned long)root_id);
  1333. spin_unlock(&fs_info->fs_roots_radix_lock);
  1334. return root;
  1335. }
  1336. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1337. struct btrfs_root *root)
  1338. {
  1339. int ret;
  1340. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1341. if (ret)
  1342. return ret;
  1343. spin_lock(&fs_info->fs_roots_radix_lock);
  1344. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1345. (unsigned long)root->root_key.objectid,
  1346. root);
  1347. if (ret == 0)
  1348. root->in_radix = 1;
  1349. spin_unlock(&fs_info->fs_roots_radix_lock);
  1350. radix_tree_preload_end();
  1351. return ret;
  1352. }
  1353. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1354. struct btrfs_key *location)
  1355. {
  1356. struct btrfs_root *root;
  1357. int ret;
  1358. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1359. return fs_info->tree_root;
  1360. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1361. return fs_info->extent_root;
  1362. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1363. return fs_info->chunk_root;
  1364. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1365. return fs_info->dev_root;
  1366. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1367. return fs_info->csum_root;
  1368. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1369. return fs_info->quota_root ? fs_info->quota_root :
  1370. ERR_PTR(-ENOENT);
  1371. again:
  1372. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1373. if (root)
  1374. return root;
  1375. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1376. if (IS_ERR(root))
  1377. return root;
  1378. if (btrfs_root_refs(&root->root_item) == 0) {
  1379. ret = -ENOENT;
  1380. goto fail;
  1381. }
  1382. ret = btrfs_init_fs_root(root);
  1383. if (ret)
  1384. goto fail;
  1385. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1386. if (ret < 0)
  1387. goto fail;
  1388. if (ret == 0)
  1389. root->orphan_item_inserted = 1;
  1390. ret = btrfs_insert_fs_root(fs_info, root);
  1391. if (ret) {
  1392. if (ret == -EEXIST) {
  1393. free_fs_root(root);
  1394. goto again;
  1395. }
  1396. goto fail;
  1397. }
  1398. return root;
  1399. fail:
  1400. free_fs_root(root);
  1401. return ERR_PTR(ret);
  1402. }
  1403. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1404. {
  1405. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1406. int ret = 0;
  1407. struct btrfs_device *device;
  1408. struct backing_dev_info *bdi;
  1409. rcu_read_lock();
  1410. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1411. if (!device->bdev)
  1412. continue;
  1413. bdi = blk_get_backing_dev_info(device->bdev);
  1414. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1415. ret = 1;
  1416. break;
  1417. }
  1418. }
  1419. rcu_read_unlock();
  1420. return ret;
  1421. }
  1422. /*
  1423. * If this fails, caller must call bdi_destroy() to get rid of the
  1424. * bdi again.
  1425. */
  1426. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1427. {
  1428. int err;
  1429. bdi->capabilities = BDI_CAP_MAP_COPY;
  1430. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1431. if (err)
  1432. return err;
  1433. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1434. bdi->congested_fn = btrfs_congested_fn;
  1435. bdi->congested_data = info;
  1436. return 0;
  1437. }
  1438. /*
  1439. * called by the kthread helper functions to finally call the bio end_io
  1440. * functions. This is where read checksum verification actually happens
  1441. */
  1442. static void end_workqueue_fn(struct btrfs_work *work)
  1443. {
  1444. struct bio *bio;
  1445. struct end_io_wq *end_io_wq;
  1446. struct btrfs_fs_info *fs_info;
  1447. int error;
  1448. end_io_wq = container_of(work, struct end_io_wq, work);
  1449. bio = end_io_wq->bio;
  1450. fs_info = end_io_wq->info;
  1451. error = end_io_wq->error;
  1452. bio->bi_private = end_io_wq->private;
  1453. bio->bi_end_io = end_io_wq->end_io;
  1454. kfree(end_io_wq);
  1455. bio_endio(bio, error);
  1456. }
  1457. static int cleaner_kthread(void *arg)
  1458. {
  1459. struct btrfs_root *root = arg;
  1460. int again;
  1461. do {
  1462. again = 0;
  1463. /* Make the cleaner go to sleep early. */
  1464. if (btrfs_need_cleaner_sleep(root))
  1465. goto sleep;
  1466. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1467. goto sleep;
  1468. /*
  1469. * Avoid the problem that we change the status of the fs
  1470. * during the above check and trylock.
  1471. */
  1472. if (btrfs_need_cleaner_sleep(root)) {
  1473. mutex_unlock(&root->fs_info->cleaner_mutex);
  1474. goto sleep;
  1475. }
  1476. btrfs_run_delayed_iputs(root);
  1477. again = btrfs_clean_one_deleted_snapshot(root);
  1478. mutex_unlock(&root->fs_info->cleaner_mutex);
  1479. /*
  1480. * The defragger has dealt with the R/O remount and umount,
  1481. * needn't do anything special here.
  1482. */
  1483. btrfs_run_defrag_inodes(root->fs_info);
  1484. sleep:
  1485. if (!try_to_freeze() && !again) {
  1486. set_current_state(TASK_INTERRUPTIBLE);
  1487. if (!kthread_should_stop())
  1488. schedule();
  1489. __set_current_state(TASK_RUNNING);
  1490. }
  1491. } while (!kthread_should_stop());
  1492. return 0;
  1493. }
  1494. static int transaction_kthread(void *arg)
  1495. {
  1496. struct btrfs_root *root = arg;
  1497. struct btrfs_trans_handle *trans;
  1498. struct btrfs_transaction *cur;
  1499. u64 transid;
  1500. unsigned long now;
  1501. unsigned long delay;
  1502. bool cannot_commit;
  1503. do {
  1504. cannot_commit = false;
  1505. delay = HZ * 30;
  1506. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1507. spin_lock(&root->fs_info->trans_lock);
  1508. cur = root->fs_info->running_transaction;
  1509. if (!cur) {
  1510. spin_unlock(&root->fs_info->trans_lock);
  1511. goto sleep;
  1512. }
  1513. now = get_seconds();
  1514. if (!cur->blocked &&
  1515. (now < cur->start_time || now - cur->start_time < 30)) {
  1516. spin_unlock(&root->fs_info->trans_lock);
  1517. delay = HZ * 5;
  1518. goto sleep;
  1519. }
  1520. transid = cur->transid;
  1521. spin_unlock(&root->fs_info->trans_lock);
  1522. /* If the file system is aborted, this will always fail. */
  1523. trans = btrfs_attach_transaction(root);
  1524. if (IS_ERR(trans)) {
  1525. if (PTR_ERR(trans) != -ENOENT)
  1526. cannot_commit = true;
  1527. goto sleep;
  1528. }
  1529. if (transid == trans->transid) {
  1530. btrfs_commit_transaction(trans, root);
  1531. } else {
  1532. btrfs_end_transaction(trans, root);
  1533. }
  1534. sleep:
  1535. wake_up_process(root->fs_info->cleaner_kthread);
  1536. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1537. if (!try_to_freeze()) {
  1538. set_current_state(TASK_INTERRUPTIBLE);
  1539. if (!kthread_should_stop() &&
  1540. (!btrfs_transaction_blocked(root->fs_info) ||
  1541. cannot_commit))
  1542. schedule_timeout(delay);
  1543. __set_current_state(TASK_RUNNING);
  1544. }
  1545. } while (!kthread_should_stop());
  1546. return 0;
  1547. }
  1548. /*
  1549. * this will find the highest generation in the array of
  1550. * root backups. The index of the highest array is returned,
  1551. * or -1 if we can't find anything.
  1552. *
  1553. * We check to make sure the array is valid by comparing the
  1554. * generation of the latest root in the array with the generation
  1555. * in the super block. If they don't match we pitch it.
  1556. */
  1557. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1558. {
  1559. u64 cur;
  1560. int newest_index = -1;
  1561. struct btrfs_root_backup *root_backup;
  1562. int i;
  1563. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1564. root_backup = info->super_copy->super_roots + i;
  1565. cur = btrfs_backup_tree_root_gen(root_backup);
  1566. if (cur == newest_gen)
  1567. newest_index = i;
  1568. }
  1569. /* check to see if we actually wrapped around */
  1570. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1571. root_backup = info->super_copy->super_roots;
  1572. cur = btrfs_backup_tree_root_gen(root_backup);
  1573. if (cur == newest_gen)
  1574. newest_index = 0;
  1575. }
  1576. return newest_index;
  1577. }
  1578. /*
  1579. * find the oldest backup so we know where to store new entries
  1580. * in the backup array. This will set the backup_root_index
  1581. * field in the fs_info struct
  1582. */
  1583. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1584. u64 newest_gen)
  1585. {
  1586. int newest_index = -1;
  1587. newest_index = find_newest_super_backup(info, newest_gen);
  1588. /* if there was garbage in there, just move along */
  1589. if (newest_index == -1) {
  1590. info->backup_root_index = 0;
  1591. } else {
  1592. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1593. }
  1594. }
  1595. /*
  1596. * copy all the root pointers into the super backup array.
  1597. * this will bump the backup pointer by one when it is
  1598. * done
  1599. */
  1600. static void backup_super_roots(struct btrfs_fs_info *info)
  1601. {
  1602. int next_backup;
  1603. struct btrfs_root_backup *root_backup;
  1604. int last_backup;
  1605. next_backup = info->backup_root_index;
  1606. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1607. BTRFS_NUM_BACKUP_ROOTS;
  1608. /*
  1609. * just overwrite the last backup if we're at the same generation
  1610. * this happens only at umount
  1611. */
  1612. root_backup = info->super_for_commit->super_roots + last_backup;
  1613. if (btrfs_backup_tree_root_gen(root_backup) ==
  1614. btrfs_header_generation(info->tree_root->node))
  1615. next_backup = last_backup;
  1616. root_backup = info->super_for_commit->super_roots + next_backup;
  1617. /*
  1618. * make sure all of our padding and empty slots get zero filled
  1619. * regardless of which ones we use today
  1620. */
  1621. memset(root_backup, 0, sizeof(*root_backup));
  1622. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1623. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1624. btrfs_set_backup_tree_root_gen(root_backup,
  1625. btrfs_header_generation(info->tree_root->node));
  1626. btrfs_set_backup_tree_root_level(root_backup,
  1627. btrfs_header_level(info->tree_root->node));
  1628. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1629. btrfs_set_backup_chunk_root_gen(root_backup,
  1630. btrfs_header_generation(info->chunk_root->node));
  1631. btrfs_set_backup_chunk_root_level(root_backup,
  1632. btrfs_header_level(info->chunk_root->node));
  1633. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1634. btrfs_set_backup_extent_root_gen(root_backup,
  1635. btrfs_header_generation(info->extent_root->node));
  1636. btrfs_set_backup_extent_root_level(root_backup,
  1637. btrfs_header_level(info->extent_root->node));
  1638. /*
  1639. * we might commit during log recovery, which happens before we set
  1640. * the fs_root. Make sure it is valid before we fill it in.
  1641. */
  1642. if (info->fs_root && info->fs_root->node) {
  1643. btrfs_set_backup_fs_root(root_backup,
  1644. info->fs_root->node->start);
  1645. btrfs_set_backup_fs_root_gen(root_backup,
  1646. btrfs_header_generation(info->fs_root->node));
  1647. btrfs_set_backup_fs_root_level(root_backup,
  1648. btrfs_header_level(info->fs_root->node));
  1649. }
  1650. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1651. btrfs_set_backup_dev_root_gen(root_backup,
  1652. btrfs_header_generation(info->dev_root->node));
  1653. btrfs_set_backup_dev_root_level(root_backup,
  1654. btrfs_header_level(info->dev_root->node));
  1655. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1656. btrfs_set_backup_csum_root_gen(root_backup,
  1657. btrfs_header_generation(info->csum_root->node));
  1658. btrfs_set_backup_csum_root_level(root_backup,
  1659. btrfs_header_level(info->csum_root->node));
  1660. btrfs_set_backup_total_bytes(root_backup,
  1661. btrfs_super_total_bytes(info->super_copy));
  1662. btrfs_set_backup_bytes_used(root_backup,
  1663. btrfs_super_bytes_used(info->super_copy));
  1664. btrfs_set_backup_num_devices(root_backup,
  1665. btrfs_super_num_devices(info->super_copy));
  1666. /*
  1667. * if we don't copy this out to the super_copy, it won't get remembered
  1668. * for the next commit
  1669. */
  1670. memcpy(&info->super_copy->super_roots,
  1671. &info->super_for_commit->super_roots,
  1672. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1673. }
  1674. /*
  1675. * this copies info out of the root backup array and back into
  1676. * the in-memory super block. It is meant to help iterate through
  1677. * the array, so you send it the number of backups you've already
  1678. * tried and the last backup index you used.
  1679. *
  1680. * this returns -1 when it has tried all the backups
  1681. */
  1682. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1683. struct btrfs_super_block *super,
  1684. int *num_backups_tried, int *backup_index)
  1685. {
  1686. struct btrfs_root_backup *root_backup;
  1687. int newest = *backup_index;
  1688. if (*num_backups_tried == 0) {
  1689. u64 gen = btrfs_super_generation(super);
  1690. newest = find_newest_super_backup(info, gen);
  1691. if (newest == -1)
  1692. return -1;
  1693. *backup_index = newest;
  1694. *num_backups_tried = 1;
  1695. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1696. /* we've tried all the backups, all done */
  1697. return -1;
  1698. } else {
  1699. /* jump to the next oldest backup */
  1700. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1701. BTRFS_NUM_BACKUP_ROOTS;
  1702. *backup_index = newest;
  1703. *num_backups_tried += 1;
  1704. }
  1705. root_backup = super->super_roots + newest;
  1706. btrfs_set_super_generation(super,
  1707. btrfs_backup_tree_root_gen(root_backup));
  1708. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1709. btrfs_set_super_root_level(super,
  1710. btrfs_backup_tree_root_level(root_backup));
  1711. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1712. /*
  1713. * fixme: the total bytes and num_devices need to match or we should
  1714. * need a fsck
  1715. */
  1716. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1717. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1718. return 0;
  1719. }
  1720. /* helper to cleanup workers */
  1721. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1722. {
  1723. btrfs_stop_workers(&fs_info->generic_worker);
  1724. btrfs_stop_workers(&fs_info->fixup_workers);
  1725. btrfs_stop_workers(&fs_info->delalloc_workers);
  1726. btrfs_stop_workers(&fs_info->workers);
  1727. btrfs_stop_workers(&fs_info->endio_workers);
  1728. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1729. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1730. btrfs_stop_workers(&fs_info->rmw_workers);
  1731. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1732. btrfs_stop_workers(&fs_info->endio_write_workers);
  1733. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1734. btrfs_stop_workers(&fs_info->submit_workers);
  1735. btrfs_stop_workers(&fs_info->delayed_workers);
  1736. btrfs_stop_workers(&fs_info->caching_workers);
  1737. btrfs_stop_workers(&fs_info->readahead_workers);
  1738. btrfs_stop_workers(&fs_info->flush_workers);
  1739. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1740. }
  1741. /* helper to cleanup tree roots */
  1742. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1743. {
  1744. free_extent_buffer(info->tree_root->node);
  1745. free_extent_buffer(info->tree_root->commit_root);
  1746. info->tree_root->node = NULL;
  1747. info->tree_root->commit_root = NULL;
  1748. if (info->dev_root) {
  1749. free_extent_buffer(info->dev_root->node);
  1750. free_extent_buffer(info->dev_root->commit_root);
  1751. info->dev_root->node = NULL;
  1752. info->dev_root->commit_root = NULL;
  1753. }
  1754. if (info->extent_root) {
  1755. free_extent_buffer(info->extent_root->node);
  1756. free_extent_buffer(info->extent_root->commit_root);
  1757. info->extent_root->node = NULL;
  1758. info->extent_root->commit_root = NULL;
  1759. }
  1760. if (info->csum_root) {
  1761. free_extent_buffer(info->csum_root->node);
  1762. free_extent_buffer(info->csum_root->commit_root);
  1763. info->csum_root->node = NULL;
  1764. info->csum_root->commit_root = NULL;
  1765. }
  1766. if (info->quota_root) {
  1767. free_extent_buffer(info->quota_root->node);
  1768. free_extent_buffer(info->quota_root->commit_root);
  1769. info->quota_root->node = NULL;
  1770. info->quota_root->commit_root = NULL;
  1771. }
  1772. if (chunk_root) {
  1773. free_extent_buffer(info->chunk_root->node);
  1774. free_extent_buffer(info->chunk_root->commit_root);
  1775. info->chunk_root->node = NULL;
  1776. info->chunk_root->commit_root = NULL;
  1777. }
  1778. }
  1779. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1780. {
  1781. int ret;
  1782. struct btrfs_root *gang[8];
  1783. int i;
  1784. while (!list_empty(&fs_info->dead_roots)) {
  1785. gang[0] = list_entry(fs_info->dead_roots.next,
  1786. struct btrfs_root, root_list);
  1787. list_del(&gang[0]->root_list);
  1788. if (gang[0]->in_radix) {
  1789. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1790. } else {
  1791. free_extent_buffer(gang[0]->node);
  1792. free_extent_buffer(gang[0]->commit_root);
  1793. btrfs_put_fs_root(gang[0]);
  1794. }
  1795. }
  1796. while (1) {
  1797. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1798. (void **)gang, 0,
  1799. ARRAY_SIZE(gang));
  1800. if (!ret)
  1801. break;
  1802. for (i = 0; i < ret; i++)
  1803. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1804. }
  1805. }
  1806. int open_ctree(struct super_block *sb,
  1807. struct btrfs_fs_devices *fs_devices,
  1808. char *options)
  1809. {
  1810. u32 sectorsize;
  1811. u32 nodesize;
  1812. u32 leafsize;
  1813. u32 blocksize;
  1814. u32 stripesize;
  1815. u64 generation;
  1816. u64 features;
  1817. struct btrfs_key location;
  1818. struct buffer_head *bh;
  1819. struct btrfs_super_block *disk_super;
  1820. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1821. struct btrfs_root *tree_root;
  1822. struct btrfs_root *extent_root;
  1823. struct btrfs_root *csum_root;
  1824. struct btrfs_root *chunk_root;
  1825. struct btrfs_root *dev_root;
  1826. struct btrfs_root *quota_root;
  1827. struct btrfs_root *log_tree_root;
  1828. int ret;
  1829. int err = -EINVAL;
  1830. int num_backups_tried = 0;
  1831. int backup_index = 0;
  1832. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1833. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1834. if (!tree_root || !chunk_root) {
  1835. err = -ENOMEM;
  1836. goto fail;
  1837. }
  1838. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1839. if (ret) {
  1840. err = ret;
  1841. goto fail;
  1842. }
  1843. ret = setup_bdi(fs_info, &fs_info->bdi);
  1844. if (ret) {
  1845. err = ret;
  1846. goto fail_srcu;
  1847. }
  1848. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1849. if (ret) {
  1850. err = ret;
  1851. goto fail_bdi;
  1852. }
  1853. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1854. (1 + ilog2(nr_cpu_ids));
  1855. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1856. if (ret) {
  1857. err = ret;
  1858. goto fail_dirty_metadata_bytes;
  1859. }
  1860. fs_info->btree_inode = new_inode(sb);
  1861. if (!fs_info->btree_inode) {
  1862. err = -ENOMEM;
  1863. goto fail_delalloc_bytes;
  1864. }
  1865. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1866. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1867. INIT_LIST_HEAD(&fs_info->trans_list);
  1868. INIT_LIST_HEAD(&fs_info->dead_roots);
  1869. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1870. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1871. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1872. spin_lock_init(&fs_info->delalloc_lock);
  1873. spin_lock_init(&fs_info->trans_lock);
  1874. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1875. spin_lock_init(&fs_info->delayed_iput_lock);
  1876. spin_lock_init(&fs_info->defrag_inodes_lock);
  1877. spin_lock_init(&fs_info->free_chunk_lock);
  1878. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1879. spin_lock_init(&fs_info->super_lock);
  1880. rwlock_init(&fs_info->tree_mod_log_lock);
  1881. mutex_init(&fs_info->reloc_mutex);
  1882. seqlock_init(&fs_info->profiles_lock);
  1883. init_completion(&fs_info->kobj_unregister);
  1884. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1885. INIT_LIST_HEAD(&fs_info->space_info);
  1886. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1887. btrfs_mapping_init(&fs_info->mapping_tree);
  1888. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1889. BTRFS_BLOCK_RSV_GLOBAL);
  1890. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1891. BTRFS_BLOCK_RSV_DELALLOC);
  1892. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1893. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1894. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1895. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1896. BTRFS_BLOCK_RSV_DELOPS);
  1897. atomic_set(&fs_info->nr_async_submits, 0);
  1898. atomic_set(&fs_info->async_delalloc_pages, 0);
  1899. atomic_set(&fs_info->async_submit_draining, 0);
  1900. atomic_set(&fs_info->nr_async_bios, 0);
  1901. atomic_set(&fs_info->defrag_running, 0);
  1902. atomic64_set(&fs_info->tree_mod_seq, 0);
  1903. fs_info->sb = sb;
  1904. fs_info->max_inline = 8192 * 1024;
  1905. fs_info->metadata_ratio = 0;
  1906. fs_info->defrag_inodes = RB_ROOT;
  1907. fs_info->trans_no_join = 0;
  1908. fs_info->free_chunk_space = 0;
  1909. fs_info->tree_mod_log = RB_ROOT;
  1910. /* readahead state */
  1911. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1912. spin_lock_init(&fs_info->reada_lock);
  1913. fs_info->thread_pool_size = min_t(unsigned long,
  1914. num_online_cpus() + 2, 8);
  1915. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1916. spin_lock_init(&fs_info->ordered_extent_lock);
  1917. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1918. GFP_NOFS);
  1919. if (!fs_info->delayed_root) {
  1920. err = -ENOMEM;
  1921. goto fail_iput;
  1922. }
  1923. btrfs_init_delayed_root(fs_info->delayed_root);
  1924. mutex_init(&fs_info->scrub_lock);
  1925. atomic_set(&fs_info->scrubs_running, 0);
  1926. atomic_set(&fs_info->scrub_pause_req, 0);
  1927. atomic_set(&fs_info->scrubs_paused, 0);
  1928. atomic_set(&fs_info->scrub_cancel_req, 0);
  1929. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1930. init_rwsem(&fs_info->scrub_super_lock);
  1931. fs_info->scrub_workers_refcnt = 0;
  1932. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1933. fs_info->check_integrity_print_mask = 0;
  1934. #endif
  1935. spin_lock_init(&fs_info->balance_lock);
  1936. mutex_init(&fs_info->balance_mutex);
  1937. atomic_set(&fs_info->balance_running, 0);
  1938. atomic_set(&fs_info->balance_pause_req, 0);
  1939. atomic_set(&fs_info->balance_cancel_req, 0);
  1940. fs_info->balance_ctl = NULL;
  1941. init_waitqueue_head(&fs_info->balance_wait_q);
  1942. sb->s_blocksize = 4096;
  1943. sb->s_blocksize_bits = blksize_bits(4096);
  1944. sb->s_bdi = &fs_info->bdi;
  1945. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1946. set_nlink(fs_info->btree_inode, 1);
  1947. /*
  1948. * we set the i_size on the btree inode to the max possible int.
  1949. * the real end of the address space is determined by all of
  1950. * the devices in the system
  1951. */
  1952. fs_info->btree_inode->i_size = OFFSET_MAX;
  1953. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1954. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1955. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1956. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1957. fs_info->btree_inode->i_mapping);
  1958. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1959. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1960. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1961. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1962. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1963. sizeof(struct btrfs_key));
  1964. set_bit(BTRFS_INODE_DUMMY,
  1965. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1966. insert_inode_hash(fs_info->btree_inode);
  1967. spin_lock_init(&fs_info->block_group_cache_lock);
  1968. fs_info->block_group_cache_tree = RB_ROOT;
  1969. fs_info->first_logical_byte = (u64)-1;
  1970. extent_io_tree_init(&fs_info->freed_extents[0],
  1971. fs_info->btree_inode->i_mapping);
  1972. extent_io_tree_init(&fs_info->freed_extents[1],
  1973. fs_info->btree_inode->i_mapping);
  1974. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1975. fs_info->do_barriers = 1;
  1976. mutex_init(&fs_info->ordered_operations_mutex);
  1977. mutex_init(&fs_info->tree_log_mutex);
  1978. mutex_init(&fs_info->chunk_mutex);
  1979. mutex_init(&fs_info->transaction_kthread_mutex);
  1980. mutex_init(&fs_info->cleaner_mutex);
  1981. mutex_init(&fs_info->volume_mutex);
  1982. init_rwsem(&fs_info->extent_commit_sem);
  1983. init_rwsem(&fs_info->cleanup_work_sem);
  1984. init_rwsem(&fs_info->subvol_sem);
  1985. fs_info->dev_replace.lock_owner = 0;
  1986. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1987. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1988. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1989. mutex_init(&fs_info->dev_replace.lock);
  1990. spin_lock_init(&fs_info->qgroup_lock);
  1991. mutex_init(&fs_info->qgroup_ioctl_lock);
  1992. fs_info->qgroup_tree = RB_ROOT;
  1993. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1994. fs_info->qgroup_seq = 1;
  1995. fs_info->quota_enabled = 0;
  1996. fs_info->pending_quota_state = 0;
  1997. fs_info->qgroup_ulist = NULL;
  1998. mutex_init(&fs_info->qgroup_rescan_lock);
  1999. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2000. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2001. init_waitqueue_head(&fs_info->transaction_throttle);
  2002. init_waitqueue_head(&fs_info->transaction_wait);
  2003. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2004. init_waitqueue_head(&fs_info->async_submit_wait);
  2005. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2006. if (ret) {
  2007. err = ret;
  2008. goto fail_alloc;
  2009. }
  2010. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2011. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2012. invalidate_bdev(fs_devices->latest_bdev);
  2013. /*
  2014. * Read super block and check the signature bytes only
  2015. */
  2016. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2017. if (!bh) {
  2018. err = -EINVAL;
  2019. goto fail_alloc;
  2020. }
  2021. /*
  2022. * We want to check superblock checksum, the type is stored inside.
  2023. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2024. */
  2025. if (btrfs_check_super_csum(bh->b_data)) {
  2026. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2027. err = -EINVAL;
  2028. goto fail_alloc;
  2029. }
  2030. /*
  2031. * super_copy is zeroed at allocation time and we never touch the
  2032. * following bytes up to INFO_SIZE, the checksum is calculated from
  2033. * the whole block of INFO_SIZE
  2034. */
  2035. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2036. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2037. sizeof(*fs_info->super_for_commit));
  2038. brelse(bh);
  2039. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2040. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2041. if (ret) {
  2042. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2043. err = -EINVAL;
  2044. goto fail_alloc;
  2045. }
  2046. disk_super = fs_info->super_copy;
  2047. if (!btrfs_super_root(disk_super))
  2048. goto fail_alloc;
  2049. /* check FS state, whether FS is broken. */
  2050. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2051. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2052. /*
  2053. * run through our array of backup supers and setup
  2054. * our ring pointer to the oldest one
  2055. */
  2056. generation = btrfs_super_generation(disk_super);
  2057. find_oldest_super_backup(fs_info, generation);
  2058. /*
  2059. * In the long term, we'll store the compression type in the super
  2060. * block, and it'll be used for per file compression control.
  2061. */
  2062. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2063. ret = btrfs_parse_options(tree_root, options);
  2064. if (ret) {
  2065. err = ret;
  2066. goto fail_alloc;
  2067. }
  2068. features = btrfs_super_incompat_flags(disk_super) &
  2069. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2070. if (features) {
  2071. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2072. "unsupported optional features (%Lx).\n",
  2073. (unsigned long long)features);
  2074. err = -EINVAL;
  2075. goto fail_alloc;
  2076. }
  2077. if (btrfs_super_leafsize(disk_super) !=
  2078. btrfs_super_nodesize(disk_super)) {
  2079. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2080. "blocksizes don't match. node %d leaf %d\n",
  2081. btrfs_super_nodesize(disk_super),
  2082. btrfs_super_leafsize(disk_super));
  2083. err = -EINVAL;
  2084. goto fail_alloc;
  2085. }
  2086. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2087. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2088. "blocksize (%d) was too large\n",
  2089. btrfs_super_leafsize(disk_super));
  2090. err = -EINVAL;
  2091. goto fail_alloc;
  2092. }
  2093. features = btrfs_super_incompat_flags(disk_super);
  2094. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2095. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2096. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2097. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2098. printk(KERN_ERR "btrfs: has skinny extents\n");
  2099. /*
  2100. * flag our filesystem as having big metadata blocks if
  2101. * they are bigger than the page size
  2102. */
  2103. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2104. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2105. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2106. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2107. }
  2108. nodesize = btrfs_super_nodesize(disk_super);
  2109. leafsize = btrfs_super_leafsize(disk_super);
  2110. sectorsize = btrfs_super_sectorsize(disk_super);
  2111. stripesize = btrfs_super_stripesize(disk_super);
  2112. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2113. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2114. /*
  2115. * mixed block groups end up with duplicate but slightly offset
  2116. * extent buffers for the same range. It leads to corruptions
  2117. */
  2118. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2119. (sectorsize != leafsize)) {
  2120. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2121. "are not allowed for mixed block groups on %s\n",
  2122. sb->s_id);
  2123. goto fail_alloc;
  2124. }
  2125. /*
  2126. * Needn't use the lock because there is no other task which will
  2127. * update the flag.
  2128. */
  2129. btrfs_set_super_incompat_flags(disk_super, features);
  2130. features = btrfs_super_compat_ro_flags(disk_super) &
  2131. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2132. if (!(sb->s_flags & MS_RDONLY) && features) {
  2133. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2134. "unsupported option features (%Lx).\n",
  2135. (unsigned long long)features);
  2136. err = -EINVAL;
  2137. goto fail_alloc;
  2138. }
  2139. btrfs_init_workers(&fs_info->generic_worker,
  2140. "genwork", 1, NULL);
  2141. btrfs_init_workers(&fs_info->workers, "worker",
  2142. fs_info->thread_pool_size,
  2143. &fs_info->generic_worker);
  2144. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2145. fs_info->thread_pool_size,
  2146. &fs_info->generic_worker);
  2147. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2148. fs_info->thread_pool_size,
  2149. &fs_info->generic_worker);
  2150. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2151. min_t(u64, fs_devices->num_devices,
  2152. fs_info->thread_pool_size),
  2153. &fs_info->generic_worker);
  2154. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2155. 2, &fs_info->generic_worker);
  2156. /* a higher idle thresh on the submit workers makes it much more
  2157. * likely that bios will be send down in a sane order to the
  2158. * devices
  2159. */
  2160. fs_info->submit_workers.idle_thresh = 64;
  2161. fs_info->workers.idle_thresh = 16;
  2162. fs_info->workers.ordered = 1;
  2163. fs_info->delalloc_workers.idle_thresh = 2;
  2164. fs_info->delalloc_workers.ordered = 1;
  2165. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2166. &fs_info->generic_worker);
  2167. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2168. fs_info->thread_pool_size,
  2169. &fs_info->generic_worker);
  2170. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2171. fs_info->thread_pool_size,
  2172. &fs_info->generic_worker);
  2173. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2174. "endio-meta-write", fs_info->thread_pool_size,
  2175. &fs_info->generic_worker);
  2176. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2177. "endio-raid56", fs_info->thread_pool_size,
  2178. &fs_info->generic_worker);
  2179. btrfs_init_workers(&fs_info->rmw_workers,
  2180. "rmw", fs_info->thread_pool_size,
  2181. &fs_info->generic_worker);
  2182. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2183. fs_info->thread_pool_size,
  2184. &fs_info->generic_worker);
  2185. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2186. 1, &fs_info->generic_worker);
  2187. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2188. fs_info->thread_pool_size,
  2189. &fs_info->generic_worker);
  2190. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2191. fs_info->thread_pool_size,
  2192. &fs_info->generic_worker);
  2193. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2194. &fs_info->generic_worker);
  2195. /*
  2196. * endios are largely parallel and should have a very
  2197. * low idle thresh
  2198. */
  2199. fs_info->endio_workers.idle_thresh = 4;
  2200. fs_info->endio_meta_workers.idle_thresh = 4;
  2201. fs_info->endio_raid56_workers.idle_thresh = 4;
  2202. fs_info->rmw_workers.idle_thresh = 2;
  2203. fs_info->endio_write_workers.idle_thresh = 2;
  2204. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2205. fs_info->readahead_workers.idle_thresh = 2;
  2206. /*
  2207. * btrfs_start_workers can really only fail because of ENOMEM so just
  2208. * return -ENOMEM if any of these fail.
  2209. */
  2210. ret = btrfs_start_workers(&fs_info->workers);
  2211. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2212. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2213. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2214. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2215. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2216. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2217. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2218. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2219. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2220. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2221. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2222. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2223. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2224. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2225. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2226. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2227. if (ret) {
  2228. err = -ENOMEM;
  2229. goto fail_sb_buffer;
  2230. }
  2231. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2232. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2233. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2234. tree_root->nodesize = nodesize;
  2235. tree_root->leafsize = leafsize;
  2236. tree_root->sectorsize = sectorsize;
  2237. tree_root->stripesize = stripesize;
  2238. sb->s_blocksize = sectorsize;
  2239. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2240. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2241. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2242. goto fail_sb_buffer;
  2243. }
  2244. if (sectorsize != PAGE_SIZE) {
  2245. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2246. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2247. goto fail_sb_buffer;
  2248. }
  2249. mutex_lock(&fs_info->chunk_mutex);
  2250. ret = btrfs_read_sys_array(tree_root);
  2251. mutex_unlock(&fs_info->chunk_mutex);
  2252. if (ret) {
  2253. printk(KERN_WARNING "btrfs: failed to read the system "
  2254. "array on %s\n", sb->s_id);
  2255. goto fail_sb_buffer;
  2256. }
  2257. blocksize = btrfs_level_size(tree_root,
  2258. btrfs_super_chunk_root_level(disk_super));
  2259. generation = btrfs_super_chunk_root_generation(disk_super);
  2260. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2261. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2262. chunk_root->node = read_tree_block(chunk_root,
  2263. btrfs_super_chunk_root(disk_super),
  2264. blocksize, generation);
  2265. if (!chunk_root->node ||
  2266. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2267. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2268. sb->s_id);
  2269. goto fail_tree_roots;
  2270. }
  2271. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2272. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2273. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2274. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2275. BTRFS_UUID_SIZE);
  2276. ret = btrfs_read_chunk_tree(chunk_root);
  2277. if (ret) {
  2278. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2279. sb->s_id);
  2280. goto fail_tree_roots;
  2281. }
  2282. /*
  2283. * keep the device that is marked to be the target device for the
  2284. * dev_replace procedure
  2285. */
  2286. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2287. if (!fs_devices->latest_bdev) {
  2288. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2289. sb->s_id);
  2290. goto fail_tree_roots;
  2291. }
  2292. retry_root_backup:
  2293. blocksize = btrfs_level_size(tree_root,
  2294. btrfs_super_root_level(disk_super));
  2295. generation = btrfs_super_generation(disk_super);
  2296. tree_root->node = read_tree_block(tree_root,
  2297. btrfs_super_root(disk_super),
  2298. blocksize, generation);
  2299. if (!tree_root->node ||
  2300. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2301. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2302. sb->s_id);
  2303. goto recovery_tree_root;
  2304. }
  2305. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2306. tree_root->commit_root = btrfs_root_node(tree_root);
  2307. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2308. location.type = BTRFS_ROOT_ITEM_KEY;
  2309. location.offset = 0;
  2310. extent_root = btrfs_read_tree_root(tree_root, &location);
  2311. if (IS_ERR(extent_root)) {
  2312. ret = PTR_ERR(extent_root);
  2313. goto recovery_tree_root;
  2314. }
  2315. extent_root->track_dirty = 1;
  2316. fs_info->extent_root = extent_root;
  2317. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2318. dev_root = btrfs_read_tree_root(tree_root, &location);
  2319. if (IS_ERR(dev_root)) {
  2320. ret = PTR_ERR(dev_root);
  2321. goto recovery_tree_root;
  2322. }
  2323. dev_root->track_dirty = 1;
  2324. fs_info->dev_root = dev_root;
  2325. btrfs_init_devices_late(fs_info);
  2326. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2327. csum_root = btrfs_read_tree_root(tree_root, &location);
  2328. if (IS_ERR(csum_root)) {
  2329. ret = PTR_ERR(csum_root);
  2330. goto recovery_tree_root;
  2331. }
  2332. csum_root->track_dirty = 1;
  2333. fs_info->csum_root = csum_root;
  2334. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2335. quota_root = btrfs_read_tree_root(tree_root, &location);
  2336. if (!IS_ERR(quota_root)) {
  2337. quota_root->track_dirty = 1;
  2338. fs_info->quota_enabled = 1;
  2339. fs_info->pending_quota_state = 1;
  2340. fs_info->quota_root = quota_root;
  2341. }
  2342. fs_info->generation = generation;
  2343. fs_info->last_trans_committed = generation;
  2344. ret = btrfs_recover_balance(fs_info);
  2345. if (ret) {
  2346. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2347. goto fail_block_groups;
  2348. }
  2349. ret = btrfs_init_dev_stats(fs_info);
  2350. if (ret) {
  2351. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2352. ret);
  2353. goto fail_block_groups;
  2354. }
  2355. ret = btrfs_init_dev_replace(fs_info);
  2356. if (ret) {
  2357. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2358. goto fail_block_groups;
  2359. }
  2360. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2361. ret = btrfs_init_space_info(fs_info);
  2362. if (ret) {
  2363. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2364. goto fail_block_groups;
  2365. }
  2366. ret = btrfs_read_block_groups(extent_root);
  2367. if (ret) {
  2368. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2369. goto fail_block_groups;
  2370. }
  2371. fs_info->num_tolerated_disk_barrier_failures =
  2372. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2373. if (fs_info->fs_devices->missing_devices >
  2374. fs_info->num_tolerated_disk_barrier_failures &&
  2375. !(sb->s_flags & MS_RDONLY)) {
  2376. printk(KERN_WARNING
  2377. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2378. goto fail_block_groups;
  2379. }
  2380. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2381. "btrfs-cleaner");
  2382. if (IS_ERR(fs_info->cleaner_kthread))
  2383. goto fail_block_groups;
  2384. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2385. tree_root,
  2386. "btrfs-transaction");
  2387. if (IS_ERR(fs_info->transaction_kthread))
  2388. goto fail_cleaner;
  2389. if (!btrfs_test_opt(tree_root, SSD) &&
  2390. !btrfs_test_opt(tree_root, NOSSD) &&
  2391. !fs_info->fs_devices->rotating) {
  2392. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2393. "mode\n");
  2394. btrfs_set_opt(fs_info->mount_opt, SSD);
  2395. }
  2396. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2397. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2398. ret = btrfsic_mount(tree_root, fs_devices,
  2399. btrfs_test_opt(tree_root,
  2400. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2401. 1 : 0,
  2402. fs_info->check_integrity_print_mask);
  2403. if (ret)
  2404. printk(KERN_WARNING "btrfs: failed to initialize"
  2405. " integrity check module %s\n", sb->s_id);
  2406. }
  2407. #endif
  2408. ret = btrfs_read_qgroup_config(fs_info);
  2409. if (ret)
  2410. goto fail_trans_kthread;
  2411. /* do not make disk changes in broken FS */
  2412. if (btrfs_super_log_root(disk_super) != 0) {
  2413. u64 bytenr = btrfs_super_log_root(disk_super);
  2414. if (fs_devices->rw_devices == 0) {
  2415. printk(KERN_WARNING "Btrfs log replay required "
  2416. "on RO media\n");
  2417. err = -EIO;
  2418. goto fail_qgroup;
  2419. }
  2420. blocksize =
  2421. btrfs_level_size(tree_root,
  2422. btrfs_super_log_root_level(disk_super));
  2423. log_tree_root = btrfs_alloc_root(fs_info);
  2424. if (!log_tree_root) {
  2425. err = -ENOMEM;
  2426. goto fail_qgroup;
  2427. }
  2428. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2429. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2430. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2431. blocksize,
  2432. generation + 1);
  2433. if (!log_tree_root->node ||
  2434. !extent_buffer_uptodate(log_tree_root->node)) {
  2435. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2436. free_extent_buffer(log_tree_root->node);
  2437. kfree(log_tree_root);
  2438. goto fail_trans_kthread;
  2439. }
  2440. /* returns with log_tree_root freed on success */
  2441. ret = btrfs_recover_log_trees(log_tree_root);
  2442. if (ret) {
  2443. btrfs_error(tree_root->fs_info, ret,
  2444. "Failed to recover log tree");
  2445. free_extent_buffer(log_tree_root->node);
  2446. kfree(log_tree_root);
  2447. goto fail_trans_kthread;
  2448. }
  2449. if (sb->s_flags & MS_RDONLY) {
  2450. ret = btrfs_commit_super(tree_root);
  2451. if (ret)
  2452. goto fail_trans_kthread;
  2453. }
  2454. }
  2455. ret = btrfs_find_orphan_roots(tree_root);
  2456. if (ret)
  2457. goto fail_trans_kthread;
  2458. if (!(sb->s_flags & MS_RDONLY)) {
  2459. ret = btrfs_cleanup_fs_roots(fs_info);
  2460. if (ret)
  2461. goto fail_trans_kthread;
  2462. ret = btrfs_recover_relocation(tree_root);
  2463. if (ret < 0) {
  2464. printk(KERN_WARNING
  2465. "btrfs: failed to recover relocation\n");
  2466. err = -EINVAL;
  2467. goto fail_qgroup;
  2468. }
  2469. }
  2470. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2471. location.type = BTRFS_ROOT_ITEM_KEY;
  2472. location.offset = 0;
  2473. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2474. if (IS_ERR(fs_info->fs_root)) {
  2475. err = PTR_ERR(fs_info->fs_root);
  2476. goto fail_qgroup;
  2477. }
  2478. if (sb->s_flags & MS_RDONLY)
  2479. return 0;
  2480. down_read(&fs_info->cleanup_work_sem);
  2481. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2482. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2483. up_read(&fs_info->cleanup_work_sem);
  2484. close_ctree(tree_root);
  2485. return ret;
  2486. }
  2487. up_read(&fs_info->cleanup_work_sem);
  2488. ret = btrfs_resume_balance_async(fs_info);
  2489. if (ret) {
  2490. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2491. close_ctree(tree_root);
  2492. return ret;
  2493. }
  2494. ret = btrfs_resume_dev_replace_async(fs_info);
  2495. if (ret) {
  2496. pr_warn("btrfs: failed to resume dev_replace\n");
  2497. close_ctree(tree_root);
  2498. return ret;
  2499. }
  2500. return 0;
  2501. fail_qgroup:
  2502. btrfs_free_qgroup_config(fs_info);
  2503. fail_trans_kthread:
  2504. kthread_stop(fs_info->transaction_kthread);
  2505. btrfs_cleanup_transaction(fs_info->tree_root);
  2506. del_fs_roots(fs_info);
  2507. fail_cleaner:
  2508. kthread_stop(fs_info->cleaner_kthread);
  2509. /*
  2510. * make sure we're done with the btree inode before we stop our
  2511. * kthreads
  2512. */
  2513. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2514. fail_block_groups:
  2515. btrfs_put_block_group_cache(fs_info);
  2516. btrfs_free_block_groups(fs_info);
  2517. fail_tree_roots:
  2518. free_root_pointers(fs_info, 1);
  2519. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2520. fail_sb_buffer:
  2521. btrfs_stop_all_workers(fs_info);
  2522. fail_alloc:
  2523. fail_iput:
  2524. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2525. iput(fs_info->btree_inode);
  2526. fail_delalloc_bytes:
  2527. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2528. fail_dirty_metadata_bytes:
  2529. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2530. fail_bdi:
  2531. bdi_destroy(&fs_info->bdi);
  2532. fail_srcu:
  2533. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2534. fail:
  2535. btrfs_free_stripe_hash_table(fs_info);
  2536. btrfs_close_devices(fs_info->fs_devices);
  2537. return err;
  2538. recovery_tree_root:
  2539. if (!btrfs_test_opt(tree_root, RECOVERY))
  2540. goto fail_tree_roots;
  2541. free_root_pointers(fs_info, 0);
  2542. /* don't use the log in recovery mode, it won't be valid */
  2543. btrfs_set_super_log_root(disk_super, 0);
  2544. /* we can't trust the free space cache either */
  2545. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2546. ret = next_root_backup(fs_info, fs_info->super_copy,
  2547. &num_backups_tried, &backup_index);
  2548. if (ret == -1)
  2549. goto fail_block_groups;
  2550. goto retry_root_backup;
  2551. }
  2552. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2553. {
  2554. if (uptodate) {
  2555. set_buffer_uptodate(bh);
  2556. } else {
  2557. struct btrfs_device *device = (struct btrfs_device *)
  2558. bh->b_private;
  2559. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2560. "I/O error on %s\n",
  2561. rcu_str_deref(device->name));
  2562. /* note, we dont' set_buffer_write_io_error because we have
  2563. * our own ways of dealing with the IO errors
  2564. */
  2565. clear_buffer_uptodate(bh);
  2566. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2567. }
  2568. unlock_buffer(bh);
  2569. put_bh(bh);
  2570. }
  2571. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2572. {
  2573. struct buffer_head *bh;
  2574. struct buffer_head *latest = NULL;
  2575. struct btrfs_super_block *super;
  2576. int i;
  2577. u64 transid = 0;
  2578. u64 bytenr;
  2579. /* we would like to check all the supers, but that would make
  2580. * a btrfs mount succeed after a mkfs from a different FS.
  2581. * So, we need to add a special mount option to scan for
  2582. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2583. */
  2584. for (i = 0; i < 1; i++) {
  2585. bytenr = btrfs_sb_offset(i);
  2586. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2587. break;
  2588. bh = __bread(bdev, bytenr / 4096, 4096);
  2589. if (!bh)
  2590. continue;
  2591. super = (struct btrfs_super_block *)bh->b_data;
  2592. if (btrfs_super_bytenr(super) != bytenr ||
  2593. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2594. brelse(bh);
  2595. continue;
  2596. }
  2597. if (!latest || btrfs_super_generation(super) > transid) {
  2598. brelse(latest);
  2599. latest = bh;
  2600. transid = btrfs_super_generation(super);
  2601. } else {
  2602. brelse(bh);
  2603. }
  2604. }
  2605. return latest;
  2606. }
  2607. /*
  2608. * this should be called twice, once with wait == 0 and
  2609. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2610. * we write are pinned.
  2611. *
  2612. * They are released when wait == 1 is done.
  2613. * max_mirrors must be the same for both runs, and it indicates how
  2614. * many supers on this one device should be written.
  2615. *
  2616. * max_mirrors == 0 means to write them all.
  2617. */
  2618. static int write_dev_supers(struct btrfs_device *device,
  2619. struct btrfs_super_block *sb,
  2620. int do_barriers, int wait, int max_mirrors)
  2621. {
  2622. struct buffer_head *bh;
  2623. int i;
  2624. int ret;
  2625. int errors = 0;
  2626. u32 crc;
  2627. u64 bytenr;
  2628. if (max_mirrors == 0)
  2629. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2630. for (i = 0; i < max_mirrors; i++) {
  2631. bytenr = btrfs_sb_offset(i);
  2632. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2633. break;
  2634. if (wait) {
  2635. bh = __find_get_block(device->bdev, bytenr / 4096,
  2636. BTRFS_SUPER_INFO_SIZE);
  2637. if (!bh) {
  2638. errors++;
  2639. continue;
  2640. }
  2641. wait_on_buffer(bh);
  2642. if (!buffer_uptodate(bh))
  2643. errors++;
  2644. /* drop our reference */
  2645. brelse(bh);
  2646. /* drop the reference from the wait == 0 run */
  2647. brelse(bh);
  2648. continue;
  2649. } else {
  2650. btrfs_set_super_bytenr(sb, bytenr);
  2651. crc = ~(u32)0;
  2652. crc = btrfs_csum_data((char *)sb +
  2653. BTRFS_CSUM_SIZE, crc,
  2654. BTRFS_SUPER_INFO_SIZE -
  2655. BTRFS_CSUM_SIZE);
  2656. btrfs_csum_final(crc, sb->csum);
  2657. /*
  2658. * one reference for us, and we leave it for the
  2659. * caller
  2660. */
  2661. bh = __getblk(device->bdev, bytenr / 4096,
  2662. BTRFS_SUPER_INFO_SIZE);
  2663. if (!bh) {
  2664. printk(KERN_ERR "btrfs: couldn't get super "
  2665. "buffer head for bytenr %Lu\n", bytenr);
  2666. errors++;
  2667. continue;
  2668. }
  2669. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2670. /* one reference for submit_bh */
  2671. get_bh(bh);
  2672. set_buffer_uptodate(bh);
  2673. lock_buffer(bh);
  2674. bh->b_end_io = btrfs_end_buffer_write_sync;
  2675. bh->b_private = device;
  2676. }
  2677. /*
  2678. * we fua the first super. The others we allow
  2679. * to go down lazy.
  2680. */
  2681. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2682. if (ret)
  2683. errors++;
  2684. }
  2685. return errors < i ? 0 : -1;
  2686. }
  2687. /*
  2688. * endio for the write_dev_flush, this will wake anyone waiting
  2689. * for the barrier when it is done
  2690. */
  2691. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2692. {
  2693. if (err) {
  2694. if (err == -EOPNOTSUPP)
  2695. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2696. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2697. }
  2698. if (bio->bi_private)
  2699. complete(bio->bi_private);
  2700. bio_put(bio);
  2701. }
  2702. /*
  2703. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2704. * sent down. With wait == 1, it waits for the previous flush.
  2705. *
  2706. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2707. * capable
  2708. */
  2709. static int write_dev_flush(struct btrfs_device *device, int wait)
  2710. {
  2711. struct bio *bio;
  2712. int ret = 0;
  2713. if (device->nobarriers)
  2714. return 0;
  2715. if (wait) {
  2716. bio = device->flush_bio;
  2717. if (!bio)
  2718. return 0;
  2719. wait_for_completion(&device->flush_wait);
  2720. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2721. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2722. rcu_str_deref(device->name));
  2723. device->nobarriers = 1;
  2724. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2725. ret = -EIO;
  2726. btrfs_dev_stat_inc_and_print(device,
  2727. BTRFS_DEV_STAT_FLUSH_ERRS);
  2728. }
  2729. /* drop the reference from the wait == 0 run */
  2730. bio_put(bio);
  2731. device->flush_bio = NULL;
  2732. return ret;
  2733. }
  2734. /*
  2735. * one reference for us, and we leave it for the
  2736. * caller
  2737. */
  2738. device->flush_bio = NULL;
  2739. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2740. if (!bio)
  2741. return -ENOMEM;
  2742. bio->bi_end_io = btrfs_end_empty_barrier;
  2743. bio->bi_bdev = device->bdev;
  2744. init_completion(&device->flush_wait);
  2745. bio->bi_private = &device->flush_wait;
  2746. device->flush_bio = bio;
  2747. bio_get(bio);
  2748. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2749. return 0;
  2750. }
  2751. /*
  2752. * send an empty flush down to each device in parallel,
  2753. * then wait for them
  2754. */
  2755. static int barrier_all_devices(struct btrfs_fs_info *info)
  2756. {
  2757. struct list_head *head;
  2758. struct btrfs_device *dev;
  2759. int errors_send = 0;
  2760. int errors_wait = 0;
  2761. int ret;
  2762. /* send down all the barriers */
  2763. head = &info->fs_devices->devices;
  2764. list_for_each_entry_rcu(dev, head, dev_list) {
  2765. if (!dev->bdev) {
  2766. errors_send++;
  2767. continue;
  2768. }
  2769. if (!dev->in_fs_metadata || !dev->writeable)
  2770. continue;
  2771. ret = write_dev_flush(dev, 0);
  2772. if (ret)
  2773. errors_send++;
  2774. }
  2775. /* wait for all the barriers */
  2776. list_for_each_entry_rcu(dev, head, dev_list) {
  2777. if (!dev->bdev) {
  2778. errors_wait++;
  2779. continue;
  2780. }
  2781. if (!dev->in_fs_metadata || !dev->writeable)
  2782. continue;
  2783. ret = write_dev_flush(dev, 1);
  2784. if (ret)
  2785. errors_wait++;
  2786. }
  2787. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2788. errors_wait > info->num_tolerated_disk_barrier_failures)
  2789. return -EIO;
  2790. return 0;
  2791. }
  2792. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2793. struct btrfs_fs_info *fs_info)
  2794. {
  2795. struct btrfs_ioctl_space_info space;
  2796. struct btrfs_space_info *sinfo;
  2797. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2798. BTRFS_BLOCK_GROUP_SYSTEM,
  2799. BTRFS_BLOCK_GROUP_METADATA,
  2800. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2801. int num_types = 4;
  2802. int i;
  2803. int c;
  2804. int num_tolerated_disk_barrier_failures =
  2805. (int)fs_info->fs_devices->num_devices;
  2806. for (i = 0; i < num_types; i++) {
  2807. struct btrfs_space_info *tmp;
  2808. sinfo = NULL;
  2809. rcu_read_lock();
  2810. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2811. if (tmp->flags == types[i]) {
  2812. sinfo = tmp;
  2813. break;
  2814. }
  2815. }
  2816. rcu_read_unlock();
  2817. if (!sinfo)
  2818. continue;
  2819. down_read(&sinfo->groups_sem);
  2820. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2821. if (!list_empty(&sinfo->block_groups[c])) {
  2822. u64 flags;
  2823. btrfs_get_block_group_info(
  2824. &sinfo->block_groups[c], &space);
  2825. if (space.total_bytes == 0 ||
  2826. space.used_bytes == 0)
  2827. continue;
  2828. flags = space.flags;
  2829. /*
  2830. * return
  2831. * 0: if dup, single or RAID0 is configured for
  2832. * any of metadata, system or data, else
  2833. * 1: if RAID5 is configured, or if RAID1 or
  2834. * RAID10 is configured and only two mirrors
  2835. * are used, else
  2836. * 2: if RAID6 is configured, else
  2837. * num_mirrors - 1: if RAID1 or RAID10 is
  2838. * configured and more than
  2839. * 2 mirrors are used.
  2840. */
  2841. if (num_tolerated_disk_barrier_failures > 0 &&
  2842. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2843. BTRFS_BLOCK_GROUP_RAID0)) ||
  2844. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2845. == 0)))
  2846. num_tolerated_disk_barrier_failures = 0;
  2847. else if (num_tolerated_disk_barrier_failures > 1) {
  2848. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2849. BTRFS_BLOCK_GROUP_RAID5 |
  2850. BTRFS_BLOCK_GROUP_RAID10)) {
  2851. num_tolerated_disk_barrier_failures = 1;
  2852. } else if (flags &
  2853. BTRFS_BLOCK_GROUP_RAID6) {
  2854. num_tolerated_disk_barrier_failures = 2;
  2855. }
  2856. }
  2857. }
  2858. }
  2859. up_read(&sinfo->groups_sem);
  2860. }
  2861. return num_tolerated_disk_barrier_failures;
  2862. }
  2863. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2864. {
  2865. struct list_head *head;
  2866. struct btrfs_device *dev;
  2867. struct btrfs_super_block *sb;
  2868. struct btrfs_dev_item *dev_item;
  2869. int ret;
  2870. int do_barriers;
  2871. int max_errors;
  2872. int total_errors = 0;
  2873. u64 flags;
  2874. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2875. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2876. backup_super_roots(root->fs_info);
  2877. sb = root->fs_info->super_for_commit;
  2878. dev_item = &sb->dev_item;
  2879. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2880. head = &root->fs_info->fs_devices->devices;
  2881. if (do_barriers) {
  2882. ret = barrier_all_devices(root->fs_info);
  2883. if (ret) {
  2884. mutex_unlock(
  2885. &root->fs_info->fs_devices->device_list_mutex);
  2886. btrfs_error(root->fs_info, ret,
  2887. "errors while submitting device barriers.");
  2888. return ret;
  2889. }
  2890. }
  2891. list_for_each_entry_rcu(dev, head, dev_list) {
  2892. if (!dev->bdev) {
  2893. total_errors++;
  2894. continue;
  2895. }
  2896. if (!dev->in_fs_metadata || !dev->writeable)
  2897. continue;
  2898. btrfs_set_stack_device_generation(dev_item, 0);
  2899. btrfs_set_stack_device_type(dev_item, dev->type);
  2900. btrfs_set_stack_device_id(dev_item, dev->devid);
  2901. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2902. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2903. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2904. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2905. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2906. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2907. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2908. flags = btrfs_super_flags(sb);
  2909. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2910. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2911. if (ret)
  2912. total_errors++;
  2913. }
  2914. if (total_errors > max_errors) {
  2915. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2916. total_errors);
  2917. /* This shouldn't happen. FUA is masked off if unsupported */
  2918. BUG();
  2919. }
  2920. total_errors = 0;
  2921. list_for_each_entry_rcu(dev, head, dev_list) {
  2922. if (!dev->bdev)
  2923. continue;
  2924. if (!dev->in_fs_metadata || !dev->writeable)
  2925. continue;
  2926. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2927. if (ret)
  2928. total_errors++;
  2929. }
  2930. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2931. if (total_errors > max_errors) {
  2932. btrfs_error(root->fs_info, -EIO,
  2933. "%d errors while writing supers", total_errors);
  2934. return -EIO;
  2935. }
  2936. return 0;
  2937. }
  2938. int write_ctree_super(struct btrfs_trans_handle *trans,
  2939. struct btrfs_root *root, int max_mirrors)
  2940. {
  2941. int ret;
  2942. ret = write_all_supers(root, max_mirrors);
  2943. return ret;
  2944. }
  2945. /* Drop a fs root from the radix tree and free it. */
  2946. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  2947. struct btrfs_root *root)
  2948. {
  2949. spin_lock(&fs_info->fs_roots_radix_lock);
  2950. radix_tree_delete(&fs_info->fs_roots_radix,
  2951. (unsigned long)root->root_key.objectid);
  2952. spin_unlock(&fs_info->fs_roots_radix_lock);
  2953. if (btrfs_root_refs(&root->root_item) == 0)
  2954. synchronize_srcu(&fs_info->subvol_srcu);
  2955. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2956. btrfs_free_log(NULL, root);
  2957. btrfs_free_log_root_tree(NULL, fs_info);
  2958. }
  2959. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2960. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2961. free_fs_root(root);
  2962. }
  2963. static void free_fs_root(struct btrfs_root *root)
  2964. {
  2965. iput(root->cache_inode);
  2966. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2967. if (root->anon_dev)
  2968. free_anon_bdev(root->anon_dev);
  2969. free_extent_buffer(root->node);
  2970. free_extent_buffer(root->commit_root);
  2971. kfree(root->free_ino_ctl);
  2972. kfree(root->free_ino_pinned);
  2973. kfree(root->name);
  2974. btrfs_put_fs_root(root);
  2975. }
  2976. void btrfs_free_fs_root(struct btrfs_root *root)
  2977. {
  2978. free_fs_root(root);
  2979. }
  2980. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2981. {
  2982. u64 root_objectid = 0;
  2983. struct btrfs_root *gang[8];
  2984. int i;
  2985. int ret;
  2986. while (1) {
  2987. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2988. (void **)gang, root_objectid,
  2989. ARRAY_SIZE(gang));
  2990. if (!ret)
  2991. break;
  2992. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2993. for (i = 0; i < ret; i++) {
  2994. int err;
  2995. root_objectid = gang[i]->root_key.objectid;
  2996. err = btrfs_orphan_cleanup(gang[i]);
  2997. if (err)
  2998. return err;
  2999. }
  3000. root_objectid++;
  3001. }
  3002. return 0;
  3003. }
  3004. int btrfs_commit_super(struct btrfs_root *root)
  3005. {
  3006. struct btrfs_trans_handle *trans;
  3007. int ret;
  3008. mutex_lock(&root->fs_info->cleaner_mutex);
  3009. btrfs_run_delayed_iputs(root);
  3010. mutex_unlock(&root->fs_info->cleaner_mutex);
  3011. wake_up_process(root->fs_info->cleaner_kthread);
  3012. /* wait until ongoing cleanup work done */
  3013. down_write(&root->fs_info->cleanup_work_sem);
  3014. up_write(&root->fs_info->cleanup_work_sem);
  3015. trans = btrfs_join_transaction(root);
  3016. if (IS_ERR(trans))
  3017. return PTR_ERR(trans);
  3018. ret = btrfs_commit_transaction(trans, root);
  3019. if (ret)
  3020. return ret;
  3021. /* run commit again to drop the original snapshot */
  3022. trans = btrfs_join_transaction(root);
  3023. if (IS_ERR(trans))
  3024. return PTR_ERR(trans);
  3025. ret = btrfs_commit_transaction(trans, root);
  3026. if (ret)
  3027. return ret;
  3028. ret = btrfs_write_and_wait_transaction(NULL, root);
  3029. if (ret) {
  3030. btrfs_error(root->fs_info, ret,
  3031. "Failed to sync btree inode to disk.");
  3032. return ret;
  3033. }
  3034. ret = write_ctree_super(NULL, root, 0);
  3035. return ret;
  3036. }
  3037. int close_ctree(struct btrfs_root *root)
  3038. {
  3039. struct btrfs_fs_info *fs_info = root->fs_info;
  3040. int ret;
  3041. fs_info->closing = 1;
  3042. smp_mb();
  3043. /* pause restriper - we want to resume on mount */
  3044. btrfs_pause_balance(fs_info);
  3045. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3046. btrfs_scrub_cancel(fs_info);
  3047. /* wait for any defraggers to finish */
  3048. wait_event(fs_info->transaction_wait,
  3049. (atomic_read(&fs_info->defrag_running) == 0));
  3050. /* clear out the rbtree of defraggable inodes */
  3051. btrfs_cleanup_defrag_inodes(fs_info);
  3052. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3053. ret = btrfs_commit_super(root);
  3054. if (ret)
  3055. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3056. }
  3057. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3058. btrfs_error_commit_super(root);
  3059. btrfs_put_block_group_cache(fs_info);
  3060. kthread_stop(fs_info->transaction_kthread);
  3061. kthread_stop(fs_info->cleaner_kthread);
  3062. fs_info->closing = 2;
  3063. smp_mb();
  3064. btrfs_free_qgroup_config(root->fs_info);
  3065. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3066. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3067. percpu_counter_sum(&fs_info->delalloc_bytes));
  3068. }
  3069. btrfs_free_block_groups(fs_info);
  3070. btrfs_stop_all_workers(fs_info);
  3071. del_fs_roots(fs_info);
  3072. free_root_pointers(fs_info, 1);
  3073. iput(fs_info->btree_inode);
  3074. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3075. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3076. btrfsic_unmount(root, fs_info->fs_devices);
  3077. #endif
  3078. btrfs_close_devices(fs_info->fs_devices);
  3079. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3080. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3081. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3082. bdi_destroy(&fs_info->bdi);
  3083. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3084. btrfs_free_stripe_hash_table(fs_info);
  3085. return 0;
  3086. }
  3087. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3088. int atomic)
  3089. {
  3090. int ret;
  3091. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3092. ret = extent_buffer_uptodate(buf);
  3093. if (!ret)
  3094. return ret;
  3095. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3096. parent_transid, atomic);
  3097. if (ret == -EAGAIN)
  3098. return ret;
  3099. return !ret;
  3100. }
  3101. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3102. {
  3103. return set_extent_buffer_uptodate(buf);
  3104. }
  3105. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3106. {
  3107. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3108. u64 transid = btrfs_header_generation(buf);
  3109. int was_dirty;
  3110. btrfs_assert_tree_locked(buf);
  3111. if (transid != root->fs_info->generation)
  3112. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3113. "found %llu running %llu\n",
  3114. (unsigned long long)buf->start,
  3115. (unsigned long long)transid,
  3116. (unsigned long long)root->fs_info->generation);
  3117. was_dirty = set_extent_buffer_dirty(buf);
  3118. if (!was_dirty)
  3119. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3120. buf->len,
  3121. root->fs_info->dirty_metadata_batch);
  3122. }
  3123. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3124. int flush_delayed)
  3125. {
  3126. /*
  3127. * looks as though older kernels can get into trouble with
  3128. * this code, they end up stuck in balance_dirty_pages forever
  3129. */
  3130. int ret;
  3131. if (current->flags & PF_MEMALLOC)
  3132. return;
  3133. if (flush_delayed)
  3134. btrfs_balance_delayed_items(root);
  3135. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3136. BTRFS_DIRTY_METADATA_THRESH);
  3137. if (ret > 0) {
  3138. balance_dirty_pages_ratelimited(
  3139. root->fs_info->btree_inode->i_mapping);
  3140. }
  3141. return;
  3142. }
  3143. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3144. {
  3145. __btrfs_btree_balance_dirty(root, 1);
  3146. }
  3147. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3148. {
  3149. __btrfs_btree_balance_dirty(root, 0);
  3150. }
  3151. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3152. {
  3153. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3154. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3155. }
  3156. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3157. int read_only)
  3158. {
  3159. /*
  3160. * Placeholder for checks
  3161. */
  3162. return 0;
  3163. }
  3164. static void btrfs_error_commit_super(struct btrfs_root *root)
  3165. {
  3166. mutex_lock(&root->fs_info->cleaner_mutex);
  3167. btrfs_run_delayed_iputs(root);
  3168. mutex_unlock(&root->fs_info->cleaner_mutex);
  3169. down_write(&root->fs_info->cleanup_work_sem);
  3170. up_write(&root->fs_info->cleanup_work_sem);
  3171. /* cleanup FS via transaction */
  3172. btrfs_cleanup_transaction(root);
  3173. }
  3174. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3175. struct btrfs_root *root)
  3176. {
  3177. struct btrfs_inode *btrfs_inode;
  3178. struct list_head splice;
  3179. INIT_LIST_HEAD(&splice);
  3180. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3181. spin_lock(&root->fs_info->ordered_extent_lock);
  3182. list_splice_init(&t->ordered_operations, &splice);
  3183. while (!list_empty(&splice)) {
  3184. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3185. ordered_operations);
  3186. list_del_init(&btrfs_inode->ordered_operations);
  3187. spin_unlock(&root->fs_info->ordered_extent_lock);
  3188. btrfs_invalidate_inodes(btrfs_inode->root);
  3189. spin_lock(&root->fs_info->ordered_extent_lock);
  3190. }
  3191. spin_unlock(&root->fs_info->ordered_extent_lock);
  3192. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3193. }
  3194. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3195. {
  3196. struct btrfs_ordered_extent *ordered;
  3197. spin_lock(&root->fs_info->ordered_extent_lock);
  3198. /*
  3199. * This will just short circuit the ordered completion stuff which will
  3200. * make sure the ordered extent gets properly cleaned up.
  3201. */
  3202. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3203. root_extent_list)
  3204. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3205. spin_unlock(&root->fs_info->ordered_extent_lock);
  3206. }
  3207. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3208. struct btrfs_root *root)
  3209. {
  3210. struct rb_node *node;
  3211. struct btrfs_delayed_ref_root *delayed_refs;
  3212. struct btrfs_delayed_ref_node *ref;
  3213. int ret = 0;
  3214. delayed_refs = &trans->delayed_refs;
  3215. spin_lock(&delayed_refs->lock);
  3216. if (delayed_refs->num_entries == 0) {
  3217. spin_unlock(&delayed_refs->lock);
  3218. printk(KERN_INFO "delayed_refs has NO entry\n");
  3219. return ret;
  3220. }
  3221. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3222. struct btrfs_delayed_ref_head *head = NULL;
  3223. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3224. atomic_set(&ref->refs, 1);
  3225. if (btrfs_delayed_ref_is_head(ref)) {
  3226. head = btrfs_delayed_node_to_head(ref);
  3227. if (!mutex_trylock(&head->mutex)) {
  3228. atomic_inc(&ref->refs);
  3229. spin_unlock(&delayed_refs->lock);
  3230. /* Need to wait for the delayed ref to run */
  3231. mutex_lock(&head->mutex);
  3232. mutex_unlock(&head->mutex);
  3233. btrfs_put_delayed_ref(ref);
  3234. spin_lock(&delayed_refs->lock);
  3235. continue;
  3236. }
  3237. if (head->must_insert_reserved)
  3238. btrfs_pin_extent(root, ref->bytenr,
  3239. ref->num_bytes, 1);
  3240. btrfs_free_delayed_extent_op(head->extent_op);
  3241. delayed_refs->num_heads--;
  3242. if (list_empty(&head->cluster))
  3243. delayed_refs->num_heads_ready--;
  3244. list_del_init(&head->cluster);
  3245. }
  3246. ref->in_tree = 0;
  3247. rb_erase(&ref->rb_node, &delayed_refs->root);
  3248. delayed_refs->num_entries--;
  3249. if (head)
  3250. mutex_unlock(&head->mutex);
  3251. spin_unlock(&delayed_refs->lock);
  3252. btrfs_put_delayed_ref(ref);
  3253. cond_resched();
  3254. spin_lock(&delayed_refs->lock);
  3255. }
  3256. spin_unlock(&delayed_refs->lock);
  3257. return ret;
  3258. }
  3259. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3260. {
  3261. struct btrfs_pending_snapshot *snapshot;
  3262. struct list_head splice;
  3263. INIT_LIST_HEAD(&splice);
  3264. list_splice_init(&t->pending_snapshots, &splice);
  3265. while (!list_empty(&splice)) {
  3266. snapshot = list_entry(splice.next,
  3267. struct btrfs_pending_snapshot,
  3268. list);
  3269. snapshot->error = -ECANCELED;
  3270. list_del_init(&snapshot->list);
  3271. }
  3272. }
  3273. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3274. {
  3275. struct btrfs_inode *btrfs_inode;
  3276. struct list_head splice;
  3277. INIT_LIST_HEAD(&splice);
  3278. spin_lock(&root->fs_info->delalloc_lock);
  3279. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3280. while (!list_empty(&splice)) {
  3281. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3282. delalloc_inodes);
  3283. list_del_init(&btrfs_inode->delalloc_inodes);
  3284. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3285. &btrfs_inode->runtime_flags);
  3286. spin_unlock(&root->fs_info->delalloc_lock);
  3287. btrfs_invalidate_inodes(btrfs_inode->root);
  3288. spin_lock(&root->fs_info->delalloc_lock);
  3289. }
  3290. spin_unlock(&root->fs_info->delalloc_lock);
  3291. }
  3292. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3293. struct extent_io_tree *dirty_pages,
  3294. int mark)
  3295. {
  3296. int ret;
  3297. struct extent_buffer *eb;
  3298. u64 start = 0;
  3299. u64 end;
  3300. while (1) {
  3301. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3302. mark, NULL);
  3303. if (ret)
  3304. break;
  3305. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3306. while (start <= end) {
  3307. eb = btrfs_find_tree_block(root, start,
  3308. root->leafsize);
  3309. start += root->leafsize;
  3310. if (!eb)
  3311. continue;
  3312. wait_on_extent_buffer_writeback(eb);
  3313. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3314. &eb->bflags))
  3315. clear_extent_buffer_dirty(eb);
  3316. free_extent_buffer_stale(eb);
  3317. }
  3318. }
  3319. return ret;
  3320. }
  3321. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3322. struct extent_io_tree *pinned_extents)
  3323. {
  3324. struct extent_io_tree *unpin;
  3325. u64 start;
  3326. u64 end;
  3327. int ret;
  3328. bool loop = true;
  3329. unpin = pinned_extents;
  3330. again:
  3331. while (1) {
  3332. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3333. EXTENT_DIRTY, NULL);
  3334. if (ret)
  3335. break;
  3336. /* opt_discard */
  3337. if (btrfs_test_opt(root, DISCARD))
  3338. ret = btrfs_error_discard_extent(root, start,
  3339. end + 1 - start,
  3340. NULL);
  3341. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3342. btrfs_error_unpin_extent_range(root, start, end);
  3343. cond_resched();
  3344. }
  3345. if (loop) {
  3346. if (unpin == &root->fs_info->freed_extents[0])
  3347. unpin = &root->fs_info->freed_extents[1];
  3348. else
  3349. unpin = &root->fs_info->freed_extents[0];
  3350. loop = false;
  3351. goto again;
  3352. }
  3353. return 0;
  3354. }
  3355. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3356. struct btrfs_root *root)
  3357. {
  3358. btrfs_destroy_delayed_refs(cur_trans, root);
  3359. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3360. cur_trans->dirty_pages.dirty_bytes);
  3361. /* FIXME: cleanup wait for commit */
  3362. cur_trans->in_commit = 1;
  3363. cur_trans->blocked = 1;
  3364. wake_up(&root->fs_info->transaction_blocked_wait);
  3365. btrfs_evict_pending_snapshots(cur_trans);
  3366. cur_trans->blocked = 0;
  3367. wake_up(&root->fs_info->transaction_wait);
  3368. cur_trans->commit_done = 1;
  3369. wake_up(&cur_trans->commit_wait);
  3370. btrfs_destroy_delayed_inodes(root);
  3371. btrfs_assert_delayed_root_empty(root);
  3372. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3373. EXTENT_DIRTY);
  3374. btrfs_destroy_pinned_extent(root,
  3375. root->fs_info->pinned_extents);
  3376. /*
  3377. memset(cur_trans, 0, sizeof(*cur_trans));
  3378. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3379. */
  3380. }
  3381. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3382. {
  3383. struct btrfs_transaction *t;
  3384. LIST_HEAD(list);
  3385. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3386. spin_lock(&root->fs_info->trans_lock);
  3387. list_splice_init(&root->fs_info->trans_list, &list);
  3388. root->fs_info->trans_no_join = 1;
  3389. spin_unlock(&root->fs_info->trans_lock);
  3390. while (!list_empty(&list)) {
  3391. t = list_entry(list.next, struct btrfs_transaction, list);
  3392. btrfs_destroy_ordered_operations(t, root);
  3393. btrfs_destroy_ordered_extents(root);
  3394. btrfs_destroy_delayed_refs(t, root);
  3395. /* FIXME: cleanup wait for commit */
  3396. t->in_commit = 1;
  3397. t->blocked = 1;
  3398. smp_mb();
  3399. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3400. wake_up(&root->fs_info->transaction_blocked_wait);
  3401. btrfs_evict_pending_snapshots(t);
  3402. t->blocked = 0;
  3403. smp_mb();
  3404. if (waitqueue_active(&root->fs_info->transaction_wait))
  3405. wake_up(&root->fs_info->transaction_wait);
  3406. t->commit_done = 1;
  3407. smp_mb();
  3408. if (waitqueue_active(&t->commit_wait))
  3409. wake_up(&t->commit_wait);
  3410. btrfs_destroy_delayed_inodes(root);
  3411. btrfs_assert_delayed_root_empty(root);
  3412. btrfs_destroy_delalloc_inodes(root);
  3413. spin_lock(&root->fs_info->trans_lock);
  3414. root->fs_info->running_transaction = NULL;
  3415. spin_unlock(&root->fs_info->trans_lock);
  3416. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3417. EXTENT_DIRTY);
  3418. btrfs_destroy_pinned_extent(root,
  3419. root->fs_info->pinned_extents);
  3420. atomic_set(&t->use_count, 0);
  3421. list_del_init(&t->list);
  3422. memset(t, 0, sizeof(*t));
  3423. kmem_cache_free(btrfs_transaction_cachep, t);
  3424. }
  3425. spin_lock(&root->fs_info->trans_lock);
  3426. root->fs_info->trans_no_join = 0;
  3427. spin_unlock(&root->fs_info->trans_lock);
  3428. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3429. return 0;
  3430. }
  3431. static struct extent_io_ops btree_extent_io_ops = {
  3432. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3433. .readpage_io_failed_hook = btree_io_failed_hook,
  3434. .submit_bio_hook = btree_submit_bio_hook,
  3435. /* note we're sharing with inode.c for the merge bio hook */
  3436. .merge_bio_hook = btrfs_merge_bio_hook,
  3437. };