sched.c 226 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_FAIR_GROUP_SCHED
  231. /* schedulable entities of this group on each cpu */
  232. struct sched_entity **se;
  233. /* runqueue "owned" by this group on each cpu */
  234. struct cfs_rq **cfs_rq;
  235. unsigned long shares;
  236. #endif
  237. #ifdef CONFIG_RT_GROUP_SCHED
  238. struct sched_rt_entity **rt_se;
  239. struct rt_rq **rt_rq;
  240. struct rt_bandwidth rt_bandwidth;
  241. #endif
  242. struct rcu_head rcu;
  243. struct list_head list;
  244. struct task_group *parent;
  245. struct list_head siblings;
  246. struct list_head children;
  247. };
  248. #ifdef CONFIG_USER_SCHED
  249. /*
  250. * Root task group.
  251. * Every UID task group (including init_task_group aka UID-0) will
  252. * be a child to this group.
  253. */
  254. struct task_group root_task_group;
  255. #ifdef CONFIG_FAIR_GROUP_SCHED
  256. /* Default task group's sched entity on each cpu */
  257. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  258. /* Default task group's cfs_rq on each cpu */
  259. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  260. #endif /* CONFIG_FAIR_GROUP_SCHED */
  261. #ifdef CONFIG_RT_GROUP_SCHED
  262. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  263. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  264. #endif /* CONFIG_RT_GROUP_SCHED */
  265. #else /* !CONFIG_USER_SCHED */
  266. #define root_task_group init_task_group
  267. #endif /* CONFIG_USER_SCHED */
  268. /* task_group_lock serializes add/remove of task groups and also changes to
  269. * a task group's cpu shares.
  270. */
  271. static DEFINE_SPINLOCK(task_group_lock);
  272. #ifdef CONFIG_FAIR_GROUP_SCHED
  273. #ifdef CONFIG_USER_SCHED
  274. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  275. #else /* !CONFIG_USER_SCHED */
  276. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  277. #endif /* CONFIG_USER_SCHED */
  278. /*
  279. * A weight of 0 or 1 can cause arithmetics problems.
  280. * A weight of a cfs_rq is the sum of weights of which entities
  281. * are queued on this cfs_rq, so a weight of a entity should not be
  282. * too large, so as the shares value of a task group.
  283. * (The default weight is 1024 - so there's no practical
  284. * limitation from this.)
  285. */
  286. #define MIN_SHARES 2
  287. #define MAX_SHARES (1UL << 18)
  288. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  289. #endif
  290. /* Default task group.
  291. * Every task in system belong to this group at bootup.
  292. */
  293. struct task_group init_task_group;
  294. /* return group to which a task belongs */
  295. static inline struct task_group *task_group(struct task_struct *p)
  296. {
  297. struct task_group *tg;
  298. #ifdef CONFIG_USER_SCHED
  299. rcu_read_lock();
  300. tg = __task_cred(p)->user->tg;
  301. rcu_read_unlock();
  302. #elif defined(CONFIG_CGROUP_SCHED)
  303. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  304. struct task_group, css);
  305. #else
  306. tg = &init_task_group;
  307. #endif
  308. return tg;
  309. }
  310. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  311. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  312. {
  313. #ifdef CONFIG_FAIR_GROUP_SCHED
  314. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  315. p->se.parent = task_group(p)->se[cpu];
  316. #endif
  317. #ifdef CONFIG_RT_GROUP_SCHED
  318. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  319. p->rt.parent = task_group(p)->rt_se[cpu];
  320. #endif
  321. }
  322. #else
  323. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  324. static inline struct task_group *task_group(struct task_struct *p)
  325. {
  326. return NULL;
  327. }
  328. #endif /* CONFIG_GROUP_SCHED */
  329. /* CFS-related fields in a runqueue */
  330. struct cfs_rq {
  331. struct load_weight load;
  332. unsigned long nr_running;
  333. u64 exec_clock;
  334. u64 min_vruntime;
  335. struct rb_root tasks_timeline;
  336. struct rb_node *rb_leftmost;
  337. struct list_head tasks;
  338. struct list_head *balance_iterator;
  339. /*
  340. * 'curr' points to currently running entity on this cfs_rq.
  341. * It is set to NULL otherwise (i.e when none are currently running).
  342. */
  343. struct sched_entity *curr, *next, *last;
  344. unsigned int nr_spread_over;
  345. #ifdef CONFIG_FAIR_GROUP_SCHED
  346. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  347. /*
  348. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  349. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  350. * (like users, containers etc.)
  351. *
  352. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  353. * list is used during load balance.
  354. */
  355. struct list_head leaf_cfs_rq_list;
  356. struct task_group *tg; /* group that "owns" this runqueue */
  357. #ifdef CONFIG_SMP
  358. /*
  359. * the part of load.weight contributed by tasks
  360. */
  361. unsigned long task_weight;
  362. /*
  363. * h_load = weight * f(tg)
  364. *
  365. * Where f(tg) is the recursive weight fraction assigned to
  366. * this group.
  367. */
  368. unsigned long h_load;
  369. /*
  370. * this cpu's part of tg->shares
  371. */
  372. unsigned long shares;
  373. /*
  374. * load.weight at the time we set shares
  375. */
  376. unsigned long rq_weight;
  377. #endif
  378. #endif
  379. };
  380. /* Real-Time classes' related field in a runqueue: */
  381. struct rt_rq {
  382. struct rt_prio_array active;
  383. unsigned long rt_nr_running;
  384. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  385. int highest_prio; /* highest queued rt task prio */
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. int overloaded;
  390. #endif
  391. int rt_throttled;
  392. u64 rt_time;
  393. u64 rt_runtime;
  394. /* Nests inside the rq lock: */
  395. spinlock_t rt_runtime_lock;
  396. #ifdef CONFIG_RT_GROUP_SCHED
  397. unsigned long rt_nr_boosted;
  398. struct rq *rq;
  399. struct list_head leaf_rt_rq_list;
  400. struct task_group *tg;
  401. struct sched_rt_entity *rt_se;
  402. #endif
  403. };
  404. #ifdef CONFIG_SMP
  405. /*
  406. * We add the notion of a root-domain which will be used to define per-domain
  407. * variables. Each exclusive cpuset essentially defines an island domain by
  408. * fully partitioning the member cpus from any other cpuset. Whenever a new
  409. * exclusive cpuset is created, we also create and attach a new root-domain
  410. * object.
  411. *
  412. */
  413. struct root_domain {
  414. atomic_t refcount;
  415. cpumask_t span;
  416. cpumask_t online;
  417. /*
  418. * The "RT overload" flag: it gets set if a CPU has more than
  419. * one runnable RT task.
  420. */
  421. cpumask_t rto_mask;
  422. atomic_t rto_count;
  423. #ifdef CONFIG_SMP
  424. struct cpupri cpupri;
  425. #endif
  426. };
  427. /*
  428. * By default the system creates a single root-domain with all cpus as
  429. * members (mimicking the global state we have today).
  430. */
  431. static struct root_domain def_root_domain;
  432. #endif
  433. /*
  434. * This is the main, per-CPU runqueue data structure.
  435. *
  436. * Locking rule: those places that want to lock multiple runqueues
  437. * (such as the load balancing or the thread migration code), lock
  438. * acquire operations must be ordered by ascending &runqueue.
  439. */
  440. struct rq {
  441. /* runqueue lock: */
  442. spinlock_t lock;
  443. /*
  444. * nr_running and cpu_load should be in the same cacheline because
  445. * remote CPUs use both these fields when doing load calculation.
  446. */
  447. unsigned long nr_running;
  448. #define CPU_LOAD_IDX_MAX 5
  449. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  450. unsigned char idle_at_tick;
  451. #ifdef CONFIG_NO_HZ
  452. unsigned long last_tick_seen;
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. /* For active balancing */
  484. int active_balance;
  485. int push_cpu;
  486. /* cpu of this runqueue: */
  487. int cpu;
  488. int online;
  489. unsigned long avg_load_per_task;
  490. struct task_struct *migration_thread;
  491. struct list_head migration_queue;
  492. #endif
  493. #ifdef CONFIG_SCHED_HRTICK
  494. #ifdef CONFIG_SMP
  495. int hrtick_csd_pending;
  496. struct call_single_data hrtick_csd;
  497. #endif
  498. struct hrtimer hrtick_timer;
  499. #endif
  500. #ifdef CONFIG_SCHEDSTATS
  501. /* latency stats */
  502. struct sched_info rq_sched_info;
  503. /* sys_sched_yield() stats */
  504. unsigned int yld_exp_empty;
  505. unsigned int yld_act_empty;
  506. unsigned int yld_both_empty;
  507. unsigned int yld_count;
  508. /* schedule() stats */
  509. unsigned int sched_switch;
  510. unsigned int sched_count;
  511. unsigned int sched_goidle;
  512. /* try_to_wake_up() stats */
  513. unsigned int ttwu_count;
  514. unsigned int ttwu_local;
  515. /* BKL stats */
  516. unsigned int bkl_count;
  517. #endif
  518. };
  519. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  520. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  521. {
  522. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  523. }
  524. static inline int cpu_of(struct rq *rq)
  525. {
  526. #ifdef CONFIG_SMP
  527. return rq->cpu;
  528. #else
  529. return 0;
  530. #endif
  531. }
  532. /*
  533. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  534. * See detach_destroy_domains: synchronize_sched for details.
  535. *
  536. * The domain tree of any CPU may only be accessed from within
  537. * preempt-disabled sections.
  538. */
  539. #define for_each_domain(cpu, __sd) \
  540. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  541. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  542. #define this_rq() (&__get_cpu_var(runqueues))
  543. #define task_rq(p) cpu_rq(task_cpu(p))
  544. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  545. static inline void update_rq_clock(struct rq *rq)
  546. {
  547. rq->clock = sched_clock_cpu(cpu_of(rq));
  548. }
  549. /*
  550. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  551. */
  552. #ifdef CONFIG_SCHED_DEBUG
  553. # define const_debug __read_mostly
  554. #else
  555. # define const_debug static const
  556. #endif
  557. /**
  558. * runqueue_is_locked
  559. *
  560. * Returns true if the current cpu runqueue is locked.
  561. * This interface allows printk to be called with the runqueue lock
  562. * held and know whether or not it is OK to wake up the klogd.
  563. */
  564. int runqueue_is_locked(void)
  565. {
  566. int cpu = get_cpu();
  567. struct rq *rq = cpu_rq(cpu);
  568. int ret;
  569. ret = spin_is_locked(&rq->lock);
  570. put_cpu();
  571. return ret;
  572. }
  573. /*
  574. * Debugging: various feature bits
  575. */
  576. #define SCHED_FEAT(name, enabled) \
  577. __SCHED_FEAT_##name ,
  578. enum {
  579. #include "sched_features.h"
  580. };
  581. #undef SCHED_FEAT
  582. #define SCHED_FEAT(name, enabled) \
  583. (1UL << __SCHED_FEAT_##name) * enabled |
  584. const_debug unsigned int sysctl_sched_features =
  585. #include "sched_features.h"
  586. 0;
  587. #undef SCHED_FEAT
  588. #ifdef CONFIG_SCHED_DEBUG
  589. #define SCHED_FEAT(name, enabled) \
  590. #name ,
  591. static __read_mostly char *sched_feat_names[] = {
  592. #include "sched_features.h"
  593. NULL
  594. };
  595. #undef SCHED_FEAT
  596. static int sched_feat_open(struct inode *inode, struct file *filp)
  597. {
  598. filp->private_data = inode->i_private;
  599. return 0;
  600. }
  601. static ssize_t
  602. sched_feat_read(struct file *filp, char __user *ubuf,
  603. size_t cnt, loff_t *ppos)
  604. {
  605. char *buf;
  606. int r = 0;
  607. int len = 0;
  608. int i;
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. len += strlen(sched_feat_names[i]);
  611. len += 4;
  612. }
  613. buf = kmalloc(len + 2, GFP_KERNEL);
  614. if (!buf)
  615. return -ENOMEM;
  616. for (i = 0; sched_feat_names[i]; i++) {
  617. if (sysctl_sched_features & (1UL << i))
  618. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  619. else
  620. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  621. }
  622. r += sprintf(buf + r, "\n");
  623. WARN_ON(r >= len + 2);
  624. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  625. kfree(buf);
  626. return r;
  627. }
  628. static ssize_t
  629. sched_feat_write(struct file *filp, const char __user *ubuf,
  630. size_t cnt, loff_t *ppos)
  631. {
  632. char buf[64];
  633. char *cmp = buf;
  634. int neg = 0;
  635. int i;
  636. if (cnt > 63)
  637. cnt = 63;
  638. if (copy_from_user(&buf, ubuf, cnt))
  639. return -EFAULT;
  640. buf[cnt] = 0;
  641. if (strncmp(buf, "NO_", 3) == 0) {
  642. neg = 1;
  643. cmp += 3;
  644. }
  645. for (i = 0; sched_feat_names[i]; i++) {
  646. int len = strlen(sched_feat_names[i]);
  647. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  648. if (neg)
  649. sysctl_sched_features &= ~(1UL << i);
  650. else
  651. sysctl_sched_features |= (1UL << i);
  652. break;
  653. }
  654. }
  655. if (!sched_feat_names[i])
  656. return -EINVAL;
  657. filp->f_pos += cnt;
  658. return cnt;
  659. }
  660. static struct file_operations sched_feat_fops = {
  661. .open = sched_feat_open,
  662. .read = sched_feat_read,
  663. .write = sched_feat_write,
  664. };
  665. static __init int sched_init_debug(void)
  666. {
  667. debugfs_create_file("sched_features", 0644, NULL, NULL,
  668. &sched_feat_fops);
  669. return 0;
  670. }
  671. late_initcall(sched_init_debug);
  672. #endif
  673. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  674. /*
  675. * Number of tasks to iterate in a single balance run.
  676. * Limited because this is done with IRQs disabled.
  677. */
  678. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  679. /*
  680. * ratelimit for updating the group shares.
  681. * default: 0.25ms
  682. */
  683. unsigned int sysctl_sched_shares_ratelimit = 250000;
  684. /*
  685. * Inject some fuzzyness into changing the per-cpu group shares
  686. * this avoids remote rq-locks at the expense of fairness.
  687. * default: 4
  688. */
  689. unsigned int sysctl_sched_shares_thresh = 4;
  690. /*
  691. * period over which we measure -rt task cpu usage in us.
  692. * default: 1s
  693. */
  694. unsigned int sysctl_sched_rt_period = 1000000;
  695. static __read_mostly int scheduler_running;
  696. /*
  697. * part of the period that we allow rt tasks to run in us.
  698. * default: 0.95s
  699. */
  700. int sysctl_sched_rt_runtime = 950000;
  701. static inline u64 global_rt_period(void)
  702. {
  703. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  704. }
  705. static inline u64 global_rt_runtime(void)
  706. {
  707. if (sysctl_sched_rt_runtime < 0)
  708. return RUNTIME_INF;
  709. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  710. }
  711. #ifndef prepare_arch_switch
  712. # define prepare_arch_switch(next) do { } while (0)
  713. #endif
  714. #ifndef finish_arch_switch
  715. # define finish_arch_switch(prev) do { } while (0)
  716. #endif
  717. static inline int task_current(struct rq *rq, struct task_struct *p)
  718. {
  719. return rq->curr == p;
  720. }
  721. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  722. static inline int task_running(struct rq *rq, struct task_struct *p)
  723. {
  724. return task_current(rq, p);
  725. }
  726. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  727. {
  728. }
  729. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  730. {
  731. #ifdef CONFIG_DEBUG_SPINLOCK
  732. /* this is a valid case when another task releases the spinlock */
  733. rq->lock.owner = current;
  734. #endif
  735. /*
  736. * If we are tracking spinlock dependencies then we have to
  737. * fix up the runqueue lock - which gets 'carried over' from
  738. * prev into current:
  739. */
  740. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  741. spin_unlock_irq(&rq->lock);
  742. }
  743. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  744. static inline int task_running(struct rq *rq, struct task_struct *p)
  745. {
  746. #ifdef CONFIG_SMP
  747. return p->oncpu;
  748. #else
  749. return task_current(rq, p);
  750. #endif
  751. }
  752. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  753. {
  754. #ifdef CONFIG_SMP
  755. /*
  756. * We can optimise this out completely for !SMP, because the
  757. * SMP rebalancing from interrupt is the only thing that cares
  758. * here.
  759. */
  760. next->oncpu = 1;
  761. #endif
  762. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. spin_unlock_irq(&rq->lock);
  764. #else
  765. spin_unlock(&rq->lock);
  766. #endif
  767. }
  768. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  769. {
  770. #ifdef CONFIG_SMP
  771. /*
  772. * After ->oncpu is cleared, the task can be moved to a different CPU.
  773. * We must ensure this doesn't happen until the switch is completely
  774. * finished.
  775. */
  776. smp_wmb();
  777. prev->oncpu = 0;
  778. #endif
  779. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  780. local_irq_enable();
  781. #endif
  782. }
  783. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  784. /*
  785. * __task_rq_lock - lock the runqueue a given task resides on.
  786. * Must be called interrupts disabled.
  787. */
  788. static inline struct rq *__task_rq_lock(struct task_struct *p)
  789. __acquires(rq->lock)
  790. {
  791. for (;;) {
  792. struct rq *rq = task_rq(p);
  793. spin_lock(&rq->lock);
  794. if (likely(rq == task_rq(p)))
  795. return rq;
  796. spin_unlock(&rq->lock);
  797. }
  798. }
  799. /*
  800. * task_rq_lock - lock the runqueue a given task resides on and disable
  801. * interrupts. Note the ordering: we can safely lookup the task_rq without
  802. * explicitly disabling preemption.
  803. */
  804. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  805. __acquires(rq->lock)
  806. {
  807. struct rq *rq;
  808. for (;;) {
  809. local_irq_save(*flags);
  810. rq = task_rq(p);
  811. spin_lock(&rq->lock);
  812. if (likely(rq == task_rq(p)))
  813. return rq;
  814. spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. }
  817. void task_rq_unlock_wait(struct task_struct *p)
  818. {
  819. struct rq *rq = task_rq(p);
  820. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  821. spin_unlock_wait(&rq->lock);
  822. }
  823. static void __task_rq_unlock(struct rq *rq)
  824. __releases(rq->lock)
  825. {
  826. spin_unlock(&rq->lock);
  827. }
  828. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  829. __releases(rq->lock)
  830. {
  831. spin_unlock_irqrestore(&rq->lock, *flags);
  832. }
  833. /*
  834. * this_rq_lock - lock this runqueue and disable interrupts.
  835. */
  836. static struct rq *this_rq_lock(void)
  837. __acquires(rq->lock)
  838. {
  839. struct rq *rq;
  840. local_irq_disable();
  841. rq = this_rq();
  842. spin_lock(&rq->lock);
  843. return rq;
  844. }
  845. #ifdef CONFIG_SCHED_HRTICK
  846. /*
  847. * Use HR-timers to deliver accurate preemption points.
  848. *
  849. * Its all a bit involved since we cannot program an hrt while holding the
  850. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  851. * reschedule event.
  852. *
  853. * When we get rescheduled we reprogram the hrtick_timer outside of the
  854. * rq->lock.
  855. */
  856. /*
  857. * Use hrtick when:
  858. * - enabled by features
  859. * - hrtimer is actually high res
  860. */
  861. static inline int hrtick_enabled(struct rq *rq)
  862. {
  863. if (!sched_feat(HRTICK))
  864. return 0;
  865. if (!cpu_active(cpu_of(rq)))
  866. return 0;
  867. return hrtimer_is_hres_active(&rq->hrtick_timer);
  868. }
  869. static void hrtick_clear(struct rq *rq)
  870. {
  871. if (hrtimer_active(&rq->hrtick_timer))
  872. hrtimer_cancel(&rq->hrtick_timer);
  873. }
  874. /*
  875. * High-resolution timer tick.
  876. * Runs from hardirq context with interrupts disabled.
  877. */
  878. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  879. {
  880. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  881. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  882. spin_lock(&rq->lock);
  883. update_rq_clock(rq);
  884. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  885. spin_unlock(&rq->lock);
  886. return HRTIMER_NORESTART;
  887. }
  888. #ifdef CONFIG_SMP
  889. /*
  890. * called from hardirq (IPI) context
  891. */
  892. static void __hrtick_start(void *arg)
  893. {
  894. struct rq *rq = arg;
  895. spin_lock(&rq->lock);
  896. hrtimer_restart(&rq->hrtick_timer);
  897. rq->hrtick_csd_pending = 0;
  898. spin_unlock(&rq->lock);
  899. }
  900. /*
  901. * Called to set the hrtick timer state.
  902. *
  903. * called with rq->lock held and irqs disabled
  904. */
  905. static void hrtick_start(struct rq *rq, u64 delay)
  906. {
  907. struct hrtimer *timer = &rq->hrtick_timer;
  908. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  909. hrtimer_set_expires(timer, time);
  910. if (rq == this_rq()) {
  911. hrtimer_restart(timer);
  912. } else if (!rq->hrtick_csd_pending) {
  913. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  914. rq->hrtick_csd_pending = 1;
  915. }
  916. }
  917. static int
  918. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  919. {
  920. int cpu = (int)(long)hcpu;
  921. switch (action) {
  922. case CPU_UP_CANCELED:
  923. case CPU_UP_CANCELED_FROZEN:
  924. case CPU_DOWN_PREPARE:
  925. case CPU_DOWN_PREPARE_FROZEN:
  926. case CPU_DEAD:
  927. case CPU_DEAD_FROZEN:
  928. hrtick_clear(cpu_rq(cpu));
  929. return NOTIFY_OK;
  930. }
  931. return NOTIFY_DONE;
  932. }
  933. static __init void init_hrtick(void)
  934. {
  935. hotcpu_notifier(hotplug_hrtick, 0);
  936. }
  937. #else
  938. /*
  939. * Called to set the hrtick timer state.
  940. *
  941. * called with rq->lock held and irqs disabled
  942. */
  943. static void hrtick_start(struct rq *rq, u64 delay)
  944. {
  945. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  962. }
  963. #else /* CONFIG_SCHED_HRTICK */
  964. static inline void hrtick_clear(struct rq *rq)
  965. {
  966. }
  967. static inline void init_rq_hrtick(struct rq *rq)
  968. {
  969. }
  970. static inline void init_hrtick(void)
  971. {
  972. }
  973. #endif /* CONFIG_SCHED_HRTICK */
  974. /*
  975. * resched_task - mark a task 'to be rescheduled now'.
  976. *
  977. * On UP this means the setting of the need_resched flag, on SMP it
  978. * might also involve a cross-CPU call to trigger the scheduler on
  979. * the target CPU.
  980. */
  981. #ifdef CONFIG_SMP
  982. #ifndef tsk_is_polling
  983. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  984. #endif
  985. static void resched_task(struct task_struct *p)
  986. {
  987. int cpu;
  988. assert_spin_locked(&task_rq(p)->lock);
  989. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  990. return;
  991. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  992. cpu = task_cpu(p);
  993. if (cpu == smp_processor_id())
  994. return;
  995. /* NEED_RESCHED must be visible before we test polling */
  996. smp_mb();
  997. if (!tsk_is_polling(p))
  998. smp_send_reschedule(cpu);
  999. }
  1000. static void resched_cpu(int cpu)
  1001. {
  1002. struct rq *rq = cpu_rq(cpu);
  1003. unsigned long flags;
  1004. if (!spin_trylock_irqsave(&rq->lock, flags))
  1005. return;
  1006. resched_task(cpu_curr(cpu));
  1007. spin_unlock_irqrestore(&rq->lock, flags);
  1008. }
  1009. #ifdef CONFIG_NO_HZ
  1010. /*
  1011. * When add_timer_on() enqueues a timer into the timer wheel of an
  1012. * idle CPU then this timer might expire before the next timer event
  1013. * which is scheduled to wake up that CPU. In case of a completely
  1014. * idle system the next event might even be infinite time into the
  1015. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1016. * leaves the inner idle loop so the newly added timer is taken into
  1017. * account when the CPU goes back to idle and evaluates the timer
  1018. * wheel for the next timer event.
  1019. */
  1020. void wake_up_idle_cpu(int cpu)
  1021. {
  1022. struct rq *rq = cpu_rq(cpu);
  1023. if (cpu == smp_processor_id())
  1024. return;
  1025. /*
  1026. * This is safe, as this function is called with the timer
  1027. * wheel base lock of (cpu) held. When the CPU is on the way
  1028. * to idle and has not yet set rq->curr to idle then it will
  1029. * be serialized on the timer wheel base lock and take the new
  1030. * timer into account automatically.
  1031. */
  1032. if (rq->curr != rq->idle)
  1033. return;
  1034. /*
  1035. * We can set TIF_RESCHED on the idle task of the other CPU
  1036. * lockless. The worst case is that the other CPU runs the
  1037. * idle task through an additional NOOP schedule()
  1038. */
  1039. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1040. /* NEED_RESCHED must be visible before we test polling */
  1041. smp_mb();
  1042. if (!tsk_is_polling(rq->idle))
  1043. smp_send_reschedule(cpu);
  1044. }
  1045. #endif /* CONFIG_NO_HZ */
  1046. #else /* !CONFIG_SMP */
  1047. static void resched_task(struct task_struct *p)
  1048. {
  1049. assert_spin_locked(&task_rq(p)->lock);
  1050. set_tsk_need_resched(p);
  1051. }
  1052. #endif /* CONFIG_SMP */
  1053. #if BITS_PER_LONG == 32
  1054. # define WMULT_CONST (~0UL)
  1055. #else
  1056. # define WMULT_CONST (1UL << 32)
  1057. #endif
  1058. #define WMULT_SHIFT 32
  1059. /*
  1060. * Shift right and round:
  1061. */
  1062. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1063. /*
  1064. * delta *= weight / lw
  1065. */
  1066. static unsigned long
  1067. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1068. struct load_weight *lw)
  1069. {
  1070. u64 tmp;
  1071. if (!lw->inv_weight) {
  1072. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1073. lw->inv_weight = 1;
  1074. else
  1075. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1076. / (lw->weight+1);
  1077. }
  1078. tmp = (u64)delta_exec * weight;
  1079. /*
  1080. * Check whether we'd overflow the 64-bit multiplication:
  1081. */
  1082. if (unlikely(tmp > WMULT_CONST))
  1083. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1084. WMULT_SHIFT/2);
  1085. else
  1086. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1087. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1088. }
  1089. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1090. {
  1091. lw->weight += inc;
  1092. lw->inv_weight = 0;
  1093. }
  1094. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1095. {
  1096. lw->weight -= dec;
  1097. lw->inv_weight = 0;
  1098. }
  1099. /*
  1100. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1101. * of tasks with abnormal "nice" values across CPUs the contribution that
  1102. * each task makes to its run queue's load is weighted according to its
  1103. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1104. * scaled version of the new time slice allocation that they receive on time
  1105. * slice expiry etc.
  1106. */
  1107. #define WEIGHT_IDLEPRIO 2
  1108. #define WMULT_IDLEPRIO (1 << 31)
  1109. /*
  1110. * Nice levels are multiplicative, with a gentle 10% change for every
  1111. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1112. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1113. * that remained on nice 0.
  1114. *
  1115. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1116. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1117. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1118. * If a task goes up by ~10% and another task goes down by ~10% then
  1119. * the relative distance between them is ~25%.)
  1120. */
  1121. static const int prio_to_weight[40] = {
  1122. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1123. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1124. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1125. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1126. /* 0 */ 1024, 820, 655, 526, 423,
  1127. /* 5 */ 335, 272, 215, 172, 137,
  1128. /* 10 */ 110, 87, 70, 56, 45,
  1129. /* 15 */ 36, 29, 23, 18, 15,
  1130. };
  1131. /*
  1132. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1133. *
  1134. * In cases where the weight does not change often, we can use the
  1135. * precalculated inverse to speed up arithmetics by turning divisions
  1136. * into multiplications:
  1137. */
  1138. static const u32 prio_to_wmult[40] = {
  1139. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1140. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1141. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1142. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1143. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1144. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1145. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1146. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1147. };
  1148. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1149. /*
  1150. * runqueue iterator, to support SMP load-balancing between different
  1151. * scheduling classes, without having to expose their internal data
  1152. * structures to the load-balancing proper:
  1153. */
  1154. struct rq_iterator {
  1155. void *arg;
  1156. struct task_struct *(*start)(void *);
  1157. struct task_struct *(*next)(void *);
  1158. };
  1159. #ifdef CONFIG_SMP
  1160. static unsigned long
  1161. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1162. unsigned long max_load_move, struct sched_domain *sd,
  1163. enum cpu_idle_type idle, int *all_pinned,
  1164. int *this_best_prio, struct rq_iterator *iterator);
  1165. static int
  1166. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1167. struct sched_domain *sd, enum cpu_idle_type idle,
  1168. struct rq_iterator *iterator);
  1169. #endif
  1170. #ifdef CONFIG_CGROUP_CPUACCT
  1171. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1172. #else
  1173. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1174. #endif
  1175. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1176. {
  1177. update_load_add(&rq->load, load);
  1178. }
  1179. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1180. {
  1181. update_load_sub(&rq->load, load);
  1182. }
  1183. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1184. typedef int (*tg_visitor)(struct task_group *, void *);
  1185. /*
  1186. * Iterate the full tree, calling @down when first entering a node and @up when
  1187. * leaving it for the final time.
  1188. */
  1189. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1190. {
  1191. struct task_group *parent, *child;
  1192. int ret;
  1193. rcu_read_lock();
  1194. parent = &root_task_group;
  1195. down:
  1196. ret = (*down)(parent, data);
  1197. if (ret)
  1198. goto out_unlock;
  1199. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1200. parent = child;
  1201. goto down;
  1202. up:
  1203. continue;
  1204. }
  1205. ret = (*up)(parent, data);
  1206. if (ret)
  1207. goto out_unlock;
  1208. child = parent;
  1209. parent = parent->parent;
  1210. if (parent)
  1211. goto up;
  1212. out_unlock:
  1213. rcu_read_unlock();
  1214. return ret;
  1215. }
  1216. static int tg_nop(struct task_group *tg, void *data)
  1217. {
  1218. return 0;
  1219. }
  1220. #endif
  1221. #ifdef CONFIG_SMP
  1222. static unsigned long source_load(int cpu, int type);
  1223. static unsigned long target_load(int cpu, int type);
  1224. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1225. static unsigned long cpu_avg_load_per_task(int cpu)
  1226. {
  1227. struct rq *rq = cpu_rq(cpu);
  1228. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1229. if (nr_running)
  1230. rq->avg_load_per_task = rq->load.weight / nr_running;
  1231. else
  1232. rq->avg_load_per_task = 0;
  1233. return rq->avg_load_per_task;
  1234. }
  1235. #ifdef CONFIG_FAIR_GROUP_SCHED
  1236. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1237. /*
  1238. * Calculate and set the cpu's group shares.
  1239. */
  1240. static void
  1241. update_group_shares_cpu(struct task_group *tg, int cpu,
  1242. unsigned long sd_shares, unsigned long sd_rq_weight)
  1243. {
  1244. int boost = 0;
  1245. unsigned long shares;
  1246. unsigned long rq_weight;
  1247. if (!tg->se[cpu])
  1248. return;
  1249. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1250. /*
  1251. * If there are currently no tasks on the cpu pretend there is one of
  1252. * average load so that when a new task gets to run here it will not
  1253. * get delayed by group starvation.
  1254. */
  1255. if (!rq_weight) {
  1256. boost = 1;
  1257. rq_weight = NICE_0_LOAD;
  1258. }
  1259. if (unlikely(rq_weight > sd_rq_weight))
  1260. rq_weight = sd_rq_weight;
  1261. /*
  1262. * \Sum shares * rq_weight
  1263. * shares = -----------------------
  1264. * \Sum rq_weight
  1265. *
  1266. */
  1267. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1268. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1269. if (abs(shares - tg->se[cpu]->load.weight) >
  1270. sysctl_sched_shares_thresh) {
  1271. struct rq *rq = cpu_rq(cpu);
  1272. unsigned long flags;
  1273. spin_lock_irqsave(&rq->lock, flags);
  1274. /*
  1275. * record the actual number of shares, not the boosted amount.
  1276. */
  1277. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1278. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1279. __set_se_shares(tg->se[cpu], shares);
  1280. spin_unlock_irqrestore(&rq->lock, flags);
  1281. }
  1282. }
  1283. /*
  1284. * Re-compute the task group their per cpu shares over the given domain.
  1285. * This needs to be done in a bottom-up fashion because the rq weight of a
  1286. * parent group depends on the shares of its child groups.
  1287. */
  1288. static int tg_shares_up(struct task_group *tg, void *data)
  1289. {
  1290. unsigned long rq_weight = 0;
  1291. unsigned long shares = 0;
  1292. struct sched_domain *sd = data;
  1293. int i;
  1294. for_each_cpu_mask(i, sd->span) {
  1295. rq_weight += tg->cfs_rq[i]->load.weight;
  1296. shares += tg->cfs_rq[i]->shares;
  1297. }
  1298. if ((!shares && rq_weight) || shares > tg->shares)
  1299. shares = tg->shares;
  1300. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1301. shares = tg->shares;
  1302. if (!rq_weight)
  1303. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1304. for_each_cpu_mask(i, sd->span)
  1305. update_group_shares_cpu(tg, i, shares, rq_weight);
  1306. return 0;
  1307. }
  1308. /*
  1309. * Compute the cpu's hierarchical load factor for each task group.
  1310. * This needs to be done in a top-down fashion because the load of a child
  1311. * group is a fraction of its parents load.
  1312. */
  1313. static int tg_load_down(struct task_group *tg, void *data)
  1314. {
  1315. unsigned long load;
  1316. long cpu = (long)data;
  1317. if (!tg->parent) {
  1318. load = cpu_rq(cpu)->load.weight;
  1319. } else {
  1320. load = tg->parent->cfs_rq[cpu]->h_load;
  1321. load *= tg->cfs_rq[cpu]->shares;
  1322. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1323. }
  1324. tg->cfs_rq[cpu]->h_load = load;
  1325. return 0;
  1326. }
  1327. static void update_shares(struct sched_domain *sd)
  1328. {
  1329. u64 now = cpu_clock(raw_smp_processor_id());
  1330. s64 elapsed = now - sd->last_update;
  1331. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1332. sd->last_update = now;
  1333. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1334. }
  1335. }
  1336. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1337. {
  1338. spin_unlock(&rq->lock);
  1339. update_shares(sd);
  1340. spin_lock(&rq->lock);
  1341. }
  1342. static void update_h_load(long cpu)
  1343. {
  1344. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1345. }
  1346. #else
  1347. static inline void update_shares(struct sched_domain *sd)
  1348. {
  1349. }
  1350. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1351. {
  1352. }
  1353. #endif
  1354. #endif
  1355. #ifdef CONFIG_FAIR_GROUP_SCHED
  1356. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1357. {
  1358. #ifdef CONFIG_SMP
  1359. cfs_rq->shares = shares;
  1360. #endif
  1361. }
  1362. #endif
  1363. #include "sched_stats.h"
  1364. #include "sched_idletask.c"
  1365. #include "sched_fair.c"
  1366. #include "sched_rt.c"
  1367. #ifdef CONFIG_SCHED_DEBUG
  1368. # include "sched_debug.c"
  1369. #endif
  1370. #define sched_class_highest (&rt_sched_class)
  1371. #define for_each_class(class) \
  1372. for (class = sched_class_highest; class; class = class->next)
  1373. static void inc_nr_running(struct rq *rq)
  1374. {
  1375. rq->nr_running++;
  1376. }
  1377. static void dec_nr_running(struct rq *rq)
  1378. {
  1379. rq->nr_running--;
  1380. }
  1381. static void set_load_weight(struct task_struct *p)
  1382. {
  1383. if (task_has_rt_policy(p)) {
  1384. p->se.load.weight = prio_to_weight[0] * 2;
  1385. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1386. return;
  1387. }
  1388. /*
  1389. * SCHED_IDLE tasks get minimal weight:
  1390. */
  1391. if (p->policy == SCHED_IDLE) {
  1392. p->se.load.weight = WEIGHT_IDLEPRIO;
  1393. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1394. return;
  1395. }
  1396. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1397. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1398. }
  1399. static void update_avg(u64 *avg, u64 sample)
  1400. {
  1401. s64 diff = sample - *avg;
  1402. *avg += diff >> 3;
  1403. }
  1404. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1405. {
  1406. sched_info_queued(p);
  1407. p->sched_class->enqueue_task(rq, p, wakeup);
  1408. p->se.on_rq = 1;
  1409. }
  1410. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1411. {
  1412. if (sleep && p->se.last_wakeup) {
  1413. update_avg(&p->se.avg_overlap,
  1414. p->se.sum_exec_runtime - p->se.last_wakeup);
  1415. p->se.last_wakeup = 0;
  1416. }
  1417. sched_info_dequeued(p);
  1418. p->sched_class->dequeue_task(rq, p, sleep);
  1419. p->se.on_rq = 0;
  1420. }
  1421. /*
  1422. * __normal_prio - return the priority that is based on the static prio
  1423. */
  1424. static inline int __normal_prio(struct task_struct *p)
  1425. {
  1426. return p->static_prio;
  1427. }
  1428. /*
  1429. * Calculate the expected normal priority: i.e. priority
  1430. * without taking RT-inheritance into account. Might be
  1431. * boosted by interactivity modifiers. Changes upon fork,
  1432. * setprio syscalls, and whenever the interactivity
  1433. * estimator recalculates.
  1434. */
  1435. static inline int normal_prio(struct task_struct *p)
  1436. {
  1437. int prio;
  1438. if (task_has_rt_policy(p))
  1439. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1440. else
  1441. prio = __normal_prio(p);
  1442. return prio;
  1443. }
  1444. /*
  1445. * Calculate the current priority, i.e. the priority
  1446. * taken into account by the scheduler. This value might
  1447. * be boosted by RT tasks, or might be boosted by
  1448. * interactivity modifiers. Will be RT if the task got
  1449. * RT-boosted. If not then it returns p->normal_prio.
  1450. */
  1451. static int effective_prio(struct task_struct *p)
  1452. {
  1453. p->normal_prio = normal_prio(p);
  1454. /*
  1455. * If we are RT tasks or we were boosted to RT priority,
  1456. * keep the priority unchanged. Otherwise, update priority
  1457. * to the normal priority:
  1458. */
  1459. if (!rt_prio(p->prio))
  1460. return p->normal_prio;
  1461. return p->prio;
  1462. }
  1463. /*
  1464. * activate_task - move a task to the runqueue.
  1465. */
  1466. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1467. {
  1468. if (task_contributes_to_load(p))
  1469. rq->nr_uninterruptible--;
  1470. enqueue_task(rq, p, wakeup);
  1471. inc_nr_running(rq);
  1472. }
  1473. /*
  1474. * deactivate_task - remove a task from the runqueue.
  1475. */
  1476. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1477. {
  1478. if (task_contributes_to_load(p))
  1479. rq->nr_uninterruptible++;
  1480. dequeue_task(rq, p, sleep);
  1481. dec_nr_running(rq);
  1482. }
  1483. /**
  1484. * task_curr - is this task currently executing on a CPU?
  1485. * @p: the task in question.
  1486. */
  1487. inline int task_curr(const struct task_struct *p)
  1488. {
  1489. return cpu_curr(task_cpu(p)) == p;
  1490. }
  1491. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1492. {
  1493. set_task_rq(p, cpu);
  1494. #ifdef CONFIG_SMP
  1495. /*
  1496. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1497. * successfuly executed on another CPU. We must ensure that updates of
  1498. * per-task data have been completed by this moment.
  1499. */
  1500. smp_wmb();
  1501. task_thread_info(p)->cpu = cpu;
  1502. #endif
  1503. }
  1504. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1505. const struct sched_class *prev_class,
  1506. int oldprio, int running)
  1507. {
  1508. if (prev_class != p->sched_class) {
  1509. if (prev_class->switched_from)
  1510. prev_class->switched_from(rq, p, running);
  1511. p->sched_class->switched_to(rq, p, running);
  1512. } else
  1513. p->sched_class->prio_changed(rq, p, oldprio, running);
  1514. }
  1515. #ifdef CONFIG_SMP
  1516. /* Used instead of source_load when we know the type == 0 */
  1517. static unsigned long weighted_cpuload(const int cpu)
  1518. {
  1519. return cpu_rq(cpu)->load.weight;
  1520. }
  1521. /*
  1522. * Is this task likely cache-hot:
  1523. */
  1524. static int
  1525. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1526. {
  1527. s64 delta;
  1528. /*
  1529. * Buddy candidates are cache hot:
  1530. */
  1531. if (sched_feat(CACHE_HOT_BUDDY) &&
  1532. (&p->se == cfs_rq_of(&p->se)->next ||
  1533. &p->se == cfs_rq_of(&p->se)->last))
  1534. return 1;
  1535. if (p->sched_class != &fair_sched_class)
  1536. return 0;
  1537. if (sysctl_sched_migration_cost == -1)
  1538. return 1;
  1539. if (sysctl_sched_migration_cost == 0)
  1540. return 0;
  1541. delta = now - p->se.exec_start;
  1542. return delta < (s64)sysctl_sched_migration_cost;
  1543. }
  1544. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1545. {
  1546. int old_cpu = task_cpu(p);
  1547. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1548. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1549. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1550. u64 clock_offset;
  1551. clock_offset = old_rq->clock - new_rq->clock;
  1552. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1553. #ifdef CONFIG_SCHEDSTATS
  1554. if (p->se.wait_start)
  1555. p->se.wait_start -= clock_offset;
  1556. if (p->se.sleep_start)
  1557. p->se.sleep_start -= clock_offset;
  1558. if (p->se.block_start)
  1559. p->se.block_start -= clock_offset;
  1560. if (old_cpu != new_cpu) {
  1561. schedstat_inc(p, se.nr_migrations);
  1562. if (task_hot(p, old_rq->clock, NULL))
  1563. schedstat_inc(p, se.nr_forced2_migrations);
  1564. }
  1565. #endif
  1566. p->se.vruntime -= old_cfsrq->min_vruntime -
  1567. new_cfsrq->min_vruntime;
  1568. __set_task_cpu(p, new_cpu);
  1569. }
  1570. struct migration_req {
  1571. struct list_head list;
  1572. struct task_struct *task;
  1573. int dest_cpu;
  1574. struct completion done;
  1575. };
  1576. /*
  1577. * The task's runqueue lock must be held.
  1578. * Returns true if you have to wait for migration thread.
  1579. */
  1580. static int
  1581. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1582. {
  1583. struct rq *rq = task_rq(p);
  1584. /*
  1585. * If the task is not on a runqueue (and not running), then
  1586. * it is sufficient to simply update the task's cpu field.
  1587. */
  1588. if (!p->se.on_rq && !task_running(rq, p)) {
  1589. set_task_cpu(p, dest_cpu);
  1590. return 0;
  1591. }
  1592. init_completion(&req->done);
  1593. req->task = p;
  1594. req->dest_cpu = dest_cpu;
  1595. list_add(&req->list, &rq->migration_queue);
  1596. return 1;
  1597. }
  1598. /*
  1599. * wait_task_inactive - wait for a thread to unschedule.
  1600. *
  1601. * If @match_state is nonzero, it's the @p->state value just checked and
  1602. * not expected to change. If it changes, i.e. @p might have woken up,
  1603. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1604. * we return a positive number (its total switch count). If a second call
  1605. * a short while later returns the same number, the caller can be sure that
  1606. * @p has remained unscheduled the whole time.
  1607. *
  1608. * The caller must ensure that the task *will* unschedule sometime soon,
  1609. * else this function might spin for a *long* time. This function can't
  1610. * be called with interrupts off, or it may introduce deadlock with
  1611. * smp_call_function() if an IPI is sent by the same process we are
  1612. * waiting to become inactive.
  1613. */
  1614. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1615. {
  1616. unsigned long flags;
  1617. int running, on_rq;
  1618. unsigned long ncsw;
  1619. struct rq *rq;
  1620. for (;;) {
  1621. /*
  1622. * We do the initial early heuristics without holding
  1623. * any task-queue locks at all. We'll only try to get
  1624. * the runqueue lock when things look like they will
  1625. * work out!
  1626. */
  1627. rq = task_rq(p);
  1628. /*
  1629. * If the task is actively running on another CPU
  1630. * still, just relax and busy-wait without holding
  1631. * any locks.
  1632. *
  1633. * NOTE! Since we don't hold any locks, it's not
  1634. * even sure that "rq" stays as the right runqueue!
  1635. * But we don't care, since "task_running()" will
  1636. * return false if the runqueue has changed and p
  1637. * is actually now running somewhere else!
  1638. */
  1639. while (task_running(rq, p)) {
  1640. if (match_state && unlikely(p->state != match_state))
  1641. return 0;
  1642. cpu_relax();
  1643. }
  1644. /*
  1645. * Ok, time to look more closely! We need the rq
  1646. * lock now, to be *sure*. If we're wrong, we'll
  1647. * just go back and repeat.
  1648. */
  1649. rq = task_rq_lock(p, &flags);
  1650. trace_sched_wait_task(rq, p);
  1651. running = task_running(rq, p);
  1652. on_rq = p->se.on_rq;
  1653. ncsw = 0;
  1654. if (!match_state || p->state == match_state)
  1655. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1656. task_rq_unlock(rq, &flags);
  1657. /*
  1658. * If it changed from the expected state, bail out now.
  1659. */
  1660. if (unlikely(!ncsw))
  1661. break;
  1662. /*
  1663. * Was it really running after all now that we
  1664. * checked with the proper locks actually held?
  1665. *
  1666. * Oops. Go back and try again..
  1667. */
  1668. if (unlikely(running)) {
  1669. cpu_relax();
  1670. continue;
  1671. }
  1672. /*
  1673. * It's not enough that it's not actively running,
  1674. * it must be off the runqueue _entirely_, and not
  1675. * preempted!
  1676. *
  1677. * So if it wa still runnable (but just not actively
  1678. * running right now), it's preempted, and we should
  1679. * yield - it could be a while.
  1680. */
  1681. if (unlikely(on_rq)) {
  1682. schedule_timeout_uninterruptible(1);
  1683. continue;
  1684. }
  1685. /*
  1686. * Ahh, all good. It wasn't running, and it wasn't
  1687. * runnable, which means that it will never become
  1688. * running in the future either. We're all done!
  1689. */
  1690. break;
  1691. }
  1692. return ncsw;
  1693. }
  1694. /***
  1695. * kick_process - kick a running thread to enter/exit the kernel
  1696. * @p: the to-be-kicked thread
  1697. *
  1698. * Cause a process which is running on another CPU to enter
  1699. * kernel-mode, without any delay. (to get signals handled.)
  1700. *
  1701. * NOTE: this function doesnt have to take the runqueue lock,
  1702. * because all it wants to ensure is that the remote task enters
  1703. * the kernel. If the IPI races and the task has been migrated
  1704. * to another CPU then no harm is done and the purpose has been
  1705. * achieved as well.
  1706. */
  1707. void kick_process(struct task_struct *p)
  1708. {
  1709. int cpu;
  1710. preempt_disable();
  1711. cpu = task_cpu(p);
  1712. if ((cpu != smp_processor_id()) && task_curr(p))
  1713. smp_send_reschedule(cpu);
  1714. preempt_enable();
  1715. }
  1716. /*
  1717. * Return a low guess at the load of a migration-source cpu weighted
  1718. * according to the scheduling class and "nice" value.
  1719. *
  1720. * We want to under-estimate the load of migration sources, to
  1721. * balance conservatively.
  1722. */
  1723. static unsigned long source_load(int cpu, int type)
  1724. {
  1725. struct rq *rq = cpu_rq(cpu);
  1726. unsigned long total = weighted_cpuload(cpu);
  1727. if (type == 0 || !sched_feat(LB_BIAS))
  1728. return total;
  1729. return min(rq->cpu_load[type-1], total);
  1730. }
  1731. /*
  1732. * Return a high guess at the load of a migration-target cpu weighted
  1733. * according to the scheduling class and "nice" value.
  1734. */
  1735. static unsigned long target_load(int cpu, int type)
  1736. {
  1737. struct rq *rq = cpu_rq(cpu);
  1738. unsigned long total = weighted_cpuload(cpu);
  1739. if (type == 0 || !sched_feat(LB_BIAS))
  1740. return total;
  1741. return max(rq->cpu_load[type-1], total);
  1742. }
  1743. /*
  1744. * find_idlest_group finds and returns the least busy CPU group within the
  1745. * domain.
  1746. */
  1747. static struct sched_group *
  1748. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1749. {
  1750. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1751. unsigned long min_load = ULONG_MAX, this_load = 0;
  1752. int load_idx = sd->forkexec_idx;
  1753. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1754. do {
  1755. unsigned long load, avg_load;
  1756. int local_group;
  1757. int i;
  1758. /* Skip over this group if it has no CPUs allowed */
  1759. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1760. continue;
  1761. local_group = cpu_isset(this_cpu, group->cpumask);
  1762. /* Tally up the load of all CPUs in the group */
  1763. avg_load = 0;
  1764. for_each_cpu_mask_nr(i, group->cpumask) {
  1765. /* Bias balancing toward cpus of our domain */
  1766. if (local_group)
  1767. load = source_load(i, load_idx);
  1768. else
  1769. load = target_load(i, load_idx);
  1770. avg_load += load;
  1771. }
  1772. /* Adjust by relative CPU power of the group */
  1773. avg_load = sg_div_cpu_power(group,
  1774. avg_load * SCHED_LOAD_SCALE);
  1775. if (local_group) {
  1776. this_load = avg_load;
  1777. this = group;
  1778. } else if (avg_load < min_load) {
  1779. min_load = avg_load;
  1780. idlest = group;
  1781. }
  1782. } while (group = group->next, group != sd->groups);
  1783. if (!idlest || 100*this_load < imbalance*min_load)
  1784. return NULL;
  1785. return idlest;
  1786. }
  1787. /*
  1788. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1789. */
  1790. static int
  1791. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1792. cpumask_t *tmp)
  1793. {
  1794. unsigned long load, min_load = ULONG_MAX;
  1795. int idlest = -1;
  1796. int i;
  1797. /* Traverse only the allowed CPUs */
  1798. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1799. for_each_cpu_mask_nr(i, *tmp) {
  1800. load = weighted_cpuload(i);
  1801. if (load < min_load || (load == min_load && i == this_cpu)) {
  1802. min_load = load;
  1803. idlest = i;
  1804. }
  1805. }
  1806. return idlest;
  1807. }
  1808. /*
  1809. * sched_balance_self: balance the current task (running on cpu) in domains
  1810. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1811. * SD_BALANCE_EXEC.
  1812. *
  1813. * Balance, ie. select the least loaded group.
  1814. *
  1815. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1816. *
  1817. * preempt must be disabled.
  1818. */
  1819. static int sched_balance_self(int cpu, int flag)
  1820. {
  1821. struct task_struct *t = current;
  1822. struct sched_domain *tmp, *sd = NULL;
  1823. for_each_domain(cpu, tmp) {
  1824. /*
  1825. * If power savings logic is enabled for a domain, stop there.
  1826. */
  1827. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1828. break;
  1829. if (tmp->flags & flag)
  1830. sd = tmp;
  1831. }
  1832. if (sd)
  1833. update_shares(sd);
  1834. while (sd) {
  1835. cpumask_t span, tmpmask;
  1836. struct sched_group *group;
  1837. int new_cpu, weight;
  1838. if (!(sd->flags & flag)) {
  1839. sd = sd->child;
  1840. continue;
  1841. }
  1842. span = sd->span;
  1843. group = find_idlest_group(sd, t, cpu);
  1844. if (!group) {
  1845. sd = sd->child;
  1846. continue;
  1847. }
  1848. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1849. if (new_cpu == -1 || new_cpu == cpu) {
  1850. /* Now try balancing at a lower domain level of cpu */
  1851. sd = sd->child;
  1852. continue;
  1853. }
  1854. /* Now try balancing at a lower domain level of new_cpu */
  1855. cpu = new_cpu;
  1856. sd = NULL;
  1857. weight = cpus_weight(span);
  1858. for_each_domain(cpu, tmp) {
  1859. if (weight <= cpus_weight(tmp->span))
  1860. break;
  1861. if (tmp->flags & flag)
  1862. sd = tmp;
  1863. }
  1864. /* while loop will break here if sd == NULL */
  1865. }
  1866. return cpu;
  1867. }
  1868. #endif /* CONFIG_SMP */
  1869. /***
  1870. * try_to_wake_up - wake up a thread
  1871. * @p: the to-be-woken-up thread
  1872. * @state: the mask of task states that can be woken
  1873. * @sync: do a synchronous wakeup?
  1874. *
  1875. * Put it on the run-queue if it's not already there. The "current"
  1876. * thread is always on the run-queue (except when the actual
  1877. * re-schedule is in progress), and as such you're allowed to do
  1878. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1879. * runnable without the overhead of this.
  1880. *
  1881. * returns failure only if the task is already active.
  1882. */
  1883. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1884. {
  1885. int cpu, orig_cpu, this_cpu, success = 0;
  1886. unsigned long flags;
  1887. long old_state;
  1888. struct rq *rq;
  1889. if (!sched_feat(SYNC_WAKEUPS))
  1890. sync = 0;
  1891. #ifdef CONFIG_SMP
  1892. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1893. struct sched_domain *sd;
  1894. this_cpu = raw_smp_processor_id();
  1895. cpu = task_cpu(p);
  1896. for_each_domain(this_cpu, sd) {
  1897. if (cpu_isset(cpu, sd->span)) {
  1898. update_shares(sd);
  1899. break;
  1900. }
  1901. }
  1902. }
  1903. #endif
  1904. smp_wmb();
  1905. rq = task_rq_lock(p, &flags);
  1906. old_state = p->state;
  1907. if (!(old_state & state))
  1908. goto out;
  1909. if (p->se.on_rq)
  1910. goto out_running;
  1911. cpu = task_cpu(p);
  1912. orig_cpu = cpu;
  1913. this_cpu = smp_processor_id();
  1914. #ifdef CONFIG_SMP
  1915. if (unlikely(task_running(rq, p)))
  1916. goto out_activate;
  1917. cpu = p->sched_class->select_task_rq(p, sync);
  1918. if (cpu != orig_cpu) {
  1919. set_task_cpu(p, cpu);
  1920. task_rq_unlock(rq, &flags);
  1921. /* might preempt at this point */
  1922. rq = task_rq_lock(p, &flags);
  1923. old_state = p->state;
  1924. if (!(old_state & state))
  1925. goto out;
  1926. if (p->se.on_rq)
  1927. goto out_running;
  1928. this_cpu = smp_processor_id();
  1929. cpu = task_cpu(p);
  1930. }
  1931. #ifdef CONFIG_SCHEDSTATS
  1932. schedstat_inc(rq, ttwu_count);
  1933. if (cpu == this_cpu)
  1934. schedstat_inc(rq, ttwu_local);
  1935. else {
  1936. struct sched_domain *sd;
  1937. for_each_domain(this_cpu, sd) {
  1938. if (cpu_isset(cpu, sd->span)) {
  1939. schedstat_inc(sd, ttwu_wake_remote);
  1940. break;
  1941. }
  1942. }
  1943. }
  1944. #endif /* CONFIG_SCHEDSTATS */
  1945. out_activate:
  1946. #endif /* CONFIG_SMP */
  1947. schedstat_inc(p, se.nr_wakeups);
  1948. if (sync)
  1949. schedstat_inc(p, se.nr_wakeups_sync);
  1950. if (orig_cpu != cpu)
  1951. schedstat_inc(p, se.nr_wakeups_migrate);
  1952. if (cpu == this_cpu)
  1953. schedstat_inc(p, se.nr_wakeups_local);
  1954. else
  1955. schedstat_inc(p, se.nr_wakeups_remote);
  1956. update_rq_clock(rq);
  1957. activate_task(rq, p, 1);
  1958. success = 1;
  1959. out_running:
  1960. trace_sched_wakeup(rq, p, success);
  1961. check_preempt_curr(rq, p, sync);
  1962. p->state = TASK_RUNNING;
  1963. #ifdef CONFIG_SMP
  1964. if (p->sched_class->task_wake_up)
  1965. p->sched_class->task_wake_up(rq, p);
  1966. #endif
  1967. out:
  1968. current->se.last_wakeup = current->se.sum_exec_runtime;
  1969. task_rq_unlock(rq, &flags);
  1970. return success;
  1971. }
  1972. int wake_up_process(struct task_struct *p)
  1973. {
  1974. return try_to_wake_up(p, TASK_ALL, 0);
  1975. }
  1976. EXPORT_SYMBOL(wake_up_process);
  1977. int wake_up_state(struct task_struct *p, unsigned int state)
  1978. {
  1979. return try_to_wake_up(p, state, 0);
  1980. }
  1981. /*
  1982. * Perform scheduler related setup for a newly forked process p.
  1983. * p is forked by current.
  1984. *
  1985. * __sched_fork() is basic setup used by init_idle() too:
  1986. */
  1987. static void __sched_fork(struct task_struct *p)
  1988. {
  1989. p->se.exec_start = 0;
  1990. p->se.sum_exec_runtime = 0;
  1991. p->se.prev_sum_exec_runtime = 0;
  1992. p->se.last_wakeup = 0;
  1993. p->se.avg_overlap = 0;
  1994. #ifdef CONFIG_SCHEDSTATS
  1995. p->se.wait_start = 0;
  1996. p->se.sum_sleep_runtime = 0;
  1997. p->se.sleep_start = 0;
  1998. p->se.block_start = 0;
  1999. p->se.sleep_max = 0;
  2000. p->se.block_max = 0;
  2001. p->se.exec_max = 0;
  2002. p->se.slice_max = 0;
  2003. p->se.wait_max = 0;
  2004. #endif
  2005. INIT_LIST_HEAD(&p->rt.run_list);
  2006. p->se.on_rq = 0;
  2007. INIT_LIST_HEAD(&p->se.group_node);
  2008. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2009. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2010. #endif
  2011. /*
  2012. * We mark the process as running here, but have not actually
  2013. * inserted it onto the runqueue yet. This guarantees that
  2014. * nobody will actually run it, and a signal or other external
  2015. * event cannot wake it up and insert it on the runqueue either.
  2016. */
  2017. p->state = TASK_RUNNING;
  2018. }
  2019. /*
  2020. * fork()/clone()-time setup:
  2021. */
  2022. void sched_fork(struct task_struct *p, int clone_flags)
  2023. {
  2024. int cpu = get_cpu();
  2025. __sched_fork(p);
  2026. #ifdef CONFIG_SMP
  2027. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2028. #endif
  2029. set_task_cpu(p, cpu);
  2030. /*
  2031. * Make sure we do not leak PI boosting priority to the child:
  2032. */
  2033. p->prio = current->normal_prio;
  2034. if (!rt_prio(p->prio))
  2035. p->sched_class = &fair_sched_class;
  2036. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2037. if (likely(sched_info_on()))
  2038. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2039. #endif
  2040. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2041. p->oncpu = 0;
  2042. #endif
  2043. #ifdef CONFIG_PREEMPT
  2044. /* Want to start with kernel preemption disabled. */
  2045. task_thread_info(p)->preempt_count = 1;
  2046. #endif
  2047. put_cpu();
  2048. }
  2049. /*
  2050. * wake_up_new_task - wake up a newly created task for the first time.
  2051. *
  2052. * This function will do some initial scheduler statistics housekeeping
  2053. * that must be done for every newly created context, then puts the task
  2054. * on the runqueue and wakes it.
  2055. */
  2056. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2057. {
  2058. unsigned long flags;
  2059. struct rq *rq;
  2060. rq = task_rq_lock(p, &flags);
  2061. BUG_ON(p->state != TASK_RUNNING);
  2062. update_rq_clock(rq);
  2063. p->prio = effective_prio(p);
  2064. if (!p->sched_class->task_new || !current->se.on_rq) {
  2065. activate_task(rq, p, 0);
  2066. } else {
  2067. /*
  2068. * Let the scheduling class do new task startup
  2069. * management (if any):
  2070. */
  2071. p->sched_class->task_new(rq, p);
  2072. inc_nr_running(rq);
  2073. }
  2074. trace_sched_wakeup_new(rq, p, 1);
  2075. check_preempt_curr(rq, p, 0);
  2076. #ifdef CONFIG_SMP
  2077. if (p->sched_class->task_wake_up)
  2078. p->sched_class->task_wake_up(rq, p);
  2079. #endif
  2080. task_rq_unlock(rq, &flags);
  2081. }
  2082. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2083. /**
  2084. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2085. * @notifier: notifier struct to register
  2086. */
  2087. void preempt_notifier_register(struct preempt_notifier *notifier)
  2088. {
  2089. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2090. }
  2091. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2092. /**
  2093. * preempt_notifier_unregister - no longer interested in preemption notifications
  2094. * @notifier: notifier struct to unregister
  2095. *
  2096. * This is safe to call from within a preemption notifier.
  2097. */
  2098. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2099. {
  2100. hlist_del(&notifier->link);
  2101. }
  2102. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2103. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2104. {
  2105. struct preempt_notifier *notifier;
  2106. struct hlist_node *node;
  2107. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2108. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2109. }
  2110. static void
  2111. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2112. struct task_struct *next)
  2113. {
  2114. struct preempt_notifier *notifier;
  2115. struct hlist_node *node;
  2116. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2117. notifier->ops->sched_out(notifier, next);
  2118. }
  2119. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2120. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2121. {
  2122. }
  2123. static void
  2124. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2125. struct task_struct *next)
  2126. {
  2127. }
  2128. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2129. /**
  2130. * prepare_task_switch - prepare to switch tasks
  2131. * @rq: the runqueue preparing to switch
  2132. * @prev: the current task that is being switched out
  2133. * @next: the task we are going to switch to.
  2134. *
  2135. * This is called with the rq lock held and interrupts off. It must
  2136. * be paired with a subsequent finish_task_switch after the context
  2137. * switch.
  2138. *
  2139. * prepare_task_switch sets up locking and calls architecture specific
  2140. * hooks.
  2141. */
  2142. static inline void
  2143. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2144. struct task_struct *next)
  2145. {
  2146. fire_sched_out_preempt_notifiers(prev, next);
  2147. prepare_lock_switch(rq, next);
  2148. prepare_arch_switch(next);
  2149. }
  2150. /**
  2151. * finish_task_switch - clean up after a task-switch
  2152. * @rq: runqueue associated with task-switch
  2153. * @prev: the thread we just switched away from.
  2154. *
  2155. * finish_task_switch must be called after the context switch, paired
  2156. * with a prepare_task_switch call before the context switch.
  2157. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2158. * and do any other architecture-specific cleanup actions.
  2159. *
  2160. * Note that we may have delayed dropping an mm in context_switch(). If
  2161. * so, we finish that here outside of the runqueue lock. (Doing it
  2162. * with the lock held can cause deadlocks; see schedule() for
  2163. * details.)
  2164. */
  2165. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2166. __releases(rq->lock)
  2167. {
  2168. struct mm_struct *mm = rq->prev_mm;
  2169. long prev_state;
  2170. rq->prev_mm = NULL;
  2171. /*
  2172. * A task struct has one reference for the use as "current".
  2173. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2174. * schedule one last time. The schedule call will never return, and
  2175. * the scheduled task must drop that reference.
  2176. * The test for TASK_DEAD must occur while the runqueue locks are
  2177. * still held, otherwise prev could be scheduled on another cpu, die
  2178. * there before we look at prev->state, and then the reference would
  2179. * be dropped twice.
  2180. * Manfred Spraul <manfred@colorfullife.com>
  2181. */
  2182. prev_state = prev->state;
  2183. finish_arch_switch(prev);
  2184. finish_lock_switch(rq, prev);
  2185. #ifdef CONFIG_SMP
  2186. if (current->sched_class->post_schedule)
  2187. current->sched_class->post_schedule(rq);
  2188. #endif
  2189. fire_sched_in_preempt_notifiers(current);
  2190. if (mm)
  2191. mmdrop(mm);
  2192. if (unlikely(prev_state == TASK_DEAD)) {
  2193. /*
  2194. * Remove function-return probe instances associated with this
  2195. * task and put them back on the free list.
  2196. */
  2197. kprobe_flush_task(prev);
  2198. put_task_struct(prev);
  2199. }
  2200. }
  2201. /**
  2202. * schedule_tail - first thing a freshly forked thread must call.
  2203. * @prev: the thread we just switched away from.
  2204. */
  2205. asmlinkage void schedule_tail(struct task_struct *prev)
  2206. __releases(rq->lock)
  2207. {
  2208. struct rq *rq = this_rq();
  2209. finish_task_switch(rq, prev);
  2210. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2211. /* In this case, finish_task_switch does not reenable preemption */
  2212. preempt_enable();
  2213. #endif
  2214. if (current->set_child_tid)
  2215. put_user(task_pid_vnr(current), current->set_child_tid);
  2216. }
  2217. /*
  2218. * context_switch - switch to the new MM and the new
  2219. * thread's register state.
  2220. */
  2221. static inline void
  2222. context_switch(struct rq *rq, struct task_struct *prev,
  2223. struct task_struct *next)
  2224. {
  2225. struct mm_struct *mm, *oldmm;
  2226. prepare_task_switch(rq, prev, next);
  2227. trace_sched_switch(rq, prev, next);
  2228. mm = next->mm;
  2229. oldmm = prev->active_mm;
  2230. /*
  2231. * For paravirt, this is coupled with an exit in switch_to to
  2232. * combine the page table reload and the switch backend into
  2233. * one hypercall.
  2234. */
  2235. arch_enter_lazy_cpu_mode();
  2236. if (unlikely(!mm)) {
  2237. next->active_mm = oldmm;
  2238. atomic_inc(&oldmm->mm_count);
  2239. enter_lazy_tlb(oldmm, next);
  2240. } else
  2241. switch_mm(oldmm, mm, next);
  2242. if (unlikely(!prev->mm)) {
  2243. prev->active_mm = NULL;
  2244. rq->prev_mm = oldmm;
  2245. }
  2246. /*
  2247. * Since the runqueue lock will be released by the next
  2248. * task (which is an invalid locking op but in the case
  2249. * of the scheduler it's an obvious special-case), so we
  2250. * do an early lockdep release here:
  2251. */
  2252. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2253. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2254. #endif
  2255. /* Here we just switch the register state and the stack. */
  2256. switch_to(prev, next, prev);
  2257. barrier();
  2258. /*
  2259. * this_rq must be evaluated again because prev may have moved
  2260. * CPUs since it called schedule(), thus the 'rq' on its stack
  2261. * frame will be invalid.
  2262. */
  2263. finish_task_switch(this_rq(), prev);
  2264. }
  2265. /*
  2266. * nr_running, nr_uninterruptible and nr_context_switches:
  2267. *
  2268. * externally visible scheduler statistics: current number of runnable
  2269. * threads, current number of uninterruptible-sleeping threads, total
  2270. * number of context switches performed since bootup.
  2271. */
  2272. unsigned long nr_running(void)
  2273. {
  2274. unsigned long i, sum = 0;
  2275. for_each_online_cpu(i)
  2276. sum += cpu_rq(i)->nr_running;
  2277. return sum;
  2278. }
  2279. unsigned long nr_uninterruptible(void)
  2280. {
  2281. unsigned long i, sum = 0;
  2282. for_each_possible_cpu(i)
  2283. sum += cpu_rq(i)->nr_uninterruptible;
  2284. /*
  2285. * Since we read the counters lockless, it might be slightly
  2286. * inaccurate. Do not allow it to go below zero though:
  2287. */
  2288. if (unlikely((long)sum < 0))
  2289. sum = 0;
  2290. return sum;
  2291. }
  2292. unsigned long long nr_context_switches(void)
  2293. {
  2294. int i;
  2295. unsigned long long sum = 0;
  2296. for_each_possible_cpu(i)
  2297. sum += cpu_rq(i)->nr_switches;
  2298. return sum;
  2299. }
  2300. unsigned long nr_iowait(void)
  2301. {
  2302. unsigned long i, sum = 0;
  2303. for_each_possible_cpu(i)
  2304. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2305. return sum;
  2306. }
  2307. unsigned long nr_active(void)
  2308. {
  2309. unsigned long i, running = 0, uninterruptible = 0;
  2310. for_each_online_cpu(i) {
  2311. running += cpu_rq(i)->nr_running;
  2312. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2313. }
  2314. if (unlikely((long)uninterruptible < 0))
  2315. uninterruptible = 0;
  2316. return running + uninterruptible;
  2317. }
  2318. /*
  2319. * Update rq->cpu_load[] statistics. This function is usually called every
  2320. * scheduler tick (TICK_NSEC).
  2321. */
  2322. static void update_cpu_load(struct rq *this_rq)
  2323. {
  2324. unsigned long this_load = this_rq->load.weight;
  2325. int i, scale;
  2326. this_rq->nr_load_updates++;
  2327. /* Update our load: */
  2328. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2329. unsigned long old_load, new_load;
  2330. /* scale is effectively 1 << i now, and >> i divides by scale */
  2331. old_load = this_rq->cpu_load[i];
  2332. new_load = this_load;
  2333. /*
  2334. * Round up the averaging division if load is increasing. This
  2335. * prevents us from getting stuck on 9 if the load is 10, for
  2336. * example.
  2337. */
  2338. if (new_load > old_load)
  2339. new_load += scale-1;
  2340. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2341. }
  2342. }
  2343. #ifdef CONFIG_SMP
  2344. /*
  2345. * double_rq_lock - safely lock two runqueues
  2346. *
  2347. * Note this does not disable interrupts like task_rq_lock,
  2348. * you need to do so manually before calling.
  2349. */
  2350. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2351. __acquires(rq1->lock)
  2352. __acquires(rq2->lock)
  2353. {
  2354. BUG_ON(!irqs_disabled());
  2355. if (rq1 == rq2) {
  2356. spin_lock(&rq1->lock);
  2357. __acquire(rq2->lock); /* Fake it out ;) */
  2358. } else {
  2359. if (rq1 < rq2) {
  2360. spin_lock(&rq1->lock);
  2361. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2362. } else {
  2363. spin_lock(&rq2->lock);
  2364. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2365. }
  2366. }
  2367. update_rq_clock(rq1);
  2368. update_rq_clock(rq2);
  2369. }
  2370. /*
  2371. * double_rq_unlock - safely unlock two runqueues
  2372. *
  2373. * Note this does not restore interrupts like task_rq_unlock,
  2374. * you need to do so manually after calling.
  2375. */
  2376. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2377. __releases(rq1->lock)
  2378. __releases(rq2->lock)
  2379. {
  2380. spin_unlock(&rq1->lock);
  2381. if (rq1 != rq2)
  2382. spin_unlock(&rq2->lock);
  2383. else
  2384. __release(rq2->lock);
  2385. }
  2386. /*
  2387. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2388. */
  2389. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2390. __releases(this_rq->lock)
  2391. __acquires(busiest->lock)
  2392. __acquires(this_rq->lock)
  2393. {
  2394. int ret = 0;
  2395. if (unlikely(!irqs_disabled())) {
  2396. /* printk() doesn't work good under rq->lock */
  2397. spin_unlock(&this_rq->lock);
  2398. BUG_ON(1);
  2399. }
  2400. if (unlikely(!spin_trylock(&busiest->lock))) {
  2401. if (busiest < this_rq) {
  2402. spin_unlock(&this_rq->lock);
  2403. spin_lock(&busiest->lock);
  2404. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2405. ret = 1;
  2406. } else
  2407. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2408. }
  2409. return ret;
  2410. }
  2411. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2412. __releases(busiest->lock)
  2413. {
  2414. spin_unlock(&busiest->lock);
  2415. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2416. }
  2417. /*
  2418. * If dest_cpu is allowed for this process, migrate the task to it.
  2419. * This is accomplished by forcing the cpu_allowed mask to only
  2420. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2421. * the cpu_allowed mask is restored.
  2422. */
  2423. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2424. {
  2425. struct migration_req req;
  2426. unsigned long flags;
  2427. struct rq *rq;
  2428. rq = task_rq_lock(p, &flags);
  2429. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2430. || unlikely(!cpu_active(dest_cpu)))
  2431. goto out;
  2432. /* force the process onto the specified CPU */
  2433. if (migrate_task(p, dest_cpu, &req)) {
  2434. /* Need to wait for migration thread (might exit: take ref). */
  2435. struct task_struct *mt = rq->migration_thread;
  2436. get_task_struct(mt);
  2437. task_rq_unlock(rq, &flags);
  2438. wake_up_process(mt);
  2439. put_task_struct(mt);
  2440. wait_for_completion(&req.done);
  2441. return;
  2442. }
  2443. out:
  2444. task_rq_unlock(rq, &flags);
  2445. }
  2446. /*
  2447. * sched_exec - execve() is a valuable balancing opportunity, because at
  2448. * this point the task has the smallest effective memory and cache footprint.
  2449. */
  2450. void sched_exec(void)
  2451. {
  2452. int new_cpu, this_cpu = get_cpu();
  2453. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2454. put_cpu();
  2455. if (new_cpu != this_cpu)
  2456. sched_migrate_task(current, new_cpu);
  2457. }
  2458. /*
  2459. * pull_task - move a task from a remote runqueue to the local runqueue.
  2460. * Both runqueues must be locked.
  2461. */
  2462. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2463. struct rq *this_rq, int this_cpu)
  2464. {
  2465. deactivate_task(src_rq, p, 0);
  2466. set_task_cpu(p, this_cpu);
  2467. activate_task(this_rq, p, 0);
  2468. /*
  2469. * Note that idle threads have a prio of MAX_PRIO, for this test
  2470. * to be always true for them.
  2471. */
  2472. check_preempt_curr(this_rq, p, 0);
  2473. }
  2474. /*
  2475. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2476. */
  2477. static
  2478. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2479. struct sched_domain *sd, enum cpu_idle_type idle,
  2480. int *all_pinned)
  2481. {
  2482. /*
  2483. * We do not migrate tasks that are:
  2484. * 1) running (obviously), or
  2485. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2486. * 3) are cache-hot on their current CPU.
  2487. */
  2488. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2489. schedstat_inc(p, se.nr_failed_migrations_affine);
  2490. return 0;
  2491. }
  2492. *all_pinned = 0;
  2493. if (task_running(rq, p)) {
  2494. schedstat_inc(p, se.nr_failed_migrations_running);
  2495. return 0;
  2496. }
  2497. /*
  2498. * Aggressive migration if:
  2499. * 1) task is cache cold, or
  2500. * 2) too many balance attempts have failed.
  2501. */
  2502. if (!task_hot(p, rq->clock, sd) ||
  2503. sd->nr_balance_failed > sd->cache_nice_tries) {
  2504. #ifdef CONFIG_SCHEDSTATS
  2505. if (task_hot(p, rq->clock, sd)) {
  2506. schedstat_inc(sd, lb_hot_gained[idle]);
  2507. schedstat_inc(p, se.nr_forced_migrations);
  2508. }
  2509. #endif
  2510. return 1;
  2511. }
  2512. if (task_hot(p, rq->clock, sd)) {
  2513. schedstat_inc(p, se.nr_failed_migrations_hot);
  2514. return 0;
  2515. }
  2516. return 1;
  2517. }
  2518. static unsigned long
  2519. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2520. unsigned long max_load_move, struct sched_domain *sd,
  2521. enum cpu_idle_type idle, int *all_pinned,
  2522. int *this_best_prio, struct rq_iterator *iterator)
  2523. {
  2524. int loops = 0, pulled = 0, pinned = 0;
  2525. struct task_struct *p;
  2526. long rem_load_move = max_load_move;
  2527. if (max_load_move == 0)
  2528. goto out;
  2529. pinned = 1;
  2530. /*
  2531. * Start the load-balancing iterator:
  2532. */
  2533. p = iterator->start(iterator->arg);
  2534. next:
  2535. if (!p || loops++ > sysctl_sched_nr_migrate)
  2536. goto out;
  2537. if ((p->se.load.weight >> 1) > rem_load_move ||
  2538. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2539. p = iterator->next(iterator->arg);
  2540. goto next;
  2541. }
  2542. pull_task(busiest, p, this_rq, this_cpu);
  2543. pulled++;
  2544. rem_load_move -= p->se.load.weight;
  2545. /*
  2546. * We only want to steal up to the prescribed amount of weighted load.
  2547. */
  2548. if (rem_load_move > 0) {
  2549. if (p->prio < *this_best_prio)
  2550. *this_best_prio = p->prio;
  2551. p = iterator->next(iterator->arg);
  2552. goto next;
  2553. }
  2554. out:
  2555. /*
  2556. * Right now, this is one of only two places pull_task() is called,
  2557. * so we can safely collect pull_task() stats here rather than
  2558. * inside pull_task().
  2559. */
  2560. schedstat_add(sd, lb_gained[idle], pulled);
  2561. if (all_pinned)
  2562. *all_pinned = pinned;
  2563. return max_load_move - rem_load_move;
  2564. }
  2565. /*
  2566. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2567. * this_rq, as part of a balancing operation within domain "sd".
  2568. * Returns 1 if successful and 0 otherwise.
  2569. *
  2570. * Called with both runqueues locked.
  2571. */
  2572. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2573. unsigned long max_load_move,
  2574. struct sched_domain *sd, enum cpu_idle_type idle,
  2575. int *all_pinned)
  2576. {
  2577. const struct sched_class *class = sched_class_highest;
  2578. unsigned long total_load_moved = 0;
  2579. int this_best_prio = this_rq->curr->prio;
  2580. do {
  2581. total_load_moved +=
  2582. class->load_balance(this_rq, this_cpu, busiest,
  2583. max_load_move - total_load_moved,
  2584. sd, idle, all_pinned, &this_best_prio);
  2585. class = class->next;
  2586. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2587. break;
  2588. } while (class && max_load_move > total_load_moved);
  2589. return total_load_moved > 0;
  2590. }
  2591. static int
  2592. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2593. struct sched_domain *sd, enum cpu_idle_type idle,
  2594. struct rq_iterator *iterator)
  2595. {
  2596. struct task_struct *p = iterator->start(iterator->arg);
  2597. int pinned = 0;
  2598. while (p) {
  2599. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2600. pull_task(busiest, p, this_rq, this_cpu);
  2601. /*
  2602. * Right now, this is only the second place pull_task()
  2603. * is called, so we can safely collect pull_task()
  2604. * stats here rather than inside pull_task().
  2605. */
  2606. schedstat_inc(sd, lb_gained[idle]);
  2607. return 1;
  2608. }
  2609. p = iterator->next(iterator->arg);
  2610. }
  2611. return 0;
  2612. }
  2613. /*
  2614. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2615. * part of active balancing operations within "domain".
  2616. * Returns 1 if successful and 0 otherwise.
  2617. *
  2618. * Called with both runqueues locked.
  2619. */
  2620. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2621. struct sched_domain *sd, enum cpu_idle_type idle)
  2622. {
  2623. const struct sched_class *class;
  2624. for (class = sched_class_highest; class; class = class->next)
  2625. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2626. return 1;
  2627. return 0;
  2628. }
  2629. /*
  2630. * find_busiest_group finds and returns the busiest CPU group within the
  2631. * domain. It calculates and returns the amount of weighted load which
  2632. * should be moved to restore balance via the imbalance parameter.
  2633. */
  2634. static struct sched_group *
  2635. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2636. unsigned long *imbalance, enum cpu_idle_type idle,
  2637. int *sd_idle, const cpumask_t *cpus, int *balance)
  2638. {
  2639. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2640. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2641. unsigned long max_pull;
  2642. unsigned long busiest_load_per_task, busiest_nr_running;
  2643. unsigned long this_load_per_task, this_nr_running;
  2644. int load_idx, group_imb = 0;
  2645. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2646. int power_savings_balance = 1;
  2647. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2648. unsigned long min_nr_running = ULONG_MAX;
  2649. struct sched_group *group_min = NULL, *group_leader = NULL;
  2650. #endif
  2651. max_load = this_load = total_load = total_pwr = 0;
  2652. busiest_load_per_task = busiest_nr_running = 0;
  2653. this_load_per_task = this_nr_running = 0;
  2654. if (idle == CPU_NOT_IDLE)
  2655. load_idx = sd->busy_idx;
  2656. else if (idle == CPU_NEWLY_IDLE)
  2657. load_idx = sd->newidle_idx;
  2658. else
  2659. load_idx = sd->idle_idx;
  2660. do {
  2661. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2662. int local_group;
  2663. int i;
  2664. int __group_imb = 0;
  2665. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2666. unsigned long sum_nr_running, sum_weighted_load;
  2667. unsigned long sum_avg_load_per_task;
  2668. unsigned long avg_load_per_task;
  2669. local_group = cpu_isset(this_cpu, group->cpumask);
  2670. if (local_group)
  2671. balance_cpu = first_cpu(group->cpumask);
  2672. /* Tally up the load of all CPUs in the group */
  2673. sum_weighted_load = sum_nr_running = avg_load = 0;
  2674. sum_avg_load_per_task = avg_load_per_task = 0;
  2675. max_cpu_load = 0;
  2676. min_cpu_load = ~0UL;
  2677. for_each_cpu_mask_nr(i, group->cpumask) {
  2678. struct rq *rq;
  2679. if (!cpu_isset(i, *cpus))
  2680. continue;
  2681. rq = cpu_rq(i);
  2682. if (*sd_idle && rq->nr_running)
  2683. *sd_idle = 0;
  2684. /* Bias balancing toward cpus of our domain */
  2685. if (local_group) {
  2686. if (idle_cpu(i) && !first_idle_cpu) {
  2687. first_idle_cpu = 1;
  2688. balance_cpu = i;
  2689. }
  2690. load = target_load(i, load_idx);
  2691. } else {
  2692. load = source_load(i, load_idx);
  2693. if (load > max_cpu_load)
  2694. max_cpu_load = load;
  2695. if (min_cpu_load > load)
  2696. min_cpu_load = load;
  2697. }
  2698. avg_load += load;
  2699. sum_nr_running += rq->nr_running;
  2700. sum_weighted_load += weighted_cpuload(i);
  2701. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2702. }
  2703. /*
  2704. * First idle cpu or the first cpu(busiest) in this sched group
  2705. * is eligible for doing load balancing at this and above
  2706. * domains. In the newly idle case, we will allow all the cpu's
  2707. * to do the newly idle load balance.
  2708. */
  2709. if (idle != CPU_NEWLY_IDLE && local_group &&
  2710. balance_cpu != this_cpu && balance) {
  2711. *balance = 0;
  2712. goto ret;
  2713. }
  2714. total_load += avg_load;
  2715. total_pwr += group->__cpu_power;
  2716. /* Adjust by relative CPU power of the group */
  2717. avg_load = sg_div_cpu_power(group,
  2718. avg_load * SCHED_LOAD_SCALE);
  2719. /*
  2720. * Consider the group unbalanced when the imbalance is larger
  2721. * than the average weight of two tasks.
  2722. *
  2723. * APZ: with cgroup the avg task weight can vary wildly and
  2724. * might not be a suitable number - should we keep a
  2725. * normalized nr_running number somewhere that negates
  2726. * the hierarchy?
  2727. */
  2728. avg_load_per_task = sg_div_cpu_power(group,
  2729. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2730. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2731. __group_imb = 1;
  2732. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2733. if (local_group) {
  2734. this_load = avg_load;
  2735. this = group;
  2736. this_nr_running = sum_nr_running;
  2737. this_load_per_task = sum_weighted_load;
  2738. } else if (avg_load > max_load &&
  2739. (sum_nr_running > group_capacity || __group_imb)) {
  2740. max_load = avg_load;
  2741. busiest = group;
  2742. busiest_nr_running = sum_nr_running;
  2743. busiest_load_per_task = sum_weighted_load;
  2744. group_imb = __group_imb;
  2745. }
  2746. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2747. /*
  2748. * Busy processors will not participate in power savings
  2749. * balance.
  2750. */
  2751. if (idle == CPU_NOT_IDLE ||
  2752. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2753. goto group_next;
  2754. /*
  2755. * If the local group is idle or completely loaded
  2756. * no need to do power savings balance at this domain
  2757. */
  2758. if (local_group && (this_nr_running >= group_capacity ||
  2759. !this_nr_running))
  2760. power_savings_balance = 0;
  2761. /*
  2762. * If a group is already running at full capacity or idle,
  2763. * don't include that group in power savings calculations
  2764. */
  2765. if (!power_savings_balance || sum_nr_running >= group_capacity
  2766. || !sum_nr_running)
  2767. goto group_next;
  2768. /*
  2769. * Calculate the group which has the least non-idle load.
  2770. * This is the group from where we need to pick up the load
  2771. * for saving power
  2772. */
  2773. if ((sum_nr_running < min_nr_running) ||
  2774. (sum_nr_running == min_nr_running &&
  2775. first_cpu(group->cpumask) <
  2776. first_cpu(group_min->cpumask))) {
  2777. group_min = group;
  2778. min_nr_running = sum_nr_running;
  2779. min_load_per_task = sum_weighted_load /
  2780. sum_nr_running;
  2781. }
  2782. /*
  2783. * Calculate the group which is almost near its
  2784. * capacity but still has some space to pick up some load
  2785. * from other group and save more power
  2786. */
  2787. if (sum_nr_running <= group_capacity - 1) {
  2788. if (sum_nr_running > leader_nr_running ||
  2789. (sum_nr_running == leader_nr_running &&
  2790. first_cpu(group->cpumask) >
  2791. first_cpu(group_leader->cpumask))) {
  2792. group_leader = group;
  2793. leader_nr_running = sum_nr_running;
  2794. }
  2795. }
  2796. group_next:
  2797. #endif
  2798. group = group->next;
  2799. } while (group != sd->groups);
  2800. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2801. goto out_balanced;
  2802. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2803. if (this_load >= avg_load ||
  2804. 100*max_load <= sd->imbalance_pct*this_load)
  2805. goto out_balanced;
  2806. busiest_load_per_task /= busiest_nr_running;
  2807. if (group_imb)
  2808. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2809. /*
  2810. * We're trying to get all the cpus to the average_load, so we don't
  2811. * want to push ourselves above the average load, nor do we wish to
  2812. * reduce the max loaded cpu below the average load, as either of these
  2813. * actions would just result in more rebalancing later, and ping-pong
  2814. * tasks around. Thus we look for the minimum possible imbalance.
  2815. * Negative imbalances (*we* are more loaded than anyone else) will
  2816. * be counted as no imbalance for these purposes -- we can't fix that
  2817. * by pulling tasks to us. Be careful of negative numbers as they'll
  2818. * appear as very large values with unsigned longs.
  2819. */
  2820. if (max_load <= busiest_load_per_task)
  2821. goto out_balanced;
  2822. /*
  2823. * In the presence of smp nice balancing, certain scenarios can have
  2824. * max load less than avg load(as we skip the groups at or below
  2825. * its cpu_power, while calculating max_load..)
  2826. */
  2827. if (max_load < avg_load) {
  2828. *imbalance = 0;
  2829. goto small_imbalance;
  2830. }
  2831. /* Don't want to pull so many tasks that a group would go idle */
  2832. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2833. /* How much load to actually move to equalise the imbalance */
  2834. *imbalance = min(max_pull * busiest->__cpu_power,
  2835. (avg_load - this_load) * this->__cpu_power)
  2836. / SCHED_LOAD_SCALE;
  2837. /*
  2838. * if *imbalance is less than the average load per runnable task
  2839. * there is no gaurantee that any tasks will be moved so we'll have
  2840. * a think about bumping its value to force at least one task to be
  2841. * moved
  2842. */
  2843. if (*imbalance < busiest_load_per_task) {
  2844. unsigned long tmp, pwr_now, pwr_move;
  2845. unsigned int imbn;
  2846. small_imbalance:
  2847. pwr_move = pwr_now = 0;
  2848. imbn = 2;
  2849. if (this_nr_running) {
  2850. this_load_per_task /= this_nr_running;
  2851. if (busiest_load_per_task > this_load_per_task)
  2852. imbn = 1;
  2853. } else
  2854. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2855. if (max_load - this_load + busiest_load_per_task >=
  2856. busiest_load_per_task * imbn) {
  2857. *imbalance = busiest_load_per_task;
  2858. return busiest;
  2859. }
  2860. /*
  2861. * OK, we don't have enough imbalance to justify moving tasks,
  2862. * however we may be able to increase total CPU power used by
  2863. * moving them.
  2864. */
  2865. pwr_now += busiest->__cpu_power *
  2866. min(busiest_load_per_task, max_load);
  2867. pwr_now += this->__cpu_power *
  2868. min(this_load_per_task, this_load);
  2869. pwr_now /= SCHED_LOAD_SCALE;
  2870. /* Amount of load we'd subtract */
  2871. tmp = sg_div_cpu_power(busiest,
  2872. busiest_load_per_task * SCHED_LOAD_SCALE);
  2873. if (max_load > tmp)
  2874. pwr_move += busiest->__cpu_power *
  2875. min(busiest_load_per_task, max_load - tmp);
  2876. /* Amount of load we'd add */
  2877. if (max_load * busiest->__cpu_power <
  2878. busiest_load_per_task * SCHED_LOAD_SCALE)
  2879. tmp = sg_div_cpu_power(this,
  2880. max_load * busiest->__cpu_power);
  2881. else
  2882. tmp = sg_div_cpu_power(this,
  2883. busiest_load_per_task * SCHED_LOAD_SCALE);
  2884. pwr_move += this->__cpu_power *
  2885. min(this_load_per_task, this_load + tmp);
  2886. pwr_move /= SCHED_LOAD_SCALE;
  2887. /* Move if we gain throughput */
  2888. if (pwr_move > pwr_now)
  2889. *imbalance = busiest_load_per_task;
  2890. }
  2891. return busiest;
  2892. out_balanced:
  2893. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2894. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2895. goto ret;
  2896. if (this == group_leader && group_leader != group_min) {
  2897. *imbalance = min_load_per_task;
  2898. return group_min;
  2899. }
  2900. #endif
  2901. ret:
  2902. *imbalance = 0;
  2903. return NULL;
  2904. }
  2905. /*
  2906. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2907. */
  2908. static struct rq *
  2909. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2910. unsigned long imbalance, const cpumask_t *cpus)
  2911. {
  2912. struct rq *busiest = NULL, *rq;
  2913. unsigned long max_load = 0;
  2914. int i;
  2915. for_each_cpu_mask_nr(i, group->cpumask) {
  2916. unsigned long wl;
  2917. if (!cpu_isset(i, *cpus))
  2918. continue;
  2919. rq = cpu_rq(i);
  2920. wl = weighted_cpuload(i);
  2921. if (rq->nr_running == 1 && wl > imbalance)
  2922. continue;
  2923. if (wl > max_load) {
  2924. max_load = wl;
  2925. busiest = rq;
  2926. }
  2927. }
  2928. return busiest;
  2929. }
  2930. /*
  2931. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2932. * so long as it is large enough.
  2933. */
  2934. #define MAX_PINNED_INTERVAL 512
  2935. /*
  2936. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2937. * tasks if there is an imbalance.
  2938. */
  2939. static int load_balance(int this_cpu, struct rq *this_rq,
  2940. struct sched_domain *sd, enum cpu_idle_type idle,
  2941. int *balance, cpumask_t *cpus)
  2942. {
  2943. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2944. struct sched_group *group;
  2945. unsigned long imbalance;
  2946. struct rq *busiest;
  2947. unsigned long flags;
  2948. cpus_setall(*cpus);
  2949. /*
  2950. * When power savings policy is enabled for the parent domain, idle
  2951. * sibling can pick up load irrespective of busy siblings. In this case,
  2952. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2953. * portraying it as CPU_NOT_IDLE.
  2954. */
  2955. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2956. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2957. sd_idle = 1;
  2958. schedstat_inc(sd, lb_count[idle]);
  2959. redo:
  2960. update_shares(sd);
  2961. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2962. cpus, balance);
  2963. if (*balance == 0)
  2964. goto out_balanced;
  2965. if (!group) {
  2966. schedstat_inc(sd, lb_nobusyg[idle]);
  2967. goto out_balanced;
  2968. }
  2969. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2970. if (!busiest) {
  2971. schedstat_inc(sd, lb_nobusyq[idle]);
  2972. goto out_balanced;
  2973. }
  2974. BUG_ON(busiest == this_rq);
  2975. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2976. ld_moved = 0;
  2977. if (busiest->nr_running > 1) {
  2978. /*
  2979. * Attempt to move tasks. If find_busiest_group has found
  2980. * an imbalance but busiest->nr_running <= 1, the group is
  2981. * still unbalanced. ld_moved simply stays zero, so it is
  2982. * correctly treated as an imbalance.
  2983. */
  2984. local_irq_save(flags);
  2985. double_rq_lock(this_rq, busiest);
  2986. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2987. imbalance, sd, idle, &all_pinned);
  2988. double_rq_unlock(this_rq, busiest);
  2989. local_irq_restore(flags);
  2990. /*
  2991. * some other cpu did the load balance for us.
  2992. */
  2993. if (ld_moved && this_cpu != smp_processor_id())
  2994. resched_cpu(this_cpu);
  2995. /* All tasks on this runqueue were pinned by CPU affinity */
  2996. if (unlikely(all_pinned)) {
  2997. cpu_clear(cpu_of(busiest), *cpus);
  2998. if (!cpus_empty(*cpus))
  2999. goto redo;
  3000. goto out_balanced;
  3001. }
  3002. }
  3003. if (!ld_moved) {
  3004. schedstat_inc(sd, lb_failed[idle]);
  3005. sd->nr_balance_failed++;
  3006. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3007. spin_lock_irqsave(&busiest->lock, flags);
  3008. /* don't kick the migration_thread, if the curr
  3009. * task on busiest cpu can't be moved to this_cpu
  3010. */
  3011. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3012. spin_unlock_irqrestore(&busiest->lock, flags);
  3013. all_pinned = 1;
  3014. goto out_one_pinned;
  3015. }
  3016. if (!busiest->active_balance) {
  3017. busiest->active_balance = 1;
  3018. busiest->push_cpu = this_cpu;
  3019. active_balance = 1;
  3020. }
  3021. spin_unlock_irqrestore(&busiest->lock, flags);
  3022. if (active_balance)
  3023. wake_up_process(busiest->migration_thread);
  3024. /*
  3025. * We've kicked active balancing, reset the failure
  3026. * counter.
  3027. */
  3028. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3029. }
  3030. } else
  3031. sd->nr_balance_failed = 0;
  3032. if (likely(!active_balance)) {
  3033. /* We were unbalanced, so reset the balancing interval */
  3034. sd->balance_interval = sd->min_interval;
  3035. } else {
  3036. /*
  3037. * If we've begun active balancing, start to back off. This
  3038. * case may not be covered by the all_pinned logic if there
  3039. * is only 1 task on the busy runqueue (because we don't call
  3040. * move_tasks).
  3041. */
  3042. if (sd->balance_interval < sd->max_interval)
  3043. sd->balance_interval *= 2;
  3044. }
  3045. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3046. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3047. ld_moved = -1;
  3048. goto out;
  3049. out_balanced:
  3050. schedstat_inc(sd, lb_balanced[idle]);
  3051. sd->nr_balance_failed = 0;
  3052. out_one_pinned:
  3053. /* tune up the balancing interval */
  3054. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3055. (sd->balance_interval < sd->max_interval))
  3056. sd->balance_interval *= 2;
  3057. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3058. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3059. ld_moved = -1;
  3060. else
  3061. ld_moved = 0;
  3062. out:
  3063. if (ld_moved)
  3064. update_shares(sd);
  3065. return ld_moved;
  3066. }
  3067. /*
  3068. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3069. * tasks if there is an imbalance.
  3070. *
  3071. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3072. * this_rq is locked.
  3073. */
  3074. static int
  3075. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3076. cpumask_t *cpus)
  3077. {
  3078. struct sched_group *group;
  3079. struct rq *busiest = NULL;
  3080. unsigned long imbalance;
  3081. int ld_moved = 0;
  3082. int sd_idle = 0;
  3083. int all_pinned = 0;
  3084. cpus_setall(*cpus);
  3085. /*
  3086. * When power savings policy is enabled for the parent domain, idle
  3087. * sibling can pick up load irrespective of busy siblings. In this case,
  3088. * let the state of idle sibling percolate up as IDLE, instead of
  3089. * portraying it as CPU_NOT_IDLE.
  3090. */
  3091. if (sd->flags & SD_SHARE_CPUPOWER &&
  3092. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3093. sd_idle = 1;
  3094. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3095. redo:
  3096. update_shares_locked(this_rq, sd);
  3097. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3098. &sd_idle, cpus, NULL);
  3099. if (!group) {
  3100. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3101. goto out_balanced;
  3102. }
  3103. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3104. if (!busiest) {
  3105. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3106. goto out_balanced;
  3107. }
  3108. BUG_ON(busiest == this_rq);
  3109. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3110. ld_moved = 0;
  3111. if (busiest->nr_running > 1) {
  3112. /* Attempt to move tasks */
  3113. double_lock_balance(this_rq, busiest);
  3114. /* this_rq->clock is already updated */
  3115. update_rq_clock(busiest);
  3116. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3117. imbalance, sd, CPU_NEWLY_IDLE,
  3118. &all_pinned);
  3119. double_unlock_balance(this_rq, busiest);
  3120. if (unlikely(all_pinned)) {
  3121. cpu_clear(cpu_of(busiest), *cpus);
  3122. if (!cpus_empty(*cpus))
  3123. goto redo;
  3124. }
  3125. }
  3126. if (!ld_moved) {
  3127. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3128. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3129. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3130. return -1;
  3131. } else
  3132. sd->nr_balance_failed = 0;
  3133. update_shares_locked(this_rq, sd);
  3134. return ld_moved;
  3135. out_balanced:
  3136. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3137. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3138. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3139. return -1;
  3140. sd->nr_balance_failed = 0;
  3141. return 0;
  3142. }
  3143. /*
  3144. * idle_balance is called by schedule() if this_cpu is about to become
  3145. * idle. Attempts to pull tasks from other CPUs.
  3146. */
  3147. static void idle_balance(int this_cpu, struct rq *this_rq)
  3148. {
  3149. struct sched_domain *sd;
  3150. int pulled_task = -1;
  3151. unsigned long next_balance = jiffies + HZ;
  3152. cpumask_t tmpmask;
  3153. for_each_domain(this_cpu, sd) {
  3154. unsigned long interval;
  3155. if (!(sd->flags & SD_LOAD_BALANCE))
  3156. continue;
  3157. if (sd->flags & SD_BALANCE_NEWIDLE)
  3158. /* If we've pulled tasks over stop searching: */
  3159. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3160. sd, &tmpmask);
  3161. interval = msecs_to_jiffies(sd->balance_interval);
  3162. if (time_after(next_balance, sd->last_balance + interval))
  3163. next_balance = sd->last_balance + interval;
  3164. if (pulled_task)
  3165. break;
  3166. }
  3167. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3168. /*
  3169. * We are going idle. next_balance may be set based on
  3170. * a busy processor. So reset next_balance.
  3171. */
  3172. this_rq->next_balance = next_balance;
  3173. }
  3174. }
  3175. /*
  3176. * active_load_balance is run by migration threads. It pushes running tasks
  3177. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3178. * running on each physical CPU where possible, and avoids physical /
  3179. * logical imbalances.
  3180. *
  3181. * Called with busiest_rq locked.
  3182. */
  3183. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3184. {
  3185. int target_cpu = busiest_rq->push_cpu;
  3186. struct sched_domain *sd;
  3187. struct rq *target_rq;
  3188. /* Is there any task to move? */
  3189. if (busiest_rq->nr_running <= 1)
  3190. return;
  3191. target_rq = cpu_rq(target_cpu);
  3192. /*
  3193. * This condition is "impossible", if it occurs
  3194. * we need to fix it. Originally reported by
  3195. * Bjorn Helgaas on a 128-cpu setup.
  3196. */
  3197. BUG_ON(busiest_rq == target_rq);
  3198. /* move a task from busiest_rq to target_rq */
  3199. double_lock_balance(busiest_rq, target_rq);
  3200. update_rq_clock(busiest_rq);
  3201. update_rq_clock(target_rq);
  3202. /* Search for an sd spanning us and the target CPU. */
  3203. for_each_domain(target_cpu, sd) {
  3204. if ((sd->flags & SD_LOAD_BALANCE) &&
  3205. cpu_isset(busiest_cpu, sd->span))
  3206. break;
  3207. }
  3208. if (likely(sd)) {
  3209. schedstat_inc(sd, alb_count);
  3210. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3211. sd, CPU_IDLE))
  3212. schedstat_inc(sd, alb_pushed);
  3213. else
  3214. schedstat_inc(sd, alb_failed);
  3215. }
  3216. double_unlock_balance(busiest_rq, target_rq);
  3217. }
  3218. #ifdef CONFIG_NO_HZ
  3219. static struct {
  3220. atomic_t load_balancer;
  3221. cpumask_t cpu_mask;
  3222. } nohz ____cacheline_aligned = {
  3223. .load_balancer = ATOMIC_INIT(-1),
  3224. .cpu_mask = CPU_MASK_NONE,
  3225. };
  3226. /*
  3227. * This routine will try to nominate the ilb (idle load balancing)
  3228. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3229. * load balancing on behalf of all those cpus. If all the cpus in the system
  3230. * go into this tickless mode, then there will be no ilb owner (as there is
  3231. * no need for one) and all the cpus will sleep till the next wakeup event
  3232. * arrives...
  3233. *
  3234. * For the ilb owner, tick is not stopped. And this tick will be used
  3235. * for idle load balancing. ilb owner will still be part of
  3236. * nohz.cpu_mask..
  3237. *
  3238. * While stopping the tick, this cpu will become the ilb owner if there
  3239. * is no other owner. And will be the owner till that cpu becomes busy
  3240. * or if all cpus in the system stop their ticks at which point
  3241. * there is no need for ilb owner.
  3242. *
  3243. * When the ilb owner becomes busy, it nominates another owner, during the
  3244. * next busy scheduler_tick()
  3245. */
  3246. int select_nohz_load_balancer(int stop_tick)
  3247. {
  3248. int cpu = smp_processor_id();
  3249. if (stop_tick) {
  3250. cpu_set(cpu, nohz.cpu_mask);
  3251. cpu_rq(cpu)->in_nohz_recently = 1;
  3252. /*
  3253. * If we are going offline and still the leader, give up!
  3254. */
  3255. if (!cpu_active(cpu) &&
  3256. atomic_read(&nohz.load_balancer) == cpu) {
  3257. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3258. BUG();
  3259. return 0;
  3260. }
  3261. /* time for ilb owner also to sleep */
  3262. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3263. if (atomic_read(&nohz.load_balancer) == cpu)
  3264. atomic_set(&nohz.load_balancer, -1);
  3265. return 0;
  3266. }
  3267. if (atomic_read(&nohz.load_balancer) == -1) {
  3268. /* make me the ilb owner */
  3269. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3270. return 1;
  3271. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3272. return 1;
  3273. } else {
  3274. if (!cpu_isset(cpu, nohz.cpu_mask))
  3275. return 0;
  3276. cpu_clear(cpu, nohz.cpu_mask);
  3277. if (atomic_read(&nohz.load_balancer) == cpu)
  3278. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3279. BUG();
  3280. }
  3281. return 0;
  3282. }
  3283. #endif
  3284. static DEFINE_SPINLOCK(balancing);
  3285. /*
  3286. * It checks each scheduling domain to see if it is due to be balanced,
  3287. * and initiates a balancing operation if so.
  3288. *
  3289. * Balancing parameters are set up in arch_init_sched_domains.
  3290. */
  3291. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3292. {
  3293. int balance = 1;
  3294. struct rq *rq = cpu_rq(cpu);
  3295. unsigned long interval;
  3296. struct sched_domain *sd;
  3297. /* Earliest time when we have to do rebalance again */
  3298. unsigned long next_balance = jiffies + 60*HZ;
  3299. int update_next_balance = 0;
  3300. int need_serialize;
  3301. cpumask_t tmp;
  3302. for_each_domain(cpu, sd) {
  3303. if (!(sd->flags & SD_LOAD_BALANCE))
  3304. continue;
  3305. interval = sd->balance_interval;
  3306. if (idle != CPU_IDLE)
  3307. interval *= sd->busy_factor;
  3308. /* scale ms to jiffies */
  3309. interval = msecs_to_jiffies(interval);
  3310. if (unlikely(!interval))
  3311. interval = 1;
  3312. if (interval > HZ*NR_CPUS/10)
  3313. interval = HZ*NR_CPUS/10;
  3314. need_serialize = sd->flags & SD_SERIALIZE;
  3315. if (need_serialize) {
  3316. if (!spin_trylock(&balancing))
  3317. goto out;
  3318. }
  3319. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3320. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3321. /*
  3322. * We've pulled tasks over so either we're no
  3323. * longer idle, or one of our SMT siblings is
  3324. * not idle.
  3325. */
  3326. idle = CPU_NOT_IDLE;
  3327. }
  3328. sd->last_balance = jiffies;
  3329. }
  3330. if (need_serialize)
  3331. spin_unlock(&balancing);
  3332. out:
  3333. if (time_after(next_balance, sd->last_balance + interval)) {
  3334. next_balance = sd->last_balance + interval;
  3335. update_next_balance = 1;
  3336. }
  3337. /*
  3338. * Stop the load balance at this level. There is another
  3339. * CPU in our sched group which is doing load balancing more
  3340. * actively.
  3341. */
  3342. if (!balance)
  3343. break;
  3344. }
  3345. /*
  3346. * next_balance will be updated only when there is a need.
  3347. * When the cpu is attached to null domain for ex, it will not be
  3348. * updated.
  3349. */
  3350. if (likely(update_next_balance))
  3351. rq->next_balance = next_balance;
  3352. }
  3353. /*
  3354. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3355. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3356. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3357. */
  3358. static void run_rebalance_domains(struct softirq_action *h)
  3359. {
  3360. int this_cpu = smp_processor_id();
  3361. struct rq *this_rq = cpu_rq(this_cpu);
  3362. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3363. CPU_IDLE : CPU_NOT_IDLE;
  3364. rebalance_domains(this_cpu, idle);
  3365. #ifdef CONFIG_NO_HZ
  3366. /*
  3367. * If this cpu is the owner for idle load balancing, then do the
  3368. * balancing on behalf of the other idle cpus whose ticks are
  3369. * stopped.
  3370. */
  3371. if (this_rq->idle_at_tick &&
  3372. atomic_read(&nohz.load_balancer) == this_cpu) {
  3373. cpumask_t cpus = nohz.cpu_mask;
  3374. struct rq *rq;
  3375. int balance_cpu;
  3376. cpu_clear(this_cpu, cpus);
  3377. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3378. /*
  3379. * If this cpu gets work to do, stop the load balancing
  3380. * work being done for other cpus. Next load
  3381. * balancing owner will pick it up.
  3382. */
  3383. if (need_resched())
  3384. break;
  3385. rebalance_domains(balance_cpu, CPU_IDLE);
  3386. rq = cpu_rq(balance_cpu);
  3387. if (time_after(this_rq->next_balance, rq->next_balance))
  3388. this_rq->next_balance = rq->next_balance;
  3389. }
  3390. }
  3391. #endif
  3392. }
  3393. /*
  3394. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3395. *
  3396. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3397. * idle load balancing owner or decide to stop the periodic load balancing,
  3398. * if the whole system is idle.
  3399. */
  3400. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3401. {
  3402. #ifdef CONFIG_NO_HZ
  3403. /*
  3404. * If we were in the nohz mode recently and busy at the current
  3405. * scheduler tick, then check if we need to nominate new idle
  3406. * load balancer.
  3407. */
  3408. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3409. rq->in_nohz_recently = 0;
  3410. if (atomic_read(&nohz.load_balancer) == cpu) {
  3411. cpu_clear(cpu, nohz.cpu_mask);
  3412. atomic_set(&nohz.load_balancer, -1);
  3413. }
  3414. if (atomic_read(&nohz.load_balancer) == -1) {
  3415. /*
  3416. * simple selection for now: Nominate the
  3417. * first cpu in the nohz list to be the next
  3418. * ilb owner.
  3419. *
  3420. * TBD: Traverse the sched domains and nominate
  3421. * the nearest cpu in the nohz.cpu_mask.
  3422. */
  3423. int ilb = first_cpu(nohz.cpu_mask);
  3424. if (ilb < nr_cpu_ids)
  3425. resched_cpu(ilb);
  3426. }
  3427. }
  3428. /*
  3429. * If this cpu is idle and doing idle load balancing for all the
  3430. * cpus with ticks stopped, is it time for that to stop?
  3431. */
  3432. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3433. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3434. resched_cpu(cpu);
  3435. return;
  3436. }
  3437. /*
  3438. * If this cpu is idle and the idle load balancing is done by
  3439. * someone else, then no need raise the SCHED_SOFTIRQ
  3440. */
  3441. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3442. cpu_isset(cpu, nohz.cpu_mask))
  3443. return;
  3444. #endif
  3445. if (time_after_eq(jiffies, rq->next_balance))
  3446. raise_softirq(SCHED_SOFTIRQ);
  3447. }
  3448. #else /* CONFIG_SMP */
  3449. /*
  3450. * on UP we do not need to balance between CPUs:
  3451. */
  3452. static inline void idle_balance(int cpu, struct rq *rq)
  3453. {
  3454. }
  3455. #endif
  3456. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3457. EXPORT_PER_CPU_SYMBOL(kstat);
  3458. /*
  3459. * Return any ns on the sched_clock that have not yet been banked in
  3460. * @p in case that task is currently running.
  3461. */
  3462. unsigned long long task_delta_exec(struct task_struct *p)
  3463. {
  3464. unsigned long flags;
  3465. struct rq *rq;
  3466. u64 ns = 0;
  3467. rq = task_rq_lock(p, &flags);
  3468. if (task_current(rq, p)) {
  3469. u64 delta_exec;
  3470. update_rq_clock(rq);
  3471. delta_exec = rq->clock - p->se.exec_start;
  3472. if ((s64)delta_exec > 0)
  3473. ns = delta_exec;
  3474. }
  3475. task_rq_unlock(rq, &flags);
  3476. return ns;
  3477. }
  3478. /*
  3479. * Account user cpu time to a process.
  3480. * @p: the process that the cpu time gets accounted to
  3481. * @cputime: the cpu time spent in user space since the last update
  3482. */
  3483. void account_user_time(struct task_struct *p, cputime_t cputime)
  3484. {
  3485. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3486. cputime64_t tmp;
  3487. p->utime = cputime_add(p->utime, cputime);
  3488. account_group_user_time(p, cputime);
  3489. /* Add user time to cpustat. */
  3490. tmp = cputime_to_cputime64(cputime);
  3491. if (TASK_NICE(p) > 0)
  3492. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3493. else
  3494. cpustat->user = cputime64_add(cpustat->user, tmp);
  3495. /* Account for user time used */
  3496. acct_update_integrals(p);
  3497. }
  3498. /*
  3499. * Account guest cpu time to a process.
  3500. * @p: the process that the cpu time gets accounted to
  3501. * @cputime: the cpu time spent in virtual machine since the last update
  3502. */
  3503. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3504. {
  3505. cputime64_t tmp;
  3506. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3507. tmp = cputime_to_cputime64(cputime);
  3508. p->utime = cputime_add(p->utime, cputime);
  3509. account_group_user_time(p, cputime);
  3510. p->gtime = cputime_add(p->gtime, cputime);
  3511. cpustat->user = cputime64_add(cpustat->user, tmp);
  3512. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3513. }
  3514. /*
  3515. * Account scaled user cpu time to a process.
  3516. * @p: the process that the cpu time gets accounted to
  3517. * @cputime: the cpu time spent in user space since the last update
  3518. */
  3519. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3520. {
  3521. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3522. }
  3523. /*
  3524. * Account system cpu time to a process.
  3525. * @p: the process that the cpu time gets accounted to
  3526. * @hardirq_offset: the offset to subtract from hardirq_count()
  3527. * @cputime: the cpu time spent in kernel space since the last update
  3528. */
  3529. void account_system_time(struct task_struct *p, int hardirq_offset,
  3530. cputime_t cputime)
  3531. {
  3532. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3533. struct rq *rq = this_rq();
  3534. cputime64_t tmp;
  3535. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3536. account_guest_time(p, cputime);
  3537. return;
  3538. }
  3539. p->stime = cputime_add(p->stime, cputime);
  3540. account_group_system_time(p, cputime);
  3541. /* Add system time to cpustat. */
  3542. tmp = cputime_to_cputime64(cputime);
  3543. if (hardirq_count() - hardirq_offset)
  3544. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3545. else if (softirq_count())
  3546. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3547. else if (p != rq->idle)
  3548. cpustat->system = cputime64_add(cpustat->system, tmp);
  3549. else if (atomic_read(&rq->nr_iowait) > 0)
  3550. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3551. else
  3552. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3553. /* Account for system time used */
  3554. acct_update_integrals(p);
  3555. }
  3556. /*
  3557. * Account scaled system cpu time to a process.
  3558. * @p: the process that the cpu time gets accounted to
  3559. * @hardirq_offset: the offset to subtract from hardirq_count()
  3560. * @cputime: the cpu time spent in kernel space since the last update
  3561. */
  3562. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3563. {
  3564. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3565. }
  3566. /*
  3567. * Account for involuntary wait time.
  3568. * @p: the process from which the cpu time has been stolen
  3569. * @steal: the cpu time spent in involuntary wait
  3570. */
  3571. void account_steal_time(struct task_struct *p, cputime_t steal)
  3572. {
  3573. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3574. cputime64_t tmp = cputime_to_cputime64(steal);
  3575. struct rq *rq = this_rq();
  3576. if (p == rq->idle) {
  3577. p->stime = cputime_add(p->stime, steal);
  3578. account_group_system_time(p, steal);
  3579. if (atomic_read(&rq->nr_iowait) > 0)
  3580. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3581. else
  3582. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3583. } else
  3584. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3585. }
  3586. /*
  3587. * Use precise platform statistics if available:
  3588. */
  3589. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3590. cputime_t task_utime(struct task_struct *p)
  3591. {
  3592. return p->utime;
  3593. }
  3594. cputime_t task_stime(struct task_struct *p)
  3595. {
  3596. return p->stime;
  3597. }
  3598. #else
  3599. cputime_t task_utime(struct task_struct *p)
  3600. {
  3601. clock_t utime = cputime_to_clock_t(p->utime),
  3602. total = utime + cputime_to_clock_t(p->stime);
  3603. u64 temp;
  3604. /*
  3605. * Use CFS's precise accounting:
  3606. */
  3607. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3608. if (total) {
  3609. temp *= utime;
  3610. do_div(temp, total);
  3611. }
  3612. utime = (clock_t)temp;
  3613. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3614. return p->prev_utime;
  3615. }
  3616. cputime_t task_stime(struct task_struct *p)
  3617. {
  3618. clock_t stime;
  3619. /*
  3620. * Use CFS's precise accounting. (we subtract utime from
  3621. * the total, to make sure the total observed by userspace
  3622. * grows monotonically - apps rely on that):
  3623. */
  3624. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3625. cputime_to_clock_t(task_utime(p));
  3626. if (stime >= 0)
  3627. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3628. return p->prev_stime;
  3629. }
  3630. #endif
  3631. inline cputime_t task_gtime(struct task_struct *p)
  3632. {
  3633. return p->gtime;
  3634. }
  3635. /*
  3636. * This function gets called by the timer code, with HZ frequency.
  3637. * We call it with interrupts disabled.
  3638. *
  3639. * It also gets called by the fork code, when changing the parent's
  3640. * timeslices.
  3641. */
  3642. void scheduler_tick(void)
  3643. {
  3644. int cpu = smp_processor_id();
  3645. struct rq *rq = cpu_rq(cpu);
  3646. struct task_struct *curr = rq->curr;
  3647. sched_clock_tick();
  3648. spin_lock(&rq->lock);
  3649. update_rq_clock(rq);
  3650. update_cpu_load(rq);
  3651. curr->sched_class->task_tick(rq, curr, 0);
  3652. spin_unlock(&rq->lock);
  3653. #ifdef CONFIG_SMP
  3654. rq->idle_at_tick = idle_cpu(cpu);
  3655. trigger_load_balance(rq, cpu);
  3656. #endif
  3657. }
  3658. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3659. defined(CONFIG_PREEMPT_TRACER))
  3660. static inline unsigned long get_parent_ip(unsigned long addr)
  3661. {
  3662. if (in_lock_functions(addr)) {
  3663. addr = CALLER_ADDR2;
  3664. if (in_lock_functions(addr))
  3665. addr = CALLER_ADDR3;
  3666. }
  3667. return addr;
  3668. }
  3669. void __kprobes add_preempt_count(int val)
  3670. {
  3671. #ifdef CONFIG_DEBUG_PREEMPT
  3672. /*
  3673. * Underflow?
  3674. */
  3675. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3676. return;
  3677. #endif
  3678. preempt_count() += val;
  3679. #ifdef CONFIG_DEBUG_PREEMPT
  3680. /*
  3681. * Spinlock count overflowing soon?
  3682. */
  3683. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3684. PREEMPT_MASK - 10);
  3685. #endif
  3686. if (preempt_count() == val)
  3687. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3688. }
  3689. EXPORT_SYMBOL(add_preempt_count);
  3690. void __kprobes sub_preempt_count(int val)
  3691. {
  3692. #ifdef CONFIG_DEBUG_PREEMPT
  3693. /*
  3694. * Underflow?
  3695. */
  3696. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3697. return;
  3698. /*
  3699. * Is the spinlock portion underflowing?
  3700. */
  3701. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3702. !(preempt_count() & PREEMPT_MASK)))
  3703. return;
  3704. #endif
  3705. if (preempt_count() == val)
  3706. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3707. preempt_count() -= val;
  3708. }
  3709. EXPORT_SYMBOL(sub_preempt_count);
  3710. #endif
  3711. /*
  3712. * Print scheduling while atomic bug:
  3713. */
  3714. static noinline void __schedule_bug(struct task_struct *prev)
  3715. {
  3716. struct pt_regs *regs = get_irq_regs();
  3717. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3718. prev->comm, prev->pid, preempt_count());
  3719. debug_show_held_locks(prev);
  3720. print_modules();
  3721. if (irqs_disabled())
  3722. print_irqtrace_events(prev);
  3723. if (regs)
  3724. show_regs(regs);
  3725. else
  3726. dump_stack();
  3727. }
  3728. /*
  3729. * Various schedule()-time debugging checks and statistics:
  3730. */
  3731. static inline void schedule_debug(struct task_struct *prev)
  3732. {
  3733. /*
  3734. * Test if we are atomic. Since do_exit() needs to call into
  3735. * schedule() atomically, we ignore that path for now.
  3736. * Otherwise, whine if we are scheduling when we should not be.
  3737. */
  3738. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3739. __schedule_bug(prev);
  3740. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3741. schedstat_inc(this_rq(), sched_count);
  3742. #ifdef CONFIG_SCHEDSTATS
  3743. if (unlikely(prev->lock_depth >= 0)) {
  3744. schedstat_inc(this_rq(), bkl_count);
  3745. schedstat_inc(prev, sched_info.bkl_count);
  3746. }
  3747. #endif
  3748. }
  3749. /*
  3750. * Pick up the highest-prio task:
  3751. */
  3752. static inline struct task_struct *
  3753. pick_next_task(struct rq *rq, struct task_struct *prev)
  3754. {
  3755. const struct sched_class *class;
  3756. struct task_struct *p;
  3757. /*
  3758. * Optimization: we know that if all tasks are in
  3759. * the fair class we can call that function directly:
  3760. */
  3761. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3762. p = fair_sched_class.pick_next_task(rq);
  3763. if (likely(p))
  3764. return p;
  3765. }
  3766. class = sched_class_highest;
  3767. for ( ; ; ) {
  3768. p = class->pick_next_task(rq);
  3769. if (p)
  3770. return p;
  3771. /*
  3772. * Will never be NULL as the idle class always
  3773. * returns a non-NULL p:
  3774. */
  3775. class = class->next;
  3776. }
  3777. }
  3778. /*
  3779. * schedule() is the main scheduler function.
  3780. */
  3781. asmlinkage void __sched schedule(void)
  3782. {
  3783. struct task_struct *prev, *next;
  3784. unsigned long *switch_count;
  3785. struct rq *rq;
  3786. int cpu;
  3787. need_resched:
  3788. preempt_disable();
  3789. cpu = smp_processor_id();
  3790. rq = cpu_rq(cpu);
  3791. rcu_qsctr_inc(cpu);
  3792. prev = rq->curr;
  3793. switch_count = &prev->nivcsw;
  3794. release_kernel_lock(prev);
  3795. need_resched_nonpreemptible:
  3796. schedule_debug(prev);
  3797. if (sched_feat(HRTICK))
  3798. hrtick_clear(rq);
  3799. spin_lock_irq(&rq->lock);
  3800. update_rq_clock(rq);
  3801. clear_tsk_need_resched(prev);
  3802. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3803. if (unlikely(signal_pending_state(prev->state, prev)))
  3804. prev->state = TASK_RUNNING;
  3805. else
  3806. deactivate_task(rq, prev, 1);
  3807. switch_count = &prev->nvcsw;
  3808. }
  3809. #ifdef CONFIG_SMP
  3810. if (prev->sched_class->pre_schedule)
  3811. prev->sched_class->pre_schedule(rq, prev);
  3812. #endif
  3813. if (unlikely(!rq->nr_running))
  3814. idle_balance(cpu, rq);
  3815. prev->sched_class->put_prev_task(rq, prev);
  3816. next = pick_next_task(rq, prev);
  3817. if (likely(prev != next)) {
  3818. sched_info_switch(prev, next);
  3819. rq->nr_switches++;
  3820. rq->curr = next;
  3821. ++*switch_count;
  3822. context_switch(rq, prev, next); /* unlocks the rq */
  3823. /*
  3824. * the context switch might have flipped the stack from under
  3825. * us, hence refresh the local variables.
  3826. */
  3827. cpu = smp_processor_id();
  3828. rq = cpu_rq(cpu);
  3829. } else
  3830. spin_unlock_irq(&rq->lock);
  3831. if (unlikely(reacquire_kernel_lock(current) < 0))
  3832. goto need_resched_nonpreemptible;
  3833. preempt_enable_no_resched();
  3834. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3835. goto need_resched;
  3836. }
  3837. EXPORT_SYMBOL(schedule);
  3838. #ifdef CONFIG_PREEMPT
  3839. /*
  3840. * this is the entry point to schedule() from in-kernel preemption
  3841. * off of preempt_enable. Kernel preemptions off return from interrupt
  3842. * occur there and call schedule directly.
  3843. */
  3844. asmlinkage void __sched preempt_schedule(void)
  3845. {
  3846. struct thread_info *ti = current_thread_info();
  3847. /*
  3848. * If there is a non-zero preempt_count or interrupts are disabled,
  3849. * we do not want to preempt the current task. Just return..
  3850. */
  3851. if (likely(ti->preempt_count || irqs_disabled()))
  3852. return;
  3853. do {
  3854. add_preempt_count(PREEMPT_ACTIVE);
  3855. schedule();
  3856. sub_preempt_count(PREEMPT_ACTIVE);
  3857. /*
  3858. * Check again in case we missed a preemption opportunity
  3859. * between schedule and now.
  3860. */
  3861. barrier();
  3862. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3863. }
  3864. EXPORT_SYMBOL(preempt_schedule);
  3865. /*
  3866. * this is the entry point to schedule() from kernel preemption
  3867. * off of irq context.
  3868. * Note, that this is called and return with irqs disabled. This will
  3869. * protect us against recursive calling from irq.
  3870. */
  3871. asmlinkage void __sched preempt_schedule_irq(void)
  3872. {
  3873. struct thread_info *ti = current_thread_info();
  3874. /* Catch callers which need to be fixed */
  3875. BUG_ON(ti->preempt_count || !irqs_disabled());
  3876. do {
  3877. add_preempt_count(PREEMPT_ACTIVE);
  3878. local_irq_enable();
  3879. schedule();
  3880. local_irq_disable();
  3881. sub_preempt_count(PREEMPT_ACTIVE);
  3882. /*
  3883. * Check again in case we missed a preemption opportunity
  3884. * between schedule and now.
  3885. */
  3886. barrier();
  3887. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3888. }
  3889. #endif /* CONFIG_PREEMPT */
  3890. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3891. void *key)
  3892. {
  3893. return try_to_wake_up(curr->private, mode, sync);
  3894. }
  3895. EXPORT_SYMBOL(default_wake_function);
  3896. /*
  3897. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3898. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3899. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3900. *
  3901. * There are circumstances in which we can try to wake a task which has already
  3902. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3903. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3904. */
  3905. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3906. int nr_exclusive, int sync, void *key)
  3907. {
  3908. wait_queue_t *curr, *next;
  3909. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3910. unsigned flags = curr->flags;
  3911. if (curr->func(curr, mode, sync, key) &&
  3912. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3913. break;
  3914. }
  3915. }
  3916. /**
  3917. * __wake_up - wake up threads blocked on a waitqueue.
  3918. * @q: the waitqueue
  3919. * @mode: which threads
  3920. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3921. * @key: is directly passed to the wakeup function
  3922. */
  3923. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3924. int nr_exclusive, void *key)
  3925. {
  3926. unsigned long flags;
  3927. spin_lock_irqsave(&q->lock, flags);
  3928. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3929. spin_unlock_irqrestore(&q->lock, flags);
  3930. }
  3931. EXPORT_SYMBOL(__wake_up);
  3932. /*
  3933. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3934. */
  3935. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3936. {
  3937. __wake_up_common(q, mode, 1, 0, NULL);
  3938. }
  3939. /**
  3940. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3941. * @q: the waitqueue
  3942. * @mode: which threads
  3943. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3944. *
  3945. * The sync wakeup differs that the waker knows that it will schedule
  3946. * away soon, so while the target thread will be woken up, it will not
  3947. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3948. * with each other. This can prevent needless bouncing between CPUs.
  3949. *
  3950. * On UP it can prevent extra preemption.
  3951. */
  3952. void
  3953. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3954. {
  3955. unsigned long flags;
  3956. int sync = 1;
  3957. if (unlikely(!q))
  3958. return;
  3959. if (unlikely(!nr_exclusive))
  3960. sync = 0;
  3961. spin_lock_irqsave(&q->lock, flags);
  3962. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3963. spin_unlock_irqrestore(&q->lock, flags);
  3964. }
  3965. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3966. /**
  3967. * complete: - signals a single thread waiting on this completion
  3968. * @x: holds the state of this particular completion
  3969. *
  3970. * This will wake up a single thread waiting on this completion. Threads will be
  3971. * awakened in the same order in which they were queued.
  3972. *
  3973. * See also complete_all(), wait_for_completion() and related routines.
  3974. */
  3975. void complete(struct completion *x)
  3976. {
  3977. unsigned long flags;
  3978. spin_lock_irqsave(&x->wait.lock, flags);
  3979. x->done++;
  3980. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3981. spin_unlock_irqrestore(&x->wait.lock, flags);
  3982. }
  3983. EXPORT_SYMBOL(complete);
  3984. /**
  3985. * complete_all: - signals all threads waiting on this completion
  3986. * @x: holds the state of this particular completion
  3987. *
  3988. * This will wake up all threads waiting on this particular completion event.
  3989. */
  3990. void complete_all(struct completion *x)
  3991. {
  3992. unsigned long flags;
  3993. spin_lock_irqsave(&x->wait.lock, flags);
  3994. x->done += UINT_MAX/2;
  3995. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3996. spin_unlock_irqrestore(&x->wait.lock, flags);
  3997. }
  3998. EXPORT_SYMBOL(complete_all);
  3999. static inline long __sched
  4000. do_wait_for_common(struct completion *x, long timeout, int state)
  4001. {
  4002. if (!x->done) {
  4003. DECLARE_WAITQUEUE(wait, current);
  4004. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4005. __add_wait_queue_tail(&x->wait, &wait);
  4006. do {
  4007. if (signal_pending_state(state, current)) {
  4008. timeout = -ERESTARTSYS;
  4009. break;
  4010. }
  4011. __set_current_state(state);
  4012. spin_unlock_irq(&x->wait.lock);
  4013. timeout = schedule_timeout(timeout);
  4014. spin_lock_irq(&x->wait.lock);
  4015. } while (!x->done && timeout);
  4016. __remove_wait_queue(&x->wait, &wait);
  4017. if (!x->done)
  4018. return timeout;
  4019. }
  4020. x->done--;
  4021. return timeout ?: 1;
  4022. }
  4023. static long __sched
  4024. wait_for_common(struct completion *x, long timeout, int state)
  4025. {
  4026. might_sleep();
  4027. spin_lock_irq(&x->wait.lock);
  4028. timeout = do_wait_for_common(x, timeout, state);
  4029. spin_unlock_irq(&x->wait.lock);
  4030. return timeout;
  4031. }
  4032. /**
  4033. * wait_for_completion: - waits for completion of a task
  4034. * @x: holds the state of this particular completion
  4035. *
  4036. * This waits to be signaled for completion of a specific task. It is NOT
  4037. * interruptible and there is no timeout.
  4038. *
  4039. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4040. * and interrupt capability. Also see complete().
  4041. */
  4042. void __sched wait_for_completion(struct completion *x)
  4043. {
  4044. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4045. }
  4046. EXPORT_SYMBOL(wait_for_completion);
  4047. /**
  4048. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4049. * @x: holds the state of this particular completion
  4050. * @timeout: timeout value in jiffies
  4051. *
  4052. * This waits for either a completion of a specific task to be signaled or for a
  4053. * specified timeout to expire. The timeout is in jiffies. It is not
  4054. * interruptible.
  4055. */
  4056. unsigned long __sched
  4057. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4058. {
  4059. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4060. }
  4061. EXPORT_SYMBOL(wait_for_completion_timeout);
  4062. /**
  4063. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4064. * @x: holds the state of this particular completion
  4065. *
  4066. * This waits for completion of a specific task to be signaled. It is
  4067. * interruptible.
  4068. */
  4069. int __sched wait_for_completion_interruptible(struct completion *x)
  4070. {
  4071. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4072. if (t == -ERESTARTSYS)
  4073. return t;
  4074. return 0;
  4075. }
  4076. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4077. /**
  4078. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4079. * @x: holds the state of this particular completion
  4080. * @timeout: timeout value in jiffies
  4081. *
  4082. * This waits for either a completion of a specific task to be signaled or for a
  4083. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4084. */
  4085. unsigned long __sched
  4086. wait_for_completion_interruptible_timeout(struct completion *x,
  4087. unsigned long timeout)
  4088. {
  4089. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4090. }
  4091. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4092. /**
  4093. * wait_for_completion_killable: - waits for completion of a task (killable)
  4094. * @x: holds the state of this particular completion
  4095. *
  4096. * This waits to be signaled for completion of a specific task. It can be
  4097. * interrupted by a kill signal.
  4098. */
  4099. int __sched wait_for_completion_killable(struct completion *x)
  4100. {
  4101. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4102. if (t == -ERESTARTSYS)
  4103. return t;
  4104. return 0;
  4105. }
  4106. EXPORT_SYMBOL(wait_for_completion_killable);
  4107. /**
  4108. * try_wait_for_completion - try to decrement a completion without blocking
  4109. * @x: completion structure
  4110. *
  4111. * Returns: 0 if a decrement cannot be done without blocking
  4112. * 1 if a decrement succeeded.
  4113. *
  4114. * If a completion is being used as a counting completion,
  4115. * attempt to decrement the counter without blocking. This
  4116. * enables us to avoid waiting if the resource the completion
  4117. * is protecting is not available.
  4118. */
  4119. bool try_wait_for_completion(struct completion *x)
  4120. {
  4121. int ret = 1;
  4122. spin_lock_irq(&x->wait.lock);
  4123. if (!x->done)
  4124. ret = 0;
  4125. else
  4126. x->done--;
  4127. spin_unlock_irq(&x->wait.lock);
  4128. return ret;
  4129. }
  4130. EXPORT_SYMBOL(try_wait_for_completion);
  4131. /**
  4132. * completion_done - Test to see if a completion has any waiters
  4133. * @x: completion structure
  4134. *
  4135. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4136. * 1 if there are no waiters.
  4137. *
  4138. */
  4139. bool completion_done(struct completion *x)
  4140. {
  4141. int ret = 1;
  4142. spin_lock_irq(&x->wait.lock);
  4143. if (!x->done)
  4144. ret = 0;
  4145. spin_unlock_irq(&x->wait.lock);
  4146. return ret;
  4147. }
  4148. EXPORT_SYMBOL(completion_done);
  4149. static long __sched
  4150. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4151. {
  4152. unsigned long flags;
  4153. wait_queue_t wait;
  4154. init_waitqueue_entry(&wait, current);
  4155. __set_current_state(state);
  4156. spin_lock_irqsave(&q->lock, flags);
  4157. __add_wait_queue(q, &wait);
  4158. spin_unlock(&q->lock);
  4159. timeout = schedule_timeout(timeout);
  4160. spin_lock_irq(&q->lock);
  4161. __remove_wait_queue(q, &wait);
  4162. spin_unlock_irqrestore(&q->lock, flags);
  4163. return timeout;
  4164. }
  4165. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4166. {
  4167. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4168. }
  4169. EXPORT_SYMBOL(interruptible_sleep_on);
  4170. long __sched
  4171. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4172. {
  4173. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4174. }
  4175. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4176. void __sched sleep_on(wait_queue_head_t *q)
  4177. {
  4178. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4179. }
  4180. EXPORT_SYMBOL(sleep_on);
  4181. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4182. {
  4183. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4184. }
  4185. EXPORT_SYMBOL(sleep_on_timeout);
  4186. #ifdef CONFIG_RT_MUTEXES
  4187. /*
  4188. * rt_mutex_setprio - set the current priority of a task
  4189. * @p: task
  4190. * @prio: prio value (kernel-internal form)
  4191. *
  4192. * This function changes the 'effective' priority of a task. It does
  4193. * not touch ->normal_prio like __setscheduler().
  4194. *
  4195. * Used by the rt_mutex code to implement priority inheritance logic.
  4196. */
  4197. void rt_mutex_setprio(struct task_struct *p, int prio)
  4198. {
  4199. unsigned long flags;
  4200. int oldprio, on_rq, running;
  4201. struct rq *rq;
  4202. const struct sched_class *prev_class = p->sched_class;
  4203. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4204. rq = task_rq_lock(p, &flags);
  4205. update_rq_clock(rq);
  4206. oldprio = p->prio;
  4207. on_rq = p->se.on_rq;
  4208. running = task_current(rq, p);
  4209. if (on_rq)
  4210. dequeue_task(rq, p, 0);
  4211. if (running)
  4212. p->sched_class->put_prev_task(rq, p);
  4213. if (rt_prio(prio))
  4214. p->sched_class = &rt_sched_class;
  4215. else
  4216. p->sched_class = &fair_sched_class;
  4217. p->prio = prio;
  4218. if (running)
  4219. p->sched_class->set_curr_task(rq);
  4220. if (on_rq) {
  4221. enqueue_task(rq, p, 0);
  4222. check_class_changed(rq, p, prev_class, oldprio, running);
  4223. }
  4224. task_rq_unlock(rq, &flags);
  4225. }
  4226. #endif
  4227. void set_user_nice(struct task_struct *p, long nice)
  4228. {
  4229. int old_prio, delta, on_rq;
  4230. unsigned long flags;
  4231. struct rq *rq;
  4232. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4233. return;
  4234. /*
  4235. * We have to be careful, if called from sys_setpriority(),
  4236. * the task might be in the middle of scheduling on another CPU.
  4237. */
  4238. rq = task_rq_lock(p, &flags);
  4239. update_rq_clock(rq);
  4240. /*
  4241. * The RT priorities are set via sched_setscheduler(), but we still
  4242. * allow the 'normal' nice value to be set - but as expected
  4243. * it wont have any effect on scheduling until the task is
  4244. * SCHED_FIFO/SCHED_RR:
  4245. */
  4246. if (task_has_rt_policy(p)) {
  4247. p->static_prio = NICE_TO_PRIO(nice);
  4248. goto out_unlock;
  4249. }
  4250. on_rq = p->se.on_rq;
  4251. if (on_rq)
  4252. dequeue_task(rq, p, 0);
  4253. p->static_prio = NICE_TO_PRIO(nice);
  4254. set_load_weight(p);
  4255. old_prio = p->prio;
  4256. p->prio = effective_prio(p);
  4257. delta = p->prio - old_prio;
  4258. if (on_rq) {
  4259. enqueue_task(rq, p, 0);
  4260. /*
  4261. * If the task increased its priority or is running and
  4262. * lowered its priority, then reschedule its CPU:
  4263. */
  4264. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4265. resched_task(rq->curr);
  4266. }
  4267. out_unlock:
  4268. task_rq_unlock(rq, &flags);
  4269. }
  4270. EXPORT_SYMBOL(set_user_nice);
  4271. /*
  4272. * can_nice - check if a task can reduce its nice value
  4273. * @p: task
  4274. * @nice: nice value
  4275. */
  4276. int can_nice(const struct task_struct *p, const int nice)
  4277. {
  4278. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4279. int nice_rlim = 20 - nice;
  4280. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4281. capable(CAP_SYS_NICE));
  4282. }
  4283. #ifdef __ARCH_WANT_SYS_NICE
  4284. /*
  4285. * sys_nice - change the priority of the current process.
  4286. * @increment: priority increment
  4287. *
  4288. * sys_setpriority is a more generic, but much slower function that
  4289. * does similar things.
  4290. */
  4291. asmlinkage long sys_nice(int increment)
  4292. {
  4293. long nice, retval;
  4294. /*
  4295. * Setpriority might change our priority at the same moment.
  4296. * We don't have to worry. Conceptually one call occurs first
  4297. * and we have a single winner.
  4298. */
  4299. if (increment < -40)
  4300. increment = -40;
  4301. if (increment > 40)
  4302. increment = 40;
  4303. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4304. if (nice < -20)
  4305. nice = -20;
  4306. if (nice > 19)
  4307. nice = 19;
  4308. if (increment < 0 && !can_nice(current, nice))
  4309. return -EPERM;
  4310. retval = security_task_setnice(current, nice);
  4311. if (retval)
  4312. return retval;
  4313. set_user_nice(current, nice);
  4314. return 0;
  4315. }
  4316. #endif
  4317. /**
  4318. * task_prio - return the priority value of a given task.
  4319. * @p: the task in question.
  4320. *
  4321. * This is the priority value as seen by users in /proc.
  4322. * RT tasks are offset by -200. Normal tasks are centered
  4323. * around 0, value goes from -16 to +15.
  4324. */
  4325. int task_prio(const struct task_struct *p)
  4326. {
  4327. return p->prio - MAX_RT_PRIO;
  4328. }
  4329. /**
  4330. * task_nice - return the nice value of a given task.
  4331. * @p: the task in question.
  4332. */
  4333. int task_nice(const struct task_struct *p)
  4334. {
  4335. return TASK_NICE(p);
  4336. }
  4337. EXPORT_SYMBOL(task_nice);
  4338. /**
  4339. * idle_cpu - is a given cpu idle currently?
  4340. * @cpu: the processor in question.
  4341. */
  4342. int idle_cpu(int cpu)
  4343. {
  4344. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4345. }
  4346. /**
  4347. * idle_task - return the idle task for a given cpu.
  4348. * @cpu: the processor in question.
  4349. */
  4350. struct task_struct *idle_task(int cpu)
  4351. {
  4352. return cpu_rq(cpu)->idle;
  4353. }
  4354. /**
  4355. * find_process_by_pid - find a process with a matching PID value.
  4356. * @pid: the pid in question.
  4357. */
  4358. static struct task_struct *find_process_by_pid(pid_t pid)
  4359. {
  4360. return pid ? find_task_by_vpid(pid) : current;
  4361. }
  4362. /* Actually do priority change: must hold rq lock. */
  4363. static void
  4364. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4365. {
  4366. BUG_ON(p->se.on_rq);
  4367. p->policy = policy;
  4368. switch (p->policy) {
  4369. case SCHED_NORMAL:
  4370. case SCHED_BATCH:
  4371. case SCHED_IDLE:
  4372. p->sched_class = &fair_sched_class;
  4373. break;
  4374. case SCHED_FIFO:
  4375. case SCHED_RR:
  4376. p->sched_class = &rt_sched_class;
  4377. break;
  4378. }
  4379. p->rt_priority = prio;
  4380. p->normal_prio = normal_prio(p);
  4381. /* we are holding p->pi_lock already */
  4382. p->prio = rt_mutex_getprio(p);
  4383. set_load_weight(p);
  4384. }
  4385. /*
  4386. * check the target process has a UID that matches the current process's
  4387. */
  4388. static bool check_same_owner(struct task_struct *p)
  4389. {
  4390. const struct cred *cred = current_cred(), *pcred;
  4391. bool match;
  4392. rcu_read_lock();
  4393. pcred = __task_cred(p);
  4394. match = (cred->euid == pcred->euid ||
  4395. cred->euid == pcred->uid);
  4396. rcu_read_unlock();
  4397. return match;
  4398. }
  4399. static int __sched_setscheduler(struct task_struct *p, int policy,
  4400. struct sched_param *param, bool user)
  4401. {
  4402. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4403. unsigned long flags;
  4404. const struct sched_class *prev_class = p->sched_class;
  4405. struct rq *rq;
  4406. /* may grab non-irq protected spin_locks */
  4407. BUG_ON(in_interrupt());
  4408. recheck:
  4409. /* double check policy once rq lock held */
  4410. if (policy < 0)
  4411. policy = oldpolicy = p->policy;
  4412. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4413. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4414. policy != SCHED_IDLE)
  4415. return -EINVAL;
  4416. /*
  4417. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4418. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4419. * SCHED_BATCH and SCHED_IDLE is 0.
  4420. */
  4421. if (param->sched_priority < 0 ||
  4422. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4423. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4424. return -EINVAL;
  4425. if (rt_policy(policy) != (param->sched_priority != 0))
  4426. return -EINVAL;
  4427. /*
  4428. * Allow unprivileged RT tasks to decrease priority:
  4429. */
  4430. if (user && !capable(CAP_SYS_NICE)) {
  4431. if (rt_policy(policy)) {
  4432. unsigned long rlim_rtprio;
  4433. if (!lock_task_sighand(p, &flags))
  4434. return -ESRCH;
  4435. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4436. unlock_task_sighand(p, &flags);
  4437. /* can't set/change the rt policy */
  4438. if (policy != p->policy && !rlim_rtprio)
  4439. return -EPERM;
  4440. /* can't increase priority */
  4441. if (param->sched_priority > p->rt_priority &&
  4442. param->sched_priority > rlim_rtprio)
  4443. return -EPERM;
  4444. }
  4445. /*
  4446. * Like positive nice levels, dont allow tasks to
  4447. * move out of SCHED_IDLE either:
  4448. */
  4449. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4450. return -EPERM;
  4451. /* can't change other user's priorities */
  4452. if (!check_same_owner(p))
  4453. return -EPERM;
  4454. }
  4455. if (user) {
  4456. #ifdef CONFIG_RT_GROUP_SCHED
  4457. /*
  4458. * Do not allow realtime tasks into groups that have no runtime
  4459. * assigned.
  4460. */
  4461. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4462. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4463. return -EPERM;
  4464. #endif
  4465. retval = security_task_setscheduler(p, policy, param);
  4466. if (retval)
  4467. return retval;
  4468. }
  4469. /*
  4470. * make sure no PI-waiters arrive (or leave) while we are
  4471. * changing the priority of the task:
  4472. */
  4473. spin_lock_irqsave(&p->pi_lock, flags);
  4474. /*
  4475. * To be able to change p->policy safely, the apropriate
  4476. * runqueue lock must be held.
  4477. */
  4478. rq = __task_rq_lock(p);
  4479. /* recheck policy now with rq lock held */
  4480. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4481. policy = oldpolicy = -1;
  4482. __task_rq_unlock(rq);
  4483. spin_unlock_irqrestore(&p->pi_lock, flags);
  4484. goto recheck;
  4485. }
  4486. update_rq_clock(rq);
  4487. on_rq = p->se.on_rq;
  4488. running = task_current(rq, p);
  4489. if (on_rq)
  4490. deactivate_task(rq, p, 0);
  4491. if (running)
  4492. p->sched_class->put_prev_task(rq, p);
  4493. oldprio = p->prio;
  4494. __setscheduler(rq, p, policy, param->sched_priority);
  4495. if (running)
  4496. p->sched_class->set_curr_task(rq);
  4497. if (on_rq) {
  4498. activate_task(rq, p, 0);
  4499. check_class_changed(rq, p, prev_class, oldprio, running);
  4500. }
  4501. __task_rq_unlock(rq);
  4502. spin_unlock_irqrestore(&p->pi_lock, flags);
  4503. rt_mutex_adjust_pi(p);
  4504. return 0;
  4505. }
  4506. /**
  4507. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4508. * @p: the task in question.
  4509. * @policy: new policy.
  4510. * @param: structure containing the new RT priority.
  4511. *
  4512. * NOTE that the task may be already dead.
  4513. */
  4514. int sched_setscheduler(struct task_struct *p, int policy,
  4515. struct sched_param *param)
  4516. {
  4517. return __sched_setscheduler(p, policy, param, true);
  4518. }
  4519. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4520. /**
  4521. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4522. * @p: the task in question.
  4523. * @policy: new policy.
  4524. * @param: structure containing the new RT priority.
  4525. *
  4526. * Just like sched_setscheduler, only don't bother checking if the
  4527. * current context has permission. For example, this is needed in
  4528. * stop_machine(): we create temporary high priority worker threads,
  4529. * but our caller might not have that capability.
  4530. */
  4531. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4532. struct sched_param *param)
  4533. {
  4534. return __sched_setscheduler(p, policy, param, false);
  4535. }
  4536. static int
  4537. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4538. {
  4539. struct sched_param lparam;
  4540. struct task_struct *p;
  4541. int retval;
  4542. if (!param || pid < 0)
  4543. return -EINVAL;
  4544. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4545. return -EFAULT;
  4546. rcu_read_lock();
  4547. retval = -ESRCH;
  4548. p = find_process_by_pid(pid);
  4549. if (p != NULL)
  4550. retval = sched_setscheduler(p, policy, &lparam);
  4551. rcu_read_unlock();
  4552. return retval;
  4553. }
  4554. /**
  4555. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4556. * @pid: the pid in question.
  4557. * @policy: new policy.
  4558. * @param: structure containing the new RT priority.
  4559. */
  4560. asmlinkage long
  4561. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4562. {
  4563. /* negative values for policy are not valid */
  4564. if (policy < 0)
  4565. return -EINVAL;
  4566. return do_sched_setscheduler(pid, policy, param);
  4567. }
  4568. /**
  4569. * sys_sched_setparam - set/change the RT priority of a thread
  4570. * @pid: the pid in question.
  4571. * @param: structure containing the new RT priority.
  4572. */
  4573. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4574. {
  4575. return do_sched_setscheduler(pid, -1, param);
  4576. }
  4577. /**
  4578. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4579. * @pid: the pid in question.
  4580. */
  4581. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4582. {
  4583. struct task_struct *p;
  4584. int retval;
  4585. if (pid < 0)
  4586. return -EINVAL;
  4587. retval = -ESRCH;
  4588. read_lock(&tasklist_lock);
  4589. p = find_process_by_pid(pid);
  4590. if (p) {
  4591. retval = security_task_getscheduler(p);
  4592. if (!retval)
  4593. retval = p->policy;
  4594. }
  4595. read_unlock(&tasklist_lock);
  4596. return retval;
  4597. }
  4598. /**
  4599. * sys_sched_getscheduler - get the RT priority of a thread
  4600. * @pid: the pid in question.
  4601. * @param: structure containing the RT priority.
  4602. */
  4603. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4604. {
  4605. struct sched_param lp;
  4606. struct task_struct *p;
  4607. int retval;
  4608. if (!param || pid < 0)
  4609. return -EINVAL;
  4610. read_lock(&tasklist_lock);
  4611. p = find_process_by_pid(pid);
  4612. retval = -ESRCH;
  4613. if (!p)
  4614. goto out_unlock;
  4615. retval = security_task_getscheduler(p);
  4616. if (retval)
  4617. goto out_unlock;
  4618. lp.sched_priority = p->rt_priority;
  4619. read_unlock(&tasklist_lock);
  4620. /*
  4621. * This one might sleep, we cannot do it with a spinlock held ...
  4622. */
  4623. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4624. return retval;
  4625. out_unlock:
  4626. read_unlock(&tasklist_lock);
  4627. return retval;
  4628. }
  4629. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4630. {
  4631. cpumask_t cpus_allowed;
  4632. cpumask_t new_mask = *in_mask;
  4633. struct task_struct *p;
  4634. int retval;
  4635. get_online_cpus();
  4636. read_lock(&tasklist_lock);
  4637. p = find_process_by_pid(pid);
  4638. if (!p) {
  4639. read_unlock(&tasklist_lock);
  4640. put_online_cpus();
  4641. return -ESRCH;
  4642. }
  4643. /*
  4644. * It is not safe to call set_cpus_allowed with the
  4645. * tasklist_lock held. We will bump the task_struct's
  4646. * usage count and then drop tasklist_lock.
  4647. */
  4648. get_task_struct(p);
  4649. read_unlock(&tasklist_lock);
  4650. retval = -EPERM;
  4651. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4652. goto out_unlock;
  4653. retval = security_task_setscheduler(p, 0, NULL);
  4654. if (retval)
  4655. goto out_unlock;
  4656. cpuset_cpus_allowed(p, &cpus_allowed);
  4657. cpus_and(new_mask, new_mask, cpus_allowed);
  4658. again:
  4659. retval = set_cpus_allowed_ptr(p, &new_mask);
  4660. if (!retval) {
  4661. cpuset_cpus_allowed(p, &cpus_allowed);
  4662. if (!cpus_subset(new_mask, cpus_allowed)) {
  4663. /*
  4664. * We must have raced with a concurrent cpuset
  4665. * update. Just reset the cpus_allowed to the
  4666. * cpuset's cpus_allowed
  4667. */
  4668. new_mask = cpus_allowed;
  4669. goto again;
  4670. }
  4671. }
  4672. out_unlock:
  4673. put_task_struct(p);
  4674. put_online_cpus();
  4675. return retval;
  4676. }
  4677. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4678. cpumask_t *new_mask)
  4679. {
  4680. if (len < sizeof(cpumask_t)) {
  4681. memset(new_mask, 0, sizeof(cpumask_t));
  4682. } else if (len > sizeof(cpumask_t)) {
  4683. len = sizeof(cpumask_t);
  4684. }
  4685. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4686. }
  4687. /**
  4688. * sys_sched_setaffinity - set the cpu affinity of a process
  4689. * @pid: pid of the process
  4690. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4691. * @user_mask_ptr: user-space pointer to the new cpu mask
  4692. */
  4693. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4694. unsigned long __user *user_mask_ptr)
  4695. {
  4696. cpumask_t new_mask;
  4697. int retval;
  4698. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4699. if (retval)
  4700. return retval;
  4701. return sched_setaffinity(pid, &new_mask);
  4702. }
  4703. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4704. {
  4705. struct task_struct *p;
  4706. int retval;
  4707. get_online_cpus();
  4708. read_lock(&tasklist_lock);
  4709. retval = -ESRCH;
  4710. p = find_process_by_pid(pid);
  4711. if (!p)
  4712. goto out_unlock;
  4713. retval = security_task_getscheduler(p);
  4714. if (retval)
  4715. goto out_unlock;
  4716. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4717. out_unlock:
  4718. read_unlock(&tasklist_lock);
  4719. put_online_cpus();
  4720. return retval;
  4721. }
  4722. /**
  4723. * sys_sched_getaffinity - get the cpu affinity of a process
  4724. * @pid: pid of the process
  4725. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4726. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4727. */
  4728. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4729. unsigned long __user *user_mask_ptr)
  4730. {
  4731. int ret;
  4732. cpumask_t mask;
  4733. if (len < sizeof(cpumask_t))
  4734. return -EINVAL;
  4735. ret = sched_getaffinity(pid, &mask);
  4736. if (ret < 0)
  4737. return ret;
  4738. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4739. return -EFAULT;
  4740. return sizeof(cpumask_t);
  4741. }
  4742. /**
  4743. * sys_sched_yield - yield the current processor to other threads.
  4744. *
  4745. * This function yields the current CPU to other tasks. If there are no
  4746. * other threads running on this CPU then this function will return.
  4747. */
  4748. asmlinkage long sys_sched_yield(void)
  4749. {
  4750. struct rq *rq = this_rq_lock();
  4751. schedstat_inc(rq, yld_count);
  4752. current->sched_class->yield_task(rq);
  4753. /*
  4754. * Since we are going to call schedule() anyway, there's
  4755. * no need to preempt or enable interrupts:
  4756. */
  4757. __release(rq->lock);
  4758. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4759. _raw_spin_unlock(&rq->lock);
  4760. preempt_enable_no_resched();
  4761. schedule();
  4762. return 0;
  4763. }
  4764. static void __cond_resched(void)
  4765. {
  4766. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4767. __might_sleep(__FILE__, __LINE__);
  4768. #endif
  4769. /*
  4770. * The BKS might be reacquired before we have dropped
  4771. * PREEMPT_ACTIVE, which could trigger a second
  4772. * cond_resched() call.
  4773. */
  4774. do {
  4775. add_preempt_count(PREEMPT_ACTIVE);
  4776. schedule();
  4777. sub_preempt_count(PREEMPT_ACTIVE);
  4778. } while (need_resched());
  4779. }
  4780. int __sched _cond_resched(void)
  4781. {
  4782. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4783. system_state == SYSTEM_RUNNING) {
  4784. __cond_resched();
  4785. return 1;
  4786. }
  4787. return 0;
  4788. }
  4789. EXPORT_SYMBOL(_cond_resched);
  4790. /*
  4791. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4792. * call schedule, and on return reacquire the lock.
  4793. *
  4794. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4795. * operations here to prevent schedule() from being called twice (once via
  4796. * spin_unlock(), once by hand).
  4797. */
  4798. int cond_resched_lock(spinlock_t *lock)
  4799. {
  4800. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4801. int ret = 0;
  4802. if (spin_needbreak(lock) || resched) {
  4803. spin_unlock(lock);
  4804. if (resched && need_resched())
  4805. __cond_resched();
  4806. else
  4807. cpu_relax();
  4808. ret = 1;
  4809. spin_lock(lock);
  4810. }
  4811. return ret;
  4812. }
  4813. EXPORT_SYMBOL(cond_resched_lock);
  4814. int __sched cond_resched_softirq(void)
  4815. {
  4816. BUG_ON(!in_softirq());
  4817. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4818. local_bh_enable();
  4819. __cond_resched();
  4820. local_bh_disable();
  4821. return 1;
  4822. }
  4823. return 0;
  4824. }
  4825. EXPORT_SYMBOL(cond_resched_softirq);
  4826. /**
  4827. * yield - yield the current processor to other threads.
  4828. *
  4829. * This is a shortcut for kernel-space yielding - it marks the
  4830. * thread runnable and calls sys_sched_yield().
  4831. */
  4832. void __sched yield(void)
  4833. {
  4834. set_current_state(TASK_RUNNING);
  4835. sys_sched_yield();
  4836. }
  4837. EXPORT_SYMBOL(yield);
  4838. /*
  4839. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4840. * that process accounting knows that this is a task in IO wait state.
  4841. *
  4842. * But don't do that if it is a deliberate, throttling IO wait (this task
  4843. * has set its backing_dev_info: the queue against which it should throttle)
  4844. */
  4845. void __sched io_schedule(void)
  4846. {
  4847. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4848. delayacct_blkio_start();
  4849. atomic_inc(&rq->nr_iowait);
  4850. schedule();
  4851. atomic_dec(&rq->nr_iowait);
  4852. delayacct_blkio_end();
  4853. }
  4854. EXPORT_SYMBOL(io_schedule);
  4855. long __sched io_schedule_timeout(long timeout)
  4856. {
  4857. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4858. long ret;
  4859. delayacct_blkio_start();
  4860. atomic_inc(&rq->nr_iowait);
  4861. ret = schedule_timeout(timeout);
  4862. atomic_dec(&rq->nr_iowait);
  4863. delayacct_blkio_end();
  4864. return ret;
  4865. }
  4866. /**
  4867. * sys_sched_get_priority_max - return maximum RT priority.
  4868. * @policy: scheduling class.
  4869. *
  4870. * this syscall returns the maximum rt_priority that can be used
  4871. * by a given scheduling class.
  4872. */
  4873. asmlinkage long sys_sched_get_priority_max(int policy)
  4874. {
  4875. int ret = -EINVAL;
  4876. switch (policy) {
  4877. case SCHED_FIFO:
  4878. case SCHED_RR:
  4879. ret = MAX_USER_RT_PRIO-1;
  4880. break;
  4881. case SCHED_NORMAL:
  4882. case SCHED_BATCH:
  4883. case SCHED_IDLE:
  4884. ret = 0;
  4885. break;
  4886. }
  4887. return ret;
  4888. }
  4889. /**
  4890. * sys_sched_get_priority_min - return minimum RT priority.
  4891. * @policy: scheduling class.
  4892. *
  4893. * this syscall returns the minimum rt_priority that can be used
  4894. * by a given scheduling class.
  4895. */
  4896. asmlinkage long sys_sched_get_priority_min(int policy)
  4897. {
  4898. int ret = -EINVAL;
  4899. switch (policy) {
  4900. case SCHED_FIFO:
  4901. case SCHED_RR:
  4902. ret = 1;
  4903. break;
  4904. case SCHED_NORMAL:
  4905. case SCHED_BATCH:
  4906. case SCHED_IDLE:
  4907. ret = 0;
  4908. }
  4909. return ret;
  4910. }
  4911. /**
  4912. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4913. * @pid: pid of the process.
  4914. * @interval: userspace pointer to the timeslice value.
  4915. *
  4916. * this syscall writes the default timeslice value of a given process
  4917. * into the user-space timespec buffer. A value of '0' means infinity.
  4918. */
  4919. asmlinkage
  4920. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4921. {
  4922. struct task_struct *p;
  4923. unsigned int time_slice;
  4924. int retval;
  4925. struct timespec t;
  4926. if (pid < 0)
  4927. return -EINVAL;
  4928. retval = -ESRCH;
  4929. read_lock(&tasklist_lock);
  4930. p = find_process_by_pid(pid);
  4931. if (!p)
  4932. goto out_unlock;
  4933. retval = security_task_getscheduler(p);
  4934. if (retval)
  4935. goto out_unlock;
  4936. /*
  4937. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4938. * tasks that are on an otherwise idle runqueue:
  4939. */
  4940. time_slice = 0;
  4941. if (p->policy == SCHED_RR) {
  4942. time_slice = DEF_TIMESLICE;
  4943. } else if (p->policy != SCHED_FIFO) {
  4944. struct sched_entity *se = &p->se;
  4945. unsigned long flags;
  4946. struct rq *rq;
  4947. rq = task_rq_lock(p, &flags);
  4948. if (rq->cfs.load.weight)
  4949. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4950. task_rq_unlock(rq, &flags);
  4951. }
  4952. read_unlock(&tasklist_lock);
  4953. jiffies_to_timespec(time_slice, &t);
  4954. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4955. return retval;
  4956. out_unlock:
  4957. read_unlock(&tasklist_lock);
  4958. return retval;
  4959. }
  4960. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4961. void sched_show_task(struct task_struct *p)
  4962. {
  4963. unsigned long free = 0;
  4964. unsigned state;
  4965. state = p->state ? __ffs(p->state) + 1 : 0;
  4966. printk(KERN_INFO "%-13.13s %c", p->comm,
  4967. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4968. #if BITS_PER_LONG == 32
  4969. if (state == TASK_RUNNING)
  4970. printk(KERN_CONT " running ");
  4971. else
  4972. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4973. #else
  4974. if (state == TASK_RUNNING)
  4975. printk(KERN_CONT " running task ");
  4976. else
  4977. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4978. #endif
  4979. #ifdef CONFIG_DEBUG_STACK_USAGE
  4980. {
  4981. unsigned long *n = end_of_stack(p);
  4982. while (!*n)
  4983. n++;
  4984. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4985. }
  4986. #endif
  4987. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4988. task_pid_nr(p), task_pid_nr(p->real_parent));
  4989. show_stack(p, NULL);
  4990. }
  4991. void show_state_filter(unsigned long state_filter)
  4992. {
  4993. struct task_struct *g, *p;
  4994. #if BITS_PER_LONG == 32
  4995. printk(KERN_INFO
  4996. " task PC stack pid father\n");
  4997. #else
  4998. printk(KERN_INFO
  4999. " task PC stack pid father\n");
  5000. #endif
  5001. read_lock(&tasklist_lock);
  5002. do_each_thread(g, p) {
  5003. /*
  5004. * reset the NMI-timeout, listing all files on a slow
  5005. * console might take alot of time:
  5006. */
  5007. touch_nmi_watchdog();
  5008. if (!state_filter || (p->state & state_filter))
  5009. sched_show_task(p);
  5010. } while_each_thread(g, p);
  5011. touch_all_softlockup_watchdogs();
  5012. #ifdef CONFIG_SCHED_DEBUG
  5013. sysrq_sched_debug_show();
  5014. #endif
  5015. read_unlock(&tasklist_lock);
  5016. /*
  5017. * Only show locks if all tasks are dumped:
  5018. */
  5019. if (state_filter == -1)
  5020. debug_show_all_locks();
  5021. }
  5022. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5023. {
  5024. idle->sched_class = &idle_sched_class;
  5025. }
  5026. /**
  5027. * init_idle - set up an idle thread for a given CPU
  5028. * @idle: task in question
  5029. * @cpu: cpu the idle task belongs to
  5030. *
  5031. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5032. * flag, to make booting more robust.
  5033. */
  5034. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5035. {
  5036. struct rq *rq = cpu_rq(cpu);
  5037. unsigned long flags;
  5038. spin_lock_irqsave(&rq->lock, flags);
  5039. __sched_fork(idle);
  5040. idle->se.exec_start = sched_clock();
  5041. idle->prio = idle->normal_prio = MAX_PRIO;
  5042. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5043. __set_task_cpu(idle, cpu);
  5044. rq->curr = rq->idle = idle;
  5045. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5046. idle->oncpu = 1;
  5047. #endif
  5048. spin_unlock_irqrestore(&rq->lock, flags);
  5049. /* Set the preempt count _outside_ the spinlocks! */
  5050. #if defined(CONFIG_PREEMPT)
  5051. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5052. #else
  5053. task_thread_info(idle)->preempt_count = 0;
  5054. #endif
  5055. /*
  5056. * The idle tasks have their own, simple scheduling class:
  5057. */
  5058. idle->sched_class = &idle_sched_class;
  5059. ftrace_graph_init_task(idle);
  5060. }
  5061. /*
  5062. * In a system that switches off the HZ timer nohz_cpu_mask
  5063. * indicates which cpus entered this state. This is used
  5064. * in the rcu update to wait only for active cpus. For system
  5065. * which do not switch off the HZ timer nohz_cpu_mask should
  5066. * always be CPU_MASK_NONE.
  5067. */
  5068. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5069. /*
  5070. * Increase the granularity value when there are more CPUs,
  5071. * because with more CPUs the 'effective latency' as visible
  5072. * to users decreases. But the relationship is not linear,
  5073. * so pick a second-best guess by going with the log2 of the
  5074. * number of CPUs.
  5075. *
  5076. * This idea comes from the SD scheduler of Con Kolivas:
  5077. */
  5078. static inline void sched_init_granularity(void)
  5079. {
  5080. unsigned int factor = 1 + ilog2(num_online_cpus());
  5081. const unsigned long limit = 200000000;
  5082. sysctl_sched_min_granularity *= factor;
  5083. if (sysctl_sched_min_granularity > limit)
  5084. sysctl_sched_min_granularity = limit;
  5085. sysctl_sched_latency *= factor;
  5086. if (sysctl_sched_latency > limit)
  5087. sysctl_sched_latency = limit;
  5088. sysctl_sched_wakeup_granularity *= factor;
  5089. sysctl_sched_shares_ratelimit *= factor;
  5090. }
  5091. #ifdef CONFIG_SMP
  5092. /*
  5093. * This is how migration works:
  5094. *
  5095. * 1) we queue a struct migration_req structure in the source CPU's
  5096. * runqueue and wake up that CPU's migration thread.
  5097. * 2) we down() the locked semaphore => thread blocks.
  5098. * 3) migration thread wakes up (implicitly it forces the migrated
  5099. * thread off the CPU)
  5100. * 4) it gets the migration request and checks whether the migrated
  5101. * task is still in the wrong runqueue.
  5102. * 5) if it's in the wrong runqueue then the migration thread removes
  5103. * it and puts it into the right queue.
  5104. * 6) migration thread up()s the semaphore.
  5105. * 7) we wake up and the migration is done.
  5106. */
  5107. /*
  5108. * Change a given task's CPU affinity. Migrate the thread to a
  5109. * proper CPU and schedule it away if the CPU it's executing on
  5110. * is removed from the allowed bitmask.
  5111. *
  5112. * NOTE: the caller must have a valid reference to the task, the
  5113. * task must not exit() & deallocate itself prematurely. The
  5114. * call is not atomic; no spinlocks may be held.
  5115. */
  5116. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5117. {
  5118. struct migration_req req;
  5119. unsigned long flags;
  5120. struct rq *rq;
  5121. int ret = 0;
  5122. rq = task_rq_lock(p, &flags);
  5123. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5124. ret = -EINVAL;
  5125. goto out;
  5126. }
  5127. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5128. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5129. ret = -EINVAL;
  5130. goto out;
  5131. }
  5132. if (p->sched_class->set_cpus_allowed)
  5133. p->sched_class->set_cpus_allowed(p, new_mask);
  5134. else {
  5135. p->cpus_allowed = *new_mask;
  5136. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5137. }
  5138. /* Can the task run on the task's current CPU? If so, we're done */
  5139. if (cpu_isset(task_cpu(p), *new_mask))
  5140. goto out;
  5141. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5142. /* Need help from migration thread: drop lock and wait. */
  5143. task_rq_unlock(rq, &flags);
  5144. wake_up_process(rq->migration_thread);
  5145. wait_for_completion(&req.done);
  5146. tlb_migrate_finish(p->mm);
  5147. return 0;
  5148. }
  5149. out:
  5150. task_rq_unlock(rq, &flags);
  5151. return ret;
  5152. }
  5153. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5154. /*
  5155. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5156. * this because either it can't run here any more (set_cpus_allowed()
  5157. * away from this CPU, or CPU going down), or because we're
  5158. * attempting to rebalance this task on exec (sched_exec).
  5159. *
  5160. * So we race with normal scheduler movements, but that's OK, as long
  5161. * as the task is no longer on this CPU.
  5162. *
  5163. * Returns non-zero if task was successfully migrated.
  5164. */
  5165. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5166. {
  5167. struct rq *rq_dest, *rq_src;
  5168. int ret = 0, on_rq;
  5169. if (unlikely(!cpu_active(dest_cpu)))
  5170. return ret;
  5171. rq_src = cpu_rq(src_cpu);
  5172. rq_dest = cpu_rq(dest_cpu);
  5173. double_rq_lock(rq_src, rq_dest);
  5174. /* Already moved. */
  5175. if (task_cpu(p) != src_cpu)
  5176. goto done;
  5177. /* Affinity changed (again). */
  5178. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5179. goto fail;
  5180. on_rq = p->se.on_rq;
  5181. if (on_rq)
  5182. deactivate_task(rq_src, p, 0);
  5183. set_task_cpu(p, dest_cpu);
  5184. if (on_rq) {
  5185. activate_task(rq_dest, p, 0);
  5186. check_preempt_curr(rq_dest, p, 0);
  5187. }
  5188. done:
  5189. ret = 1;
  5190. fail:
  5191. double_rq_unlock(rq_src, rq_dest);
  5192. return ret;
  5193. }
  5194. /*
  5195. * migration_thread - this is a highprio system thread that performs
  5196. * thread migration by bumping thread off CPU then 'pushing' onto
  5197. * another runqueue.
  5198. */
  5199. static int migration_thread(void *data)
  5200. {
  5201. int cpu = (long)data;
  5202. struct rq *rq;
  5203. rq = cpu_rq(cpu);
  5204. BUG_ON(rq->migration_thread != current);
  5205. set_current_state(TASK_INTERRUPTIBLE);
  5206. while (!kthread_should_stop()) {
  5207. struct migration_req *req;
  5208. struct list_head *head;
  5209. spin_lock_irq(&rq->lock);
  5210. if (cpu_is_offline(cpu)) {
  5211. spin_unlock_irq(&rq->lock);
  5212. goto wait_to_die;
  5213. }
  5214. if (rq->active_balance) {
  5215. active_load_balance(rq, cpu);
  5216. rq->active_balance = 0;
  5217. }
  5218. head = &rq->migration_queue;
  5219. if (list_empty(head)) {
  5220. spin_unlock_irq(&rq->lock);
  5221. schedule();
  5222. set_current_state(TASK_INTERRUPTIBLE);
  5223. continue;
  5224. }
  5225. req = list_entry(head->next, struct migration_req, list);
  5226. list_del_init(head->next);
  5227. spin_unlock(&rq->lock);
  5228. __migrate_task(req->task, cpu, req->dest_cpu);
  5229. local_irq_enable();
  5230. complete(&req->done);
  5231. }
  5232. __set_current_state(TASK_RUNNING);
  5233. return 0;
  5234. wait_to_die:
  5235. /* Wait for kthread_stop */
  5236. set_current_state(TASK_INTERRUPTIBLE);
  5237. while (!kthread_should_stop()) {
  5238. schedule();
  5239. set_current_state(TASK_INTERRUPTIBLE);
  5240. }
  5241. __set_current_state(TASK_RUNNING);
  5242. return 0;
  5243. }
  5244. #ifdef CONFIG_HOTPLUG_CPU
  5245. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5246. {
  5247. int ret;
  5248. local_irq_disable();
  5249. ret = __migrate_task(p, src_cpu, dest_cpu);
  5250. local_irq_enable();
  5251. return ret;
  5252. }
  5253. /*
  5254. * Figure out where task on dead CPU should go, use force if necessary.
  5255. * NOTE: interrupts should be disabled by the caller
  5256. */
  5257. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5258. {
  5259. unsigned long flags;
  5260. cpumask_t mask;
  5261. struct rq *rq;
  5262. int dest_cpu;
  5263. do {
  5264. /* On same node? */
  5265. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5266. cpus_and(mask, mask, p->cpus_allowed);
  5267. dest_cpu = any_online_cpu(mask);
  5268. /* On any allowed CPU? */
  5269. if (dest_cpu >= nr_cpu_ids)
  5270. dest_cpu = any_online_cpu(p->cpus_allowed);
  5271. /* No more Mr. Nice Guy. */
  5272. if (dest_cpu >= nr_cpu_ids) {
  5273. cpumask_t cpus_allowed;
  5274. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5275. /*
  5276. * Try to stay on the same cpuset, where the
  5277. * current cpuset may be a subset of all cpus.
  5278. * The cpuset_cpus_allowed_locked() variant of
  5279. * cpuset_cpus_allowed() will not block. It must be
  5280. * called within calls to cpuset_lock/cpuset_unlock.
  5281. */
  5282. rq = task_rq_lock(p, &flags);
  5283. p->cpus_allowed = cpus_allowed;
  5284. dest_cpu = any_online_cpu(p->cpus_allowed);
  5285. task_rq_unlock(rq, &flags);
  5286. /*
  5287. * Don't tell them about moving exiting tasks or
  5288. * kernel threads (both mm NULL), since they never
  5289. * leave kernel.
  5290. */
  5291. if (p->mm && printk_ratelimit()) {
  5292. printk(KERN_INFO "process %d (%s) no "
  5293. "longer affine to cpu%d\n",
  5294. task_pid_nr(p), p->comm, dead_cpu);
  5295. }
  5296. }
  5297. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5298. }
  5299. /*
  5300. * While a dead CPU has no uninterruptible tasks queued at this point,
  5301. * it might still have a nonzero ->nr_uninterruptible counter, because
  5302. * for performance reasons the counter is not stricly tracking tasks to
  5303. * their home CPUs. So we just add the counter to another CPU's counter,
  5304. * to keep the global sum constant after CPU-down:
  5305. */
  5306. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5307. {
  5308. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5309. unsigned long flags;
  5310. local_irq_save(flags);
  5311. double_rq_lock(rq_src, rq_dest);
  5312. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5313. rq_src->nr_uninterruptible = 0;
  5314. double_rq_unlock(rq_src, rq_dest);
  5315. local_irq_restore(flags);
  5316. }
  5317. /* Run through task list and migrate tasks from the dead cpu. */
  5318. static void migrate_live_tasks(int src_cpu)
  5319. {
  5320. struct task_struct *p, *t;
  5321. read_lock(&tasklist_lock);
  5322. do_each_thread(t, p) {
  5323. if (p == current)
  5324. continue;
  5325. if (task_cpu(p) == src_cpu)
  5326. move_task_off_dead_cpu(src_cpu, p);
  5327. } while_each_thread(t, p);
  5328. read_unlock(&tasklist_lock);
  5329. }
  5330. /*
  5331. * Schedules idle task to be the next runnable task on current CPU.
  5332. * It does so by boosting its priority to highest possible.
  5333. * Used by CPU offline code.
  5334. */
  5335. void sched_idle_next(void)
  5336. {
  5337. int this_cpu = smp_processor_id();
  5338. struct rq *rq = cpu_rq(this_cpu);
  5339. struct task_struct *p = rq->idle;
  5340. unsigned long flags;
  5341. /* cpu has to be offline */
  5342. BUG_ON(cpu_online(this_cpu));
  5343. /*
  5344. * Strictly not necessary since rest of the CPUs are stopped by now
  5345. * and interrupts disabled on the current cpu.
  5346. */
  5347. spin_lock_irqsave(&rq->lock, flags);
  5348. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5349. update_rq_clock(rq);
  5350. activate_task(rq, p, 0);
  5351. spin_unlock_irqrestore(&rq->lock, flags);
  5352. }
  5353. /*
  5354. * Ensures that the idle task is using init_mm right before its cpu goes
  5355. * offline.
  5356. */
  5357. void idle_task_exit(void)
  5358. {
  5359. struct mm_struct *mm = current->active_mm;
  5360. BUG_ON(cpu_online(smp_processor_id()));
  5361. if (mm != &init_mm)
  5362. switch_mm(mm, &init_mm, current);
  5363. mmdrop(mm);
  5364. }
  5365. /* called under rq->lock with disabled interrupts */
  5366. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5367. {
  5368. struct rq *rq = cpu_rq(dead_cpu);
  5369. /* Must be exiting, otherwise would be on tasklist. */
  5370. BUG_ON(!p->exit_state);
  5371. /* Cannot have done final schedule yet: would have vanished. */
  5372. BUG_ON(p->state == TASK_DEAD);
  5373. get_task_struct(p);
  5374. /*
  5375. * Drop lock around migration; if someone else moves it,
  5376. * that's OK. No task can be added to this CPU, so iteration is
  5377. * fine.
  5378. */
  5379. spin_unlock_irq(&rq->lock);
  5380. move_task_off_dead_cpu(dead_cpu, p);
  5381. spin_lock_irq(&rq->lock);
  5382. put_task_struct(p);
  5383. }
  5384. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5385. static void migrate_dead_tasks(unsigned int dead_cpu)
  5386. {
  5387. struct rq *rq = cpu_rq(dead_cpu);
  5388. struct task_struct *next;
  5389. for ( ; ; ) {
  5390. if (!rq->nr_running)
  5391. break;
  5392. update_rq_clock(rq);
  5393. next = pick_next_task(rq, rq->curr);
  5394. if (!next)
  5395. break;
  5396. next->sched_class->put_prev_task(rq, next);
  5397. migrate_dead(dead_cpu, next);
  5398. }
  5399. }
  5400. #endif /* CONFIG_HOTPLUG_CPU */
  5401. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5402. static struct ctl_table sd_ctl_dir[] = {
  5403. {
  5404. .procname = "sched_domain",
  5405. .mode = 0555,
  5406. },
  5407. {0, },
  5408. };
  5409. static struct ctl_table sd_ctl_root[] = {
  5410. {
  5411. .ctl_name = CTL_KERN,
  5412. .procname = "kernel",
  5413. .mode = 0555,
  5414. .child = sd_ctl_dir,
  5415. },
  5416. {0, },
  5417. };
  5418. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5419. {
  5420. struct ctl_table *entry =
  5421. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5422. return entry;
  5423. }
  5424. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5425. {
  5426. struct ctl_table *entry;
  5427. /*
  5428. * In the intermediate directories, both the child directory and
  5429. * procname are dynamically allocated and could fail but the mode
  5430. * will always be set. In the lowest directory the names are
  5431. * static strings and all have proc handlers.
  5432. */
  5433. for (entry = *tablep; entry->mode; entry++) {
  5434. if (entry->child)
  5435. sd_free_ctl_entry(&entry->child);
  5436. if (entry->proc_handler == NULL)
  5437. kfree(entry->procname);
  5438. }
  5439. kfree(*tablep);
  5440. *tablep = NULL;
  5441. }
  5442. static void
  5443. set_table_entry(struct ctl_table *entry,
  5444. const char *procname, void *data, int maxlen,
  5445. mode_t mode, proc_handler *proc_handler)
  5446. {
  5447. entry->procname = procname;
  5448. entry->data = data;
  5449. entry->maxlen = maxlen;
  5450. entry->mode = mode;
  5451. entry->proc_handler = proc_handler;
  5452. }
  5453. static struct ctl_table *
  5454. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5455. {
  5456. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5457. if (table == NULL)
  5458. return NULL;
  5459. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5460. sizeof(long), 0644, proc_doulongvec_minmax);
  5461. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5462. sizeof(long), 0644, proc_doulongvec_minmax);
  5463. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5464. sizeof(int), 0644, proc_dointvec_minmax);
  5465. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5466. sizeof(int), 0644, proc_dointvec_minmax);
  5467. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5468. sizeof(int), 0644, proc_dointvec_minmax);
  5469. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5470. sizeof(int), 0644, proc_dointvec_minmax);
  5471. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5472. sizeof(int), 0644, proc_dointvec_minmax);
  5473. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5474. sizeof(int), 0644, proc_dointvec_minmax);
  5475. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5476. sizeof(int), 0644, proc_dointvec_minmax);
  5477. set_table_entry(&table[9], "cache_nice_tries",
  5478. &sd->cache_nice_tries,
  5479. sizeof(int), 0644, proc_dointvec_minmax);
  5480. set_table_entry(&table[10], "flags", &sd->flags,
  5481. sizeof(int), 0644, proc_dointvec_minmax);
  5482. set_table_entry(&table[11], "name", sd->name,
  5483. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5484. /* &table[12] is terminator */
  5485. return table;
  5486. }
  5487. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5488. {
  5489. struct ctl_table *entry, *table;
  5490. struct sched_domain *sd;
  5491. int domain_num = 0, i;
  5492. char buf[32];
  5493. for_each_domain(cpu, sd)
  5494. domain_num++;
  5495. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5496. if (table == NULL)
  5497. return NULL;
  5498. i = 0;
  5499. for_each_domain(cpu, sd) {
  5500. snprintf(buf, 32, "domain%d", i);
  5501. entry->procname = kstrdup(buf, GFP_KERNEL);
  5502. entry->mode = 0555;
  5503. entry->child = sd_alloc_ctl_domain_table(sd);
  5504. entry++;
  5505. i++;
  5506. }
  5507. return table;
  5508. }
  5509. static struct ctl_table_header *sd_sysctl_header;
  5510. static void register_sched_domain_sysctl(void)
  5511. {
  5512. int i, cpu_num = num_online_cpus();
  5513. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5514. char buf[32];
  5515. WARN_ON(sd_ctl_dir[0].child);
  5516. sd_ctl_dir[0].child = entry;
  5517. if (entry == NULL)
  5518. return;
  5519. for_each_online_cpu(i) {
  5520. snprintf(buf, 32, "cpu%d", i);
  5521. entry->procname = kstrdup(buf, GFP_KERNEL);
  5522. entry->mode = 0555;
  5523. entry->child = sd_alloc_ctl_cpu_table(i);
  5524. entry++;
  5525. }
  5526. WARN_ON(sd_sysctl_header);
  5527. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5528. }
  5529. /* may be called multiple times per register */
  5530. static void unregister_sched_domain_sysctl(void)
  5531. {
  5532. if (sd_sysctl_header)
  5533. unregister_sysctl_table(sd_sysctl_header);
  5534. sd_sysctl_header = NULL;
  5535. if (sd_ctl_dir[0].child)
  5536. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5537. }
  5538. #else
  5539. static void register_sched_domain_sysctl(void)
  5540. {
  5541. }
  5542. static void unregister_sched_domain_sysctl(void)
  5543. {
  5544. }
  5545. #endif
  5546. static void set_rq_online(struct rq *rq)
  5547. {
  5548. if (!rq->online) {
  5549. const struct sched_class *class;
  5550. cpu_set(rq->cpu, rq->rd->online);
  5551. rq->online = 1;
  5552. for_each_class(class) {
  5553. if (class->rq_online)
  5554. class->rq_online(rq);
  5555. }
  5556. }
  5557. }
  5558. static void set_rq_offline(struct rq *rq)
  5559. {
  5560. if (rq->online) {
  5561. const struct sched_class *class;
  5562. for_each_class(class) {
  5563. if (class->rq_offline)
  5564. class->rq_offline(rq);
  5565. }
  5566. cpu_clear(rq->cpu, rq->rd->online);
  5567. rq->online = 0;
  5568. }
  5569. }
  5570. /*
  5571. * migration_call - callback that gets triggered when a CPU is added.
  5572. * Here we can start up the necessary migration thread for the new CPU.
  5573. */
  5574. static int __cpuinit
  5575. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5576. {
  5577. struct task_struct *p;
  5578. int cpu = (long)hcpu;
  5579. unsigned long flags;
  5580. struct rq *rq;
  5581. switch (action) {
  5582. case CPU_UP_PREPARE:
  5583. case CPU_UP_PREPARE_FROZEN:
  5584. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5585. if (IS_ERR(p))
  5586. return NOTIFY_BAD;
  5587. kthread_bind(p, cpu);
  5588. /* Must be high prio: stop_machine expects to yield to it. */
  5589. rq = task_rq_lock(p, &flags);
  5590. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5591. task_rq_unlock(rq, &flags);
  5592. cpu_rq(cpu)->migration_thread = p;
  5593. break;
  5594. case CPU_ONLINE:
  5595. case CPU_ONLINE_FROZEN:
  5596. /* Strictly unnecessary, as first user will wake it. */
  5597. wake_up_process(cpu_rq(cpu)->migration_thread);
  5598. /* Update our root-domain */
  5599. rq = cpu_rq(cpu);
  5600. spin_lock_irqsave(&rq->lock, flags);
  5601. if (rq->rd) {
  5602. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5603. set_rq_online(rq);
  5604. }
  5605. spin_unlock_irqrestore(&rq->lock, flags);
  5606. break;
  5607. #ifdef CONFIG_HOTPLUG_CPU
  5608. case CPU_UP_CANCELED:
  5609. case CPU_UP_CANCELED_FROZEN:
  5610. if (!cpu_rq(cpu)->migration_thread)
  5611. break;
  5612. /* Unbind it from offline cpu so it can run. Fall thru. */
  5613. kthread_bind(cpu_rq(cpu)->migration_thread,
  5614. any_online_cpu(cpu_online_map));
  5615. kthread_stop(cpu_rq(cpu)->migration_thread);
  5616. cpu_rq(cpu)->migration_thread = NULL;
  5617. break;
  5618. case CPU_DEAD:
  5619. case CPU_DEAD_FROZEN:
  5620. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5621. migrate_live_tasks(cpu);
  5622. rq = cpu_rq(cpu);
  5623. kthread_stop(rq->migration_thread);
  5624. rq->migration_thread = NULL;
  5625. /* Idle task back to normal (off runqueue, low prio) */
  5626. spin_lock_irq(&rq->lock);
  5627. update_rq_clock(rq);
  5628. deactivate_task(rq, rq->idle, 0);
  5629. rq->idle->static_prio = MAX_PRIO;
  5630. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5631. rq->idle->sched_class = &idle_sched_class;
  5632. migrate_dead_tasks(cpu);
  5633. spin_unlock_irq(&rq->lock);
  5634. cpuset_unlock();
  5635. migrate_nr_uninterruptible(rq);
  5636. BUG_ON(rq->nr_running != 0);
  5637. /*
  5638. * No need to migrate the tasks: it was best-effort if
  5639. * they didn't take sched_hotcpu_mutex. Just wake up
  5640. * the requestors.
  5641. */
  5642. spin_lock_irq(&rq->lock);
  5643. while (!list_empty(&rq->migration_queue)) {
  5644. struct migration_req *req;
  5645. req = list_entry(rq->migration_queue.next,
  5646. struct migration_req, list);
  5647. list_del_init(&req->list);
  5648. spin_unlock_irq(&rq->lock);
  5649. complete(&req->done);
  5650. spin_lock_irq(&rq->lock);
  5651. }
  5652. spin_unlock_irq(&rq->lock);
  5653. break;
  5654. case CPU_DYING:
  5655. case CPU_DYING_FROZEN:
  5656. /* Update our root-domain */
  5657. rq = cpu_rq(cpu);
  5658. spin_lock_irqsave(&rq->lock, flags);
  5659. if (rq->rd) {
  5660. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5661. set_rq_offline(rq);
  5662. }
  5663. spin_unlock_irqrestore(&rq->lock, flags);
  5664. break;
  5665. #endif
  5666. }
  5667. return NOTIFY_OK;
  5668. }
  5669. /* Register at highest priority so that task migration (migrate_all_tasks)
  5670. * happens before everything else.
  5671. */
  5672. static struct notifier_block __cpuinitdata migration_notifier = {
  5673. .notifier_call = migration_call,
  5674. .priority = 10
  5675. };
  5676. static int __init migration_init(void)
  5677. {
  5678. void *cpu = (void *)(long)smp_processor_id();
  5679. int err;
  5680. /* Start one for the boot CPU: */
  5681. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5682. BUG_ON(err == NOTIFY_BAD);
  5683. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5684. register_cpu_notifier(&migration_notifier);
  5685. return err;
  5686. }
  5687. early_initcall(migration_init);
  5688. #endif
  5689. #ifdef CONFIG_SMP
  5690. #ifdef CONFIG_SCHED_DEBUG
  5691. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5692. {
  5693. switch (lvl) {
  5694. case SD_LV_NONE:
  5695. return "NONE";
  5696. case SD_LV_SIBLING:
  5697. return "SIBLING";
  5698. case SD_LV_MC:
  5699. return "MC";
  5700. case SD_LV_CPU:
  5701. return "CPU";
  5702. case SD_LV_NODE:
  5703. return "NODE";
  5704. case SD_LV_ALLNODES:
  5705. return "ALLNODES";
  5706. case SD_LV_MAX:
  5707. return "MAX";
  5708. }
  5709. return "MAX";
  5710. }
  5711. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5712. cpumask_t *groupmask)
  5713. {
  5714. struct sched_group *group = sd->groups;
  5715. char str[256];
  5716. cpulist_scnprintf(str, sizeof(str), sd->span);
  5717. cpus_clear(*groupmask);
  5718. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5719. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5720. printk("does not load-balance\n");
  5721. if (sd->parent)
  5722. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5723. " has parent");
  5724. return -1;
  5725. }
  5726. printk(KERN_CONT "span %s level %s\n",
  5727. str, sd_level_to_string(sd->level));
  5728. if (!cpu_isset(cpu, sd->span)) {
  5729. printk(KERN_ERR "ERROR: domain->span does not contain "
  5730. "CPU%d\n", cpu);
  5731. }
  5732. if (!cpu_isset(cpu, group->cpumask)) {
  5733. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5734. " CPU%d\n", cpu);
  5735. }
  5736. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5737. do {
  5738. if (!group) {
  5739. printk("\n");
  5740. printk(KERN_ERR "ERROR: group is NULL\n");
  5741. break;
  5742. }
  5743. if (!group->__cpu_power) {
  5744. printk(KERN_CONT "\n");
  5745. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5746. "set\n");
  5747. break;
  5748. }
  5749. if (!cpus_weight(group->cpumask)) {
  5750. printk(KERN_CONT "\n");
  5751. printk(KERN_ERR "ERROR: empty group\n");
  5752. break;
  5753. }
  5754. if (cpus_intersects(*groupmask, group->cpumask)) {
  5755. printk(KERN_CONT "\n");
  5756. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5757. break;
  5758. }
  5759. cpus_or(*groupmask, *groupmask, group->cpumask);
  5760. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5761. printk(KERN_CONT " %s", str);
  5762. group = group->next;
  5763. } while (group != sd->groups);
  5764. printk(KERN_CONT "\n");
  5765. if (!cpus_equal(sd->span, *groupmask))
  5766. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5767. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5768. printk(KERN_ERR "ERROR: parent span is not a superset "
  5769. "of domain->span\n");
  5770. return 0;
  5771. }
  5772. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5773. {
  5774. cpumask_t *groupmask;
  5775. int level = 0;
  5776. if (!sd) {
  5777. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5778. return;
  5779. }
  5780. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5781. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5782. if (!groupmask) {
  5783. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5784. return;
  5785. }
  5786. for (;;) {
  5787. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5788. break;
  5789. level++;
  5790. sd = sd->parent;
  5791. if (!sd)
  5792. break;
  5793. }
  5794. kfree(groupmask);
  5795. }
  5796. #else /* !CONFIG_SCHED_DEBUG */
  5797. # define sched_domain_debug(sd, cpu) do { } while (0)
  5798. #endif /* CONFIG_SCHED_DEBUG */
  5799. static int sd_degenerate(struct sched_domain *sd)
  5800. {
  5801. if (cpus_weight(sd->span) == 1)
  5802. return 1;
  5803. /* Following flags need at least 2 groups */
  5804. if (sd->flags & (SD_LOAD_BALANCE |
  5805. SD_BALANCE_NEWIDLE |
  5806. SD_BALANCE_FORK |
  5807. SD_BALANCE_EXEC |
  5808. SD_SHARE_CPUPOWER |
  5809. SD_SHARE_PKG_RESOURCES)) {
  5810. if (sd->groups != sd->groups->next)
  5811. return 0;
  5812. }
  5813. /* Following flags don't use groups */
  5814. if (sd->flags & (SD_WAKE_IDLE |
  5815. SD_WAKE_AFFINE |
  5816. SD_WAKE_BALANCE))
  5817. return 0;
  5818. return 1;
  5819. }
  5820. static int
  5821. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5822. {
  5823. unsigned long cflags = sd->flags, pflags = parent->flags;
  5824. if (sd_degenerate(parent))
  5825. return 1;
  5826. if (!cpus_equal(sd->span, parent->span))
  5827. return 0;
  5828. /* Does parent contain flags not in child? */
  5829. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5830. if (cflags & SD_WAKE_AFFINE)
  5831. pflags &= ~SD_WAKE_BALANCE;
  5832. /* Flags needing groups don't count if only 1 group in parent */
  5833. if (parent->groups == parent->groups->next) {
  5834. pflags &= ~(SD_LOAD_BALANCE |
  5835. SD_BALANCE_NEWIDLE |
  5836. SD_BALANCE_FORK |
  5837. SD_BALANCE_EXEC |
  5838. SD_SHARE_CPUPOWER |
  5839. SD_SHARE_PKG_RESOURCES);
  5840. }
  5841. if (~cflags & pflags)
  5842. return 0;
  5843. return 1;
  5844. }
  5845. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5846. {
  5847. unsigned long flags;
  5848. spin_lock_irqsave(&rq->lock, flags);
  5849. if (rq->rd) {
  5850. struct root_domain *old_rd = rq->rd;
  5851. if (cpu_isset(rq->cpu, old_rd->online))
  5852. set_rq_offline(rq);
  5853. cpu_clear(rq->cpu, old_rd->span);
  5854. if (atomic_dec_and_test(&old_rd->refcount))
  5855. kfree(old_rd);
  5856. }
  5857. atomic_inc(&rd->refcount);
  5858. rq->rd = rd;
  5859. cpu_set(rq->cpu, rd->span);
  5860. if (cpu_isset(rq->cpu, cpu_online_map))
  5861. set_rq_online(rq);
  5862. spin_unlock_irqrestore(&rq->lock, flags);
  5863. }
  5864. static void init_rootdomain(struct root_domain *rd)
  5865. {
  5866. memset(rd, 0, sizeof(*rd));
  5867. cpus_clear(rd->span);
  5868. cpus_clear(rd->online);
  5869. cpupri_init(&rd->cpupri);
  5870. }
  5871. static void init_defrootdomain(void)
  5872. {
  5873. init_rootdomain(&def_root_domain);
  5874. atomic_set(&def_root_domain.refcount, 1);
  5875. }
  5876. static struct root_domain *alloc_rootdomain(void)
  5877. {
  5878. struct root_domain *rd;
  5879. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5880. if (!rd)
  5881. return NULL;
  5882. init_rootdomain(rd);
  5883. return rd;
  5884. }
  5885. /*
  5886. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5887. * hold the hotplug lock.
  5888. */
  5889. static void
  5890. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5891. {
  5892. struct rq *rq = cpu_rq(cpu);
  5893. struct sched_domain *tmp;
  5894. /* Remove the sched domains which do not contribute to scheduling. */
  5895. for (tmp = sd; tmp; ) {
  5896. struct sched_domain *parent = tmp->parent;
  5897. if (!parent)
  5898. break;
  5899. if (sd_parent_degenerate(tmp, parent)) {
  5900. tmp->parent = parent->parent;
  5901. if (parent->parent)
  5902. parent->parent->child = tmp;
  5903. } else
  5904. tmp = tmp->parent;
  5905. }
  5906. if (sd && sd_degenerate(sd)) {
  5907. sd = sd->parent;
  5908. if (sd)
  5909. sd->child = NULL;
  5910. }
  5911. sched_domain_debug(sd, cpu);
  5912. rq_attach_root(rq, rd);
  5913. rcu_assign_pointer(rq->sd, sd);
  5914. }
  5915. /* cpus with isolated domains */
  5916. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5917. /* Setup the mask of cpus configured for isolated domains */
  5918. static int __init isolated_cpu_setup(char *str)
  5919. {
  5920. static int __initdata ints[NR_CPUS];
  5921. int i;
  5922. str = get_options(str, ARRAY_SIZE(ints), ints);
  5923. cpus_clear(cpu_isolated_map);
  5924. for (i = 1; i <= ints[0]; i++)
  5925. if (ints[i] < NR_CPUS)
  5926. cpu_set(ints[i], cpu_isolated_map);
  5927. return 1;
  5928. }
  5929. __setup("isolcpus=", isolated_cpu_setup);
  5930. /*
  5931. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5932. * to a function which identifies what group(along with sched group) a CPU
  5933. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5934. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5935. *
  5936. * init_sched_build_groups will build a circular linked list of the groups
  5937. * covered by the given span, and will set each group's ->cpumask correctly,
  5938. * and ->cpu_power to 0.
  5939. */
  5940. static void
  5941. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5942. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5943. struct sched_group **sg,
  5944. cpumask_t *tmpmask),
  5945. cpumask_t *covered, cpumask_t *tmpmask)
  5946. {
  5947. struct sched_group *first = NULL, *last = NULL;
  5948. int i;
  5949. cpus_clear(*covered);
  5950. for_each_cpu_mask_nr(i, *span) {
  5951. struct sched_group *sg;
  5952. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5953. int j;
  5954. if (cpu_isset(i, *covered))
  5955. continue;
  5956. cpus_clear(sg->cpumask);
  5957. sg->__cpu_power = 0;
  5958. for_each_cpu_mask_nr(j, *span) {
  5959. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5960. continue;
  5961. cpu_set(j, *covered);
  5962. cpu_set(j, sg->cpumask);
  5963. }
  5964. if (!first)
  5965. first = sg;
  5966. if (last)
  5967. last->next = sg;
  5968. last = sg;
  5969. }
  5970. last->next = first;
  5971. }
  5972. #define SD_NODES_PER_DOMAIN 16
  5973. #ifdef CONFIG_NUMA
  5974. /**
  5975. * find_next_best_node - find the next node to include in a sched_domain
  5976. * @node: node whose sched_domain we're building
  5977. * @used_nodes: nodes already in the sched_domain
  5978. *
  5979. * Find the next node to include in a given scheduling domain. Simply
  5980. * finds the closest node not already in the @used_nodes map.
  5981. *
  5982. * Should use nodemask_t.
  5983. */
  5984. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5985. {
  5986. int i, n, val, min_val, best_node = 0;
  5987. min_val = INT_MAX;
  5988. for (i = 0; i < nr_node_ids; i++) {
  5989. /* Start at @node */
  5990. n = (node + i) % nr_node_ids;
  5991. if (!nr_cpus_node(n))
  5992. continue;
  5993. /* Skip already used nodes */
  5994. if (node_isset(n, *used_nodes))
  5995. continue;
  5996. /* Simple min distance search */
  5997. val = node_distance(node, n);
  5998. if (val < min_val) {
  5999. min_val = val;
  6000. best_node = n;
  6001. }
  6002. }
  6003. node_set(best_node, *used_nodes);
  6004. return best_node;
  6005. }
  6006. /**
  6007. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6008. * @node: node whose cpumask we're constructing
  6009. * @span: resulting cpumask
  6010. *
  6011. * Given a node, construct a good cpumask for its sched_domain to span. It
  6012. * should be one that prevents unnecessary balancing, but also spreads tasks
  6013. * out optimally.
  6014. */
  6015. static void sched_domain_node_span(int node, cpumask_t *span)
  6016. {
  6017. nodemask_t used_nodes;
  6018. node_to_cpumask_ptr(nodemask, node);
  6019. int i;
  6020. cpus_clear(*span);
  6021. nodes_clear(used_nodes);
  6022. cpus_or(*span, *span, *nodemask);
  6023. node_set(node, used_nodes);
  6024. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6025. int next_node = find_next_best_node(node, &used_nodes);
  6026. node_to_cpumask_ptr_next(nodemask, next_node);
  6027. cpus_or(*span, *span, *nodemask);
  6028. }
  6029. }
  6030. #endif /* CONFIG_NUMA */
  6031. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6032. /*
  6033. * SMT sched-domains:
  6034. */
  6035. #ifdef CONFIG_SCHED_SMT
  6036. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6037. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6038. static int
  6039. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6040. cpumask_t *unused)
  6041. {
  6042. if (sg)
  6043. *sg = &per_cpu(sched_group_cpus, cpu);
  6044. return cpu;
  6045. }
  6046. #endif /* CONFIG_SCHED_SMT */
  6047. /*
  6048. * multi-core sched-domains:
  6049. */
  6050. #ifdef CONFIG_SCHED_MC
  6051. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6052. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6053. #endif /* CONFIG_SCHED_MC */
  6054. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6055. static int
  6056. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6057. cpumask_t *mask)
  6058. {
  6059. int group;
  6060. *mask = per_cpu(cpu_sibling_map, cpu);
  6061. cpus_and(*mask, *mask, *cpu_map);
  6062. group = first_cpu(*mask);
  6063. if (sg)
  6064. *sg = &per_cpu(sched_group_core, group);
  6065. return group;
  6066. }
  6067. #elif defined(CONFIG_SCHED_MC)
  6068. static int
  6069. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6070. cpumask_t *unused)
  6071. {
  6072. if (sg)
  6073. *sg = &per_cpu(sched_group_core, cpu);
  6074. return cpu;
  6075. }
  6076. #endif
  6077. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6078. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6079. static int
  6080. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6081. cpumask_t *mask)
  6082. {
  6083. int group;
  6084. #ifdef CONFIG_SCHED_MC
  6085. *mask = cpu_coregroup_map(cpu);
  6086. cpus_and(*mask, *mask, *cpu_map);
  6087. group = first_cpu(*mask);
  6088. #elif defined(CONFIG_SCHED_SMT)
  6089. *mask = per_cpu(cpu_sibling_map, cpu);
  6090. cpus_and(*mask, *mask, *cpu_map);
  6091. group = first_cpu(*mask);
  6092. #else
  6093. group = cpu;
  6094. #endif
  6095. if (sg)
  6096. *sg = &per_cpu(sched_group_phys, group);
  6097. return group;
  6098. }
  6099. #ifdef CONFIG_NUMA
  6100. /*
  6101. * The init_sched_build_groups can't handle what we want to do with node
  6102. * groups, so roll our own. Now each node has its own list of groups which
  6103. * gets dynamically allocated.
  6104. */
  6105. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6106. static struct sched_group ***sched_group_nodes_bycpu;
  6107. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6108. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6109. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6110. struct sched_group **sg, cpumask_t *nodemask)
  6111. {
  6112. int group;
  6113. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6114. cpus_and(*nodemask, *nodemask, *cpu_map);
  6115. group = first_cpu(*nodemask);
  6116. if (sg)
  6117. *sg = &per_cpu(sched_group_allnodes, group);
  6118. return group;
  6119. }
  6120. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6121. {
  6122. struct sched_group *sg = group_head;
  6123. int j;
  6124. if (!sg)
  6125. return;
  6126. do {
  6127. for_each_cpu_mask_nr(j, sg->cpumask) {
  6128. struct sched_domain *sd;
  6129. sd = &per_cpu(phys_domains, j);
  6130. if (j != first_cpu(sd->groups->cpumask)) {
  6131. /*
  6132. * Only add "power" once for each
  6133. * physical package.
  6134. */
  6135. continue;
  6136. }
  6137. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6138. }
  6139. sg = sg->next;
  6140. } while (sg != group_head);
  6141. }
  6142. #endif /* CONFIG_NUMA */
  6143. #ifdef CONFIG_NUMA
  6144. /* Free memory allocated for various sched_group structures */
  6145. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6146. {
  6147. int cpu, i;
  6148. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6149. struct sched_group **sched_group_nodes
  6150. = sched_group_nodes_bycpu[cpu];
  6151. if (!sched_group_nodes)
  6152. continue;
  6153. for (i = 0; i < nr_node_ids; i++) {
  6154. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6155. *nodemask = node_to_cpumask(i);
  6156. cpus_and(*nodemask, *nodemask, *cpu_map);
  6157. if (cpus_empty(*nodemask))
  6158. continue;
  6159. if (sg == NULL)
  6160. continue;
  6161. sg = sg->next;
  6162. next_sg:
  6163. oldsg = sg;
  6164. sg = sg->next;
  6165. kfree(oldsg);
  6166. if (oldsg != sched_group_nodes[i])
  6167. goto next_sg;
  6168. }
  6169. kfree(sched_group_nodes);
  6170. sched_group_nodes_bycpu[cpu] = NULL;
  6171. }
  6172. }
  6173. #else /* !CONFIG_NUMA */
  6174. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6175. {
  6176. }
  6177. #endif /* CONFIG_NUMA */
  6178. /*
  6179. * Initialize sched groups cpu_power.
  6180. *
  6181. * cpu_power indicates the capacity of sched group, which is used while
  6182. * distributing the load between different sched groups in a sched domain.
  6183. * Typically cpu_power for all the groups in a sched domain will be same unless
  6184. * there are asymmetries in the topology. If there are asymmetries, group
  6185. * having more cpu_power will pickup more load compared to the group having
  6186. * less cpu_power.
  6187. *
  6188. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6189. * the maximum number of tasks a group can handle in the presence of other idle
  6190. * or lightly loaded groups in the same sched domain.
  6191. */
  6192. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6193. {
  6194. struct sched_domain *child;
  6195. struct sched_group *group;
  6196. WARN_ON(!sd || !sd->groups);
  6197. if (cpu != first_cpu(sd->groups->cpumask))
  6198. return;
  6199. child = sd->child;
  6200. sd->groups->__cpu_power = 0;
  6201. /*
  6202. * For perf policy, if the groups in child domain share resources
  6203. * (for example cores sharing some portions of the cache hierarchy
  6204. * or SMT), then set this domain groups cpu_power such that each group
  6205. * can handle only one task, when there are other idle groups in the
  6206. * same sched domain.
  6207. */
  6208. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6209. (child->flags &
  6210. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6211. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6212. return;
  6213. }
  6214. /*
  6215. * add cpu_power of each child group to this groups cpu_power
  6216. */
  6217. group = child->groups;
  6218. do {
  6219. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6220. group = group->next;
  6221. } while (group != child->groups);
  6222. }
  6223. /*
  6224. * Initializers for schedule domains
  6225. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6226. */
  6227. #ifdef CONFIG_SCHED_DEBUG
  6228. # define SD_INIT_NAME(sd, type) sd->name = #type
  6229. #else
  6230. # define SD_INIT_NAME(sd, type) do { } while (0)
  6231. #endif
  6232. #define SD_INIT(sd, type) sd_init_##type(sd)
  6233. #define SD_INIT_FUNC(type) \
  6234. static noinline void sd_init_##type(struct sched_domain *sd) \
  6235. { \
  6236. memset(sd, 0, sizeof(*sd)); \
  6237. *sd = SD_##type##_INIT; \
  6238. sd->level = SD_LV_##type; \
  6239. SD_INIT_NAME(sd, type); \
  6240. }
  6241. SD_INIT_FUNC(CPU)
  6242. #ifdef CONFIG_NUMA
  6243. SD_INIT_FUNC(ALLNODES)
  6244. SD_INIT_FUNC(NODE)
  6245. #endif
  6246. #ifdef CONFIG_SCHED_SMT
  6247. SD_INIT_FUNC(SIBLING)
  6248. #endif
  6249. #ifdef CONFIG_SCHED_MC
  6250. SD_INIT_FUNC(MC)
  6251. #endif
  6252. /*
  6253. * To minimize stack usage kmalloc room for cpumasks and share the
  6254. * space as the usage in build_sched_domains() dictates. Used only
  6255. * if the amount of space is significant.
  6256. */
  6257. struct allmasks {
  6258. cpumask_t tmpmask; /* make this one first */
  6259. union {
  6260. cpumask_t nodemask;
  6261. cpumask_t this_sibling_map;
  6262. cpumask_t this_core_map;
  6263. };
  6264. cpumask_t send_covered;
  6265. #ifdef CONFIG_NUMA
  6266. cpumask_t domainspan;
  6267. cpumask_t covered;
  6268. cpumask_t notcovered;
  6269. #endif
  6270. };
  6271. #if NR_CPUS > 128
  6272. #define SCHED_CPUMASK_ALLOC 1
  6273. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6274. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6275. #else
  6276. #define SCHED_CPUMASK_ALLOC 0
  6277. #define SCHED_CPUMASK_FREE(v)
  6278. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6279. #endif
  6280. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6281. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6282. static int default_relax_domain_level = -1;
  6283. static int __init setup_relax_domain_level(char *str)
  6284. {
  6285. unsigned long val;
  6286. val = simple_strtoul(str, NULL, 0);
  6287. if (val < SD_LV_MAX)
  6288. default_relax_domain_level = val;
  6289. return 1;
  6290. }
  6291. __setup("relax_domain_level=", setup_relax_domain_level);
  6292. static void set_domain_attribute(struct sched_domain *sd,
  6293. struct sched_domain_attr *attr)
  6294. {
  6295. int request;
  6296. if (!attr || attr->relax_domain_level < 0) {
  6297. if (default_relax_domain_level < 0)
  6298. return;
  6299. else
  6300. request = default_relax_domain_level;
  6301. } else
  6302. request = attr->relax_domain_level;
  6303. if (request < sd->level) {
  6304. /* turn off idle balance on this domain */
  6305. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6306. } else {
  6307. /* turn on idle balance on this domain */
  6308. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6309. }
  6310. }
  6311. /*
  6312. * Build sched domains for a given set of cpus and attach the sched domains
  6313. * to the individual cpus
  6314. */
  6315. static int __build_sched_domains(const cpumask_t *cpu_map,
  6316. struct sched_domain_attr *attr)
  6317. {
  6318. int i;
  6319. struct root_domain *rd;
  6320. SCHED_CPUMASK_DECLARE(allmasks);
  6321. cpumask_t *tmpmask;
  6322. #ifdef CONFIG_NUMA
  6323. struct sched_group **sched_group_nodes = NULL;
  6324. int sd_allnodes = 0;
  6325. /*
  6326. * Allocate the per-node list of sched groups
  6327. */
  6328. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6329. GFP_KERNEL);
  6330. if (!sched_group_nodes) {
  6331. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6332. return -ENOMEM;
  6333. }
  6334. #endif
  6335. rd = alloc_rootdomain();
  6336. if (!rd) {
  6337. printk(KERN_WARNING "Cannot alloc root domain\n");
  6338. #ifdef CONFIG_NUMA
  6339. kfree(sched_group_nodes);
  6340. #endif
  6341. return -ENOMEM;
  6342. }
  6343. #if SCHED_CPUMASK_ALLOC
  6344. /* get space for all scratch cpumask variables */
  6345. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6346. if (!allmasks) {
  6347. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6348. kfree(rd);
  6349. #ifdef CONFIG_NUMA
  6350. kfree(sched_group_nodes);
  6351. #endif
  6352. return -ENOMEM;
  6353. }
  6354. #endif
  6355. tmpmask = (cpumask_t *)allmasks;
  6356. #ifdef CONFIG_NUMA
  6357. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6358. #endif
  6359. /*
  6360. * Set up domains for cpus specified by the cpu_map.
  6361. */
  6362. for_each_cpu_mask_nr(i, *cpu_map) {
  6363. struct sched_domain *sd = NULL, *p;
  6364. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6365. *nodemask = node_to_cpumask(cpu_to_node(i));
  6366. cpus_and(*nodemask, *nodemask, *cpu_map);
  6367. #ifdef CONFIG_NUMA
  6368. if (cpus_weight(*cpu_map) >
  6369. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6370. sd = &per_cpu(allnodes_domains, i);
  6371. SD_INIT(sd, ALLNODES);
  6372. set_domain_attribute(sd, attr);
  6373. sd->span = *cpu_map;
  6374. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6375. p = sd;
  6376. sd_allnodes = 1;
  6377. } else
  6378. p = NULL;
  6379. sd = &per_cpu(node_domains, i);
  6380. SD_INIT(sd, NODE);
  6381. set_domain_attribute(sd, attr);
  6382. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6383. sd->parent = p;
  6384. if (p)
  6385. p->child = sd;
  6386. cpus_and(sd->span, sd->span, *cpu_map);
  6387. #endif
  6388. p = sd;
  6389. sd = &per_cpu(phys_domains, i);
  6390. SD_INIT(sd, CPU);
  6391. set_domain_attribute(sd, attr);
  6392. sd->span = *nodemask;
  6393. sd->parent = p;
  6394. if (p)
  6395. p->child = sd;
  6396. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6397. #ifdef CONFIG_SCHED_MC
  6398. p = sd;
  6399. sd = &per_cpu(core_domains, i);
  6400. SD_INIT(sd, MC);
  6401. set_domain_attribute(sd, attr);
  6402. sd->span = cpu_coregroup_map(i);
  6403. cpus_and(sd->span, sd->span, *cpu_map);
  6404. sd->parent = p;
  6405. p->child = sd;
  6406. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6407. #endif
  6408. #ifdef CONFIG_SCHED_SMT
  6409. p = sd;
  6410. sd = &per_cpu(cpu_domains, i);
  6411. SD_INIT(sd, SIBLING);
  6412. set_domain_attribute(sd, attr);
  6413. sd->span = per_cpu(cpu_sibling_map, i);
  6414. cpus_and(sd->span, sd->span, *cpu_map);
  6415. sd->parent = p;
  6416. p->child = sd;
  6417. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6418. #endif
  6419. }
  6420. #ifdef CONFIG_SCHED_SMT
  6421. /* Set up CPU (sibling) groups */
  6422. for_each_cpu_mask_nr(i, *cpu_map) {
  6423. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6424. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6425. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6426. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6427. if (i != first_cpu(*this_sibling_map))
  6428. continue;
  6429. init_sched_build_groups(this_sibling_map, cpu_map,
  6430. &cpu_to_cpu_group,
  6431. send_covered, tmpmask);
  6432. }
  6433. #endif
  6434. #ifdef CONFIG_SCHED_MC
  6435. /* Set up multi-core groups */
  6436. for_each_cpu_mask_nr(i, *cpu_map) {
  6437. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6438. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6439. *this_core_map = cpu_coregroup_map(i);
  6440. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6441. if (i != first_cpu(*this_core_map))
  6442. continue;
  6443. init_sched_build_groups(this_core_map, cpu_map,
  6444. &cpu_to_core_group,
  6445. send_covered, tmpmask);
  6446. }
  6447. #endif
  6448. /* Set up physical groups */
  6449. for (i = 0; i < nr_node_ids; i++) {
  6450. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6451. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6452. *nodemask = node_to_cpumask(i);
  6453. cpus_and(*nodemask, *nodemask, *cpu_map);
  6454. if (cpus_empty(*nodemask))
  6455. continue;
  6456. init_sched_build_groups(nodemask, cpu_map,
  6457. &cpu_to_phys_group,
  6458. send_covered, tmpmask);
  6459. }
  6460. #ifdef CONFIG_NUMA
  6461. /* Set up node groups */
  6462. if (sd_allnodes) {
  6463. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6464. init_sched_build_groups(cpu_map, cpu_map,
  6465. &cpu_to_allnodes_group,
  6466. send_covered, tmpmask);
  6467. }
  6468. for (i = 0; i < nr_node_ids; i++) {
  6469. /* Set up node groups */
  6470. struct sched_group *sg, *prev;
  6471. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6472. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6473. SCHED_CPUMASK_VAR(covered, allmasks);
  6474. int j;
  6475. *nodemask = node_to_cpumask(i);
  6476. cpus_clear(*covered);
  6477. cpus_and(*nodemask, *nodemask, *cpu_map);
  6478. if (cpus_empty(*nodemask)) {
  6479. sched_group_nodes[i] = NULL;
  6480. continue;
  6481. }
  6482. sched_domain_node_span(i, domainspan);
  6483. cpus_and(*domainspan, *domainspan, *cpu_map);
  6484. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6485. if (!sg) {
  6486. printk(KERN_WARNING "Can not alloc domain group for "
  6487. "node %d\n", i);
  6488. goto error;
  6489. }
  6490. sched_group_nodes[i] = sg;
  6491. for_each_cpu_mask_nr(j, *nodemask) {
  6492. struct sched_domain *sd;
  6493. sd = &per_cpu(node_domains, j);
  6494. sd->groups = sg;
  6495. }
  6496. sg->__cpu_power = 0;
  6497. sg->cpumask = *nodemask;
  6498. sg->next = sg;
  6499. cpus_or(*covered, *covered, *nodemask);
  6500. prev = sg;
  6501. for (j = 0; j < nr_node_ids; j++) {
  6502. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6503. int n = (i + j) % nr_node_ids;
  6504. node_to_cpumask_ptr(pnodemask, n);
  6505. cpus_complement(*notcovered, *covered);
  6506. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6507. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6508. if (cpus_empty(*tmpmask))
  6509. break;
  6510. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6511. if (cpus_empty(*tmpmask))
  6512. continue;
  6513. sg = kmalloc_node(sizeof(struct sched_group),
  6514. GFP_KERNEL, i);
  6515. if (!sg) {
  6516. printk(KERN_WARNING
  6517. "Can not alloc domain group for node %d\n", j);
  6518. goto error;
  6519. }
  6520. sg->__cpu_power = 0;
  6521. sg->cpumask = *tmpmask;
  6522. sg->next = prev->next;
  6523. cpus_or(*covered, *covered, *tmpmask);
  6524. prev->next = sg;
  6525. prev = sg;
  6526. }
  6527. }
  6528. #endif
  6529. /* Calculate CPU power for physical packages and nodes */
  6530. #ifdef CONFIG_SCHED_SMT
  6531. for_each_cpu_mask_nr(i, *cpu_map) {
  6532. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6533. init_sched_groups_power(i, sd);
  6534. }
  6535. #endif
  6536. #ifdef CONFIG_SCHED_MC
  6537. for_each_cpu_mask_nr(i, *cpu_map) {
  6538. struct sched_domain *sd = &per_cpu(core_domains, i);
  6539. init_sched_groups_power(i, sd);
  6540. }
  6541. #endif
  6542. for_each_cpu_mask_nr(i, *cpu_map) {
  6543. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6544. init_sched_groups_power(i, sd);
  6545. }
  6546. #ifdef CONFIG_NUMA
  6547. for (i = 0; i < nr_node_ids; i++)
  6548. init_numa_sched_groups_power(sched_group_nodes[i]);
  6549. if (sd_allnodes) {
  6550. struct sched_group *sg;
  6551. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6552. tmpmask);
  6553. init_numa_sched_groups_power(sg);
  6554. }
  6555. #endif
  6556. /* Attach the domains */
  6557. for_each_cpu_mask_nr(i, *cpu_map) {
  6558. struct sched_domain *sd;
  6559. #ifdef CONFIG_SCHED_SMT
  6560. sd = &per_cpu(cpu_domains, i);
  6561. #elif defined(CONFIG_SCHED_MC)
  6562. sd = &per_cpu(core_domains, i);
  6563. #else
  6564. sd = &per_cpu(phys_domains, i);
  6565. #endif
  6566. cpu_attach_domain(sd, rd, i);
  6567. }
  6568. SCHED_CPUMASK_FREE((void *)allmasks);
  6569. return 0;
  6570. #ifdef CONFIG_NUMA
  6571. error:
  6572. free_sched_groups(cpu_map, tmpmask);
  6573. SCHED_CPUMASK_FREE((void *)allmasks);
  6574. kfree(rd);
  6575. return -ENOMEM;
  6576. #endif
  6577. }
  6578. static int build_sched_domains(const cpumask_t *cpu_map)
  6579. {
  6580. return __build_sched_domains(cpu_map, NULL);
  6581. }
  6582. static cpumask_t *doms_cur; /* current sched domains */
  6583. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6584. static struct sched_domain_attr *dattr_cur;
  6585. /* attribues of custom domains in 'doms_cur' */
  6586. /*
  6587. * Special case: If a kmalloc of a doms_cur partition (array of
  6588. * cpumask_t) fails, then fallback to a single sched domain,
  6589. * as determined by the single cpumask_t fallback_doms.
  6590. */
  6591. static cpumask_t fallback_doms;
  6592. void __attribute__((weak)) arch_update_cpu_topology(void)
  6593. {
  6594. }
  6595. /*
  6596. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6597. * For now this just excludes isolated cpus, but could be used to
  6598. * exclude other special cases in the future.
  6599. */
  6600. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6601. {
  6602. int err;
  6603. arch_update_cpu_topology();
  6604. ndoms_cur = 1;
  6605. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6606. if (!doms_cur)
  6607. doms_cur = &fallback_doms;
  6608. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6609. dattr_cur = NULL;
  6610. err = build_sched_domains(doms_cur);
  6611. register_sched_domain_sysctl();
  6612. return err;
  6613. }
  6614. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6615. cpumask_t *tmpmask)
  6616. {
  6617. free_sched_groups(cpu_map, tmpmask);
  6618. }
  6619. /*
  6620. * Detach sched domains from a group of cpus specified in cpu_map
  6621. * These cpus will now be attached to the NULL domain
  6622. */
  6623. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6624. {
  6625. cpumask_t tmpmask;
  6626. int i;
  6627. unregister_sched_domain_sysctl();
  6628. for_each_cpu_mask_nr(i, *cpu_map)
  6629. cpu_attach_domain(NULL, &def_root_domain, i);
  6630. synchronize_sched();
  6631. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6632. }
  6633. /* handle null as "default" */
  6634. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6635. struct sched_domain_attr *new, int idx_new)
  6636. {
  6637. struct sched_domain_attr tmp;
  6638. /* fast path */
  6639. if (!new && !cur)
  6640. return 1;
  6641. tmp = SD_ATTR_INIT;
  6642. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6643. new ? (new + idx_new) : &tmp,
  6644. sizeof(struct sched_domain_attr));
  6645. }
  6646. /*
  6647. * Partition sched domains as specified by the 'ndoms_new'
  6648. * cpumasks in the array doms_new[] of cpumasks. This compares
  6649. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6650. * It destroys each deleted domain and builds each new domain.
  6651. *
  6652. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6653. * The masks don't intersect (don't overlap.) We should setup one
  6654. * sched domain for each mask. CPUs not in any of the cpumasks will
  6655. * not be load balanced. If the same cpumask appears both in the
  6656. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6657. * it as it is.
  6658. *
  6659. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6660. * ownership of it and will kfree it when done with it. If the caller
  6661. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6662. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6663. * the single partition 'fallback_doms', it also forces the domains
  6664. * to be rebuilt.
  6665. *
  6666. * If doms_new == NULL it will be replaced with cpu_online_map.
  6667. * ndoms_new == 0 is a special case for destroying existing domains,
  6668. * and it will not create the default domain.
  6669. *
  6670. * Call with hotplug lock held
  6671. */
  6672. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6673. struct sched_domain_attr *dattr_new)
  6674. {
  6675. int i, j, n;
  6676. mutex_lock(&sched_domains_mutex);
  6677. /* always unregister in case we don't destroy any domains */
  6678. unregister_sched_domain_sysctl();
  6679. n = doms_new ? ndoms_new : 0;
  6680. /* Destroy deleted domains */
  6681. for (i = 0; i < ndoms_cur; i++) {
  6682. for (j = 0; j < n; j++) {
  6683. if (cpus_equal(doms_cur[i], doms_new[j])
  6684. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6685. goto match1;
  6686. }
  6687. /* no match - a current sched domain not in new doms_new[] */
  6688. detach_destroy_domains(doms_cur + i);
  6689. match1:
  6690. ;
  6691. }
  6692. if (doms_new == NULL) {
  6693. ndoms_cur = 0;
  6694. doms_new = &fallback_doms;
  6695. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6696. dattr_new = NULL;
  6697. }
  6698. /* Build new domains */
  6699. for (i = 0; i < ndoms_new; i++) {
  6700. for (j = 0; j < ndoms_cur; j++) {
  6701. if (cpus_equal(doms_new[i], doms_cur[j])
  6702. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6703. goto match2;
  6704. }
  6705. /* no match - add a new doms_new */
  6706. __build_sched_domains(doms_new + i,
  6707. dattr_new ? dattr_new + i : NULL);
  6708. match2:
  6709. ;
  6710. }
  6711. /* Remember the new sched domains */
  6712. if (doms_cur != &fallback_doms)
  6713. kfree(doms_cur);
  6714. kfree(dattr_cur); /* kfree(NULL) is safe */
  6715. doms_cur = doms_new;
  6716. dattr_cur = dattr_new;
  6717. ndoms_cur = ndoms_new;
  6718. register_sched_domain_sysctl();
  6719. mutex_unlock(&sched_domains_mutex);
  6720. }
  6721. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6722. int arch_reinit_sched_domains(void)
  6723. {
  6724. get_online_cpus();
  6725. /* Destroy domains first to force the rebuild */
  6726. partition_sched_domains(0, NULL, NULL);
  6727. rebuild_sched_domains();
  6728. put_online_cpus();
  6729. return 0;
  6730. }
  6731. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6732. {
  6733. int ret;
  6734. if (buf[0] != '0' && buf[0] != '1')
  6735. return -EINVAL;
  6736. if (smt)
  6737. sched_smt_power_savings = (buf[0] == '1');
  6738. else
  6739. sched_mc_power_savings = (buf[0] == '1');
  6740. ret = arch_reinit_sched_domains();
  6741. return ret ? ret : count;
  6742. }
  6743. #ifdef CONFIG_SCHED_MC
  6744. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6745. char *page)
  6746. {
  6747. return sprintf(page, "%u\n", sched_mc_power_savings);
  6748. }
  6749. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6750. const char *buf, size_t count)
  6751. {
  6752. return sched_power_savings_store(buf, count, 0);
  6753. }
  6754. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6755. sched_mc_power_savings_show,
  6756. sched_mc_power_savings_store);
  6757. #endif
  6758. #ifdef CONFIG_SCHED_SMT
  6759. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6760. char *page)
  6761. {
  6762. return sprintf(page, "%u\n", sched_smt_power_savings);
  6763. }
  6764. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6765. const char *buf, size_t count)
  6766. {
  6767. return sched_power_savings_store(buf, count, 1);
  6768. }
  6769. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6770. sched_smt_power_savings_show,
  6771. sched_smt_power_savings_store);
  6772. #endif
  6773. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6774. {
  6775. int err = 0;
  6776. #ifdef CONFIG_SCHED_SMT
  6777. if (smt_capable())
  6778. err = sysfs_create_file(&cls->kset.kobj,
  6779. &attr_sched_smt_power_savings.attr);
  6780. #endif
  6781. #ifdef CONFIG_SCHED_MC
  6782. if (!err && mc_capable())
  6783. err = sysfs_create_file(&cls->kset.kobj,
  6784. &attr_sched_mc_power_savings.attr);
  6785. #endif
  6786. return err;
  6787. }
  6788. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6789. #ifndef CONFIG_CPUSETS
  6790. /*
  6791. * Add online and remove offline CPUs from the scheduler domains.
  6792. * When cpusets are enabled they take over this function.
  6793. */
  6794. static int update_sched_domains(struct notifier_block *nfb,
  6795. unsigned long action, void *hcpu)
  6796. {
  6797. switch (action) {
  6798. case CPU_ONLINE:
  6799. case CPU_ONLINE_FROZEN:
  6800. case CPU_DEAD:
  6801. case CPU_DEAD_FROZEN:
  6802. partition_sched_domains(1, NULL, NULL);
  6803. return NOTIFY_OK;
  6804. default:
  6805. return NOTIFY_DONE;
  6806. }
  6807. }
  6808. #endif
  6809. static int update_runtime(struct notifier_block *nfb,
  6810. unsigned long action, void *hcpu)
  6811. {
  6812. int cpu = (int)(long)hcpu;
  6813. switch (action) {
  6814. case CPU_DOWN_PREPARE:
  6815. case CPU_DOWN_PREPARE_FROZEN:
  6816. disable_runtime(cpu_rq(cpu));
  6817. return NOTIFY_OK;
  6818. case CPU_DOWN_FAILED:
  6819. case CPU_DOWN_FAILED_FROZEN:
  6820. case CPU_ONLINE:
  6821. case CPU_ONLINE_FROZEN:
  6822. enable_runtime(cpu_rq(cpu));
  6823. return NOTIFY_OK;
  6824. default:
  6825. return NOTIFY_DONE;
  6826. }
  6827. }
  6828. void __init sched_init_smp(void)
  6829. {
  6830. cpumask_t non_isolated_cpus;
  6831. #if defined(CONFIG_NUMA)
  6832. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6833. GFP_KERNEL);
  6834. BUG_ON(sched_group_nodes_bycpu == NULL);
  6835. #endif
  6836. get_online_cpus();
  6837. mutex_lock(&sched_domains_mutex);
  6838. arch_init_sched_domains(&cpu_online_map);
  6839. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6840. if (cpus_empty(non_isolated_cpus))
  6841. cpu_set(smp_processor_id(), non_isolated_cpus);
  6842. mutex_unlock(&sched_domains_mutex);
  6843. put_online_cpus();
  6844. #ifndef CONFIG_CPUSETS
  6845. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6846. hotcpu_notifier(update_sched_domains, 0);
  6847. #endif
  6848. /* RT runtime code needs to handle some hotplug events */
  6849. hotcpu_notifier(update_runtime, 0);
  6850. init_hrtick();
  6851. /* Move init over to a non-isolated CPU */
  6852. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6853. BUG();
  6854. sched_init_granularity();
  6855. }
  6856. #else
  6857. void __init sched_init_smp(void)
  6858. {
  6859. sched_init_granularity();
  6860. }
  6861. #endif /* CONFIG_SMP */
  6862. int in_sched_functions(unsigned long addr)
  6863. {
  6864. return in_lock_functions(addr) ||
  6865. (addr >= (unsigned long)__sched_text_start
  6866. && addr < (unsigned long)__sched_text_end);
  6867. }
  6868. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6869. {
  6870. cfs_rq->tasks_timeline = RB_ROOT;
  6871. INIT_LIST_HEAD(&cfs_rq->tasks);
  6872. #ifdef CONFIG_FAIR_GROUP_SCHED
  6873. cfs_rq->rq = rq;
  6874. #endif
  6875. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6876. }
  6877. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6878. {
  6879. struct rt_prio_array *array;
  6880. int i;
  6881. array = &rt_rq->active;
  6882. for (i = 0; i < MAX_RT_PRIO; i++) {
  6883. INIT_LIST_HEAD(array->queue + i);
  6884. __clear_bit(i, array->bitmap);
  6885. }
  6886. /* delimiter for bitsearch: */
  6887. __set_bit(MAX_RT_PRIO, array->bitmap);
  6888. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6889. rt_rq->highest_prio = MAX_RT_PRIO;
  6890. #endif
  6891. #ifdef CONFIG_SMP
  6892. rt_rq->rt_nr_migratory = 0;
  6893. rt_rq->overloaded = 0;
  6894. #endif
  6895. rt_rq->rt_time = 0;
  6896. rt_rq->rt_throttled = 0;
  6897. rt_rq->rt_runtime = 0;
  6898. spin_lock_init(&rt_rq->rt_runtime_lock);
  6899. #ifdef CONFIG_RT_GROUP_SCHED
  6900. rt_rq->rt_nr_boosted = 0;
  6901. rt_rq->rq = rq;
  6902. #endif
  6903. }
  6904. #ifdef CONFIG_FAIR_GROUP_SCHED
  6905. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6906. struct sched_entity *se, int cpu, int add,
  6907. struct sched_entity *parent)
  6908. {
  6909. struct rq *rq = cpu_rq(cpu);
  6910. tg->cfs_rq[cpu] = cfs_rq;
  6911. init_cfs_rq(cfs_rq, rq);
  6912. cfs_rq->tg = tg;
  6913. if (add)
  6914. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6915. tg->se[cpu] = se;
  6916. /* se could be NULL for init_task_group */
  6917. if (!se)
  6918. return;
  6919. if (!parent)
  6920. se->cfs_rq = &rq->cfs;
  6921. else
  6922. se->cfs_rq = parent->my_q;
  6923. se->my_q = cfs_rq;
  6924. se->load.weight = tg->shares;
  6925. se->load.inv_weight = 0;
  6926. se->parent = parent;
  6927. }
  6928. #endif
  6929. #ifdef CONFIG_RT_GROUP_SCHED
  6930. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6931. struct sched_rt_entity *rt_se, int cpu, int add,
  6932. struct sched_rt_entity *parent)
  6933. {
  6934. struct rq *rq = cpu_rq(cpu);
  6935. tg->rt_rq[cpu] = rt_rq;
  6936. init_rt_rq(rt_rq, rq);
  6937. rt_rq->tg = tg;
  6938. rt_rq->rt_se = rt_se;
  6939. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6940. if (add)
  6941. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6942. tg->rt_se[cpu] = rt_se;
  6943. if (!rt_se)
  6944. return;
  6945. if (!parent)
  6946. rt_se->rt_rq = &rq->rt;
  6947. else
  6948. rt_se->rt_rq = parent->my_q;
  6949. rt_se->my_q = rt_rq;
  6950. rt_se->parent = parent;
  6951. INIT_LIST_HEAD(&rt_se->run_list);
  6952. }
  6953. #endif
  6954. void __init sched_init(void)
  6955. {
  6956. int i, j;
  6957. unsigned long alloc_size = 0, ptr;
  6958. #ifdef CONFIG_FAIR_GROUP_SCHED
  6959. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6960. #endif
  6961. #ifdef CONFIG_RT_GROUP_SCHED
  6962. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6963. #endif
  6964. #ifdef CONFIG_USER_SCHED
  6965. alloc_size *= 2;
  6966. #endif
  6967. /*
  6968. * As sched_init() is called before page_alloc is setup,
  6969. * we use alloc_bootmem().
  6970. */
  6971. if (alloc_size) {
  6972. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6973. #ifdef CONFIG_FAIR_GROUP_SCHED
  6974. init_task_group.se = (struct sched_entity **)ptr;
  6975. ptr += nr_cpu_ids * sizeof(void **);
  6976. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6977. ptr += nr_cpu_ids * sizeof(void **);
  6978. #ifdef CONFIG_USER_SCHED
  6979. root_task_group.se = (struct sched_entity **)ptr;
  6980. ptr += nr_cpu_ids * sizeof(void **);
  6981. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6982. ptr += nr_cpu_ids * sizeof(void **);
  6983. #endif /* CONFIG_USER_SCHED */
  6984. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6985. #ifdef CONFIG_RT_GROUP_SCHED
  6986. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6987. ptr += nr_cpu_ids * sizeof(void **);
  6988. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6989. ptr += nr_cpu_ids * sizeof(void **);
  6990. #ifdef CONFIG_USER_SCHED
  6991. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6992. ptr += nr_cpu_ids * sizeof(void **);
  6993. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6994. ptr += nr_cpu_ids * sizeof(void **);
  6995. #endif /* CONFIG_USER_SCHED */
  6996. #endif /* CONFIG_RT_GROUP_SCHED */
  6997. }
  6998. #ifdef CONFIG_SMP
  6999. init_defrootdomain();
  7000. #endif
  7001. init_rt_bandwidth(&def_rt_bandwidth,
  7002. global_rt_period(), global_rt_runtime());
  7003. #ifdef CONFIG_RT_GROUP_SCHED
  7004. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7005. global_rt_period(), global_rt_runtime());
  7006. #ifdef CONFIG_USER_SCHED
  7007. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7008. global_rt_period(), RUNTIME_INF);
  7009. #endif /* CONFIG_USER_SCHED */
  7010. #endif /* CONFIG_RT_GROUP_SCHED */
  7011. #ifdef CONFIG_GROUP_SCHED
  7012. list_add(&init_task_group.list, &task_groups);
  7013. INIT_LIST_HEAD(&init_task_group.children);
  7014. #ifdef CONFIG_USER_SCHED
  7015. INIT_LIST_HEAD(&root_task_group.children);
  7016. init_task_group.parent = &root_task_group;
  7017. list_add(&init_task_group.siblings, &root_task_group.children);
  7018. #endif /* CONFIG_USER_SCHED */
  7019. #endif /* CONFIG_GROUP_SCHED */
  7020. for_each_possible_cpu(i) {
  7021. struct rq *rq;
  7022. rq = cpu_rq(i);
  7023. spin_lock_init(&rq->lock);
  7024. rq->nr_running = 0;
  7025. init_cfs_rq(&rq->cfs, rq);
  7026. init_rt_rq(&rq->rt, rq);
  7027. #ifdef CONFIG_FAIR_GROUP_SCHED
  7028. init_task_group.shares = init_task_group_load;
  7029. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7030. #ifdef CONFIG_CGROUP_SCHED
  7031. /*
  7032. * How much cpu bandwidth does init_task_group get?
  7033. *
  7034. * In case of task-groups formed thr' the cgroup filesystem, it
  7035. * gets 100% of the cpu resources in the system. This overall
  7036. * system cpu resource is divided among the tasks of
  7037. * init_task_group and its child task-groups in a fair manner,
  7038. * based on each entity's (task or task-group's) weight
  7039. * (se->load.weight).
  7040. *
  7041. * In other words, if init_task_group has 10 tasks of weight
  7042. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7043. * then A0's share of the cpu resource is:
  7044. *
  7045. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7046. *
  7047. * We achieve this by letting init_task_group's tasks sit
  7048. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7049. */
  7050. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7051. #elif defined CONFIG_USER_SCHED
  7052. root_task_group.shares = NICE_0_LOAD;
  7053. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7054. /*
  7055. * In case of task-groups formed thr' the user id of tasks,
  7056. * init_task_group represents tasks belonging to root user.
  7057. * Hence it forms a sibling of all subsequent groups formed.
  7058. * In this case, init_task_group gets only a fraction of overall
  7059. * system cpu resource, based on the weight assigned to root
  7060. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7061. * by letting tasks of init_task_group sit in a separate cfs_rq
  7062. * (init_cfs_rq) and having one entity represent this group of
  7063. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7064. */
  7065. init_tg_cfs_entry(&init_task_group,
  7066. &per_cpu(init_cfs_rq, i),
  7067. &per_cpu(init_sched_entity, i), i, 1,
  7068. root_task_group.se[i]);
  7069. #endif
  7070. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7071. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7072. #ifdef CONFIG_RT_GROUP_SCHED
  7073. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7074. #ifdef CONFIG_CGROUP_SCHED
  7075. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7076. #elif defined CONFIG_USER_SCHED
  7077. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7078. init_tg_rt_entry(&init_task_group,
  7079. &per_cpu(init_rt_rq, i),
  7080. &per_cpu(init_sched_rt_entity, i), i, 1,
  7081. root_task_group.rt_se[i]);
  7082. #endif
  7083. #endif
  7084. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7085. rq->cpu_load[j] = 0;
  7086. #ifdef CONFIG_SMP
  7087. rq->sd = NULL;
  7088. rq->rd = NULL;
  7089. rq->active_balance = 0;
  7090. rq->next_balance = jiffies;
  7091. rq->push_cpu = 0;
  7092. rq->cpu = i;
  7093. rq->online = 0;
  7094. rq->migration_thread = NULL;
  7095. INIT_LIST_HEAD(&rq->migration_queue);
  7096. rq_attach_root(rq, &def_root_domain);
  7097. #endif
  7098. init_rq_hrtick(rq);
  7099. atomic_set(&rq->nr_iowait, 0);
  7100. }
  7101. set_load_weight(&init_task);
  7102. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7103. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7104. #endif
  7105. #ifdef CONFIG_SMP
  7106. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7107. #endif
  7108. #ifdef CONFIG_RT_MUTEXES
  7109. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7110. #endif
  7111. /*
  7112. * The boot idle thread does lazy MMU switching as well:
  7113. */
  7114. atomic_inc(&init_mm.mm_count);
  7115. enter_lazy_tlb(&init_mm, current);
  7116. /*
  7117. * Make us the idle thread. Technically, schedule() should not be
  7118. * called from this thread, however somewhere below it might be,
  7119. * but because we are the idle thread, we just pick up running again
  7120. * when this runqueue becomes "idle".
  7121. */
  7122. init_idle(current, smp_processor_id());
  7123. /*
  7124. * During early bootup we pretend to be a normal task:
  7125. */
  7126. current->sched_class = &fair_sched_class;
  7127. scheduler_running = 1;
  7128. }
  7129. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7130. void __might_sleep(char *file, int line)
  7131. {
  7132. #ifdef in_atomic
  7133. static unsigned long prev_jiffy; /* ratelimiting */
  7134. if ((!in_atomic() && !irqs_disabled()) ||
  7135. system_state != SYSTEM_RUNNING || oops_in_progress)
  7136. return;
  7137. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7138. return;
  7139. prev_jiffy = jiffies;
  7140. printk(KERN_ERR
  7141. "BUG: sleeping function called from invalid context at %s:%d\n",
  7142. file, line);
  7143. printk(KERN_ERR
  7144. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7145. in_atomic(), irqs_disabled(),
  7146. current->pid, current->comm);
  7147. debug_show_held_locks(current);
  7148. if (irqs_disabled())
  7149. print_irqtrace_events(current);
  7150. dump_stack();
  7151. #endif
  7152. }
  7153. EXPORT_SYMBOL(__might_sleep);
  7154. #endif
  7155. #ifdef CONFIG_MAGIC_SYSRQ
  7156. static void normalize_task(struct rq *rq, struct task_struct *p)
  7157. {
  7158. int on_rq;
  7159. update_rq_clock(rq);
  7160. on_rq = p->se.on_rq;
  7161. if (on_rq)
  7162. deactivate_task(rq, p, 0);
  7163. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7164. if (on_rq) {
  7165. activate_task(rq, p, 0);
  7166. resched_task(rq->curr);
  7167. }
  7168. }
  7169. void normalize_rt_tasks(void)
  7170. {
  7171. struct task_struct *g, *p;
  7172. unsigned long flags;
  7173. struct rq *rq;
  7174. read_lock_irqsave(&tasklist_lock, flags);
  7175. do_each_thread(g, p) {
  7176. /*
  7177. * Only normalize user tasks:
  7178. */
  7179. if (!p->mm)
  7180. continue;
  7181. p->se.exec_start = 0;
  7182. #ifdef CONFIG_SCHEDSTATS
  7183. p->se.wait_start = 0;
  7184. p->se.sleep_start = 0;
  7185. p->se.block_start = 0;
  7186. #endif
  7187. if (!rt_task(p)) {
  7188. /*
  7189. * Renice negative nice level userspace
  7190. * tasks back to 0:
  7191. */
  7192. if (TASK_NICE(p) < 0 && p->mm)
  7193. set_user_nice(p, 0);
  7194. continue;
  7195. }
  7196. spin_lock(&p->pi_lock);
  7197. rq = __task_rq_lock(p);
  7198. normalize_task(rq, p);
  7199. __task_rq_unlock(rq);
  7200. spin_unlock(&p->pi_lock);
  7201. } while_each_thread(g, p);
  7202. read_unlock_irqrestore(&tasklist_lock, flags);
  7203. }
  7204. #endif /* CONFIG_MAGIC_SYSRQ */
  7205. #ifdef CONFIG_IA64
  7206. /*
  7207. * These functions are only useful for the IA64 MCA handling.
  7208. *
  7209. * They can only be called when the whole system has been
  7210. * stopped - every CPU needs to be quiescent, and no scheduling
  7211. * activity can take place. Using them for anything else would
  7212. * be a serious bug, and as a result, they aren't even visible
  7213. * under any other configuration.
  7214. */
  7215. /**
  7216. * curr_task - return the current task for a given cpu.
  7217. * @cpu: the processor in question.
  7218. *
  7219. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7220. */
  7221. struct task_struct *curr_task(int cpu)
  7222. {
  7223. return cpu_curr(cpu);
  7224. }
  7225. /**
  7226. * set_curr_task - set the current task for a given cpu.
  7227. * @cpu: the processor in question.
  7228. * @p: the task pointer to set.
  7229. *
  7230. * Description: This function must only be used when non-maskable interrupts
  7231. * are serviced on a separate stack. It allows the architecture to switch the
  7232. * notion of the current task on a cpu in a non-blocking manner. This function
  7233. * must be called with all CPU's synchronized, and interrupts disabled, the
  7234. * and caller must save the original value of the current task (see
  7235. * curr_task() above) and restore that value before reenabling interrupts and
  7236. * re-starting the system.
  7237. *
  7238. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7239. */
  7240. void set_curr_task(int cpu, struct task_struct *p)
  7241. {
  7242. cpu_curr(cpu) = p;
  7243. }
  7244. #endif
  7245. #ifdef CONFIG_FAIR_GROUP_SCHED
  7246. static void free_fair_sched_group(struct task_group *tg)
  7247. {
  7248. int i;
  7249. for_each_possible_cpu(i) {
  7250. if (tg->cfs_rq)
  7251. kfree(tg->cfs_rq[i]);
  7252. if (tg->se)
  7253. kfree(tg->se[i]);
  7254. }
  7255. kfree(tg->cfs_rq);
  7256. kfree(tg->se);
  7257. }
  7258. static
  7259. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7260. {
  7261. struct cfs_rq *cfs_rq;
  7262. struct sched_entity *se, *parent_se;
  7263. struct rq *rq;
  7264. int i;
  7265. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7266. if (!tg->cfs_rq)
  7267. goto err;
  7268. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7269. if (!tg->se)
  7270. goto err;
  7271. tg->shares = NICE_0_LOAD;
  7272. for_each_possible_cpu(i) {
  7273. rq = cpu_rq(i);
  7274. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7275. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7276. if (!cfs_rq)
  7277. goto err;
  7278. se = kmalloc_node(sizeof(struct sched_entity),
  7279. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7280. if (!se)
  7281. goto err;
  7282. parent_se = parent ? parent->se[i] : NULL;
  7283. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7284. }
  7285. return 1;
  7286. err:
  7287. return 0;
  7288. }
  7289. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7290. {
  7291. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7292. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7293. }
  7294. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7295. {
  7296. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7297. }
  7298. #else /* !CONFG_FAIR_GROUP_SCHED */
  7299. static inline void free_fair_sched_group(struct task_group *tg)
  7300. {
  7301. }
  7302. static inline
  7303. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7304. {
  7305. return 1;
  7306. }
  7307. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7308. {
  7309. }
  7310. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7311. {
  7312. }
  7313. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7314. #ifdef CONFIG_RT_GROUP_SCHED
  7315. static void free_rt_sched_group(struct task_group *tg)
  7316. {
  7317. int i;
  7318. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7319. for_each_possible_cpu(i) {
  7320. if (tg->rt_rq)
  7321. kfree(tg->rt_rq[i]);
  7322. if (tg->rt_se)
  7323. kfree(tg->rt_se[i]);
  7324. }
  7325. kfree(tg->rt_rq);
  7326. kfree(tg->rt_se);
  7327. }
  7328. static
  7329. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7330. {
  7331. struct rt_rq *rt_rq;
  7332. struct sched_rt_entity *rt_se, *parent_se;
  7333. struct rq *rq;
  7334. int i;
  7335. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7336. if (!tg->rt_rq)
  7337. goto err;
  7338. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7339. if (!tg->rt_se)
  7340. goto err;
  7341. init_rt_bandwidth(&tg->rt_bandwidth,
  7342. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7343. for_each_possible_cpu(i) {
  7344. rq = cpu_rq(i);
  7345. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7346. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7347. if (!rt_rq)
  7348. goto err;
  7349. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7350. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7351. if (!rt_se)
  7352. goto err;
  7353. parent_se = parent ? parent->rt_se[i] : NULL;
  7354. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7355. }
  7356. return 1;
  7357. err:
  7358. return 0;
  7359. }
  7360. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7361. {
  7362. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7363. &cpu_rq(cpu)->leaf_rt_rq_list);
  7364. }
  7365. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7366. {
  7367. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7368. }
  7369. #else /* !CONFIG_RT_GROUP_SCHED */
  7370. static inline void free_rt_sched_group(struct task_group *tg)
  7371. {
  7372. }
  7373. static inline
  7374. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7375. {
  7376. return 1;
  7377. }
  7378. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7379. {
  7380. }
  7381. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7382. {
  7383. }
  7384. #endif /* CONFIG_RT_GROUP_SCHED */
  7385. #ifdef CONFIG_GROUP_SCHED
  7386. static void free_sched_group(struct task_group *tg)
  7387. {
  7388. free_fair_sched_group(tg);
  7389. free_rt_sched_group(tg);
  7390. kfree(tg);
  7391. }
  7392. /* allocate runqueue etc for a new task group */
  7393. struct task_group *sched_create_group(struct task_group *parent)
  7394. {
  7395. struct task_group *tg;
  7396. unsigned long flags;
  7397. int i;
  7398. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7399. if (!tg)
  7400. return ERR_PTR(-ENOMEM);
  7401. if (!alloc_fair_sched_group(tg, parent))
  7402. goto err;
  7403. if (!alloc_rt_sched_group(tg, parent))
  7404. goto err;
  7405. spin_lock_irqsave(&task_group_lock, flags);
  7406. for_each_possible_cpu(i) {
  7407. register_fair_sched_group(tg, i);
  7408. register_rt_sched_group(tg, i);
  7409. }
  7410. list_add_rcu(&tg->list, &task_groups);
  7411. WARN_ON(!parent); /* root should already exist */
  7412. tg->parent = parent;
  7413. INIT_LIST_HEAD(&tg->children);
  7414. list_add_rcu(&tg->siblings, &parent->children);
  7415. spin_unlock_irqrestore(&task_group_lock, flags);
  7416. return tg;
  7417. err:
  7418. free_sched_group(tg);
  7419. return ERR_PTR(-ENOMEM);
  7420. }
  7421. /* rcu callback to free various structures associated with a task group */
  7422. static void free_sched_group_rcu(struct rcu_head *rhp)
  7423. {
  7424. /* now it should be safe to free those cfs_rqs */
  7425. free_sched_group(container_of(rhp, struct task_group, rcu));
  7426. }
  7427. /* Destroy runqueue etc associated with a task group */
  7428. void sched_destroy_group(struct task_group *tg)
  7429. {
  7430. unsigned long flags;
  7431. int i;
  7432. spin_lock_irqsave(&task_group_lock, flags);
  7433. for_each_possible_cpu(i) {
  7434. unregister_fair_sched_group(tg, i);
  7435. unregister_rt_sched_group(tg, i);
  7436. }
  7437. list_del_rcu(&tg->list);
  7438. list_del_rcu(&tg->siblings);
  7439. spin_unlock_irqrestore(&task_group_lock, flags);
  7440. /* wait for possible concurrent references to cfs_rqs complete */
  7441. call_rcu(&tg->rcu, free_sched_group_rcu);
  7442. }
  7443. /* change task's runqueue when it moves between groups.
  7444. * The caller of this function should have put the task in its new group
  7445. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7446. * reflect its new group.
  7447. */
  7448. void sched_move_task(struct task_struct *tsk)
  7449. {
  7450. int on_rq, running;
  7451. unsigned long flags;
  7452. struct rq *rq;
  7453. rq = task_rq_lock(tsk, &flags);
  7454. update_rq_clock(rq);
  7455. running = task_current(rq, tsk);
  7456. on_rq = tsk->se.on_rq;
  7457. if (on_rq)
  7458. dequeue_task(rq, tsk, 0);
  7459. if (unlikely(running))
  7460. tsk->sched_class->put_prev_task(rq, tsk);
  7461. set_task_rq(tsk, task_cpu(tsk));
  7462. #ifdef CONFIG_FAIR_GROUP_SCHED
  7463. if (tsk->sched_class->moved_group)
  7464. tsk->sched_class->moved_group(tsk);
  7465. #endif
  7466. if (unlikely(running))
  7467. tsk->sched_class->set_curr_task(rq);
  7468. if (on_rq)
  7469. enqueue_task(rq, tsk, 0);
  7470. task_rq_unlock(rq, &flags);
  7471. }
  7472. #endif /* CONFIG_GROUP_SCHED */
  7473. #ifdef CONFIG_FAIR_GROUP_SCHED
  7474. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7475. {
  7476. struct cfs_rq *cfs_rq = se->cfs_rq;
  7477. int on_rq;
  7478. on_rq = se->on_rq;
  7479. if (on_rq)
  7480. dequeue_entity(cfs_rq, se, 0);
  7481. se->load.weight = shares;
  7482. se->load.inv_weight = 0;
  7483. if (on_rq)
  7484. enqueue_entity(cfs_rq, se, 0);
  7485. }
  7486. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7487. {
  7488. struct cfs_rq *cfs_rq = se->cfs_rq;
  7489. struct rq *rq = cfs_rq->rq;
  7490. unsigned long flags;
  7491. spin_lock_irqsave(&rq->lock, flags);
  7492. __set_se_shares(se, shares);
  7493. spin_unlock_irqrestore(&rq->lock, flags);
  7494. }
  7495. static DEFINE_MUTEX(shares_mutex);
  7496. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7497. {
  7498. int i;
  7499. unsigned long flags;
  7500. /*
  7501. * We can't change the weight of the root cgroup.
  7502. */
  7503. if (!tg->se[0])
  7504. return -EINVAL;
  7505. if (shares < MIN_SHARES)
  7506. shares = MIN_SHARES;
  7507. else if (shares > MAX_SHARES)
  7508. shares = MAX_SHARES;
  7509. mutex_lock(&shares_mutex);
  7510. if (tg->shares == shares)
  7511. goto done;
  7512. spin_lock_irqsave(&task_group_lock, flags);
  7513. for_each_possible_cpu(i)
  7514. unregister_fair_sched_group(tg, i);
  7515. list_del_rcu(&tg->siblings);
  7516. spin_unlock_irqrestore(&task_group_lock, flags);
  7517. /* wait for any ongoing reference to this group to finish */
  7518. synchronize_sched();
  7519. /*
  7520. * Now we are free to modify the group's share on each cpu
  7521. * w/o tripping rebalance_share or load_balance_fair.
  7522. */
  7523. tg->shares = shares;
  7524. for_each_possible_cpu(i) {
  7525. /*
  7526. * force a rebalance
  7527. */
  7528. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7529. set_se_shares(tg->se[i], shares);
  7530. }
  7531. /*
  7532. * Enable load balance activity on this group, by inserting it back on
  7533. * each cpu's rq->leaf_cfs_rq_list.
  7534. */
  7535. spin_lock_irqsave(&task_group_lock, flags);
  7536. for_each_possible_cpu(i)
  7537. register_fair_sched_group(tg, i);
  7538. list_add_rcu(&tg->siblings, &tg->parent->children);
  7539. spin_unlock_irqrestore(&task_group_lock, flags);
  7540. done:
  7541. mutex_unlock(&shares_mutex);
  7542. return 0;
  7543. }
  7544. unsigned long sched_group_shares(struct task_group *tg)
  7545. {
  7546. return tg->shares;
  7547. }
  7548. #endif
  7549. #ifdef CONFIG_RT_GROUP_SCHED
  7550. /*
  7551. * Ensure that the real time constraints are schedulable.
  7552. */
  7553. static DEFINE_MUTEX(rt_constraints_mutex);
  7554. static unsigned long to_ratio(u64 period, u64 runtime)
  7555. {
  7556. if (runtime == RUNTIME_INF)
  7557. return 1ULL << 20;
  7558. return div64_u64(runtime << 20, period);
  7559. }
  7560. /* Must be called with tasklist_lock held */
  7561. static inline int tg_has_rt_tasks(struct task_group *tg)
  7562. {
  7563. struct task_struct *g, *p;
  7564. do_each_thread(g, p) {
  7565. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7566. return 1;
  7567. } while_each_thread(g, p);
  7568. return 0;
  7569. }
  7570. struct rt_schedulable_data {
  7571. struct task_group *tg;
  7572. u64 rt_period;
  7573. u64 rt_runtime;
  7574. };
  7575. static int tg_schedulable(struct task_group *tg, void *data)
  7576. {
  7577. struct rt_schedulable_data *d = data;
  7578. struct task_group *child;
  7579. unsigned long total, sum = 0;
  7580. u64 period, runtime;
  7581. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7582. runtime = tg->rt_bandwidth.rt_runtime;
  7583. if (tg == d->tg) {
  7584. period = d->rt_period;
  7585. runtime = d->rt_runtime;
  7586. }
  7587. /*
  7588. * Cannot have more runtime than the period.
  7589. */
  7590. if (runtime > period && runtime != RUNTIME_INF)
  7591. return -EINVAL;
  7592. /*
  7593. * Ensure we don't starve existing RT tasks.
  7594. */
  7595. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7596. return -EBUSY;
  7597. total = to_ratio(period, runtime);
  7598. /*
  7599. * Nobody can have more than the global setting allows.
  7600. */
  7601. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7602. return -EINVAL;
  7603. /*
  7604. * The sum of our children's runtime should not exceed our own.
  7605. */
  7606. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7607. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7608. runtime = child->rt_bandwidth.rt_runtime;
  7609. if (child == d->tg) {
  7610. period = d->rt_period;
  7611. runtime = d->rt_runtime;
  7612. }
  7613. sum += to_ratio(period, runtime);
  7614. }
  7615. if (sum > total)
  7616. return -EINVAL;
  7617. return 0;
  7618. }
  7619. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7620. {
  7621. struct rt_schedulable_data data = {
  7622. .tg = tg,
  7623. .rt_period = period,
  7624. .rt_runtime = runtime,
  7625. };
  7626. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7627. }
  7628. static int tg_set_bandwidth(struct task_group *tg,
  7629. u64 rt_period, u64 rt_runtime)
  7630. {
  7631. int i, err = 0;
  7632. mutex_lock(&rt_constraints_mutex);
  7633. read_lock(&tasklist_lock);
  7634. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7635. if (err)
  7636. goto unlock;
  7637. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7638. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7639. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7640. for_each_possible_cpu(i) {
  7641. struct rt_rq *rt_rq = tg->rt_rq[i];
  7642. spin_lock(&rt_rq->rt_runtime_lock);
  7643. rt_rq->rt_runtime = rt_runtime;
  7644. spin_unlock(&rt_rq->rt_runtime_lock);
  7645. }
  7646. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7647. unlock:
  7648. read_unlock(&tasklist_lock);
  7649. mutex_unlock(&rt_constraints_mutex);
  7650. return err;
  7651. }
  7652. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7653. {
  7654. u64 rt_runtime, rt_period;
  7655. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7656. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7657. if (rt_runtime_us < 0)
  7658. rt_runtime = RUNTIME_INF;
  7659. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7660. }
  7661. long sched_group_rt_runtime(struct task_group *tg)
  7662. {
  7663. u64 rt_runtime_us;
  7664. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7665. return -1;
  7666. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7667. do_div(rt_runtime_us, NSEC_PER_USEC);
  7668. return rt_runtime_us;
  7669. }
  7670. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7671. {
  7672. u64 rt_runtime, rt_period;
  7673. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7674. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7675. if (rt_period == 0)
  7676. return -EINVAL;
  7677. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7678. }
  7679. long sched_group_rt_period(struct task_group *tg)
  7680. {
  7681. u64 rt_period_us;
  7682. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7683. do_div(rt_period_us, NSEC_PER_USEC);
  7684. return rt_period_us;
  7685. }
  7686. static int sched_rt_global_constraints(void)
  7687. {
  7688. u64 runtime, period;
  7689. int ret = 0;
  7690. if (sysctl_sched_rt_period <= 0)
  7691. return -EINVAL;
  7692. runtime = global_rt_runtime();
  7693. period = global_rt_period();
  7694. /*
  7695. * Sanity check on the sysctl variables.
  7696. */
  7697. if (runtime > period && runtime != RUNTIME_INF)
  7698. return -EINVAL;
  7699. mutex_lock(&rt_constraints_mutex);
  7700. read_lock(&tasklist_lock);
  7701. ret = __rt_schedulable(NULL, 0, 0);
  7702. read_unlock(&tasklist_lock);
  7703. mutex_unlock(&rt_constraints_mutex);
  7704. return ret;
  7705. }
  7706. #else /* !CONFIG_RT_GROUP_SCHED */
  7707. static int sched_rt_global_constraints(void)
  7708. {
  7709. unsigned long flags;
  7710. int i;
  7711. if (sysctl_sched_rt_period <= 0)
  7712. return -EINVAL;
  7713. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7714. for_each_possible_cpu(i) {
  7715. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7716. spin_lock(&rt_rq->rt_runtime_lock);
  7717. rt_rq->rt_runtime = global_rt_runtime();
  7718. spin_unlock(&rt_rq->rt_runtime_lock);
  7719. }
  7720. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7721. return 0;
  7722. }
  7723. #endif /* CONFIG_RT_GROUP_SCHED */
  7724. int sched_rt_handler(struct ctl_table *table, int write,
  7725. struct file *filp, void __user *buffer, size_t *lenp,
  7726. loff_t *ppos)
  7727. {
  7728. int ret;
  7729. int old_period, old_runtime;
  7730. static DEFINE_MUTEX(mutex);
  7731. mutex_lock(&mutex);
  7732. old_period = sysctl_sched_rt_period;
  7733. old_runtime = sysctl_sched_rt_runtime;
  7734. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7735. if (!ret && write) {
  7736. ret = sched_rt_global_constraints();
  7737. if (ret) {
  7738. sysctl_sched_rt_period = old_period;
  7739. sysctl_sched_rt_runtime = old_runtime;
  7740. } else {
  7741. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7742. def_rt_bandwidth.rt_period =
  7743. ns_to_ktime(global_rt_period());
  7744. }
  7745. }
  7746. mutex_unlock(&mutex);
  7747. return ret;
  7748. }
  7749. #ifdef CONFIG_CGROUP_SCHED
  7750. /* return corresponding task_group object of a cgroup */
  7751. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7752. {
  7753. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7754. struct task_group, css);
  7755. }
  7756. static struct cgroup_subsys_state *
  7757. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7758. {
  7759. struct task_group *tg, *parent;
  7760. if (!cgrp->parent) {
  7761. /* This is early initialization for the top cgroup */
  7762. return &init_task_group.css;
  7763. }
  7764. parent = cgroup_tg(cgrp->parent);
  7765. tg = sched_create_group(parent);
  7766. if (IS_ERR(tg))
  7767. return ERR_PTR(-ENOMEM);
  7768. return &tg->css;
  7769. }
  7770. static void
  7771. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7772. {
  7773. struct task_group *tg = cgroup_tg(cgrp);
  7774. sched_destroy_group(tg);
  7775. }
  7776. static int
  7777. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7778. struct task_struct *tsk)
  7779. {
  7780. #ifdef CONFIG_RT_GROUP_SCHED
  7781. /* Don't accept realtime tasks when there is no way for them to run */
  7782. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7783. return -EINVAL;
  7784. #else
  7785. /* We don't support RT-tasks being in separate groups */
  7786. if (tsk->sched_class != &fair_sched_class)
  7787. return -EINVAL;
  7788. #endif
  7789. return 0;
  7790. }
  7791. static void
  7792. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7793. struct cgroup *old_cont, struct task_struct *tsk)
  7794. {
  7795. sched_move_task(tsk);
  7796. }
  7797. #ifdef CONFIG_FAIR_GROUP_SCHED
  7798. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7799. u64 shareval)
  7800. {
  7801. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7802. }
  7803. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7804. {
  7805. struct task_group *tg = cgroup_tg(cgrp);
  7806. return (u64) tg->shares;
  7807. }
  7808. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7809. #ifdef CONFIG_RT_GROUP_SCHED
  7810. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7811. s64 val)
  7812. {
  7813. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7814. }
  7815. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7816. {
  7817. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7818. }
  7819. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7820. u64 rt_period_us)
  7821. {
  7822. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7823. }
  7824. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7825. {
  7826. return sched_group_rt_period(cgroup_tg(cgrp));
  7827. }
  7828. #endif /* CONFIG_RT_GROUP_SCHED */
  7829. static struct cftype cpu_files[] = {
  7830. #ifdef CONFIG_FAIR_GROUP_SCHED
  7831. {
  7832. .name = "shares",
  7833. .read_u64 = cpu_shares_read_u64,
  7834. .write_u64 = cpu_shares_write_u64,
  7835. },
  7836. #endif
  7837. #ifdef CONFIG_RT_GROUP_SCHED
  7838. {
  7839. .name = "rt_runtime_us",
  7840. .read_s64 = cpu_rt_runtime_read,
  7841. .write_s64 = cpu_rt_runtime_write,
  7842. },
  7843. {
  7844. .name = "rt_period_us",
  7845. .read_u64 = cpu_rt_period_read_uint,
  7846. .write_u64 = cpu_rt_period_write_uint,
  7847. },
  7848. #endif
  7849. };
  7850. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7851. {
  7852. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7853. }
  7854. struct cgroup_subsys cpu_cgroup_subsys = {
  7855. .name = "cpu",
  7856. .create = cpu_cgroup_create,
  7857. .destroy = cpu_cgroup_destroy,
  7858. .can_attach = cpu_cgroup_can_attach,
  7859. .attach = cpu_cgroup_attach,
  7860. .populate = cpu_cgroup_populate,
  7861. .subsys_id = cpu_cgroup_subsys_id,
  7862. .early_init = 1,
  7863. };
  7864. #endif /* CONFIG_CGROUP_SCHED */
  7865. #ifdef CONFIG_CGROUP_CPUACCT
  7866. /*
  7867. * CPU accounting code for task groups.
  7868. *
  7869. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7870. * (balbir@in.ibm.com).
  7871. */
  7872. /* track cpu usage of a group of tasks */
  7873. struct cpuacct {
  7874. struct cgroup_subsys_state css;
  7875. /* cpuusage holds pointer to a u64-type object on every cpu */
  7876. u64 *cpuusage;
  7877. };
  7878. struct cgroup_subsys cpuacct_subsys;
  7879. /* return cpu accounting group corresponding to this container */
  7880. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7881. {
  7882. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7883. struct cpuacct, css);
  7884. }
  7885. /* return cpu accounting group to which this task belongs */
  7886. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7887. {
  7888. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7889. struct cpuacct, css);
  7890. }
  7891. /* create a new cpu accounting group */
  7892. static struct cgroup_subsys_state *cpuacct_create(
  7893. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7894. {
  7895. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7896. if (!ca)
  7897. return ERR_PTR(-ENOMEM);
  7898. ca->cpuusage = alloc_percpu(u64);
  7899. if (!ca->cpuusage) {
  7900. kfree(ca);
  7901. return ERR_PTR(-ENOMEM);
  7902. }
  7903. return &ca->css;
  7904. }
  7905. /* destroy an existing cpu accounting group */
  7906. static void
  7907. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7908. {
  7909. struct cpuacct *ca = cgroup_ca(cgrp);
  7910. free_percpu(ca->cpuusage);
  7911. kfree(ca);
  7912. }
  7913. /* return total cpu usage (in nanoseconds) of a group */
  7914. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7915. {
  7916. struct cpuacct *ca = cgroup_ca(cgrp);
  7917. u64 totalcpuusage = 0;
  7918. int i;
  7919. for_each_possible_cpu(i) {
  7920. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7921. /*
  7922. * Take rq->lock to make 64-bit addition safe on 32-bit
  7923. * platforms.
  7924. */
  7925. spin_lock_irq(&cpu_rq(i)->lock);
  7926. totalcpuusage += *cpuusage;
  7927. spin_unlock_irq(&cpu_rq(i)->lock);
  7928. }
  7929. return totalcpuusage;
  7930. }
  7931. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7932. u64 reset)
  7933. {
  7934. struct cpuacct *ca = cgroup_ca(cgrp);
  7935. int err = 0;
  7936. int i;
  7937. if (reset) {
  7938. err = -EINVAL;
  7939. goto out;
  7940. }
  7941. for_each_possible_cpu(i) {
  7942. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7943. spin_lock_irq(&cpu_rq(i)->lock);
  7944. *cpuusage = 0;
  7945. spin_unlock_irq(&cpu_rq(i)->lock);
  7946. }
  7947. out:
  7948. return err;
  7949. }
  7950. static struct cftype files[] = {
  7951. {
  7952. .name = "usage",
  7953. .read_u64 = cpuusage_read,
  7954. .write_u64 = cpuusage_write,
  7955. },
  7956. };
  7957. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7958. {
  7959. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7960. }
  7961. /*
  7962. * charge this task's execution time to its accounting group.
  7963. *
  7964. * called with rq->lock held.
  7965. */
  7966. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7967. {
  7968. struct cpuacct *ca;
  7969. if (!cpuacct_subsys.active)
  7970. return;
  7971. ca = task_ca(tsk);
  7972. if (ca) {
  7973. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7974. *cpuusage += cputime;
  7975. }
  7976. }
  7977. struct cgroup_subsys cpuacct_subsys = {
  7978. .name = "cpuacct",
  7979. .create = cpuacct_create,
  7980. .destroy = cpuacct_destroy,
  7981. .populate = cpuacct_populate,
  7982. .subsys_id = cpuacct_subsys_id,
  7983. };
  7984. #endif /* CONFIG_CGROUP_CPUACCT */