caamhash.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 5 + CAAM_PTR_SZ * 3)
  70. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  75. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  76. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  77. CAAM_MAX_HASH_KEY_SIZE)
  78. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  79. /* caam context sizes for hashes: running digest + 8 */
  80. #define HASH_MSG_LEN 8
  81. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  82. #ifdef DEBUG
  83. /* for print_hex_dumps with line references */
  84. #define xstr(s) str(s)
  85. #define str(s) #s
  86. #define debug(format, arg...) printk(format, arg)
  87. #else
  88. #define debug(format, arg...)
  89. #endif
  90. /* ahash per-session context */
  91. struct caam_hash_ctx {
  92. struct device *jrdev;
  93. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  95. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  96. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  97. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  98. dma_addr_t sh_desc_update_dma;
  99. dma_addr_t sh_desc_update_first_dma;
  100. dma_addr_t sh_desc_fin_dma;
  101. dma_addr_t sh_desc_digest_dma;
  102. dma_addr_t sh_desc_finup_dma;
  103. u32 alg_type;
  104. u32 alg_op;
  105. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  106. dma_addr_t key_dma;
  107. int ctx_len;
  108. unsigned int split_key_len;
  109. unsigned int split_key_pad_len;
  110. };
  111. /* ahash state */
  112. struct caam_hash_state {
  113. dma_addr_t buf_dma;
  114. dma_addr_t ctx_dma;
  115. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_0;
  117. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  118. int buflen_1;
  119. u8 caam_ctx[MAX_CTX_LEN];
  120. int (*update)(struct ahash_request *req);
  121. int (*final)(struct ahash_request *req);
  122. int (*finup)(struct ahash_request *req);
  123. int current_buf;
  124. };
  125. /* Common job descriptor seq in/out ptr routines */
  126. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  127. static inline void map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  128. struct caam_hash_state *state,
  129. int ctx_len)
  130. {
  131. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  132. ctx_len, DMA_FROM_DEVICE);
  133. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  134. }
  135. /* Map req->result, and append seq_out_ptr command that points to it */
  136. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  137. u8 *result, int digestsize)
  138. {
  139. dma_addr_t dst_dma;
  140. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  141. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  142. return dst_dma;
  143. }
  144. /* Map current buffer in state and put it in link table */
  145. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  146. struct sec4_sg_entry *sec4_sg,
  147. u8 *buf, int buflen)
  148. {
  149. dma_addr_t buf_dma;
  150. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  151. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  152. return buf_dma;
  153. }
  154. /* Map req->src and put it in link table */
  155. static inline void src_map_to_sec4_sg(struct device *jrdev,
  156. struct scatterlist *src, int src_nents,
  157. struct sec4_sg_entry *sec4_sg)
  158. {
  159. dma_map_sg(jrdev, src, src_nents, DMA_TO_DEVICE);
  160. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  161. }
  162. /*
  163. * Only put buffer in link table if it contains data, which is possible,
  164. * since a buffer has previously been used, and needs to be unmapped,
  165. */
  166. static inline dma_addr_t
  167. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  168. u8 *buf, dma_addr_t buf_dma, int buflen,
  169. int last_buflen)
  170. {
  171. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  172. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  173. if (buflen)
  174. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  175. else
  176. buf_dma = 0;
  177. return buf_dma;
  178. }
  179. /* Map state->caam_ctx, and add it to link table */
  180. static inline void ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  181. struct caam_hash_state *state,
  182. int ctx_len,
  183. struct sec4_sg_entry *sec4_sg,
  184. u32 flag)
  185. {
  186. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  187. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  188. }
  189. /* Common shared descriptor commands */
  190. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  191. {
  192. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  193. ctx->split_key_len, CLASS_2 |
  194. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  195. }
  196. /* Append key if it has been set */
  197. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  198. {
  199. u32 *key_jump_cmd;
  200. init_sh_desc(desc, HDR_SHARE_WAIT);
  201. if (ctx->split_key_len) {
  202. /* Skip if already shared */
  203. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  204. JUMP_COND_SHRD);
  205. append_key_ahash(desc, ctx);
  206. set_jump_tgt_here(desc, key_jump_cmd);
  207. }
  208. /* Propagate errors from shared to job descriptor */
  209. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  210. }
  211. /*
  212. * For ahash read data from seqin following state->caam_ctx,
  213. * and write resulting class2 context to seqout, which may be state->caam_ctx
  214. * or req->result
  215. */
  216. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  217. {
  218. /* Calculate remaining bytes to read */
  219. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  220. /* Read remaining bytes */
  221. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  222. FIFOLD_TYPE_MSG | KEY_VLF);
  223. /* Store class2 context bytes */
  224. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  225. LDST_SRCDST_BYTE_CONTEXT);
  226. }
  227. /*
  228. * For ahash update, final and finup, import context, read and write to seqout
  229. */
  230. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  231. int digestsize,
  232. struct caam_hash_ctx *ctx)
  233. {
  234. init_sh_desc_key_ahash(desc, ctx);
  235. /* Import context from software */
  236. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  237. LDST_CLASS_2_CCB | ctx->ctx_len);
  238. /* Class 2 operation */
  239. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  240. /*
  241. * Load from buf and/or src and write to req->result or state->context
  242. */
  243. ahash_append_load_str(desc, digestsize);
  244. }
  245. /* For ahash firsts and digest, read and write to seqout */
  246. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  247. int digestsize, struct caam_hash_ctx *ctx)
  248. {
  249. init_sh_desc_key_ahash(desc, ctx);
  250. /* Class 2 operation */
  251. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  252. /*
  253. * Load from buf and/or src and write to req->result or state->context
  254. */
  255. ahash_append_load_str(desc, digestsize);
  256. }
  257. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  258. {
  259. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  260. int digestsize = crypto_ahash_digestsize(ahash);
  261. struct device *jrdev = ctx->jrdev;
  262. u32 have_key = 0;
  263. u32 *desc;
  264. if (ctx->split_key_len)
  265. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  266. /* ahash_update shared descriptor */
  267. desc = ctx->sh_desc_update;
  268. init_sh_desc(desc, HDR_SHARE_WAIT);
  269. /* Import context from software */
  270. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  271. LDST_CLASS_2_CCB | ctx->ctx_len);
  272. /* Class 2 operation */
  273. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  274. OP_ALG_ENCRYPT);
  275. /* Load data and write to result or context */
  276. ahash_append_load_str(desc, ctx->ctx_len);
  277. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  278. DMA_TO_DEVICE);
  279. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  280. dev_err(jrdev, "unable to map shared descriptor\n");
  281. return -ENOMEM;
  282. }
  283. #ifdef DEBUG
  284. print_hex_dump(KERN_ERR, "ahash update shdesc@"xstr(__LINE__)": ",
  285. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  286. #endif
  287. /* ahash_update_first shared descriptor */
  288. desc = ctx->sh_desc_update_first;
  289. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  290. ctx->ctx_len, ctx);
  291. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  292. desc_bytes(desc),
  293. DMA_TO_DEVICE);
  294. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  295. dev_err(jrdev, "unable to map shared descriptor\n");
  296. return -ENOMEM;
  297. }
  298. #ifdef DEBUG
  299. print_hex_dump(KERN_ERR, "ahash update first shdesc@"xstr(__LINE__)": ",
  300. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  301. #endif
  302. /* ahash_final shared descriptor */
  303. desc = ctx->sh_desc_fin;
  304. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  305. OP_ALG_AS_FINALIZE, digestsize, ctx);
  306. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  307. DMA_TO_DEVICE);
  308. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  309. dev_err(jrdev, "unable to map shared descriptor\n");
  310. return -ENOMEM;
  311. }
  312. #ifdef DEBUG
  313. print_hex_dump(KERN_ERR, "ahash final shdesc@"xstr(__LINE__)": ",
  314. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  315. desc_bytes(desc), 1);
  316. #endif
  317. /* ahash_finup shared descriptor */
  318. desc = ctx->sh_desc_finup;
  319. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  320. OP_ALG_AS_FINALIZE, digestsize, ctx);
  321. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  322. DMA_TO_DEVICE);
  323. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  324. dev_err(jrdev, "unable to map shared descriptor\n");
  325. return -ENOMEM;
  326. }
  327. #ifdef DEBUG
  328. print_hex_dump(KERN_ERR, "ahash finup shdesc@"xstr(__LINE__)": ",
  329. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  330. desc_bytes(desc), 1);
  331. #endif
  332. /* ahash_digest shared descriptor */
  333. desc = ctx->sh_desc_digest;
  334. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  335. digestsize, ctx);
  336. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  337. desc_bytes(desc),
  338. DMA_TO_DEVICE);
  339. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  340. dev_err(jrdev, "unable to map shared descriptor\n");
  341. return -ENOMEM;
  342. }
  343. #ifdef DEBUG
  344. print_hex_dump(KERN_ERR, "ahash digest shdesc@"xstr(__LINE__)": ",
  345. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  346. desc_bytes(desc), 1);
  347. #endif
  348. return 0;
  349. }
  350. static u32 gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  351. u32 keylen)
  352. {
  353. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  354. ctx->split_key_pad_len, key_in, keylen,
  355. ctx->alg_op);
  356. }
  357. /* Digest hash size if it is too large */
  358. static u32 hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  359. u32 *keylen, u8 *key_out, u32 digestsize)
  360. {
  361. struct device *jrdev = ctx->jrdev;
  362. u32 *desc;
  363. struct split_key_result result;
  364. dma_addr_t src_dma, dst_dma;
  365. int ret = 0;
  366. desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  367. init_job_desc(desc, 0);
  368. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  369. DMA_TO_DEVICE);
  370. if (dma_mapping_error(jrdev, src_dma)) {
  371. dev_err(jrdev, "unable to map key input memory\n");
  372. kfree(desc);
  373. return -ENOMEM;
  374. }
  375. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  376. DMA_FROM_DEVICE);
  377. if (dma_mapping_error(jrdev, dst_dma)) {
  378. dev_err(jrdev, "unable to map key output memory\n");
  379. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  380. kfree(desc);
  381. return -ENOMEM;
  382. }
  383. /* Job descriptor to perform unkeyed hash on key_in */
  384. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  385. OP_ALG_AS_INITFINAL);
  386. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  387. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  388. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  389. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  390. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  391. LDST_SRCDST_BYTE_CONTEXT);
  392. #ifdef DEBUG
  393. print_hex_dump(KERN_ERR, "key_in@"xstr(__LINE__)": ",
  394. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  395. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  396. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  397. #endif
  398. result.err = 0;
  399. init_completion(&result.completion);
  400. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  401. if (!ret) {
  402. /* in progress */
  403. wait_for_completion_interruptible(&result.completion);
  404. ret = result.err;
  405. #ifdef DEBUG
  406. print_hex_dump(KERN_ERR, "digested key@"xstr(__LINE__)": ",
  407. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  408. digestsize, 1);
  409. #endif
  410. }
  411. *keylen = digestsize;
  412. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  413. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  414. kfree(desc);
  415. return ret;
  416. }
  417. static int ahash_setkey(struct crypto_ahash *ahash,
  418. const u8 *key, unsigned int keylen)
  419. {
  420. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  421. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  422. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  423. struct device *jrdev = ctx->jrdev;
  424. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  425. int digestsize = crypto_ahash_digestsize(ahash);
  426. int ret = 0;
  427. u8 *hashed_key = NULL;
  428. #ifdef DEBUG
  429. printk(KERN_ERR "keylen %d\n", keylen);
  430. #endif
  431. if (keylen > blocksize) {
  432. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  433. GFP_DMA);
  434. if (!hashed_key)
  435. return -ENOMEM;
  436. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  437. digestsize);
  438. if (ret)
  439. goto badkey;
  440. key = hashed_key;
  441. }
  442. /* Pick class 2 key length from algorithm submask */
  443. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  444. OP_ALG_ALGSEL_SHIFT] * 2;
  445. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  446. #ifdef DEBUG
  447. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  448. ctx->split_key_len, ctx->split_key_pad_len);
  449. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  450. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  451. #endif
  452. ret = gen_split_hash_key(ctx, key, keylen);
  453. if (ret)
  454. goto badkey;
  455. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  456. DMA_TO_DEVICE);
  457. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  458. dev_err(jrdev, "unable to map key i/o memory\n");
  459. return -ENOMEM;
  460. }
  461. #ifdef DEBUG
  462. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  463. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  464. ctx->split_key_pad_len, 1);
  465. #endif
  466. ret = ahash_set_sh_desc(ahash);
  467. if (ret) {
  468. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  469. DMA_TO_DEVICE);
  470. }
  471. kfree(hashed_key);
  472. return ret;
  473. badkey:
  474. kfree(hashed_key);
  475. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  476. return -EINVAL;
  477. }
  478. /*
  479. * ahash_edesc - s/w-extended ahash descriptor
  480. * @dst_dma: physical mapped address of req->result
  481. * @sec4_sg_dma: physical mapped address of h/w link table
  482. * @src_nents: number of segments in input scatterlist
  483. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  484. * @sec4_sg: pointer to h/w link table
  485. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  486. */
  487. struct ahash_edesc {
  488. dma_addr_t dst_dma;
  489. dma_addr_t sec4_sg_dma;
  490. int src_nents;
  491. int sec4_sg_bytes;
  492. struct sec4_sg_entry *sec4_sg;
  493. u32 hw_desc[0];
  494. };
  495. static inline void ahash_unmap(struct device *dev,
  496. struct ahash_edesc *edesc,
  497. struct ahash_request *req, int dst_len)
  498. {
  499. if (edesc->src_nents)
  500. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  501. if (edesc->dst_dma)
  502. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  503. if (edesc->sec4_sg_bytes)
  504. dma_unmap_single(dev, edesc->sec4_sg_dma,
  505. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  506. }
  507. static inline void ahash_unmap_ctx(struct device *dev,
  508. struct ahash_edesc *edesc,
  509. struct ahash_request *req, int dst_len, u32 flag)
  510. {
  511. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  512. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  513. struct caam_hash_state *state = ahash_request_ctx(req);
  514. if (state->ctx_dma)
  515. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  516. ahash_unmap(dev, edesc, req, dst_len);
  517. }
  518. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  519. void *context)
  520. {
  521. struct ahash_request *req = context;
  522. struct ahash_edesc *edesc;
  523. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  524. int digestsize = crypto_ahash_digestsize(ahash);
  525. #ifdef DEBUG
  526. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  527. struct caam_hash_state *state = ahash_request_ctx(req);
  528. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  529. #endif
  530. edesc = (struct ahash_edesc *)((char *)desc -
  531. offsetof(struct ahash_edesc, hw_desc));
  532. if (err) {
  533. char tmp[CAAM_ERROR_STR_MAX];
  534. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  535. }
  536. ahash_unmap(jrdev, edesc, req, digestsize);
  537. kfree(edesc);
  538. #ifdef DEBUG
  539. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  540. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  541. ctx->ctx_len, 1);
  542. if (req->result)
  543. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  544. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  545. digestsize, 1);
  546. #endif
  547. req->base.complete(&req->base, err);
  548. }
  549. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  550. void *context)
  551. {
  552. struct ahash_request *req = context;
  553. struct ahash_edesc *edesc;
  554. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  555. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  556. #ifdef DEBUG
  557. struct caam_hash_state *state = ahash_request_ctx(req);
  558. int digestsize = crypto_ahash_digestsize(ahash);
  559. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  560. #endif
  561. edesc = (struct ahash_edesc *)((char *)desc -
  562. offsetof(struct ahash_edesc, hw_desc));
  563. if (err) {
  564. char tmp[CAAM_ERROR_STR_MAX];
  565. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  566. }
  567. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  568. kfree(edesc);
  569. #ifdef DEBUG
  570. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  571. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  572. ctx->ctx_len, 1);
  573. if (req->result)
  574. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  575. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  576. digestsize, 1);
  577. #endif
  578. req->base.complete(&req->base, err);
  579. }
  580. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  581. void *context)
  582. {
  583. struct ahash_request *req = context;
  584. struct ahash_edesc *edesc;
  585. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  586. int digestsize = crypto_ahash_digestsize(ahash);
  587. #ifdef DEBUG
  588. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  589. struct caam_hash_state *state = ahash_request_ctx(req);
  590. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  591. #endif
  592. edesc = (struct ahash_edesc *)((char *)desc -
  593. offsetof(struct ahash_edesc, hw_desc));
  594. if (err) {
  595. char tmp[CAAM_ERROR_STR_MAX];
  596. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  597. }
  598. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  599. kfree(edesc);
  600. #ifdef DEBUG
  601. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  602. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  603. ctx->ctx_len, 1);
  604. if (req->result)
  605. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  606. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  607. digestsize, 1);
  608. #endif
  609. req->base.complete(&req->base, err);
  610. }
  611. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  612. void *context)
  613. {
  614. struct ahash_request *req = context;
  615. struct ahash_edesc *edesc;
  616. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  617. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  618. #ifdef DEBUG
  619. struct caam_hash_state *state = ahash_request_ctx(req);
  620. int digestsize = crypto_ahash_digestsize(ahash);
  621. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  622. #endif
  623. edesc = (struct ahash_edesc *)((char *)desc -
  624. offsetof(struct ahash_edesc, hw_desc));
  625. if (err) {
  626. char tmp[CAAM_ERROR_STR_MAX];
  627. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  628. }
  629. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  630. kfree(edesc);
  631. #ifdef DEBUG
  632. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  633. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  634. ctx->ctx_len, 1);
  635. if (req->result)
  636. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  637. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  638. digestsize, 1);
  639. #endif
  640. req->base.complete(&req->base, err);
  641. }
  642. /* submit update job descriptor */
  643. static int ahash_update_ctx(struct ahash_request *req)
  644. {
  645. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  646. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  647. struct caam_hash_state *state = ahash_request_ctx(req);
  648. struct device *jrdev = ctx->jrdev;
  649. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  650. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  651. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  652. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  653. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  654. int *next_buflen = state->current_buf ? &state->buflen_0 :
  655. &state->buflen_1, last_buflen;
  656. int in_len = *buflen + req->nbytes, to_hash;
  657. u32 *sh_desc = ctx->sh_desc_update, *desc;
  658. dma_addr_t ptr = ctx->sh_desc_update_dma;
  659. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  660. struct ahash_edesc *edesc;
  661. int ret = 0;
  662. int sh_len;
  663. last_buflen = *next_buflen;
  664. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  665. to_hash = in_len - *next_buflen;
  666. if (to_hash) {
  667. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen));
  668. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  669. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  670. sizeof(struct sec4_sg_entry);
  671. /*
  672. * allocate space for base edesc and hw desc commands,
  673. * link tables
  674. */
  675. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  676. sec4_sg_bytes, GFP_DMA | flags);
  677. if (!edesc) {
  678. dev_err(jrdev,
  679. "could not allocate extended descriptor\n");
  680. return -ENOMEM;
  681. }
  682. edesc->src_nents = src_nents;
  683. edesc->sec4_sg_bytes = sec4_sg_bytes;
  684. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  685. DESC_JOB_IO_LEN;
  686. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  687. sec4_sg_bytes,
  688. DMA_TO_DEVICE);
  689. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  690. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  691. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  692. edesc->sec4_sg + 1,
  693. buf, state->buf_dma,
  694. *buflen, last_buflen);
  695. if (src_nents) {
  696. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  697. edesc->sec4_sg + sec4_sg_src_index);
  698. if (*next_buflen) {
  699. sg_copy_part(next_buf, req->src, to_hash -
  700. *buflen, req->nbytes);
  701. state->current_buf = !state->current_buf;
  702. }
  703. } else {
  704. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  705. SEC4_SG_LEN_FIN;
  706. }
  707. sh_len = desc_len(sh_desc);
  708. desc = edesc->hw_desc;
  709. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  710. HDR_REVERSE);
  711. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  712. to_hash, LDST_SGF);
  713. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  714. #ifdef DEBUG
  715. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  716. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  717. desc_bytes(desc), 1);
  718. #endif
  719. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  720. if (!ret) {
  721. ret = -EINPROGRESS;
  722. } else {
  723. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  724. DMA_BIDIRECTIONAL);
  725. kfree(edesc);
  726. }
  727. } else if (*next_buflen) {
  728. sg_copy(buf + *buflen, req->src, req->nbytes);
  729. *buflen = *next_buflen;
  730. *next_buflen = last_buflen;
  731. }
  732. #ifdef DEBUG
  733. print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
  734. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  735. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  736. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  737. *next_buflen, 1);
  738. #endif
  739. return ret;
  740. }
  741. static int ahash_final_ctx(struct ahash_request *req)
  742. {
  743. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  744. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  745. struct caam_hash_state *state = ahash_request_ctx(req);
  746. struct device *jrdev = ctx->jrdev;
  747. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  748. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  749. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  750. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  751. int last_buflen = state->current_buf ? state->buflen_0 :
  752. state->buflen_1;
  753. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  754. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  755. int sec4_sg_bytes;
  756. int digestsize = crypto_ahash_digestsize(ahash);
  757. struct ahash_edesc *edesc;
  758. int ret = 0;
  759. int sh_len;
  760. sec4_sg_bytes = (1 + (buflen ? 1 : 0)) * sizeof(struct sec4_sg_entry);
  761. /* allocate space for base edesc and hw desc commands, link tables */
  762. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  763. sec4_sg_bytes, GFP_DMA | flags);
  764. if (!edesc) {
  765. dev_err(jrdev, "could not allocate extended descriptor\n");
  766. return -ENOMEM;
  767. }
  768. sh_len = desc_len(sh_desc);
  769. desc = edesc->hw_desc;
  770. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  771. edesc->sec4_sg_bytes = sec4_sg_bytes;
  772. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  773. DESC_JOB_IO_LEN;
  774. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  775. sec4_sg_bytes, DMA_TO_DEVICE);
  776. edesc->src_nents = 0;
  777. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  778. DMA_TO_DEVICE);
  779. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  780. buf, state->buf_dma, buflen,
  781. last_buflen);
  782. (edesc->sec4_sg + sec4_sg_bytes - 1)->len |= SEC4_SG_LEN_FIN;
  783. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  784. LDST_SGF);
  785. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  786. digestsize);
  787. #ifdef DEBUG
  788. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  789. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  790. #endif
  791. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  792. if (!ret) {
  793. ret = -EINPROGRESS;
  794. } else {
  795. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  796. kfree(edesc);
  797. }
  798. return ret;
  799. }
  800. static int ahash_finup_ctx(struct ahash_request *req)
  801. {
  802. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  803. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  804. struct caam_hash_state *state = ahash_request_ctx(req);
  805. struct device *jrdev = ctx->jrdev;
  806. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  807. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  808. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  809. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  810. int last_buflen = state->current_buf ? state->buflen_0 :
  811. state->buflen_1;
  812. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  813. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  814. int sec4_sg_bytes, sec4_sg_src_index;
  815. int src_nents;
  816. int digestsize = crypto_ahash_digestsize(ahash);
  817. struct ahash_edesc *edesc;
  818. int ret = 0;
  819. int sh_len;
  820. src_nents = __sg_count(req->src, req->nbytes);
  821. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  822. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  823. sizeof(struct sec4_sg_entry);
  824. /* allocate space for base edesc and hw desc commands, link tables */
  825. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  826. sec4_sg_bytes, GFP_DMA | flags);
  827. if (!edesc) {
  828. dev_err(jrdev, "could not allocate extended descriptor\n");
  829. return -ENOMEM;
  830. }
  831. sh_len = desc_len(sh_desc);
  832. desc = edesc->hw_desc;
  833. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  834. edesc->src_nents = src_nents;
  835. edesc->sec4_sg_bytes = sec4_sg_bytes;
  836. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  837. DESC_JOB_IO_LEN;
  838. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  839. sec4_sg_bytes, DMA_TO_DEVICE);
  840. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  841. DMA_TO_DEVICE);
  842. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  843. buf, state->buf_dma, buflen,
  844. last_buflen);
  845. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  846. sec4_sg_src_index);
  847. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  848. buflen + req->nbytes, LDST_SGF);
  849. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  850. digestsize);
  851. #ifdef DEBUG
  852. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  853. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  854. #endif
  855. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  856. if (!ret) {
  857. ret = -EINPROGRESS;
  858. } else {
  859. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  860. kfree(edesc);
  861. }
  862. return ret;
  863. }
  864. static int ahash_digest(struct ahash_request *req)
  865. {
  866. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  867. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  868. struct device *jrdev = ctx->jrdev;
  869. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  870. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  871. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  872. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  873. int digestsize = crypto_ahash_digestsize(ahash);
  874. int src_nents, sec4_sg_bytes;
  875. dma_addr_t src_dma;
  876. struct ahash_edesc *edesc;
  877. int ret = 0;
  878. u32 options;
  879. int sh_len;
  880. src_nents = sg_count(req->src, req->nbytes);
  881. dma_map_sg(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE);
  882. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  883. /* allocate space for base edesc and hw desc commands, link tables */
  884. edesc = kmalloc(sizeof(struct ahash_edesc) + sec4_sg_bytes +
  885. DESC_JOB_IO_LEN, GFP_DMA | flags);
  886. if (!edesc) {
  887. dev_err(jrdev, "could not allocate extended descriptor\n");
  888. return -ENOMEM;
  889. }
  890. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  891. DESC_JOB_IO_LEN;
  892. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  893. sec4_sg_bytes, DMA_TO_DEVICE);
  894. edesc->src_nents = src_nents;
  895. sh_len = desc_len(sh_desc);
  896. desc = edesc->hw_desc;
  897. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  898. if (src_nents) {
  899. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  900. src_dma = edesc->sec4_sg_dma;
  901. options = LDST_SGF;
  902. } else {
  903. src_dma = sg_dma_address(req->src);
  904. options = 0;
  905. }
  906. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  907. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  908. digestsize);
  909. #ifdef DEBUG
  910. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  911. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  912. #endif
  913. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  914. if (!ret) {
  915. ret = -EINPROGRESS;
  916. } else {
  917. ahash_unmap(jrdev, edesc, req, digestsize);
  918. kfree(edesc);
  919. }
  920. return ret;
  921. }
  922. /* submit ahash final if it the first job descriptor */
  923. static int ahash_final_no_ctx(struct ahash_request *req)
  924. {
  925. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  926. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  927. struct caam_hash_state *state = ahash_request_ctx(req);
  928. struct device *jrdev = ctx->jrdev;
  929. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  930. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  931. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  932. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  933. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  934. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  935. int digestsize = crypto_ahash_digestsize(ahash);
  936. struct ahash_edesc *edesc;
  937. int ret = 0;
  938. int sh_len;
  939. /* allocate space for base edesc and hw desc commands, link tables */
  940. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN,
  941. GFP_DMA | flags);
  942. if (!edesc) {
  943. dev_err(jrdev, "could not allocate extended descriptor\n");
  944. return -ENOMEM;
  945. }
  946. sh_len = desc_len(sh_desc);
  947. desc = edesc->hw_desc;
  948. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  949. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  950. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  951. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  952. digestsize);
  953. edesc->src_nents = 0;
  954. #ifdef DEBUG
  955. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  956. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  957. #endif
  958. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  959. if (!ret) {
  960. ret = -EINPROGRESS;
  961. } else {
  962. ahash_unmap(jrdev, edesc, req, digestsize);
  963. kfree(edesc);
  964. }
  965. return ret;
  966. }
  967. /* submit ahash update if it the first job descriptor after update */
  968. static int ahash_update_no_ctx(struct ahash_request *req)
  969. {
  970. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  971. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  972. struct caam_hash_state *state = ahash_request_ctx(req);
  973. struct device *jrdev = ctx->jrdev;
  974. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  975. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  976. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  977. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  978. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  979. int *next_buflen = state->current_buf ? &state->buflen_0 :
  980. &state->buflen_1;
  981. int in_len = *buflen + req->nbytes, to_hash;
  982. int sec4_sg_bytes, src_nents;
  983. struct ahash_edesc *edesc;
  984. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  985. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  986. int ret = 0;
  987. int sh_len;
  988. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  989. to_hash = in_len - *next_buflen;
  990. if (to_hash) {
  991. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen));
  992. sec4_sg_bytes = (1 + src_nents) *
  993. sizeof(struct sec4_sg_entry);
  994. /*
  995. * allocate space for base edesc and hw desc commands,
  996. * link tables
  997. */
  998. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  999. sec4_sg_bytes, GFP_DMA | flags);
  1000. if (!edesc) {
  1001. dev_err(jrdev,
  1002. "could not allocate extended descriptor\n");
  1003. return -ENOMEM;
  1004. }
  1005. edesc->src_nents = src_nents;
  1006. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1007. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1008. DESC_JOB_IO_LEN;
  1009. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1010. sec4_sg_bytes,
  1011. DMA_TO_DEVICE);
  1012. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1013. buf, *buflen);
  1014. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1015. edesc->sec4_sg + 1);
  1016. if (*next_buflen) {
  1017. sg_copy_part(next_buf, req->src, to_hash - *buflen,
  1018. req->nbytes);
  1019. state->current_buf = !state->current_buf;
  1020. }
  1021. sh_len = desc_len(sh_desc);
  1022. desc = edesc->hw_desc;
  1023. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1024. HDR_REVERSE);
  1025. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1026. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1027. #ifdef DEBUG
  1028. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1029. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1030. desc_bytes(desc), 1);
  1031. #endif
  1032. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1033. if (!ret) {
  1034. ret = -EINPROGRESS;
  1035. state->update = ahash_update_ctx;
  1036. state->finup = ahash_finup_ctx;
  1037. state->final = ahash_final_ctx;
  1038. } else {
  1039. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1040. DMA_TO_DEVICE);
  1041. kfree(edesc);
  1042. }
  1043. } else if (*next_buflen) {
  1044. sg_copy(buf + *buflen, req->src, req->nbytes);
  1045. *buflen = *next_buflen;
  1046. *next_buflen = 0;
  1047. }
  1048. #ifdef DEBUG
  1049. print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
  1050. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1051. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  1052. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1053. *next_buflen, 1);
  1054. #endif
  1055. return ret;
  1056. }
  1057. /* submit ahash finup if it the first job descriptor after update */
  1058. static int ahash_finup_no_ctx(struct ahash_request *req)
  1059. {
  1060. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1061. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1062. struct caam_hash_state *state = ahash_request_ctx(req);
  1063. struct device *jrdev = ctx->jrdev;
  1064. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1065. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1066. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1067. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1068. int last_buflen = state->current_buf ? state->buflen_0 :
  1069. state->buflen_1;
  1070. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1071. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1072. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1073. int digestsize = crypto_ahash_digestsize(ahash);
  1074. struct ahash_edesc *edesc;
  1075. int sh_len;
  1076. int ret = 0;
  1077. src_nents = __sg_count(req->src, req->nbytes);
  1078. sec4_sg_src_index = 2;
  1079. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1080. sizeof(struct sec4_sg_entry);
  1081. /* allocate space for base edesc and hw desc commands, link tables */
  1082. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1083. sec4_sg_bytes, GFP_DMA | flags);
  1084. if (!edesc) {
  1085. dev_err(jrdev, "could not allocate extended descriptor\n");
  1086. return -ENOMEM;
  1087. }
  1088. sh_len = desc_len(sh_desc);
  1089. desc = edesc->hw_desc;
  1090. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1091. edesc->src_nents = src_nents;
  1092. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1093. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1094. DESC_JOB_IO_LEN;
  1095. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1096. sec4_sg_bytes, DMA_TO_DEVICE);
  1097. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1098. state->buf_dma, buflen,
  1099. last_buflen);
  1100. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1);
  1101. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1102. req->nbytes, LDST_SGF);
  1103. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1104. digestsize);
  1105. #ifdef DEBUG
  1106. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1107. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1108. #endif
  1109. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1110. if (!ret) {
  1111. ret = -EINPROGRESS;
  1112. } else {
  1113. ahash_unmap(jrdev, edesc, req, digestsize);
  1114. kfree(edesc);
  1115. }
  1116. return ret;
  1117. }
  1118. /* submit first update job descriptor after init */
  1119. static int ahash_update_first(struct ahash_request *req)
  1120. {
  1121. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1122. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1123. struct caam_hash_state *state = ahash_request_ctx(req);
  1124. struct device *jrdev = ctx->jrdev;
  1125. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1126. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1127. u8 *next_buf = state->buf_0 + state->current_buf *
  1128. CAAM_MAX_HASH_BLOCK_SIZE;
  1129. int *next_buflen = &state->buflen_0 + state->current_buf;
  1130. int to_hash;
  1131. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1132. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1133. int sec4_sg_bytes, src_nents;
  1134. dma_addr_t src_dma;
  1135. u32 options;
  1136. struct ahash_edesc *edesc;
  1137. int ret = 0;
  1138. int sh_len;
  1139. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1140. 1);
  1141. to_hash = req->nbytes - *next_buflen;
  1142. if (to_hash) {
  1143. src_nents = sg_count(req->src, req->nbytes - (*next_buflen));
  1144. dma_map_sg(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE);
  1145. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1146. /*
  1147. * allocate space for base edesc and hw desc commands,
  1148. * link tables
  1149. */
  1150. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1151. sec4_sg_bytes, GFP_DMA | flags);
  1152. if (!edesc) {
  1153. dev_err(jrdev,
  1154. "could not allocate extended descriptor\n");
  1155. return -ENOMEM;
  1156. }
  1157. edesc->src_nents = src_nents;
  1158. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1159. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1160. DESC_JOB_IO_LEN;
  1161. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1162. sec4_sg_bytes,
  1163. DMA_TO_DEVICE);
  1164. if (src_nents) {
  1165. sg_to_sec4_sg_last(req->src, src_nents,
  1166. edesc->sec4_sg, 0);
  1167. src_dma = edesc->sec4_sg_dma;
  1168. options = LDST_SGF;
  1169. } else {
  1170. src_dma = sg_dma_address(req->src);
  1171. options = 0;
  1172. }
  1173. if (*next_buflen)
  1174. sg_copy_part(next_buf, req->src, to_hash, req->nbytes);
  1175. sh_len = desc_len(sh_desc);
  1176. desc = edesc->hw_desc;
  1177. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1178. HDR_REVERSE);
  1179. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1180. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1181. #ifdef DEBUG
  1182. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1183. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1184. desc_bytes(desc), 1);
  1185. #endif
  1186. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1187. req);
  1188. if (!ret) {
  1189. ret = -EINPROGRESS;
  1190. state->update = ahash_update_ctx;
  1191. state->finup = ahash_finup_ctx;
  1192. state->final = ahash_final_ctx;
  1193. } else {
  1194. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1195. DMA_TO_DEVICE);
  1196. kfree(edesc);
  1197. }
  1198. } else if (*next_buflen) {
  1199. state->update = ahash_update_no_ctx;
  1200. state->finup = ahash_finup_no_ctx;
  1201. state->final = ahash_final_no_ctx;
  1202. sg_copy(next_buf, req->src, req->nbytes);
  1203. }
  1204. #ifdef DEBUG
  1205. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  1206. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1207. *next_buflen, 1);
  1208. #endif
  1209. return ret;
  1210. }
  1211. static int ahash_finup_first(struct ahash_request *req)
  1212. {
  1213. return ahash_digest(req);
  1214. }
  1215. static int ahash_init(struct ahash_request *req)
  1216. {
  1217. struct caam_hash_state *state = ahash_request_ctx(req);
  1218. state->update = ahash_update_first;
  1219. state->finup = ahash_finup_first;
  1220. state->final = ahash_final_no_ctx;
  1221. state->current_buf = 0;
  1222. return 0;
  1223. }
  1224. static int ahash_update(struct ahash_request *req)
  1225. {
  1226. struct caam_hash_state *state = ahash_request_ctx(req);
  1227. return state->update(req);
  1228. }
  1229. static int ahash_finup(struct ahash_request *req)
  1230. {
  1231. struct caam_hash_state *state = ahash_request_ctx(req);
  1232. return state->finup(req);
  1233. }
  1234. static int ahash_final(struct ahash_request *req)
  1235. {
  1236. struct caam_hash_state *state = ahash_request_ctx(req);
  1237. return state->final(req);
  1238. }
  1239. static int ahash_export(struct ahash_request *req, void *out)
  1240. {
  1241. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1242. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1243. struct caam_hash_state *state = ahash_request_ctx(req);
  1244. memcpy(out, ctx, sizeof(struct caam_hash_ctx));
  1245. memcpy(out + sizeof(struct caam_hash_ctx), state,
  1246. sizeof(struct caam_hash_state));
  1247. return 0;
  1248. }
  1249. static int ahash_import(struct ahash_request *req, const void *in)
  1250. {
  1251. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1252. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1253. struct caam_hash_state *state = ahash_request_ctx(req);
  1254. memcpy(ctx, in, sizeof(struct caam_hash_ctx));
  1255. memcpy(state, in + sizeof(struct caam_hash_ctx),
  1256. sizeof(struct caam_hash_state));
  1257. return 0;
  1258. }
  1259. struct caam_hash_template {
  1260. char name[CRYPTO_MAX_ALG_NAME];
  1261. char driver_name[CRYPTO_MAX_ALG_NAME];
  1262. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1263. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1264. unsigned int blocksize;
  1265. struct ahash_alg template_ahash;
  1266. u32 alg_type;
  1267. u32 alg_op;
  1268. };
  1269. /* ahash descriptors */
  1270. static struct caam_hash_template driver_hash[] = {
  1271. {
  1272. .name = "sha1",
  1273. .driver_name = "sha1-caam",
  1274. .hmac_name = "hmac(sha1)",
  1275. .hmac_driver_name = "hmac-sha1-caam",
  1276. .blocksize = SHA1_BLOCK_SIZE,
  1277. .template_ahash = {
  1278. .init = ahash_init,
  1279. .update = ahash_update,
  1280. .final = ahash_final,
  1281. .finup = ahash_finup,
  1282. .digest = ahash_digest,
  1283. .export = ahash_export,
  1284. .import = ahash_import,
  1285. .setkey = ahash_setkey,
  1286. .halg = {
  1287. .digestsize = SHA1_DIGEST_SIZE,
  1288. },
  1289. },
  1290. .alg_type = OP_ALG_ALGSEL_SHA1,
  1291. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1292. }, {
  1293. .name = "sha224",
  1294. .driver_name = "sha224-caam",
  1295. .hmac_name = "hmac(sha224)",
  1296. .hmac_driver_name = "hmac-sha224-caam",
  1297. .blocksize = SHA224_BLOCK_SIZE,
  1298. .template_ahash = {
  1299. .init = ahash_init,
  1300. .update = ahash_update,
  1301. .final = ahash_final,
  1302. .finup = ahash_finup,
  1303. .digest = ahash_digest,
  1304. .export = ahash_export,
  1305. .import = ahash_import,
  1306. .setkey = ahash_setkey,
  1307. .halg = {
  1308. .digestsize = SHA224_DIGEST_SIZE,
  1309. },
  1310. },
  1311. .alg_type = OP_ALG_ALGSEL_SHA224,
  1312. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1313. }, {
  1314. .name = "sha256",
  1315. .driver_name = "sha256-caam",
  1316. .hmac_name = "hmac(sha256)",
  1317. .hmac_driver_name = "hmac-sha256-caam",
  1318. .blocksize = SHA256_BLOCK_SIZE,
  1319. .template_ahash = {
  1320. .init = ahash_init,
  1321. .update = ahash_update,
  1322. .final = ahash_final,
  1323. .finup = ahash_finup,
  1324. .digest = ahash_digest,
  1325. .export = ahash_export,
  1326. .import = ahash_import,
  1327. .setkey = ahash_setkey,
  1328. .halg = {
  1329. .digestsize = SHA256_DIGEST_SIZE,
  1330. },
  1331. },
  1332. .alg_type = OP_ALG_ALGSEL_SHA256,
  1333. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1334. }, {
  1335. .name = "sha384",
  1336. .driver_name = "sha384-caam",
  1337. .hmac_name = "hmac(sha384)",
  1338. .hmac_driver_name = "hmac-sha384-caam",
  1339. .blocksize = SHA384_BLOCK_SIZE,
  1340. .template_ahash = {
  1341. .init = ahash_init,
  1342. .update = ahash_update,
  1343. .final = ahash_final,
  1344. .finup = ahash_finup,
  1345. .digest = ahash_digest,
  1346. .export = ahash_export,
  1347. .import = ahash_import,
  1348. .setkey = ahash_setkey,
  1349. .halg = {
  1350. .digestsize = SHA384_DIGEST_SIZE,
  1351. },
  1352. },
  1353. .alg_type = OP_ALG_ALGSEL_SHA384,
  1354. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1355. }, {
  1356. .name = "sha512",
  1357. .driver_name = "sha512-caam",
  1358. .hmac_name = "hmac(sha512)",
  1359. .hmac_driver_name = "hmac-sha512-caam",
  1360. .blocksize = SHA512_BLOCK_SIZE,
  1361. .template_ahash = {
  1362. .init = ahash_init,
  1363. .update = ahash_update,
  1364. .final = ahash_final,
  1365. .finup = ahash_finup,
  1366. .digest = ahash_digest,
  1367. .export = ahash_export,
  1368. .import = ahash_import,
  1369. .setkey = ahash_setkey,
  1370. .halg = {
  1371. .digestsize = SHA512_DIGEST_SIZE,
  1372. },
  1373. },
  1374. .alg_type = OP_ALG_ALGSEL_SHA512,
  1375. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1376. }, {
  1377. .name = "md5",
  1378. .driver_name = "md5-caam",
  1379. .hmac_name = "hmac(md5)",
  1380. .hmac_driver_name = "hmac-md5-caam",
  1381. .blocksize = MD5_BLOCK_WORDS * 4,
  1382. .template_ahash = {
  1383. .init = ahash_init,
  1384. .update = ahash_update,
  1385. .final = ahash_final,
  1386. .finup = ahash_finup,
  1387. .digest = ahash_digest,
  1388. .export = ahash_export,
  1389. .import = ahash_import,
  1390. .setkey = ahash_setkey,
  1391. .halg = {
  1392. .digestsize = MD5_DIGEST_SIZE,
  1393. },
  1394. },
  1395. .alg_type = OP_ALG_ALGSEL_MD5,
  1396. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1397. },
  1398. };
  1399. struct caam_hash_alg {
  1400. struct list_head entry;
  1401. struct device *ctrldev;
  1402. int alg_type;
  1403. int alg_op;
  1404. struct ahash_alg ahash_alg;
  1405. };
  1406. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1407. {
  1408. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1409. struct crypto_alg *base = tfm->__crt_alg;
  1410. struct hash_alg_common *halg =
  1411. container_of(base, struct hash_alg_common, base);
  1412. struct ahash_alg *alg =
  1413. container_of(halg, struct ahash_alg, halg);
  1414. struct caam_hash_alg *caam_hash =
  1415. container_of(alg, struct caam_hash_alg, ahash_alg);
  1416. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1417. struct caam_drv_private *priv = dev_get_drvdata(caam_hash->ctrldev);
  1418. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1419. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1420. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1421. HASH_MSG_LEN + 32,
  1422. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1423. HASH_MSG_LEN + 64,
  1424. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1425. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  1426. int ret = 0;
  1427. /*
  1428. * distribute tfms across job rings to ensure in-order
  1429. * crypto request processing per tfm
  1430. */
  1431. ctx->jrdev = priv->jrdev[tgt_jr % priv->total_jobrs];
  1432. /* copy descriptor header template value */
  1433. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1434. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1435. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1436. OP_ALG_ALGSEL_SHIFT];
  1437. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1438. sizeof(struct caam_hash_state));
  1439. ret = ahash_set_sh_desc(ahash);
  1440. return ret;
  1441. }
  1442. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1443. {
  1444. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1445. if (ctx->sh_desc_update_dma &&
  1446. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1447. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1448. desc_bytes(ctx->sh_desc_update),
  1449. DMA_TO_DEVICE);
  1450. if (ctx->sh_desc_update_first_dma &&
  1451. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1452. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1453. desc_bytes(ctx->sh_desc_update_first),
  1454. DMA_TO_DEVICE);
  1455. if (ctx->sh_desc_fin_dma &&
  1456. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1457. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1458. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1459. if (ctx->sh_desc_digest_dma &&
  1460. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1461. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1462. desc_bytes(ctx->sh_desc_digest),
  1463. DMA_TO_DEVICE);
  1464. if (ctx->sh_desc_finup_dma &&
  1465. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1466. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1467. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1468. }
  1469. static void __exit caam_algapi_hash_exit(void)
  1470. {
  1471. struct device_node *dev_node;
  1472. struct platform_device *pdev;
  1473. struct device *ctrldev;
  1474. struct caam_drv_private *priv;
  1475. struct caam_hash_alg *t_alg, *n;
  1476. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1477. if (!dev_node)
  1478. return;
  1479. pdev = of_find_device_by_node(dev_node);
  1480. if (!pdev)
  1481. return;
  1482. ctrldev = &pdev->dev;
  1483. of_node_put(dev_node);
  1484. priv = dev_get_drvdata(ctrldev);
  1485. if (!priv->hash_list.next)
  1486. return;
  1487. list_for_each_entry_safe(t_alg, n, &priv->hash_list, entry) {
  1488. crypto_unregister_ahash(&t_alg->ahash_alg);
  1489. list_del(&t_alg->entry);
  1490. kfree(t_alg);
  1491. }
  1492. }
  1493. static struct caam_hash_alg *
  1494. caam_hash_alloc(struct device *ctrldev, struct caam_hash_template *template,
  1495. bool keyed)
  1496. {
  1497. struct caam_hash_alg *t_alg;
  1498. struct ahash_alg *halg;
  1499. struct crypto_alg *alg;
  1500. t_alg = kzalloc(sizeof(struct caam_hash_alg), GFP_KERNEL);
  1501. if (!t_alg) {
  1502. dev_err(ctrldev, "failed to allocate t_alg\n");
  1503. return ERR_PTR(-ENOMEM);
  1504. }
  1505. t_alg->ahash_alg = template->template_ahash;
  1506. halg = &t_alg->ahash_alg;
  1507. alg = &halg->halg.base;
  1508. if (keyed) {
  1509. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1510. template->hmac_name);
  1511. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1512. template->hmac_driver_name);
  1513. } else {
  1514. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1515. template->name);
  1516. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1517. template->driver_name);
  1518. }
  1519. alg->cra_module = THIS_MODULE;
  1520. alg->cra_init = caam_hash_cra_init;
  1521. alg->cra_exit = caam_hash_cra_exit;
  1522. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1523. alg->cra_priority = CAAM_CRA_PRIORITY;
  1524. alg->cra_blocksize = template->blocksize;
  1525. alg->cra_alignmask = 0;
  1526. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1527. alg->cra_type = &crypto_ahash_type;
  1528. t_alg->alg_type = template->alg_type;
  1529. t_alg->alg_op = template->alg_op;
  1530. t_alg->ctrldev = ctrldev;
  1531. return t_alg;
  1532. }
  1533. static int __init caam_algapi_hash_init(void)
  1534. {
  1535. struct device_node *dev_node;
  1536. struct platform_device *pdev;
  1537. struct device *ctrldev;
  1538. struct caam_drv_private *priv;
  1539. int i = 0, err = 0;
  1540. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1541. if (!dev_node)
  1542. return -ENODEV;
  1543. pdev = of_find_device_by_node(dev_node);
  1544. if (!pdev)
  1545. return -ENODEV;
  1546. ctrldev = &pdev->dev;
  1547. priv = dev_get_drvdata(ctrldev);
  1548. of_node_put(dev_node);
  1549. INIT_LIST_HEAD(&priv->hash_list);
  1550. atomic_set(&priv->tfm_count, -1);
  1551. /* register crypto algorithms the device supports */
  1552. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1553. /* TODO: check if h/w supports alg */
  1554. struct caam_hash_alg *t_alg;
  1555. /* register hmac version */
  1556. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], true);
  1557. if (IS_ERR(t_alg)) {
  1558. err = PTR_ERR(t_alg);
  1559. dev_warn(ctrldev, "%s alg allocation failed\n",
  1560. driver_hash[i].driver_name);
  1561. continue;
  1562. }
  1563. err = crypto_register_ahash(&t_alg->ahash_alg);
  1564. if (err) {
  1565. dev_warn(ctrldev, "%s alg registration failed\n",
  1566. t_alg->ahash_alg.halg.base.cra_driver_name);
  1567. kfree(t_alg);
  1568. } else
  1569. list_add_tail(&t_alg->entry, &priv->hash_list);
  1570. /* register unkeyed version */
  1571. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], false);
  1572. if (IS_ERR(t_alg)) {
  1573. err = PTR_ERR(t_alg);
  1574. dev_warn(ctrldev, "%s alg allocation failed\n",
  1575. driver_hash[i].driver_name);
  1576. continue;
  1577. }
  1578. err = crypto_register_ahash(&t_alg->ahash_alg);
  1579. if (err) {
  1580. dev_warn(ctrldev, "%s alg registration failed\n",
  1581. t_alg->ahash_alg.halg.base.cra_driver_name);
  1582. kfree(t_alg);
  1583. } else
  1584. list_add_tail(&t_alg->entry, &priv->hash_list);
  1585. }
  1586. return err;
  1587. }
  1588. module_init(caam_algapi_hash_init);
  1589. module_exit(caam_algapi_hash_exit);
  1590. MODULE_LICENSE("GPL");
  1591. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1592. MODULE_AUTHOR("Freescale Semiconductor - NMG");