niu.c 179 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "0.6"
  32. #define DRV_MODULE_RELDATE "January 5, 2008"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return (((u64)readl(reg + 0x4UL) << 32) |
  46. (u64)readl(reg));
  47. }
  48. static void writeq(u64 val, void __iomem *reg)
  49. {
  50. writel(val & 0xffffffff, reg);
  51. writel(val >> 32, reg + 0x4UL);
  52. }
  53. #endif
  54. static struct pci_device_id niu_pci_tbl[] = {
  55. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  56. {}
  57. };
  58. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  59. #define NIU_TX_TIMEOUT (5 * HZ)
  60. #define nr64(reg) readq(np->regs + (reg))
  61. #define nw64(reg, val) writeq((val), np->regs + (reg))
  62. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  63. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  64. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  65. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  66. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  67. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  68. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  69. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  70. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  71. static int niu_debug;
  72. static int debug = -1;
  73. module_param(debug, int, 0);
  74. MODULE_PARM_DESC(debug, "NIU debug level");
  75. #define niudbg(TYPE, f, a...) \
  76. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  77. printk(KERN_DEBUG PFX f, ## a); \
  78. } while (0)
  79. #define niuinfo(TYPE, f, a...) \
  80. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  81. printk(KERN_INFO PFX f, ## a); \
  82. } while (0)
  83. #define niuwarn(TYPE, f, a...) \
  84. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  85. printk(KERN_WARNING PFX f, ## a); \
  86. } while (0)
  87. #define niu_lock_parent(np, flags) \
  88. spin_lock_irqsave(&np->parent->lock, flags)
  89. #define niu_unlock_parent(np, flags) \
  90. spin_unlock_irqrestore(&np->parent->lock, flags)
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  359. {
  360. int err;
  361. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  362. if (err >= 0) {
  363. *val = (err & 0xffff);
  364. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  365. ESR_RXTX_CTRL_H(chan));
  366. if (err >= 0)
  367. *val |= ((err & 0xffff) << 16);
  368. err = 0;
  369. }
  370. return err;
  371. }
  372. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  373. {
  374. int err;
  375. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  376. ESR_GLUE_CTRL0_L(chan));
  377. if (err >= 0) {
  378. *val = (err & 0xffff);
  379. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  380. ESR_GLUE_CTRL0_H(chan));
  381. if (err >= 0) {
  382. *val |= ((err & 0xffff) << 16);
  383. err = 0;
  384. }
  385. }
  386. return err;
  387. }
  388. static int esr_read_reset(struct niu *np, u32 *val)
  389. {
  390. int err;
  391. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  392. ESR_RXTX_RESET_CTRL_L);
  393. if (err >= 0) {
  394. *val = (err & 0xffff);
  395. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  396. ESR_RXTX_RESET_CTRL_H);
  397. if (err >= 0) {
  398. *val |= ((err & 0xffff) << 16);
  399. err = 0;
  400. }
  401. }
  402. return err;
  403. }
  404. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  405. {
  406. int err;
  407. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  408. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  409. if (!err)
  410. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  411. ESR_RXTX_CTRL_H(chan), (val >> 16));
  412. return err;
  413. }
  414. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  415. {
  416. int err;
  417. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  418. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  419. if (!err)
  420. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  421. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  422. return err;
  423. }
  424. static int esr_reset(struct niu *np)
  425. {
  426. u32 reset;
  427. int err;
  428. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  429. ESR_RXTX_RESET_CTRL_L, 0x0000);
  430. if (err)
  431. return err;
  432. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  433. ESR_RXTX_RESET_CTRL_H, 0xffff);
  434. if (err)
  435. return err;
  436. udelay(200);
  437. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  438. ESR_RXTX_RESET_CTRL_L, 0xffff);
  439. if (err)
  440. return err;
  441. udelay(200);
  442. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  443. ESR_RXTX_RESET_CTRL_H, 0x0000);
  444. if (err)
  445. return err;
  446. udelay(200);
  447. err = esr_read_reset(np, &reset);
  448. if (err)
  449. return err;
  450. if (reset != 0) {
  451. dev_err(np->device, PFX "Port %u ESR_RESET "
  452. "did not clear [%08x]\n",
  453. np->port, reset);
  454. return -ENODEV;
  455. }
  456. return 0;
  457. }
  458. static int serdes_init_10g(struct niu *np)
  459. {
  460. struct niu_link_config *lp = &np->link_config;
  461. unsigned long ctrl_reg, test_cfg_reg, i;
  462. u64 ctrl_val, test_cfg_val, sig, mask, val;
  463. int err;
  464. switch (np->port) {
  465. case 0:
  466. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  467. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  468. break;
  469. case 1:
  470. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  471. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  472. break;
  473. default:
  474. return -EINVAL;
  475. }
  476. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  477. ENET_SERDES_CTRL_SDET_1 |
  478. ENET_SERDES_CTRL_SDET_2 |
  479. ENET_SERDES_CTRL_SDET_3 |
  480. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  481. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  482. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  483. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  484. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  485. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  486. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  487. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  488. test_cfg_val = 0;
  489. if (lp->loopback_mode == LOOPBACK_PHY) {
  490. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  491. ENET_SERDES_TEST_MD_0_SHIFT) |
  492. (ENET_TEST_MD_PAD_LOOPBACK <<
  493. ENET_SERDES_TEST_MD_1_SHIFT) |
  494. (ENET_TEST_MD_PAD_LOOPBACK <<
  495. ENET_SERDES_TEST_MD_2_SHIFT) |
  496. (ENET_TEST_MD_PAD_LOOPBACK <<
  497. ENET_SERDES_TEST_MD_3_SHIFT));
  498. }
  499. nw64(ctrl_reg, ctrl_val);
  500. nw64(test_cfg_reg, test_cfg_val);
  501. /* Initialize all 4 lanes of the SERDES. */
  502. for (i = 0; i < 4; i++) {
  503. u32 rxtx_ctrl, glue0;
  504. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  505. if (err)
  506. return err;
  507. err = esr_read_glue0(np, i, &glue0);
  508. if (err)
  509. return err;
  510. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  511. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  512. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  513. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  514. ESR_GLUE_CTRL0_THCNT |
  515. ESR_GLUE_CTRL0_BLTIME);
  516. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  517. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  518. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  519. (BLTIME_300_CYCLES <<
  520. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  521. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  522. if (err)
  523. return err;
  524. err = esr_write_glue0(np, i, glue0);
  525. if (err)
  526. return err;
  527. }
  528. err = esr_reset(np);
  529. if (err)
  530. return err;
  531. sig = nr64(ESR_INT_SIGNALS);
  532. switch (np->port) {
  533. case 0:
  534. mask = ESR_INT_SIGNALS_P0_BITS;
  535. val = (ESR_INT_SRDY0_P0 |
  536. ESR_INT_DET0_P0 |
  537. ESR_INT_XSRDY_P0 |
  538. ESR_INT_XDP_P0_CH3 |
  539. ESR_INT_XDP_P0_CH2 |
  540. ESR_INT_XDP_P0_CH1 |
  541. ESR_INT_XDP_P0_CH0);
  542. break;
  543. case 1:
  544. mask = ESR_INT_SIGNALS_P1_BITS;
  545. val = (ESR_INT_SRDY0_P1 |
  546. ESR_INT_DET0_P1 |
  547. ESR_INT_XSRDY_P1 |
  548. ESR_INT_XDP_P1_CH3 |
  549. ESR_INT_XDP_P1_CH2 |
  550. ESR_INT_XDP_P1_CH1 |
  551. ESR_INT_XDP_P1_CH0);
  552. break;
  553. default:
  554. return -EINVAL;
  555. }
  556. if ((sig & mask) != val) {
  557. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  558. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  559. return -ENODEV;
  560. }
  561. return 0;
  562. }
  563. static int serdes_init_1g(struct niu *np)
  564. {
  565. u64 val;
  566. val = nr64(ENET_SERDES_1_PLL_CFG);
  567. val &= ~ENET_SERDES_PLL_FBDIV2;
  568. switch (np->port) {
  569. case 0:
  570. val |= ENET_SERDES_PLL_HRATE0;
  571. break;
  572. case 1:
  573. val |= ENET_SERDES_PLL_HRATE1;
  574. break;
  575. case 2:
  576. val |= ENET_SERDES_PLL_HRATE2;
  577. break;
  578. case 3:
  579. val |= ENET_SERDES_PLL_HRATE3;
  580. break;
  581. default:
  582. return -EINVAL;
  583. }
  584. nw64(ENET_SERDES_1_PLL_CFG, val);
  585. return 0;
  586. }
  587. static int bcm8704_reset(struct niu *np)
  588. {
  589. int err, limit;
  590. err = mdio_read(np, np->phy_addr,
  591. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  592. if (err < 0)
  593. return err;
  594. err |= BMCR_RESET;
  595. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  596. MII_BMCR, err);
  597. if (err)
  598. return err;
  599. limit = 1000;
  600. while (--limit >= 0) {
  601. err = mdio_read(np, np->phy_addr,
  602. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  603. if (err < 0)
  604. return err;
  605. if (!(err & BMCR_RESET))
  606. break;
  607. }
  608. if (limit < 0) {
  609. dev_err(np->device, PFX "Port %u PHY will not reset "
  610. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  611. return -ENODEV;
  612. }
  613. return 0;
  614. }
  615. /* When written, certain PHY registers need to be read back twice
  616. * in order for the bits to settle properly.
  617. */
  618. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  619. {
  620. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  621. if (err < 0)
  622. return err;
  623. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  624. if (err < 0)
  625. return err;
  626. return 0;
  627. }
  628. static int bcm8704_init_user_dev3(struct niu *np)
  629. {
  630. int err;
  631. err = mdio_write(np, np->phy_addr,
  632. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  633. (USER_CONTROL_OPTXRST_LVL |
  634. USER_CONTROL_OPBIASFLT_LVL |
  635. USER_CONTROL_OBTMPFLT_LVL |
  636. USER_CONTROL_OPPRFLT_LVL |
  637. USER_CONTROL_OPTXFLT_LVL |
  638. USER_CONTROL_OPRXLOS_LVL |
  639. USER_CONTROL_OPRXFLT_LVL |
  640. USER_CONTROL_OPTXON_LVL |
  641. (0x3f << USER_CONTROL_RES1_SHIFT)));
  642. if (err)
  643. return err;
  644. err = mdio_write(np, np->phy_addr,
  645. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  646. (USER_PMD_TX_CTL_XFP_CLKEN |
  647. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  648. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  649. USER_PMD_TX_CTL_TSCK_LPWREN));
  650. if (err)
  651. return err;
  652. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  653. if (err)
  654. return err;
  655. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  656. if (err)
  657. return err;
  658. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  659. BCM8704_USER_OPT_DIGITAL_CTRL);
  660. if (err < 0)
  661. return err;
  662. err &= ~USER_ODIG_CTRL_GPIOS;
  663. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  664. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  665. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  666. if (err)
  667. return err;
  668. mdelay(1000);
  669. return 0;
  670. }
  671. static int mrvl88x2011_act_led(struct niu *np, int val)
  672. {
  673. int err;
  674. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  675. MRVL88X2011_LED_8_TO_11_CTL);
  676. if (err < 0)
  677. return err;
  678. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  679. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  680. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  681. MRVL88X2011_LED_8_TO_11_CTL, err);
  682. }
  683. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  684. {
  685. int err;
  686. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  687. MRVL88X2011_LED_BLINK_CTL);
  688. if (err >= 0) {
  689. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  690. err |= (rate << 4);
  691. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  692. MRVL88X2011_LED_BLINK_CTL, err);
  693. }
  694. return err;
  695. }
  696. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  697. {
  698. int err;
  699. /* Set LED functions */
  700. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  701. if (err)
  702. return err;
  703. /* led activity */
  704. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  705. if (err)
  706. return err;
  707. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  708. MRVL88X2011_GENERAL_CTL);
  709. if (err < 0)
  710. return err;
  711. err |= MRVL88X2011_ENA_XFPREFCLK;
  712. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  713. MRVL88X2011_GENERAL_CTL, err);
  714. if (err < 0)
  715. return err;
  716. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  717. MRVL88X2011_PMA_PMD_CTL_1);
  718. if (err < 0)
  719. return err;
  720. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  721. err |= MRVL88X2011_LOOPBACK;
  722. else
  723. err &= ~MRVL88X2011_LOOPBACK;
  724. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  725. MRVL88X2011_PMA_PMD_CTL_1, err);
  726. if (err < 0)
  727. return err;
  728. /* Enable PMD */
  729. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  730. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  731. }
  732. static int xcvr_init_10g_bcm8704(struct niu *np)
  733. {
  734. struct niu_link_config *lp = &np->link_config;
  735. u16 analog_stat0, tx_alarm_status;
  736. int err;
  737. err = bcm8704_reset(np);
  738. if (err)
  739. return err;
  740. err = bcm8704_init_user_dev3(np);
  741. if (err)
  742. return err;
  743. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  744. MII_BMCR);
  745. if (err < 0)
  746. return err;
  747. err &= ~BMCR_LOOPBACK;
  748. if (lp->loopback_mode == LOOPBACK_MAC)
  749. err |= BMCR_LOOPBACK;
  750. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  751. MII_BMCR, err);
  752. if (err)
  753. return err;
  754. #if 1
  755. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  756. MII_STAT1000);
  757. if (err < 0)
  758. return err;
  759. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  760. np->port, err);
  761. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  762. if (err < 0)
  763. return err;
  764. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  765. np->port, err);
  766. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  767. MII_NWAYTEST);
  768. if (err < 0)
  769. return err;
  770. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  771. np->port, err);
  772. #endif
  773. /* XXX dig this out it might not be so useful XXX */
  774. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  775. BCM8704_USER_ANALOG_STATUS0);
  776. if (err < 0)
  777. return err;
  778. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  779. BCM8704_USER_ANALOG_STATUS0);
  780. if (err < 0)
  781. return err;
  782. analog_stat0 = err;
  783. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  784. BCM8704_USER_TX_ALARM_STATUS);
  785. if (err < 0)
  786. return err;
  787. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  788. BCM8704_USER_TX_ALARM_STATUS);
  789. if (err < 0)
  790. return err;
  791. tx_alarm_status = err;
  792. if (analog_stat0 != 0x03fc) {
  793. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  794. pr_info(PFX "Port %u cable not connected "
  795. "or bad cable.\n", np->port);
  796. } else if (analog_stat0 == 0x639c) {
  797. pr_info(PFX "Port %u optical module is bad "
  798. "or missing.\n", np->port);
  799. }
  800. }
  801. return 0;
  802. }
  803. static int xcvr_init_10g(struct niu *np)
  804. {
  805. int phy_id, err;
  806. u64 val;
  807. val = nr64_mac(XMAC_CONFIG);
  808. val &= ~XMAC_CONFIG_LED_POLARITY;
  809. val |= XMAC_CONFIG_FORCE_LED_ON;
  810. nw64_mac(XMAC_CONFIG, val);
  811. /* XXX shared resource, lock parent XXX */
  812. val = nr64(MIF_CONFIG);
  813. val |= MIF_CONFIG_INDIRECT_MODE;
  814. nw64(MIF_CONFIG, val);
  815. phy_id = phy_decode(np->parent->port_phy, np->port);
  816. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  817. /* handle different phy types */
  818. switch (phy_id & NIU_PHY_ID_MASK) {
  819. case NIU_PHY_ID_MRVL88X2011:
  820. err = xcvr_init_10g_mrvl88x2011(np);
  821. break;
  822. default: /* bcom 8704 */
  823. err = xcvr_init_10g_bcm8704(np);
  824. break;
  825. }
  826. return 0;
  827. }
  828. static int mii_reset(struct niu *np)
  829. {
  830. int limit, err;
  831. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  832. if (err)
  833. return err;
  834. limit = 1000;
  835. while (--limit >= 0) {
  836. udelay(500);
  837. err = mii_read(np, np->phy_addr, MII_BMCR);
  838. if (err < 0)
  839. return err;
  840. if (!(err & BMCR_RESET))
  841. break;
  842. }
  843. if (limit < 0) {
  844. dev_err(np->device, PFX "Port %u MII would not reset, "
  845. "bmcr[%04x]\n", np->port, err);
  846. return -ENODEV;
  847. }
  848. return 0;
  849. }
  850. static int mii_init_common(struct niu *np)
  851. {
  852. struct niu_link_config *lp = &np->link_config;
  853. u16 bmcr, bmsr, adv, estat;
  854. int err;
  855. err = mii_reset(np);
  856. if (err)
  857. return err;
  858. err = mii_read(np, np->phy_addr, MII_BMSR);
  859. if (err < 0)
  860. return err;
  861. bmsr = err;
  862. estat = 0;
  863. if (bmsr & BMSR_ESTATEN) {
  864. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  865. if (err < 0)
  866. return err;
  867. estat = err;
  868. }
  869. bmcr = 0;
  870. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  871. if (err)
  872. return err;
  873. if (lp->loopback_mode == LOOPBACK_MAC) {
  874. bmcr |= BMCR_LOOPBACK;
  875. if (lp->active_speed == SPEED_1000)
  876. bmcr |= BMCR_SPEED1000;
  877. if (lp->active_duplex == DUPLEX_FULL)
  878. bmcr |= BMCR_FULLDPLX;
  879. }
  880. if (lp->loopback_mode == LOOPBACK_PHY) {
  881. u16 aux;
  882. aux = (BCM5464R_AUX_CTL_EXT_LB |
  883. BCM5464R_AUX_CTL_WRITE_1);
  884. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  885. if (err)
  886. return err;
  887. }
  888. /* XXX configurable XXX */
  889. /* XXX for now don't advertise half-duplex or asym pause... XXX */
  890. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  891. if (bmsr & BMSR_10FULL)
  892. adv |= ADVERTISE_10FULL;
  893. if (bmsr & BMSR_100FULL)
  894. adv |= ADVERTISE_100FULL;
  895. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  896. if (err)
  897. return err;
  898. if (bmsr & BMSR_ESTATEN) {
  899. u16 ctrl1000 = 0;
  900. if (estat & ESTATUS_1000_TFULL)
  901. ctrl1000 |= ADVERTISE_1000FULL;
  902. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  903. if (err)
  904. return err;
  905. }
  906. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  907. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  908. if (err)
  909. return err;
  910. err = mii_read(np, np->phy_addr, MII_BMCR);
  911. if (err < 0)
  912. return err;
  913. err = mii_read(np, np->phy_addr, MII_BMSR);
  914. if (err < 0)
  915. return err;
  916. #if 0
  917. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  918. np->port, bmcr, bmsr);
  919. #endif
  920. return 0;
  921. }
  922. static int xcvr_init_1g(struct niu *np)
  923. {
  924. u64 val;
  925. /* XXX shared resource, lock parent XXX */
  926. val = nr64(MIF_CONFIG);
  927. val &= ~MIF_CONFIG_INDIRECT_MODE;
  928. nw64(MIF_CONFIG, val);
  929. return mii_init_common(np);
  930. }
  931. static int niu_xcvr_init(struct niu *np)
  932. {
  933. const struct niu_phy_ops *ops = np->phy_ops;
  934. int err;
  935. err = 0;
  936. if (ops->xcvr_init)
  937. err = ops->xcvr_init(np);
  938. return err;
  939. }
  940. static int niu_serdes_init(struct niu *np)
  941. {
  942. const struct niu_phy_ops *ops = np->phy_ops;
  943. int err;
  944. err = 0;
  945. if (ops->serdes_init)
  946. err = ops->serdes_init(np);
  947. return err;
  948. }
  949. static void niu_init_xif(struct niu *);
  950. static void niu_handle_led(struct niu *, int status);
  951. static int niu_link_status_common(struct niu *np, int link_up)
  952. {
  953. struct niu_link_config *lp = &np->link_config;
  954. struct net_device *dev = np->dev;
  955. unsigned long flags;
  956. if (!netif_carrier_ok(dev) && link_up) {
  957. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  958. dev->name,
  959. (lp->active_speed == SPEED_10000 ?
  960. "10Gb/sec" :
  961. (lp->active_speed == SPEED_1000 ?
  962. "1Gb/sec" :
  963. (lp->active_speed == SPEED_100 ?
  964. "100Mbit/sec" : "10Mbit/sec"))),
  965. (lp->active_duplex == DUPLEX_FULL ?
  966. "full" : "half"));
  967. spin_lock_irqsave(&np->lock, flags);
  968. niu_init_xif(np);
  969. niu_handle_led(np, 1);
  970. spin_unlock_irqrestore(&np->lock, flags);
  971. netif_carrier_on(dev);
  972. } else if (netif_carrier_ok(dev) && !link_up) {
  973. niuwarn(LINK, "%s: Link is down\n", dev->name);
  974. spin_lock_irqsave(&np->lock, flags);
  975. niu_handle_led(np, 0);
  976. spin_unlock_irqrestore(&np->lock, flags);
  977. netif_carrier_off(dev);
  978. }
  979. return 0;
  980. }
  981. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  982. {
  983. int err, link_up, pma_status, pcs_status;
  984. link_up = 0;
  985. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  986. MRVL88X2011_10G_PMD_STATUS_2);
  987. if (err < 0)
  988. goto out;
  989. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  990. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  991. MRVL88X2011_PMA_PMD_STATUS_1);
  992. if (err < 0)
  993. goto out;
  994. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  995. /* Check PMC Register : 3.0001.2 == 1: read twice */
  996. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  997. MRVL88X2011_PMA_PMD_STATUS_1);
  998. if (err < 0)
  999. goto out;
  1000. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1001. MRVL88X2011_PMA_PMD_STATUS_1);
  1002. if (err < 0)
  1003. goto out;
  1004. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1005. /* Check XGXS Register : 4.0018.[0-3,12] */
  1006. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1007. MRVL88X2011_10G_XGXS_LANE_STAT);
  1008. if (err < 0)
  1009. goto out;
  1010. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1011. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1012. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1013. 0x800))
  1014. link_up = (pma_status && pcs_status) ? 1 : 0;
  1015. np->link_config.active_speed = SPEED_10000;
  1016. np->link_config.active_duplex = DUPLEX_FULL;
  1017. err = 0;
  1018. out:
  1019. mrvl88x2011_act_led(np, (link_up ?
  1020. MRVL88X2011_LED_CTL_PCS_ACT :
  1021. MRVL88X2011_LED_CTL_OFF));
  1022. *link_up_p = link_up;
  1023. return err;
  1024. }
  1025. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1026. {
  1027. int err, link_up;
  1028. link_up = 0;
  1029. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1030. BCM8704_PMD_RCV_SIGDET);
  1031. if (err < 0)
  1032. goto out;
  1033. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1034. err = 0;
  1035. goto out;
  1036. }
  1037. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1038. BCM8704_PCS_10G_R_STATUS);
  1039. if (err < 0)
  1040. goto out;
  1041. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1042. err = 0;
  1043. goto out;
  1044. }
  1045. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1046. BCM8704_PHYXS_XGXS_LANE_STAT);
  1047. if (err < 0)
  1048. goto out;
  1049. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1050. PHYXS_XGXS_LANE_STAT_MAGIC |
  1051. PHYXS_XGXS_LANE_STAT_LANE3 |
  1052. PHYXS_XGXS_LANE_STAT_LANE2 |
  1053. PHYXS_XGXS_LANE_STAT_LANE1 |
  1054. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1055. err = 0;
  1056. goto out;
  1057. }
  1058. link_up = 1;
  1059. np->link_config.active_speed = SPEED_10000;
  1060. np->link_config.active_duplex = DUPLEX_FULL;
  1061. err = 0;
  1062. out:
  1063. *link_up_p = link_up;
  1064. return err;
  1065. }
  1066. static int link_status_10g(struct niu *np, int *link_up_p)
  1067. {
  1068. unsigned long flags;
  1069. int err = -EINVAL;
  1070. spin_lock_irqsave(&np->lock, flags);
  1071. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1072. int phy_id;
  1073. phy_id = phy_decode(np->parent->port_phy, np->port);
  1074. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1075. /* handle different phy types */
  1076. switch (phy_id & NIU_PHY_ID_MASK) {
  1077. case NIU_PHY_ID_MRVL88X2011:
  1078. err = link_status_10g_mrvl(np, link_up_p);
  1079. break;
  1080. default: /* bcom 8704 */
  1081. err = link_status_10g_bcom(np, link_up_p);
  1082. break;
  1083. }
  1084. }
  1085. spin_unlock_irqrestore(&np->lock, flags);
  1086. return err;
  1087. }
  1088. static int link_status_1g(struct niu *np, int *link_up_p)
  1089. {
  1090. u16 current_speed, bmsr;
  1091. unsigned long flags;
  1092. u8 current_duplex;
  1093. int err, link_up;
  1094. link_up = 0;
  1095. current_speed = SPEED_INVALID;
  1096. current_duplex = DUPLEX_INVALID;
  1097. spin_lock_irqsave(&np->lock, flags);
  1098. err = -EINVAL;
  1099. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  1100. goto out;
  1101. err = mii_read(np, np->phy_addr, MII_BMSR);
  1102. if (err < 0)
  1103. goto out;
  1104. bmsr = err;
  1105. if (bmsr & BMSR_LSTATUS) {
  1106. u16 adv, lpa, common, estat;
  1107. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1108. if (err < 0)
  1109. goto out;
  1110. adv = err;
  1111. err = mii_read(np, np->phy_addr, MII_LPA);
  1112. if (err < 0)
  1113. goto out;
  1114. lpa = err;
  1115. common = adv & lpa;
  1116. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1117. if (err < 0)
  1118. goto out;
  1119. estat = err;
  1120. link_up = 1;
  1121. if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
  1122. current_speed = SPEED_1000;
  1123. if (estat & ESTATUS_1000_TFULL)
  1124. current_duplex = DUPLEX_FULL;
  1125. else
  1126. current_duplex = DUPLEX_HALF;
  1127. } else {
  1128. if (common & ADVERTISE_100BASE4) {
  1129. current_speed = SPEED_100;
  1130. current_duplex = DUPLEX_HALF;
  1131. } else if (common & ADVERTISE_100FULL) {
  1132. current_speed = SPEED_100;
  1133. current_duplex = DUPLEX_FULL;
  1134. } else if (common & ADVERTISE_100HALF) {
  1135. current_speed = SPEED_100;
  1136. current_duplex = DUPLEX_HALF;
  1137. } else if (common & ADVERTISE_10FULL) {
  1138. current_speed = SPEED_10;
  1139. current_duplex = DUPLEX_FULL;
  1140. } else if (common & ADVERTISE_10HALF) {
  1141. current_speed = SPEED_10;
  1142. current_duplex = DUPLEX_HALF;
  1143. } else
  1144. link_up = 0;
  1145. }
  1146. }
  1147. err = 0;
  1148. out:
  1149. spin_unlock_irqrestore(&np->lock, flags);
  1150. *link_up_p = link_up;
  1151. return err;
  1152. }
  1153. static int niu_link_status(struct niu *np, int *link_up_p)
  1154. {
  1155. const struct niu_phy_ops *ops = np->phy_ops;
  1156. int err;
  1157. err = 0;
  1158. if (ops->link_status)
  1159. err = ops->link_status(np, link_up_p);
  1160. return err;
  1161. }
  1162. static void niu_timer(unsigned long __opaque)
  1163. {
  1164. struct niu *np = (struct niu *) __opaque;
  1165. unsigned long off;
  1166. int err, link_up;
  1167. err = niu_link_status(np, &link_up);
  1168. if (!err)
  1169. niu_link_status_common(np, link_up);
  1170. if (netif_carrier_ok(np->dev))
  1171. off = 5 * HZ;
  1172. else
  1173. off = 1 * HZ;
  1174. np->timer.expires = jiffies + off;
  1175. add_timer(&np->timer);
  1176. }
  1177. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1178. .serdes_init = serdes_init_niu,
  1179. .xcvr_init = xcvr_init_10g,
  1180. .link_status = link_status_10g,
  1181. };
  1182. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1183. .serdes_init = serdes_init_10g,
  1184. .xcvr_init = xcvr_init_10g,
  1185. .link_status = link_status_10g,
  1186. };
  1187. static const struct niu_phy_ops phy_ops_10g_copper = {
  1188. .serdes_init = serdes_init_10g,
  1189. .link_status = link_status_10g, /* XXX */
  1190. };
  1191. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1192. .serdes_init = serdes_init_1g,
  1193. .xcvr_init = xcvr_init_1g,
  1194. .link_status = link_status_1g,
  1195. };
  1196. static const struct niu_phy_ops phy_ops_1g_copper = {
  1197. .xcvr_init = xcvr_init_1g,
  1198. .link_status = link_status_1g,
  1199. };
  1200. struct niu_phy_template {
  1201. const struct niu_phy_ops *ops;
  1202. u32 phy_addr_base;
  1203. };
  1204. static const struct niu_phy_template phy_template_niu = {
  1205. .ops = &phy_ops_10g_fiber_niu,
  1206. .phy_addr_base = 16,
  1207. };
  1208. static const struct niu_phy_template phy_template_10g_fiber = {
  1209. .ops = &phy_ops_10g_fiber,
  1210. .phy_addr_base = 8,
  1211. };
  1212. static const struct niu_phy_template phy_template_10g_copper = {
  1213. .ops = &phy_ops_10g_copper,
  1214. .phy_addr_base = 10,
  1215. };
  1216. static const struct niu_phy_template phy_template_1g_fiber = {
  1217. .ops = &phy_ops_1g_fiber,
  1218. .phy_addr_base = 0,
  1219. };
  1220. static const struct niu_phy_template phy_template_1g_copper = {
  1221. .ops = &phy_ops_1g_copper,
  1222. .phy_addr_base = 0,
  1223. };
  1224. static int niu_determine_phy_disposition(struct niu *np)
  1225. {
  1226. struct niu_parent *parent = np->parent;
  1227. u8 plat_type = parent->plat_type;
  1228. const struct niu_phy_template *tp;
  1229. u32 phy_addr_off = 0;
  1230. if (plat_type == PLAT_TYPE_NIU) {
  1231. tp = &phy_template_niu;
  1232. phy_addr_off += np->port;
  1233. } else {
  1234. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  1235. case 0:
  1236. /* 1G copper */
  1237. tp = &phy_template_1g_copper;
  1238. if (plat_type == PLAT_TYPE_VF_P0)
  1239. phy_addr_off = 10;
  1240. else if (plat_type == PLAT_TYPE_VF_P1)
  1241. phy_addr_off = 26;
  1242. phy_addr_off += (np->port ^ 0x3);
  1243. break;
  1244. case NIU_FLAGS_10G:
  1245. /* 10G copper */
  1246. tp = &phy_template_1g_copper;
  1247. break;
  1248. case NIU_FLAGS_FIBER:
  1249. /* 1G fiber */
  1250. tp = &phy_template_1g_fiber;
  1251. break;
  1252. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  1253. /* 10G fiber */
  1254. tp = &phy_template_10g_fiber;
  1255. if (plat_type == PLAT_TYPE_VF_P0 ||
  1256. plat_type == PLAT_TYPE_VF_P1)
  1257. phy_addr_off = 8;
  1258. phy_addr_off += np->port;
  1259. break;
  1260. default:
  1261. return -EINVAL;
  1262. }
  1263. }
  1264. np->phy_ops = tp->ops;
  1265. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  1266. return 0;
  1267. }
  1268. static int niu_init_link(struct niu *np)
  1269. {
  1270. struct niu_parent *parent = np->parent;
  1271. int err, ignore;
  1272. if (parent->plat_type == PLAT_TYPE_NIU) {
  1273. err = niu_xcvr_init(np);
  1274. if (err)
  1275. return err;
  1276. msleep(200);
  1277. }
  1278. err = niu_serdes_init(np);
  1279. if (err)
  1280. return err;
  1281. msleep(200);
  1282. err = niu_xcvr_init(np);
  1283. if (!err)
  1284. niu_link_status(np, &ignore);
  1285. return 0;
  1286. }
  1287. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  1288. {
  1289. u16 reg0 = addr[4] << 8 | addr[5];
  1290. u16 reg1 = addr[2] << 8 | addr[3];
  1291. u16 reg2 = addr[0] << 8 | addr[1];
  1292. if (np->flags & NIU_FLAGS_XMAC) {
  1293. nw64_mac(XMAC_ADDR0, reg0);
  1294. nw64_mac(XMAC_ADDR1, reg1);
  1295. nw64_mac(XMAC_ADDR2, reg2);
  1296. } else {
  1297. nw64_mac(BMAC_ADDR0, reg0);
  1298. nw64_mac(BMAC_ADDR1, reg1);
  1299. nw64_mac(BMAC_ADDR2, reg2);
  1300. }
  1301. }
  1302. static int niu_num_alt_addr(struct niu *np)
  1303. {
  1304. if (np->flags & NIU_FLAGS_XMAC)
  1305. return XMAC_NUM_ALT_ADDR;
  1306. else
  1307. return BMAC_NUM_ALT_ADDR;
  1308. }
  1309. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  1310. {
  1311. u16 reg0 = addr[4] << 8 | addr[5];
  1312. u16 reg1 = addr[2] << 8 | addr[3];
  1313. u16 reg2 = addr[0] << 8 | addr[1];
  1314. if (index >= niu_num_alt_addr(np))
  1315. return -EINVAL;
  1316. if (np->flags & NIU_FLAGS_XMAC) {
  1317. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  1318. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  1319. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  1320. } else {
  1321. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  1322. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  1323. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  1324. }
  1325. return 0;
  1326. }
  1327. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  1328. {
  1329. unsigned long reg;
  1330. u64 val, mask;
  1331. if (index >= niu_num_alt_addr(np))
  1332. return -EINVAL;
  1333. if (np->flags & NIU_FLAGS_XMAC)
  1334. reg = XMAC_ADDR_CMPEN;
  1335. else
  1336. reg = BMAC_ADDR_CMPEN;
  1337. mask = 1 << index;
  1338. val = nr64_mac(reg);
  1339. if (on)
  1340. val |= mask;
  1341. else
  1342. val &= ~mask;
  1343. nw64_mac(reg, val);
  1344. return 0;
  1345. }
  1346. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  1347. int num, int mac_pref)
  1348. {
  1349. u64 val = nr64_mac(reg);
  1350. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  1351. val |= num;
  1352. if (mac_pref)
  1353. val |= HOST_INFO_MPR;
  1354. nw64_mac(reg, val);
  1355. }
  1356. static int __set_rdc_table_num(struct niu *np,
  1357. int xmac_index, int bmac_index,
  1358. int rdc_table_num, int mac_pref)
  1359. {
  1360. unsigned long reg;
  1361. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  1362. return -EINVAL;
  1363. if (np->flags & NIU_FLAGS_XMAC)
  1364. reg = XMAC_HOST_INFO(xmac_index);
  1365. else
  1366. reg = BMAC_HOST_INFO(bmac_index);
  1367. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  1368. return 0;
  1369. }
  1370. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  1371. int mac_pref)
  1372. {
  1373. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  1374. }
  1375. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  1376. int mac_pref)
  1377. {
  1378. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  1379. }
  1380. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  1381. int table_num, int mac_pref)
  1382. {
  1383. if (idx >= niu_num_alt_addr(np))
  1384. return -EINVAL;
  1385. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  1386. }
  1387. static u64 vlan_entry_set_parity(u64 reg_val)
  1388. {
  1389. u64 port01_mask;
  1390. u64 port23_mask;
  1391. port01_mask = 0x00ff;
  1392. port23_mask = 0xff00;
  1393. if (hweight64(reg_val & port01_mask) & 1)
  1394. reg_val |= ENET_VLAN_TBL_PARITY0;
  1395. else
  1396. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  1397. if (hweight64(reg_val & port23_mask) & 1)
  1398. reg_val |= ENET_VLAN_TBL_PARITY1;
  1399. else
  1400. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  1401. return reg_val;
  1402. }
  1403. static void vlan_tbl_write(struct niu *np, unsigned long index,
  1404. int port, int vpr, int rdc_table)
  1405. {
  1406. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  1407. reg_val &= ~((ENET_VLAN_TBL_VPR |
  1408. ENET_VLAN_TBL_VLANRDCTBLN) <<
  1409. ENET_VLAN_TBL_SHIFT(port));
  1410. if (vpr)
  1411. reg_val |= (ENET_VLAN_TBL_VPR <<
  1412. ENET_VLAN_TBL_SHIFT(port));
  1413. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  1414. reg_val = vlan_entry_set_parity(reg_val);
  1415. nw64(ENET_VLAN_TBL(index), reg_val);
  1416. }
  1417. static void vlan_tbl_clear(struct niu *np)
  1418. {
  1419. int i;
  1420. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  1421. nw64(ENET_VLAN_TBL(i), 0);
  1422. }
  1423. static int tcam_wait_bit(struct niu *np, u64 bit)
  1424. {
  1425. int limit = 1000;
  1426. while (--limit > 0) {
  1427. if (nr64(TCAM_CTL) & bit)
  1428. break;
  1429. udelay(1);
  1430. }
  1431. if (limit < 0)
  1432. return -ENODEV;
  1433. return 0;
  1434. }
  1435. static int tcam_flush(struct niu *np, int index)
  1436. {
  1437. nw64(TCAM_KEY_0, 0x00);
  1438. nw64(TCAM_KEY_MASK_0, 0xff);
  1439. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1440. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1441. }
  1442. #if 0
  1443. static int tcam_read(struct niu *np, int index,
  1444. u64 *key, u64 *mask)
  1445. {
  1446. int err;
  1447. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  1448. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1449. if (!err) {
  1450. key[0] = nr64(TCAM_KEY_0);
  1451. key[1] = nr64(TCAM_KEY_1);
  1452. key[2] = nr64(TCAM_KEY_2);
  1453. key[3] = nr64(TCAM_KEY_3);
  1454. mask[0] = nr64(TCAM_KEY_MASK_0);
  1455. mask[1] = nr64(TCAM_KEY_MASK_1);
  1456. mask[2] = nr64(TCAM_KEY_MASK_2);
  1457. mask[3] = nr64(TCAM_KEY_MASK_3);
  1458. }
  1459. return err;
  1460. }
  1461. #endif
  1462. static int tcam_write(struct niu *np, int index,
  1463. u64 *key, u64 *mask)
  1464. {
  1465. nw64(TCAM_KEY_0, key[0]);
  1466. nw64(TCAM_KEY_1, key[1]);
  1467. nw64(TCAM_KEY_2, key[2]);
  1468. nw64(TCAM_KEY_3, key[3]);
  1469. nw64(TCAM_KEY_MASK_0, mask[0]);
  1470. nw64(TCAM_KEY_MASK_1, mask[1]);
  1471. nw64(TCAM_KEY_MASK_2, mask[2]);
  1472. nw64(TCAM_KEY_MASK_3, mask[3]);
  1473. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1474. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1475. }
  1476. #if 0
  1477. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  1478. {
  1479. int err;
  1480. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  1481. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1482. if (!err)
  1483. *data = nr64(TCAM_KEY_1);
  1484. return err;
  1485. }
  1486. #endif
  1487. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  1488. {
  1489. nw64(TCAM_KEY_1, assoc_data);
  1490. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  1491. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1492. }
  1493. static void tcam_enable(struct niu *np, int on)
  1494. {
  1495. u64 val = nr64(FFLP_CFG_1);
  1496. if (on)
  1497. val &= ~FFLP_CFG_1_TCAM_DIS;
  1498. else
  1499. val |= FFLP_CFG_1_TCAM_DIS;
  1500. nw64(FFLP_CFG_1, val);
  1501. }
  1502. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  1503. {
  1504. u64 val = nr64(FFLP_CFG_1);
  1505. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  1506. FFLP_CFG_1_CAMLAT |
  1507. FFLP_CFG_1_CAMRATIO);
  1508. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  1509. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  1510. nw64(FFLP_CFG_1, val);
  1511. val = nr64(FFLP_CFG_1);
  1512. val |= FFLP_CFG_1_FFLPINITDONE;
  1513. nw64(FFLP_CFG_1, val);
  1514. }
  1515. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  1516. int on)
  1517. {
  1518. unsigned long reg;
  1519. u64 val;
  1520. if (class < CLASS_CODE_ETHERTYPE1 ||
  1521. class > CLASS_CODE_ETHERTYPE2)
  1522. return -EINVAL;
  1523. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1524. val = nr64(reg);
  1525. if (on)
  1526. val |= L2_CLS_VLD;
  1527. else
  1528. val &= ~L2_CLS_VLD;
  1529. nw64(reg, val);
  1530. return 0;
  1531. }
  1532. #if 0
  1533. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  1534. u64 ether_type)
  1535. {
  1536. unsigned long reg;
  1537. u64 val;
  1538. if (class < CLASS_CODE_ETHERTYPE1 ||
  1539. class > CLASS_CODE_ETHERTYPE2 ||
  1540. (ether_type & ~(u64)0xffff) != 0)
  1541. return -EINVAL;
  1542. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1543. val = nr64(reg);
  1544. val &= ~L2_CLS_ETYPE;
  1545. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  1546. nw64(reg, val);
  1547. return 0;
  1548. }
  1549. #endif
  1550. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  1551. int on)
  1552. {
  1553. unsigned long reg;
  1554. u64 val;
  1555. if (class < CLASS_CODE_USER_PROG1 ||
  1556. class > CLASS_CODE_USER_PROG4)
  1557. return -EINVAL;
  1558. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1559. val = nr64(reg);
  1560. if (on)
  1561. val |= L3_CLS_VALID;
  1562. else
  1563. val &= ~L3_CLS_VALID;
  1564. nw64(reg, val);
  1565. return 0;
  1566. }
  1567. #if 0
  1568. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  1569. int ipv6, u64 protocol_id,
  1570. u64 tos_mask, u64 tos_val)
  1571. {
  1572. unsigned long reg;
  1573. u64 val;
  1574. if (class < CLASS_CODE_USER_PROG1 ||
  1575. class > CLASS_CODE_USER_PROG4 ||
  1576. (protocol_id & ~(u64)0xff) != 0 ||
  1577. (tos_mask & ~(u64)0xff) != 0 ||
  1578. (tos_val & ~(u64)0xff) != 0)
  1579. return -EINVAL;
  1580. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1581. val = nr64(reg);
  1582. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  1583. L3_CLS_TOSMASK | L3_CLS_TOS);
  1584. if (ipv6)
  1585. val |= L3_CLS_IPVER;
  1586. val |= (protocol_id << L3_CLS_PID_SHIFT);
  1587. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  1588. val |= (tos_val << L3_CLS_TOS_SHIFT);
  1589. nw64(reg, val);
  1590. return 0;
  1591. }
  1592. #endif
  1593. static int tcam_early_init(struct niu *np)
  1594. {
  1595. unsigned long i;
  1596. int err;
  1597. tcam_enable(np, 0);
  1598. tcam_set_lat_and_ratio(np,
  1599. DEFAULT_TCAM_LATENCY,
  1600. DEFAULT_TCAM_ACCESS_RATIO);
  1601. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  1602. err = tcam_user_eth_class_enable(np, i, 0);
  1603. if (err)
  1604. return err;
  1605. }
  1606. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  1607. err = tcam_user_ip_class_enable(np, i, 0);
  1608. if (err)
  1609. return err;
  1610. }
  1611. return 0;
  1612. }
  1613. static int tcam_flush_all(struct niu *np)
  1614. {
  1615. unsigned long i;
  1616. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  1617. int err = tcam_flush(np, i);
  1618. if (err)
  1619. return err;
  1620. }
  1621. return 0;
  1622. }
  1623. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  1624. {
  1625. return ((u64)index | (num_entries == 1 ?
  1626. HASH_TBL_ADDR_AUTOINC : 0));
  1627. }
  1628. #if 0
  1629. static int hash_read(struct niu *np, unsigned long partition,
  1630. unsigned long index, unsigned long num_entries,
  1631. u64 *data)
  1632. {
  1633. u64 val = hash_addr_regval(index, num_entries);
  1634. unsigned long i;
  1635. if (partition >= FCRAM_NUM_PARTITIONS ||
  1636. index + num_entries > FCRAM_SIZE)
  1637. return -EINVAL;
  1638. nw64(HASH_TBL_ADDR(partition), val);
  1639. for (i = 0; i < num_entries; i++)
  1640. data[i] = nr64(HASH_TBL_DATA(partition));
  1641. return 0;
  1642. }
  1643. #endif
  1644. static int hash_write(struct niu *np, unsigned long partition,
  1645. unsigned long index, unsigned long num_entries,
  1646. u64 *data)
  1647. {
  1648. u64 val = hash_addr_regval(index, num_entries);
  1649. unsigned long i;
  1650. if (partition >= FCRAM_NUM_PARTITIONS ||
  1651. index + (num_entries * 8) > FCRAM_SIZE)
  1652. return -EINVAL;
  1653. nw64(HASH_TBL_ADDR(partition), val);
  1654. for (i = 0; i < num_entries; i++)
  1655. nw64(HASH_TBL_DATA(partition), data[i]);
  1656. return 0;
  1657. }
  1658. static void fflp_reset(struct niu *np)
  1659. {
  1660. u64 val;
  1661. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  1662. udelay(10);
  1663. nw64(FFLP_CFG_1, 0);
  1664. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  1665. nw64(FFLP_CFG_1, val);
  1666. }
  1667. static void fflp_set_timings(struct niu *np)
  1668. {
  1669. u64 val = nr64(FFLP_CFG_1);
  1670. val &= ~FFLP_CFG_1_FFLPINITDONE;
  1671. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  1672. nw64(FFLP_CFG_1, val);
  1673. val = nr64(FFLP_CFG_1);
  1674. val |= FFLP_CFG_1_FFLPINITDONE;
  1675. nw64(FFLP_CFG_1, val);
  1676. val = nr64(FCRAM_REF_TMR);
  1677. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  1678. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  1679. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  1680. nw64(FCRAM_REF_TMR, val);
  1681. }
  1682. static int fflp_set_partition(struct niu *np, u64 partition,
  1683. u64 mask, u64 base, int enable)
  1684. {
  1685. unsigned long reg;
  1686. u64 val;
  1687. if (partition >= FCRAM_NUM_PARTITIONS ||
  1688. (mask & ~(u64)0x1f) != 0 ||
  1689. (base & ~(u64)0x1f) != 0)
  1690. return -EINVAL;
  1691. reg = FLW_PRT_SEL(partition);
  1692. val = nr64(reg);
  1693. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  1694. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  1695. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  1696. if (enable)
  1697. val |= FLW_PRT_SEL_EXT;
  1698. nw64(reg, val);
  1699. return 0;
  1700. }
  1701. static int fflp_disable_all_partitions(struct niu *np)
  1702. {
  1703. unsigned long i;
  1704. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  1705. int err = fflp_set_partition(np, 0, 0, 0, 0);
  1706. if (err)
  1707. return err;
  1708. }
  1709. return 0;
  1710. }
  1711. static void fflp_llcsnap_enable(struct niu *np, int on)
  1712. {
  1713. u64 val = nr64(FFLP_CFG_1);
  1714. if (on)
  1715. val |= FFLP_CFG_1_LLCSNAP;
  1716. else
  1717. val &= ~FFLP_CFG_1_LLCSNAP;
  1718. nw64(FFLP_CFG_1, val);
  1719. }
  1720. static void fflp_errors_enable(struct niu *np, int on)
  1721. {
  1722. u64 val = nr64(FFLP_CFG_1);
  1723. if (on)
  1724. val &= ~FFLP_CFG_1_ERRORDIS;
  1725. else
  1726. val |= FFLP_CFG_1_ERRORDIS;
  1727. nw64(FFLP_CFG_1, val);
  1728. }
  1729. static int fflp_hash_clear(struct niu *np)
  1730. {
  1731. struct fcram_hash_ipv4 ent;
  1732. unsigned long i;
  1733. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  1734. memset(&ent, 0, sizeof(ent));
  1735. ent.header = HASH_HEADER_EXT;
  1736. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  1737. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  1738. if (err)
  1739. return err;
  1740. }
  1741. return 0;
  1742. }
  1743. static int fflp_early_init(struct niu *np)
  1744. {
  1745. struct niu_parent *parent;
  1746. unsigned long flags;
  1747. int err;
  1748. niu_lock_parent(np, flags);
  1749. parent = np->parent;
  1750. err = 0;
  1751. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  1752. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  1753. np->port);
  1754. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1755. fflp_reset(np);
  1756. fflp_set_timings(np);
  1757. err = fflp_disable_all_partitions(np);
  1758. if (err) {
  1759. niudbg(PROBE, "fflp_disable_all_partitions "
  1760. "failed, err=%d\n", err);
  1761. goto out;
  1762. }
  1763. }
  1764. err = tcam_early_init(np);
  1765. if (err) {
  1766. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  1767. err);
  1768. goto out;
  1769. }
  1770. fflp_llcsnap_enable(np, 1);
  1771. fflp_errors_enable(np, 0);
  1772. nw64(H1POLY, 0);
  1773. nw64(H2POLY, 0);
  1774. err = tcam_flush_all(np);
  1775. if (err) {
  1776. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  1777. err);
  1778. goto out;
  1779. }
  1780. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1781. err = fflp_hash_clear(np);
  1782. if (err) {
  1783. niudbg(PROBE, "fflp_hash_clear failed, "
  1784. "err=%d\n", err);
  1785. goto out;
  1786. }
  1787. }
  1788. vlan_tbl_clear(np);
  1789. niudbg(PROBE, "fflp_early_init: Success\n");
  1790. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  1791. }
  1792. out:
  1793. niu_unlock_parent(np, flags);
  1794. return err;
  1795. }
  1796. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  1797. {
  1798. if (class_code < CLASS_CODE_USER_PROG1 ||
  1799. class_code > CLASS_CODE_SCTP_IPV6)
  1800. return -EINVAL;
  1801. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1802. return 0;
  1803. }
  1804. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  1805. {
  1806. if (class_code < CLASS_CODE_USER_PROG1 ||
  1807. class_code > CLASS_CODE_SCTP_IPV6)
  1808. return -EINVAL;
  1809. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1810. return 0;
  1811. }
  1812. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  1813. u32 offset, u32 size)
  1814. {
  1815. int i = skb_shinfo(skb)->nr_frags;
  1816. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1817. frag->page = page;
  1818. frag->page_offset = offset;
  1819. frag->size = size;
  1820. skb->len += size;
  1821. skb->data_len += size;
  1822. skb->truesize += size;
  1823. skb_shinfo(skb)->nr_frags = i + 1;
  1824. }
  1825. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  1826. {
  1827. a >>= PAGE_SHIFT;
  1828. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  1829. return (a & (MAX_RBR_RING_SIZE - 1));
  1830. }
  1831. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  1832. struct page ***link)
  1833. {
  1834. unsigned int h = niu_hash_rxaddr(rp, addr);
  1835. struct page *p, **pp;
  1836. addr &= PAGE_MASK;
  1837. pp = &rp->rxhash[h];
  1838. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  1839. if (p->index == addr) {
  1840. *link = pp;
  1841. break;
  1842. }
  1843. }
  1844. return p;
  1845. }
  1846. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  1847. {
  1848. unsigned int h = niu_hash_rxaddr(rp, base);
  1849. page->index = base;
  1850. page->mapping = (struct address_space *) rp->rxhash[h];
  1851. rp->rxhash[h] = page;
  1852. }
  1853. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  1854. gfp_t mask, int start_index)
  1855. {
  1856. struct page *page;
  1857. u64 addr;
  1858. int i;
  1859. page = alloc_page(mask);
  1860. if (!page)
  1861. return -ENOMEM;
  1862. addr = np->ops->map_page(np->device, page, 0,
  1863. PAGE_SIZE, DMA_FROM_DEVICE);
  1864. niu_hash_page(rp, page, addr);
  1865. if (rp->rbr_blocks_per_page > 1)
  1866. atomic_add(rp->rbr_blocks_per_page - 1,
  1867. &compound_head(page)->_count);
  1868. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  1869. __le32 *rbr = &rp->rbr[start_index + i];
  1870. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  1871. addr += rp->rbr_block_size;
  1872. }
  1873. return 0;
  1874. }
  1875. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1876. {
  1877. int index = rp->rbr_index;
  1878. rp->rbr_pending++;
  1879. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  1880. int err = niu_rbr_add_page(np, rp, mask, index);
  1881. if (unlikely(err)) {
  1882. rp->rbr_pending--;
  1883. return;
  1884. }
  1885. rp->rbr_index += rp->rbr_blocks_per_page;
  1886. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  1887. if (rp->rbr_index == rp->rbr_table_size)
  1888. rp->rbr_index = 0;
  1889. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  1890. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  1891. rp->rbr_pending = 0;
  1892. }
  1893. }
  1894. }
  1895. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  1896. {
  1897. unsigned int index = rp->rcr_index;
  1898. int num_rcr = 0;
  1899. rp->rx_dropped++;
  1900. while (1) {
  1901. struct page *page, **link;
  1902. u64 addr, val;
  1903. u32 rcr_size;
  1904. num_rcr++;
  1905. val = le64_to_cpup(&rp->rcr[index]);
  1906. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1907. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1908. page = niu_find_rxpage(rp, addr, &link);
  1909. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1910. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1911. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  1912. *link = (struct page *) page->mapping;
  1913. np->ops->unmap_page(np->device, page->index,
  1914. PAGE_SIZE, DMA_FROM_DEVICE);
  1915. page->index = 0;
  1916. page->mapping = NULL;
  1917. __free_page(page);
  1918. rp->rbr_refill_pending++;
  1919. }
  1920. index = NEXT_RCR(rp, index);
  1921. if (!(val & RCR_ENTRY_MULTI))
  1922. break;
  1923. }
  1924. rp->rcr_index = index;
  1925. return num_rcr;
  1926. }
  1927. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  1928. {
  1929. unsigned int index = rp->rcr_index;
  1930. struct sk_buff *skb;
  1931. int len, num_rcr;
  1932. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  1933. if (unlikely(!skb))
  1934. return niu_rx_pkt_ignore(np, rp);
  1935. num_rcr = 0;
  1936. while (1) {
  1937. struct page *page, **link;
  1938. u32 rcr_size, append_size;
  1939. u64 addr, val, off;
  1940. num_rcr++;
  1941. val = le64_to_cpup(&rp->rcr[index]);
  1942. len = (val & RCR_ENTRY_L2_LEN) >>
  1943. RCR_ENTRY_L2_LEN_SHIFT;
  1944. len -= ETH_FCS_LEN;
  1945. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1946. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1947. page = niu_find_rxpage(rp, addr, &link);
  1948. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1949. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1950. off = addr & ~PAGE_MASK;
  1951. append_size = rcr_size;
  1952. if (num_rcr == 1) {
  1953. int ptype;
  1954. off += 2;
  1955. append_size -= 2;
  1956. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  1957. if ((ptype == RCR_PKT_TYPE_TCP ||
  1958. ptype == RCR_PKT_TYPE_UDP) &&
  1959. !(val & (RCR_ENTRY_NOPORT |
  1960. RCR_ENTRY_ERROR)))
  1961. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1962. else
  1963. skb->ip_summed = CHECKSUM_NONE;
  1964. }
  1965. if (!(val & RCR_ENTRY_MULTI))
  1966. append_size = len - skb->len;
  1967. niu_rx_skb_append(skb, page, off, append_size);
  1968. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  1969. *link = (struct page *) page->mapping;
  1970. np->ops->unmap_page(np->device, page->index,
  1971. PAGE_SIZE, DMA_FROM_DEVICE);
  1972. page->index = 0;
  1973. page->mapping = NULL;
  1974. rp->rbr_refill_pending++;
  1975. } else
  1976. get_page(page);
  1977. index = NEXT_RCR(rp, index);
  1978. if (!(val & RCR_ENTRY_MULTI))
  1979. break;
  1980. }
  1981. rp->rcr_index = index;
  1982. skb_reserve(skb, NET_IP_ALIGN);
  1983. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  1984. rp->rx_packets++;
  1985. rp->rx_bytes += skb->len;
  1986. skb->protocol = eth_type_trans(skb, np->dev);
  1987. netif_receive_skb(skb);
  1988. np->dev->last_rx = jiffies;
  1989. return num_rcr;
  1990. }
  1991. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1992. {
  1993. int blocks_per_page = rp->rbr_blocks_per_page;
  1994. int err, index = rp->rbr_index;
  1995. err = 0;
  1996. while (index < (rp->rbr_table_size - blocks_per_page)) {
  1997. err = niu_rbr_add_page(np, rp, mask, index);
  1998. if (err)
  1999. break;
  2000. index += blocks_per_page;
  2001. }
  2002. rp->rbr_index = index;
  2003. return err;
  2004. }
  2005. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2006. {
  2007. int i;
  2008. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2009. struct page *page;
  2010. page = rp->rxhash[i];
  2011. while (page) {
  2012. struct page *next = (struct page *) page->mapping;
  2013. u64 base = page->index;
  2014. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2015. DMA_FROM_DEVICE);
  2016. page->index = 0;
  2017. page->mapping = NULL;
  2018. __free_page(page);
  2019. page = next;
  2020. }
  2021. }
  2022. for (i = 0; i < rp->rbr_table_size; i++)
  2023. rp->rbr[i] = cpu_to_le32(0);
  2024. rp->rbr_index = 0;
  2025. }
  2026. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2027. {
  2028. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2029. struct sk_buff *skb = tb->skb;
  2030. struct tx_pkt_hdr *tp;
  2031. u64 tx_flags;
  2032. int i, len;
  2033. tp = (struct tx_pkt_hdr *) skb->data;
  2034. tx_flags = le64_to_cpup(&tp->flags);
  2035. rp->tx_packets++;
  2036. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2037. ((tx_flags & TXHDR_PAD) / 2));
  2038. len = skb_headlen(skb);
  2039. np->ops->unmap_single(np->device, tb->mapping,
  2040. len, DMA_TO_DEVICE);
  2041. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2042. rp->mark_pending--;
  2043. tb->skb = NULL;
  2044. do {
  2045. idx = NEXT_TX(rp, idx);
  2046. len -= MAX_TX_DESC_LEN;
  2047. } while (len > 0);
  2048. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2049. tb = &rp->tx_buffs[idx];
  2050. BUG_ON(tb->skb != NULL);
  2051. np->ops->unmap_page(np->device, tb->mapping,
  2052. skb_shinfo(skb)->frags[i].size,
  2053. DMA_TO_DEVICE);
  2054. idx = NEXT_TX(rp, idx);
  2055. }
  2056. dev_kfree_skb(skb);
  2057. return idx;
  2058. }
  2059. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2060. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2061. {
  2062. u16 pkt_cnt, tmp;
  2063. int cons;
  2064. u64 cs;
  2065. cs = rp->tx_cs;
  2066. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2067. goto out;
  2068. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2069. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2070. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2071. rp->last_pkt_cnt = tmp;
  2072. cons = rp->cons;
  2073. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  2074. np->dev->name, pkt_cnt, cons);
  2075. while (pkt_cnt--)
  2076. cons = release_tx_packet(np, rp, cons);
  2077. rp->cons = cons;
  2078. smp_mb();
  2079. out:
  2080. if (unlikely(netif_queue_stopped(np->dev) &&
  2081. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  2082. netif_tx_lock(np->dev);
  2083. if (netif_queue_stopped(np->dev) &&
  2084. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  2085. netif_wake_queue(np->dev);
  2086. netif_tx_unlock(np->dev);
  2087. }
  2088. }
  2089. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  2090. {
  2091. int qlen, rcr_done = 0, work_done = 0;
  2092. struct rxdma_mailbox *mbox = rp->mbox;
  2093. u64 stat;
  2094. #if 1
  2095. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2096. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  2097. #else
  2098. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2099. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  2100. #endif
  2101. mbox->rx_dma_ctl_stat = 0;
  2102. mbox->rcrstat_a = 0;
  2103. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  2104. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  2105. rcr_done = work_done = 0;
  2106. qlen = min(qlen, budget);
  2107. while (work_done < qlen) {
  2108. rcr_done += niu_process_rx_pkt(np, rp);
  2109. work_done++;
  2110. }
  2111. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  2112. unsigned int i;
  2113. for (i = 0; i < rp->rbr_refill_pending; i++)
  2114. niu_rbr_refill(np, rp, GFP_ATOMIC);
  2115. rp->rbr_refill_pending = 0;
  2116. }
  2117. stat = (RX_DMA_CTL_STAT_MEX |
  2118. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  2119. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  2120. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  2121. return work_done;
  2122. }
  2123. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  2124. {
  2125. u64 v0 = lp->v0;
  2126. u32 tx_vec = (v0 >> 32);
  2127. u32 rx_vec = (v0 & 0xffffffff);
  2128. int i, work_done = 0;
  2129. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  2130. np->dev->name, (unsigned long long) v0);
  2131. for (i = 0; i < np->num_tx_rings; i++) {
  2132. struct tx_ring_info *rp = &np->tx_rings[i];
  2133. if (tx_vec & (1 << rp->tx_channel))
  2134. niu_tx_work(np, rp);
  2135. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  2136. }
  2137. for (i = 0; i < np->num_rx_rings; i++) {
  2138. struct rx_ring_info *rp = &np->rx_rings[i];
  2139. if (rx_vec & (1 << rp->rx_channel)) {
  2140. int this_work_done;
  2141. this_work_done = niu_rx_work(np, rp,
  2142. budget);
  2143. budget -= this_work_done;
  2144. work_done += this_work_done;
  2145. }
  2146. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  2147. }
  2148. return work_done;
  2149. }
  2150. static int niu_poll(struct napi_struct *napi, int budget)
  2151. {
  2152. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  2153. struct niu *np = lp->np;
  2154. int work_done;
  2155. work_done = niu_poll_core(np, lp, budget);
  2156. if (work_done < budget) {
  2157. netif_rx_complete(np->dev, napi);
  2158. niu_ldg_rearm(np, lp, 1);
  2159. }
  2160. return work_done;
  2161. }
  2162. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  2163. u64 stat)
  2164. {
  2165. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  2166. np->dev->name, rp->rx_channel);
  2167. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  2168. printk("RBR_TMOUT ");
  2169. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  2170. printk("RSP_CNT ");
  2171. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  2172. printk("BYTE_EN_BUS ");
  2173. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  2174. printk("RSP_DAT ");
  2175. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  2176. printk("RCR_ACK ");
  2177. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  2178. printk("RCR_SHA_PAR ");
  2179. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  2180. printk("RBR_PRE_PAR ");
  2181. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  2182. printk("CONFIG ");
  2183. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  2184. printk("RCRINCON ");
  2185. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  2186. printk("RCRFULL ");
  2187. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  2188. printk("RBRFULL ");
  2189. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  2190. printk("RBRLOGPAGE ");
  2191. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  2192. printk("CFIGLOGPAGE ");
  2193. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  2194. printk("DC_FIDO ");
  2195. printk(")\n");
  2196. }
  2197. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  2198. {
  2199. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2200. int err = 0;
  2201. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  2202. RX_DMA_CTL_STAT_PORT_FATAL))
  2203. err = -EINVAL;
  2204. if (err) {
  2205. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  2206. np->dev->name, rp->rx_channel,
  2207. (unsigned long long) stat);
  2208. niu_log_rxchan_errors(np, rp, stat);
  2209. }
  2210. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  2211. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  2212. return err;
  2213. }
  2214. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  2215. u64 cs)
  2216. {
  2217. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  2218. np->dev->name, rp->tx_channel);
  2219. if (cs & TX_CS_MBOX_ERR)
  2220. printk("MBOX ");
  2221. if (cs & TX_CS_PKT_SIZE_ERR)
  2222. printk("PKT_SIZE ");
  2223. if (cs & TX_CS_TX_RING_OFLOW)
  2224. printk("TX_RING_OFLOW ");
  2225. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  2226. printk("PREF_BUF_PAR ");
  2227. if (cs & TX_CS_NACK_PREF)
  2228. printk("NACK_PREF ");
  2229. if (cs & TX_CS_NACK_PKT_RD)
  2230. printk("NACK_PKT_RD ");
  2231. if (cs & TX_CS_CONF_PART_ERR)
  2232. printk("CONF_PART ");
  2233. if (cs & TX_CS_PKT_PRT_ERR)
  2234. printk("PKT_PTR ");
  2235. printk(")\n");
  2236. }
  2237. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  2238. {
  2239. u64 cs, logh, logl;
  2240. cs = nr64(TX_CS(rp->tx_channel));
  2241. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  2242. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  2243. dev_err(np->device, PFX "%s: TX channel %u error, "
  2244. "cs[%llx] logh[%llx] logl[%llx]\n",
  2245. np->dev->name, rp->tx_channel,
  2246. (unsigned long long) cs,
  2247. (unsigned long long) logh,
  2248. (unsigned long long) logl);
  2249. niu_log_txchan_errors(np, rp, cs);
  2250. return -ENODEV;
  2251. }
  2252. static int niu_mif_interrupt(struct niu *np)
  2253. {
  2254. u64 mif_status = nr64(MIF_STATUS);
  2255. int phy_mdint = 0;
  2256. if (np->flags & NIU_FLAGS_XMAC) {
  2257. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  2258. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  2259. phy_mdint = 1;
  2260. }
  2261. dev_err(np->device, PFX "%s: MIF interrupt, "
  2262. "stat[%llx] phy_mdint(%d)\n",
  2263. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  2264. return -ENODEV;
  2265. }
  2266. static void niu_xmac_interrupt(struct niu *np)
  2267. {
  2268. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  2269. u64 val;
  2270. val = nr64_mac(XTXMAC_STATUS);
  2271. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  2272. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  2273. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  2274. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  2275. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  2276. mp->tx_fifo_errors++;
  2277. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  2278. mp->tx_overflow_errors++;
  2279. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  2280. mp->tx_max_pkt_size_errors++;
  2281. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  2282. mp->tx_underflow_errors++;
  2283. val = nr64_mac(XRXMAC_STATUS);
  2284. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  2285. mp->rx_local_faults++;
  2286. if (val & XRXMAC_STATUS_RFLT_DET)
  2287. mp->rx_remote_faults++;
  2288. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  2289. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  2290. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  2291. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  2292. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  2293. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  2294. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  2295. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  2296. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2297. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2298. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2299. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2300. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  2301. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  2302. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  2303. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  2304. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  2305. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  2306. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  2307. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  2308. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  2309. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  2310. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  2311. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  2312. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  2313. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  2314. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  2315. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  2316. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  2317. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  2318. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  2319. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  2320. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  2321. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  2322. if (val & XRXMAC_STATUS_RXUFLOW)
  2323. mp->rx_underflows++;
  2324. if (val & XRXMAC_STATUS_RXOFLOW)
  2325. mp->rx_overflows++;
  2326. val = nr64_mac(XMAC_FC_STAT);
  2327. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  2328. mp->pause_off_state++;
  2329. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  2330. mp->pause_on_state++;
  2331. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  2332. mp->pause_received++;
  2333. }
  2334. static void niu_bmac_interrupt(struct niu *np)
  2335. {
  2336. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  2337. u64 val;
  2338. val = nr64_mac(BTXMAC_STATUS);
  2339. if (val & BTXMAC_STATUS_UNDERRUN)
  2340. mp->tx_underflow_errors++;
  2341. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  2342. mp->tx_max_pkt_size_errors++;
  2343. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  2344. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  2345. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  2346. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  2347. val = nr64_mac(BRXMAC_STATUS);
  2348. if (val & BRXMAC_STATUS_OVERFLOW)
  2349. mp->rx_overflows++;
  2350. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  2351. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  2352. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  2353. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2354. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  2355. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2356. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  2357. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  2358. val = nr64_mac(BMAC_CTRL_STATUS);
  2359. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  2360. mp->pause_off_state++;
  2361. if (val & BMAC_CTRL_STATUS_PAUSE)
  2362. mp->pause_on_state++;
  2363. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  2364. mp->pause_received++;
  2365. }
  2366. static int niu_mac_interrupt(struct niu *np)
  2367. {
  2368. if (np->flags & NIU_FLAGS_XMAC)
  2369. niu_xmac_interrupt(np);
  2370. else
  2371. niu_bmac_interrupt(np);
  2372. return 0;
  2373. }
  2374. static void niu_log_device_error(struct niu *np, u64 stat)
  2375. {
  2376. dev_err(np->device, PFX "%s: Core device errors ( ",
  2377. np->dev->name);
  2378. if (stat & SYS_ERR_MASK_META2)
  2379. printk("META2 ");
  2380. if (stat & SYS_ERR_MASK_META1)
  2381. printk("META1 ");
  2382. if (stat & SYS_ERR_MASK_PEU)
  2383. printk("PEU ");
  2384. if (stat & SYS_ERR_MASK_TXC)
  2385. printk("TXC ");
  2386. if (stat & SYS_ERR_MASK_RDMC)
  2387. printk("RDMC ");
  2388. if (stat & SYS_ERR_MASK_TDMC)
  2389. printk("TDMC ");
  2390. if (stat & SYS_ERR_MASK_ZCP)
  2391. printk("ZCP ");
  2392. if (stat & SYS_ERR_MASK_FFLP)
  2393. printk("FFLP ");
  2394. if (stat & SYS_ERR_MASK_IPP)
  2395. printk("IPP ");
  2396. if (stat & SYS_ERR_MASK_MAC)
  2397. printk("MAC ");
  2398. if (stat & SYS_ERR_MASK_SMX)
  2399. printk("SMX ");
  2400. printk(")\n");
  2401. }
  2402. static int niu_device_error(struct niu *np)
  2403. {
  2404. u64 stat = nr64(SYS_ERR_STAT);
  2405. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  2406. np->dev->name, (unsigned long long) stat);
  2407. niu_log_device_error(np, stat);
  2408. return -ENODEV;
  2409. }
  2410. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  2411. u64 v0, u64 v1, u64 v2)
  2412. {
  2413. int i, err = 0;
  2414. lp->v0 = v0;
  2415. lp->v1 = v1;
  2416. lp->v2 = v2;
  2417. if (v1 & 0x00000000ffffffffULL) {
  2418. u32 rx_vec = (v1 & 0xffffffff);
  2419. for (i = 0; i < np->num_rx_rings; i++) {
  2420. struct rx_ring_info *rp = &np->rx_rings[i];
  2421. if (rx_vec & (1 << rp->rx_channel)) {
  2422. int r = niu_rx_error(np, rp);
  2423. if (r) {
  2424. err = r;
  2425. } else {
  2426. if (!v0)
  2427. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  2428. RX_DMA_CTL_STAT_MEX);
  2429. }
  2430. }
  2431. }
  2432. }
  2433. if (v1 & 0x7fffffff00000000ULL) {
  2434. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  2435. for (i = 0; i < np->num_tx_rings; i++) {
  2436. struct tx_ring_info *rp = &np->tx_rings[i];
  2437. if (tx_vec & (1 << rp->tx_channel)) {
  2438. int r = niu_tx_error(np, rp);
  2439. if (r)
  2440. err = r;
  2441. }
  2442. }
  2443. }
  2444. if ((v0 | v1) & 0x8000000000000000ULL) {
  2445. int r = niu_mif_interrupt(np);
  2446. if (r)
  2447. err = r;
  2448. }
  2449. if (v2) {
  2450. if (v2 & 0x01ef) {
  2451. int r = niu_mac_interrupt(np);
  2452. if (r)
  2453. err = r;
  2454. }
  2455. if (v2 & 0x0210) {
  2456. int r = niu_device_error(np);
  2457. if (r)
  2458. err = r;
  2459. }
  2460. }
  2461. if (err)
  2462. niu_enable_interrupts(np, 0);
  2463. return err;
  2464. }
  2465. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  2466. int ldn)
  2467. {
  2468. struct rxdma_mailbox *mbox = rp->mbox;
  2469. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2470. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  2471. RX_DMA_CTL_STAT_RCRTO);
  2472. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  2473. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  2474. np->dev->name, (unsigned long long) stat);
  2475. }
  2476. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  2477. int ldn)
  2478. {
  2479. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  2480. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  2481. np->dev->name, (unsigned long long) rp->tx_cs);
  2482. }
  2483. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  2484. {
  2485. struct niu_parent *parent = np->parent;
  2486. u32 rx_vec, tx_vec;
  2487. int i;
  2488. tx_vec = (v0 >> 32);
  2489. rx_vec = (v0 & 0xffffffff);
  2490. for (i = 0; i < np->num_rx_rings; i++) {
  2491. struct rx_ring_info *rp = &np->rx_rings[i];
  2492. int ldn = LDN_RXDMA(rp->rx_channel);
  2493. if (parent->ldg_map[ldn] != ldg)
  2494. continue;
  2495. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2496. if (rx_vec & (1 << rp->rx_channel))
  2497. niu_rxchan_intr(np, rp, ldn);
  2498. }
  2499. for (i = 0; i < np->num_tx_rings; i++) {
  2500. struct tx_ring_info *rp = &np->tx_rings[i];
  2501. int ldn = LDN_TXDMA(rp->tx_channel);
  2502. if (parent->ldg_map[ldn] != ldg)
  2503. continue;
  2504. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2505. if (tx_vec & (1 << rp->tx_channel))
  2506. niu_txchan_intr(np, rp, ldn);
  2507. }
  2508. }
  2509. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  2510. u64 v0, u64 v1, u64 v2)
  2511. {
  2512. if (likely(netif_rx_schedule_prep(np->dev, &lp->napi))) {
  2513. lp->v0 = v0;
  2514. lp->v1 = v1;
  2515. lp->v2 = v2;
  2516. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  2517. __netif_rx_schedule(np->dev, &lp->napi);
  2518. }
  2519. }
  2520. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  2521. {
  2522. struct niu_ldg *lp = dev_id;
  2523. struct niu *np = lp->np;
  2524. int ldg = lp->ldg_num;
  2525. unsigned long flags;
  2526. u64 v0, v1, v2;
  2527. if (netif_msg_intr(np))
  2528. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  2529. lp, ldg);
  2530. spin_lock_irqsave(&np->lock, flags);
  2531. v0 = nr64(LDSV0(ldg));
  2532. v1 = nr64(LDSV1(ldg));
  2533. v2 = nr64(LDSV2(ldg));
  2534. if (netif_msg_intr(np))
  2535. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  2536. (unsigned long long) v0,
  2537. (unsigned long long) v1,
  2538. (unsigned long long) v2);
  2539. if (unlikely(!v0 && !v1 && !v2)) {
  2540. spin_unlock_irqrestore(&np->lock, flags);
  2541. return IRQ_NONE;
  2542. }
  2543. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  2544. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  2545. if (err)
  2546. goto out;
  2547. }
  2548. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  2549. niu_schedule_napi(np, lp, v0, v1, v2);
  2550. else
  2551. niu_ldg_rearm(np, lp, 1);
  2552. out:
  2553. spin_unlock_irqrestore(&np->lock, flags);
  2554. return IRQ_HANDLED;
  2555. }
  2556. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  2557. {
  2558. if (rp->mbox) {
  2559. np->ops->free_coherent(np->device,
  2560. sizeof(struct rxdma_mailbox),
  2561. rp->mbox, rp->mbox_dma);
  2562. rp->mbox = NULL;
  2563. }
  2564. if (rp->rcr) {
  2565. np->ops->free_coherent(np->device,
  2566. MAX_RCR_RING_SIZE * sizeof(__le64),
  2567. rp->rcr, rp->rcr_dma);
  2568. rp->rcr = NULL;
  2569. rp->rcr_table_size = 0;
  2570. rp->rcr_index = 0;
  2571. }
  2572. if (rp->rbr) {
  2573. niu_rbr_free(np, rp);
  2574. np->ops->free_coherent(np->device,
  2575. MAX_RBR_RING_SIZE * sizeof(__le32),
  2576. rp->rbr, rp->rbr_dma);
  2577. rp->rbr = NULL;
  2578. rp->rbr_table_size = 0;
  2579. rp->rbr_index = 0;
  2580. }
  2581. kfree(rp->rxhash);
  2582. rp->rxhash = NULL;
  2583. }
  2584. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  2585. {
  2586. if (rp->mbox) {
  2587. np->ops->free_coherent(np->device,
  2588. sizeof(struct txdma_mailbox),
  2589. rp->mbox, rp->mbox_dma);
  2590. rp->mbox = NULL;
  2591. }
  2592. if (rp->descr) {
  2593. int i;
  2594. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  2595. if (rp->tx_buffs[i].skb)
  2596. (void) release_tx_packet(np, rp, i);
  2597. }
  2598. np->ops->free_coherent(np->device,
  2599. MAX_TX_RING_SIZE * sizeof(__le64),
  2600. rp->descr, rp->descr_dma);
  2601. rp->descr = NULL;
  2602. rp->pending = 0;
  2603. rp->prod = 0;
  2604. rp->cons = 0;
  2605. rp->wrap_bit = 0;
  2606. }
  2607. }
  2608. static void niu_free_channels(struct niu *np)
  2609. {
  2610. int i;
  2611. if (np->rx_rings) {
  2612. for (i = 0; i < np->num_rx_rings; i++) {
  2613. struct rx_ring_info *rp = &np->rx_rings[i];
  2614. niu_free_rx_ring_info(np, rp);
  2615. }
  2616. kfree(np->rx_rings);
  2617. np->rx_rings = NULL;
  2618. np->num_rx_rings = 0;
  2619. }
  2620. if (np->tx_rings) {
  2621. for (i = 0; i < np->num_tx_rings; i++) {
  2622. struct tx_ring_info *rp = &np->tx_rings[i];
  2623. niu_free_tx_ring_info(np, rp);
  2624. }
  2625. kfree(np->tx_rings);
  2626. np->tx_rings = NULL;
  2627. np->num_tx_rings = 0;
  2628. }
  2629. }
  2630. static int niu_alloc_rx_ring_info(struct niu *np,
  2631. struct rx_ring_info *rp)
  2632. {
  2633. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  2634. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  2635. GFP_KERNEL);
  2636. if (!rp->rxhash)
  2637. return -ENOMEM;
  2638. rp->mbox = np->ops->alloc_coherent(np->device,
  2639. sizeof(struct rxdma_mailbox),
  2640. &rp->mbox_dma, GFP_KERNEL);
  2641. if (!rp->mbox)
  2642. return -ENOMEM;
  2643. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2644. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2645. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2646. return -EINVAL;
  2647. }
  2648. rp->rcr = np->ops->alloc_coherent(np->device,
  2649. MAX_RCR_RING_SIZE * sizeof(__le64),
  2650. &rp->rcr_dma, GFP_KERNEL);
  2651. if (!rp->rcr)
  2652. return -ENOMEM;
  2653. if ((unsigned long)rp->rcr & (64UL - 1)) {
  2654. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2655. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  2656. return -EINVAL;
  2657. }
  2658. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  2659. rp->rcr_index = 0;
  2660. rp->rbr = np->ops->alloc_coherent(np->device,
  2661. MAX_RBR_RING_SIZE * sizeof(__le32),
  2662. &rp->rbr_dma, GFP_KERNEL);
  2663. if (!rp->rbr)
  2664. return -ENOMEM;
  2665. if ((unsigned long)rp->rbr & (64UL - 1)) {
  2666. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2667. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  2668. return -EINVAL;
  2669. }
  2670. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  2671. rp->rbr_index = 0;
  2672. rp->rbr_pending = 0;
  2673. return 0;
  2674. }
  2675. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  2676. {
  2677. int mtu = np->dev->mtu;
  2678. /* These values are recommended by the HW designers for fair
  2679. * utilization of DRR amongst the rings.
  2680. */
  2681. rp->max_burst = mtu + 32;
  2682. if (rp->max_burst > 4096)
  2683. rp->max_burst = 4096;
  2684. }
  2685. static int niu_alloc_tx_ring_info(struct niu *np,
  2686. struct tx_ring_info *rp)
  2687. {
  2688. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  2689. rp->mbox = np->ops->alloc_coherent(np->device,
  2690. sizeof(struct txdma_mailbox),
  2691. &rp->mbox_dma, GFP_KERNEL);
  2692. if (!rp->mbox)
  2693. return -ENOMEM;
  2694. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2695. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2696. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2697. return -EINVAL;
  2698. }
  2699. rp->descr = np->ops->alloc_coherent(np->device,
  2700. MAX_TX_RING_SIZE * sizeof(__le64),
  2701. &rp->descr_dma, GFP_KERNEL);
  2702. if (!rp->descr)
  2703. return -ENOMEM;
  2704. if ((unsigned long)rp->descr & (64UL - 1)) {
  2705. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2706. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  2707. return -EINVAL;
  2708. }
  2709. rp->pending = MAX_TX_RING_SIZE;
  2710. rp->prod = 0;
  2711. rp->cons = 0;
  2712. rp->wrap_bit = 0;
  2713. /* XXX make these configurable... XXX */
  2714. rp->mark_freq = rp->pending / 4;
  2715. niu_set_max_burst(np, rp);
  2716. return 0;
  2717. }
  2718. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  2719. {
  2720. u16 bss;
  2721. bss = min(PAGE_SHIFT, 15);
  2722. rp->rbr_block_size = 1 << bss;
  2723. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  2724. rp->rbr_sizes[0] = 256;
  2725. rp->rbr_sizes[1] = 1024;
  2726. if (np->dev->mtu > ETH_DATA_LEN) {
  2727. switch (PAGE_SIZE) {
  2728. case 4 * 1024:
  2729. rp->rbr_sizes[2] = 4096;
  2730. break;
  2731. default:
  2732. rp->rbr_sizes[2] = 8192;
  2733. break;
  2734. }
  2735. } else {
  2736. rp->rbr_sizes[2] = 2048;
  2737. }
  2738. rp->rbr_sizes[3] = rp->rbr_block_size;
  2739. }
  2740. static int niu_alloc_channels(struct niu *np)
  2741. {
  2742. struct niu_parent *parent = np->parent;
  2743. int first_rx_channel, first_tx_channel;
  2744. int i, port, err;
  2745. port = np->port;
  2746. first_rx_channel = first_tx_channel = 0;
  2747. for (i = 0; i < port; i++) {
  2748. first_rx_channel += parent->rxchan_per_port[i];
  2749. first_tx_channel += parent->txchan_per_port[i];
  2750. }
  2751. np->num_rx_rings = parent->rxchan_per_port[port];
  2752. np->num_tx_rings = parent->txchan_per_port[port];
  2753. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  2754. GFP_KERNEL);
  2755. err = -ENOMEM;
  2756. if (!np->rx_rings)
  2757. goto out_err;
  2758. for (i = 0; i < np->num_rx_rings; i++) {
  2759. struct rx_ring_info *rp = &np->rx_rings[i];
  2760. rp->np = np;
  2761. rp->rx_channel = first_rx_channel + i;
  2762. err = niu_alloc_rx_ring_info(np, rp);
  2763. if (err)
  2764. goto out_err;
  2765. niu_size_rbr(np, rp);
  2766. /* XXX better defaults, configurable, etc... XXX */
  2767. rp->nonsyn_window = 64;
  2768. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  2769. rp->syn_window = 64;
  2770. rp->syn_threshold = rp->rcr_table_size - 64;
  2771. rp->rcr_pkt_threshold = 16;
  2772. rp->rcr_timeout = 8;
  2773. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  2774. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  2775. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  2776. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  2777. if (err)
  2778. return err;
  2779. }
  2780. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  2781. GFP_KERNEL);
  2782. err = -ENOMEM;
  2783. if (!np->tx_rings)
  2784. goto out_err;
  2785. for (i = 0; i < np->num_tx_rings; i++) {
  2786. struct tx_ring_info *rp = &np->tx_rings[i];
  2787. rp->np = np;
  2788. rp->tx_channel = first_tx_channel + i;
  2789. err = niu_alloc_tx_ring_info(np, rp);
  2790. if (err)
  2791. goto out_err;
  2792. }
  2793. return 0;
  2794. out_err:
  2795. niu_free_channels(np);
  2796. return err;
  2797. }
  2798. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  2799. {
  2800. int limit = 1000;
  2801. while (--limit > 0) {
  2802. u64 val = nr64(TX_CS(channel));
  2803. if (val & TX_CS_SNG_STATE)
  2804. return 0;
  2805. }
  2806. return -ENODEV;
  2807. }
  2808. static int niu_tx_channel_stop(struct niu *np, int channel)
  2809. {
  2810. u64 val = nr64(TX_CS(channel));
  2811. val |= TX_CS_STOP_N_GO;
  2812. nw64(TX_CS(channel), val);
  2813. return niu_tx_cs_sng_poll(np, channel);
  2814. }
  2815. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  2816. {
  2817. int limit = 1000;
  2818. while (--limit > 0) {
  2819. u64 val = nr64(TX_CS(channel));
  2820. if (!(val & TX_CS_RST))
  2821. return 0;
  2822. }
  2823. return -ENODEV;
  2824. }
  2825. static int niu_tx_channel_reset(struct niu *np, int channel)
  2826. {
  2827. u64 val = nr64(TX_CS(channel));
  2828. int err;
  2829. val |= TX_CS_RST;
  2830. nw64(TX_CS(channel), val);
  2831. err = niu_tx_cs_reset_poll(np, channel);
  2832. if (!err)
  2833. nw64(TX_RING_KICK(channel), 0);
  2834. return err;
  2835. }
  2836. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  2837. {
  2838. u64 val;
  2839. nw64(TX_LOG_MASK1(channel), 0);
  2840. nw64(TX_LOG_VAL1(channel), 0);
  2841. nw64(TX_LOG_MASK2(channel), 0);
  2842. nw64(TX_LOG_VAL2(channel), 0);
  2843. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  2844. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  2845. nw64(TX_LOG_PAGE_HDL(channel), 0);
  2846. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  2847. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  2848. nw64(TX_LOG_PAGE_VLD(channel), val);
  2849. /* XXX TXDMA 32bit mode? XXX */
  2850. return 0;
  2851. }
  2852. static void niu_txc_enable_port(struct niu *np, int on)
  2853. {
  2854. unsigned long flags;
  2855. u64 val, mask;
  2856. niu_lock_parent(np, flags);
  2857. val = nr64(TXC_CONTROL);
  2858. mask = (u64)1 << np->port;
  2859. if (on) {
  2860. val |= TXC_CONTROL_ENABLE | mask;
  2861. } else {
  2862. val &= ~mask;
  2863. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  2864. val &= ~TXC_CONTROL_ENABLE;
  2865. }
  2866. nw64(TXC_CONTROL, val);
  2867. niu_unlock_parent(np, flags);
  2868. }
  2869. static void niu_txc_set_imask(struct niu *np, u64 imask)
  2870. {
  2871. unsigned long flags;
  2872. u64 val;
  2873. niu_lock_parent(np, flags);
  2874. val = nr64(TXC_INT_MASK);
  2875. val &= ~TXC_INT_MASK_VAL(np->port);
  2876. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  2877. niu_unlock_parent(np, flags);
  2878. }
  2879. static void niu_txc_port_dma_enable(struct niu *np, int on)
  2880. {
  2881. u64 val = 0;
  2882. if (on) {
  2883. int i;
  2884. for (i = 0; i < np->num_tx_rings; i++)
  2885. val |= (1 << np->tx_rings[i].tx_channel);
  2886. }
  2887. nw64(TXC_PORT_DMA(np->port), val);
  2888. }
  2889. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  2890. {
  2891. int err, channel = rp->tx_channel;
  2892. u64 val, ring_len;
  2893. err = niu_tx_channel_stop(np, channel);
  2894. if (err)
  2895. return err;
  2896. err = niu_tx_channel_reset(np, channel);
  2897. if (err)
  2898. return err;
  2899. err = niu_tx_channel_lpage_init(np, channel);
  2900. if (err)
  2901. return err;
  2902. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  2903. nw64(TX_ENT_MSK(channel), 0);
  2904. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  2905. TX_RNG_CFIG_STADDR)) {
  2906. dev_err(np->device, PFX "%s: TX ring channel %d "
  2907. "DMA addr (%llx) is not aligned.\n",
  2908. np->dev->name, channel,
  2909. (unsigned long long) rp->descr_dma);
  2910. return -EINVAL;
  2911. }
  2912. /* The length field in TX_RNG_CFIG is measured in 64-byte
  2913. * blocks. rp->pending is the number of TX descriptors in
  2914. * our ring, 8 bytes each, thus we divide by 8 bytes more
  2915. * to get the proper value the chip wants.
  2916. */
  2917. ring_len = (rp->pending / 8);
  2918. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  2919. rp->descr_dma);
  2920. nw64(TX_RNG_CFIG(channel), val);
  2921. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  2922. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  2923. dev_err(np->device, PFX "%s: TX ring channel %d "
  2924. "MBOX addr (%llx) is has illegal bits.\n",
  2925. np->dev->name, channel,
  2926. (unsigned long long) rp->mbox_dma);
  2927. return -EINVAL;
  2928. }
  2929. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  2930. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  2931. nw64(TX_CS(channel), 0);
  2932. rp->last_pkt_cnt = 0;
  2933. return 0;
  2934. }
  2935. static void niu_init_rdc_groups(struct niu *np)
  2936. {
  2937. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  2938. int i, first_table_num = tp->first_table_num;
  2939. for (i = 0; i < tp->num_tables; i++) {
  2940. struct rdc_table *tbl = &tp->tables[i];
  2941. int this_table = first_table_num + i;
  2942. int slot;
  2943. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  2944. nw64(RDC_TBL(this_table, slot),
  2945. tbl->rxdma_channel[slot]);
  2946. }
  2947. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  2948. }
  2949. static void niu_init_drr_weight(struct niu *np)
  2950. {
  2951. int type = phy_decode(np->parent->port_phy, np->port);
  2952. u64 val;
  2953. switch (type) {
  2954. case PORT_TYPE_10G:
  2955. val = PT_DRR_WEIGHT_DEFAULT_10G;
  2956. break;
  2957. case PORT_TYPE_1G:
  2958. default:
  2959. val = PT_DRR_WEIGHT_DEFAULT_1G;
  2960. break;
  2961. }
  2962. nw64(PT_DRR_WT(np->port), val);
  2963. }
  2964. static int niu_init_hostinfo(struct niu *np)
  2965. {
  2966. struct niu_parent *parent = np->parent;
  2967. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  2968. int i, err, num_alt = niu_num_alt_addr(np);
  2969. int first_rdc_table = tp->first_table_num;
  2970. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  2971. if (err)
  2972. return err;
  2973. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  2974. if (err)
  2975. return err;
  2976. for (i = 0; i < num_alt; i++) {
  2977. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  2978. if (err)
  2979. return err;
  2980. }
  2981. return 0;
  2982. }
  2983. static int niu_rx_channel_reset(struct niu *np, int channel)
  2984. {
  2985. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  2986. RXDMA_CFIG1_RST, 1000, 10,
  2987. "RXDMA_CFIG1");
  2988. }
  2989. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  2990. {
  2991. u64 val;
  2992. nw64(RX_LOG_MASK1(channel), 0);
  2993. nw64(RX_LOG_VAL1(channel), 0);
  2994. nw64(RX_LOG_MASK2(channel), 0);
  2995. nw64(RX_LOG_VAL2(channel), 0);
  2996. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  2997. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  2998. nw64(RX_LOG_PAGE_HDL(channel), 0);
  2999. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3000. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3001. nw64(RX_LOG_PAGE_VLD(channel), val);
  3002. return 0;
  3003. }
  3004. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3005. {
  3006. u64 val;
  3007. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3008. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3009. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3010. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3011. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3012. }
  3013. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3014. {
  3015. u64 val = 0;
  3016. switch (rp->rbr_block_size) {
  3017. case 4 * 1024:
  3018. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3019. break;
  3020. case 8 * 1024:
  3021. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3022. break;
  3023. case 16 * 1024:
  3024. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3025. break;
  3026. case 32 * 1024:
  3027. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3028. break;
  3029. default:
  3030. return -EINVAL;
  3031. }
  3032. val |= RBR_CFIG_B_VLD2;
  3033. switch (rp->rbr_sizes[2]) {
  3034. case 2 * 1024:
  3035. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3036. break;
  3037. case 4 * 1024:
  3038. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3039. break;
  3040. case 8 * 1024:
  3041. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3042. break;
  3043. case 16 * 1024:
  3044. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3045. break;
  3046. default:
  3047. return -EINVAL;
  3048. }
  3049. val |= RBR_CFIG_B_VLD1;
  3050. switch (rp->rbr_sizes[1]) {
  3051. case 1 * 1024:
  3052. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3053. break;
  3054. case 2 * 1024:
  3055. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3056. break;
  3057. case 4 * 1024:
  3058. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3059. break;
  3060. case 8 * 1024:
  3061. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3062. break;
  3063. default:
  3064. return -EINVAL;
  3065. }
  3066. val |= RBR_CFIG_B_VLD0;
  3067. switch (rp->rbr_sizes[0]) {
  3068. case 256:
  3069. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3070. break;
  3071. case 512:
  3072. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3073. break;
  3074. case 1 * 1024:
  3075. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3076. break;
  3077. case 2 * 1024:
  3078. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3079. break;
  3080. default:
  3081. return -EINVAL;
  3082. }
  3083. *ret = val;
  3084. return 0;
  3085. }
  3086. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  3087. {
  3088. u64 val = nr64(RXDMA_CFIG1(channel));
  3089. int limit;
  3090. if (on)
  3091. val |= RXDMA_CFIG1_EN;
  3092. else
  3093. val &= ~RXDMA_CFIG1_EN;
  3094. nw64(RXDMA_CFIG1(channel), val);
  3095. limit = 1000;
  3096. while (--limit > 0) {
  3097. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  3098. break;
  3099. udelay(10);
  3100. }
  3101. if (limit <= 0)
  3102. return -ENODEV;
  3103. return 0;
  3104. }
  3105. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3106. {
  3107. int err, channel = rp->rx_channel;
  3108. u64 val;
  3109. err = niu_rx_channel_reset(np, channel);
  3110. if (err)
  3111. return err;
  3112. err = niu_rx_channel_lpage_init(np, channel);
  3113. if (err)
  3114. return err;
  3115. niu_rx_channel_wred_init(np, rp);
  3116. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  3117. nw64(RX_DMA_CTL_STAT(channel),
  3118. (RX_DMA_CTL_STAT_MEX |
  3119. RX_DMA_CTL_STAT_RCRTHRES |
  3120. RX_DMA_CTL_STAT_RCRTO |
  3121. RX_DMA_CTL_STAT_RBR_EMPTY));
  3122. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  3123. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  3124. nw64(RBR_CFIG_A(channel),
  3125. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  3126. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  3127. err = niu_compute_rbr_cfig_b(rp, &val);
  3128. if (err)
  3129. return err;
  3130. nw64(RBR_CFIG_B(channel), val);
  3131. nw64(RCRCFIG_A(channel),
  3132. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  3133. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  3134. nw64(RCRCFIG_B(channel),
  3135. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  3136. RCRCFIG_B_ENTOUT |
  3137. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  3138. err = niu_enable_rx_channel(np, channel, 1);
  3139. if (err)
  3140. return err;
  3141. nw64(RBR_KICK(channel), rp->rbr_index);
  3142. val = nr64(RX_DMA_CTL_STAT(channel));
  3143. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  3144. nw64(RX_DMA_CTL_STAT(channel), val);
  3145. return 0;
  3146. }
  3147. static int niu_init_rx_channels(struct niu *np)
  3148. {
  3149. unsigned long flags;
  3150. u64 seed = jiffies_64;
  3151. int err, i;
  3152. niu_lock_parent(np, flags);
  3153. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  3154. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  3155. niu_unlock_parent(np, flags);
  3156. /* XXX RXDMA 32bit mode? XXX */
  3157. niu_init_rdc_groups(np);
  3158. niu_init_drr_weight(np);
  3159. err = niu_init_hostinfo(np);
  3160. if (err)
  3161. return err;
  3162. for (i = 0; i < np->num_rx_rings; i++) {
  3163. struct rx_ring_info *rp = &np->rx_rings[i];
  3164. err = niu_init_one_rx_channel(np, rp);
  3165. if (err)
  3166. return err;
  3167. }
  3168. return 0;
  3169. }
  3170. static int niu_set_ip_frag_rule(struct niu *np)
  3171. {
  3172. struct niu_parent *parent = np->parent;
  3173. struct niu_classifier *cp = &np->clas;
  3174. struct niu_tcam_entry *tp;
  3175. int index, err;
  3176. /* XXX fix this allocation scheme XXX */
  3177. index = cp->tcam_index;
  3178. tp = &parent->tcam[index];
  3179. /* Note that the noport bit is the same in both ipv4 and
  3180. * ipv6 format TCAM entries.
  3181. */
  3182. memset(tp, 0, sizeof(*tp));
  3183. tp->key[1] = TCAM_V4KEY1_NOPORT;
  3184. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  3185. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  3186. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  3187. err = tcam_write(np, index, tp->key, tp->key_mask);
  3188. if (err)
  3189. return err;
  3190. err = tcam_assoc_write(np, index, tp->assoc_data);
  3191. if (err)
  3192. return err;
  3193. return 0;
  3194. }
  3195. static int niu_init_classifier_hw(struct niu *np)
  3196. {
  3197. struct niu_parent *parent = np->parent;
  3198. struct niu_classifier *cp = &np->clas;
  3199. int i, err;
  3200. nw64(H1POLY, cp->h1_init);
  3201. nw64(H2POLY, cp->h2_init);
  3202. err = niu_init_hostinfo(np);
  3203. if (err)
  3204. return err;
  3205. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  3206. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  3207. vlan_tbl_write(np, i, np->port,
  3208. vp->vlan_pref, vp->rdc_num);
  3209. }
  3210. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  3211. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  3212. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  3213. ap->rdc_num, ap->mac_pref);
  3214. if (err)
  3215. return err;
  3216. }
  3217. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  3218. int index = i - CLASS_CODE_USER_PROG1;
  3219. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  3220. if (err)
  3221. return err;
  3222. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  3223. if (err)
  3224. return err;
  3225. }
  3226. err = niu_set_ip_frag_rule(np);
  3227. if (err)
  3228. return err;
  3229. tcam_enable(np, 1);
  3230. return 0;
  3231. }
  3232. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  3233. {
  3234. nw64(ZCP_RAM_DATA0, data[0]);
  3235. nw64(ZCP_RAM_DATA1, data[1]);
  3236. nw64(ZCP_RAM_DATA2, data[2]);
  3237. nw64(ZCP_RAM_DATA3, data[3]);
  3238. nw64(ZCP_RAM_DATA4, data[4]);
  3239. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  3240. nw64(ZCP_RAM_ACC,
  3241. (ZCP_RAM_ACC_WRITE |
  3242. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3243. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3244. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3245. 1000, 100);
  3246. }
  3247. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  3248. {
  3249. int err;
  3250. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3251. 1000, 100);
  3252. if (err) {
  3253. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  3254. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3255. (unsigned long long) nr64(ZCP_RAM_ACC));
  3256. return err;
  3257. }
  3258. nw64(ZCP_RAM_ACC,
  3259. (ZCP_RAM_ACC_READ |
  3260. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3261. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3262. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3263. 1000, 100);
  3264. if (err) {
  3265. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  3266. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3267. (unsigned long long) nr64(ZCP_RAM_ACC));
  3268. return err;
  3269. }
  3270. data[0] = nr64(ZCP_RAM_DATA0);
  3271. data[1] = nr64(ZCP_RAM_DATA1);
  3272. data[2] = nr64(ZCP_RAM_DATA2);
  3273. data[3] = nr64(ZCP_RAM_DATA3);
  3274. data[4] = nr64(ZCP_RAM_DATA4);
  3275. return 0;
  3276. }
  3277. static void niu_zcp_cfifo_reset(struct niu *np)
  3278. {
  3279. u64 val = nr64(RESET_CFIFO);
  3280. val |= RESET_CFIFO_RST(np->port);
  3281. nw64(RESET_CFIFO, val);
  3282. udelay(10);
  3283. val &= ~RESET_CFIFO_RST(np->port);
  3284. nw64(RESET_CFIFO, val);
  3285. }
  3286. static int niu_init_zcp(struct niu *np)
  3287. {
  3288. u64 data[5], rbuf[5];
  3289. int i, max, err;
  3290. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3291. if (np->port == 0 || np->port == 1)
  3292. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  3293. else
  3294. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  3295. } else
  3296. max = NIU_CFIFO_ENTRIES;
  3297. data[0] = 0;
  3298. data[1] = 0;
  3299. data[2] = 0;
  3300. data[3] = 0;
  3301. data[4] = 0;
  3302. for (i = 0; i < max; i++) {
  3303. err = niu_zcp_write(np, i, data);
  3304. if (err)
  3305. return err;
  3306. err = niu_zcp_read(np, i, rbuf);
  3307. if (err)
  3308. return err;
  3309. }
  3310. niu_zcp_cfifo_reset(np);
  3311. nw64(CFIFO_ECC(np->port), 0);
  3312. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  3313. (void) nr64(ZCP_INT_STAT);
  3314. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  3315. return 0;
  3316. }
  3317. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  3318. {
  3319. u64 val = nr64_ipp(IPP_CFIG);
  3320. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  3321. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  3322. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  3323. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  3324. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  3325. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  3326. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  3327. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  3328. }
  3329. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  3330. {
  3331. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  3332. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  3333. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  3334. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  3335. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  3336. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  3337. }
  3338. static int niu_ipp_reset(struct niu *np)
  3339. {
  3340. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  3341. 1000, 100, "IPP_CFIG");
  3342. }
  3343. static int niu_init_ipp(struct niu *np)
  3344. {
  3345. u64 data[5], rbuf[5], val;
  3346. int i, max, err;
  3347. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3348. if (np->port == 0 || np->port == 1)
  3349. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  3350. else
  3351. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  3352. } else
  3353. max = NIU_DFIFO_ENTRIES;
  3354. data[0] = 0;
  3355. data[1] = 0;
  3356. data[2] = 0;
  3357. data[3] = 0;
  3358. data[4] = 0;
  3359. for (i = 0; i < max; i++) {
  3360. niu_ipp_write(np, i, data);
  3361. niu_ipp_read(np, i, rbuf);
  3362. }
  3363. (void) nr64_ipp(IPP_INT_STAT);
  3364. (void) nr64_ipp(IPP_INT_STAT);
  3365. err = niu_ipp_reset(np);
  3366. if (err)
  3367. return err;
  3368. (void) nr64_ipp(IPP_PKT_DIS);
  3369. (void) nr64_ipp(IPP_BAD_CS_CNT);
  3370. (void) nr64_ipp(IPP_ECC);
  3371. (void) nr64_ipp(IPP_INT_STAT);
  3372. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  3373. val = nr64_ipp(IPP_CFIG);
  3374. val &= ~IPP_CFIG_IP_MAX_PKT;
  3375. val |= (IPP_CFIG_IPP_ENABLE |
  3376. IPP_CFIG_DFIFO_ECC_EN |
  3377. IPP_CFIG_DROP_BAD_CRC |
  3378. IPP_CFIG_CKSUM_EN |
  3379. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  3380. nw64_ipp(IPP_CFIG, val);
  3381. return 0;
  3382. }
  3383. static void niu_handle_led(struct niu *np, int status)
  3384. {
  3385. u64 val;
  3386. val = nr64_mac(XMAC_CONFIG);
  3387. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  3388. (np->flags & NIU_FLAGS_FIBER) != 0) {
  3389. if (status) {
  3390. val |= XMAC_CONFIG_LED_POLARITY;
  3391. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  3392. } else {
  3393. val |= XMAC_CONFIG_FORCE_LED_ON;
  3394. val &= ~XMAC_CONFIG_LED_POLARITY;
  3395. }
  3396. }
  3397. nw64_mac(XMAC_CONFIG, val);
  3398. }
  3399. static void niu_init_xif_xmac(struct niu *np)
  3400. {
  3401. struct niu_link_config *lp = &np->link_config;
  3402. u64 val;
  3403. val = nr64_mac(XMAC_CONFIG);
  3404. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3405. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  3406. if (lp->loopback_mode == LOOPBACK_MAC) {
  3407. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3408. val |= XMAC_CONFIG_LOOPBACK;
  3409. } else {
  3410. val &= ~XMAC_CONFIG_LOOPBACK;
  3411. }
  3412. if (np->flags & NIU_FLAGS_10G) {
  3413. val &= ~XMAC_CONFIG_LFS_DISABLE;
  3414. } else {
  3415. val |= XMAC_CONFIG_LFS_DISABLE;
  3416. if (!(np->flags & NIU_FLAGS_FIBER))
  3417. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  3418. else
  3419. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  3420. }
  3421. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3422. if (lp->active_speed == SPEED_100)
  3423. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  3424. else
  3425. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  3426. nw64_mac(XMAC_CONFIG, val);
  3427. val = nr64_mac(XMAC_CONFIG);
  3428. val &= ~XMAC_CONFIG_MODE_MASK;
  3429. if (np->flags & NIU_FLAGS_10G) {
  3430. val |= XMAC_CONFIG_MODE_XGMII;
  3431. } else {
  3432. if (lp->active_speed == SPEED_100)
  3433. val |= XMAC_CONFIG_MODE_MII;
  3434. else
  3435. val |= XMAC_CONFIG_MODE_GMII;
  3436. }
  3437. nw64_mac(XMAC_CONFIG, val);
  3438. }
  3439. static void niu_init_xif_bmac(struct niu *np)
  3440. {
  3441. struct niu_link_config *lp = &np->link_config;
  3442. u64 val;
  3443. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  3444. if (lp->loopback_mode == LOOPBACK_MAC)
  3445. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  3446. else
  3447. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  3448. if (lp->active_speed == SPEED_1000)
  3449. val |= BMAC_XIF_CONFIG_GMII_MODE;
  3450. else
  3451. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  3452. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  3453. BMAC_XIF_CONFIG_LED_POLARITY);
  3454. if (!(np->flags & NIU_FLAGS_10G) &&
  3455. !(np->flags & NIU_FLAGS_FIBER) &&
  3456. lp->active_speed == SPEED_100)
  3457. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3458. else
  3459. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3460. nw64_mac(BMAC_XIF_CONFIG, val);
  3461. }
  3462. static void niu_init_xif(struct niu *np)
  3463. {
  3464. if (np->flags & NIU_FLAGS_XMAC)
  3465. niu_init_xif_xmac(np);
  3466. else
  3467. niu_init_xif_bmac(np);
  3468. }
  3469. static void niu_pcs_mii_reset(struct niu *np)
  3470. {
  3471. u64 val = nr64_pcs(PCS_MII_CTL);
  3472. val |= PCS_MII_CTL_RST;
  3473. nw64_pcs(PCS_MII_CTL, val);
  3474. }
  3475. static void niu_xpcs_reset(struct niu *np)
  3476. {
  3477. u64 val = nr64_xpcs(XPCS_CONTROL1);
  3478. val |= XPCS_CONTROL1_RESET;
  3479. nw64_xpcs(XPCS_CONTROL1, val);
  3480. }
  3481. static int niu_init_pcs(struct niu *np)
  3482. {
  3483. struct niu_link_config *lp = &np->link_config;
  3484. u64 val;
  3485. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  3486. case NIU_FLAGS_FIBER:
  3487. /* 1G fiber */
  3488. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  3489. nw64_pcs(PCS_DPATH_MODE, 0);
  3490. niu_pcs_mii_reset(np);
  3491. break;
  3492. case NIU_FLAGS_10G:
  3493. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  3494. if (!(np->flags & NIU_FLAGS_XMAC))
  3495. return -EINVAL;
  3496. /* 10G copper or fiber */
  3497. val = nr64_mac(XMAC_CONFIG);
  3498. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3499. nw64_mac(XMAC_CONFIG, val);
  3500. niu_xpcs_reset(np);
  3501. val = nr64_xpcs(XPCS_CONTROL1);
  3502. if (lp->loopback_mode == LOOPBACK_PHY)
  3503. val |= XPCS_CONTROL1_LOOPBACK;
  3504. else
  3505. val &= ~XPCS_CONTROL1_LOOPBACK;
  3506. nw64_xpcs(XPCS_CONTROL1, val);
  3507. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  3508. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  3509. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  3510. break;
  3511. case 0:
  3512. /* 1G copper */
  3513. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  3514. niu_pcs_mii_reset(np);
  3515. break;
  3516. default:
  3517. return -EINVAL;
  3518. }
  3519. return 0;
  3520. }
  3521. static int niu_reset_tx_xmac(struct niu *np)
  3522. {
  3523. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  3524. (XTXMAC_SW_RST_REG_RS |
  3525. XTXMAC_SW_RST_SOFT_RST),
  3526. 1000, 100, "XTXMAC_SW_RST");
  3527. }
  3528. static int niu_reset_tx_bmac(struct niu *np)
  3529. {
  3530. int limit;
  3531. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  3532. limit = 1000;
  3533. while (--limit >= 0) {
  3534. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  3535. break;
  3536. udelay(100);
  3537. }
  3538. if (limit < 0) {
  3539. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  3540. "BTXMAC_SW_RST[%llx]\n",
  3541. np->port,
  3542. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  3543. return -ENODEV;
  3544. }
  3545. return 0;
  3546. }
  3547. static int niu_reset_tx_mac(struct niu *np)
  3548. {
  3549. if (np->flags & NIU_FLAGS_XMAC)
  3550. return niu_reset_tx_xmac(np);
  3551. else
  3552. return niu_reset_tx_bmac(np);
  3553. }
  3554. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  3555. {
  3556. u64 val;
  3557. val = nr64_mac(XMAC_MIN);
  3558. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  3559. XMAC_MIN_RX_MIN_PKT_SIZE);
  3560. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  3561. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  3562. nw64_mac(XMAC_MIN, val);
  3563. nw64_mac(XMAC_MAX, max);
  3564. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  3565. val = nr64_mac(XMAC_IPG);
  3566. if (np->flags & NIU_FLAGS_10G) {
  3567. val &= ~XMAC_IPG_IPG_XGMII;
  3568. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  3569. } else {
  3570. val &= ~XMAC_IPG_IPG_MII_GMII;
  3571. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  3572. }
  3573. nw64_mac(XMAC_IPG, val);
  3574. val = nr64_mac(XMAC_CONFIG);
  3575. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  3576. XMAC_CONFIG_STRETCH_MODE |
  3577. XMAC_CONFIG_VAR_MIN_IPG_EN |
  3578. XMAC_CONFIG_TX_ENABLE);
  3579. nw64_mac(XMAC_CONFIG, val);
  3580. nw64_mac(TXMAC_FRM_CNT, 0);
  3581. nw64_mac(TXMAC_BYTE_CNT, 0);
  3582. }
  3583. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  3584. {
  3585. u64 val;
  3586. nw64_mac(BMAC_MIN_FRAME, min);
  3587. nw64_mac(BMAC_MAX_FRAME, max);
  3588. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  3589. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  3590. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  3591. val = nr64_mac(BTXMAC_CONFIG);
  3592. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  3593. BTXMAC_CONFIG_ENABLE);
  3594. nw64_mac(BTXMAC_CONFIG, val);
  3595. }
  3596. static void niu_init_tx_mac(struct niu *np)
  3597. {
  3598. u64 min, max;
  3599. min = 64;
  3600. if (np->dev->mtu > ETH_DATA_LEN)
  3601. max = 9216;
  3602. else
  3603. max = 1522;
  3604. /* The XMAC_MIN register only accepts values for TX min which
  3605. * have the low 3 bits cleared.
  3606. */
  3607. BUILD_BUG_ON(min & 0x7);
  3608. if (np->flags & NIU_FLAGS_XMAC)
  3609. niu_init_tx_xmac(np, min, max);
  3610. else
  3611. niu_init_tx_bmac(np, min, max);
  3612. }
  3613. static int niu_reset_rx_xmac(struct niu *np)
  3614. {
  3615. int limit;
  3616. nw64_mac(XRXMAC_SW_RST,
  3617. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  3618. limit = 1000;
  3619. while (--limit >= 0) {
  3620. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  3621. XRXMAC_SW_RST_SOFT_RST)))
  3622. break;
  3623. udelay(100);
  3624. }
  3625. if (limit < 0) {
  3626. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  3627. "XRXMAC_SW_RST[%llx]\n",
  3628. np->port,
  3629. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  3630. return -ENODEV;
  3631. }
  3632. return 0;
  3633. }
  3634. static int niu_reset_rx_bmac(struct niu *np)
  3635. {
  3636. int limit;
  3637. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  3638. limit = 1000;
  3639. while (--limit >= 0) {
  3640. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  3641. break;
  3642. udelay(100);
  3643. }
  3644. if (limit < 0) {
  3645. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  3646. "BRXMAC_SW_RST[%llx]\n",
  3647. np->port,
  3648. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  3649. return -ENODEV;
  3650. }
  3651. return 0;
  3652. }
  3653. static int niu_reset_rx_mac(struct niu *np)
  3654. {
  3655. if (np->flags & NIU_FLAGS_XMAC)
  3656. return niu_reset_rx_xmac(np);
  3657. else
  3658. return niu_reset_rx_bmac(np);
  3659. }
  3660. static void niu_init_rx_xmac(struct niu *np)
  3661. {
  3662. struct niu_parent *parent = np->parent;
  3663. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3664. int first_rdc_table = tp->first_table_num;
  3665. unsigned long i;
  3666. u64 val;
  3667. nw64_mac(XMAC_ADD_FILT0, 0);
  3668. nw64_mac(XMAC_ADD_FILT1, 0);
  3669. nw64_mac(XMAC_ADD_FILT2, 0);
  3670. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  3671. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  3672. for (i = 0; i < MAC_NUM_HASH; i++)
  3673. nw64_mac(XMAC_HASH_TBL(i), 0);
  3674. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  3675. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3676. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3677. val = nr64_mac(XMAC_CONFIG);
  3678. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  3679. XMAC_CONFIG_PROMISCUOUS |
  3680. XMAC_CONFIG_PROMISC_GROUP |
  3681. XMAC_CONFIG_ERR_CHK_DIS |
  3682. XMAC_CONFIG_RX_CRC_CHK_DIS |
  3683. XMAC_CONFIG_RESERVED_MULTICAST |
  3684. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  3685. XMAC_CONFIG_ADDR_FILTER_EN |
  3686. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  3687. XMAC_CONFIG_STRIP_CRC |
  3688. XMAC_CONFIG_PASS_FLOW_CTRL |
  3689. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  3690. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  3691. nw64_mac(XMAC_CONFIG, val);
  3692. nw64_mac(RXMAC_BT_CNT, 0);
  3693. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  3694. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  3695. nw64_mac(RXMAC_FRAG_CNT, 0);
  3696. nw64_mac(RXMAC_HIST_CNT1, 0);
  3697. nw64_mac(RXMAC_HIST_CNT2, 0);
  3698. nw64_mac(RXMAC_HIST_CNT3, 0);
  3699. nw64_mac(RXMAC_HIST_CNT4, 0);
  3700. nw64_mac(RXMAC_HIST_CNT5, 0);
  3701. nw64_mac(RXMAC_HIST_CNT6, 0);
  3702. nw64_mac(RXMAC_HIST_CNT7, 0);
  3703. nw64_mac(RXMAC_MPSZER_CNT, 0);
  3704. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  3705. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  3706. nw64_mac(LINK_FAULT_CNT, 0);
  3707. }
  3708. static void niu_init_rx_bmac(struct niu *np)
  3709. {
  3710. struct niu_parent *parent = np->parent;
  3711. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3712. int first_rdc_table = tp->first_table_num;
  3713. unsigned long i;
  3714. u64 val;
  3715. nw64_mac(BMAC_ADD_FILT0, 0);
  3716. nw64_mac(BMAC_ADD_FILT1, 0);
  3717. nw64_mac(BMAC_ADD_FILT2, 0);
  3718. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  3719. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  3720. for (i = 0; i < MAC_NUM_HASH; i++)
  3721. nw64_mac(BMAC_HASH_TBL(i), 0);
  3722. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3723. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3724. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  3725. val = nr64_mac(BRXMAC_CONFIG);
  3726. val &= ~(BRXMAC_CONFIG_ENABLE |
  3727. BRXMAC_CONFIG_STRIP_PAD |
  3728. BRXMAC_CONFIG_STRIP_FCS |
  3729. BRXMAC_CONFIG_PROMISC |
  3730. BRXMAC_CONFIG_PROMISC_GRP |
  3731. BRXMAC_CONFIG_ADDR_FILT_EN |
  3732. BRXMAC_CONFIG_DISCARD_DIS);
  3733. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  3734. nw64_mac(BRXMAC_CONFIG, val);
  3735. val = nr64_mac(BMAC_ADDR_CMPEN);
  3736. val |= BMAC_ADDR_CMPEN_EN0;
  3737. nw64_mac(BMAC_ADDR_CMPEN, val);
  3738. }
  3739. static void niu_init_rx_mac(struct niu *np)
  3740. {
  3741. niu_set_primary_mac(np, np->dev->dev_addr);
  3742. if (np->flags & NIU_FLAGS_XMAC)
  3743. niu_init_rx_xmac(np);
  3744. else
  3745. niu_init_rx_bmac(np);
  3746. }
  3747. static void niu_enable_tx_xmac(struct niu *np, int on)
  3748. {
  3749. u64 val = nr64_mac(XMAC_CONFIG);
  3750. if (on)
  3751. val |= XMAC_CONFIG_TX_ENABLE;
  3752. else
  3753. val &= ~XMAC_CONFIG_TX_ENABLE;
  3754. nw64_mac(XMAC_CONFIG, val);
  3755. }
  3756. static void niu_enable_tx_bmac(struct niu *np, int on)
  3757. {
  3758. u64 val = nr64_mac(BTXMAC_CONFIG);
  3759. if (on)
  3760. val |= BTXMAC_CONFIG_ENABLE;
  3761. else
  3762. val &= ~BTXMAC_CONFIG_ENABLE;
  3763. nw64_mac(BTXMAC_CONFIG, val);
  3764. }
  3765. static void niu_enable_tx_mac(struct niu *np, int on)
  3766. {
  3767. if (np->flags & NIU_FLAGS_XMAC)
  3768. niu_enable_tx_xmac(np, on);
  3769. else
  3770. niu_enable_tx_bmac(np, on);
  3771. }
  3772. static void niu_enable_rx_xmac(struct niu *np, int on)
  3773. {
  3774. u64 val = nr64_mac(XMAC_CONFIG);
  3775. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  3776. XMAC_CONFIG_PROMISCUOUS);
  3777. if (np->flags & NIU_FLAGS_MCAST)
  3778. val |= XMAC_CONFIG_HASH_FILTER_EN;
  3779. if (np->flags & NIU_FLAGS_PROMISC)
  3780. val |= XMAC_CONFIG_PROMISCUOUS;
  3781. if (on)
  3782. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  3783. else
  3784. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  3785. nw64_mac(XMAC_CONFIG, val);
  3786. }
  3787. static void niu_enable_rx_bmac(struct niu *np, int on)
  3788. {
  3789. u64 val = nr64_mac(BRXMAC_CONFIG);
  3790. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  3791. BRXMAC_CONFIG_PROMISC);
  3792. if (np->flags & NIU_FLAGS_MCAST)
  3793. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  3794. if (np->flags & NIU_FLAGS_PROMISC)
  3795. val |= BRXMAC_CONFIG_PROMISC;
  3796. if (on)
  3797. val |= BRXMAC_CONFIG_ENABLE;
  3798. else
  3799. val &= ~BRXMAC_CONFIG_ENABLE;
  3800. nw64_mac(BRXMAC_CONFIG, val);
  3801. }
  3802. static void niu_enable_rx_mac(struct niu *np, int on)
  3803. {
  3804. if (np->flags & NIU_FLAGS_XMAC)
  3805. niu_enable_rx_xmac(np, on);
  3806. else
  3807. niu_enable_rx_bmac(np, on);
  3808. }
  3809. static int niu_init_mac(struct niu *np)
  3810. {
  3811. int err;
  3812. niu_init_xif(np);
  3813. err = niu_init_pcs(np);
  3814. if (err)
  3815. return err;
  3816. err = niu_reset_tx_mac(np);
  3817. if (err)
  3818. return err;
  3819. niu_init_tx_mac(np);
  3820. err = niu_reset_rx_mac(np);
  3821. if (err)
  3822. return err;
  3823. niu_init_rx_mac(np);
  3824. /* This looks hookey but the RX MAC reset we just did will
  3825. * undo some of the state we setup in niu_init_tx_mac() so we
  3826. * have to call it again. In particular, the RX MAC reset will
  3827. * set the XMAC_MAX register back to it's default value.
  3828. */
  3829. niu_init_tx_mac(np);
  3830. niu_enable_tx_mac(np, 1);
  3831. niu_enable_rx_mac(np, 1);
  3832. return 0;
  3833. }
  3834. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3835. {
  3836. (void) niu_tx_channel_stop(np, rp->tx_channel);
  3837. }
  3838. static void niu_stop_tx_channels(struct niu *np)
  3839. {
  3840. int i;
  3841. for (i = 0; i < np->num_tx_rings; i++) {
  3842. struct tx_ring_info *rp = &np->tx_rings[i];
  3843. niu_stop_one_tx_channel(np, rp);
  3844. }
  3845. }
  3846. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3847. {
  3848. (void) niu_tx_channel_reset(np, rp->tx_channel);
  3849. }
  3850. static void niu_reset_tx_channels(struct niu *np)
  3851. {
  3852. int i;
  3853. for (i = 0; i < np->num_tx_rings; i++) {
  3854. struct tx_ring_info *rp = &np->tx_rings[i];
  3855. niu_reset_one_tx_channel(np, rp);
  3856. }
  3857. }
  3858. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3859. {
  3860. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  3861. }
  3862. static void niu_stop_rx_channels(struct niu *np)
  3863. {
  3864. int i;
  3865. for (i = 0; i < np->num_rx_rings; i++) {
  3866. struct rx_ring_info *rp = &np->rx_rings[i];
  3867. niu_stop_one_rx_channel(np, rp);
  3868. }
  3869. }
  3870. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3871. {
  3872. int channel = rp->rx_channel;
  3873. (void) niu_rx_channel_reset(np, channel);
  3874. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  3875. nw64(RX_DMA_CTL_STAT(channel), 0);
  3876. (void) niu_enable_rx_channel(np, channel, 0);
  3877. }
  3878. static void niu_reset_rx_channels(struct niu *np)
  3879. {
  3880. int i;
  3881. for (i = 0; i < np->num_rx_rings; i++) {
  3882. struct rx_ring_info *rp = &np->rx_rings[i];
  3883. niu_reset_one_rx_channel(np, rp);
  3884. }
  3885. }
  3886. static void niu_disable_ipp(struct niu *np)
  3887. {
  3888. u64 rd, wr, val;
  3889. int limit;
  3890. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3891. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3892. limit = 100;
  3893. while (--limit >= 0 && (rd != wr)) {
  3894. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3895. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3896. }
  3897. if (limit < 0 &&
  3898. (rd != 0 && wr != 1)) {
  3899. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  3900. "rd_ptr[%llx] wr_ptr[%llx]\n",
  3901. np->dev->name,
  3902. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  3903. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  3904. }
  3905. val = nr64_ipp(IPP_CFIG);
  3906. val &= ~(IPP_CFIG_IPP_ENABLE |
  3907. IPP_CFIG_DFIFO_ECC_EN |
  3908. IPP_CFIG_DROP_BAD_CRC |
  3909. IPP_CFIG_CKSUM_EN);
  3910. nw64_ipp(IPP_CFIG, val);
  3911. (void) niu_ipp_reset(np);
  3912. }
  3913. static int niu_init_hw(struct niu *np)
  3914. {
  3915. int i, err;
  3916. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  3917. niu_txc_enable_port(np, 1);
  3918. niu_txc_port_dma_enable(np, 1);
  3919. niu_txc_set_imask(np, 0);
  3920. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  3921. for (i = 0; i < np->num_tx_rings; i++) {
  3922. struct tx_ring_info *rp = &np->tx_rings[i];
  3923. err = niu_init_one_tx_channel(np, rp);
  3924. if (err)
  3925. return err;
  3926. }
  3927. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  3928. err = niu_init_rx_channels(np);
  3929. if (err)
  3930. goto out_uninit_tx_channels;
  3931. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  3932. err = niu_init_classifier_hw(np);
  3933. if (err)
  3934. goto out_uninit_rx_channels;
  3935. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  3936. err = niu_init_zcp(np);
  3937. if (err)
  3938. goto out_uninit_rx_channels;
  3939. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  3940. err = niu_init_ipp(np);
  3941. if (err)
  3942. goto out_uninit_rx_channels;
  3943. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  3944. err = niu_init_mac(np);
  3945. if (err)
  3946. goto out_uninit_ipp;
  3947. return 0;
  3948. out_uninit_ipp:
  3949. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  3950. niu_disable_ipp(np);
  3951. out_uninit_rx_channels:
  3952. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  3953. niu_stop_rx_channels(np);
  3954. niu_reset_rx_channels(np);
  3955. out_uninit_tx_channels:
  3956. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  3957. niu_stop_tx_channels(np);
  3958. niu_reset_tx_channels(np);
  3959. return err;
  3960. }
  3961. static void niu_stop_hw(struct niu *np)
  3962. {
  3963. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  3964. niu_enable_interrupts(np, 0);
  3965. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  3966. niu_enable_rx_mac(np, 0);
  3967. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  3968. niu_disable_ipp(np);
  3969. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  3970. niu_stop_tx_channels(np);
  3971. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  3972. niu_stop_rx_channels(np);
  3973. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  3974. niu_reset_tx_channels(np);
  3975. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  3976. niu_reset_rx_channels(np);
  3977. }
  3978. static int niu_request_irq(struct niu *np)
  3979. {
  3980. int i, j, err;
  3981. err = 0;
  3982. for (i = 0; i < np->num_ldg; i++) {
  3983. struct niu_ldg *lp = &np->ldg[i];
  3984. err = request_irq(lp->irq, niu_interrupt,
  3985. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  3986. np->dev->name, lp);
  3987. if (err)
  3988. goto out_free_irqs;
  3989. }
  3990. return 0;
  3991. out_free_irqs:
  3992. for (j = 0; j < i; j++) {
  3993. struct niu_ldg *lp = &np->ldg[j];
  3994. free_irq(lp->irq, lp);
  3995. }
  3996. return err;
  3997. }
  3998. static void niu_free_irq(struct niu *np)
  3999. {
  4000. int i;
  4001. for (i = 0; i < np->num_ldg; i++) {
  4002. struct niu_ldg *lp = &np->ldg[i];
  4003. free_irq(lp->irq, lp);
  4004. }
  4005. }
  4006. static void niu_enable_napi(struct niu *np)
  4007. {
  4008. int i;
  4009. for (i = 0; i < np->num_ldg; i++)
  4010. napi_enable(&np->ldg[i].napi);
  4011. }
  4012. static void niu_disable_napi(struct niu *np)
  4013. {
  4014. int i;
  4015. for (i = 0; i < np->num_ldg; i++)
  4016. napi_disable(&np->ldg[i].napi);
  4017. }
  4018. static int niu_open(struct net_device *dev)
  4019. {
  4020. struct niu *np = netdev_priv(dev);
  4021. int err;
  4022. netif_carrier_off(dev);
  4023. err = niu_alloc_channels(np);
  4024. if (err)
  4025. goto out_err;
  4026. err = niu_enable_interrupts(np, 0);
  4027. if (err)
  4028. goto out_free_channels;
  4029. err = niu_request_irq(np);
  4030. if (err)
  4031. goto out_free_channels;
  4032. niu_enable_napi(np);
  4033. spin_lock_irq(&np->lock);
  4034. err = niu_init_hw(np);
  4035. if (!err) {
  4036. init_timer(&np->timer);
  4037. np->timer.expires = jiffies + HZ;
  4038. np->timer.data = (unsigned long) np;
  4039. np->timer.function = niu_timer;
  4040. err = niu_enable_interrupts(np, 1);
  4041. if (err)
  4042. niu_stop_hw(np);
  4043. }
  4044. spin_unlock_irq(&np->lock);
  4045. if (err) {
  4046. niu_disable_napi(np);
  4047. goto out_free_irq;
  4048. }
  4049. netif_start_queue(dev);
  4050. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4051. netif_carrier_on(dev);
  4052. add_timer(&np->timer);
  4053. return 0;
  4054. out_free_irq:
  4055. niu_free_irq(np);
  4056. out_free_channels:
  4057. niu_free_channels(np);
  4058. out_err:
  4059. return err;
  4060. }
  4061. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  4062. {
  4063. cancel_work_sync(&np->reset_task);
  4064. niu_disable_napi(np);
  4065. netif_stop_queue(dev);
  4066. del_timer_sync(&np->timer);
  4067. spin_lock_irq(&np->lock);
  4068. niu_stop_hw(np);
  4069. spin_unlock_irq(&np->lock);
  4070. }
  4071. static int niu_close(struct net_device *dev)
  4072. {
  4073. struct niu *np = netdev_priv(dev);
  4074. niu_full_shutdown(np, dev);
  4075. niu_free_irq(np);
  4076. niu_free_channels(np);
  4077. niu_handle_led(np, 0);
  4078. return 0;
  4079. }
  4080. static void niu_sync_xmac_stats(struct niu *np)
  4081. {
  4082. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  4083. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  4084. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  4085. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  4086. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  4087. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  4088. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  4089. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  4090. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  4091. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  4092. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  4093. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  4094. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  4095. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  4096. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  4097. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  4098. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  4099. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  4100. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  4101. }
  4102. static void niu_sync_bmac_stats(struct niu *np)
  4103. {
  4104. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  4105. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  4106. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  4107. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  4108. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  4109. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  4110. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  4111. }
  4112. static void niu_sync_mac_stats(struct niu *np)
  4113. {
  4114. if (np->flags & NIU_FLAGS_XMAC)
  4115. niu_sync_xmac_stats(np);
  4116. else
  4117. niu_sync_bmac_stats(np);
  4118. }
  4119. static void niu_get_rx_stats(struct niu *np)
  4120. {
  4121. unsigned long pkts, dropped, errors, bytes;
  4122. int i;
  4123. pkts = dropped = errors = bytes = 0;
  4124. for (i = 0; i < np->num_rx_rings; i++) {
  4125. struct rx_ring_info *rp = &np->rx_rings[i];
  4126. pkts += rp->rx_packets;
  4127. bytes += rp->rx_bytes;
  4128. dropped += rp->rx_dropped;
  4129. errors += rp->rx_errors;
  4130. }
  4131. np->net_stats.rx_packets = pkts;
  4132. np->net_stats.rx_bytes = bytes;
  4133. np->net_stats.rx_dropped = dropped;
  4134. np->net_stats.rx_errors = errors;
  4135. }
  4136. static void niu_get_tx_stats(struct niu *np)
  4137. {
  4138. unsigned long pkts, errors, bytes;
  4139. int i;
  4140. pkts = errors = bytes = 0;
  4141. for (i = 0; i < np->num_tx_rings; i++) {
  4142. struct tx_ring_info *rp = &np->tx_rings[i];
  4143. pkts += rp->tx_packets;
  4144. bytes += rp->tx_bytes;
  4145. errors += rp->tx_errors;
  4146. }
  4147. np->net_stats.tx_packets = pkts;
  4148. np->net_stats.tx_bytes = bytes;
  4149. np->net_stats.tx_errors = errors;
  4150. }
  4151. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  4152. {
  4153. struct niu *np = netdev_priv(dev);
  4154. niu_get_rx_stats(np);
  4155. niu_get_tx_stats(np);
  4156. return &np->net_stats;
  4157. }
  4158. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  4159. {
  4160. int i;
  4161. for (i = 0; i < 16; i++)
  4162. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  4163. }
  4164. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  4165. {
  4166. int i;
  4167. for (i = 0; i < 16; i++)
  4168. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  4169. }
  4170. static void niu_load_hash(struct niu *np, u16 *hash)
  4171. {
  4172. if (np->flags & NIU_FLAGS_XMAC)
  4173. niu_load_hash_xmac(np, hash);
  4174. else
  4175. niu_load_hash_bmac(np, hash);
  4176. }
  4177. static void niu_set_rx_mode(struct net_device *dev)
  4178. {
  4179. struct niu *np = netdev_priv(dev);
  4180. int i, alt_cnt, err;
  4181. struct dev_addr_list *addr;
  4182. unsigned long flags;
  4183. u16 hash[16] = { 0, };
  4184. spin_lock_irqsave(&np->lock, flags);
  4185. niu_enable_rx_mac(np, 0);
  4186. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  4187. if (dev->flags & IFF_PROMISC)
  4188. np->flags |= NIU_FLAGS_PROMISC;
  4189. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  4190. np->flags |= NIU_FLAGS_MCAST;
  4191. alt_cnt = dev->uc_count;
  4192. if (alt_cnt > niu_num_alt_addr(np)) {
  4193. alt_cnt = 0;
  4194. np->flags |= NIU_FLAGS_PROMISC;
  4195. }
  4196. if (alt_cnt) {
  4197. int index = 0;
  4198. for (addr = dev->uc_list; addr; addr = addr->next) {
  4199. err = niu_set_alt_mac(np, index,
  4200. addr->da_addr);
  4201. if (err)
  4202. printk(KERN_WARNING PFX "%s: Error %d "
  4203. "adding alt mac %d\n",
  4204. dev->name, err, index);
  4205. err = niu_enable_alt_mac(np, index, 1);
  4206. if (err)
  4207. printk(KERN_WARNING PFX "%s: Error %d "
  4208. "enabling alt mac %d\n",
  4209. dev->name, err, index);
  4210. index++;
  4211. }
  4212. } else {
  4213. for (i = 0; i < niu_num_alt_addr(np); i++) {
  4214. err = niu_enable_alt_mac(np, i, 0);
  4215. if (err)
  4216. printk(KERN_WARNING PFX "%s: Error %d "
  4217. "disabling alt mac %d\n",
  4218. dev->name, err, i);
  4219. }
  4220. }
  4221. if (dev->flags & IFF_ALLMULTI) {
  4222. for (i = 0; i < 16; i++)
  4223. hash[i] = 0xffff;
  4224. } else if (dev->mc_count > 0) {
  4225. for (addr = dev->mc_list; addr; addr = addr->next) {
  4226. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  4227. crc >>= 24;
  4228. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  4229. }
  4230. }
  4231. if (np->flags & NIU_FLAGS_MCAST)
  4232. niu_load_hash(np, hash);
  4233. niu_enable_rx_mac(np, 1);
  4234. spin_unlock_irqrestore(&np->lock, flags);
  4235. }
  4236. static int niu_set_mac_addr(struct net_device *dev, void *p)
  4237. {
  4238. struct niu *np = netdev_priv(dev);
  4239. struct sockaddr *addr = p;
  4240. unsigned long flags;
  4241. if (!is_valid_ether_addr(addr->sa_data))
  4242. return -EINVAL;
  4243. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  4244. if (!netif_running(dev))
  4245. return 0;
  4246. spin_lock_irqsave(&np->lock, flags);
  4247. niu_enable_rx_mac(np, 0);
  4248. niu_set_primary_mac(np, dev->dev_addr);
  4249. niu_enable_rx_mac(np, 1);
  4250. spin_unlock_irqrestore(&np->lock, flags);
  4251. return 0;
  4252. }
  4253. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4254. {
  4255. return -EOPNOTSUPP;
  4256. }
  4257. static void niu_netif_stop(struct niu *np)
  4258. {
  4259. np->dev->trans_start = jiffies; /* prevent tx timeout */
  4260. niu_disable_napi(np);
  4261. netif_tx_disable(np->dev);
  4262. }
  4263. static void niu_netif_start(struct niu *np)
  4264. {
  4265. /* NOTE: unconditional netif_wake_queue is only appropriate
  4266. * so long as all callers are assured to have free tx slots
  4267. * (such as after niu_init_hw).
  4268. */
  4269. netif_wake_queue(np->dev);
  4270. niu_enable_napi(np);
  4271. niu_enable_interrupts(np, 1);
  4272. }
  4273. static void niu_reset_task(struct work_struct *work)
  4274. {
  4275. struct niu *np = container_of(work, struct niu, reset_task);
  4276. unsigned long flags;
  4277. int err;
  4278. spin_lock_irqsave(&np->lock, flags);
  4279. if (!netif_running(np->dev)) {
  4280. spin_unlock_irqrestore(&np->lock, flags);
  4281. return;
  4282. }
  4283. spin_unlock_irqrestore(&np->lock, flags);
  4284. del_timer_sync(&np->timer);
  4285. niu_netif_stop(np);
  4286. spin_lock_irqsave(&np->lock, flags);
  4287. niu_stop_hw(np);
  4288. err = niu_init_hw(np);
  4289. if (!err) {
  4290. np->timer.expires = jiffies + HZ;
  4291. add_timer(&np->timer);
  4292. niu_netif_start(np);
  4293. }
  4294. spin_unlock_irqrestore(&np->lock, flags);
  4295. }
  4296. static void niu_tx_timeout(struct net_device *dev)
  4297. {
  4298. struct niu *np = netdev_priv(dev);
  4299. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  4300. dev->name);
  4301. schedule_work(&np->reset_task);
  4302. }
  4303. static void niu_set_txd(struct tx_ring_info *rp, int index,
  4304. u64 mapping, u64 len, u64 mark,
  4305. u64 n_frags)
  4306. {
  4307. __le64 *desc = &rp->descr[index];
  4308. *desc = cpu_to_le64(mark |
  4309. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  4310. (len << TX_DESC_TR_LEN_SHIFT) |
  4311. (mapping & TX_DESC_SAD));
  4312. }
  4313. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  4314. u64 pad_bytes, u64 len)
  4315. {
  4316. u16 eth_proto, eth_proto_inner;
  4317. u64 csum_bits, l3off, ihl, ret;
  4318. u8 ip_proto;
  4319. int ipv6;
  4320. eth_proto = be16_to_cpu(ehdr->h_proto);
  4321. eth_proto_inner = eth_proto;
  4322. if (eth_proto == ETH_P_8021Q) {
  4323. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  4324. __be16 val = vp->h_vlan_encapsulated_proto;
  4325. eth_proto_inner = be16_to_cpu(val);
  4326. }
  4327. ipv6 = ihl = 0;
  4328. switch (skb->protocol) {
  4329. case __constant_htons(ETH_P_IP):
  4330. ip_proto = ip_hdr(skb)->protocol;
  4331. ihl = ip_hdr(skb)->ihl;
  4332. break;
  4333. case __constant_htons(ETH_P_IPV6):
  4334. ip_proto = ipv6_hdr(skb)->nexthdr;
  4335. ihl = (40 >> 2);
  4336. ipv6 = 1;
  4337. break;
  4338. default:
  4339. ip_proto = ihl = 0;
  4340. break;
  4341. }
  4342. csum_bits = TXHDR_CSUM_NONE;
  4343. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4344. u64 start, stuff;
  4345. csum_bits = (ip_proto == IPPROTO_TCP ?
  4346. TXHDR_CSUM_TCP :
  4347. (ip_proto == IPPROTO_UDP ?
  4348. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  4349. start = skb_transport_offset(skb) -
  4350. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4351. stuff = start + skb->csum_offset;
  4352. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  4353. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  4354. }
  4355. l3off = skb_network_offset(skb) -
  4356. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4357. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  4358. (len << TXHDR_LEN_SHIFT) |
  4359. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  4360. (ihl << TXHDR_IHL_SHIFT) |
  4361. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  4362. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  4363. (ipv6 ? TXHDR_IP_VER : 0) |
  4364. csum_bits);
  4365. return ret;
  4366. }
  4367. static struct tx_ring_info *tx_ring_select(struct niu *np, struct sk_buff *skb)
  4368. {
  4369. return &np->tx_rings[0];
  4370. }
  4371. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4372. {
  4373. struct niu *np = netdev_priv(dev);
  4374. unsigned long align, headroom;
  4375. struct tx_ring_info *rp;
  4376. struct tx_pkt_hdr *tp;
  4377. unsigned int len, nfg;
  4378. struct ethhdr *ehdr;
  4379. int prod, i, tlen;
  4380. u64 mapping, mrk;
  4381. rp = tx_ring_select(np, skb);
  4382. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  4383. netif_stop_queue(dev);
  4384. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  4385. "queue awake!\n", dev->name);
  4386. rp->tx_errors++;
  4387. return NETDEV_TX_BUSY;
  4388. }
  4389. if (skb->len < ETH_ZLEN) {
  4390. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  4391. if (skb_pad(skb, pad_bytes))
  4392. goto out;
  4393. skb_put(skb, pad_bytes);
  4394. }
  4395. len = sizeof(struct tx_pkt_hdr) + 15;
  4396. if (skb_headroom(skb) < len) {
  4397. struct sk_buff *skb_new;
  4398. skb_new = skb_realloc_headroom(skb, len);
  4399. if (!skb_new) {
  4400. rp->tx_errors++;
  4401. goto out_drop;
  4402. }
  4403. kfree_skb(skb);
  4404. skb = skb_new;
  4405. } else
  4406. skb_orphan(skb);
  4407. align = ((unsigned long) skb->data & (16 - 1));
  4408. headroom = align + sizeof(struct tx_pkt_hdr);
  4409. ehdr = (struct ethhdr *) skb->data;
  4410. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  4411. len = skb->len - sizeof(struct tx_pkt_hdr);
  4412. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  4413. tp->resv = 0;
  4414. len = skb_headlen(skb);
  4415. mapping = np->ops->map_single(np->device, skb->data,
  4416. len, DMA_TO_DEVICE);
  4417. prod = rp->prod;
  4418. rp->tx_buffs[prod].skb = skb;
  4419. rp->tx_buffs[prod].mapping = mapping;
  4420. mrk = TX_DESC_SOP;
  4421. if (++rp->mark_counter == rp->mark_freq) {
  4422. rp->mark_counter = 0;
  4423. mrk |= TX_DESC_MARK;
  4424. rp->mark_pending++;
  4425. }
  4426. tlen = len;
  4427. nfg = skb_shinfo(skb)->nr_frags;
  4428. while (tlen > 0) {
  4429. tlen -= MAX_TX_DESC_LEN;
  4430. nfg++;
  4431. }
  4432. while (len > 0) {
  4433. unsigned int this_len = len;
  4434. if (this_len > MAX_TX_DESC_LEN)
  4435. this_len = MAX_TX_DESC_LEN;
  4436. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  4437. mrk = nfg = 0;
  4438. prod = NEXT_TX(rp, prod);
  4439. mapping += this_len;
  4440. len -= this_len;
  4441. }
  4442. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  4443. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4444. len = frag->size;
  4445. mapping = np->ops->map_page(np->device, frag->page,
  4446. frag->page_offset, len,
  4447. DMA_TO_DEVICE);
  4448. rp->tx_buffs[prod].skb = NULL;
  4449. rp->tx_buffs[prod].mapping = mapping;
  4450. niu_set_txd(rp, prod, mapping, len, 0, 0);
  4451. prod = NEXT_TX(rp, prod);
  4452. }
  4453. if (prod < rp->prod)
  4454. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  4455. rp->prod = prod;
  4456. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  4457. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  4458. netif_stop_queue(dev);
  4459. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  4460. netif_wake_queue(dev);
  4461. }
  4462. dev->trans_start = jiffies;
  4463. out:
  4464. return NETDEV_TX_OK;
  4465. out_drop:
  4466. rp->tx_errors++;
  4467. kfree_skb(skb);
  4468. goto out;
  4469. }
  4470. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  4471. {
  4472. struct niu *np = netdev_priv(dev);
  4473. int err, orig_jumbo, new_jumbo;
  4474. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  4475. return -EINVAL;
  4476. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  4477. new_jumbo = (new_mtu > ETH_DATA_LEN);
  4478. dev->mtu = new_mtu;
  4479. if (!netif_running(dev) ||
  4480. (orig_jumbo == new_jumbo))
  4481. return 0;
  4482. niu_full_shutdown(np, dev);
  4483. niu_free_channels(np);
  4484. niu_enable_napi(np);
  4485. err = niu_alloc_channels(np);
  4486. if (err)
  4487. return err;
  4488. spin_lock_irq(&np->lock);
  4489. err = niu_init_hw(np);
  4490. if (!err) {
  4491. init_timer(&np->timer);
  4492. np->timer.expires = jiffies + HZ;
  4493. np->timer.data = (unsigned long) np;
  4494. np->timer.function = niu_timer;
  4495. err = niu_enable_interrupts(np, 1);
  4496. if (err)
  4497. niu_stop_hw(np);
  4498. }
  4499. spin_unlock_irq(&np->lock);
  4500. if (!err) {
  4501. netif_start_queue(dev);
  4502. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4503. netif_carrier_on(dev);
  4504. add_timer(&np->timer);
  4505. }
  4506. return err;
  4507. }
  4508. static void niu_get_drvinfo(struct net_device *dev,
  4509. struct ethtool_drvinfo *info)
  4510. {
  4511. struct niu *np = netdev_priv(dev);
  4512. struct niu_vpd *vpd = &np->vpd;
  4513. strcpy(info->driver, DRV_MODULE_NAME);
  4514. strcpy(info->version, DRV_MODULE_VERSION);
  4515. sprintf(info->fw_version, "%d.%d",
  4516. vpd->fcode_major, vpd->fcode_minor);
  4517. if (np->parent->plat_type != PLAT_TYPE_NIU)
  4518. strcpy(info->bus_info, pci_name(np->pdev));
  4519. }
  4520. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4521. {
  4522. struct niu *np = netdev_priv(dev);
  4523. struct niu_link_config *lp;
  4524. lp = &np->link_config;
  4525. memset(cmd, 0, sizeof(*cmd));
  4526. cmd->phy_address = np->phy_addr;
  4527. cmd->supported = lp->supported;
  4528. cmd->advertising = lp->advertising;
  4529. cmd->autoneg = lp->autoneg;
  4530. cmd->speed = lp->active_speed;
  4531. cmd->duplex = lp->active_duplex;
  4532. return 0;
  4533. }
  4534. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4535. {
  4536. return -EINVAL;
  4537. }
  4538. static u32 niu_get_msglevel(struct net_device *dev)
  4539. {
  4540. struct niu *np = netdev_priv(dev);
  4541. return np->msg_enable;
  4542. }
  4543. static void niu_set_msglevel(struct net_device *dev, u32 value)
  4544. {
  4545. struct niu *np = netdev_priv(dev);
  4546. np->msg_enable = value;
  4547. }
  4548. static int niu_get_eeprom_len(struct net_device *dev)
  4549. {
  4550. struct niu *np = netdev_priv(dev);
  4551. return np->eeprom_len;
  4552. }
  4553. static int niu_get_eeprom(struct net_device *dev,
  4554. struct ethtool_eeprom *eeprom, u8 *data)
  4555. {
  4556. struct niu *np = netdev_priv(dev);
  4557. u32 offset, len, val;
  4558. offset = eeprom->offset;
  4559. len = eeprom->len;
  4560. if (offset + len < offset)
  4561. return -EINVAL;
  4562. if (offset >= np->eeprom_len)
  4563. return -EINVAL;
  4564. if (offset + len > np->eeprom_len)
  4565. len = eeprom->len = np->eeprom_len - offset;
  4566. if (offset & 3) {
  4567. u32 b_offset, b_count;
  4568. b_offset = offset & 3;
  4569. b_count = 4 - b_offset;
  4570. if (b_count > len)
  4571. b_count = len;
  4572. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  4573. memcpy(data, ((char *)&val) + b_offset, b_count);
  4574. data += b_count;
  4575. len -= b_count;
  4576. offset += b_count;
  4577. }
  4578. while (len >= 4) {
  4579. val = nr64(ESPC_NCR(offset / 4));
  4580. memcpy(data, &val, 4);
  4581. data += 4;
  4582. len -= 4;
  4583. offset += 4;
  4584. }
  4585. if (len) {
  4586. val = nr64(ESPC_NCR(offset / 4));
  4587. memcpy(data, &val, len);
  4588. }
  4589. return 0;
  4590. }
  4591. static const struct {
  4592. const char string[ETH_GSTRING_LEN];
  4593. } niu_xmac_stat_keys[] = {
  4594. { "tx_frames" },
  4595. { "tx_bytes" },
  4596. { "tx_fifo_errors" },
  4597. { "tx_overflow_errors" },
  4598. { "tx_max_pkt_size_errors" },
  4599. { "tx_underflow_errors" },
  4600. { "rx_local_faults" },
  4601. { "rx_remote_faults" },
  4602. { "rx_link_faults" },
  4603. { "rx_align_errors" },
  4604. { "rx_frags" },
  4605. { "rx_mcasts" },
  4606. { "rx_bcasts" },
  4607. { "rx_hist_cnt1" },
  4608. { "rx_hist_cnt2" },
  4609. { "rx_hist_cnt3" },
  4610. { "rx_hist_cnt4" },
  4611. { "rx_hist_cnt5" },
  4612. { "rx_hist_cnt6" },
  4613. { "rx_hist_cnt7" },
  4614. { "rx_octets" },
  4615. { "rx_code_violations" },
  4616. { "rx_len_errors" },
  4617. { "rx_crc_errors" },
  4618. { "rx_underflows" },
  4619. { "rx_overflows" },
  4620. { "pause_off_state" },
  4621. { "pause_on_state" },
  4622. { "pause_received" },
  4623. };
  4624. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  4625. static const struct {
  4626. const char string[ETH_GSTRING_LEN];
  4627. } niu_bmac_stat_keys[] = {
  4628. { "tx_underflow_errors" },
  4629. { "tx_max_pkt_size_errors" },
  4630. { "tx_bytes" },
  4631. { "tx_frames" },
  4632. { "rx_overflows" },
  4633. { "rx_frames" },
  4634. { "rx_align_errors" },
  4635. { "rx_crc_errors" },
  4636. { "rx_len_errors" },
  4637. { "pause_off_state" },
  4638. { "pause_on_state" },
  4639. { "pause_received" },
  4640. };
  4641. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  4642. static const struct {
  4643. const char string[ETH_GSTRING_LEN];
  4644. } niu_rxchan_stat_keys[] = {
  4645. { "rx_channel" },
  4646. { "rx_packets" },
  4647. { "rx_bytes" },
  4648. { "rx_dropped" },
  4649. { "rx_errors" },
  4650. };
  4651. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  4652. static const struct {
  4653. const char string[ETH_GSTRING_LEN];
  4654. } niu_txchan_stat_keys[] = {
  4655. { "tx_channel" },
  4656. { "tx_packets" },
  4657. { "tx_bytes" },
  4658. { "tx_errors" },
  4659. };
  4660. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  4661. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  4662. {
  4663. struct niu *np = netdev_priv(dev);
  4664. int i;
  4665. if (stringset != ETH_SS_STATS)
  4666. return;
  4667. if (np->flags & NIU_FLAGS_XMAC) {
  4668. memcpy(data, niu_xmac_stat_keys,
  4669. sizeof(niu_xmac_stat_keys));
  4670. data += sizeof(niu_xmac_stat_keys);
  4671. } else {
  4672. memcpy(data, niu_bmac_stat_keys,
  4673. sizeof(niu_bmac_stat_keys));
  4674. data += sizeof(niu_bmac_stat_keys);
  4675. }
  4676. for (i = 0; i < np->num_rx_rings; i++) {
  4677. memcpy(data, niu_rxchan_stat_keys,
  4678. sizeof(niu_rxchan_stat_keys));
  4679. data += sizeof(niu_rxchan_stat_keys);
  4680. }
  4681. for (i = 0; i < np->num_tx_rings; i++) {
  4682. memcpy(data, niu_txchan_stat_keys,
  4683. sizeof(niu_txchan_stat_keys));
  4684. data += sizeof(niu_txchan_stat_keys);
  4685. }
  4686. }
  4687. static int niu_get_stats_count(struct net_device *dev)
  4688. {
  4689. struct niu *np = netdev_priv(dev);
  4690. return ((np->flags & NIU_FLAGS_XMAC ?
  4691. NUM_XMAC_STAT_KEYS :
  4692. NUM_BMAC_STAT_KEYS) +
  4693. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  4694. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  4695. }
  4696. static void niu_get_ethtool_stats(struct net_device *dev,
  4697. struct ethtool_stats *stats, u64 *data)
  4698. {
  4699. struct niu *np = netdev_priv(dev);
  4700. int i;
  4701. niu_sync_mac_stats(np);
  4702. if (np->flags & NIU_FLAGS_XMAC) {
  4703. memcpy(data, &np->mac_stats.xmac,
  4704. sizeof(struct niu_xmac_stats));
  4705. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  4706. } else {
  4707. memcpy(data, &np->mac_stats.bmac,
  4708. sizeof(struct niu_bmac_stats));
  4709. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  4710. }
  4711. for (i = 0; i < np->num_rx_rings; i++) {
  4712. struct rx_ring_info *rp = &np->rx_rings[i];
  4713. data[0] = rp->rx_channel;
  4714. data[1] = rp->rx_packets;
  4715. data[2] = rp->rx_bytes;
  4716. data[3] = rp->rx_dropped;
  4717. data[4] = rp->rx_errors;
  4718. data += 5;
  4719. }
  4720. for (i = 0; i < np->num_tx_rings; i++) {
  4721. struct tx_ring_info *rp = &np->tx_rings[i];
  4722. data[0] = rp->tx_channel;
  4723. data[1] = rp->tx_packets;
  4724. data[2] = rp->tx_bytes;
  4725. data[3] = rp->tx_errors;
  4726. data += 4;
  4727. }
  4728. }
  4729. static u64 niu_led_state_save(struct niu *np)
  4730. {
  4731. if (np->flags & NIU_FLAGS_XMAC)
  4732. return nr64_mac(XMAC_CONFIG);
  4733. else
  4734. return nr64_mac(BMAC_XIF_CONFIG);
  4735. }
  4736. static void niu_led_state_restore(struct niu *np, u64 val)
  4737. {
  4738. if (np->flags & NIU_FLAGS_XMAC)
  4739. nw64_mac(XMAC_CONFIG, val);
  4740. else
  4741. nw64_mac(BMAC_XIF_CONFIG, val);
  4742. }
  4743. static void niu_force_led(struct niu *np, int on)
  4744. {
  4745. u64 val, reg, bit;
  4746. if (np->flags & NIU_FLAGS_XMAC) {
  4747. reg = XMAC_CONFIG;
  4748. bit = XMAC_CONFIG_FORCE_LED_ON;
  4749. } else {
  4750. reg = BMAC_XIF_CONFIG;
  4751. bit = BMAC_XIF_CONFIG_LINK_LED;
  4752. }
  4753. val = nr64_mac(reg);
  4754. if (on)
  4755. val |= bit;
  4756. else
  4757. val &= ~bit;
  4758. nw64_mac(reg, val);
  4759. }
  4760. static int niu_phys_id(struct net_device *dev, u32 data)
  4761. {
  4762. struct niu *np = netdev_priv(dev);
  4763. u64 orig_led_state;
  4764. int i;
  4765. if (!netif_running(dev))
  4766. return -EAGAIN;
  4767. if (data == 0)
  4768. data = 2;
  4769. orig_led_state = niu_led_state_save(np);
  4770. for (i = 0; i < (data * 2); i++) {
  4771. int on = ((i % 2) == 0);
  4772. niu_force_led(np, on);
  4773. if (msleep_interruptible(500))
  4774. break;
  4775. }
  4776. niu_led_state_restore(np, orig_led_state);
  4777. return 0;
  4778. }
  4779. static const struct ethtool_ops niu_ethtool_ops = {
  4780. .get_drvinfo = niu_get_drvinfo,
  4781. .get_link = ethtool_op_get_link,
  4782. .get_msglevel = niu_get_msglevel,
  4783. .set_msglevel = niu_set_msglevel,
  4784. .get_eeprom_len = niu_get_eeprom_len,
  4785. .get_eeprom = niu_get_eeprom,
  4786. .get_settings = niu_get_settings,
  4787. .set_settings = niu_set_settings,
  4788. .get_strings = niu_get_strings,
  4789. .get_stats_count = niu_get_stats_count,
  4790. .get_ethtool_stats = niu_get_ethtool_stats,
  4791. .phys_id = niu_phys_id,
  4792. };
  4793. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  4794. int ldg, int ldn)
  4795. {
  4796. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  4797. return -EINVAL;
  4798. if (ldn < 0 || ldn > LDN_MAX)
  4799. return -EINVAL;
  4800. parent->ldg_map[ldn] = ldg;
  4801. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  4802. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  4803. * the firmware, and we're not supposed to change them.
  4804. * Validate the mapping, because if it's wrong we probably
  4805. * won't get any interrupts and that's painful to debug.
  4806. */
  4807. if (nr64(LDG_NUM(ldn)) != ldg) {
  4808. dev_err(np->device, PFX "Port %u, mis-matched "
  4809. "LDG assignment "
  4810. "for ldn %d, should be %d is %llu\n",
  4811. np->port, ldn, ldg,
  4812. (unsigned long long) nr64(LDG_NUM(ldn)));
  4813. return -EINVAL;
  4814. }
  4815. } else
  4816. nw64(LDG_NUM(ldn), ldg);
  4817. return 0;
  4818. }
  4819. static int niu_set_ldg_timer_res(struct niu *np, int res)
  4820. {
  4821. if (res < 0 || res > LDG_TIMER_RES_VAL)
  4822. return -EINVAL;
  4823. nw64(LDG_TIMER_RES, res);
  4824. return 0;
  4825. }
  4826. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  4827. {
  4828. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  4829. (func < 0 || func > 3) ||
  4830. (vector < 0 || vector > 0x1f))
  4831. return -EINVAL;
  4832. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  4833. return 0;
  4834. }
  4835. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  4836. {
  4837. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  4838. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  4839. int limit;
  4840. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  4841. return -EINVAL;
  4842. frame = frame_base;
  4843. nw64(ESPC_PIO_STAT, frame);
  4844. limit = 64;
  4845. do {
  4846. udelay(5);
  4847. frame = nr64(ESPC_PIO_STAT);
  4848. if (frame & ESPC_PIO_STAT_READ_END)
  4849. break;
  4850. } while (limit--);
  4851. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4852. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4853. (unsigned long long) frame);
  4854. return -ENODEV;
  4855. }
  4856. frame = frame_base;
  4857. nw64(ESPC_PIO_STAT, frame);
  4858. limit = 64;
  4859. do {
  4860. udelay(5);
  4861. frame = nr64(ESPC_PIO_STAT);
  4862. if (frame & ESPC_PIO_STAT_READ_END)
  4863. break;
  4864. } while (limit--);
  4865. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4866. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4867. (unsigned long long) frame);
  4868. return -ENODEV;
  4869. }
  4870. frame = nr64(ESPC_PIO_STAT);
  4871. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  4872. }
  4873. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  4874. {
  4875. int err = niu_pci_eeprom_read(np, off);
  4876. u16 val;
  4877. if (err < 0)
  4878. return err;
  4879. val = (err << 8);
  4880. err = niu_pci_eeprom_read(np, off + 1);
  4881. if (err < 0)
  4882. return err;
  4883. val |= (err & 0xff);
  4884. return val;
  4885. }
  4886. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  4887. {
  4888. int err = niu_pci_eeprom_read(np, off);
  4889. u16 val;
  4890. if (err < 0)
  4891. return err;
  4892. val = (err & 0xff);
  4893. err = niu_pci_eeprom_read(np, off + 1);
  4894. if (err < 0)
  4895. return err;
  4896. val |= (err & 0xff) << 8;
  4897. return val;
  4898. }
  4899. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  4900. u32 off,
  4901. char *namebuf,
  4902. int namebuf_len)
  4903. {
  4904. int i;
  4905. for (i = 0; i < namebuf_len; i++) {
  4906. int err = niu_pci_eeprom_read(np, off + i);
  4907. if (err < 0)
  4908. return err;
  4909. *namebuf++ = err;
  4910. if (!err)
  4911. break;
  4912. }
  4913. if (i >= namebuf_len)
  4914. return -EINVAL;
  4915. return i + 1;
  4916. }
  4917. static void __devinit niu_vpd_parse_version(struct niu *np)
  4918. {
  4919. struct niu_vpd *vpd = &np->vpd;
  4920. int len = strlen(vpd->version) + 1;
  4921. const char *s = vpd->version;
  4922. int i;
  4923. for (i = 0; i < len - 5; i++) {
  4924. if (!strncmp(s + i, "FCode ", 5))
  4925. break;
  4926. }
  4927. if (i >= len - 5)
  4928. return;
  4929. s += i + 5;
  4930. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  4931. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  4932. vpd->fcode_major, vpd->fcode_minor);
  4933. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  4934. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  4935. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  4936. np->flags |= NIU_FLAGS_VPD_VALID;
  4937. }
  4938. /* ESPC_PIO_EN_ENABLE must be set */
  4939. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  4940. u32 start, u32 end)
  4941. {
  4942. unsigned int found_mask = 0;
  4943. #define FOUND_MASK_MODEL 0x00000001
  4944. #define FOUND_MASK_BMODEL 0x00000002
  4945. #define FOUND_MASK_VERS 0x00000004
  4946. #define FOUND_MASK_MAC 0x00000008
  4947. #define FOUND_MASK_NMAC 0x00000010
  4948. #define FOUND_MASK_PHY 0x00000020
  4949. #define FOUND_MASK_ALL 0x0000003f
  4950. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  4951. start, end);
  4952. while (start < end) {
  4953. int len, err, instance, type, prop_len;
  4954. char namebuf[64];
  4955. u8 *prop_buf;
  4956. int max_len;
  4957. if (found_mask == FOUND_MASK_ALL) {
  4958. niu_vpd_parse_version(np);
  4959. return 1;
  4960. }
  4961. err = niu_pci_eeprom_read(np, start + 2);
  4962. if (err < 0)
  4963. return err;
  4964. len = err;
  4965. start += 3;
  4966. instance = niu_pci_eeprom_read(np, start);
  4967. type = niu_pci_eeprom_read(np, start + 3);
  4968. prop_len = niu_pci_eeprom_read(np, start + 4);
  4969. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  4970. if (err < 0)
  4971. return err;
  4972. prop_buf = NULL;
  4973. max_len = 0;
  4974. if (!strcmp(namebuf, "model")) {
  4975. prop_buf = np->vpd.model;
  4976. max_len = NIU_VPD_MODEL_MAX;
  4977. found_mask |= FOUND_MASK_MODEL;
  4978. } else if (!strcmp(namebuf, "board-model")) {
  4979. prop_buf = np->vpd.board_model;
  4980. max_len = NIU_VPD_BD_MODEL_MAX;
  4981. found_mask |= FOUND_MASK_BMODEL;
  4982. } else if (!strcmp(namebuf, "version")) {
  4983. prop_buf = np->vpd.version;
  4984. max_len = NIU_VPD_VERSION_MAX;
  4985. found_mask |= FOUND_MASK_VERS;
  4986. } else if (!strcmp(namebuf, "local-mac-address")) {
  4987. prop_buf = np->vpd.local_mac;
  4988. max_len = ETH_ALEN;
  4989. found_mask |= FOUND_MASK_MAC;
  4990. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  4991. prop_buf = &np->vpd.mac_num;
  4992. max_len = 1;
  4993. found_mask |= FOUND_MASK_NMAC;
  4994. } else if (!strcmp(namebuf, "phy-type")) {
  4995. prop_buf = np->vpd.phy_type;
  4996. max_len = NIU_VPD_PHY_TYPE_MAX;
  4997. found_mask |= FOUND_MASK_PHY;
  4998. }
  4999. if (max_len && prop_len > max_len) {
  5000. dev_err(np->device, PFX "Property '%s' length (%d) is "
  5001. "too long.\n", namebuf, prop_len);
  5002. return -EINVAL;
  5003. }
  5004. if (prop_buf) {
  5005. u32 off = start + 5 + err;
  5006. int i;
  5007. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  5008. "len[%d]\n", namebuf, prop_len);
  5009. for (i = 0; i < prop_len; i++)
  5010. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  5011. }
  5012. start += len;
  5013. }
  5014. return 0;
  5015. }
  5016. /* ESPC_PIO_EN_ENABLE must be set */
  5017. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  5018. {
  5019. u32 offset;
  5020. int err;
  5021. err = niu_pci_eeprom_read16_swp(np, start + 1);
  5022. if (err < 0)
  5023. return;
  5024. offset = err + 3;
  5025. while (start + offset < ESPC_EEPROM_SIZE) {
  5026. u32 here = start + offset;
  5027. u32 end;
  5028. err = niu_pci_eeprom_read(np, here);
  5029. if (err != 0x90)
  5030. return;
  5031. err = niu_pci_eeprom_read16_swp(np, here + 1);
  5032. if (err < 0)
  5033. return;
  5034. here = start + offset + 3;
  5035. end = start + offset + err;
  5036. offset += err;
  5037. err = niu_pci_vpd_scan_props(np, here, end);
  5038. if (err < 0 || err == 1)
  5039. return;
  5040. }
  5041. }
  5042. /* ESPC_PIO_EN_ENABLE must be set */
  5043. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  5044. {
  5045. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  5046. int err;
  5047. while (start < end) {
  5048. ret = start;
  5049. /* ROM header signature? */
  5050. err = niu_pci_eeprom_read16(np, start + 0);
  5051. if (err != 0x55aa)
  5052. return 0;
  5053. /* Apply offset to PCI data structure. */
  5054. err = niu_pci_eeprom_read16(np, start + 23);
  5055. if (err < 0)
  5056. return 0;
  5057. start += err;
  5058. /* Check for "PCIR" signature. */
  5059. err = niu_pci_eeprom_read16(np, start + 0);
  5060. if (err != 0x5043)
  5061. return 0;
  5062. err = niu_pci_eeprom_read16(np, start + 2);
  5063. if (err != 0x4952)
  5064. return 0;
  5065. /* Check for OBP image type. */
  5066. err = niu_pci_eeprom_read(np, start + 20);
  5067. if (err < 0)
  5068. return 0;
  5069. if (err != 0x01) {
  5070. err = niu_pci_eeprom_read(np, ret + 2);
  5071. if (err < 0)
  5072. return 0;
  5073. start = ret + (err * 512);
  5074. continue;
  5075. }
  5076. err = niu_pci_eeprom_read16_swp(np, start + 8);
  5077. if (err < 0)
  5078. return err;
  5079. ret += err;
  5080. err = niu_pci_eeprom_read(np, ret + 0);
  5081. if (err != 0x82)
  5082. return 0;
  5083. return ret;
  5084. }
  5085. return 0;
  5086. }
  5087. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  5088. const char *phy_prop)
  5089. {
  5090. if (!strcmp(phy_prop, "mif")) {
  5091. /* 1G copper, MII */
  5092. np->flags &= ~(NIU_FLAGS_FIBER |
  5093. NIU_FLAGS_10G);
  5094. np->mac_xcvr = MAC_XCVR_MII;
  5095. } else if (!strcmp(phy_prop, "xgf")) {
  5096. /* 10G fiber, XPCS */
  5097. np->flags |= (NIU_FLAGS_10G |
  5098. NIU_FLAGS_FIBER);
  5099. np->mac_xcvr = MAC_XCVR_XPCS;
  5100. } else if (!strcmp(phy_prop, "pcs")) {
  5101. /* 1G fiber, PCS */
  5102. np->flags &= ~NIU_FLAGS_10G;
  5103. np->flags |= NIU_FLAGS_FIBER;
  5104. np->mac_xcvr = MAC_XCVR_PCS;
  5105. } else if (!strcmp(phy_prop, "xgc")) {
  5106. /* 10G copper, XPCS */
  5107. np->flags |= NIU_FLAGS_10G;
  5108. np->flags &= ~NIU_FLAGS_FIBER;
  5109. np->mac_xcvr = MAC_XCVR_XPCS;
  5110. } else {
  5111. return -EINVAL;
  5112. }
  5113. return 0;
  5114. }
  5115. static void __devinit niu_pci_vpd_validate(struct niu *np)
  5116. {
  5117. struct net_device *dev = np->dev;
  5118. struct niu_vpd *vpd = &np->vpd;
  5119. u8 val8;
  5120. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  5121. dev_err(np->device, PFX "VPD MAC invalid, "
  5122. "falling back to SPROM.\n");
  5123. np->flags &= ~NIU_FLAGS_VPD_VALID;
  5124. return;
  5125. }
  5126. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  5127. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  5128. np->vpd.phy_type);
  5129. dev_err(np->device, PFX "Falling back to SPROM.\n");
  5130. np->flags &= ~NIU_FLAGS_VPD_VALID;
  5131. return;
  5132. }
  5133. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  5134. val8 = dev->perm_addr[5];
  5135. dev->perm_addr[5] += np->port;
  5136. if (dev->perm_addr[5] < val8)
  5137. dev->perm_addr[4]++;
  5138. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5139. }
  5140. static int __devinit niu_pci_probe_sprom(struct niu *np)
  5141. {
  5142. struct net_device *dev = np->dev;
  5143. int len, i;
  5144. u64 val, sum;
  5145. u8 val8;
  5146. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  5147. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  5148. len = val / 4;
  5149. np->eeprom_len = len;
  5150. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  5151. sum = 0;
  5152. for (i = 0; i < len; i++) {
  5153. val = nr64(ESPC_NCR(i));
  5154. sum += (val >> 0) & 0xff;
  5155. sum += (val >> 8) & 0xff;
  5156. sum += (val >> 16) & 0xff;
  5157. sum += (val >> 24) & 0xff;
  5158. }
  5159. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  5160. if ((sum & 0xff) != 0xab) {
  5161. dev_err(np->device, PFX "Bad SPROM checksum "
  5162. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  5163. return -EINVAL;
  5164. }
  5165. val = nr64(ESPC_PHY_TYPE);
  5166. switch (np->port) {
  5167. case 0:
  5168. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  5169. ESPC_PHY_TYPE_PORT0_SHIFT;
  5170. break;
  5171. case 1:
  5172. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  5173. ESPC_PHY_TYPE_PORT1_SHIFT;
  5174. break;
  5175. case 2:
  5176. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  5177. ESPC_PHY_TYPE_PORT2_SHIFT;
  5178. break;
  5179. case 3:
  5180. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  5181. ESPC_PHY_TYPE_PORT3_SHIFT;
  5182. break;
  5183. default:
  5184. dev_err(np->device, PFX "Bogus port number %u\n",
  5185. np->port);
  5186. return -EINVAL;
  5187. }
  5188. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  5189. switch (val8) {
  5190. case ESPC_PHY_TYPE_1G_COPPER:
  5191. /* 1G copper, MII */
  5192. np->flags &= ~(NIU_FLAGS_FIBER |
  5193. NIU_FLAGS_10G);
  5194. np->mac_xcvr = MAC_XCVR_MII;
  5195. break;
  5196. case ESPC_PHY_TYPE_1G_FIBER:
  5197. /* 1G fiber, PCS */
  5198. np->flags &= ~NIU_FLAGS_10G;
  5199. np->flags |= NIU_FLAGS_FIBER;
  5200. np->mac_xcvr = MAC_XCVR_PCS;
  5201. break;
  5202. case ESPC_PHY_TYPE_10G_COPPER:
  5203. /* 10G copper, XPCS */
  5204. np->flags |= NIU_FLAGS_10G;
  5205. np->flags &= ~NIU_FLAGS_FIBER;
  5206. np->mac_xcvr = MAC_XCVR_XPCS;
  5207. break;
  5208. case ESPC_PHY_TYPE_10G_FIBER:
  5209. /* 10G fiber, XPCS */
  5210. np->flags |= (NIU_FLAGS_10G |
  5211. NIU_FLAGS_FIBER);
  5212. np->mac_xcvr = MAC_XCVR_XPCS;
  5213. break;
  5214. default:
  5215. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  5216. return -EINVAL;
  5217. }
  5218. val = nr64(ESPC_MAC_ADDR0);
  5219. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  5220. (unsigned long long) val);
  5221. dev->perm_addr[0] = (val >> 0) & 0xff;
  5222. dev->perm_addr[1] = (val >> 8) & 0xff;
  5223. dev->perm_addr[2] = (val >> 16) & 0xff;
  5224. dev->perm_addr[3] = (val >> 24) & 0xff;
  5225. val = nr64(ESPC_MAC_ADDR1);
  5226. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  5227. (unsigned long long) val);
  5228. dev->perm_addr[4] = (val >> 0) & 0xff;
  5229. dev->perm_addr[5] = (val >> 8) & 0xff;
  5230. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5231. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  5232. dev_err(np->device, PFX "[ \n");
  5233. for (i = 0; i < 6; i++)
  5234. printk("%02x ", dev->perm_addr[i]);
  5235. printk("]\n");
  5236. return -EINVAL;
  5237. }
  5238. val8 = dev->perm_addr[5];
  5239. dev->perm_addr[5] += np->port;
  5240. if (dev->perm_addr[5] < val8)
  5241. dev->perm_addr[4]++;
  5242. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5243. val = nr64(ESPC_MOD_STR_LEN);
  5244. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  5245. (unsigned long long) val);
  5246. if (val >= 8 * 4)
  5247. return -EINVAL;
  5248. for (i = 0; i < val; i += 4) {
  5249. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  5250. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  5251. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  5252. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  5253. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  5254. }
  5255. np->vpd.model[val] = '\0';
  5256. val = nr64(ESPC_BD_MOD_STR_LEN);
  5257. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  5258. (unsigned long long) val);
  5259. if (val >= 4 * 4)
  5260. return -EINVAL;
  5261. for (i = 0; i < val; i += 4) {
  5262. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  5263. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  5264. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  5265. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  5266. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  5267. }
  5268. np->vpd.board_model[val] = '\0';
  5269. np->vpd.mac_num =
  5270. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  5271. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  5272. np->vpd.mac_num);
  5273. return 0;
  5274. }
  5275. static int __devinit niu_get_and_validate_port(struct niu *np)
  5276. {
  5277. struct niu_parent *parent = np->parent;
  5278. if (np->port <= 1)
  5279. np->flags |= NIU_FLAGS_XMAC;
  5280. if (!parent->num_ports) {
  5281. if (parent->plat_type == PLAT_TYPE_NIU) {
  5282. parent->num_ports = 2;
  5283. } else {
  5284. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  5285. ESPC_NUM_PORTS_MACS_VAL;
  5286. if (!parent->num_ports)
  5287. parent->num_ports = 4;
  5288. }
  5289. }
  5290. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  5291. np->port, parent->num_ports);
  5292. if (np->port >= parent->num_ports)
  5293. return -ENODEV;
  5294. return 0;
  5295. }
  5296. static int __devinit phy_record(struct niu_parent *parent,
  5297. struct phy_probe_info *p,
  5298. int dev_id_1, int dev_id_2, u8 phy_port,
  5299. int type)
  5300. {
  5301. u32 id = (dev_id_1 << 16) | dev_id_2;
  5302. u8 idx;
  5303. if (dev_id_1 < 0 || dev_id_2 < 0)
  5304. return 0;
  5305. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  5306. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  5307. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  5308. return 0;
  5309. } else {
  5310. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  5311. return 0;
  5312. }
  5313. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  5314. parent->index, id,
  5315. (type == PHY_TYPE_PMA_PMD ?
  5316. "PMA/PMD" :
  5317. (type == PHY_TYPE_PCS ?
  5318. "PCS" : "MII")),
  5319. phy_port);
  5320. if (p->cur[type] >= NIU_MAX_PORTS) {
  5321. printk(KERN_ERR PFX "Too many PHY ports.\n");
  5322. return -EINVAL;
  5323. }
  5324. idx = p->cur[type];
  5325. p->phy_id[type][idx] = id;
  5326. p->phy_port[type][idx] = phy_port;
  5327. p->cur[type] = idx + 1;
  5328. return 0;
  5329. }
  5330. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  5331. {
  5332. int i;
  5333. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  5334. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  5335. return 1;
  5336. }
  5337. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  5338. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  5339. return 1;
  5340. }
  5341. return 0;
  5342. }
  5343. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  5344. {
  5345. int port, cnt;
  5346. cnt = 0;
  5347. *lowest = 32;
  5348. for (port = 8; port < 32; port++) {
  5349. if (port_has_10g(p, port)) {
  5350. if (!cnt)
  5351. *lowest = port;
  5352. cnt++;
  5353. }
  5354. }
  5355. return cnt;
  5356. }
  5357. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  5358. {
  5359. *lowest = 32;
  5360. if (p->cur[PHY_TYPE_MII])
  5361. *lowest = p->phy_port[PHY_TYPE_MII][0];
  5362. return p->cur[PHY_TYPE_MII];
  5363. }
  5364. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  5365. {
  5366. int num_ports = parent->num_ports;
  5367. int i;
  5368. for (i = 0; i < num_ports; i++) {
  5369. parent->rxchan_per_port[i] = (16 / num_ports);
  5370. parent->txchan_per_port[i] = (16 / num_ports);
  5371. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5372. "[%u TX chans]\n",
  5373. parent->index, i,
  5374. parent->rxchan_per_port[i],
  5375. parent->txchan_per_port[i]);
  5376. }
  5377. }
  5378. static void __devinit niu_divide_channels(struct niu_parent *parent,
  5379. int num_10g, int num_1g)
  5380. {
  5381. int num_ports = parent->num_ports;
  5382. int rx_chans_per_10g, rx_chans_per_1g;
  5383. int tx_chans_per_10g, tx_chans_per_1g;
  5384. int i, tot_rx, tot_tx;
  5385. if (!num_10g || !num_1g) {
  5386. rx_chans_per_10g = rx_chans_per_1g =
  5387. (NIU_NUM_RXCHAN / num_ports);
  5388. tx_chans_per_10g = tx_chans_per_1g =
  5389. (NIU_NUM_TXCHAN / num_ports);
  5390. } else {
  5391. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  5392. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  5393. (rx_chans_per_1g * num_1g)) /
  5394. num_10g;
  5395. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  5396. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  5397. (tx_chans_per_1g * num_1g)) /
  5398. num_10g;
  5399. }
  5400. tot_rx = tot_tx = 0;
  5401. for (i = 0; i < num_ports; i++) {
  5402. int type = phy_decode(parent->port_phy, i);
  5403. if (type == PORT_TYPE_10G) {
  5404. parent->rxchan_per_port[i] = rx_chans_per_10g;
  5405. parent->txchan_per_port[i] = tx_chans_per_10g;
  5406. } else {
  5407. parent->rxchan_per_port[i] = rx_chans_per_1g;
  5408. parent->txchan_per_port[i] = tx_chans_per_1g;
  5409. }
  5410. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5411. "[%u TX chans]\n",
  5412. parent->index, i,
  5413. parent->rxchan_per_port[i],
  5414. parent->txchan_per_port[i]);
  5415. tot_rx += parent->rxchan_per_port[i];
  5416. tot_tx += parent->txchan_per_port[i];
  5417. }
  5418. if (tot_rx > NIU_NUM_RXCHAN) {
  5419. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  5420. "resetting to one per port.\n",
  5421. parent->index, tot_rx);
  5422. for (i = 0; i < num_ports; i++)
  5423. parent->rxchan_per_port[i] = 1;
  5424. }
  5425. if (tot_tx > NIU_NUM_TXCHAN) {
  5426. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  5427. "resetting to one per port.\n",
  5428. parent->index, tot_tx);
  5429. for (i = 0; i < num_ports; i++)
  5430. parent->txchan_per_port[i] = 1;
  5431. }
  5432. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  5433. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  5434. "RX[%d] TX[%d]\n",
  5435. parent->index, tot_rx, tot_tx);
  5436. }
  5437. }
  5438. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  5439. int num_10g, int num_1g)
  5440. {
  5441. int i, num_ports = parent->num_ports;
  5442. int rdc_group, rdc_groups_per_port;
  5443. int rdc_channel_base;
  5444. rdc_group = 0;
  5445. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  5446. rdc_channel_base = 0;
  5447. for (i = 0; i < num_ports; i++) {
  5448. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  5449. int grp, num_channels = parent->rxchan_per_port[i];
  5450. int this_channel_offset;
  5451. tp->first_table_num = rdc_group;
  5452. tp->num_tables = rdc_groups_per_port;
  5453. this_channel_offset = 0;
  5454. for (grp = 0; grp < tp->num_tables; grp++) {
  5455. struct rdc_table *rt = &tp->tables[grp];
  5456. int slot;
  5457. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  5458. parent->index, i, tp->first_table_num + grp);
  5459. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  5460. rt->rxdma_channel[slot] =
  5461. rdc_channel_base + this_channel_offset;
  5462. printk("%d ", rt->rxdma_channel[slot]);
  5463. if (++this_channel_offset == num_channels)
  5464. this_channel_offset = 0;
  5465. }
  5466. printk("]\n");
  5467. }
  5468. parent->rdc_default[i] = rdc_channel_base;
  5469. rdc_channel_base += num_channels;
  5470. rdc_group += rdc_groups_per_port;
  5471. }
  5472. }
  5473. static int __devinit fill_phy_probe_info(struct niu *np,
  5474. struct niu_parent *parent,
  5475. struct phy_probe_info *info)
  5476. {
  5477. unsigned long flags;
  5478. int port, err;
  5479. memset(info, 0, sizeof(*info));
  5480. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  5481. niu_lock_parent(np, flags);
  5482. err = 0;
  5483. for (port = 8; port < 32; port++) {
  5484. int dev_id_1, dev_id_2;
  5485. dev_id_1 = mdio_read(np, port,
  5486. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  5487. dev_id_2 = mdio_read(np, port,
  5488. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  5489. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5490. PHY_TYPE_PMA_PMD);
  5491. if (err)
  5492. break;
  5493. dev_id_1 = mdio_read(np, port,
  5494. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  5495. dev_id_2 = mdio_read(np, port,
  5496. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  5497. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5498. PHY_TYPE_PCS);
  5499. if (err)
  5500. break;
  5501. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  5502. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  5503. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5504. PHY_TYPE_MII);
  5505. if (err)
  5506. break;
  5507. }
  5508. niu_unlock_parent(np, flags);
  5509. return err;
  5510. }
  5511. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  5512. {
  5513. struct phy_probe_info *info = &parent->phy_probe_info;
  5514. int lowest_10g, lowest_1g;
  5515. int num_10g, num_1g;
  5516. u32 val;
  5517. int err;
  5518. err = fill_phy_probe_info(np, parent, info);
  5519. if (err)
  5520. return err;
  5521. num_10g = count_10g_ports(info, &lowest_10g);
  5522. num_1g = count_1g_ports(info, &lowest_1g);
  5523. switch ((num_10g << 4) | num_1g) {
  5524. case 0x24:
  5525. if (lowest_1g == 10)
  5526. parent->plat_type = PLAT_TYPE_VF_P0;
  5527. else if (lowest_1g == 26)
  5528. parent->plat_type = PLAT_TYPE_VF_P1;
  5529. else
  5530. goto unknown_vg_1g_port;
  5531. /* fallthru */
  5532. case 0x22:
  5533. val = (phy_encode(PORT_TYPE_10G, 0) |
  5534. phy_encode(PORT_TYPE_10G, 1) |
  5535. phy_encode(PORT_TYPE_1G, 2) |
  5536. phy_encode(PORT_TYPE_1G, 3));
  5537. break;
  5538. case 0x20:
  5539. val = (phy_encode(PORT_TYPE_10G, 0) |
  5540. phy_encode(PORT_TYPE_10G, 1));
  5541. break;
  5542. case 0x10:
  5543. val = phy_encode(PORT_TYPE_10G, np->port);
  5544. break;
  5545. case 0x14:
  5546. if (lowest_1g == 10)
  5547. parent->plat_type = PLAT_TYPE_VF_P0;
  5548. else if (lowest_1g == 26)
  5549. parent->plat_type = PLAT_TYPE_VF_P1;
  5550. else
  5551. goto unknown_vg_1g_port;
  5552. /* fallthru */
  5553. case 0x13:
  5554. if ((lowest_10g & 0x7) == 0)
  5555. val = (phy_encode(PORT_TYPE_10G, 0) |
  5556. phy_encode(PORT_TYPE_1G, 1) |
  5557. phy_encode(PORT_TYPE_1G, 2) |
  5558. phy_encode(PORT_TYPE_1G, 3));
  5559. else
  5560. val = (phy_encode(PORT_TYPE_1G, 0) |
  5561. phy_encode(PORT_TYPE_10G, 1) |
  5562. phy_encode(PORT_TYPE_1G, 2) |
  5563. phy_encode(PORT_TYPE_1G, 3));
  5564. break;
  5565. case 0x04:
  5566. if (lowest_1g == 10)
  5567. parent->plat_type = PLAT_TYPE_VF_P0;
  5568. else if (lowest_1g == 26)
  5569. parent->plat_type = PLAT_TYPE_VF_P1;
  5570. else
  5571. goto unknown_vg_1g_port;
  5572. val = (phy_encode(PORT_TYPE_1G, 0) |
  5573. phy_encode(PORT_TYPE_1G, 1) |
  5574. phy_encode(PORT_TYPE_1G, 2) |
  5575. phy_encode(PORT_TYPE_1G, 3));
  5576. break;
  5577. default:
  5578. printk(KERN_ERR PFX "Unsupported port config "
  5579. "10G[%d] 1G[%d]\n",
  5580. num_10g, num_1g);
  5581. return -EINVAL;
  5582. }
  5583. parent->port_phy = val;
  5584. if (parent->plat_type == PLAT_TYPE_NIU)
  5585. niu_n2_divide_channels(parent);
  5586. else
  5587. niu_divide_channels(parent, num_10g, num_1g);
  5588. niu_divide_rdc_groups(parent, num_10g, num_1g);
  5589. return 0;
  5590. unknown_vg_1g_port:
  5591. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  5592. lowest_1g);
  5593. return -EINVAL;
  5594. }
  5595. static int __devinit niu_probe_ports(struct niu *np)
  5596. {
  5597. struct niu_parent *parent = np->parent;
  5598. int err, i;
  5599. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  5600. parent->port_phy);
  5601. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  5602. err = walk_phys(np, parent);
  5603. if (err)
  5604. return err;
  5605. niu_set_ldg_timer_res(np, 2);
  5606. for (i = 0; i <= LDN_MAX; i++)
  5607. niu_ldn_irq_enable(np, i, 0);
  5608. }
  5609. if (parent->port_phy == PORT_PHY_INVALID)
  5610. return -EINVAL;
  5611. return 0;
  5612. }
  5613. static int __devinit niu_classifier_swstate_init(struct niu *np)
  5614. {
  5615. struct niu_classifier *cp = &np->clas;
  5616. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  5617. np->parent->tcam_num_entries);
  5618. cp->tcam_index = (u16) np->port;
  5619. cp->h1_init = 0xffffffff;
  5620. cp->h2_init = 0xffff;
  5621. return fflp_early_init(np);
  5622. }
  5623. static void __devinit niu_link_config_init(struct niu *np)
  5624. {
  5625. struct niu_link_config *lp = &np->link_config;
  5626. lp->advertising = (ADVERTISED_10baseT_Half |
  5627. ADVERTISED_10baseT_Full |
  5628. ADVERTISED_100baseT_Half |
  5629. ADVERTISED_100baseT_Full |
  5630. ADVERTISED_1000baseT_Half |
  5631. ADVERTISED_1000baseT_Full |
  5632. ADVERTISED_10000baseT_Full |
  5633. ADVERTISED_Autoneg);
  5634. lp->speed = lp->active_speed = SPEED_INVALID;
  5635. lp->duplex = lp->active_duplex = DUPLEX_INVALID;
  5636. #if 0
  5637. lp->loopback_mode = LOOPBACK_MAC;
  5638. lp->active_speed = SPEED_10000;
  5639. lp->active_duplex = DUPLEX_FULL;
  5640. #else
  5641. lp->loopback_mode = LOOPBACK_DISABLED;
  5642. #endif
  5643. }
  5644. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  5645. {
  5646. switch (np->port) {
  5647. case 0:
  5648. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  5649. np->ipp_off = 0x00000;
  5650. np->pcs_off = 0x04000;
  5651. np->xpcs_off = 0x02000;
  5652. break;
  5653. case 1:
  5654. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  5655. np->ipp_off = 0x08000;
  5656. np->pcs_off = 0x0a000;
  5657. np->xpcs_off = 0x08000;
  5658. break;
  5659. case 2:
  5660. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  5661. np->ipp_off = 0x04000;
  5662. np->pcs_off = 0x0e000;
  5663. np->xpcs_off = ~0UL;
  5664. break;
  5665. case 3:
  5666. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  5667. np->ipp_off = 0x0c000;
  5668. np->pcs_off = 0x12000;
  5669. np->xpcs_off = ~0UL;
  5670. break;
  5671. default:
  5672. dev_err(np->device, PFX "Port %u is invalid, cannot "
  5673. "compute MAC block offset.\n", np->port);
  5674. return -EINVAL;
  5675. }
  5676. return 0;
  5677. }
  5678. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  5679. {
  5680. struct msix_entry msi_vec[NIU_NUM_LDG];
  5681. struct niu_parent *parent = np->parent;
  5682. struct pci_dev *pdev = np->pdev;
  5683. int i, num_irqs, err;
  5684. u8 first_ldg;
  5685. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  5686. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  5687. ldg_num_map[i] = first_ldg + i;
  5688. num_irqs = (parent->rxchan_per_port[np->port] +
  5689. parent->txchan_per_port[np->port] +
  5690. (np->port == 0 ? 3 : 1));
  5691. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  5692. retry:
  5693. for (i = 0; i < num_irqs; i++) {
  5694. msi_vec[i].vector = 0;
  5695. msi_vec[i].entry = i;
  5696. }
  5697. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  5698. if (err < 0) {
  5699. np->flags &= ~NIU_FLAGS_MSIX;
  5700. return;
  5701. }
  5702. if (err > 0) {
  5703. num_irqs = err;
  5704. goto retry;
  5705. }
  5706. np->flags |= NIU_FLAGS_MSIX;
  5707. for (i = 0; i < num_irqs; i++)
  5708. np->ldg[i].irq = msi_vec[i].vector;
  5709. np->num_ldg = num_irqs;
  5710. }
  5711. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  5712. {
  5713. #ifdef CONFIG_SPARC64
  5714. struct of_device *op = np->op;
  5715. const u32 *int_prop;
  5716. int i;
  5717. int_prop = of_get_property(op->node, "interrupts", NULL);
  5718. if (!int_prop)
  5719. return -ENODEV;
  5720. for (i = 0; i < op->num_irqs; i++) {
  5721. ldg_num_map[i] = int_prop[i];
  5722. np->ldg[i].irq = op->irqs[i];
  5723. }
  5724. np->num_ldg = op->num_irqs;
  5725. return 0;
  5726. #else
  5727. return -EINVAL;
  5728. #endif
  5729. }
  5730. static int __devinit niu_ldg_init(struct niu *np)
  5731. {
  5732. struct niu_parent *parent = np->parent;
  5733. u8 ldg_num_map[NIU_NUM_LDG];
  5734. int first_chan, num_chan;
  5735. int i, err, ldg_rotor;
  5736. u8 port;
  5737. np->num_ldg = 1;
  5738. np->ldg[0].irq = np->dev->irq;
  5739. if (parent->plat_type == PLAT_TYPE_NIU) {
  5740. err = niu_n2_irq_init(np, ldg_num_map);
  5741. if (err)
  5742. return err;
  5743. } else
  5744. niu_try_msix(np, ldg_num_map);
  5745. port = np->port;
  5746. for (i = 0; i < np->num_ldg; i++) {
  5747. struct niu_ldg *lp = &np->ldg[i];
  5748. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  5749. lp->np = np;
  5750. lp->ldg_num = ldg_num_map[i];
  5751. lp->timer = 2; /* XXX */
  5752. /* On N2 NIU the firmware has setup the SID mappings so they go
  5753. * to the correct values that will route the LDG to the proper
  5754. * interrupt in the NCU interrupt table.
  5755. */
  5756. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  5757. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  5758. if (err)
  5759. return err;
  5760. }
  5761. }
  5762. /* We adopt the LDG assignment ordering used by the N2 NIU
  5763. * 'interrupt' properties because that simplifies a lot of
  5764. * things. This ordering is:
  5765. *
  5766. * MAC
  5767. * MIF (if port zero)
  5768. * SYSERR (if port zero)
  5769. * RX channels
  5770. * TX channels
  5771. */
  5772. ldg_rotor = 0;
  5773. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  5774. LDN_MAC(port));
  5775. if (err)
  5776. return err;
  5777. ldg_rotor++;
  5778. if (ldg_rotor == np->num_ldg)
  5779. ldg_rotor = 0;
  5780. if (port == 0) {
  5781. err = niu_ldg_assign_ldn(np, parent,
  5782. ldg_num_map[ldg_rotor],
  5783. LDN_MIF);
  5784. if (err)
  5785. return err;
  5786. ldg_rotor++;
  5787. if (ldg_rotor == np->num_ldg)
  5788. ldg_rotor = 0;
  5789. err = niu_ldg_assign_ldn(np, parent,
  5790. ldg_num_map[ldg_rotor],
  5791. LDN_DEVICE_ERROR);
  5792. if (err)
  5793. return err;
  5794. ldg_rotor++;
  5795. if (ldg_rotor == np->num_ldg)
  5796. ldg_rotor = 0;
  5797. }
  5798. first_chan = 0;
  5799. for (i = 0; i < port; i++)
  5800. first_chan += parent->rxchan_per_port[port];
  5801. num_chan = parent->rxchan_per_port[port];
  5802. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5803. err = niu_ldg_assign_ldn(np, parent,
  5804. ldg_num_map[ldg_rotor],
  5805. LDN_RXDMA(i));
  5806. if (err)
  5807. return err;
  5808. ldg_rotor++;
  5809. if (ldg_rotor == np->num_ldg)
  5810. ldg_rotor = 0;
  5811. }
  5812. first_chan = 0;
  5813. for (i = 0; i < port; i++)
  5814. first_chan += parent->txchan_per_port[port];
  5815. num_chan = parent->txchan_per_port[port];
  5816. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5817. err = niu_ldg_assign_ldn(np, parent,
  5818. ldg_num_map[ldg_rotor],
  5819. LDN_TXDMA(i));
  5820. if (err)
  5821. return err;
  5822. ldg_rotor++;
  5823. if (ldg_rotor == np->num_ldg)
  5824. ldg_rotor = 0;
  5825. }
  5826. return 0;
  5827. }
  5828. static void __devexit niu_ldg_free(struct niu *np)
  5829. {
  5830. if (np->flags & NIU_FLAGS_MSIX)
  5831. pci_disable_msix(np->pdev);
  5832. }
  5833. static int __devinit niu_get_of_props(struct niu *np)
  5834. {
  5835. #ifdef CONFIG_SPARC64
  5836. struct net_device *dev = np->dev;
  5837. struct device_node *dp;
  5838. const char *phy_type;
  5839. const u8 *mac_addr;
  5840. int prop_len;
  5841. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5842. dp = np->op->node;
  5843. else
  5844. dp = pci_device_to_OF_node(np->pdev);
  5845. phy_type = of_get_property(dp, "phy-type", &prop_len);
  5846. if (!phy_type) {
  5847. dev_err(np->device, PFX "%s: OF node lacks "
  5848. "phy-type property\n",
  5849. dp->full_name);
  5850. return -EINVAL;
  5851. }
  5852. if (!strcmp(phy_type, "none"))
  5853. return -ENODEV;
  5854. strcpy(np->vpd.phy_type, phy_type);
  5855. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  5856. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  5857. dp->full_name, np->vpd.phy_type);
  5858. return -EINVAL;
  5859. }
  5860. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  5861. if (!mac_addr) {
  5862. dev_err(np->device, PFX "%s: OF node lacks "
  5863. "local-mac-address property\n",
  5864. dp->full_name);
  5865. return -EINVAL;
  5866. }
  5867. if (prop_len != dev->addr_len) {
  5868. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  5869. "is wrong.\n",
  5870. dp->full_name, prop_len);
  5871. }
  5872. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  5873. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5874. int i;
  5875. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  5876. dp->full_name);
  5877. dev_err(np->device, PFX "%s: [ \n",
  5878. dp->full_name);
  5879. for (i = 0; i < 6; i++)
  5880. printk("%02x ", dev->perm_addr[i]);
  5881. printk("]\n");
  5882. return -EINVAL;
  5883. }
  5884. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5885. return 0;
  5886. #else
  5887. return -EINVAL;
  5888. #endif
  5889. }
  5890. static int __devinit niu_get_invariants(struct niu *np)
  5891. {
  5892. int err, have_props;
  5893. u32 offset;
  5894. err = niu_get_of_props(np);
  5895. if (err == -ENODEV)
  5896. return err;
  5897. have_props = !err;
  5898. err = niu_get_and_validate_port(np);
  5899. if (err)
  5900. return err;
  5901. err = niu_init_mac_ipp_pcs_base(np);
  5902. if (err)
  5903. return err;
  5904. if (!have_props) {
  5905. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5906. return -EINVAL;
  5907. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  5908. offset = niu_pci_vpd_offset(np);
  5909. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  5910. offset);
  5911. if (offset)
  5912. niu_pci_vpd_fetch(np, offset);
  5913. nw64(ESPC_PIO_EN, 0);
  5914. if (np->flags & NIU_FLAGS_VPD_VALID)
  5915. niu_pci_vpd_validate(np);
  5916. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  5917. err = niu_pci_probe_sprom(np);
  5918. if (err)
  5919. return err;
  5920. }
  5921. }
  5922. err = niu_probe_ports(np);
  5923. if (err)
  5924. return err;
  5925. niu_ldg_init(np);
  5926. niu_classifier_swstate_init(np);
  5927. niu_link_config_init(np);
  5928. err = niu_determine_phy_disposition(np);
  5929. if (!err)
  5930. err = niu_init_link(np);
  5931. return err;
  5932. }
  5933. static LIST_HEAD(niu_parent_list);
  5934. static DEFINE_MUTEX(niu_parent_lock);
  5935. static int niu_parent_index;
  5936. static ssize_t show_port_phy(struct device *dev,
  5937. struct device_attribute *attr, char *buf)
  5938. {
  5939. struct platform_device *plat_dev = to_platform_device(dev);
  5940. struct niu_parent *p = plat_dev->dev.platform_data;
  5941. u32 port_phy = p->port_phy;
  5942. char *orig_buf = buf;
  5943. int i;
  5944. if (port_phy == PORT_PHY_UNKNOWN ||
  5945. port_phy == PORT_PHY_INVALID)
  5946. return 0;
  5947. for (i = 0; i < p->num_ports; i++) {
  5948. const char *type_str;
  5949. int type;
  5950. type = phy_decode(port_phy, i);
  5951. if (type == PORT_TYPE_10G)
  5952. type_str = "10G";
  5953. else
  5954. type_str = "1G";
  5955. buf += sprintf(buf,
  5956. (i == 0) ? "%s" : " %s",
  5957. type_str);
  5958. }
  5959. buf += sprintf(buf, "\n");
  5960. return buf - orig_buf;
  5961. }
  5962. static ssize_t show_plat_type(struct device *dev,
  5963. struct device_attribute *attr, char *buf)
  5964. {
  5965. struct platform_device *plat_dev = to_platform_device(dev);
  5966. struct niu_parent *p = plat_dev->dev.platform_data;
  5967. const char *type_str;
  5968. switch (p->plat_type) {
  5969. case PLAT_TYPE_ATLAS:
  5970. type_str = "atlas";
  5971. break;
  5972. case PLAT_TYPE_NIU:
  5973. type_str = "niu";
  5974. break;
  5975. case PLAT_TYPE_VF_P0:
  5976. type_str = "vf_p0";
  5977. break;
  5978. case PLAT_TYPE_VF_P1:
  5979. type_str = "vf_p1";
  5980. break;
  5981. default:
  5982. type_str = "unknown";
  5983. break;
  5984. }
  5985. return sprintf(buf, "%s\n", type_str);
  5986. }
  5987. static ssize_t __show_chan_per_port(struct device *dev,
  5988. struct device_attribute *attr, char *buf,
  5989. int rx)
  5990. {
  5991. struct platform_device *plat_dev = to_platform_device(dev);
  5992. struct niu_parent *p = plat_dev->dev.platform_data;
  5993. char *orig_buf = buf;
  5994. u8 *arr;
  5995. int i;
  5996. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  5997. for (i = 0; i < p->num_ports; i++) {
  5998. buf += sprintf(buf,
  5999. (i == 0) ? "%d" : " %d",
  6000. arr[i]);
  6001. }
  6002. buf += sprintf(buf, "\n");
  6003. return buf - orig_buf;
  6004. }
  6005. static ssize_t show_rxchan_per_port(struct device *dev,
  6006. struct device_attribute *attr, char *buf)
  6007. {
  6008. return __show_chan_per_port(dev, attr, buf, 1);
  6009. }
  6010. static ssize_t show_txchan_per_port(struct device *dev,
  6011. struct device_attribute *attr, char *buf)
  6012. {
  6013. return __show_chan_per_port(dev, attr, buf, 1);
  6014. }
  6015. static ssize_t show_num_ports(struct device *dev,
  6016. struct device_attribute *attr, char *buf)
  6017. {
  6018. struct platform_device *plat_dev = to_platform_device(dev);
  6019. struct niu_parent *p = plat_dev->dev.platform_data;
  6020. return sprintf(buf, "%d\n", p->num_ports);
  6021. }
  6022. static struct device_attribute niu_parent_attributes[] = {
  6023. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  6024. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  6025. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  6026. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  6027. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  6028. {}
  6029. };
  6030. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  6031. union niu_parent_id *id,
  6032. u8 ptype)
  6033. {
  6034. struct platform_device *plat_dev;
  6035. struct niu_parent *p;
  6036. int i;
  6037. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  6038. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  6039. NULL, 0);
  6040. if (!plat_dev)
  6041. return NULL;
  6042. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  6043. int err = device_create_file(&plat_dev->dev,
  6044. &niu_parent_attributes[i]);
  6045. if (err)
  6046. goto fail_unregister;
  6047. }
  6048. p = kzalloc(sizeof(*p), GFP_KERNEL);
  6049. if (!p)
  6050. goto fail_unregister;
  6051. p->index = niu_parent_index++;
  6052. plat_dev->dev.platform_data = p;
  6053. p->plat_dev = plat_dev;
  6054. memcpy(&p->id, id, sizeof(*id));
  6055. p->plat_type = ptype;
  6056. INIT_LIST_HEAD(&p->list);
  6057. atomic_set(&p->refcnt, 0);
  6058. list_add(&p->list, &niu_parent_list);
  6059. spin_lock_init(&p->lock);
  6060. p->rxdma_clock_divider = 7500;
  6061. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  6062. if (p->plat_type == PLAT_TYPE_NIU)
  6063. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  6064. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  6065. int index = i - CLASS_CODE_USER_PROG1;
  6066. p->tcam_key[index] = TCAM_KEY_TSEL;
  6067. p->flow_key[index] = (FLOW_KEY_IPSA |
  6068. FLOW_KEY_IPDA |
  6069. FLOW_KEY_PROTO |
  6070. (FLOW_KEY_L4_BYTE12 <<
  6071. FLOW_KEY_L4_0_SHIFT) |
  6072. (FLOW_KEY_L4_BYTE12 <<
  6073. FLOW_KEY_L4_1_SHIFT));
  6074. }
  6075. for (i = 0; i < LDN_MAX + 1; i++)
  6076. p->ldg_map[i] = LDG_INVALID;
  6077. return p;
  6078. fail_unregister:
  6079. platform_device_unregister(plat_dev);
  6080. return NULL;
  6081. }
  6082. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  6083. union niu_parent_id *id,
  6084. u8 ptype)
  6085. {
  6086. struct niu_parent *p, *tmp;
  6087. int port = np->port;
  6088. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  6089. ptype, port);
  6090. mutex_lock(&niu_parent_lock);
  6091. p = NULL;
  6092. list_for_each_entry(tmp, &niu_parent_list, list) {
  6093. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  6094. p = tmp;
  6095. break;
  6096. }
  6097. }
  6098. if (!p)
  6099. p = niu_new_parent(np, id, ptype);
  6100. if (p) {
  6101. char port_name[6];
  6102. int err;
  6103. sprintf(port_name, "port%d", port);
  6104. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  6105. &np->device->kobj,
  6106. port_name);
  6107. if (!err) {
  6108. p->ports[port] = np;
  6109. atomic_inc(&p->refcnt);
  6110. }
  6111. }
  6112. mutex_unlock(&niu_parent_lock);
  6113. return p;
  6114. }
  6115. static void niu_put_parent(struct niu *np)
  6116. {
  6117. struct niu_parent *p = np->parent;
  6118. u8 port = np->port;
  6119. char port_name[6];
  6120. BUG_ON(!p || p->ports[port] != np);
  6121. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  6122. sprintf(port_name, "port%d", port);
  6123. mutex_lock(&niu_parent_lock);
  6124. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  6125. p->ports[port] = NULL;
  6126. np->parent = NULL;
  6127. if (atomic_dec_and_test(&p->refcnt)) {
  6128. list_del(&p->list);
  6129. platform_device_unregister(p->plat_dev);
  6130. }
  6131. mutex_unlock(&niu_parent_lock);
  6132. }
  6133. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  6134. u64 *handle, gfp_t flag)
  6135. {
  6136. dma_addr_t dh;
  6137. void *ret;
  6138. ret = dma_alloc_coherent(dev, size, &dh, flag);
  6139. if (ret)
  6140. *handle = dh;
  6141. return ret;
  6142. }
  6143. static void niu_pci_free_coherent(struct device *dev, size_t size,
  6144. void *cpu_addr, u64 handle)
  6145. {
  6146. dma_free_coherent(dev, size, cpu_addr, handle);
  6147. }
  6148. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  6149. unsigned long offset, size_t size,
  6150. enum dma_data_direction direction)
  6151. {
  6152. return dma_map_page(dev, page, offset, size, direction);
  6153. }
  6154. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  6155. size_t size, enum dma_data_direction direction)
  6156. {
  6157. return dma_unmap_page(dev, dma_address, size, direction);
  6158. }
  6159. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  6160. size_t size,
  6161. enum dma_data_direction direction)
  6162. {
  6163. return dma_map_single(dev, cpu_addr, size, direction);
  6164. }
  6165. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  6166. size_t size,
  6167. enum dma_data_direction direction)
  6168. {
  6169. dma_unmap_single(dev, dma_address, size, direction);
  6170. }
  6171. static const struct niu_ops niu_pci_ops = {
  6172. .alloc_coherent = niu_pci_alloc_coherent,
  6173. .free_coherent = niu_pci_free_coherent,
  6174. .map_page = niu_pci_map_page,
  6175. .unmap_page = niu_pci_unmap_page,
  6176. .map_single = niu_pci_map_single,
  6177. .unmap_single = niu_pci_unmap_single,
  6178. };
  6179. static void __devinit niu_driver_version(void)
  6180. {
  6181. static int niu_version_printed;
  6182. if (niu_version_printed++ == 0)
  6183. pr_info("%s", version);
  6184. }
  6185. static struct net_device * __devinit niu_alloc_and_init(
  6186. struct device *gen_dev, struct pci_dev *pdev,
  6187. struct of_device *op, const struct niu_ops *ops,
  6188. u8 port)
  6189. {
  6190. struct net_device *dev = alloc_etherdev(sizeof(struct niu));
  6191. struct niu *np;
  6192. if (!dev) {
  6193. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  6194. return NULL;
  6195. }
  6196. SET_NETDEV_DEV(dev, gen_dev);
  6197. np = netdev_priv(dev);
  6198. np->dev = dev;
  6199. np->pdev = pdev;
  6200. np->op = op;
  6201. np->device = gen_dev;
  6202. np->ops = ops;
  6203. np->msg_enable = niu_debug;
  6204. spin_lock_init(&np->lock);
  6205. INIT_WORK(&np->reset_task, niu_reset_task);
  6206. np->port = port;
  6207. return dev;
  6208. }
  6209. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  6210. {
  6211. dev->open = niu_open;
  6212. dev->stop = niu_close;
  6213. dev->get_stats = niu_get_stats;
  6214. dev->set_multicast_list = niu_set_rx_mode;
  6215. dev->set_mac_address = niu_set_mac_addr;
  6216. dev->do_ioctl = niu_ioctl;
  6217. dev->tx_timeout = niu_tx_timeout;
  6218. dev->hard_start_xmit = niu_start_xmit;
  6219. dev->ethtool_ops = &niu_ethtool_ops;
  6220. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  6221. dev->change_mtu = niu_change_mtu;
  6222. }
  6223. static void __devinit niu_device_announce(struct niu *np)
  6224. {
  6225. struct net_device *dev = np->dev;
  6226. int i;
  6227. pr_info("%s: NIU Ethernet ", dev->name);
  6228. for (i = 0; i < 6; i++)
  6229. printk("%2.2x%c", dev->dev_addr[i],
  6230. i == 5 ? '\n' : ':');
  6231. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  6232. dev->name,
  6233. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  6234. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  6235. (np->flags & NIU_FLAGS_FIBER ? "FIBER" : "COPPER"),
  6236. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  6237. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  6238. np->vpd.phy_type);
  6239. }
  6240. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  6241. const struct pci_device_id *ent)
  6242. {
  6243. unsigned long niureg_base, niureg_len;
  6244. union niu_parent_id parent_id;
  6245. struct net_device *dev;
  6246. struct niu *np;
  6247. int err, pos;
  6248. u64 dma_mask;
  6249. u16 val16;
  6250. niu_driver_version();
  6251. err = pci_enable_device(pdev);
  6252. if (err) {
  6253. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  6254. "aborting.\n");
  6255. return err;
  6256. }
  6257. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  6258. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  6259. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  6260. "base addresses, aborting.\n");
  6261. err = -ENODEV;
  6262. goto err_out_disable_pdev;
  6263. }
  6264. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  6265. if (err) {
  6266. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  6267. "aborting.\n");
  6268. goto err_out_disable_pdev;
  6269. }
  6270. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  6271. if (pos <= 0) {
  6272. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  6273. "aborting.\n");
  6274. goto err_out_free_res;
  6275. }
  6276. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  6277. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  6278. if (!dev) {
  6279. err = -ENOMEM;
  6280. goto err_out_free_res;
  6281. }
  6282. np = netdev_priv(dev);
  6283. memset(&parent_id, 0, sizeof(parent_id));
  6284. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  6285. parent_id.pci.bus = pdev->bus->number;
  6286. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  6287. np->parent = niu_get_parent(np, &parent_id,
  6288. PLAT_TYPE_ATLAS);
  6289. if (!np->parent) {
  6290. err = -ENOMEM;
  6291. goto err_out_free_dev;
  6292. }
  6293. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  6294. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  6295. val16 |= (PCI_EXP_DEVCTL_CERE |
  6296. PCI_EXP_DEVCTL_NFERE |
  6297. PCI_EXP_DEVCTL_FERE |
  6298. PCI_EXP_DEVCTL_URRE |
  6299. PCI_EXP_DEVCTL_RELAX_EN);
  6300. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  6301. dma_mask = DMA_44BIT_MASK;
  6302. err = pci_set_dma_mask(pdev, dma_mask);
  6303. if (!err) {
  6304. dev->features |= NETIF_F_HIGHDMA;
  6305. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  6306. if (err) {
  6307. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  6308. "DMA for consistent allocations, "
  6309. "aborting.\n");
  6310. goto err_out_release_parent;
  6311. }
  6312. }
  6313. if (err || dma_mask == DMA_32BIT_MASK) {
  6314. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  6315. if (err) {
  6316. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  6317. "aborting.\n");
  6318. goto err_out_release_parent;
  6319. }
  6320. }
  6321. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6322. niureg_base = pci_resource_start(pdev, 0);
  6323. niureg_len = pci_resource_len(pdev, 0);
  6324. np->regs = ioremap_nocache(niureg_base, niureg_len);
  6325. if (!np->regs) {
  6326. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  6327. "aborting.\n");
  6328. err = -ENOMEM;
  6329. goto err_out_release_parent;
  6330. }
  6331. pci_set_master(pdev);
  6332. pci_save_state(pdev);
  6333. dev->irq = pdev->irq;
  6334. niu_assign_netdev_ops(dev);
  6335. err = niu_get_invariants(np);
  6336. if (err) {
  6337. if (err != -ENODEV)
  6338. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  6339. "of chip, aborting.\n");
  6340. goto err_out_iounmap;
  6341. }
  6342. err = register_netdev(dev);
  6343. if (err) {
  6344. dev_err(&pdev->dev, PFX "Cannot register net device, "
  6345. "aborting.\n");
  6346. goto err_out_iounmap;
  6347. }
  6348. pci_set_drvdata(pdev, dev);
  6349. niu_device_announce(np);
  6350. return 0;
  6351. err_out_iounmap:
  6352. if (np->regs) {
  6353. iounmap(np->regs);
  6354. np->regs = NULL;
  6355. }
  6356. err_out_release_parent:
  6357. niu_put_parent(np);
  6358. err_out_free_dev:
  6359. free_netdev(dev);
  6360. err_out_free_res:
  6361. pci_release_regions(pdev);
  6362. err_out_disable_pdev:
  6363. pci_disable_device(pdev);
  6364. pci_set_drvdata(pdev, NULL);
  6365. return err;
  6366. }
  6367. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  6368. {
  6369. struct net_device *dev = pci_get_drvdata(pdev);
  6370. if (dev) {
  6371. struct niu *np = netdev_priv(dev);
  6372. unregister_netdev(dev);
  6373. if (np->regs) {
  6374. iounmap(np->regs);
  6375. np->regs = NULL;
  6376. }
  6377. niu_ldg_free(np);
  6378. niu_put_parent(np);
  6379. free_netdev(dev);
  6380. pci_release_regions(pdev);
  6381. pci_disable_device(pdev);
  6382. pci_set_drvdata(pdev, NULL);
  6383. }
  6384. }
  6385. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  6386. {
  6387. struct net_device *dev = pci_get_drvdata(pdev);
  6388. struct niu *np = netdev_priv(dev);
  6389. unsigned long flags;
  6390. if (!netif_running(dev))
  6391. return 0;
  6392. flush_scheduled_work();
  6393. niu_netif_stop(np);
  6394. del_timer_sync(&np->timer);
  6395. spin_lock_irqsave(&np->lock, flags);
  6396. niu_enable_interrupts(np, 0);
  6397. spin_unlock_irqrestore(&np->lock, flags);
  6398. netif_device_detach(dev);
  6399. spin_lock_irqsave(&np->lock, flags);
  6400. niu_stop_hw(np);
  6401. spin_unlock_irqrestore(&np->lock, flags);
  6402. pci_save_state(pdev);
  6403. return 0;
  6404. }
  6405. static int niu_resume(struct pci_dev *pdev)
  6406. {
  6407. struct net_device *dev = pci_get_drvdata(pdev);
  6408. struct niu *np = netdev_priv(dev);
  6409. unsigned long flags;
  6410. int err;
  6411. if (!netif_running(dev))
  6412. return 0;
  6413. pci_restore_state(pdev);
  6414. netif_device_attach(dev);
  6415. spin_lock_irqsave(&np->lock, flags);
  6416. err = niu_init_hw(np);
  6417. if (!err) {
  6418. np->timer.expires = jiffies + HZ;
  6419. add_timer(&np->timer);
  6420. niu_netif_start(np);
  6421. }
  6422. spin_unlock_irqrestore(&np->lock, flags);
  6423. return err;
  6424. }
  6425. static struct pci_driver niu_pci_driver = {
  6426. .name = DRV_MODULE_NAME,
  6427. .id_table = niu_pci_tbl,
  6428. .probe = niu_pci_init_one,
  6429. .remove = __devexit_p(niu_pci_remove_one),
  6430. .suspend = niu_suspend,
  6431. .resume = niu_resume,
  6432. };
  6433. #ifdef CONFIG_SPARC64
  6434. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  6435. u64 *dma_addr, gfp_t flag)
  6436. {
  6437. unsigned long order = get_order(size);
  6438. unsigned long page = __get_free_pages(flag, order);
  6439. if (page == 0UL)
  6440. return NULL;
  6441. memset((char *)page, 0, PAGE_SIZE << order);
  6442. *dma_addr = __pa(page);
  6443. return (void *) page;
  6444. }
  6445. static void niu_phys_free_coherent(struct device *dev, size_t size,
  6446. void *cpu_addr, u64 handle)
  6447. {
  6448. unsigned long order = get_order(size);
  6449. free_pages((unsigned long) cpu_addr, order);
  6450. }
  6451. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  6452. unsigned long offset, size_t size,
  6453. enum dma_data_direction direction)
  6454. {
  6455. return page_to_phys(page) + offset;
  6456. }
  6457. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  6458. size_t size, enum dma_data_direction direction)
  6459. {
  6460. /* Nothing to do. */
  6461. }
  6462. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  6463. size_t size,
  6464. enum dma_data_direction direction)
  6465. {
  6466. return __pa(cpu_addr);
  6467. }
  6468. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  6469. size_t size,
  6470. enum dma_data_direction direction)
  6471. {
  6472. /* Nothing to do. */
  6473. }
  6474. static const struct niu_ops niu_phys_ops = {
  6475. .alloc_coherent = niu_phys_alloc_coherent,
  6476. .free_coherent = niu_phys_free_coherent,
  6477. .map_page = niu_phys_map_page,
  6478. .unmap_page = niu_phys_unmap_page,
  6479. .map_single = niu_phys_map_single,
  6480. .unmap_single = niu_phys_unmap_single,
  6481. };
  6482. static unsigned long res_size(struct resource *r)
  6483. {
  6484. return r->end - r->start + 1UL;
  6485. }
  6486. static int __devinit niu_of_probe(struct of_device *op,
  6487. const struct of_device_id *match)
  6488. {
  6489. union niu_parent_id parent_id;
  6490. struct net_device *dev;
  6491. struct niu *np;
  6492. const u32 *reg;
  6493. int err;
  6494. niu_driver_version();
  6495. reg = of_get_property(op->node, "reg", NULL);
  6496. if (!reg) {
  6497. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  6498. op->node->full_name);
  6499. return -ENODEV;
  6500. }
  6501. dev = niu_alloc_and_init(&op->dev, NULL, op,
  6502. &niu_phys_ops, reg[0] & 0x1);
  6503. if (!dev) {
  6504. err = -ENOMEM;
  6505. goto err_out;
  6506. }
  6507. np = netdev_priv(dev);
  6508. memset(&parent_id, 0, sizeof(parent_id));
  6509. parent_id.of = of_get_parent(op->node);
  6510. np->parent = niu_get_parent(np, &parent_id,
  6511. PLAT_TYPE_NIU);
  6512. if (!np->parent) {
  6513. err = -ENOMEM;
  6514. goto err_out_free_dev;
  6515. }
  6516. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6517. np->regs = of_ioremap(&op->resource[1], 0,
  6518. res_size(&op->resource[1]),
  6519. "niu regs");
  6520. if (!np->regs) {
  6521. dev_err(&op->dev, PFX "Cannot map device registers, "
  6522. "aborting.\n");
  6523. err = -ENOMEM;
  6524. goto err_out_release_parent;
  6525. }
  6526. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  6527. res_size(&op->resource[2]),
  6528. "niu vregs-1");
  6529. if (!np->vir_regs_1) {
  6530. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  6531. "aborting.\n");
  6532. err = -ENOMEM;
  6533. goto err_out_iounmap;
  6534. }
  6535. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  6536. res_size(&op->resource[3]),
  6537. "niu vregs-2");
  6538. if (!np->vir_regs_2) {
  6539. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  6540. "aborting.\n");
  6541. err = -ENOMEM;
  6542. goto err_out_iounmap;
  6543. }
  6544. niu_assign_netdev_ops(dev);
  6545. err = niu_get_invariants(np);
  6546. if (err) {
  6547. if (err != -ENODEV)
  6548. dev_err(&op->dev, PFX "Problem fetching invariants "
  6549. "of chip, aborting.\n");
  6550. goto err_out_iounmap;
  6551. }
  6552. err = register_netdev(dev);
  6553. if (err) {
  6554. dev_err(&op->dev, PFX "Cannot register net device, "
  6555. "aborting.\n");
  6556. goto err_out_iounmap;
  6557. }
  6558. dev_set_drvdata(&op->dev, dev);
  6559. niu_device_announce(np);
  6560. return 0;
  6561. err_out_iounmap:
  6562. if (np->vir_regs_1) {
  6563. of_iounmap(&op->resource[2], np->vir_regs_1,
  6564. res_size(&op->resource[2]));
  6565. np->vir_regs_1 = NULL;
  6566. }
  6567. if (np->vir_regs_2) {
  6568. of_iounmap(&op->resource[3], np->vir_regs_2,
  6569. res_size(&op->resource[3]));
  6570. np->vir_regs_2 = NULL;
  6571. }
  6572. if (np->regs) {
  6573. of_iounmap(&op->resource[1], np->regs,
  6574. res_size(&op->resource[1]));
  6575. np->regs = NULL;
  6576. }
  6577. err_out_release_parent:
  6578. niu_put_parent(np);
  6579. err_out_free_dev:
  6580. free_netdev(dev);
  6581. err_out:
  6582. return err;
  6583. }
  6584. static int __devexit niu_of_remove(struct of_device *op)
  6585. {
  6586. struct net_device *dev = dev_get_drvdata(&op->dev);
  6587. if (dev) {
  6588. struct niu *np = netdev_priv(dev);
  6589. unregister_netdev(dev);
  6590. if (np->vir_regs_1) {
  6591. of_iounmap(&op->resource[2], np->vir_regs_1,
  6592. res_size(&op->resource[2]));
  6593. np->vir_regs_1 = NULL;
  6594. }
  6595. if (np->vir_regs_2) {
  6596. of_iounmap(&op->resource[3], np->vir_regs_2,
  6597. res_size(&op->resource[3]));
  6598. np->vir_regs_2 = NULL;
  6599. }
  6600. if (np->regs) {
  6601. of_iounmap(&op->resource[1], np->regs,
  6602. res_size(&op->resource[1]));
  6603. np->regs = NULL;
  6604. }
  6605. niu_ldg_free(np);
  6606. niu_put_parent(np);
  6607. free_netdev(dev);
  6608. dev_set_drvdata(&op->dev, NULL);
  6609. }
  6610. return 0;
  6611. }
  6612. static struct of_device_id niu_match[] = {
  6613. {
  6614. .name = "network",
  6615. .compatible = "SUNW,niusl",
  6616. },
  6617. {},
  6618. };
  6619. MODULE_DEVICE_TABLE(of, niu_match);
  6620. static struct of_platform_driver niu_of_driver = {
  6621. .name = "niu",
  6622. .match_table = niu_match,
  6623. .probe = niu_of_probe,
  6624. .remove = __devexit_p(niu_of_remove),
  6625. };
  6626. #endif /* CONFIG_SPARC64 */
  6627. static int __init niu_init(void)
  6628. {
  6629. int err = 0;
  6630. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  6631. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  6632. #ifdef CONFIG_SPARC64
  6633. err = of_register_driver(&niu_of_driver, &of_bus_type);
  6634. #endif
  6635. if (!err) {
  6636. err = pci_register_driver(&niu_pci_driver);
  6637. #ifdef CONFIG_SPARC64
  6638. if (err)
  6639. of_unregister_driver(&niu_of_driver);
  6640. #endif
  6641. }
  6642. return err;
  6643. }
  6644. static void __exit niu_exit(void)
  6645. {
  6646. pci_unregister_driver(&niu_pci_driver);
  6647. #ifdef CONFIG_SPARC64
  6648. of_unregister_driver(&niu_of_driver);
  6649. #endif
  6650. }
  6651. module_init(niu_init);
  6652. module_exit(niu_exit);