qlge_main.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_wait_cfg(qdev, bit);
  194. if (status) {
  195. QPRINTK(qdev, IFUP, ERR,
  196. "Timed out waiting for CFG to come ready.\n");
  197. goto exit;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. goto exit;
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. case MAC_ADDR_TYPE_CAM_MAC:
  293. {
  294. u32 cam_output;
  295. u32 upper = (addr[0] << 8) | addr[1];
  296. u32 lower =
  297. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  298. (addr[5]);
  299. QPRINTK(qdev, IFUP, INFO,
  300. "Adding %s address %pM"
  301. " at index %d in the CAM.\n",
  302. ((type ==
  303. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  304. "UNICAST"), addr, index);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  311. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  312. type); /* type */
  313. ql_write32(qdev, MAC_ADDR_DATA, lower);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  320. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  321. type); /* type */
  322. ql_write32(qdev, MAC_ADDR_DATA, upper);
  323. status =
  324. ql_wait_reg_rdy(qdev,
  325. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  326. if (status)
  327. goto exit;
  328. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  329. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  330. type); /* type */
  331. /* This field should also include the queue id
  332. and possibly the function id. Right now we hardcode
  333. the route field to NIC core.
  334. */
  335. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  336. cam_output = (CAM_OUT_ROUTE_NIC |
  337. (qdev->
  338. func << CAM_OUT_FUNC_SHIFT) |
  339. (qdev->
  340. rss_ring_first_cq_id <<
  341. CAM_OUT_CQ_ID_SHIFT));
  342. if (qdev->vlgrp)
  343. cam_output |= CAM_OUT_RV;
  344. /* route to NIC core */
  345. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  346. }
  347. break;
  348. }
  349. case MAC_ADDR_TYPE_VLAN:
  350. {
  351. u32 enable_bit = *((u32 *) &addr[0]);
  352. /* For VLAN, the addr actually holds a bit that
  353. * either enables or disables the vlan id we are
  354. * addressing. It's either MAC_ADDR_E on or off.
  355. * That's bit-27 we're talking about.
  356. */
  357. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  358. (enable_bit ? "Adding" : "Removing"),
  359. index, (enable_bit ? "to" : "from"));
  360. status =
  361. ql_wait_reg_rdy(qdev,
  362. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  363. if (status)
  364. goto exit;
  365. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  366. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  367. type | /* type */
  368. enable_bit); /* enable/disable */
  369. break;
  370. }
  371. case MAC_ADDR_TYPE_MULTI_FLTR:
  372. default:
  373. QPRINTK(qdev, IFUP, CRIT,
  374. "Address type %d not yet supported.\n", type);
  375. status = -EPERM;
  376. }
  377. exit:
  378. return status;
  379. }
  380. /* Get a specific frame routing value from the CAM.
  381. * Used for debug and reg dump.
  382. */
  383. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  384. {
  385. int status = 0;
  386. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  387. if (status)
  388. goto exit;
  389. ql_write32(qdev, RT_IDX,
  390. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  391. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  392. if (status)
  393. goto exit;
  394. *value = ql_read32(qdev, RT_DATA);
  395. exit:
  396. return status;
  397. }
  398. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  399. * to route different frame types to various inbound queues. We send broadcast/
  400. * multicast/error frames to the default queue for slow handling,
  401. * and CAM hit/RSS frames to the fast handling queues.
  402. */
  403. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  404. int enable)
  405. {
  406. int status = -EINVAL; /* Return error if no mask match. */
  407. u32 value = 0;
  408. QPRINTK(qdev, IFUP, DEBUG,
  409. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  410. (enable ? "Adding" : "Removing"),
  411. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  412. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  413. ((index ==
  414. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  415. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  416. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  417. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  418. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  419. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  420. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  421. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  422. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  423. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  424. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  425. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  426. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  427. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  428. (enable ? "to" : "from"));
  429. switch (mask) {
  430. case RT_IDX_CAM_HIT:
  431. {
  432. value = RT_IDX_DST_CAM_Q | /* dest */
  433. RT_IDX_TYPE_NICQ | /* type */
  434. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  435. break;
  436. }
  437. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  438. {
  439. value = RT_IDX_DST_DFLT_Q | /* dest */
  440. RT_IDX_TYPE_NICQ | /* type */
  441. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  442. break;
  443. }
  444. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  445. {
  446. value = RT_IDX_DST_DFLT_Q | /* dest */
  447. RT_IDX_TYPE_NICQ | /* type */
  448. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  449. break;
  450. }
  451. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  452. {
  453. value = RT_IDX_DST_DFLT_Q | /* dest */
  454. RT_IDX_TYPE_NICQ | /* type */
  455. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  456. break;
  457. }
  458. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  459. {
  460. value = RT_IDX_DST_CAM_Q | /* dest */
  461. RT_IDX_TYPE_NICQ | /* type */
  462. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  463. break;
  464. }
  465. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  466. {
  467. value = RT_IDX_DST_CAM_Q | /* dest */
  468. RT_IDX_TYPE_NICQ | /* type */
  469. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  470. break;
  471. }
  472. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  473. {
  474. value = RT_IDX_DST_RSS | /* dest */
  475. RT_IDX_TYPE_NICQ | /* type */
  476. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  477. break;
  478. }
  479. case 0: /* Clear the E-bit on an entry. */
  480. {
  481. value = RT_IDX_DST_DFLT_Q | /* dest */
  482. RT_IDX_TYPE_NICQ | /* type */
  483. (index << RT_IDX_IDX_SHIFT);/* index */
  484. break;
  485. }
  486. default:
  487. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  488. mask);
  489. status = -EPERM;
  490. goto exit;
  491. }
  492. if (value) {
  493. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  494. if (status)
  495. goto exit;
  496. value |= (enable ? RT_IDX_E : 0);
  497. ql_write32(qdev, RT_IDX, value);
  498. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  499. }
  500. exit:
  501. return status;
  502. }
  503. static void ql_enable_interrupts(struct ql_adapter *qdev)
  504. {
  505. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  506. }
  507. static void ql_disable_interrupts(struct ql_adapter *qdev)
  508. {
  509. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  510. }
  511. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  512. * Otherwise, we may have multiple outstanding workers and don't want to
  513. * enable until the last one finishes. In this case, the irq_cnt gets
  514. * incremented everytime we queue a worker and decremented everytime
  515. * a worker finishes. Once it hits zero we enable the interrupt.
  516. */
  517. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  518. {
  519. u32 var = 0;
  520. unsigned long hw_flags = 0;
  521. struct intr_context *ctx = qdev->intr_context + intr;
  522. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  523. /* Always enable if we're MSIX multi interrupts and
  524. * it's not the default (zeroeth) interrupt.
  525. */
  526. ql_write32(qdev, INTR_EN,
  527. ctx->intr_en_mask);
  528. var = ql_read32(qdev, STS);
  529. return var;
  530. }
  531. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  532. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  533. ql_write32(qdev, INTR_EN,
  534. ctx->intr_en_mask);
  535. var = ql_read32(qdev, STS);
  536. }
  537. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  538. return var;
  539. }
  540. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  541. {
  542. u32 var = 0;
  543. unsigned long hw_flags;
  544. struct intr_context *ctx;
  545. /* HW disables for us if we're MSIX multi interrupts and
  546. * it's not the default (zeroeth) interrupt.
  547. */
  548. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  549. return 0;
  550. ctx = qdev->intr_context + intr;
  551. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  552. if (!atomic_read(&ctx->irq_cnt)) {
  553. ql_write32(qdev, INTR_EN,
  554. ctx->intr_dis_mask);
  555. var = ql_read32(qdev, STS);
  556. }
  557. atomic_inc(&ctx->irq_cnt);
  558. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  559. return var;
  560. }
  561. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  562. {
  563. int i;
  564. for (i = 0; i < qdev->intr_count; i++) {
  565. /* The enable call does a atomic_dec_and_test
  566. * and enables only if the result is zero.
  567. * So we precharge it here.
  568. */
  569. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  570. i == 0))
  571. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  572. ql_enable_completion_interrupt(qdev, i);
  573. }
  574. }
  575. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  576. {
  577. int status, i;
  578. u16 csum = 0;
  579. __le16 *flash = (__le16 *)&qdev->flash;
  580. status = strncmp((char *)&qdev->flash, str, 4);
  581. if (status) {
  582. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  583. return status;
  584. }
  585. for (i = 0; i < size; i++)
  586. csum += le16_to_cpu(*flash++);
  587. if (csum)
  588. QPRINTK(qdev, IFUP, ERR,
  589. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  590. return csum;
  591. }
  592. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  593. {
  594. int status = 0;
  595. /* wait for reg to come ready */
  596. status = ql_wait_reg_rdy(qdev,
  597. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  598. if (status)
  599. goto exit;
  600. /* set up for reg read */
  601. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  602. /* wait for reg to come ready */
  603. status = ql_wait_reg_rdy(qdev,
  604. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  605. if (status)
  606. goto exit;
  607. /* This data is stored on flash as an array of
  608. * __le32. Since ql_read32() returns cpu endian
  609. * we need to swap it back.
  610. */
  611. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  612. exit:
  613. return status;
  614. }
  615. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  616. {
  617. int i;
  618. int status;
  619. __le32 *p = (__le32 *)&qdev->flash;
  620. u32 offset = 0;
  621. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  622. /* Second function's parameters follow the first
  623. * function's.
  624. */
  625. if (qdev->func)
  626. offset = size;
  627. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  628. return -ETIMEDOUT;
  629. for (i = 0; i < size; i++, p++) {
  630. status = ql_read_flash_word(qdev, i+offset, p);
  631. if (status) {
  632. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  633. goto exit;
  634. }
  635. }
  636. status = ql_validate_flash(qdev,
  637. sizeof(struct flash_params_8012) / sizeof(u16),
  638. "8012");
  639. if (status) {
  640. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  641. status = -EINVAL;
  642. goto exit;
  643. }
  644. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  645. status = -EINVAL;
  646. goto exit;
  647. }
  648. memcpy(qdev->ndev->dev_addr,
  649. qdev->flash.flash_params_8012.mac_addr,
  650. qdev->ndev->addr_len);
  651. exit:
  652. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  653. return status;
  654. }
  655. /* xgmac register are located behind the xgmac_addr and xgmac_data
  656. * register pair. Each read/write requires us to wait for the ready
  657. * bit before reading/writing the data.
  658. */
  659. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  660. {
  661. int status;
  662. /* wait for reg to come ready */
  663. status = ql_wait_reg_rdy(qdev,
  664. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  665. if (status)
  666. return status;
  667. /* write the data to the data reg */
  668. ql_write32(qdev, XGMAC_DATA, data);
  669. /* trigger the write */
  670. ql_write32(qdev, XGMAC_ADDR, reg);
  671. return status;
  672. }
  673. /* xgmac register are located behind the xgmac_addr and xgmac_data
  674. * register pair. Each read/write requires us to wait for the ready
  675. * bit before reading/writing the data.
  676. */
  677. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  678. {
  679. int status = 0;
  680. /* wait for reg to come ready */
  681. status = ql_wait_reg_rdy(qdev,
  682. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  683. if (status)
  684. goto exit;
  685. /* set up for reg read */
  686. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  687. /* wait for reg to come ready */
  688. status = ql_wait_reg_rdy(qdev,
  689. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  690. if (status)
  691. goto exit;
  692. /* get the data */
  693. *data = ql_read32(qdev, XGMAC_DATA);
  694. exit:
  695. return status;
  696. }
  697. /* This is used for reading the 64-bit statistics regs. */
  698. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  699. {
  700. int status = 0;
  701. u32 hi = 0;
  702. u32 lo = 0;
  703. status = ql_read_xgmac_reg(qdev, reg, &lo);
  704. if (status)
  705. goto exit;
  706. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  707. if (status)
  708. goto exit;
  709. *data = (u64) lo | ((u64) hi << 32);
  710. exit:
  711. return status;
  712. }
  713. /* Take the MAC Core out of reset.
  714. * Enable statistics counting.
  715. * Take the transmitter/receiver out of reset.
  716. * This functionality may be done in the MPI firmware at a
  717. * later date.
  718. */
  719. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  720. {
  721. int status = 0;
  722. u32 data;
  723. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  724. /* Another function has the semaphore, so
  725. * wait for the port init bit to come ready.
  726. */
  727. QPRINTK(qdev, LINK, INFO,
  728. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  729. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  730. if (status) {
  731. QPRINTK(qdev, LINK, CRIT,
  732. "Port initialize timed out.\n");
  733. }
  734. return status;
  735. }
  736. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  737. /* Set the core reset. */
  738. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  739. if (status)
  740. goto end;
  741. data |= GLOBAL_CFG_RESET;
  742. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  743. if (status)
  744. goto end;
  745. /* Clear the core reset and turn on jumbo for receiver. */
  746. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  747. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  748. data |= GLOBAL_CFG_TX_STAT_EN;
  749. data |= GLOBAL_CFG_RX_STAT_EN;
  750. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  751. if (status)
  752. goto end;
  753. /* Enable transmitter, and clear it's reset. */
  754. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  755. if (status)
  756. goto end;
  757. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  758. data |= TX_CFG_EN; /* Enable the transmitter. */
  759. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  760. if (status)
  761. goto end;
  762. /* Enable receiver and clear it's reset. */
  763. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  764. if (status)
  765. goto end;
  766. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  767. data |= RX_CFG_EN; /* Enable the receiver. */
  768. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  769. if (status)
  770. goto end;
  771. /* Turn on jumbo. */
  772. status =
  773. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  774. if (status)
  775. goto end;
  776. status =
  777. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  778. if (status)
  779. goto end;
  780. /* Signal to the world that the port is enabled. */
  781. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  782. end:
  783. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  784. return status;
  785. }
  786. /* Get the next large buffer. */
  787. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  788. {
  789. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  790. rx_ring->lbq_curr_idx++;
  791. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  792. rx_ring->lbq_curr_idx = 0;
  793. rx_ring->lbq_free_cnt++;
  794. return lbq_desc;
  795. }
  796. /* Get the next small buffer. */
  797. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  798. {
  799. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  800. rx_ring->sbq_curr_idx++;
  801. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  802. rx_ring->sbq_curr_idx = 0;
  803. rx_ring->sbq_free_cnt++;
  804. return sbq_desc;
  805. }
  806. /* Update an rx ring index. */
  807. static void ql_update_cq(struct rx_ring *rx_ring)
  808. {
  809. rx_ring->cnsmr_idx++;
  810. rx_ring->curr_entry++;
  811. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  812. rx_ring->cnsmr_idx = 0;
  813. rx_ring->curr_entry = rx_ring->cq_base;
  814. }
  815. }
  816. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  817. {
  818. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  819. }
  820. /* Process (refill) a large buffer queue. */
  821. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  822. {
  823. u32 clean_idx = rx_ring->lbq_clean_idx;
  824. u32 start_idx = clean_idx;
  825. struct bq_desc *lbq_desc;
  826. u64 map;
  827. int i;
  828. while (rx_ring->lbq_free_cnt > 16) {
  829. for (i = 0; i < 16; i++) {
  830. QPRINTK(qdev, RX_STATUS, DEBUG,
  831. "lbq: try cleaning clean_idx = %d.\n",
  832. clean_idx);
  833. lbq_desc = &rx_ring->lbq[clean_idx];
  834. if (lbq_desc->p.lbq_page == NULL) {
  835. QPRINTK(qdev, RX_STATUS, DEBUG,
  836. "lbq: getting new page for index %d.\n",
  837. lbq_desc->index);
  838. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  839. if (lbq_desc->p.lbq_page == NULL) {
  840. rx_ring->lbq_clean_idx = clean_idx;
  841. QPRINTK(qdev, RX_STATUS, ERR,
  842. "Couldn't get a page.\n");
  843. return;
  844. }
  845. map = pci_map_page(qdev->pdev,
  846. lbq_desc->p.lbq_page,
  847. 0, PAGE_SIZE,
  848. PCI_DMA_FROMDEVICE);
  849. if (pci_dma_mapping_error(qdev->pdev, map)) {
  850. rx_ring->lbq_clean_idx = clean_idx;
  851. put_page(lbq_desc->p.lbq_page);
  852. lbq_desc->p.lbq_page = NULL;
  853. QPRINTK(qdev, RX_STATUS, ERR,
  854. "PCI mapping failed.\n");
  855. return;
  856. }
  857. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  858. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  859. *lbq_desc->addr = cpu_to_le64(map);
  860. }
  861. clean_idx++;
  862. if (clean_idx == rx_ring->lbq_len)
  863. clean_idx = 0;
  864. }
  865. rx_ring->lbq_clean_idx = clean_idx;
  866. rx_ring->lbq_prod_idx += 16;
  867. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  868. rx_ring->lbq_prod_idx = 0;
  869. rx_ring->lbq_free_cnt -= 16;
  870. }
  871. if (start_idx != clean_idx) {
  872. QPRINTK(qdev, RX_STATUS, DEBUG,
  873. "lbq: updating prod idx = %d.\n",
  874. rx_ring->lbq_prod_idx);
  875. ql_write_db_reg(rx_ring->lbq_prod_idx,
  876. rx_ring->lbq_prod_idx_db_reg);
  877. }
  878. }
  879. /* Process (refill) a small buffer queue. */
  880. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  881. {
  882. u32 clean_idx = rx_ring->sbq_clean_idx;
  883. u32 start_idx = clean_idx;
  884. struct bq_desc *sbq_desc;
  885. u64 map;
  886. int i;
  887. while (rx_ring->sbq_free_cnt > 16) {
  888. for (i = 0; i < 16; i++) {
  889. sbq_desc = &rx_ring->sbq[clean_idx];
  890. QPRINTK(qdev, RX_STATUS, DEBUG,
  891. "sbq: try cleaning clean_idx = %d.\n",
  892. clean_idx);
  893. if (sbq_desc->p.skb == NULL) {
  894. QPRINTK(qdev, RX_STATUS, DEBUG,
  895. "sbq: getting new skb for index %d.\n",
  896. sbq_desc->index);
  897. sbq_desc->p.skb =
  898. netdev_alloc_skb(qdev->ndev,
  899. rx_ring->sbq_buf_size);
  900. if (sbq_desc->p.skb == NULL) {
  901. QPRINTK(qdev, PROBE, ERR,
  902. "Couldn't get an skb.\n");
  903. rx_ring->sbq_clean_idx = clean_idx;
  904. return;
  905. }
  906. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  907. map = pci_map_single(qdev->pdev,
  908. sbq_desc->p.skb->data,
  909. rx_ring->sbq_buf_size /
  910. 2, PCI_DMA_FROMDEVICE);
  911. if (pci_dma_mapping_error(qdev->pdev, map)) {
  912. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  913. rx_ring->sbq_clean_idx = clean_idx;
  914. dev_kfree_skb_any(sbq_desc->p.skb);
  915. sbq_desc->p.skb = NULL;
  916. return;
  917. }
  918. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  919. pci_unmap_len_set(sbq_desc, maplen,
  920. rx_ring->sbq_buf_size / 2);
  921. *sbq_desc->addr = cpu_to_le64(map);
  922. }
  923. clean_idx++;
  924. if (clean_idx == rx_ring->sbq_len)
  925. clean_idx = 0;
  926. }
  927. rx_ring->sbq_clean_idx = clean_idx;
  928. rx_ring->sbq_prod_idx += 16;
  929. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  930. rx_ring->sbq_prod_idx = 0;
  931. rx_ring->sbq_free_cnt -= 16;
  932. }
  933. if (start_idx != clean_idx) {
  934. QPRINTK(qdev, RX_STATUS, DEBUG,
  935. "sbq: updating prod idx = %d.\n",
  936. rx_ring->sbq_prod_idx);
  937. ql_write_db_reg(rx_ring->sbq_prod_idx,
  938. rx_ring->sbq_prod_idx_db_reg);
  939. }
  940. }
  941. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  942. struct rx_ring *rx_ring)
  943. {
  944. ql_update_sbq(qdev, rx_ring);
  945. ql_update_lbq(qdev, rx_ring);
  946. }
  947. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  948. * fails at some stage, or from the interrupt when a tx completes.
  949. */
  950. static void ql_unmap_send(struct ql_adapter *qdev,
  951. struct tx_ring_desc *tx_ring_desc, int mapped)
  952. {
  953. int i;
  954. for (i = 0; i < mapped; i++) {
  955. if (i == 0 || (i == 7 && mapped > 7)) {
  956. /*
  957. * Unmap the skb->data area, or the
  958. * external sglist (AKA the Outbound
  959. * Address List (OAL)).
  960. * If its the zeroeth element, then it's
  961. * the skb->data area. If it's the 7th
  962. * element and there is more than 6 frags,
  963. * then its an OAL.
  964. */
  965. if (i == 7) {
  966. QPRINTK(qdev, TX_DONE, DEBUG,
  967. "unmapping OAL area.\n");
  968. }
  969. pci_unmap_single(qdev->pdev,
  970. pci_unmap_addr(&tx_ring_desc->map[i],
  971. mapaddr),
  972. pci_unmap_len(&tx_ring_desc->map[i],
  973. maplen),
  974. PCI_DMA_TODEVICE);
  975. } else {
  976. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  977. i);
  978. pci_unmap_page(qdev->pdev,
  979. pci_unmap_addr(&tx_ring_desc->map[i],
  980. mapaddr),
  981. pci_unmap_len(&tx_ring_desc->map[i],
  982. maplen), PCI_DMA_TODEVICE);
  983. }
  984. }
  985. }
  986. /* Map the buffers for this transmit. This will return
  987. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  988. */
  989. static int ql_map_send(struct ql_adapter *qdev,
  990. struct ob_mac_iocb_req *mac_iocb_ptr,
  991. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  992. {
  993. int len = skb_headlen(skb);
  994. dma_addr_t map;
  995. int frag_idx, err, map_idx = 0;
  996. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  997. int frag_cnt = skb_shinfo(skb)->nr_frags;
  998. if (frag_cnt) {
  999. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1000. }
  1001. /*
  1002. * Map the skb buffer first.
  1003. */
  1004. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1005. err = pci_dma_mapping_error(qdev->pdev, map);
  1006. if (err) {
  1007. QPRINTK(qdev, TX_QUEUED, ERR,
  1008. "PCI mapping failed with error: %d\n", err);
  1009. return NETDEV_TX_BUSY;
  1010. }
  1011. tbd->len = cpu_to_le32(len);
  1012. tbd->addr = cpu_to_le64(map);
  1013. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1014. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1015. map_idx++;
  1016. /*
  1017. * This loop fills the remainder of the 8 address descriptors
  1018. * in the IOCB. If there are more than 7 fragments, then the
  1019. * eighth address desc will point to an external list (OAL).
  1020. * When this happens, the remainder of the frags will be stored
  1021. * in this list.
  1022. */
  1023. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1024. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1025. tbd++;
  1026. if (frag_idx == 6 && frag_cnt > 7) {
  1027. /* Let's tack on an sglist.
  1028. * Our control block will now
  1029. * look like this:
  1030. * iocb->seg[0] = skb->data
  1031. * iocb->seg[1] = frag[0]
  1032. * iocb->seg[2] = frag[1]
  1033. * iocb->seg[3] = frag[2]
  1034. * iocb->seg[4] = frag[3]
  1035. * iocb->seg[5] = frag[4]
  1036. * iocb->seg[6] = frag[5]
  1037. * iocb->seg[7] = ptr to OAL (external sglist)
  1038. * oal->seg[0] = frag[6]
  1039. * oal->seg[1] = frag[7]
  1040. * oal->seg[2] = frag[8]
  1041. * oal->seg[3] = frag[9]
  1042. * oal->seg[4] = frag[10]
  1043. * etc...
  1044. */
  1045. /* Tack on the OAL in the eighth segment of IOCB. */
  1046. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1047. sizeof(struct oal),
  1048. PCI_DMA_TODEVICE);
  1049. err = pci_dma_mapping_error(qdev->pdev, map);
  1050. if (err) {
  1051. QPRINTK(qdev, TX_QUEUED, ERR,
  1052. "PCI mapping outbound address list with error: %d\n",
  1053. err);
  1054. goto map_error;
  1055. }
  1056. tbd->addr = cpu_to_le64(map);
  1057. /*
  1058. * The length is the number of fragments
  1059. * that remain to be mapped times the length
  1060. * of our sglist (OAL).
  1061. */
  1062. tbd->len =
  1063. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1064. (frag_cnt - frag_idx)) | TX_DESC_C);
  1065. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1066. map);
  1067. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1068. sizeof(struct oal));
  1069. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1070. map_idx++;
  1071. }
  1072. map =
  1073. pci_map_page(qdev->pdev, frag->page,
  1074. frag->page_offset, frag->size,
  1075. PCI_DMA_TODEVICE);
  1076. err = pci_dma_mapping_error(qdev->pdev, map);
  1077. if (err) {
  1078. QPRINTK(qdev, TX_QUEUED, ERR,
  1079. "PCI mapping frags failed with error: %d.\n",
  1080. err);
  1081. goto map_error;
  1082. }
  1083. tbd->addr = cpu_to_le64(map);
  1084. tbd->len = cpu_to_le32(frag->size);
  1085. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1086. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1087. frag->size);
  1088. }
  1089. /* Save the number of segments we've mapped. */
  1090. tx_ring_desc->map_cnt = map_idx;
  1091. /* Terminate the last segment. */
  1092. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1093. return NETDEV_TX_OK;
  1094. map_error:
  1095. /*
  1096. * If the first frag mapping failed, then i will be zero.
  1097. * This causes the unmap of the skb->data area. Otherwise
  1098. * we pass in the number of frags that mapped successfully
  1099. * so they can be umapped.
  1100. */
  1101. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1102. return NETDEV_TX_BUSY;
  1103. }
  1104. static void ql_realign_skb(struct sk_buff *skb, int len)
  1105. {
  1106. void *temp_addr = skb->data;
  1107. /* Undo the skb_reserve(skb,32) we did before
  1108. * giving to hardware, and realign data on
  1109. * a 2-byte boundary.
  1110. */
  1111. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1112. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1113. skb_copy_to_linear_data(skb, temp_addr,
  1114. (unsigned int)len);
  1115. }
  1116. /*
  1117. * This function builds an skb for the given inbound
  1118. * completion. It will be rewritten for readability in the near
  1119. * future, but for not it works well.
  1120. */
  1121. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1122. struct rx_ring *rx_ring,
  1123. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1124. {
  1125. struct bq_desc *lbq_desc;
  1126. struct bq_desc *sbq_desc;
  1127. struct sk_buff *skb = NULL;
  1128. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1129. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1130. /*
  1131. * Handle the header buffer if present.
  1132. */
  1133. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1134. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1135. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1136. /*
  1137. * Headers fit nicely into a small buffer.
  1138. */
  1139. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1140. pci_unmap_single(qdev->pdev,
  1141. pci_unmap_addr(sbq_desc, mapaddr),
  1142. pci_unmap_len(sbq_desc, maplen),
  1143. PCI_DMA_FROMDEVICE);
  1144. skb = sbq_desc->p.skb;
  1145. ql_realign_skb(skb, hdr_len);
  1146. skb_put(skb, hdr_len);
  1147. sbq_desc->p.skb = NULL;
  1148. }
  1149. /*
  1150. * Handle the data buffer(s).
  1151. */
  1152. if (unlikely(!length)) { /* Is there data too? */
  1153. QPRINTK(qdev, RX_STATUS, DEBUG,
  1154. "No Data buffer in this packet.\n");
  1155. return skb;
  1156. }
  1157. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1158. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1159. QPRINTK(qdev, RX_STATUS, DEBUG,
  1160. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1161. /*
  1162. * Data is less than small buffer size so it's
  1163. * stuffed in a small buffer.
  1164. * For this case we append the data
  1165. * from the "data" small buffer to the "header" small
  1166. * buffer.
  1167. */
  1168. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1169. pci_dma_sync_single_for_cpu(qdev->pdev,
  1170. pci_unmap_addr
  1171. (sbq_desc, mapaddr),
  1172. pci_unmap_len
  1173. (sbq_desc, maplen),
  1174. PCI_DMA_FROMDEVICE);
  1175. memcpy(skb_put(skb, length),
  1176. sbq_desc->p.skb->data, length);
  1177. pci_dma_sync_single_for_device(qdev->pdev,
  1178. pci_unmap_addr
  1179. (sbq_desc,
  1180. mapaddr),
  1181. pci_unmap_len
  1182. (sbq_desc,
  1183. maplen),
  1184. PCI_DMA_FROMDEVICE);
  1185. } else {
  1186. QPRINTK(qdev, RX_STATUS, DEBUG,
  1187. "%d bytes in a single small buffer.\n", length);
  1188. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1189. skb = sbq_desc->p.skb;
  1190. ql_realign_skb(skb, length);
  1191. skb_put(skb, length);
  1192. pci_unmap_single(qdev->pdev,
  1193. pci_unmap_addr(sbq_desc,
  1194. mapaddr),
  1195. pci_unmap_len(sbq_desc,
  1196. maplen),
  1197. PCI_DMA_FROMDEVICE);
  1198. sbq_desc->p.skb = NULL;
  1199. }
  1200. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1201. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1202. QPRINTK(qdev, RX_STATUS, DEBUG,
  1203. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1204. /*
  1205. * The data is in a single large buffer. We
  1206. * chain it to the header buffer's skb and let
  1207. * it rip.
  1208. */
  1209. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1210. pci_unmap_page(qdev->pdev,
  1211. pci_unmap_addr(lbq_desc,
  1212. mapaddr),
  1213. pci_unmap_len(lbq_desc, maplen),
  1214. PCI_DMA_FROMDEVICE);
  1215. QPRINTK(qdev, RX_STATUS, DEBUG,
  1216. "Chaining page to skb.\n");
  1217. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1218. 0, length);
  1219. skb->len += length;
  1220. skb->data_len += length;
  1221. skb->truesize += length;
  1222. lbq_desc->p.lbq_page = NULL;
  1223. } else {
  1224. /*
  1225. * The headers and data are in a single large buffer. We
  1226. * copy it to a new skb and let it go. This can happen with
  1227. * jumbo mtu on a non-TCP/UDP frame.
  1228. */
  1229. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1230. skb = netdev_alloc_skb(qdev->ndev, length);
  1231. if (skb == NULL) {
  1232. QPRINTK(qdev, PROBE, DEBUG,
  1233. "No skb available, drop the packet.\n");
  1234. return NULL;
  1235. }
  1236. pci_unmap_page(qdev->pdev,
  1237. pci_unmap_addr(lbq_desc,
  1238. mapaddr),
  1239. pci_unmap_len(lbq_desc, maplen),
  1240. PCI_DMA_FROMDEVICE);
  1241. skb_reserve(skb, NET_IP_ALIGN);
  1242. QPRINTK(qdev, RX_STATUS, DEBUG,
  1243. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1244. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1245. 0, length);
  1246. skb->len += length;
  1247. skb->data_len += length;
  1248. skb->truesize += length;
  1249. length -= length;
  1250. lbq_desc->p.lbq_page = NULL;
  1251. __pskb_pull_tail(skb,
  1252. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1253. VLAN_ETH_HLEN : ETH_HLEN);
  1254. }
  1255. } else {
  1256. /*
  1257. * The data is in a chain of large buffers
  1258. * pointed to by a small buffer. We loop
  1259. * thru and chain them to the our small header
  1260. * buffer's skb.
  1261. * frags: There are 18 max frags and our small
  1262. * buffer will hold 32 of them. The thing is,
  1263. * we'll use 3 max for our 9000 byte jumbo
  1264. * frames. If the MTU goes up we could
  1265. * eventually be in trouble.
  1266. */
  1267. int size, offset, i = 0;
  1268. __le64 *bq, bq_array[8];
  1269. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1270. pci_unmap_single(qdev->pdev,
  1271. pci_unmap_addr(sbq_desc, mapaddr),
  1272. pci_unmap_len(sbq_desc, maplen),
  1273. PCI_DMA_FROMDEVICE);
  1274. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1275. /*
  1276. * This is an non TCP/UDP IP frame, so
  1277. * the headers aren't split into a small
  1278. * buffer. We have to use the small buffer
  1279. * that contains our sg list as our skb to
  1280. * send upstairs. Copy the sg list here to
  1281. * a local buffer and use it to find the
  1282. * pages to chain.
  1283. */
  1284. QPRINTK(qdev, RX_STATUS, DEBUG,
  1285. "%d bytes of headers & data in chain of large.\n", length);
  1286. skb = sbq_desc->p.skb;
  1287. bq = &bq_array[0];
  1288. memcpy(bq, skb->data, sizeof(bq_array));
  1289. sbq_desc->p.skb = NULL;
  1290. skb_reserve(skb, NET_IP_ALIGN);
  1291. } else {
  1292. QPRINTK(qdev, RX_STATUS, DEBUG,
  1293. "Headers in small, %d bytes of data in chain of large.\n", length);
  1294. bq = (__le64 *)sbq_desc->p.skb->data;
  1295. }
  1296. while (length > 0) {
  1297. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1298. pci_unmap_page(qdev->pdev,
  1299. pci_unmap_addr(lbq_desc,
  1300. mapaddr),
  1301. pci_unmap_len(lbq_desc,
  1302. maplen),
  1303. PCI_DMA_FROMDEVICE);
  1304. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1305. offset = 0;
  1306. QPRINTK(qdev, RX_STATUS, DEBUG,
  1307. "Adding page %d to skb for %d bytes.\n",
  1308. i, size);
  1309. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1310. offset, size);
  1311. skb->len += size;
  1312. skb->data_len += size;
  1313. skb->truesize += size;
  1314. length -= size;
  1315. lbq_desc->p.lbq_page = NULL;
  1316. bq++;
  1317. i++;
  1318. }
  1319. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1320. VLAN_ETH_HLEN : ETH_HLEN);
  1321. }
  1322. return skb;
  1323. }
  1324. /* Process an inbound completion from an rx ring. */
  1325. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1326. struct rx_ring *rx_ring,
  1327. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1328. {
  1329. struct net_device *ndev = qdev->ndev;
  1330. struct sk_buff *skb = NULL;
  1331. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1332. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1333. if (unlikely(!skb)) {
  1334. QPRINTK(qdev, RX_STATUS, DEBUG,
  1335. "No skb available, drop packet.\n");
  1336. return;
  1337. }
  1338. prefetch(skb->data);
  1339. skb->dev = ndev;
  1340. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1341. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1342. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1343. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1344. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1345. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1346. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1347. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1348. }
  1349. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1350. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1351. }
  1352. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1353. QPRINTK(qdev, RX_STATUS, ERR,
  1354. "Bad checksum for this %s packet.\n",
  1355. ((ib_mac_rsp->
  1356. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1357. skb->ip_summed = CHECKSUM_NONE;
  1358. } else if (qdev->rx_csum &&
  1359. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1360. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1361. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1362. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1363. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1364. }
  1365. qdev->stats.rx_packets++;
  1366. qdev->stats.rx_bytes += skb->len;
  1367. skb->protocol = eth_type_trans(skb, ndev);
  1368. skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
  1369. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1370. QPRINTK(qdev, RX_STATUS, DEBUG,
  1371. "Passing a VLAN packet upstream.\n");
  1372. vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
  1373. le16_to_cpu(ib_mac_rsp->vlan_id));
  1374. } else {
  1375. QPRINTK(qdev, RX_STATUS, DEBUG,
  1376. "Passing a normal packet upstream.\n");
  1377. netif_receive_skb(skb);
  1378. }
  1379. }
  1380. /* Process an outbound completion from an rx ring. */
  1381. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1382. struct ob_mac_iocb_rsp *mac_rsp)
  1383. {
  1384. struct tx_ring *tx_ring;
  1385. struct tx_ring_desc *tx_ring_desc;
  1386. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1387. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1388. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1389. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1390. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1391. qdev->stats.tx_packets++;
  1392. dev_kfree_skb(tx_ring_desc->skb);
  1393. tx_ring_desc->skb = NULL;
  1394. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1395. OB_MAC_IOCB_RSP_S |
  1396. OB_MAC_IOCB_RSP_L |
  1397. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1398. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1399. QPRINTK(qdev, TX_DONE, WARNING,
  1400. "Total descriptor length did not match transfer length.\n");
  1401. }
  1402. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1403. QPRINTK(qdev, TX_DONE, WARNING,
  1404. "Frame too short to be legal, not sent.\n");
  1405. }
  1406. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1407. QPRINTK(qdev, TX_DONE, WARNING,
  1408. "Frame too long, but sent anyway.\n");
  1409. }
  1410. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1411. QPRINTK(qdev, TX_DONE, WARNING,
  1412. "PCI backplane error. Frame not sent.\n");
  1413. }
  1414. }
  1415. atomic_inc(&tx_ring->tx_count);
  1416. }
  1417. /* Fire up a handler to reset the MPI processor. */
  1418. void ql_queue_fw_error(struct ql_adapter *qdev)
  1419. {
  1420. netif_stop_queue(qdev->ndev);
  1421. netif_carrier_off(qdev->ndev);
  1422. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1423. }
  1424. void ql_queue_asic_error(struct ql_adapter *qdev)
  1425. {
  1426. netif_stop_queue(qdev->ndev);
  1427. netif_carrier_off(qdev->ndev);
  1428. ql_disable_interrupts(qdev);
  1429. /* Clear adapter up bit to signal the recovery
  1430. * process that it shouldn't kill the reset worker
  1431. * thread
  1432. */
  1433. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1434. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1435. }
  1436. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1437. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1438. {
  1439. switch (ib_ae_rsp->event) {
  1440. case MGMT_ERR_EVENT:
  1441. QPRINTK(qdev, RX_ERR, ERR,
  1442. "Management Processor Fatal Error.\n");
  1443. ql_queue_fw_error(qdev);
  1444. return;
  1445. case CAM_LOOKUP_ERR_EVENT:
  1446. QPRINTK(qdev, LINK, ERR,
  1447. "Multiple CAM hits lookup occurred.\n");
  1448. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1449. ql_queue_asic_error(qdev);
  1450. return;
  1451. case SOFT_ECC_ERROR_EVENT:
  1452. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1453. ql_queue_asic_error(qdev);
  1454. break;
  1455. case PCI_ERR_ANON_BUF_RD:
  1456. QPRINTK(qdev, RX_ERR, ERR,
  1457. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1458. ib_ae_rsp->q_id);
  1459. ql_queue_asic_error(qdev);
  1460. break;
  1461. default:
  1462. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1463. ib_ae_rsp->event);
  1464. ql_queue_asic_error(qdev);
  1465. break;
  1466. }
  1467. }
  1468. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1469. {
  1470. struct ql_adapter *qdev = rx_ring->qdev;
  1471. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1472. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1473. int count = 0;
  1474. /* While there are entries in the completion queue. */
  1475. while (prod != rx_ring->cnsmr_idx) {
  1476. QPRINTK(qdev, RX_STATUS, DEBUG,
  1477. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1478. prod, rx_ring->cnsmr_idx);
  1479. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1480. rmb();
  1481. switch (net_rsp->opcode) {
  1482. case OPCODE_OB_MAC_TSO_IOCB:
  1483. case OPCODE_OB_MAC_IOCB:
  1484. ql_process_mac_tx_intr(qdev, net_rsp);
  1485. break;
  1486. default:
  1487. QPRINTK(qdev, RX_STATUS, DEBUG,
  1488. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1489. net_rsp->opcode);
  1490. }
  1491. count++;
  1492. ql_update_cq(rx_ring);
  1493. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1494. }
  1495. ql_write_cq_idx(rx_ring);
  1496. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1497. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1498. if (atomic_read(&tx_ring->queue_stopped) &&
  1499. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1500. /*
  1501. * The queue got stopped because the tx_ring was full.
  1502. * Wake it up, because it's now at least 25% empty.
  1503. */
  1504. netif_wake_queue(qdev->ndev);
  1505. }
  1506. return count;
  1507. }
  1508. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1509. {
  1510. struct ql_adapter *qdev = rx_ring->qdev;
  1511. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1512. struct ql_net_rsp_iocb *net_rsp;
  1513. int count = 0;
  1514. /* While there are entries in the completion queue. */
  1515. while (prod != rx_ring->cnsmr_idx) {
  1516. QPRINTK(qdev, RX_STATUS, DEBUG,
  1517. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1518. prod, rx_ring->cnsmr_idx);
  1519. net_rsp = rx_ring->curr_entry;
  1520. rmb();
  1521. switch (net_rsp->opcode) {
  1522. case OPCODE_IB_MAC_IOCB:
  1523. ql_process_mac_rx_intr(qdev, rx_ring,
  1524. (struct ib_mac_iocb_rsp *)
  1525. net_rsp);
  1526. break;
  1527. case OPCODE_IB_AE_IOCB:
  1528. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1529. net_rsp);
  1530. break;
  1531. default:
  1532. {
  1533. QPRINTK(qdev, RX_STATUS, DEBUG,
  1534. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1535. net_rsp->opcode);
  1536. }
  1537. }
  1538. count++;
  1539. ql_update_cq(rx_ring);
  1540. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1541. if (count == budget)
  1542. break;
  1543. }
  1544. ql_update_buffer_queues(qdev, rx_ring);
  1545. ql_write_cq_idx(rx_ring);
  1546. return count;
  1547. }
  1548. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1549. {
  1550. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1551. struct ql_adapter *qdev = rx_ring->qdev;
  1552. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1553. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1554. rx_ring->cq_id);
  1555. if (work_done < budget) {
  1556. __napi_complete(napi);
  1557. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1558. }
  1559. return work_done;
  1560. }
  1561. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1562. {
  1563. struct ql_adapter *qdev = netdev_priv(ndev);
  1564. qdev->vlgrp = grp;
  1565. if (grp) {
  1566. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1567. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1568. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1569. } else {
  1570. QPRINTK(qdev, IFUP, DEBUG,
  1571. "Turning off VLAN in NIC_RCV_CFG.\n");
  1572. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1573. }
  1574. }
  1575. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1576. {
  1577. struct ql_adapter *qdev = netdev_priv(ndev);
  1578. u32 enable_bit = MAC_ADDR_E;
  1579. int status;
  1580. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1581. if (status)
  1582. return;
  1583. spin_lock(&qdev->hw_lock);
  1584. if (ql_set_mac_addr_reg
  1585. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1586. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1587. }
  1588. spin_unlock(&qdev->hw_lock);
  1589. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1590. }
  1591. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1592. {
  1593. struct ql_adapter *qdev = netdev_priv(ndev);
  1594. u32 enable_bit = 0;
  1595. int status;
  1596. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1597. if (status)
  1598. return;
  1599. spin_lock(&qdev->hw_lock);
  1600. if (ql_set_mac_addr_reg
  1601. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1602. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1603. }
  1604. spin_unlock(&qdev->hw_lock);
  1605. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1606. }
  1607. /* Worker thread to process a given rx_ring that is dedicated
  1608. * to outbound completions.
  1609. */
  1610. static void ql_tx_clean(struct work_struct *work)
  1611. {
  1612. struct rx_ring *rx_ring =
  1613. container_of(work, struct rx_ring, rx_work.work);
  1614. ql_clean_outbound_rx_ring(rx_ring);
  1615. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1616. }
  1617. /* Worker thread to process a given rx_ring that is dedicated
  1618. * to inbound completions.
  1619. */
  1620. static void ql_rx_clean(struct work_struct *work)
  1621. {
  1622. struct rx_ring *rx_ring =
  1623. container_of(work, struct rx_ring, rx_work.work);
  1624. ql_clean_inbound_rx_ring(rx_ring, 64);
  1625. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1626. }
  1627. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1628. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1629. {
  1630. struct rx_ring *rx_ring = dev_id;
  1631. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1632. &rx_ring->rx_work, 0);
  1633. return IRQ_HANDLED;
  1634. }
  1635. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1636. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1637. {
  1638. struct rx_ring *rx_ring = dev_id;
  1639. napi_schedule(&rx_ring->napi);
  1640. return IRQ_HANDLED;
  1641. }
  1642. /* This handles a fatal error, MPI activity, and the default
  1643. * rx_ring in an MSI-X multiple vector environment.
  1644. * In MSI/Legacy environment it also process the rest of
  1645. * the rx_rings.
  1646. */
  1647. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1648. {
  1649. struct rx_ring *rx_ring = dev_id;
  1650. struct ql_adapter *qdev = rx_ring->qdev;
  1651. struct intr_context *intr_context = &qdev->intr_context[0];
  1652. u32 var;
  1653. int i;
  1654. int work_done = 0;
  1655. spin_lock(&qdev->hw_lock);
  1656. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1657. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1658. spin_unlock(&qdev->hw_lock);
  1659. return IRQ_NONE;
  1660. }
  1661. spin_unlock(&qdev->hw_lock);
  1662. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1663. /*
  1664. * Check for fatal error.
  1665. */
  1666. if (var & STS_FE) {
  1667. ql_queue_asic_error(qdev);
  1668. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1669. var = ql_read32(qdev, ERR_STS);
  1670. QPRINTK(qdev, INTR, ERR,
  1671. "Resetting chip. Error Status Register = 0x%x\n", var);
  1672. return IRQ_HANDLED;
  1673. }
  1674. /*
  1675. * Check MPI processor activity.
  1676. */
  1677. if (var & STS_PI) {
  1678. /*
  1679. * We've got an async event or mailbox completion.
  1680. * Handle it and clear the source of the interrupt.
  1681. */
  1682. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1683. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1684. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1685. &qdev->mpi_work, 0);
  1686. work_done++;
  1687. }
  1688. /*
  1689. * Check the default queue and wake handler if active.
  1690. */
  1691. rx_ring = &qdev->rx_ring[0];
  1692. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1693. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1694. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1695. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1696. &rx_ring->rx_work, 0);
  1697. work_done++;
  1698. }
  1699. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1700. /*
  1701. * Start the DPC for each active queue.
  1702. */
  1703. for (i = 1; i < qdev->rx_ring_count; i++) {
  1704. rx_ring = &qdev->rx_ring[i];
  1705. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1706. rx_ring->cnsmr_idx) {
  1707. QPRINTK(qdev, INTR, INFO,
  1708. "Waking handler for rx_ring[%d].\n", i);
  1709. ql_disable_completion_interrupt(qdev,
  1710. intr_context->
  1711. intr);
  1712. if (i < qdev->rss_ring_first_cq_id)
  1713. queue_delayed_work_on(rx_ring->cpu,
  1714. qdev->q_workqueue,
  1715. &rx_ring->rx_work,
  1716. 0);
  1717. else
  1718. napi_schedule(&rx_ring->napi);
  1719. work_done++;
  1720. }
  1721. }
  1722. }
  1723. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1724. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1725. }
  1726. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1727. {
  1728. if (skb_is_gso(skb)) {
  1729. int err;
  1730. if (skb_header_cloned(skb)) {
  1731. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1732. if (err)
  1733. return err;
  1734. }
  1735. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1736. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1737. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1738. mac_iocb_ptr->total_hdrs_len =
  1739. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1740. mac_iocb_ptr->net_trans_offset =
  1741. cpu_to_le16(skb_network_offset(skb) |
  1742. skb_transport_offset(skb)
  1743. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1744. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1745. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1746. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1747. struct iphdr *iph = ip_hdr(skb);
  1748. iph->check = 0;
  1749. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1750. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1751. iph->daddr, 0,
  1752. IPPROTO_TCP,
  1753. 0);
  1754. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1755. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1756. tcp_hdr(skb)->check =
  1757. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1758. &ipv6_hdr(skb)->daddr,
  1759. 0, IPPROTO_TCP, 0);
  1760. }
  1761. return 1;
  1762. }
  1763. return 0;
  1764. }
  1765. static void ql_hw_csum_setup(struct sk_buff *skb,
  1766. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1767. {
  1768. int len;
  1769. struct iphdr *iph = ip_hdr(skb);
  1770. __sum16 *check;
  1771. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1772. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1773. mac_iocb_ptr->net_trans_offset =
  1774. cpu_to_le16(skb_network_offset(skb) |
  1775. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1776. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1777. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1778. if (likely(iph->protocol == IPPROTO_TCP)) {
  1779. check = &(tcp_hdr(skb)->check);
  1780. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1781. mac_iocb_ptr->total_hdrs_len =
  1782. cpu_to_le16(skb_transport_offset(skb) +
  1783. (tcp_hdr(skb)->doff << 2));
  1784. } else {
  1785. check = &(udp_hdr(skb)->check);
  1786. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1787. mac_iocb_ptr->total_hdrs_len =
  1788. cpu_to_le16(skb_transport_offset(skb) +
  1789. sizeof(struct udphdr));
  1790. }
  1791. *check = ~csum_tcpudp_magic(iph->saddr,
  1792. iph->daddr, len, iph->protocol, 0);
  1793. }
  1794. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1795. {
  1796. struct tx_ring_desc *tx_ring_desc;
  1797. struct ob_mac_iocb_req *mac_iocb_ptr;
  1798. struct ql_adapter *qdev = netdev_priv(ndev);
  1799. int tso;
  1800. struct tx_ring *tx_ring;
  1801. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1802. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1803. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1804. QPRINTK(qdev, TX_QUEUED, INFO,
  1805. "%s: shutting down tx queue %d du to lack of resources.\n",
  1806. __func__, tx_ring_idx);
  1807. netif_stop_queue(ndev);
  1808. atomic_inc(&tx_ring->queue_stopped);
  1809. return NETDEV_TX_BUSY;
  1810. }
  1811. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1812. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1813. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1814. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1815. mac_iocb_ptr->tid = tx_ring_desc->index;
  1816. /* We use the upper 32-bits to store the tx queue for this IO.
  1817. * When we get the completion we can use it to establish the context.
  1818. */
  1819. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1820. tx_ring_desc->skb = skb;
  1821. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1822. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1823. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1824. vlan_tx_tag_get(skb));
  1825. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1826. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1827. }
  1828. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1829. if (tso < 0) {
  1830. dev_kfree_skb_any(skb);
  1831. return NETDEV_TX_OK;
  1832. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1833. ql_hw_csum_setup(skb,
  1834. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1835. }
  1836. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1837. NETDEV_TX_OK) {
  1838. QPRINTK(qdev, TX_QUEUED, ERR,
  1839. "Could not map the segments.\n");
  1840. return NETDEV_TX_BUSY;
  1841. }
  1842. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1843. tx_ring->prod_idx++;
  1844. if (tx_ring->prod_idx == tx_ring->wq_len)
  1845. tx_ring->prod_idx = 0;
  1846. wmb();
  1847. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1848. ndev->trans_start = jiffies;
  1849. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1850. tx_ring->prod_idx, skb->len);
  1851. atomic_dec(&tx_ring->tx_count);
  1852. return NETDEV_TX_OK;
  1853. }
  1854. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1855. {
  1856. if (qdev->rx_ring_shadow_reg_area) {
  1857. pci_free_consistent(qdev->pdev,
  1858. PAGE_SIZE,
  1859. qdev->rx_ring_shadow_reg_area,
  1860. qdev->rx_ring_shadow_reg_dma);
  1861. qdev->rx_ring_shadow_reg_area = NULL;
  1862. }
  1863. if (qdev->tx_ring_shadow_reg_area) {
  1864. pci_free_consistent(qdev->pdev,
  1865. PAGE_SIZE,
  1866. qdev->tx_ring_shadow_reg_area,
  1867. qdev->tx_ring_shadow_reg_dma);
  1868. qdev->tx_ring_shadow_reg_area = NULL;
  1869. }
  1870. }
  1871. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1872. {
  1873. qdev->rx_ring_shadow_reg_area =
  1874. pci_alloc_consistent(qdev->pdev,
  1875. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1876. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1877. QPRINTK(qdev, IFUP, ERR,
  1878. "Allocation of RX shadow space failed.\n");
  1879. return -ENOMEM;
  1880. }
  1881. qdev->tx_ring_shadow_reg_area =
  1882. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1883. &qdev->tx_ring_shadow_reg_dma);
  1884. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1885. QPRINTK(qdev, IFUP, ERR,
  1886. "Allocation of TX shadow space failed.\n");
  1887. goto err_wqp_sh_area;
  1888. }
  1889. return 0;
  1890. err_wqp_sh_area:
  1891. pci_free_consistent(qdev->pdev,
  1892. PAGE_SIZE,
  1893. qdev->rx_ring_shadow_reg_area,
  1894. qdev->rx_ring_shadow_reg_dma);
  1895. return -ENOMEM;
  1896. }
  1897. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1898. {
  1899. struct tx_ring_desc *tx_ring_desc;
  1900. int i;
  1901. struct ob_mac_iocb_req *mac_iocb_ptr;
  1902. mac_iocb_ptr = tx_ring->wq_base;
  1903. tx_ring_desc = tx_ring->q;
  1904. for (i = 0; i < tx_ring->wq_len; i++) {
  1905. tx_ring_desc->index = i;
  1906. tx_ring_desc->skb = NULL;
  1907. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1908. mac_iocb_ptr++;
  1909. tx_ring_desc++;
  1910. }
  1911. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1912. atomic_set(&tx_ring->queue_stopped, 0);
  1913. }
  1914. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1915. struct tx_ring *tx_ring)
  1916. {
  1917. if (tx_ring->wq_base) {
  1918. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1919. tx_ring->wq_base, tx_ring->wq_base_dma);
  1920. tx_ring->wq_base = NULL;
  1921. }
  1922. kfree(tx_ring->q);
  1923. tx_ring->q = NULL;
  1924. }
  1925. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1926. struct tx_ring *tx_ring)
  1927. {
  1928. tx_ring->wq_base =
  1929. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1930. &tx_ring->wq_base_dma);
  1931. if ((tx_ring->wq_base == NULL)
  1932. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1933. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1934. return -ENOMEM;
  1935. }
  1936. tx_ring->q =
  1937. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1938. if (tx_ring->q == NULL)
  1939. goto err;
  1940. return 0;
  1941. err:
  1942. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1943. tx_ring->wq_base, tx_ring->wq_base_dma);
  1944. return -ENOMEM;
  1945. }
  1946. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1947. {
  1948. int i;
  1949. struct bq_desc *lbq_desc;
  1950. for (i = 0; i < rx_ring->lbq_len; i++) {
  1951. lbq_desc = &rx_ring->lbq[i];
  1952. if (lbq_desc->p.lbq_page) {
  1953. pci_unmap_page(qdev->pdev,
  1954. pci_unmap_addr(lbq_desc, mapaddr),
  1955. pci_unmap_len(lbq_desc, maplen),
  1956. PCI_DMA_FROMDEVICE);
  1957. put_page(lbq_desc->p.lbq_page);
  1958. lbq_desc->p.lbq_page = NULL;
  1959. }
  1960. }
  1961. }
  1962. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1963. {
  1964. int i;
  1965. struct bq_desc *sbq_desc;
  1966. for (i = 0; i < rx_ring->sbq_len; i++) {
  1967. sbq_desc = &rx_ring->sbq[i];
  1968. if (sbq_desc == NULL) {
  1969. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1970. return;
  1971. }
  1972. if (sbq_desc->p.skb) {
  1973. pci_unmap_single(qdev->pdev,
  1974. pci_unmap_addr(sbq_desc, mapaddr),
  1975. pci_unmap_len(sbq_desc, maplen),
  1976. PCI_DMA_FROMDEVICE);
  1977. dev_kfree_skb(sbq_desc->p.skb);
  1978. sbq_desc->p.skb = NULL;
  1979. }
  1980. }
  1981. }
  1982. /* Free all large and small rx buffers associated
  1983. * with the completion queues for this device.
  1984. */
  1985. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  1986. {
  1987. int i;
  1988. struct rx_ring *rx_ring;
  1989. for (i = 0; i < qdev->rx_ring_count; i++) {
  1990. rx_ring = &qdev->rx_ring[i];
  1991. if (rx_ring->lbq)
  1992. ql_free_lbq_buffers(qdev, rx_ring);
  1993. if (rx_ring->sbq)
  1994. ql_free_sbq_buffers(qdev, rx_ring);
  1995. }
  1996. }
  1997. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  1998. {
  1999. struct rx_ring *rx_ring;
  2000. int i;
  2001. for (i = 0; i < qdev->rx_ring_count; i++) {
  2002. rx_ring = &qdev->rx_ring[i];
  2003. if (rx_ring->type != TX_Q)
  2004. ql_update_buffer_queues(qdev, rx_ring);
  2005. }
  2006. }
  2007. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2008. struct rx_ring *rx_ring)
  2009. {
  2010. int i;
  2011. struct bq_desc *lbq_desc;
  2012. __le64 *bq = rx_ring->lbq_base;
  2013. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2014. for (i = 0; i < rx_ring->lbq_len; i++) {
  2015. lbq_desc = &rx_ring->lbq[i];
  2016. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2017. lbq_desc->index = i;
  2018. lbq_desc->addr = bq;
  2019. bq++;
  2020. }
  2021. }
  2022. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2023. struct rx_ring *rx_ring)
  2024. {
  2025. int i;
  2026. struct bq_desc *sbq_desc;
  2027. __le64 *bq = rx_ring->sbq_base;
  2028. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2029. for (i = 0; i < rx_ring->sbq_len; i++) {
  2030. sbq_desc = &rx_ring->sbq[i];
  2031. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2032. sbq_desc->index = i;
  2033. sbq_desc->addr = bq;
  2034. bq++;
  2035. }
  2036. }
  2037. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2038. struct rx_ring *rx_ring)
  2039. {
  2040. /* Free the small buffer queue. */
  2041. if (rx_ring->sbq_base) {
  2042. pci_free_consistent(qdev->pdev,
  2043. rx_ring->sbq_size,
  2044. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2045. rx_ring->sbq_base = NULL;
  2046. }
  2047. /* Free the small buffer queue control blocks. */
  2048. kfree(rx_ring->sbq);
  2049. rx_ring->sbq = NULL;
  2050. /* Free the large buffer queue. */
  2051. if (rx_ring->lbq_base) {
  2052. pci_free_consistent(qdev->pdev,
  2053. rx_ring->lbq_size,
  2054. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2055. rx_ring->lbq_base = NULL;
  2056. }
  2057. /* Free the large buffer queue control blocks. */
  2058. kfree(rx_ring->lbq);
  2059. rx_ring->lbq = NULL;
  2060. /* Free the rx queue. */
  2061. if (rx_ring->cq_base) {
  2062. pci_free_consistent(qdev->pdev,
  2063. rx_ring->cq_size,
  2064. rx_ring->cq_base, rx_ring->cq_base_dma);
  2065. rx_ring->cq_base = NULL;
  2066. }
  2067. }
  2068. /* Allocate queues and buffers for this completions queue based
  2069. * on the values in the parameter structure. */
  2070. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2071. struct rx_ring *rx_ring)
  2072. {
  2073. /*
  2074. * Allocate the completion queue for this rx_ring.
  2075. */
  2076. rx_ring->cq_base =
  2077. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2078. &rx_ring->cq_base_dma);
  2079. if (rx_ring->cq_base == NULL) {
  2080. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2081. return -ENOMEM;
  2082. }
  2083. if (rx_ring->sbq_len) {
  2084. /*
  2085. * Allocate small buffer queue.
  2086. */
  2087. rx_ring->sbq_base =
  2088. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2089. &rx_ring->sbq_base_dma);
  2090. if (rx_ring->sbq_base == NULL) {
  2091. QPRINTK(qdev, IFUP, ERR,
  2092. "Small buffer queue allocation failed.\n");
  2093. goto err_mem;
  2094. }
  2095. /*
  2096. * Allocate small buffer queue control blocks.
  2097. */
  2098. rx_ring->sbq =
  2099. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2100. GFP_KERNEL);
  2101. if (rx_ring->sbq == NULL) {
  2102. QPRINTK(qdev, IFUP, ERR,
  2103. "Small buffer queue control block allocation failed.\n");
  2104. goto err_mem;
  2105. }
  2106. ql_init_sbq_ring(qdev, rx_ring);
  2107. }
  2108. if (rx_ring->lbq_len) {
  2109. /*
  2110. * Allocate large buffer queue.
  2111. */
  2112. rx_ring->lbq_base =
  2113. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2114. &rx_ring->lbq_base_dma);
  2115. if (rx_ring->lbq_base == NULL) {
  2116. QPRINTK(qdev, IFUP, ERR,
  2117. "Large buffer queue allocation failed.\n");
  2118. goto err_mem;
  2119. }
  2120. /*
  2121. * Allocate large buffer queue control blocks.
  2122. */
  2123. rx_ring->lbq =
  2124. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2125. GFP_KERNEL);
  2126. if (rx_ring->lbq == NULL) {
  2127. QPRINTK(qdev, IFUP, ERR,
  2128. "Large buffer queue control block allocation failed.\n");
  2129. goto err_mem;
  2130. }
  2131. ql_init_lbq_ring(qdev, rx_ring);
  2132. }
  2133. return 0;
  2134. err_mem:
  2135. ql_free_rx_resources(qdev, rx_ring);
  2136. return -ENOMEM;
  2137. }
  2138. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2139. {
  2140. struct tx_ring *tx_ring;
  2141. struct tx_ring_desc *tx_ring_desc;
  2142. int i, j;
  2143. /*
  2144. * Loop through all queues and free
  2145. * any resources.
  2146. */
  2147. for (j = 0; j < qdev->tx_ring_count; j++) {
  2148. tx_ring = &qdev->tx_ring[j];
  2149. for (i = 0; i < tx_ring->wq_len; i++) {
  2150. tx_ring_desc = &tx_ring->q[i];
  2151. if (tx_ring_desc && tx_ring_desc->skb) {
  2152. QPRINTK(qdev, IFDOWN, ERR,
  2153. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2154. tx_ring_desc->skb, j,
  2155. tx_ring_desc->index);
  2156. ql_unmap_send(qdev, tx_ring_desc,
  2157. tx_ring_desc->map_cnt);
  2158. dev_kfree_skb(tx_ring_desc->skb);
  2159. tx_ring_desc->skb = NULL;
  2160. }
  2161. }
  2162. }
  2163. }
  2164. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2165. {
  2166. int i;
  2167. for (i = 0; i < qdev->tx_ring_count; i++)
  2168. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2169. for (i = 0; i < qdev->rx_ring_count; i++)
  2170. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2171. ql_free_shadow_space(qdev);
  2172. }
  2173. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2174. {
  2175. int i;
  2176. /* Allocate space for our shadow registers and such. */
  2177. if (ql_alloc_shadow_space(qdev))
  2178. return -ENOMEM;
  2179. for (i = 0; i < qdev->rx_ring_count; i++) {
  2180. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2181. QPRINTK(qdev, IFUP, ERR,
  2182. "RX resource allocation failed.\n");
  2183. goto err_mem;
  2184. }
  2185. }
  2186. /* Allocate tx queue resources */
  2187. for (i = 0; i < qdev->tx_ring_count; i++) {
  2188. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2189. QPRINTK(qdev, IFUP, ERR,
  2190. "TX resource allocation failed.\n");
  2191. goto err_mem;
  2192. }
  2193. }
  2194. return 0;
  2195. err_mem:
  2196. ql_free_mem_resources(qdev);
  2197. return -ENOMEM;
  2198. }
  2199. /* Set up the rx ring control block and pass it to the chip.
  2200. * The control block is defined as
  2201. * "Completion Queue Initialization Control Block", or cqicb.
  2202. */
  2203. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2204. {
  2205. struct cqicb *cqicb = &rx_ring->cqicb;
  2206. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2207. (rx_ring->cq_id * sizeof(u64) * 4);
  2208. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2209. (rx_ring->cq_id * sizeof(u64) * 4);
  2210. void __iomem *doorbell_area =
  2211. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2212. int err = 0;
  2213. u16 bq_len;
  2214. /* Set up the shadow registers for this ring. */
  2215. rx_ring->prod_idx_sh_reg = shadow_reg;
  2216. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2217. shadow_reg += sizeof(u64);
  2218. shadow_reg_dma += sizeof(u64);
  2219. rx_ring->lbq_base_indirect = shadow_reg;
  2220. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2221. shadow_reg += sizeof(u64);
  2222. shadow_reg_dma += sizeof(u64);
  2223. rx_ring->sbq_base_indirect = shadow_reg;
  2224. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2225. /* PCI doorbell mem area + 0x00 for consumer index register */
  2226. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2227. rx_ring->cnsmr_idx = 0;
  2228. rx_ring->curr_entry = rx_ring->cq_base;
  2229. /* PCI doorbell mem area + 0x04 for valid register */
  2230. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2231. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2232. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2233. /* PCI doorbell mem area + 0x1c */
  2234. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2235. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2236. cqicb->msix_vect = rx_ring->irq;
  2237. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2238. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2239. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2240. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2241. /*
  2242. * Set up the control block load flags.
  2243. */
  2244. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2245. FLAGS_LV | /* Load MSI-X vector */
  2246. FLAGS_LI; /* Load irq delay values */
  2247. if (rx_ring->lbq_len) {
  2248. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2249. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2250. cqicb->lbq_addr =
  2251. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2252. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2253. (u16) rx_ring->lbq_buf_size;
  2254. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2255. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2256. (u16) rx_ring->lbq_len;
  2257. cqicb->lbq_len = cpu_to_le16(bq_len);
  2258. rx_ring->lbq_prod_idx = 0;
  2259. rx_ring->lbq_curr_idx = 0;
  2260. rx_ring->lbq_clean_idx = 0;
  2261. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2262. }
  2263. if (rx_ring->sbq_len) {
  2264. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2265. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2266. cqicb->sbq_addr =
  2267. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2268. cqicb->sbq_buf_size =
  2269. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2270. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2271. (u16) rx_ring->sbq_len;
  2272. cqicb->sbq_len = cpu_to_le16(bq_len);
  2273. rx_ring->sbq_prod_idx = 0;
  2274. rx_ring->sbq_curr_idx = 0;
  2275. rx_ring->sbq_clean_idx = 0;
  2276. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2277. }
  2278. switch (rx_ring->type) {
  2279. case TX_Q:
  2280. /* If there's only one interrupt, then we use
  2281. * worker threads to process the outbound
  2282. * completion handling rx_rings. We do this so
  2283. * they can be run on multiple CPUs. There is
  2284. * room to play with this more where we would only
  2285. * run in a worker if there are more than x number
  2286. * of outbound completions on the queue and more
  2287. * than one queue active. Some threshold that
  2288. * would indicate a benefit in spite of the cost
  2289. * of a context switch.
  2290. * If there's more than one interrupt, then the
  2291. * outbound completions are processed in the ISR.
  2292. */
  2293. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2294. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2295. else {
  2296. /* With all debug warnings on we see a WARN_ON message
  2297. * when we free the skb in the interrupt context.
  2298. */
  2299. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2300. }
  2301. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2302. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2303. break;
  2304. case DEFAULT_Q:
  2305. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2306. cqicb->irq_delay = 0;
  2307. cqicb->pkt_delay = 0;
  2308. break;
  2309. case RX_Q:
  2310. /* Inbound completion handling rx_rings run in
  2311. * separate NAPI contexts.
  2312. */
  2313. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2314. 64);
  2315. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2316. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2317. break;
  2318. default:
  2319. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2320. rx_ring->type);
  2321. }
  2322. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2323. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2324. CFG_LCQ, rx_ring->cq_id);
  2325. if (err) {
  2326. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2327. return err;
  2328. }
  2329. return err;
  2330. }
  2331. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2332. {
  2333. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2334. void __iomem *doorbell_area =
  2335. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2336. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2337. (tx_ring->wq_id * sizeof(u64));
  2338. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2339. (tx_ring->wq_id * sizeof(u64));
  2340. int err = 0;
  2341. /*
  2342. * Assign doorbell registers for this tx_ring.
  2343. */
  2344. /* TX PCI doorbell mem area for tx producer index */
  2345. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2346. tx_ring->prod_idx = 0;
  2347. /* TX PCI doorbell mem area + 0x04 */
  2348. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2349. /*
  2350. * Assign shadow registers for this tx_ring.
  2351. */
  2352. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2353. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2354. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2355. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2356. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2357. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2358. wqicb->rid = 0;
  2359. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2360. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2361. ql_init_tx_ring(qdev, tx_ring);
  2362. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2363. (u16) tx_ring->wq_id);
  2364. if (err) {
  2365. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2366. return err;
  2367. }
  2368. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2369. return err;
  2370. }
  2371. static void ql_disable_msix(struct ql_adapter *qdev)
  2372. {
  2373. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2374. pci_disable_msix(qdev->pdev);
  2375. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2376. kfree(qdev->msi_x_entry);
  2377. qdev->msi_x_entry = NULL;
  2378. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2379. pci_disable_msi(qdev->pdev);
  2380. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2381. }
  2382. }
  2383. static void ql_enable_msix(struct ql_adapter *qdev)
  2384. {
  2385. int i;
  2386. qdev->intr_count = 1;
  2387. /* Get the MSIX vectors. */
  2388. if (irq_type == MSIX_IRQ) {
  2389. /* Try to alloc space for the msix struct,
  2390. * if it fails then go to MSI/legacy.
  2391. */
  2392. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2393. sizeof(struct msix_entry),
  2394. GFP_KERNEL);
  2395. if (!qdev->msi_x_entry) {
  2396. irq_type = MSI_IRQ;
  2397. goto msi;
  2398. }
  2399. for (i = 0; i < qdev->rx_ring_count; i++)
  2400. qdev->msi_x_entry[i].entry = i;
  2401. if (!pci_enable_msix
  2402. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2403. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2404. qdev->intr_count = qdev->rx_ring_count;
  2405. QPRINTK(qdev, IFUP, INFO,
  2406. "MSI-X Enabled, got %d vectors.\n",
  2407. qdev->intr_count);
  2408. return;
  2409. } else {
  2410. kfree(qdev->msi_x_entry);
  2411. qdev->msi_x_entry = NULL;
  2412. QPRINTK(qdev, IFUP, WARNING,
  2413. "MSI-X Enable failed, trying MSI.\n");
  2414. irq_type = MSI_IRQ;
  2415. }
  2416. }
  2417. msi:
  2418. if (irq_type == MSI_IRQ) {
  2419. if (!pci_enable_msi(qdev->pdev)) {
  2420. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2421. QPRINTK(qdev, IFUP, INFO,
  2422. "Running with MSI interrupts.\n");
  2423. return;
  2424. }
  2425. }
  2426. irq_type = LEG_IRQ;
  2427. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2428. }
  2429. /*
  2430. * Here we build the intr_context structures based on
  2431. * our rx_ring count and intr vector count.
  2432. * The intr_context structure is used to hook each vector
  2433. * to possibly different handlers.
  2434. */
  2435. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2436. {
  2437. int i = 0;
  2438. struct intr_context *intr_context = &qdev->intr_context[0];
  2439. ql_enable_msix(qdev);
  2440. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2441. /* Each rx_ring has it's
  2442. * own intr_context since we have separate
  2443. * vectors for each queue.
  2444. * This only true when MSI-X is enabled.
  2445. */
  2446. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2447. qdev->rx_ring[i].irq = i;
  2448. intr_context->intr = i;
  2449. intr_context->qdev = qdev;
  2450. /*
  2451. * We set up each vectors enable/disable/read bits so
  2452. * there's no bit/mask calculations in the critical path.
  2453. */
  2454. intr_context->intr_en_mask =
  2455. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2456. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2457. | i;
  2458. intr_context->intr_dis_mask =
  2459. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2460. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2461. INTR_EN_IHD | i;
  2462. intr_context->intr_read_mask =
  2463. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2464. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2465. i;
  2466. if (i == 0) {
  2467. /*
  2468. * Default queue handles bcast/mcast plus
  2469. * async events. Needs buffers.
  2470. */
  2471. intr_context->handler = qlge_isr;
  2472. sprintf(intr_context->name, "%s-default-queue",
  2473. qdev->ndev->name);
  2474. } else if (i < qdev->rss_ring_first_cq_id) {
  2475. /*
  2476. * Outbound queue is for outbound completions only.
  2477. */
  2478. intr_context->handler = qlge_msix_tx_isr;
  2479. sprintf(intr_context->name, "%s-tx-%d",
  2480. qdev->ndev->name, i);
  2481. } else {
  2482. /*
  2483. * Inbound queues handle unicast frames only.
  2484. */
  2485. intr_context->handler = qlge_msix_rx_isr;
  2486. sprintf(intr_context->name, "%s-rx-%d",
  2487. qdev->ndev->name, i);
  2488. }
  2489. }
  2490. } else {
  2491. /*
  2492. * All rx_rings use the same intr_context since
  2493. * there is only one vector.
  2494. */
  2495. intr_context->intr = 0;
  2496. intr_context->qdev = qdev;
  2497. /*
  2498. * We set up each vectors enable/disable/read bits so
  2499. * there's no bit/mask calculations in the critical path.
  2500. */
  2501. intr_context->intr_en_mask =
  2502. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2503. intr_context->intr_dis_mask =
  2504. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2505. INTR_EN_TYPE_DISABLE;
  2506. intr_context->intr_read_mask =
  2507. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2508. /*
  2509. * Single interrupt means one handler for all rings.
  2510. */
  2511. intr_context->handler = qlge_isr;
  2512. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2513. for (i = 0; i < qdev->rx_ring_count; i++)
  2514. qdev->rx_ring[i].irq = 0;
  2515. }
  2516. }
  2517. static void ql_free_irq(struct ql_adapter *qdev)
  2518. {
  2519. int i;
  2520. struct intr_context *intr_context = &qdev->intr_context[0];
  2521. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2522. if (intr_context->hooked) {
  2523. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2524. free_irq(qdev->msi_x_entry[i].vector,
  2525. &qdev->rx_ring[i]);
  2526. QPRINTK(qdev, IFDOWN, ERR,
  2527. "freeing msix interrupt %d.\n", i);
  2528. } else {
  2529. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2530. QPRINTK(qdev, IFDOWN, ERR,
  2531. "freeing msi interrupt %d.\n", i);
  2532. }
  2533. }
  2534. }
  2535. ql_disable_msix(qdev);
  2536. }
  2537. static int ql_request_irq(struct ql_adapter *qdev)
  2538. {
  2539. int i;
  2540. int status = 0;
  2541. struct pci_dev *pdev = qdev->pdev;
  2542. struct intr_context *intr_context = &qdev->intr_context[0];
  2543. ql_resolve_queues_to_irqs(qdev);
  2544. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2545. atomic_set(&intr_context->irq_cnt, 0);
  2546. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2547. status = request_irq(qdev->msi_x_entry[i].vector,
  2548. intr_context->handler,
  2549. 0,
  2550. intr_context->name,
  2551. &qdev->rx_ring[i]);
  2552. if (status) {
  2553. QPRINTK(qdev, IFUP, ERR,
  2554. "Failed request for MSIX interrupt %d.\n",
  2555. i);
  2556. goto err_irq;
  2557. } else {
  2558. QPRINTK(qdev, IFUP, INFO,
  2559. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2560. i,
  2561. qdev->rx_ring[i].type ==
  2562. DEFAULT_Q ? "DEFAULT_Q" : "",
  2563. qdev->rx_ring[i].type ==
  2564. TX_Q ? "TX_Q" : "",
  2565. qdev->rx_ring[i].type ==
  2566. RX_Q ? "RX_Q" : "", intr_context->name);
  2567. }
  2568. } else {
  2569. QPRINTK(qdev, IFUP, DEBUG,
  2570. "trying msi or legacy interrupts.\n");
  2571. QPRINTK(qdev, IFUP, DEBUG,
  2572. "%s: irq = %d.\n", __func__, pdev->irq);
  2573. QPRINTK(qdev, IFUP, DEBUG,
  2574. "%s: context->name = %s.\n", __func__,
  2575. intr_context->name);
  2576. QPRINTK(qdev, IFUP, DEBUG,
  2577. "%s: dev_id = 0x%p.\n", __func__,
  2578. &qdev->rx_ring[0]);
  2579. status =
  2580. request_irq(pdev->irq, qlge_isr,
  2581. test_bit(QL_MSI_ENABLED,
  2582. &qdev->
  2583. flags) ? 0 : IRQF_SHARED,
  2584. intr_context->name, &qdev->rx_ring[0]);
  2585. if (status)
  2586. goto err_irq;
  2587. QPRINTK(qdev, IFUP, ERR,
  2588. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2589. i,
  2590. qdev->rx_ring[0].type ==
  2591. DEFAULT_Q ? "DEFAULT_Q" : "",
  2592. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2593. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2594. intr_context->name);
  2595. }
  2596. intr_context->hooked = 1;
  2597. }
  2598. return status;
  2599. err_irq:
  2600. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2601. ql_free_irq(qdev);
  2602. return status;
  2603. }
  2604. static int ql_start_rss(struct ql_adapter *qdev)
  2605. {
  2606. struct ricb *ricb = &qdev->ricb;
  2607. int status = 0;
  2608. int i;
  2609. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2610. memset((void *)ricb, 0, sizeof(ricb));
  2611. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2612. ricb->flags =
  2613. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2614. RSS_RT6);
  2615. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2616. /*
  2617. * Fill out the Indirection Table.
  2618. */
  2619. for (i = 0; i < 256; i++)
  2620. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2621. /*
  2622. * Random values for the IPv6 and IPv4 Hash Keys.
  2623. */
  2624. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2625. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2626. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2627. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2628. if (status) {
  2629. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2630. return status;
  2631. }
  2632. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2633. return status;
  2634. }
  2635. /* Initialize the frame-to-queue routing. */
  2636. static int ql_route_initialize(struct ql_adapter *qdev)
  2637. {
  2638. int status = 0;
  2639. int i;
  2640. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2641. if (status)
  2642. return status;
  2643. /* Clear all the entries in the routing table. */
  2644. for (i = 0; i < 16; i++) {
  2645. status = ql_set_routing_reg(qdev, i, 0, 0);
  2646. if (status) {
  2647. QPRINTK(qdev, IFUP, ERR,
  2648. "Failed to init routing register for CAM packets.\n");
  2649. goto exit;
  2650. }
  2651. }
  2652. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2653. if (status) {
  2654. QPRINTK(qdev, IFUP, ERR,
  2655. "Failed to init routing register for error packets.\n");
  2656. goto exit;
  2657. }
  2658. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2659. if (status) {
  2660. QPRINTK(qdev, IFUP, ERR,
  2661. "Failed to init routing register for broadcast packets.\n");
  2662. goto exit;
  2663. }
  2664. /* If we have more than one inbound queue, then turn on RSS in the
  2665. * routing block.
  2666. */
  2667. if (qdev->rss_ring_count > 1) {
  2668. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2669. RT_IDX_RSS_MATCH, 1);
  2670. if (status) {
  2671. QPRINTK(qdev, IFUP, ERR,
  2672. "Failed to init routing register for MATCH RSS packets.\n");
  2673. goto exit;
  2674. }
  2675. }
  2676. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2677. RT_IDX_CAM_HIT, 1);
  2678. if (status)
  2679. QPRINTK(qdev, IFUP, ERR,
  2680. "Failed to init routing register for CAM packets.\n");
  2681. exit:
  2682. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2683. return status;
  2684. }
  2685. static int ql_cam_route_initialize(struct ql_adapter *qdev)
  2686. {
  2687. int status;
  2688. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2689. if (status)
  2690. return status;
  2691. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2692. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  2693. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2694. if (status) {
  2695. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2696. return status;
  2697. }
  2698. status = ql_route_initialize(qdev);
  2699. if (status)
  2700. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2701. return status;
  2702. }
  2703. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2704. {
  2705. u32 value, mask;
  2706. int i;
  2707. int status = 0;
  2708. /*
  2709. * Set up the System register to halt on errors.
  2710. */
  2711. value = SYS_EFE | SYS_FAE;
  2712. mask = value << 16;
  2713. ql_write32(qdev, SYS, mask | value);
  2714. /* Set the default queue. */
  2715. value = NIC_RCV_CFG_DFQ;
  2716. mask = NIC_RCV_CFG_DFQ_MASK;
  2717. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2718. /* Set the MPI interrupt to enabled. */
  2719. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2720. /* Enable the function, set pagesize, enable error checking. */
  2721. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2722. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2723. /* Set/clear header splitting. */
  2724. mask = FSC_VM_PAGESIZE_MASK |
  2725. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2726. ql_write32(qdev, FSC, mask | value);
  2727. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2728. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2729. /* Start up the rx queues. */
  2730. for (i = 0; i < qdev->rx_ring_count; i++) {
  2731. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2732. if (status) {
  2733. QPRINTK(qdev, IFUP, ERR,
  2734. "Failed to start rx ring[%d].\n", i);
  2735. return status;
  2736. }
  2737. }
  2738. /* If there is more than one inbound completion queue
  2739. * then download a RICB to configure RSS.
  2740. */
  2741. if (qdev->rss_ring_count > 1) {
  2742. status = ql_start_rss(qdev);
  2743. if (status) {
  2744. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2745. return status;
  2746. }
  2747. }
  2748. /* Start up the tx queues. */
  2749. for (i = 0; i < qdev->tx_ring_count; i++) {
  2750. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2751. if (status) {
  2752. QPRINTK(qdev, IFUP, ERR,
  2753. "Failed to start tx ring[%d].\n", i);
  2754. return status;
  2755. }
  2756. }
  2757. /* Initialize the port and set the max framesize. */
  2758. status = qdev->nic_ops->port_initialize(qdev);
  2759. if (status) {
  2760. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2761. return status;
  2762. }
  2763. /* Set up the MAC address and frame routing filter. */
  2764. status = ql_cam_route_initialize(qdev);
  2765. if (status) {
  2766. QPRINTK(qdev, IFUP, ERR,
  2767. "Failed to init CAM/Routing tables.\n");
  2768. return status;
  2769. }
  2770. /* Start NAPI for the RSS queues. */
  2771. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2772. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2773. i);
  2774. napi_enable(&qdev->rx_ring[i].napi);
  2775. }
  2776. return status;
  2777. }
  2778. /* Issue soft reset to chip. */
  2779. static int ql_adapter_reset(struct ql_adapter *qdev)
  2780. {
  2781. u32 value;
  2782. int max_wait_time;
  2783. int status = 0;
  2784. int resetCnt = 0;
  2785. #define MAX_RESET_CNT 1
  2786. issueReset:
  2787. resetCnt++;
  2788. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2789. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2790. /* Wait for reset to complete. */
  2791. max_wait_time = 3;
  2792. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2793. max_wait_time);
  2794. do {
  2795. value = ql_read32(qdev, RST_FO);
  2796. if ((value & RST_FO_FR) == 0)
  2797. break;
  2798. ssleep(1);
  2799. } while ((--max_wait_time));
  2800. if (value & RST_FO_FR) {
  2801. QPRINTK(qdev, IFDOWN, ERR,
  2802. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2803. if (resetCnt < MAX_RESET_CNT)
  2804. goto issueReset;
  2805. }
  2806. if (max_wait_time == 0) {
  2807. status = -ETIMEDOUT;
  2808. QPRINTK(qdev, IFDOWN, ERR,
  2809. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2810. }
  2811. return status;
  2812. }
  2813. static void ql_display_dev_info(struct net_device *ndev)
  2814. {
  2815. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2816. QPRINTK(qdev, PROBE, INFO,
  2817. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2818. "XG Roll = %d, XG Rev = %d.\n",
  2819. qdev->func,
  2820. qdev->chip_rev_id & 0x0000000f,
  2821. qdev->chip_rev_id >> 4 & 0x0000000f,
  2822. qdev->chip_rev_id >> 8 & 0x0000000f,
  2823. qdev->chip_rev_id >> 12 & 0x0000000f);
  2824. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2825. }
  2826. static int ql_adapter_down(struct ql_adapter *qdev)
  2827. {
  2828. struct net_device *ndev = qdev->ndev;
  2829. int i, status = 0;
  2830. struct rx_ring *rx_ring;
  2831. netif_stop_queue(ndev);
  2832. netif_carrier_off(ndev);
  2833. /* Don't kill the reset worker thread if we
  2834. * are in the process of recovery.
  2835. */
  2836. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2837. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2838. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2839. cancel_delayed_work_sync(&qdev->mpi_work);
  2840. /* The default queue at index 0 is always processed in
  2841. * a workqueue.
  2842. */
  2843. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2844. /* The rest of the rx_rings are processed in
  2845. * a workqueue only if it's a single interrupt
  2846. * environment (MSI/Legacy).
  2847. */
  2848. for (i = 1; i < qdev->rx_ring_count; i++) {
  2849. rx_ring = &qdev->rx_ring[i];
  2850. /* Only the RSS rings use NAPI on multi irq
  2851. * environment. Outbound completion processing
  2852. * is done in interrupt context.
  2853. */
  2854. if (i >= qdev->rss_ring_first_cq_id) {
  2855. napi_disable(&rx_ring->napi);
  2856. } else {
  2857. cancel_delayed_work_sync(&rx_ring->rx_work);
  2858. }
  2859. }
  2860. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2861. ql_disable_interrupts(qdev);
  2862. ql_tx_ring_clean(qdev);
  2863. ql_free_rx_buffers(qdev);
  2864. spin_lock(&qdev->hw_lock);
  2865. status = ql_adapter_reset(qdev);
  2866. if (status)
  2867. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2868. qdev->func);
  2869. spin_unlock(&qdev->hw_lock);
  2870. return status;
  2871. }
  2872. static int ql_adapter_up(struct ql_adapter *qdev)
  2873. {
  2874. int err = 0;
  2875. spin_lock(&qdev->hw_lock);
  2876. err = ql_adapter_initialize(qdev);
  2877. if (err) {
  2878. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2879. spin_unlock(&qdev->hw_lock);
  2880. goto err_init;
  2881. }
  2882. spin_unlock(&qdev->hw_lock);
  2883. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2884. ql_alloc_rx_buffers(qdev);
  2885. ql_enable_interrupts(qdev);
  2886. ql_enable_all_completion_interrupts(qdev);
  2887. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2888. netif_carrier_on(qdev->ndev);
  2889. netif_start_queue(qdev->ndev);
  2890. }
  2891. return 0;
  2892. err_init:
  2893. ql_adapter_reset(qdev);
  2894. return err;
  2895. }
  2896. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2897. {
  2898. int status;
  2899. status = ql_adapter_down(qdev);
  2900. if (status)
  2901. goto error;
  2902. status = ql_adapter_up(qdev);
  2903. if (status)
  2904. goto error;
  2905. return status;
  2906. error:
  2907. QPRINTK(qdev, IFUP, ALERT,
  2908. "Driver up/down cycle failed, closing device\n");
  2909. rtnl_lock();
  2910. dev_close(qdev->ndev);
  2911. rtnl_unlock();
  2912. return status;
  2913. }
  2914. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2915. {
  2916. ql_free_mem_resources(qdev);
  2917. ql_free_irq(qdev);
  2918. }
  2919. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2920. {
  2921. int status = 0;
  2922. if (ql_alloc_mem_resources(qdev)) {
  2923. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2924. return -ENOMEM;
  2925. }
  2926. status = ql_request_irq(qdev);
  2927. if (status)
  2928. goto err_irq;
  2929. return status;
  2930. err_irq:
  2931. ql_free_mem_resources(qdev);
  2932. return status;
  2933. }
  2934. static int qlge_close(struct net_device *ndev)
  2935. {
  2936. struct ql_adapter *qdev = netdev_priv(ndev);
  2937. /*
  2938. * Wait for device to recover from a reset.
  2939. * (Rarely happens, but possible.)
  2940. */
  2941. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2942. msleep(1);
  2943. ql_adapter_down(qdev);
  2944. ql_release_adapter_resources(qdev);
  2945. return 0;
  2946. }
  2947. static int ql_configure_rings(struct ql_adapter *qdev)
  2948. {
  2949. int i;
  2950. struct rx_ring *rx_ring;
  2951. struct tx_ring *tx_ring;
  2952. int cpu_cnt = num_online_cpus();
  2953. /*
  2954. * For each processor present we allocate one
  2955. * rx_ring for outbound completions, and one
  2956. * rx_ring for inbound completions. Plus there is
  2957. * always the one default queue. For the CPU
  2958. * counts we end up with the following rx_rings:
  2959. * rx_ring count =
  2960. * one default queue +
  2961. * (CPU count * outbound completion rx_ring) +
  2962. * (CPU count * inbound (RSS) completion rx_ring)
  2963. * To keep it simple we limit the total number of
  2964. * queues to < 32, so we truncate CPU to 8.
  2965. * This limitation can be removed when requested.
  2966. */
  2967. if (cpu_cnt > MAX_CPUS)
  2968. cpu_cnt = MAX_CPUS;
  2969. /*
  2970. * rx_ring[0] is always the default queue.
  2971. */
  2972. /* Allocate outbound completion ring for each CPU. */
  2973. qdev->tx_ring_count = cpu_cnt;
  2974. /* Allocate inbound completion (RSS) ring for each CPU. */
  2975. qdev->rss_ring_count = cpu_cnt;
  2976. /* cq_id for the first inbound ring handler. */
  2977. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  2978. /*
  2979. * qdev->rx_ring_count:
  2980. * Total number of rx_rings. This includes the one
  2981. * default queue, a number of outbound completion
  2982. * handler rx_rings, and the number of inbound
  2983. * completion handler rx_rings.
  2984. */
  2985. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  2986. for (i = 0; i < qdev->tx_ring_count; i++) {
  2987. tx_ring = &qdev->tx_ring[i];
  2988. memset((void *)tx_ring, 0, sizeof(tx_ring));
  2989. tx_ring->qdev = qdev;
  2990. tx_ring->wq_id = i;
  2991. tx_ring->wq_len = qdev->tx_ring_size;
  2992. tx_ring->wq_size =
  2993. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  2994. /*
  2995. * The completion queue ID for the tx rings start
  2996. * immediately after the default Q ID, which is zero.
  2997. */
  2998. tx_ring->cq_id = i + 1;
  2999. }
  3000. for (i = 0; i < qdev->rx_ring_count; i++) {
  3001. rx_ring = &qdev->rx_ring[i];
  3002. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3003. rx_ring->qdev = qdev;
  3004. rx_ring->cq_id = i;
  3005. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3006. if (i == 0) { /* Default queue at index 0. */
  3007. /*
  3008. * Default queue handles bcast/mcast plus
  3009. * async events. Needs buffers.
  3010. */
  3011. rx_ring->cq_len = qdev->rx_ring_size;
  3012. rx_ring->cq_size =
  3013. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3014. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3015. rx_ring->lbq_size =
  3016. rx_ring->lbq_len * sizeof(__le64);
  3017. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3018. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3019. rx_ring->sbq_size =
  3020. rx_ring->sbq_len * sizeof(__le64);
  3021. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3022. rx_ring->type = DEFAULT_Q;
  3023. } else if (i < qdev->rss_ring_first_cq_id) {
  3024. /*
  3025. * Outbound queue handles outbound completions only.
  3026. */
  3027. /* outbound cq is same size as tx_ring it services. */
  3028. rx_ring->cq_len = qdev->tx_ring_size;
  3029. rx_ring->cq_size =
  3030. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3031. rx_ring->lbq_len = 0;
  3032. rx_ring->lbq_size = 0;
  3033. rx_ring->lbq_buf_size = 0;
  3034. rx_ring->sbq_len = 0;
  3035. rx_ring->sbq_size = 0;
  3036. rx_ring->sbq_buf_size = 0;
  3037. rx_ring->type = TX_Q;
  3038. } else { /* Inbound completions (RSS) queues */
  3039. /*
  3040. * Inbound queues handle unicast frames only.
  3041. */
  3042. rx_ring->cq_len = qdev->rx_ring_size;
  3043. rx_ring->cq_size =
  3044. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3045. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3046. rx_ring->lbq_size =
  3047. rx_ring->lbq_len * sizeof(__le64);
  3048. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3049. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3050. rx_ring->sbq_size =
  3051. rx_ring->sbq_len * sizeof(__le64);
  3052. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3053. rx_ring->type = RX_Q;
  3054. }
  3055. }
  3056. return 0;
  3057. }
  3058. static int qlge_open(struct net_device *ndev)
  3059. {
  3060. int err = 0;
  3061. struct ql_adapter *qdev = netdev_priv(ndev);
  3062. err = ql_configure_rings(qdev);
  3063. if (err)
  3064. return err;
  3065. err = ql_get_adapter_resources(qdev);
  3066. if (err)
  3067. goto error_up;
  3068. err = ql_adapter_up(qdev);
  3069. if (err)
  3070. goto error_up;
  3071. return err;
  3072. error_up:
  3073. ql_release_adapter_resources(qdev);
  3074. return err;
  3075. }
  3076. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3077. {
  3078. struct ql_adapter *qdev = netdev_priv(ndev);
  3079. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3080. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3081. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3082. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3083. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3084. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3085. return 0;
  3086. } else
  3087. return -EINVAL;
  3088. ndev->mtu = new_mtu;
  3089. return 0;
  3090. }
  3091. static struct net_device_stats *qlge_get_stats(struct net_device
  3092. *ndev)
  3093. {
  3094. struct ql_adapter *qdev = netdev_priv(ndev);
  3095. return &qdev->stats;
  3096. }
  3097. static void qlge_set_multicast_list(struct net_device *ndev)
  3098. {
  3099. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3100. struct dev_mc_list *mc_ptr;
  3101. int i, status;
  3102. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3103. if (status)
  3104. return;
  3105. spin_lock(&qdev->hw_lock);
  3106. /*
  3107. * Set or clear promiscuous mode if a
  3108. * transition is taking place.
  3109. */
  3110. if (ndev->flags & IFF_PROMISC) {
  3111. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3112. if (ql_set_routing_reg
  3113. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3114. QPRINTK(qdev, HW, ERR,
  3115. "Failed to set promiscous mode.\n");
  3116. } else {
  3117. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3118. }
  3119. }
  3120. } else {
  3121. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3122. if (ql_set_routing_reg
  3123. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3124. QPRINTK(qdev, HW, ERR,
  3125. "Failed to clear promiscous mode.\n");
  3126. } else {
  3127. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3128. }
  3129. }
  3130. }
  3131. /*
  3132. * Set or clear all multicast mode if a
  3133. * transition is taking place.
  3134. */
  3135. if ((ndev->flags & IFF_ALLMULTI) ||
  3136. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3137. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3138. if (ql_set_routing_reg
  3139. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3140. QPRINTK(qdev, HW, ERR,
  3141. "Failed to set all-multi mode.\n");
  3142. } else {
  3143. set_bit(QL_ALLMULTI, &qdev->flags);
  3144. }
  3145. }
  3146. } else {
  3147. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3148. if (ql_set_routing_reg
  3149. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3150. QPRINTK(qdev, HW, ERR,
  3151. "Failed to clear all-multi mode.\n");
  3152. } else {
  3153. clear_bit(QL_ALLMULTI, &qdev->flags);
  3154. }
  3155. }
  3156. }
  3157. if (ndev->mc_count) {
  3158. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3159. if (status)
  3160. goto exit;
  3161. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3162. i++, mc_ptr = mc_ptr->next)
  3163. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3164. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3165. QPRINTK(qdev, HW, ERR,
  3166. "Failed to loadmulticast address.\n");
  3167. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3168. goto exit;
  3169. }
  3170. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3171. if (ql_set_routing_reg
  3172. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3173. QPRINTK(qdev, HW, ERR,
  3174. "Failed to set multicast match mode.\n");
  3175. } else {
  3176. set_bit(QL_ALLMULTI, &qdev->flags);
  3177. }
  3178. }
  3179. exit:
  3180. spin_unlock(&qdev->hw_lock);
  3181. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3182. }
  3183. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3184. {
  3185. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3186. struct sockaddr *addr = p;
  3187. int status;
  3188. if (netif_running(ndev))
  3189. return -EBUSY;
  3190. if (!is_valid_ether_addr(addr->sa_data))
  3191. return -EADDRNOTAVAIL;
  3192. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3193. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3194. if (status)
  3195. return status;
  3196. spin_lock(&qdev->hw_lock);
  3197. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3198. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3199. spin_unlock(&qdev->hw_lock);
  3200. if (status)
  3201. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3202. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3203. return status;
  3204. }
  3205. static void qlge_tx_timeout(struct net_device *ndev)
  3206. {
  3207. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3208. ql_queue_asic_error(qdev);
  3209. }
  3210. static void ql_asic_reset_work(struct work_struct *work)
  3211. {
  3212. struct ql_adapter *qdev =
  3213. container_of(work, struct ql_adapter, asic_reset_work.work);
  3214. ql_cycle_adapter(qdev);
  3215. }
  3216. static struct nic_operations qla8012_nic_ops = {
  3217. .get_flash = ql_get_8012_flash_params,
  3218. .port_initialize = ql_8012_port_initialize,
  3219. };
  3220. static void ql_get_board_info(struct ql_adapter *qdev)
  3221. {
  3222. qdev->func =
  3223. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3224. if (qdev->func) {
  3225. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3226. qdev->port_link_up = STS_PL1;
  3227. qdev->port_init = STS_PI1;
  3228. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3229. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3230. } else {
  3231. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3232. qdev->port_link_up = STS_PL0;
  3233. qdev->port_init = STS_PI0;
  3234. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3235. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3236. }
  3237. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3238. qdev->device_id = qdev->pdev->device;
  3239. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3240. qdev->nic_ops = &qla8012_nic_ops;
  3241. }
  3242. static void ql_release_all(struct pci_dev *pdev)
  3243. {
  3244. struct net_device *ndev = pci_get_drvdata(pdev);
  3245. struct ql_adapter *qdev = netdev_priv(ndev);
  3246. if (qdev->workqueue) {
  3247. destroy_workqueue(qdev->workqueue);
  3248. qdev->workqueue = NULL;
  3249. }
  3250. if (qdev->q_workqueue) {
  3251. destroy_workqueue(qdev->q_workqueue);
  3252. qdev->q_workqueue = NULL;
  3253. }
  3254. if (qdev->reg_base)
  3255. iounmap(qdev->reg_base);
  3256. if (qdev->doorbell_area)
  3257. iounmap(qdev->doorbell_area);
  3258. pci_release_regions(pdev);
  3259. pci_set_drvdata(pdev, NULL);
  3260. }
  3261. static int __devinit ql_init_device(struct pci_dev *pdev,
  3262. struct net_device *ndev, int cards_found)
  3263. {
  3264. struct ql_adapter *qdev = netdev_priv(ndev);
  3265. int pos, err = 0;
  3266. u16 val16;
  3267. memset((void *)qdev, 0, sizeof(qdev));
  3268. err = pci_enable_device(pdev);
  3269. if (err) {
  3270. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3271. return err;
  3272. }
  3273. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3274. if (pos <= 0) {
  3275. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3276. "aborting.\n");
  3277. goto err_out;
  3278. } else {
  3279. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3280. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3281. val16 |= (PCI_EXP_DEVCTL_CERE |
  3282. PCI_EXP_DEVCTL_NFERE |
  3283. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3284. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3285. }
  3286. err = pci_request_regions(pdev, DRV_NAME);
  3287. if (err) {
  3288. dev_err(&pdev->dev, "PCI region request failed.\n");
  3289. goto err_out;
  3290. }
  3291. pci_set_master(pdev);
  3292. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3293. set_bit(QL_DMA64, &qdev->flags);
  3294. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3295. } else {
  3296. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3297. if (!err)
  3298. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3299. }
  3300. if (err) {
  3301. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3302. goto err_out;
  3303. }
  3304. pci_set_drvdata(pdev, ndev);
  3305. qdev->reg_base =
  3306. ioremap_nocache(pci_resource_start(pdev, 1),
  3307. pci_resource_len(pdev, 1));
  3308. if (!qdev->reg_base) {
  3309. dev_err(&pdev->dev, "Register mapping failed.\n");
  3310. err = -ENOMEM;
  3311. goto err_out;
  3312. }
  3313. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3314. qdev->doorbell_area =
  3315. ioremap_nocache(pci_resource_start(pdev, 3),
  3316. pci_resource_len(pdev, 3));
  3317. if (!qdev->doorbell_area) {
  3318. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3319. err = -ENOMEM;
  3320. goto err_out;
  3321. }
  3322. qdev->ndev = ndev;
  3323. qdev->pdev = pdev;
  3324. ql_get_board_info(qdev);
  3325. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3326. spin_lock_init(&qdev->hw_lock);
  3327. spin_lock_init(&qdev->stats_lock);
  3328. /* make sure the EEPROM is good */
  3329. err = qdev->nic_ops->get_flash(qdev);
  3330. if (err) {
  3331. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3332. goto err_out;
  3333. }
  3334. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3335. /* Set up the default ring sizes. */
  3336. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3337. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3338. /* Set up the coalescing parameters. */
  3339. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3340. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3341. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3342. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3343. /*
  3344. * Set up the operating parameters.
  3345. */
  3346. qdev->rx_csum = 1;
  3347. qdev->q_workqueue = create_workqueue(ndev->name);
  3348. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3349. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3350. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3351. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3352. mutex_init(&qdev->mpi_mutex);
  3353. if (!cards_found) {
  3354. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3355. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3356. DRV_NAME, DRV_VERSION);
  3357. }
  3358. return 0;
  3359. err_out:
  3360. ql_release_all(pdev);
  3361. pci_disable_device(pdev);
  3362. return err;
  3363. }
  3364. static const struct net_device_ops qlge_netdev_ops = {
  3365. .ndo_open = qlge_open,
  3366. .ndo_stop = qlge_close,
  3367. .ndo_start_xmit = qlge_send,
  3368. .ndo_change_mtu = qlge_change_mtu,
  3369. .ndo_get_stats = qlge_get_stats,
  3370. .ndo_set_multicast_list = qlge_set_multicast_list,
  3371. .ndo_set_mac_address = qlge_set_mac_address,
  3372. .ndo_validate_addr = eth_validate_addr,
  3373. .ndo_tx_timeout = qlge_tx_timeout,
  3374. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3375. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3376. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3377. };
  3378. static int __devinit qlge_probe(struct pci_dev *pdev,
  3379. const struct pci_device_id *pci_entry)
  3380. {
  3381. struct net_device *ndev = NULL;
  3382. struct ql_adapter *qdev = NULL;
  3383. static int cards_found = 0;
  3384. int err = 0;
  3385. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3386. if (!ndev)
  3387. return -ENOMEM;
  3388. err = ql_init_device(pdev, ndev, cards_found);
  3389. if (err < 0) {
  3390. free_netdev(ndev);
  3391. return err;
  3392. }
  3393. qdev = netdev_priv(ndev);
  3394. SET_NETDEV_DEV(ndev, &pdev->dev);
  3395. ndev->features = (0
  3396. | NETIF_F_IP_CSUM
  3397. | NETIF_F_SG
  3398. | NETIF_F_TSO
  3399. | NETIF_F_TSO6
  3400. | NETIF_F_TSO_ECN
  3401. | NETIF_F_HW_VLAN_TX
  3402. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3403. if (test_bit(QL_DMA64, &qdev->flags))
  3404. ndev->features |= NETIF_F_HIGHDMA;
  3405. /*
  3406. * Set up net_device structure.
  3407. */
  3408. ndev->tx_queue_len = qdev->tx_ring_size;
  3409. ndev->irq = pdev->irq;
  3410. ndev->netdev_ops = &qlge_netdev_ops;
  3411. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3412. ndev->watchdog_timeo = 10 * HZ;
  3413. err = register_netdev(ndev);
  3414. if (err) {
  3415. dev_err(&pdev->dev, "net device registration failed.\n");
  3416. ql_release_all(pdev);
  3417. pci_disable_device(pdev);
  3418. return err;
  3419. }
  3420. netif_carrier_off(ndev);
  3421. netif_stop_queue(ndev);
  3422. ql_display_dev_info(ndev);
  3423. cards_found++;
  3424. return 0;
  3425. }
  3426. static void __devexit qlge_remove(struct pci_dev *pdev)
  3427. {
  3428. struct net_device *ndev = pci_get_drvdata(pdev);
  3429. unregister_netdev(ndev);
  3430. ql_release_all(pdev);
  3431. pci_disable_device(pdev);
  3432. free_netdev(ndev);
  3433. }
  3434. /*
  3435. * This callback is called by the PCI subsystem whenever
  3436. * a PCI bus error is detected.
  3437. */
  3438. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3439. enum pci_channel_state state)
  3440. {
  3441. struct net_device *ndev = pci_get_drvdata(pdev);
  3442. struct ql_adapter *qdev = netdev_priv(ndev);
  3443. if (netif_running(ndev))
  3444. ql_adapter_down(qdev);
  3445. pci_disable_device(pdev);
  3446. /* Request a slot reset. */
  3447. return PCI_ERS_RESULT_NEED_RESET;
  3448. }
  3449. /*
  3450. * This callback is called after the PCI buss has been reset.
  3451. * Basically, this tries to restart the card from scratch.
  3452. * This is a shortened version of the device probe/discovery code,
  3453. * it resembles the first-half of the () routine.
  3454. */
  3455. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3456. {
  3457. struct net_device *ndev = pci_get_drvdata(pdev);
  3458. struct ql_adapter *qdev = netdev_priv(ndev);
  3459. if (pci_enable_device(pdev)) {
  3460. QPRINTK(qdev, IFUP, ERR,
  3461. "Cannot re-enable PCI device after reset.\n");
  3462. return PCI_ERS_RESULT_DISCONNECT;
  3463. }
  3464. pci_set_master(pdev);
  3465. netif_carrier_off(ndev);
  3466. netif_stop_queue(ndev);
  3467. ql_adapter_reset(qdev);
  3468. /* Make sure the EEPROM is good */
  3469. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3470. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3471. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3472. return PCI_ERS_RESULT_DISCONNECT;
  3473. }
  3474. return PCI_ERS_RESULT_RECOVERED;
  3475. }
  3476. static void qlge_io_resume(struct pci_dev *pdev)
  3477. {
  3478. struct net_device *ndev = pci_get_drvdata(pdev);
  3479. struct ql_adapter *qdev = netdev_priv(ndev);
  3480. pci_set_master(pdev);
  3481. if (netif_running(ndev)) {
  3482. if (ql_adapter_up(qdev)) {
  3483. QPRINTK(qdev, IFUP, ERR,
  3484. "Device initialization failed after reset.\n");
  3485. return;
  3486. }
  3487. }
  3488. netif_device_attach(ndev);
  3489. }
  3490. static struct pci_error_handlers qlge_err_handler = {
  3491. .error_detected = qlge_io_error_detected,
  3492. .slot_reset = qlge_io_slot_reset,
  3493. .resume = qlge_io_resume,
  3494. };
  3495. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3496. {
  3497. struct net_device *ndev = pci_get_drvdata(pdev);
  3498. struct ql_adapter *qdev = netdev_priv(ndev);
  3499. int err, i;
  3500. netif_device_detach(ndev);
  3501. if (netif_running(ndev)) {
  3502. err = ql_adapter_down(qdev);
  3503. if (!err)
  3504. return err;
  3505. }
  3506. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3507. netif_napi_del(&qdev->rx_ring[i].napi);
  3508. err = pci_save_state(pdev);
  3509. if (err)
  3510. return err;
  3511. pci_disable_device(pdev);
  3512. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3513. return 0;
  3514. }
  3515. #ifdef CONFIG_PM
  3516. static int qlge_resume(struct pci_dev *pdev)
  3517. {
  3518. struct net_device *ndev = pci_get_drvdata(pdev);
  3519. struct ql_adapter *qdev = netdev_priv(ndev);
  3520. int err;
  3521. pci_set_power_state(pdev, PCI_D0);
  3522. pci_restore_state(pdev);
  3523. err = pci_enable_device(pdev);
  3524. if (err) {
  3525. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3526. return err;
  3527. }
  3528. pci_set_master(pdev);
  3529. pci_enable_wake(pdev, PCI_D3hot, 0);
  3530. pci_enable_wake(pdev, PCI_D3cold, 0);
  3531. if (netif_running(ndev)) {
  3532. err = ql_adapter_up(qdev);
  3533. if (err)
  3534. return err;
  3535. }
  3536. netif_device_attach(ndev);
  3537. return 0;
  3538. }
  3539. #endif /* CONFIG_PM */
  3540. static void qlge_shutdown(struct pci_dev *pdev)
  3541. {
  3542. qlge_suspend(pdev, PMSG_SUSPEND);
  3543. }
  3544. static struct pci_driver qlge_driver = {
  3545. .name = DRV_NAME,
  3546. .id_table = qlge_pci_tbl,
  3547. .probe = qlge_probe,
  3548. .remove = __devexit_p(qlge_remove),
  3549. #ifdef CONFIG_PM
  3550. .suspend = qlge_suspend,
  3551. .resume = qlge_resume,
  3552. #endif
  3553. .shutdown = qlge_shutdown,
  3554. .err_handler = &qlge_err_handler
  3555. };
  3556. static int __init qlge_init_module(void)
  3557. {
  3558. return pci_register_driver(&qlge_driver);
  3559. }
  3560. static void __exit qlge_exit(void)
  3561. {
  3562. pci_unregister_driver(&qlge_driver);
  3563. }
  3564. module_init(qlge_init_module);
  3565. module_exit(qlge_exit);