xmit.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. #define OFDM_SIFS_TIME 16
  33. static u32 bits_per_symbol[][2] = {
  34. /* 20MHz 40MHz */
  35. { 26, 54 }, /* 0: BPSK */
  36. { 52, 108 }, /* 1: QPSK 1/2 */
  37. { 78, 162 }, /* 2: QPSK 3/4 */
  38. { 104, 216 }, /* 3: 16-QAM 1/2 */
  39. { 156, 324 }, /* 4: 16-QAM 3/4 */
  40. { 208, 432 }, /* 5: 64-QAM 2/3 */
  41. { 234, 486 }, /* 6: 64-QAM 3/4 */
  42. { 260, 540 }, /* 7: 64-QAM 5/6 */
  43. { 52, 108 }, /* 8: BPSK */
  44. { 104, 216 }, /* 9: QPSK 1/2 */
  45. { 156, 324 }, /* 10: QPSK 3/4 */
  46. { 208, 432 }, /* 11: 16-QAM 1/2 */
  47. { 312, 648 }, /* 12: 16-QAM 3/4 */
  48. { 416, 864 }, /* 13: 64-QAM 2/3 */
  49. { 468, 972 }, /* 14: 64-QAM 3/4 */
  50. { 520, 1080 }, /* 15: 64-QAM 5/6 */
  51. };
  52. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  53. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  54. struct ath_atx_tid *tid,
  55. struct list_head *bf_head);
  56. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  57. struct ath_txq *txq, struct list_head *bf_q,
  58. struct ath_tx_status *ts, int txok, int sendbar);
  59. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  60. struct list_head *head);
  61. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
  62. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  63. struct ath_tx_status *ts, int txok);
  64. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  65. int nbad, int txok, bool update_rc);
  66. enum {
  67. MCS_DEFAULT,
  68. MCS_HT40,
  69. MCS_HT40_SGI,
  70. };
  71. static int ath_max_4ms_framelen[3][16] = {
  72. [MCS_DEFAULT] = {
  73. 3216, 6434, 9650, 12868, 19304, 25740, 28956, 32180,
  74. 6430, 12860, 19300, 25736, 38600, 51472, 57890, 64320,
  75. },
  76. [MCS_HT40] = {
  77. 6684, 13368, 20052, 26738, 40104, 53476, 60156, 66840,
  78. 13360, 26720, 40080, 53440, 80160, 106880, 120240, 133600,
  79. },
  80. [MCS_HT40_SGI] = {
  81. /* TODO: Only MCS 7 and 15 updated, recalculate the rest */
  82. 6684, 13368, 20052, 26738, 40104, 53476, 60156, 74200,
  83. 13360, 26720, 40080, 53440, 80160, 106880, 120240, 148400,
  84. }
  85. };
  86. /*********************/
  87. /* Aggregation logic */
  88. /*********************/
  89. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  90. {
  91. struct ath_atx_ac *ac = tid->ac;
  92. if (tid->paused)
  93. return;
  94. if (tid->sched)
  95. return;
  96. tid->sched = true;
  97. list_add_tail(&tid->list, &ac->tid_q);
  98. if (ac->sched)
  99. return;
  100. ac->sched = true;
  101. list_add_tail(&ac->list, &txq->axq_acq);
  102. }
  103. static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  104. {
  105. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  106. spin_lock_bh(&txq->axq_lock);
  107. tid->paused++;
  108. spin_unlock_bh(&txq->axq_lock);
  109. }
  110. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  111. {
  112. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  113. BUG_ON(tid->paused <= 0);
  114. spin_lock_bh(&txq->axq_lock);
  115. tid->paused--;
  116. if (tid->paused > 0)
  117. goto unlock;
  118. if (list_empty(&tid->buf_q))
  119. goto unlock;
  120. ath_tx_queue_tid(txq, tid);
  121. ath_txq_schedule(sc, txq);
  122. unlock:
  123. spin_unlock_bh(&txq->axq_lock);
  124. }
  125. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  126. {
  127. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  128. struct ath_buf *bf;
  129. struct list_head bf_head;
  130. INIT_LIST_HEAD(&bf_head);
  131. BUG_ON(tid->paused <= 0);
  132. spin_lock_bh(&txq->axq_lock);
  133. tid->paused--;
  134. if (tid->paused > 0) {
  135. spin_unlock_bh(&txq->axq_lock);
  136. return;
  137. }
  138. while (!list_empty(&tid->buf_q)) {
  139. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  140. BUG_ON(bf_isretried(bf));
  141. list_move_tail(&bf->list, &bf_head);
  142. ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
  143. }
  144. spin_unlock_bh(&txq->axq_lock);
  145. }
  146. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  147. int seqno)
  148. {
  149. int index, cindex;
  150. index = ATH_BA_INDEX(tid->seq_start, seqno);
  151. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  152. tid->tx_buf[cindex] = NULL;
  153. while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
  154. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  155. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  156. }
  157. }
  158. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  159. struct ath_buf *bf)
  160. {
  161. int index, cindex;
  162. if (bf_isretried(bf))
  163. return;
  164. index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
  165. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  166. BUG_ON(tid->tx_buf[cindex] != NULL);
  167. tid->tx_buf[cindex] = bf;
  168. if (index >= ((tid->baw_tail - tid->baw_head) &
  169. (ATH_TID_MAX_BUFS - 1))) {
  170. tid->baw_tail = cindex;
  171. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  172. }
  173. }
  174. /*
  175. * TODO: For frame(s) that are in the retry state, we will reuse the
  176. * sequence number(s) without setting the retry bit. The
  177. * alternative is to give up on these and BAR the receiver's window
  178. * forward.
  179. */
  180. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  181. struct ath_atx_tid *tid)
  182. {
  183. struct ath_buf *bf;
  184. struct list_head bf_head;
  185. struct ath_tx_status ts;
  186. memset(&ts, 0, sizeof(ts));
  187. INIT_LIST_HEAD(&bf_head);
  188. for (;;) {
  189. if (list_empty(&tid->buf_q))
  190. break;
  191. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  192. list_move_tail(&bf->list, &bf_head);
  193. if (bf_isretried(bf))
  194. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  195. spin_unlock(&txq->axq_lock);
  196. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  197. spin_lock(&txq->axq_lock);
  198. }
  199. tid->seq_next = tid->seq_start;
  200. tid->baw_tail = tid->baw_head;
  201. }
  202. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  203. struct ath_buf *bf)
  204. {
  205. struct sk_buff *skb;
  206. struct ieee80211_hdr *hdr;
  207. bf->bf_state.bf_type |= BUF_RETRY;
  208. bf->bf_retries++;
  209. TX_STAT_INC(txq->axq_qnum, a_retries);
  210. skb = bf->bf_mpdu;
  211. hdr = (struct ieee80211_hdr *)skb->data;
  212. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  213. }
  214. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  215. {
  216. struct ath_buf *tbf;
  217. spin_lock_bh(&sc->tx.txbuflock);
  218. if (WARN_ON(list_empty(&sc->tx.txbuf))) {
  219. spin_unlock_bh(&sc->tx.txbuflock);
  220. return NULL;
  221. }
  222. tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  223. list_del(&tbf->list);
  224. spin_unlock_bh(&sc->tx.txbuflock);
  225. ATH_TXBUF_RESET(tbf);
  226. tbf->aphy = bf->aphy;
  227. tbf->bf_mpdu = bf->bf_mpdu;
  228. tbf->bf_buf_addr = bf->bf_buf_addr;
  229. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  230. tbf->bf_state = bf->bf_state;
  231. tbf->bf_dmacontext = bf->bf_dmacontext;
  232. return tbf;
  233. }
  234. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  235. struct ath_buf *bf, struct list_head *bf_q,
  236. struct ath_tx_status *ts, int txok)
  237. {
  238. struct ath_node *an = NULL;
  239. struct sk_buff *skb;
  240. struct ieee80211_sta *sta;
  241. struct ieee80211_hw *hw;
  242. struct ieee80211_hdr *hdr;
  243. struct ieee80211_tx_info *tx_info;
  244. struct ath_atx_tid *tid = NULL;
  245. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  246. struct list_head bf_head, bf_pending;
  247. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  248. u32 ba[WME_BA_BMP_SIZE >> 5];
  249. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  250. bool rc_update = true;
  251. skb = bf->bf_mpdu;
  252. hdr = (struct ieee80211_hdr *)skb->data;
  253. tx_info = IEEE80211_SKB_CB(skb);
  254. hw = bf->aphy->hw;
  255. rcu_read_lock();
  256. /* XXX: use ieee80211_find_sta! */
  257. sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
  258. if (!sta) {
  259. rcu_read_unlock();
  260. return;
  261. }
  262. an = (struct ath_node *)sta->drv_priv;
  263. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  264. isaggr = bf_isaggr(bf);
  265. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  266. if (isaggr && txok) {
  267. if (ts->ts_flags & ATH9K_TX_BA) {
  268. seq_st = ts->ts_seqnum;
  269. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  270. } else {
  271. /*
  272. * AR5416 can become deaf/mute when BA
  273. * issue happens. Chip needs to be reset.
  274. * But AP code may have sychronization issues
  275. * when perform internal reset in this routine.
  276. * Only enable reset in STA mode for now.
  277. */
  278. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  279. needreset = 1;
  280. }
  281. }
  282. INIT_LIST_HEAD(&bf_pending);
  283. INIT_LIST_HEAD(&bf_head);
  284. nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
  285. while (bf) {
  286. txfail = txpending = 0;
  287. bf_next = bf->bf_next;
  288. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
  289. /* transmit completion, subframe is
  290. * acked by block ack */
  291. acked_cnt++;
  292. } else if (!isaggr && txok) {
  293. /* transmit completion */
  294. acked_cnt++;
  295. } else {
  296. if (!(tid->state & AGGR_CLEANUP) &&
  297. !bf_last->bf_tx_aborted) {
  298. if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
  299. ath_tx_set_retry(sc, txq, bf);
  300. txpending = 1;
  301. } else {
  302. bf->bf_state.bf_type |= BUF_XRETRY;
  303. txfail = 1;
  304. sendbar = 1;
  305. txfail_cnt++;
  306. }
  307. } else {
  308. /*
  309. * cleanup in progress, just fail
  310. * the un-acked sub-frames
  311. */
  312. txfail = 1;
  313. }
  314. }
  315. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  316. bf_next == NULL) {
  317. /*
  318. * Make sure the last desc is reclaimed if it
  319. * not a holding desc.
  320. */
  321. if (!bf_last->bf_stale)
  322. list_move_tail(&bf->list, &bf_head);
  323. else
  324. INIT_LIST_HEAD(&bf_head);
  325. } else {
  326. BUG_ON(list_empty(bf_q));
  327. list_move_tail(&bf->list, &bf_head);
  328. }
  329. if (!txpending) {
  330. /*
  331. * complete the acked-ones/xretried ones; update
  332. * block-ack window
  333. */
  334. spin_lock_bh(&txq->axq_lock);
  335. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  336. spin_unlock_bh(&txq->axq_lock);
  337. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  338. ath_tx_rc_status(bf, ts, nbad, txok, true);
  339. rc_update = false;
  340. } else {
  341. ath_tx_rc_status(bf, ts, nbad, txok, false);
  342. }
  343. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  344. !txfail, sendbar);
  345. } else {
  346. /* retry the un-acked ones */
  347. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  348. if (bf->bf_next == NULL && bf_last->bf_stale) {
  349. struct ath_buf *tbf;
  350. tbf = ath_clone_txbuf(sc, bf_last);
  351. /*
  352. * Update tx baw and complete the
  353. * frame with failed status if we
  354. * run out of tx buf.
  355. */
  356. if (!tbf) {
  357. spin_lock_bh(&txq->axq_lock);
  358. ath_tx_update_baw(sc, tid,
  359. bf->bf_seqno);
  360. spin_unlock_bh(&txq->axq_lock);
  361. bf->bf_state.bf_type |=
  362. BUF_XRETRY;
  363. ath_tx_rc_status(bf, ts, nbad,
  364. 0, false);
  365. ath_tx_complete_buf(sc, bf, txq,
  366. &bf_head,
  367. ts, 0, 0);
  368. break;
  369. }
  370. ath9k_hw_cleartxdesc(sc->sc_ah,
  371. tbf->bf_desc);
  372. list_add_tail(&tbf->list, &bf_head);
  373. } else {
  374. /*
  375. * Clear descriptor status words for
  376. * software retry
  377. */
  378. ath9k_hw_cleartxdesc(sc->sc_ah,
  379. bf->bf_desc);
  380. }
  381. }
  382. /*
  383. * Put this buffer to the temporary pending
  384. * queue to retain ordering
  385. */
  386. list_splice_tail_init(&bf_head, &bf_pending);
  387. }
  388. bf = bf_next;
  389. }
  390. if (tid->state & AGGR_CLEANUP) {
  391. if (tid->baw_head == tid->baw_tail) {
  392. tid->state &= ~AGGR_ADDBA_COMPLETE;
  393. tid->state &= ~AGGR_CLEANUP;
  394. /* send buffered frames as singles */
  395. ath_tx_flush_tid(sc, tid);
  396. }
  397. rcu_read_unlock();
  398. return;
  399. }
  400. /* prepend un-acked frames to the beginning of the pending frame queue */
  401. if (!list_empty(&bf_pending)) {
  402. spin_lock_bh(&txq->axq_lock);
  403. list_splice(&bf_pending, &tid->buf_q);
  404. ath_tx_queue_tid(txq, tid);
  405. spin_unlock_bh(&txq->axq_lock);
  406. }
  407. rcu_read_unlock();
  408. if (needreset)
  409. ath_reset(sc, false);
  410. }
  411. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  412. struct ath_atx_tid *tid)
  413. {
  414. struct sk_buff *skb;
  415. struct ieee80211_tx_info *tx_info;
  416. struct ieee80211_tx_rate *rates;
  417. u32 max_4ms_framelen, frmlen;
  418. u16 aggr_limit, legacy = 0;
  419. int i;
  420. skb = bf->bf_mpdu;
  421. tx_info = IEEE80211_SKB_CB(skb);
  422. rates = tx_info->control.rates;
  423. /*
  424. * Find the lowest frame length among the rate series that will have a
  425. * 4ms transmit duration.
  426. * TODO - TXOP limit needs to be considered.
  427. */
  428. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  429. for (i = 0; i < 4; i++) {
  430. if (rates[i].count) {
  431. int modeidx;
  432. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  433. legacy = 1;
  434. break;
  435. }
  436. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  437. modeidx = MCS_HT40_SGI;
  438. else if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  439. modeidx = MCS_HT40;
  440. else
  441. modeidx = MCS_DEFAULT;
  442. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  443. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  444. }
  445. }
  446. /*
  447. * limit aggregate size by the minimum rate if rate selected is
  448. * not a probe rate, if rate selected is a probe rate then
  449. * avoid aggregation of this packet.
  450. */
  451. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  452. return 0;
  453. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  454. aggr_limit = min((max_4ms_framelen * 3) / 8,
  455. (u32)ATH_AMPDU_LIMIT_MAX);
  456. else
  457. aggr_limit = min(max_4ms_framelen,
  458. (u32)ATH_AMPDU_LIMIT_MAX);
  459. /*
  460. * h/w can accept aggregates upto 16 bit lengths (65535).
  461. * The IE, however can hold upto 65536, which shows up here
  462. * as zero. Ignore 65536 since we are constrained by hw.
  463. */
  464. if (tid->an->maxampdu)
  465. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  466. return aggr_limit;
  467. }
  468. /*
  469. * Returns the number of delimiters to be added to
  470. * meet the minimum required mpdudensity.
  471. */
  472. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  473. struct ath_buf *bf, u16 frmlen)
  474. {
  475. struct sk_buff *skb = bf->bf_mpdu;
  476. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  477. u32 nsymbits, nsymbols;
  478. u16 minlen;
  479. u8 flags, rix;
  480. int width, half_gi, ndelim, mindelim;
  481. /* Select standard number of delimiters based on frame length alone */
  482. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  483. /*
  484. * If encryption enabled, hardware requires some more padding between
  485. * subframes.
  486. * TODO - this could be improved to be dependent on the rate.
  487. * The hardware can keep up at lower rates, but not higher rates
  488. */
  489. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
  490. ndelim += ATH_AGGR_ENCRYPTDELIM;
  491. /*
  492. * Convert desired mpdu density from microeconds to bytes based
  493. * on highest rate in rate series (i.e. first rate) to determine
  494. * required minimum length for subframe. Take into account
  495. * whether high rate is 20 or 40Mhz and half or full GI.
  496. *
  497. * If there is no mpdu density restriction, no further calculation
  498. * is needed.
  499. */
  500. if (tid->an->mpdudensity == 0)
  501. return ndelim;
  502. rix = tx_info->control.rates[0].idx;
  503. flags = tx_info->control.rates[0].flags;
  504. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  505. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  506. if (half_gi)
  507. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  508. else
  509. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  510. if (nsymbols == 0)
  511. nsymbols = 1;
  512. nsymbits = bits_per_symbol[rix][width];
  513. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  514. if (frmlen < minlen) {
  515. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  516. ndelim = max(mindelim, ndelim);
  517. }
  518. return ndelim;
  519. }
  520. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  521. struct ath_txq *txq,
  522. struct ath_atx_tid *tid,
  523. struct list_head *bf_q)
  524. {
  525. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  526. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  527. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  528. u16 aggr_limit = 0, al = 0, bpad = 0,
  529. al_delta, h_baw = tid->baw_size / 2;
  530. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  531. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  532. do {
  533. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  534. /* do not step over block-ack window */
  535. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
  536. status = ATH_AGGR_BAW_CLOSED;
  537. break;
  538. }
  539. if (!rl) {
  540. aggr_limit = ath_lookup_rate(sc, bf, tid);
  541. rl = 1;
  542. }
  543. /* do not exceed aggregation limit */
  544. al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
  545. if (nframes &&
  546. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  547. status = ATH_AGGR_LIMITED;
  548. break;
  549. }
  550. /* do not exceed subframe limit */
  551. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  552. status = ATH_AGGR_LIMITED;
  553. break;
  554. }
  555. nframes++;
  556. /* add padding for previous frame to aggregation length */
  557. al += bpad + al_delta;
  558. /*
  559. * Get the delimiters needed to meet the MPDU
  560. * density for this node.
  561. */
  562. ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
  563. bpad = PADBYTES(al_delta) + (ndelim << 2);
  564. bf->bf_next = NULL;
  565. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  566. /* link buffers of this frame to the aggregate */
  567. ath_tx_addto_baw(sc, tid, bf);
  568. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  569. list_move_tail(&bf->list, bf_q);
  570. if (bf_prev) {
  571. bf_prev->bf_next = bf;
  572. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  573. bf->bf_daddr);
  574. }
  575. bf_prev = bf;
  576. } while (!list_empty(&tid->buf_q));
  577. bf_first->bf_al = al;
  578. bf_first->bf_nframes = nframes;
  579. return status;
  580. #undef PADBYTES
  581. }
  582. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  583. struct ath_atx_tid *tid)
  584. {
  585. struct ath_buf *bf;
  586. enum ATH_AGGR_STATUS status;
  587. struct list_head bf_q;
  588. do {
  589. if (list_empty(&tid->buf_q))
  590. return;
  591. INIT_LIST_HEAD(&bf_q);
  592. status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
  593. /*
  594. * no frames picked up to be aggregated;
  595. * block-ack window is not open.
  596. */
  597. if (list_empty(&bf_q))
  598. break;
  599. bf = list_first_entry(&bf_q, struct ath_buf, list);
  600. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  601. /* if only one frame, send as non-aggregate */
  602. if (bf->bf_nframes == 1) {
  603. bf->bf_state.bf_type &= ~BUF_AGGR;
  604. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  605. ath_buf_set_rate(sc, bf);
  606. ath_tx_txqaddbuf(sc, txq, &bf_q);
  607. continue;
  608. }
  609. /* setup first desc of aggregate */
  610. bf->bf_state.bf_type |= BUF_AGGR;
  611. ath_buf_set_rate(sc, bf);
  612. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
  613. /* anchor last desc of aggregate */
  614. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  615. ath_tx_txqaddbuf(sc, txq, &bf_q);
  616. TX_STAT_INC(txq->axq_qnum, a_aggr);
  617. } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
  618. status != ATH_AGGR_BAW_CLOSED);
  619. }
  620. void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  621. u16 tid, u16 *ssn)
  622. {
  623. struct ath_atx_tid *txtid;
  624. struct ath_node *an;
  625. an = (struct ath_node *)sta->drv_priv;
  626. txtid = ATH_AN_2_TID(an, tid);
  627. txtid->state |= AGGR_ADDBA_PROGRESS;
  628. ath_tx_pause_tid(sc, txtid);
  629. *ssn = txtid->seq_start;
  630. }
  631. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  632. {
  633. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  634. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  635. struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
  636. struct ath_tx_status ts;
  637. struct ath_buf *bf;
  638. struct list_head bf_head;
  639. memset(&ts, 0, sizeof(ts));
  640. INIT_LIST_HEAD(&bf_head);
  641. if (txtid->state & AGGR_CLEANUP)
  642. return;
  643. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  644. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  645. return;
  646. }
  647. ath_tx_pause_tid(sc, txtid);
  648. /* drop all software retried frames and mark this TID */
  649. spin_lock_bh(&txq->axq_lock);
  650. while (!list_empty(&txtid->buf_q)) {
  651. bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
  652. if (!bf_isretried(bf)) {
  653. /*
  654. * NB: it's based on the assumption that
  655. * software retried frame will always stay
  656. * at the head of software queue.
  657. */
  658. break;
  659. }
  660. list_move_tail(&bf->list, &bf_head);
  661. ath_tx_update_baw(sc, txtid, bf->bf_seqno);
  662. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  663. }
  664. spin_unlock_bh(&txq->axq_lock);
  665. if (txtid->baw_head != txtid->baw_tail) {
  666. txtid->state |= AGGR_CLEANUP;
  667. } else {
  668. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  669. ath_tx_flush_tid(sc, txtid);
  670. }
  671. }
  672. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  673. {
  674. struct ath_atx_tid *txtid;
  675. struct ath_node *an;
  676. an = (struct ath_node *)sta->drv_priv;
  677. if (sc->sc_flags & SC_OP_TXAGGR) {
  678. txtid = ATH_AN_2_TID(an, tid);
  679. txtid->baw_size =
  680. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  681. txtid->state |= AGGR_ADDBA_COMPLETE;
  682. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  683. ath_tx_resume_tid(sc, txtid);
  684. }
  685. }
  686. bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
  687. {
  688. struct ath_atx_tid *txtid;
  689. if (!(sc->sc_flags & SC_OP_TXAGGR))
  690. return false;
  691. txtid = ATH_AN_2_TID(an, tidno);
  692. if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
  693. return true;
  694. return false;
  695. }
  696. /********************/
  697. /* Queue Management */
  698. /********************/
  699. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  700. struct ath_txq *txq)
  701. {
  702. struct ath_atx_ac *ac, *ac_tmp;
  703. struct ath_atx_tid *tid, *tid_tmp;
  704. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  705. list_del(&ac->list);
  706. ac->sched = false;
  707. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  708. list_del(&tid->list);
  709. tid->sched = false;
  710. ath_tid_drain(sc, txq, tid);
  711. }
  712. }
  713. }
  714. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  715. {
  716. struct ath_hw *ah = sc->sc_ah;
  717. struct ath_common *common = ath9k_hw_common(ah);
  718. struct ath9k_tx_queue_info qi;
  719. int qnum, i;
  720. memset(&qi, 0, sizeof(qi));
  721. qi.tqi_subtype = subtype;
  722. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  723. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  724. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  725. qi.tqi_physCompBuf = 0;
  726. /*
  727. * Enable interrupts only for EOL and DESC conditions.
  728. * We mark tx descriptors to receive a DESC interrupt
  729. * when a tx queue gets deep; otherwise waiting for the
  730. * EOL to reap descriptors. Note that this is done to
  731. * reduce interrupt load and this only defers reaping
  732. * descriptors, never transmitting frames. Aside from
  733. * reducing interrupts this also permits more concurrency.
  734. * The only potential downside is if the tx queue backs
  735. * up in which case the top half of the kernel may backup
  736. * due to a lack of tx descriptors.
  737. *
  738. * The UAPSD queue is an exception, since we take a desc-
  739. * based intr on the EOSP frames.
  740. */
  741. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  742. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  743. else
  744. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  745. TXQ_FLAG_TXDESCINT_ENABLE;
  746. qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  747. if (qnum == -1) {
  748. /*
  749. * NB: don't print a message, this happens
  750. * normally on parts with too few tx queues
  751. */
  752. return NULL;
  753. }
  754. if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
  755. ath_print(common, ATH_DBG_FATAL,
  756. "qnum %u out of range, max %u!\n",
  757. qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
  758. ath9k_hw_releasetxqueue(ah, qnum);
  759. return NULL;
  760. }
  761. if (!ATH_TXQ_SETUP(sc, qnum)) {
  762. struct ath_txq *txq = &sc->tx.txq[qnum];
  763. txq->axq_qnum = qnum;
  764. txq->axq_link = NULL;
  765. INIT_LIST_HEAD(&txq->axq_q);
  766. INIT_LIST_HEAD(&txq->axq_acq);
  767. spin_lock_init(&txq->axq_lock);
  768. txq->axq_depth = 0;
  769. txq->axq_tx_inprogress = false;
  770. sc->tx.txqsetup |= 1<<qnum;
  771. txq->txq_headidx = txq->txq_tailidx = 0;
  772. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  773. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  774. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  775. }
  776. return &sc->tx.txq[qnum];
  777. }
  778. int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
  779. {
  780. int qnum;
  781. switch (qtype) {
  782. case ATH9K_TX_QUEUE_DATA:
  783. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  784. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  785. "HAL AC %u out of range, max %zu!\n",
  786. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  787. return -1;
  788. }
  789. qnum = sc->tx.hwq_map[haltype];
  790. break;
  791. case ATH9K_TX_QUEUE_BEACON:
  792. qnum = sc->beacon.beaconq;
  793. break;
  794. case ATH9K_TX_QUEUE_CAB:
  795. qnum = sc->beacon.cabq->axq_qnum;
  796. break;
  797. default:
  798. qnum = -1;
  799. }
  800. return qnum;
  801. }
  802. struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
  803. {
  804. struct ath_txq *txq = NULL;
  805. u16 skb_queue = skb_get_queue_mapping(skb);
  806. int qnum;
  807. qnum = ath_get_hal_qnum(skb_queue, sc);
  808. txq = &sc->tx.txq[qnum];
  809. spin_lock_bh(&txq->axq_lock);
  810. if (txq->axq_depth >= (ATH_TXBUF - 20)) {
  811. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
  812. "TX queue: %d is full, depth: %d\n",
  813. qnum, txq->axq_depth);
  814. ath_mac80211_stop_queue(sc, skb_queue);
  815. txq->stopped = 1;
  816. spin_unlock_bh(&txq->axq_lock);
  817. return NULL;
  818. }
  819. spin_unlock_bh(&txq->axq_lock);
  820. return txq;
  821. }
  822. int ath_txq_update(struct ath_softc *sc, int qnum,
  823. struct ath9k_tx_queue_info *qinfo)
  824. {
  825. struct ath_hw *ah = sc->sc_ah;
  826. int error = 0;
  827. struct ath9k_tx_queue_info qi;
  828. if (qnum == sc->beacon.beaconq) {
  829. /*
  830. * XXX: for beacon queue, we just save the parameter.
  831. * It will be picked up by ath_beaconq_config when
  832. * it's necessary.
  833. */
  834. sc->beacon.beacon_qi = *qinfo;
  835. return 0;
  836. }
  837. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  838. ath9k_hw_get_txq_props(ah, qnum, &qi);
  839. qi.tqi_aifs = qinfo->tqi_aifs;
  840. qi.tqi_cwmin = qinfo->tqi_cwmin;
  841. qi.tqi_cwmax = qinfo->tqi_cwmax;
  842. qi.tqi_burstTime = qinfo->tqi_burstTime;
  843. qi.tqi_readyTime = qinfo->tqi_readyTime;
  844. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  845. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  846. "Unable to update hardware queue %u!\n", qnum);
  847. error = -EIO;
  848. } else {
  849. ath9k_hw_resettxqueue(ah, qnum);
  850. }
  851. return error;
  852. }
  853. int ath_cabq_update(struct ath_softc *sc)
  854. {
  855. struct ath9k_tx_queue_info qi;
  856. int qnum = sc->beacon.cabq->axq_qnum;
  857. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  858. /*
  859. * Ensure the readytime % is within the bounds.
  860. */
  861. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  862. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  863. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  864. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  865. qi.tqi_readyTime = (sc->beacon_interval *
  866. sc->config.cabqReadytime) / 100;
  867. ath_txq_update(sc, qnum, &qi);
  868. return 0;
  869. }
  870. /*
  871. * Drain a given TX queue (could be Beacon or Data)
  872. *
  873. * This assumes output has been stopped and
  874. * we do not need to block ath_tx_tasklet.
  875. */
  876. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  877. {
  878. struct ath_buf *bf, *lastbf;
  879. struct list_head bf_head;
  880. struct ath_tx_status ts;
  881. memset(&ts, 0, sizeof(ts));
  882. INIT_LIST_HEAD(&bf_head);
  883. for (;;) {
  884. spin_lock_bh(&txq->axq_lock);
  885. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  886. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  887. txq->txq_headidx = txq->txq_tailidx = 0;
  888. spin_unlock_bh(&txq->axq_lock);
  889. break;
  890. } else {
  891. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  892. struct ath_buf, list);
  893. }
  894. } else {
  895. if (list_empty(&txq->axq_q)) {
  896. txq->axq_link = NULL;
  897. spin_unlock_bh(&txq->axq_lock);
  898. break;
  899. }
  900. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  901. list);
  902. if (bf->bf_stale) {
  903. list_del(&bf->list);
  904. spin_unlock_bh(&txq->axq_lock);
  905. spin_lock_bh(&sc->tx.txbuflock);
  906. list_add_tail(&bf->list, &sc->tx.txbuf);
  907. spin_unlock_bh(&sc->tx.txbuflock);
  908. continue;
  909. }
  910. }
  911. lastbf = bf->bf_lastbf;
  912. if (!retry_tx)
  913. lastbf->bf_tx_aborted = true;
  914. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  915. list_cut_position(&bf_head,
  916. &txq->txq_fifo[txq->txq_tailidx],
  917. &lastbf->list);
  918. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  919. } else {
  920. /* remove ath_buf's of the same mpdu from txq */
  921. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  922. }
  923. txq->axq_depth--;
  924. spin_unlock_bh(&txq->axq_lock);
  925. if (bf_isampdu(bf))
  926. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
  927. else
  928. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  929. }
  930. spin_lock_bh(&txq->axq_lock);
  931. txq->axq_tx_inprogress = false;
  932. spin_unlock_bh(&txq->axq_lock);
  933. /* flush any pending frames if aggregation is enabled */
  934. if (sc->sc_flags & SC_OP_TXAGGR) {
  935. if (!retry_tx) {
  936. spin_lock_bh(&txq->axq_lock);
  937. ath_txq_drain_pending_buffers(sc, txq);
  938. spin_unlock_bh(&txq->axq_lock);
  939. }
  940. }
  941. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  942. spin_lock_bh(&txq->axq_lock);
  943. while (!list_empty(&txq->txq_fifo_pending)) {
  944. bf = list_first_entry(&txq->txq_fifo_pending,
  945. struct ath_buf, list);
  946. list_cut_position(&bf_head,
  947. &txq->txq_fifo_pending,
  948. &bf->bf_lastbf->list);
  949. spin_unlock_bh(&txq->axq_lock);
  950. if (bf_isampdu(bf))
  951. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  952. &ts, 0);
  953. else
  954. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  955. &ts, 0, 0);
  956. spin_lock_bh(&txq->axq_lock);
  957. }
  958. spin_unlock_bh(&txq->axq_lock);
  959. }
  960. }
  961. void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  962. {
  963. struct ath_hw *ah = sc->sc_ah;
  964. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  965. struct ath_txq *txq;
  966. int i, npend = 0;
  967. if (sc->sc_flags & SC_OP_INVALID)
  968. return;
  969. /* Stop beacon queue */
  970. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  971. /* Stop data queues */
  972. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  973. if (ATH_TXQ_SETUP(sc, i)) {
  974. txq = &sc->tx.txq[i];
  975. ath9k_hw_stoptxdma(ah, txq->axq_qnum);
  976. npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
  977. }
  978. }
  979. if (npend) {
  980. int r;
  981. ath_print(common, ATH_DBG_FATAL,
  982. "Unable to stop TxDMA. Reset HAL!\n");
  983. spin_lock_bh(&sc->sc_resetlock);
  984. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  985. if (r)
  986. ath_print(common, ATH_DBG_FATAL,
  987. "Unable to reset hardware; reset status %d\n",
  988. r);
  989. spin_unlock_bh(&sc->sc_resetlock);
  990. }
  991. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  992. if (ATH_TXQ_SETUP(sc, i))
  993. ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
  994. }
  995. }
  996. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  997. {
  998. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  999. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1000. }
  1001. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1002. {
  1003. struct ath_atx_ac *ac;
  1004. struct ath_atx_tid *tid;
  1005. if (list_empty(&txq->axq_acq))
  1006. return;
  1007. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1008. list_del(&ac->list);
  1009. ac->sched = false;
  1010. do {
  1011. if (list_empty(&ac->tid_q))
  1012. return;
  1013. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
  1014. list_del(&tid->list);
  1015. tid->sched = false;
  1016. if (tid->paused)
  1017. continue;
  1018. ath_tx_sched_aggr(sc, txq, tid);
  1019. /*
  1020. * add tid to round-robin queue if more frames
  1021. * are pending for the tid
  1022. */
  1023. if (!list_empty(&tid->buf_q))
  1024. ath_tx_queue_tid(txq, tid);
  1025. break;
  1026. } while (!list_empty(&ac->tid_q));
  1027. if (!list_empty(&ac->tid_q)) {
  1028. if (!ac->sched) {
  1029. ac->sched = true;
  1030. list_add_tail(&ac->list, &txq->axq_acq);
  1031. }
  1032. }
  1033. }
  1034. int ath_tx_setup(struct ath_softc *sc, int haltype)
  1035. {
  1036. struct ath_txq *txq;
  1037. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  1038. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1039. "HAL AC %u out of range, max %zu!\n",
  1040. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  1041. return 0;
  1042. }
  1043. txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
  1044. if (txq != NULL) {
  1045. sc->tx.hwq_map[haltype] = txq->axq_qnum;
  1046. return 1;
  1047. } else
  1048. return 0;
  1049. }
  1050. /***********/
  1051. /* TX, DMA */
  1052. /***********/
  1053. /*
  1054. * Insert a chain of ath_buf (descriptors) on a txq and
  1055. * assume the descriptors are already chained together by caller.
  1056. */
  1057. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1058. struct list_head *head)
  1059. {
  1060. struct ath_hw *ah = sc->sc_ah;
  1061. struct ath_common *common = ath9k_hw_common(ah);
  1062. struct ath_buf *bf;
  1063. /*
  1064. * Insert the frame on the outbound list and
  1065. * pass it on to the hardware.
  1066. */
  1067. if (list_empty(head))
  1068. return;
  1069. bf = list_first_entry(head, struct ath_buf, list);
  1070. ath_print(common, ATH_DBG_QUEUE,
  1071. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1072. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1073. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1074. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1075. return;
  1076. }
  1077. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1078. ath_print(common, ATH_DBG_XMIT,
  1079. "Initializing tx fifo %d which "
  1080. "is non-empty\n",
  1081. txq->txq_headidx);
  1082. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1083. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1084. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1085. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1086. ath_print(common, ATH_DBG_XMIT,
  1087. "TXDP[%u] = %llx (%p)\n",
  1088. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1089. } else {
  1090. list_splice_tail_init(head, &txq->axq_q);
  1091. if (txq->axq_link == NULL) {
  1092. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1093. ath_print(common, ATH_DBG_XMIT,
  1094. "TXDP[%u] = %llx (%p)\n",
  1095. txq->axq_qnum, ito64(bf->bf_daddr),
  1096. bf->bf_desc);
  1097. } else {
  1098. *txq->axq_link = bf->bf_daddr;
  1099. ath_print(common, ATH_DBG_XMIT,
  1100. "link[%u] (%p)=%llx (%p)\n",
  1101. txq->axq_qnum, txq->axq_link,
  1102. ito64(bf->bf_daddr), bf->bf_desc);
  1103. }
  1104. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1105. &txq->axq_link);
  1106. ath9k_hw_txstart(ah, txq->axq_qnum);
  1107. }
  1108. txq->axq_depth++;
  1109. }
  1110. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  1111. {
  1112. struct ath_buf *bf = NULL;
  1113. spin_lock_bh(&sc->tx.txbuflock);
  1114. if (unlikely(list_empty(&sc->tx.txbuf))) {
  1115. spin_unlock_bh(&sc->tx.txbuflock);
  1116. return NULL;
  1117. }
  1118. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  1119. list_del(&bf->list);
  1120. spin_unlock_bh(&sc->tx.txbuflock);
  1121. return bf;
  1122. }
  1123. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1124. struct list_head *bf_head,
  1125. struct ath_tx_control *txctl)
  1126. {
  1127. struct ath_buf *bf;
  1128. bf = list_first_entry(bf_head, struct ath_buf, list);
  1129. bf->bf_state.bf_type |= BUF_AMPDU;
  1130. TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
  1131. /*
  1132. * Do not queue to h/w when any of the following conditions is true:
  1133. * - there are pending frames in software queue
  1134. * - the TID is currently paused for ADDBA/BAR request
  1135. * - seqno is not within block-ack window
  1136. * - h/w queue depth exceeds low water mark
  1137. */
  1138. if (!list_empty(&tid->buf_q) || tid->paused ||
  1139. !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
  1140. txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
  1141. /*
  1142. * Add this frame to software queue for scheduling later
  1143. * for aggregation.
  1144. */
  1145. list_move_tail(&bf->list, &tid->buf_q);
  1146. ath_tx_queue_tid(txctl->txq, tid);
  1147. return;
  1148. }
  1149. /* Add sub-frame to BAW */
  1150. ath_tx_addto_baw(sc, tid, bf);
  1151. /* Queue to h/w without aggregation */
  1152. bf->bf_nframes = 1;
  1153. bf->bf_lastbf = bf;
  1154. ath_buf_set_rate(sc, bf);
  1155. ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
  1156. }
  1157. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  1158. struct ath_atx_tid *tid,
  1159. struct list_head *bf_head)
  1160. {
  1161. struct ath_buf *bf;
  1162. bf = list_first_entry(bf_head, struct ath_buf, list);
  1163. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1164. /* update starting sequence number for subsequent ADDBA request */
  1165. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1166. bf->bf_nframes = 1;
  1167. bf->bf_lastbf = bf;
  1168. ath_buf_set_rate(sc, bf);
  1169. ath_tx_txqaddbuf(sc, txq, bf_head);
  1170. TX_STAT_INC(txq->axq_qnum, queued);
  1171. }
  1172. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1173. struct list_head *bf_head)
  1174. {
  1175. struct ath_buf *bf;
  1176. bf = list_first_entry(bf_head, struct ath_buf, list);
  1177. bf->bf_lastbf = bf;
  1178. bf->bf_nframes = 1;
  1179. ath_buf_set_rate(sc, bf);
  1180. ath_tx_txqaddbuf(sc, txq, bf_head);
  1181. TX_STAT_INC(txq->axq_qnum, queued);
  1182. }
  1183. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1184. {
  1185. struct ieee80211_hdr *hdr;
  1186. enum ath9k_pkt_type htype;
  1187. __le16 fc;
  1188. hdr = (struct ieee80211_hdr *)skb->data;
  1189. fc = hdr->frame_control;
  1190. if (ieee80211_is_beacon(fc))
  1191. htype = ATH9K_PKT_TYPE_BEACON;
  1192. else if (ieee80211_is_probe_resp(fc))
  1193. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1194. else if (ieee80211_is_atim(fc))
  1195. htype = ATH9K_PKT_TYPE_ATIM;
  1196. else if (ieee80211_is_pspoll(fc))
  1197. htype = ATH9K_PKT_TYPE_PSPOLL;
  1198. else
  1199. htype = ATH9K_PKT_TYPE_NORMAL;
  1200. return htype;
  1201. }
  1202. static int get_hw_crypto_keytype(struct sk_buff *skb)
  1203. {
  1204. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1205. if (tx_info->control.hw_key) {
  1206. if (tx_info->control.hw_key->alg == ALG_WEP)
  1207. return ATH9K_KEY_TYPE_WEP;
  1208. else if (tx_info->control.hw_key->alg == ALG_TKIP)
  1209. return ATH9K_KEY_TYPE_TKIP;
  1210. else if (tx_info->control.hw_key->alg == ALG_CCMP)
  1211. return ATH9K_KEY_TYPE_AES;
  1212. }
  1213. return ATH9K_KEY_TYPE_CLEAR;
  1214. }
  1215. static void assign_aggr_tid_seqno(struct sk_buff *skb,
  1216. struct ath_buf *bf)
  1217. {
  1218. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1219. struct ieee80211_hdr *hdr;
  1220. struct ath_node *an;
  1221. struct ath_atx_tid *tid;
  1222. __le16 fc;
  1223. u8 *qc;
  1224. if (!tx_info->control.sta)
  1225. return;
  1226. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1227. hdr = (struct ieee80211_hdr *)skb->data;
  1228. fc = hdr->frame_control;
  1229. if (ieee80211_is_data_qos(fc)) {
  1230. qc = ieee80211_get_qos_ctl(hdr);
  1231. bf->bf_tidno = qc[0] & 0xf;
  1232. }
  1233. /*
  1234. * For HT capable stations, we save tidno for later use.
  1235. * We also override seqno set by upper layer with the one
  1236. * in tx aggregation state.
  1237. */
  1238. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1239. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1240. bf->bf_seqno = tid->seq_next;
  1241. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1242. }
  1243. static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
  1244. {
  1245. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1246. int flags = 0;
  1247. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1248. flags |= ATH9K_TXDESC_INTREQ;
  1249. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1250. flags |= ATH9K_TXDESC_NOACK;
  1251. if (use_ldpc)
  1252. flags |= ATH9K_TXDESC_LDPC;
  1253. return flags;
  1254. }
  1255. /*
  1256. * rix - rate index
  1257. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1258. * width - 0 for 20 MHz, 1 for 40 MHz
  1259. * half_gi - to use 4us v/s 3.6 us for symbol time
  1260. */
  1261. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
  1262. int width, int half_gi, bool shortPreamble)
  1263. {
  1264. u32 nbits, nsymbits, duration, nsymbols;
  1265. int streams, pktlen;
  1266. pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
  1267. /* find number of symbols: PLCP + data */
  1268. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1269. nsymbits = bits_per_symbol[rix][width];
  1270. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1271. if (!half_gi)
  1272. duration = SYMBOL_TIME(nsymbols);
  1273. else
  1274. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1275. /* addup duration for legacy/ht training and signal fields */
  1276. streams = HT_RC_2_STREAMS(rix);
  1277. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1278. return duration;
  1279. }
  1280. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
  1281. {
  1282. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1283. struct ath9k_11n_rate_series series[4];
  1284. struct sk_buff *skb;
  1285. struct ieee80211_tx_info *tx_info;
  1286. struct ieee80211_tx_rate *rates;
  1287. const struct ieee80211_rate *rate;
  1288. struct ieee80211_hdr *hdr;
  1289. int i, flags = 0;
  1290. u8 rix = 0, ctsrate = 0;
  1291. bool is_pspoll;
  1292. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1293. skb = bf->bf_mpdu;
  1294. tx_info = IEEE80211_SKB_CB(skb);
  1295. rates = tx_info->control.rates;
  1296. hdr = (struct ieee80211_hdr *)skb->data;
  1297. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1298. /*
  1299. * We check if Short Preamble is needed for the CTS rate by
  1300. * checking the BSS's global flag.
  1301. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1302. */
  1303. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1304. ctsrate = rate->hw_value;
  1305. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1306. ctsrate |= rate->hw_value_short;
  1307. for (i = 0; i < 4; i++) {
  1308. bool is_40, is_sgi, is_sp;
  1309. int phy;
  1310. if (!rates[i].count || (rates[i].idx < 0))
  1311. continue;
  1312. rix = rates[i].idx;
  1313. series[i].Tries = rates[i].count;
  1314. series[i].ChSel = common->tx_chainmask;
  1315. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1316. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1317. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1318. flags |= ATH9K_TXDESC_RTSENA;
  1319. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1320. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1321. flags |= ATH9K_TXDESC_CTSENA;
  1322. }
  1323. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1324. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1325. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1326. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1327. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1328. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1329. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1330. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1331. /* MCS rates */
  1332. series[i].Rate = rix | 0x80;
  1333. series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
  1334. is_40, is_sgi, is_sp);
  1335. continue;
  1336. }
  1337. /* legcay rates */
  1338. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1339. !(rate->flags & IEEE80211_RATE_ERP_G))
  1340. phy = WLAN_RC_PHY_CCK;
  1341. else
  1342. phy = WLAN_RC_PHY_OFDM;
  1343. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1344. series[i].Rate = rate->hw_value;
  1345. if (rate->hw_value_short) {
  1346. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1347. series[i].Rate |= rate->hw_value_short;
  1348. } else {
  1349. is_sp = false;
  1350. }
  1351. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1352. phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
  1353. }
  1354. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1355. if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
  1356. flags &= ~ATH9K_TXDESC_RTSENA;
  1357. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1358. if (flags & ATH9K_TXDESC_RTSENA)
  1359. flags &= ~ATH9K_TXDESC_CTSENA;
  1360. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1361. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1362. bf->bf_lastbf->bf_desc,
  1363. !is_pspoll, ctsrate,
  1364. 0, series, 4, flags);
  1365. if (sc->config.ath_aggr_prot && flags)
  1366. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1367. }
  1368. static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
  1369. struct sk_buff *skb,
  1370. struct ath_tx_control *txctl)
  1371. {
  1372. struct ath_wiphy *aphy = hw->priv;
  1373. struct ath_softc *sc = aphy->sc;
  1374. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1375. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1376. int hdrlen;
  1377. __le16 fc;
  1378. int padpos, padsize;
  1379. bool use_ldpc = false;
  1380. tx_info->pad[0] = 0;
  1381. switch (txctl->frame_type) {
  1382. case ATH9K_IFT_NOT_INTERNAL:
  1383. break;
  1384. case ATH9K_IFT_PAUSE:
  1385. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
  1386. /* fall through */
  1387. case ATH9K_IFT_UNPAUSE:
  1388. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
  1389. break;
  1390. }
  1391. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1392. fc = hdr->frame_control;
  1393. ATH_TXBUF_RESET(bf);
  1394. bf->aphy = aphy;
  1395. bf->bf_frmlen = skb->len + FCS_LEN;
  1396. /* Remove the padding size from bf_frmlen, if any */
  1397. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1398. padsize = padpos & 3;
  1399. if (padsize && skb->len>padpos+padsize) {
  1400. bf->bf_frmlen -= padsize;
  1401. }
  1402. if (conf_is_ht(&hw->conf)) {
  1403. bf->bf_state.bf_type |= BUF_HT;
  1404. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1405. use_ldpc = true;
  1406. }
  1407. bf->bf_flags = setup_tx_flags(skb, use_ldpc);
  1408. bf->bf_keytype = get_hw_crypto_keytype(skb);
  1409. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
  1410. bf->bf_frmlen += tx_info->control.hw_key->icv_len;
  1411. bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
  1412. } else {
  1413. bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
  1414. }
  1415. if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
  1416. (sc->sc_flags & SC_OP_TXAGGR))
  1417. assign_aggr_tid_seqno(skb, bf);
  1418. bf->bf_mpdu = skb;
  1419. bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
  1420. skb->len, DMA_TO_DEVICE);
  1421. if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
  1422. bf->bf_mpdu = NULL;
  1423. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1424. "dma_mapping_error() on TX\n");
  1425. return -ENOMEM;
  1426. }
  1427. bf->bf_buf_addr = bf->bf_dmacontext;
  1428. /* tag if this is a nullfunc frame to enable PS when AP acks it */
  1429. if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
  1430. bf->bf_isnullfunc = true;
  1431. sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
  1432. } else
  1433. bf->bf_isnullfunc = false;
  1434. return 0;
  1435. }
  1436. /* FIXME: tx power */
  1437. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1438. struct ath_tx_control *txctl)
  1439. {
  1440. struct sk_buff *skb = bf->bf_mpdu;
  1441. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1442. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1443. struct ath_node *an = NULL;
  1444. struct list_head bf_head;
  1445. struct ath_desc *ds;
  1446. struct ath_atx_tid *tid;
  1447. struct ath_hw *ah = sc->sc_ah;
  1448. int frm_type;
  1449. __le16 fc;
  1450. frm_type = get_hw_packet_type(skb);
  1451. fc = hdr->frame_control;
  1452. INIT_LIST_HEAD(&bf_head);
  1453. list_add_tail(&bf->list, &bf_head);
  1454. ds = bf->bf_desc;
  1455. ath9k_hw_set_desc_link(ah, ds, 0);
  1456. ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
  1457. bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
  1458. ath9k_hw_filltxdesc(ah, ds,
  1459. skb->len, /* segment length */
  1460. true, /* first segment */
  1461. true, /* last segment */
  1462. ds, /* first descriptor */
  1463. bf->bf_buf_addr,
  1464. txctl->txq->axq_qnum);
  1465. spin_lock_bh(&txctl->txq->axq_lock);
  1466. if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
  1467. tx_info->control.sta) {
  1468. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1469. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1470. if (!ieee80211_is_data_qos(fc)) {
  1471. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1472. goto tx_done;
  1473. }
  1474. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1475. /*
  1476. * Try aggregation if it's a unicast data frame
  1477. * and the destination is HT capable.
  1478. */
  1479. ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
  1480. } else {
  1481. /*
  1482. * Send this frame as regular when ADDBA
  1483. * exchange is neither complete nor pending.
  1484. */
  1485. ath_tx_send_ht_normal(sc, txctl->txq,
  1486. tid, &bf_head);
  1487. }
  1488. } else {
  1489. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1490. }
  1491. tx_done:
  1492. spin_unlock_bh(&txctl->txq->axq_lock);
  1493. }
  1494. /* Upon failure caller should free skb */
  1495. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1496. struct ath_tx_control *txctl)
  1497. {
  1498. struct ath_wiphy *aphy = hw->priv;
  1499. struct ath_softc *sc = aphy->sc;
  1500. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1501. struct ath_buf *bf;
  1502. int r;
  1503. bf = ath_tx_get_buffer(sc);
  1504. if (!bf) {
  1505. ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1506. return -1;
  1507. }
  1508. r = ath_tx_setup_buffer(hw, bf, skb, txctl);
  1509. if (unlikely(r)) {
  1510. struct ath_txq *txq = txctl->txq;
  1511. ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
  1512. /* upon ath_tx_processq() this TX queue will be resumed, we
  1513. * guarantee this will happen by knowing beforehand that
  1514. * we will at least have to run TX completionon one buffer
  1515. * on the queue */
  1516. spin_lock_bh(&txq->axq_lock);
  1517. if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
  1518. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1519. txq->stopped = 1;
  1520. }
  1521. spin_unlock_bh(&txq->axq_lock);
  1522. spin_lock_bh(&sc->tx.txbuflock);
  1523. list_add_tail(&bf->list, &sc->tx.txbuf);
  1524. spin_unlock_bh(&sc->tx.txbuflock);
  1525. return r;
  1526. }
  1527. ath_tx_start_dma(sc, bf, txctl);
  1528. return 0;
  1529. }
  1530. void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
  1531. {
  1532. struct ath_wiphy *aphy = hw->priv;
  1533. struct ath_softc *sc = aphy->sc;
  1534. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1535. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1536. int padpos, padsize;
  1537. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1538. struct ath_tx_control txctl;
  1539. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1540. /*
  1541. * As a temporary workaround, assign seq# here; this will likely need
  1542. * to be cleaned up to work better with Beacon transmission and virtual
  1543. * BSSes.
  1544. */
  1545. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1546. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1547. sc->tx.seq_no += 0x10;
  1548. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1549. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1550. }
  1551. /* Add the padding after the header if this is not already done */
  1552. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1553. padsize = padpos & 3;
  1554. if (padsize && skb->len>padpos) {
  1555. if (skb_headroom(skb) < padsize) {
  1556. ath_print(common, ATH_DBG_XMIT,
  1557. "TX CABQ padding failed\n");
  1558. dev_kfree_skb_any(skb);
  1559. return;
  1560. }
  1561. skb_push(skb, padsize);
  1562. memmove(skb->data, skb->data + padsize, padpos);
  1563. }
  1564. txctl.txq = sc->beacon.cabq;
  1565. ath_print(common, ATH_DBG_XMIT,
  1566. "transmitting CABQ packet, skb: %p\n", skb);
  1567. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1568. ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
  1569. goto exit;
  1570. }
  1571. return;
  1572. exit:
  1573. dev_kfree_skb_any(skb);
  1574. }
  1575. /*****************/
  1576. /* TX Completion */
  1577. /*****************/
  1578. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1579. struct ath_wiphy *aphy, int tx_flags)
  1580. {
  1581. struct ieee80211_hw *hw = sc->hw;
  1582. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1583. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1584. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1585. int padpos, padsize;
  1586. ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1587. if (aphy)
  1588. hw = aphy->hw;
  1589. if (tx_flags & ATH_TX_BAR)
  1590. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1591. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1592. /* Frame was ACKed */
  1593. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1594. }
  1595. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1596. padsize = padpos & 3;
  1597. if (padsize && skb->len>padpos+padsize) {
  1598. /*
  1599. * Remove MAC header padding before giving the frame back to
  1600. * mac80211.
  1601. */
  1602. memmove(skb->data + padsize, skb->data, padpos);
  1603. skb_pull(skb, padsize);
  1604. }
  1605. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1606. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1607. ath_print(common, ATH_DBG_PS,
  1608. "Going back to sleep after having "
  1609. "received TX status (0x%lx)\n",
  1610. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1611. PS_WAIT_FOR_CAB |
  1612. PS_WAIT_FOR_PSPOLL_DATA |
  1613. PS_WAIT_FOR_TX_ACK));
  1614. }
  1615. if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
  1616. ath9k_tx_status(hw, skb);
  1617. else
  1618. ieee80211_tx_status(hw, skb);
  1619. }
  1620. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1621. struct ath_txq *txq, struct list_head *bf_q,
  1622. struct ath_tx_status *ts, int txok, int sendbar)
  1623. {
  1624. struct sk_buff *skb = bf->bf_mpdu;
  1625. unsigned long flags;
  1626. int tx_flags = 0;
  1627. if (sendbar)
  1628. tx_flags = ATH_TX_BAR;
  1629. if (!txok) {
  1630. tx_flags |= ATH_TX_ERROR;
  1631. if (bf_isxretried(bf))
  1632. tx_flags |= ATH_TX_XRETRY;
  1633. }
  1634. dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
  1635. ath_tx_complete(sc, skb, bf->aphy, tx_flags);
  1636. ath_debug_stat_tx(sc, txq, bf, ts);
  1637. /*
  1638. * Return the list of ath_buf of this mpdu to free queue
  1639. */
  1640. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1641. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1642. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1643. }
  1644. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  1645. struct ath_tx_status *ts, int txok)
  1646. {
  1647. u16 seq_st = 0;
  1648. u32 ba[WME_BA_BMP_SIZE >> 5];
  1649. int ba_index;
  1650. int nbad = 0;
  1651. int isaggr = 0;
  1652. if (bf->bf_tx_aborted)
  1653. return 0;
  1654. isaggr = bf_isaggr(bf);
  1655. if (isaggr) {
  1656. seq_st = ts->ts_seqnum;
  1657. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  1658. }
  1659. while (bf) {
  1660. ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
  1661. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  1662. nbad++;
  1663. bf = bf->bf_next;
  1664. }
  1665. return nbad;
  1666. }
  1667. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  1668. int nbad, int txok, bool update_rc)
  1669. {
  1670. struct sk_buff *skb = bf->bf_mpdu;
  1671. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1672. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1673. struct ieee80211_hw *hw = bf->aphy->hw;
  1674. u8 i, tx_rateindex;
  1675. if (txok)
  1676. tx_info->status.ack_signal = ts->ts_rssi;
  1677. tx_rateindex = ts->ts_rateindex;
  1678. WARN_ON(tx_rateindex >= hw->max_rates);
  1679. if (ts->ts_status & ATH9K_TXERR_FILT)
  1680. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1681. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
  1682. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1683. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1684. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1685. if (ieee80211_is_data(hdr->frame_control)) {
  1686. if (ts->ts_flags &
  1687. (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
  1688. tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
  1689. if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
  1690. (ts->ts_status & ATH9K_TXERR_FIFO))
  1691. tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
  1692. tx_info->status.ampdu_len = bf->bf_nframes;
  1693. tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
  1694. }
  1695. }
  1696. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1697. tx_info->status.rates[i].count = 0;
  1698. tx_info->status.rates[i].idx = -1;
  1699. }
  1700. tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
  1701. }
  1702. static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
  1703. {
  1704. int qnum;
  1705. spin_lock_bh(&txq->axq_lock);
  1706. if (txq->stopped &&
  1707. sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
  1708. qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
  1709. if (qnum != -1) {
  1710. ath_mac80211_start_queue(sc, qnum);
  1711. txq->stopped = 0;
  1712. }
  1713. }
  1714. spin_unlock_bh(&txq->axq_lock);
  1715. }
  1716. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1717. {
  1718. struct ath_hw *ah = sc->sc_ah;
  1719. struct ath_common *common = ath9k_hw_common(ah);
  1720. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1721. struct list_head bf_head;
  1722. struct ath_desc *ds;
  1723. struct ath_tx_status ts;
  1724. int txok;
  1725. int status;
  1726. ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1727. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1728. txq->axq_link);
  1729. for (;;) {
  1730. spin_lock_bh(&txq->axq_lock);
  1731. if (list_empty(&txq->axq_q)) {
  1732. txq->axq_link = NULL;
  1733. spin_unlock_bh(&txq->axq_lock);
  1734. break;
  1735. }
  1736. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1737. /*
  1738. * There is a race condition that a BH gets scheduled
  1739. * after sw writes TxE and before hw re-load the last
  1740. * descriptor to get the newly chained one.
  1741. * Software must keep the last DONE descriptor as a
  1742. * holding descriptor - software does so by marking
  1743. * it with the STALE flag.
  1744. */
  1745. bf_held = NULL;
  1746. if (bf->bf_stale) {
  1747. bf_held = bf;
  1748. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1749. spin_unlock_bh(&txq->axq_lock);
  1750. break;
  1751. } else {
  1752. bf = list_entry(bf_held->list.next,
  1753. struct ath_buf, list);
  1754. }
  1755. }
  1756. lastbf = bf->bf_lastbf;
  1757. ds = lastbf->bf_desc;
  1758. memset(&ts, 0, sizeof(ts));
  1759. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1760. if (status == -EINPROGRESS) {
  1761. spin_unlock_bh(&txq->axq_lock);
  1762. break;
  1763. }
  1764. /*
  1765. * We now know the nullfunc frame has been ACKed so we
  1766. * can disable RX.
  1767. */
  1768. if (bf->bf_isnullfunc &&
  1769. (ts.ts_status & ATH9K_TX_ACKED)) {
  1770. if ((sc->ps_flags & PS_ENABLED))
  1771. ath9k_enable_ps(sc);
  1772. else
  1773. sc->ps_flags |= PS_NULLFUNC_COMPLETED;
  1774. }
  1775. /*
  1776. * Remove ath_buf's of the same transmit unit from txq,
  1777. * however leave the last descriptor back as the holding
  1778. * descriptor for hw.
  1779. */
  1780. lastbf->bf_stale = true;
  1781. INIT_LIST_HEAD(&bf_head);
  1782. if (!list_is_singular(&lastbf->list))
  1783. list_cut_position(&bf_head,
  1784. &txq->axq_q, lastbf->list.prev);
  1785. txq->axq_depth--;
  1786. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1787. txq->axq_tx_inprogress = false;
  1788. spin_unlock_bh(&txq->axq_lock);
  1789. if (bf_held) {
  1790. spin_lock_bh(&sc->tx.txbuflock);
  1791. list_move_tail(&bf_held->list, &sc->tx.txbuf);
  1792. spin_unlock_bh(&sc->tx.txbuflock);
  1793. }
  1794. if (!bf_isampdu(bf)) {
  1795. /*
  1796. * This frame is sent out as a single frame.
  1797. * Use hardware retry status for this frame.
  1798. */
  1799. bf->bf_retries = ts.ts_longretry;
  1800. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1801. bf->bf_state.bf_type |= BUF_XRETRY;
  1802. ath_tx_rc_status(bf, &ts, 0, txok, true);
  1803. }
  1804. if (bf_isampdu(bf))
  1805. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
  1806. else
  1807. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1808. ath_wake_mac80211_queue(sc, txq);
  1809. spin_lock_bh(&txq->axq_lock);
  1810. if (sc->sc_flags & SC_OP_TXAGGR)
  1811. ath_txq_schedule(sc, txq);
  1812. spin_unlock_bh(&txq->axq_lock);
  1813. }
  1814. }
  1815. static void ath_tx_complete_poll_work(struct work_struct *work)
  1816. {
  1817. struct ath_softc *sc = container_of(work, struct ath_softc,
  1818. tx_complete_work.work);
  1819. struct ath_txq *txq;
  1820. int i;
  1821. bool needreset = false;
  1822. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1823. if (ATH_TXQ_SETUP(sc, i)) {
  1824. txq = &sc->tx.txq[i];
  1825. spin_lock_bh(&txq->axq_lock);
  1826. if (txq->axq_depth) {
  1827. if (txq->axq_tx_inprogress) {
  1828. needreset = true;
  1829. spin_unlock_bh(&txq->axq_lock);
  1830. break;
  1831. } else {
  1832. txq->axq_tx_inprogress = true;
  1833. }
  1834. }
  1835. spin_unlock_bh(&txq->axq_lock);
  1836. }
  1837. if (needreset) {
  1838. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1839. "tx hung, resetting the chip\n");
  1840. ath9k_ps_wakeup(sc);
  1841. ath_reset(sc, false);
  1842. ath9k_ps_restore(sc);
  1843. }
  1844. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1845. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1846. }
  1847. void ath_tx_tasklet(struct ath_softc *sc)
  1848. {
  1849. int i;
  1850. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1851. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1852. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1853. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1854. ath_tx_processq(sc, &sc->tx.txq[i]);
  1855. }
  1856. }
  1857. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1858. {
  1859. struct ath_tx_status txs;
  1860. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1861. struct ath_hw *ah = sc->sc_ah;
  1862. struct ath_txq *txq;
  1863. struct ath_buf *bf, *lastbf;
  1864. struct list_head bf_head;
  1865. int status;
  1866. int txok;
  1867. for (;;) {
  1868. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1869. if (status == -EINPROGRESS)
  1870. break;
  1871. if (status == -EIO) {
  1872. ath_print(common, ATH_DBG_XMIT,
  1873. "Error processing tx status\n");
  1874. break;
  1875. }
  1876. /* Skip beacon completions */
  1877. if (txs.qid == sc->beacon.beaconq)
  1878. continue;
  1879. txq = &sc->tx.txq[txs.qid];
  1880. spin_lock_bh(&txq->axq_lock);
  1881. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1882. spin_unlock_bh(&txq->axq_lock);
  1883. return;
  1884. }
  1885. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1886. struct ath_buf, list);
  1887. lastbf = bf->bf_lastbf;
  1888. INIT_LIST_HEAD(&bf_head);
  1889. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1890. &lastbf->list);
  1891. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1892. txq->axq_depth--;
  1893. txq->axq_tx_inprogress = false;
  1894. spin_unlock_bh(&txq->axq_lock);
  1895. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1896. if (!bf_isampdu(bf)) {
  1897. bf->bf_retries = txs.ts_longretry;
  1898. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1899. bf->bf_state.bf_type |= BUF_XRETRY;
  1900. ath_tx_rc_status(bf, &txs, 0, txok, true);
  1901. }
  1902. if (bf_isampdu(bf))
  1903. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
  1904. else
  1905. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1906. &txs, txok, 0);
  1907. spin_lock_bh(&txq->axq_lock);
  1908. if (!list_empty(&txq->txq_fifo_pending)) {
  1909. INIT_LIST_HEAD(&bf_head);
  1910. bf = list_first_entry(&txq->txq_fifo_pending,
  1911. struct ath_buf, list);
  1912. list_cut_position(&bf_head, &txq->txq_fifo_pending,
  1913. &bf->bf_lastbf->list);
  1914. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1915. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1916. ath_txq_schedule(sc, txq);
  1917. spin_unlock_bh(&txq->axq_lock);
  1918. }
  1919. }
  1920. /*****************/
  1921. /* Init, Cleanup */
  1922. /*****************/
  1923. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1924. {
  1925. struct ath_descdma *dd = &sc->txsdma;
  1926. u8 txs_len = sc->sc_ah->caps.txs_len;
  1927. dd->dd_desc_len = size * txs_len;
  1928. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1929. &dd->dd_desc_paddr, GFP_KERNEL);
  1930. if (!dd->dd_desc)
  1931. return -ENOMEM;
  1932. return 0;
  1933. }
  1934. static int ath_tx_edma_init(struct ath_softc *sc)
  1935. {
  1936. int err;
  1937. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1938. if (!err)
  1939. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1940. sc->txsdma.dd_desc_paddr,
  1941. ATH_TXSTATUS_RING_SIZE);
  1942. return err;
  1943. }
  1944. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1945. {
  1946. struct ath_descdma *dd = &sc->txsdma;
  1947. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1948. dd->dd_desc_paddr);
  1949. }
  1950. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1951. {
  1952. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1953. int error = 0;
  1954. spin_lock_init(&sc->tx.txbuflock);
  1955. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1956. "tx", nbufs, 1, 1);
  1957. if (error != 0) {
  1958. ath_print(common, ATH_DBG_FATAL,
  1959. "Failed to allocate tx descriptors: %d\n", error);
  1960. goto err;
  1961. }
  1962. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1963. "beacon", ATH_BCBUF, 1, 1);
  1964. if (error != 0) {
  1965. ath_print(common, ATH_DBG_FATAL,
  1966. "Failed to allocate beacon descriptors: %d\n", error);
  1967. goto err;
  1968. }
  1969. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1970. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1971. error = ath_tx_edma_init(sc);
  1972. if (error)
  1973. goto err;
  1974. }
  1975. err:
  1976. if (error != 0)
  1977. ath_tx_cleanup(sc);
  1978. return error;
  1979. }
  1980. void ath_tx_cleanup(struct ath_softc *sc)
  1981. {
  1982. if (sc->beacon.bdma.dd_desc_len != 0)
  1983. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1984. if (sc->tx.txdma.dd_desc_len != 0)
  1985. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1986. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1987. ath_tx_edma_cleanup(sc);
  1988. }
  1989. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1990. {
  1991. struct ath_atx_tid *tid;
  1992. struct ath_atx_ac *ac;
  1993. int tidno, acno;
  1994. for (tidno = 0, tid = &an->tid[tidno];
  1995. tidno < WME_NUM_TID;
  1996. tidno++, tid++) {
  1997. tid->an = an;
  1998. tid->tidno = tidno;
  1999. tid->seq_start = tid->seq_next = 0;
  2000. tid->baw_size = WME_MAX_BA;
  2001. tid->baw_head = tid->baw_tail = 0;
  2002. tid->sched = false;
  2003. tid->paused = false;
  2004. tid->state &= ~AGGR_CLEANUP;
  2005. INIT_LIST_HEAD(&tid->buf_q);
  2006. acno = TID_TO_WME_AC(tidno);
  2007. tid->ac = &an->ac[acno];
  2008. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2009. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2010. }
  2011. for (acno = 0, ac = &an->ac[acno];
  2012. acno < WME_NUM_AC; acno++, ac++) {
  2013. ac->sched = false;
  2014. INIT_LIST_HEAD(&ac->tid_q);
  2015. switch (acno) {
  2016. case WME_AC_BE:
  2017. ac->qnum = ath_tx_get_qnum(sc,
  2018. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
  2019. break;
  2020. case WME_AC_BK:
  2021. ac->qnum = ath_tx_get_qnum(sc,
  2022. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
  2023. break;
  2024. case WME_AC_VI:
  2025. ac->qnum = ath_tx_get_qnum(sc,
  2026. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
  2027. break;
  2028. case WME_AC_VO:
  2029. ac->qnum = ath_tx_get_qnum(sc,
  2030. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
  2031. break;
  2032. }
  2033. }
  2034. }
  2035. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2036. {
  2037. int i;
  2038. struct ath_atx_ac *ac, *ac_tmp;
  2039. struct ath_atx_tid *tid, *tid_tmp;
  2040. struct ath_txq *txq;
  2041. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2042. if (ATH_TXQ_SETUP(sc, i)) {
  2043. txq = &sc->tx.txq[i];
  2044. spin_lock_bh(&txq->axq_lock);
  2045. list_for_each_entry_safe(ac,
  2046. ac_tmp, &txq->axq_acq, list) {
  2047. tid = list_first_entry(&ac->tid_q,
  2048. struct ath_atx_tid, list);
  2049. if (tid && tid->an != an)
  2050. continue;
  2051. list_del(&ac->list);
  2052. ac->sched = false;
  2053. list_for_each_entry_safe(tid,
  2054. tid_tmp, &ac->tid_q, list) {
  2055. list_del(&tid->list);
  2056. tid->sched = false;
  2057. ath_tid_drain(sc, txq, tid);
  2058. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2059. tid->state &= ~AGGR_CLEANUP;
  2060. }
  2061. }
  2062. spin_unlock_bh(&txq->axq_lock);
  2063. }
  2064. }
  2065. }