i915_gem.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  39. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  40. int write);
  41. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  45. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  46. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  47. unsigned alignment);
  48. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  49. static int i915_gem_evict_something(struct drm_device *dev, int min_size);
  50. static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. static LIST_HEAD(shrink_list);
  55. static DEFINE_SPINLOCK(shrink_list_lock);
  56. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  57. unsigned long end)
  58. {
  59. drm_i915_private_t *dev_priv = dev->dev_private;
  60. if (start >= end ||
  61. (start & (PAGE_SIZE - 1)) != 0 ||
  62. (end & (PAGE_SIZE - 1)) != 0) {
  63. return -EINVAL;
  64. }
  65. drm_mm_init(&dev_priv->mm.gtt_space, start,
  66. end - start);
  67. dev->gtt_total = (uint32_t) (end - start);
  68. return 0;
  69. }
  70. int
  71. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  72. struct drm_file *file_priv)
  73. {
  74. struct drm_i915_gem_init *args = data;
  75. int ret;
  76. mutex_lock(&dev->struct_mutex);
  77. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  78. mutex_unlock(&dev->struct_mutex);
  79. return ret;
  80. }
  81. int
  82. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  83. struct drm_file *file_priv)
  84. {
  85. struct drm_i915_gem_get_aperture *args = data;
  86. if (!(dev->driver->driver_features & DRIVER_GEM))
  87. return -ENODEV;
  88. args->aper_size = dev->gtt_total;
  89. args->aper_available_size = (args->aper_size -
  90. atomic_read(&dev->pin_memory));
  91. return 0;
  92. }
  93. /**
  94. * Creates a new mm object and returns a handle to it.
  95. */
  96. int
  97. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  98. struct drm_file *file_priv)
  99. {
  100. struct drm_i915_gem_create *args = data;
  101. struct drm_gem_object *obj;
  102. int ret;
  103. u32 handle;
  104. args->size = roundup(args->size, PAGE_SIZE);
  105. /* Allocate the new object */
  106. obj = i915_gem_alloc_object(dev, args->size);
  107. if (obj == NULL)
  108. return -ENOMEM;
  109. ret = drm_gem_handle_create(file_priv, obj, &handle);
  110. drm_gem_object_handle_unreference_unlocked(obj);
  111. if (ret)
  112. return ret;
  113. args->handle = handle;
  114. return 0;
  115. }
  116. static inline int
  117. fast_shmem_read(struct page **pages,
  118. loff_t page_base, int page_offset,
  119. char __user *data,
  120. int length)
  121. {
  122. char __iomem *vaddr;
  123. int unwritten;
  124. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  125. if (vaddr == NULL)
  126. return -ENOMEM;
  127. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  128. kunmap_atomic(vaddr, KM_USER0);
  129. if (unwritten)
  130. return -EFAULT;
  131. return 0;
  132. }
  133. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  134. {
  135. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  136. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  137. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  138. obj_priv->tiling_mode != I915_TILING_NONE;
  139. }
  140. static inline void
  141. slow_shmem_copy(struct page *dst_page,
  142. int dst_offset,
  143. struct page *src_page,
  144. int src_offset,
  145. int length)
  146. {
  147. char *dst_vaddr, *src_vaddr;
  148. dst_vaddr = kmap(dst_page);
  149. src_vaddr = kmap(src_page);
  150. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  151. kunmap(src_page);
  152. kunmap(dst_page);
  153. }
  154. static inline void
  155. slow_shmem_bit17_copy(struct page *gpu_page,
  156. int gpu_offset,
  157. struct page *cpu_page,
  158. int cpu_offset,
  159. int length,
  160. int is_read)
  161. {
  162. char *gpu_vaddr, *cpu_vaddr;
  163. /* Use the unswizzled path if this page isn't affected. */
  164. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  165. if (is_read)
  166. return slow_shmem_copy(cpu_page, cpu_offset,
  167. gpu_page, gpu_offset, length);
  168. else
  169. return slow_shmem_copy(gpu_page, gpu_offset,
  170. cpu_page, cpu_offset, length);
  171. }
  172. gpu_vaddr = kmap(gpu_page);
  173. cpu_vaddr = kmap(cpu_page);
  174. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  175. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  176. */
  177. while (length > 0) {
  178. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  179. int this_length = min(cacheline_end - gpu_offset, length);
  180. int swizzled_gpu_offset = gpu_offset ^ 64;
  181. if (is_read) {
  182. memcpy(cpu_vaddr + cpu_offset,
  183. gpu_vaddr + swizzled_gpu_offset,
  184. this_length);
  185. } else {
  186. memcpy(gpu_vaddr + swizzled_gpu_offset,
  187. cpu_vaddr + cpu_offset,
  188. this_length);
  189. }
  190. cpu_offset += this_length;
  191. gpu_offset += this_length;
  192. length -= this_length;
  193. }
  194. kunmap(cpu_page);
  195. kunmap(gpu_page);
  196. }
  197. /**
  198. * This is the fast shmem pread path, which attempts to copy_from_user directly
  199. * from the backing pages of the object to the user's address space. On a
  200. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  201. */
  202. static int
  203. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  204. struct drm_i915_gem_pread *args,
  205. struct drm_file *file_priv)
  206. {
  207. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  208. ssize_t remain;
  209. loff_t offset, page_base;
  210. char __user *user_data;
  211. int page_offset, page_length;
  212. int ret;
  213. user_data = (char __user *) (uintptr_t) args->data_ptr;
  214. remain = args->size;
  215. mutex_lock(&dev->struct_mutex);
  216. ret = i915_gem_object_get_pages(obj, 0);
  217. if (ret != 0)
  218. goto fail_unlock;
  219. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  220. args->size);
  221. if (ret != 0)
  222. goto fail_put_pages;
  223. obj_priv = to_intel_bo(obj);
  224. offset = args->offset;
  225. while (remain > 0) {
  226. /* Operation in this page
  227. *
  228. * page_base = page offset within aperture
  229. * page_offset = offset within page
  230. * page_length = bytes to copy for this page
  231. */
  232. page_base = (offset & ~(PAGE_SIZE-1));
  233. page_offset = offset & (PAGE_SIZE-1);
  234. page_length = remain;
  235. if ((page_offset + remain) > PAGE_SIZE)
  236. page_length = PAGE_SIZE - page_offset;
  237. ret = fast_shmem_read(obj_priv->pages,
  238. page_base, page_offset,
  239. user_data, page_length);
  240. if (ret)
  241. goto fail_put_pages;
  242. remain -= page_length;
  243. user_data += page_length;
  244. offset += page_length;
  245. }
  246. fail_put_pages:
  247. i915_gem_object_put_pages(obj);
  248. fail_unlock:
  249. mutex_unlock(&dev->struct_mutex);
  250. return ret;
  251. }
  252. static int
  253. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  254. {
  255. int ret;
  256. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  257. /* If we've insufficient memory to map in the pages, attempt
  258. * to make some space by throwing out some old buffers.
  259. */
  260. if (ret == -ENOMEM) {
  261. struct drm_device *dev = obj->dev;
  262. ret = i915_gem_evict_something(dev, obj->size);
  263. if (ret)
  264. return ret;
  265. ret = i915_gem_object_get_pages(obj, 0);
  266. }
  267. return ret;
  268. }
  269. /**
  270. * This is the fallback shmem pread path, which allocates temporary storage
  271. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  272. * can copy out of the object's backing pages while holding the struct mutex
  273. * and not take page faults.
  274. */
  275. static int
  276. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  277. struct drm_i915_gem_pread *args,
  278. struct drm_file *file_priv)
  279. {
  280. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  281. struct mm_struct *mm = current->mm;
  282. struct page **user_pages;
  283. ssize_t remain;
  284. loff_t offset, pinned_pages, i;
  285. loff_t first_data_page, last_data_page, num_pages;
  286. int shmem_page_index, shmem_page_offset;
  287. int data_page_index, data_page_offset;
  288. int page_length;
  289. int ret;
  290. uint64_t data_ptr = args->data_ptr;
  291. int do_bit17_swizzling;
  292. remain = args->size;
  293. /* Pin the user pages containing the data. We can't fault while
  294. * holding the struct mutex, yet we want to hold it while
  295. * dereferencing the user data.
  296. */
  297. first_data_page = data_ptr / PAGE_SIZE;
  298. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  299. num_pages = last_data_page - first_data_page + 1;
  300. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  301. if (user_pages == NULL)
  302. return -ENOMEM;
  303. down_read(&mm->mmap_sem);
  304. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  305. num_pages, 1, 0, user_pages, NULL);
  306. up_read(&mm->mmap_sem);
  307. if (pinned_pages < num_pages) {
  308. ret = -EFAULT;
  309. goto fail_put_user_pages;
  310. }
  311. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  312. mutex_lock(&dev->struct_mutex);
  313. ret = i915_gem_object_get_pages_or_evict(obj);
  314. if (ret)
  315. goto fail_unlock;
  316. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  317. args->size);
  318. if (ret != 0)
  319. goto fail_put_pages;
  320. obj_priv = to_intel_bo(obj);
  321. offset = args->offset;
  322. while (remain > 0) {
  323. /* Operation in this page
  324. *
  325. * shmem_page_index = page number within shmem file
  326. * shmem_page_offset = offset within page in shmem file
  327. * data_page_index = page number in get_user_pages return
  328. * data_page_offset = offset with data_page_index page.
  329. * page_length = bytes to copy for this page
  330. */
  331. shmem_page_index = offset / PAGE_SIZE;
  332. shmem_page_offset = offset & ~PAGE_MASK;
  333. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  334. data_page_offset = data_ptr & ~PAGE_MASK;
  335. page_length = remain;
  336. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  337. page_length = PAGE_SIZE - shmem_page_offset;
  338. if ((data_page_offset + page_length) > PAGE_SIZE)
  339. page_length = PAGE_SIZE - data_page_offset;
  340. if (do_bit17_swizzling) {
  341. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  342. shmem_page_offset,
  343. user_pages[data_page_index],
  344. data_page_offset,
  345. page_length,
  346. 1);
  347. } else {
  348. slow_shmem_copy(user_pages[data_page_index],
  349. data_page_offset,
  350. obj_priv->pages[shmem_page_index],
  351. shmem_page_offset,
  352. page_length);
  353. }
  354. remain -= page_length;
  355. data_ptr += page_length;
  356. offset += page_length;
  357. }
  358. fail_put_pages:
  359. i915_gem_object_put_pages(obj);
  360. fail_unlock:
  361. mutex_unlock(&dev->struct_mutex);
  362. fail_put_user_pages:
  363. for (i = 0; i < pinned_pages; i++) {
  364. SetPageDirty(user_pages[i]);
  365. page_cache_release(user_pages[i]);
  366. }
  367. drm_free_large(user_pages);
  368. return ret;
  369. }
  370. /**
  371. * Reads data from the object referenced by handle.
  372. *
  373. * On error, the contents of *data are undefined.
  374. */
  375. int
  376. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  377. struct drm_file *file_priv)
  378. {
  379. struct drm_i915_gem_pread *args = data;
  380. struct drm_gem_object *obj;
  381. struct drm_i915_gem_object *obj_priv;
  382. int ret;
  383. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  384. if (obj == NULL)
  385. return -EBADF;
  386. obj_priv = to_intel_bo(obj);
  387. /* Bounds check source.
  388. *
  389. * XXX: This could use review for overflow issues...
  390. */
  391. if (args->offset > obj->size || args->size > obj->size ||
  392. args->offset + args->size > obj->size) {
  393. drm_gem_object_unreference_unlocked(obj);
  394. return -EINVAL;
  395. }
  396. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  397. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  398. } else {
  399. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  400. if (ret != 0)
  401. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  402. file_priv);
  403. }
  404. drm_gem_object_unreference_unlocked(obj);
  405. return ret;
  406. }
  407. /* This is the fast write path which cannot handle
  408. * page faults in the source data
  409. */
  410. static inline int
  411. fast_user_write(struct io_mapping *mapping,
  412. loff_t page_base, int page_offset,
  413. char __user *user_data,
  414. int length)
  415. {
  416. char *vaddr_atomic;
  417. unsigned long unwritten;
  418. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  419. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  420. user_data, length);
  421. io_mapping_unmap_atomic(vaddr_atomic);
  422. if (unwritten)
  423. return -EFAULT;
  424. return 0;
  425. }
  426. /* Here's the write path which can sleep for
  427. * page faults
  428. */
  429. static inline void
  430. slow_kernel_write(struct io_mapping *mapping,
  431. loff_t gtt_base, int gtt_offset,
  432. struct page *user_page, int user_offset,
  433. int length)
  434. {
  435. char __iomem *dst_vaddr;
  436. char *src_vaddr;
  437. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  438. src_vaddr = kmap(user_page);
  439. memcpy_toio(dst_vaddr + gtt_offset,
  440. src_vaddr + user_offset,
  441. length);
  442. kunmap(user_page);
  443. io_mapping_unmap(dst_vaddr);
  444. }
  445. static inline int
  446. fast_shmem_write(struct page **pages,
  447. loff_t page_base, int page_offset,
  448. char __user *data,
  449. int length)
  450. {
  451. char __iomem *vaddr;
  452. unsigned long unwritten;
  453. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  454. if (vaddr == NULL)
  455. return -ENOMEM;
  456. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  457. kunmap_atomic(vaddr, KM_USER0);
  458. if (unwritten)
  459. return -EFAULT;
  460. return 0;
  461. }
  462. /**
  463. * This is the fast pwrite path, where we copy the data directly from the
  464. * user into the GTT, uncached.
  465. */
  466. static int
  467. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  468. struct drm_i915_gem_pwrite *args,
  469. struct drm_file *file_priv)
  470. {
  471. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  472. drm_i915_private_t *dev_priv = dev->dev_private;
  473. ssize_t remain;
  474. loff_t offset, page_base;
  475. char __user *user_data;
  476. int page_offset, page_length;
  477. int ret;
  478. user_data = (char __user *) (uintptr_t) args->data_ptr;
  479. remain = args->size;
  480. if (!access_ok(VERIFY_READ, user_data, remain))
  481. return -EFAULT;
  482. mutex_lock(&dev->struct_mutex);
  483. ret = i915_gem_object_pin(obj, 0);
  484. if (ret) {
  485. mutex_unlock(&dev->struct_mutex);
  486. return ret;
  487. }
  488. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  489. if (ret)
  490. goto fail;
  491. obj_priv = to_intel_bo(obj);
  492. offset = obj_priv->gtt_offset + args->offset;
  493. while (remain > 0) {
  494. /* Operation in this page
  495. *
  496. * page_base = page offset within aperture
  497. * page_offset = offset within page
  498. * page_length = bytes to copy for this page
  499. */
  500. page_base = (offset & ~(PAGE_SIZE-1));
  501. page_offset = offset & (PAGE_SIZE-1);
  502. page_length = remain;
  503. if ((page_offset + remain) > PAGE_SIZE)
  504. page_length = PAGE_SIZE - page_offset;
  505. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  506. page_offset, user_data, page_length);
  507. /* If we get a fault while copying data, then (presumably) our
  508. * source page isn't available. Return the error and we'll
  509. * retry in the slow path.
  510. */
  511. if (ret)
  512. goto fail;
  513. remain -= page_length;
  514. user_data += page_length;
  515. offset += page_length;
  516. }
  517. fail:
  518. i915_gem_object_unpin(obj);
  519. mutex_unlock(&dev->struct_mutex);
  520. return ret;
  521. }
  522. /**
  523. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  524. * the memory and maps it using kmap_atomic for copying.
  525. *
  526. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  527. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  528. */
  529. static int
  530. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  531. struct drm_i915_gem_pwrite *args,
  532. struct drm_file *file_priv)
  533. {
  534. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  535. drm_i915_private_t *dev_priv = dev->dev_private;
  536. ssize_t remain;
  537. loff_t gtt_page_base, offset;
  538. loff_t first_data_page, last_data_page, num_pages;
  539. loff_t pinned_pages, i;
  540. struct page **user_pages;
  541. struct mm_struct *mm = current->mm;
  542. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  543. int ret;
  544. uint64_t data_ptr = args->data_ptr;
  545. remain = args->size;
  546. /* Pin the user pages containing the data. We can't fault while
  547. * holding the struct mutex, and all of the pwrite implementations
  548. * want to hold it while dereferencing the user data.
  549. */
  550. first_data_page = data_ptr / PAGE_SIZE;
  551. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  552. num_pages = last_data_page - first_data_page + 1;
  553. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  554. if (user_pages == NULL)
  555. return -ENOMEM;
  556. down_read(&mm->mmap_sem);
  557. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  558. num_pages, 0, 0, user_pages, NULL);
  559. up_read(&mm->mmap_sem);
  560. if (pinned_pages < num_pages) {
  561. ret = -EFAULT;
  562. goto out_unpin_pages;
  563. }
  564. mutex_lock(&dev->struct_mutex);
  565. ret = i915_gem_object_pin(obj, 0);
  566. if (ret)
  567. goto out_unlock;
  568. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  569. if (ret)
  570. goto out_unpin_object;
  571. obj_priv = to_intel_bo(obj);
  572. offset = obj_priv->gtt_offset + args->offset;
  573. while (remain > 0) {
  574. /* Operation in this page
  575. *
  576. * gtt_page_base = page offset within aperture
  577. * gtt_page_offset = offset within page in aperture
  578. * data_page_index = page number in get_user_pages return
  579. * data_page_offset = offset with data_page_index page.
  580. * page_length = bytes to copy for this page
  581. */
  582. gtt_page_base = offset & PAGE_MASK;
  583. gtt_page_offset = offset & ~PAGE_MASK;
  584. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  585. data_page_offset = data_ptr & ~PAGE_MASK;
  586. page_length = remain;
  587. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - gtt_page_offset;
  589. if ((data_page_offset + page_length) > PAGE_SIZE)
  590. page_length = PAGE_SIZE - data_page_offset;
  591. slow_kernel_write(dev_priv->mm.gtt_mapping,
  592. gtt_page_base, gtt_page_offset,
  593. user_pages[data_page_index],
  594. data_page_offset,
  595. page_length);
  596. remain -= page_length;
  597. offset += page_length;
  598. data_ptr += page_length;
  599. }
  600. out_unpin_object:
  601. i915_gem_object_unpin(obj);
  602. out_unlock:
  603. mutex_unlock(&dev->struct_mutex);
  604. out_unpin_pages:
  605. for (i = 0; i < pinned_pages; i++)
  606. page_cache_release(user_pages[i]);
  607. drm_free_large(user_pages);
  608. return ret;
  609. }
  610. /**
  611. * This is the fast shmem pwrite path, which attempts to directly
  612. * copy_from_user into the kmapped pages backing the object.
  613. */
  614. static int
  615. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  616. struct drm_i915_gem_pwrite *args,
  617. struct drm_file *file_priv)
  618. {
  619. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  620. ssize_t remain;
  621. loff_t offset, page_base;
  622. char __user *user_data;
  623. int page_offset, page_length;
  624. int ret;
  625. user_data = (char __user *) (uintptr_t) args->data_ptr;
  626. remain = args->size;
  627. mutex_lock(&dev->struct_mutex);
  628. ret = i915_gem_object_get_pages(obj, 0);
  629. if (ret != 0)
  630. goto fail_unlock;
  631. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  632. if (ret != 0)
  633. goto fail_put_pages;
  634. obj_priv = to_intel_bo(obj);
  635. offset = args->offset;
  636. obj_priv->dirty = 1;
  637. while (remain > 0) {
  638. /* Operation in this page
  639. *
  640. * page_base = page offset within aperture
  641. * page_offset = offset within page
  642. * page_length = bytes to copy for this page
  643. */
  644. page_base = (offset & ~(PAGE_SIZE-1));
  645. page_offset = offset & (PAGE_SIZE-1);
  646. page_length = remain;
  647. if ((page_offset + remain) > PAGE_SIZE)
  648. page_length = PAGE_SIZE - page_offset;
  649. ret = fast_shmem_write(obj_priv->pages,
  650. page_base, page_offset,
  651. user_data, page_length);
  652. if (ret)
  653. goto fail_put_pages;
  654. remain -= page_length;
  655. user_data += page_length;
  656. offset += page_length;
  657. }
  658. fail_put_pages:
  659. i915_gem_object_put_pages(obj);
  660. fail_unlock:
  661. mutex_unlock(&dev->struct_mutex);
  662. return ret;
  663. }
  664. /**
  665. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  666. * the memory and maps it using kmap_atomic for copying.
  667. *
  668. * This avoids taking mmap_sem for faulting on the user's address while the
  669. * struct_mutex is held.
  670. */
  671. static int
  672. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  673. struct drm_i915_gem_pwrite *args,
  674. struct drm_file *file_priv)
  675. {
  676. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  677. struct mm_struct *mm = current->mm;
  678. struct page **user_pages;
  679. ssize_t remain;
  680. loff_t offset, pinned_pages, i;
  681. loff_t first_data_page, last_data_page, num_pages;
  682. int shmem_page_index, shmem_page_offset;
  683. int data_page_index, data_page_offset;
  684. int page_length;
  685. int ret;
  686. uint64_t data_ptr = args->data_ptr;
  687. int do_bit17_swizzling;
  688. remain = args->size;
  689. /* Pin the user pages containing the data. We can't fault while
  690. * holding the struct mutex, and all of the pwrite implementations
  691. * want to hold it while dereferencing the user data.
  692. */
  693. first_data_page = data_ptr / PAGE_SIZE;
  694. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  695. num_pages = last_data_page - first_data_page + 1;
  696. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  697. if (user_pages == NULL)
  698. return -ENOMEM;
  699. down_read(&mm->mmap_sem);
  700. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  701. num_pages, 0, 0, user_pages, NULL);
  702. up_read(&mm->mmap_sem);
  703. if (pinned_pages < num_pages) {
  704. ret = -EFAULT;
  705. goto fail_put_user_pages;
  706. }
  707. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  708. mutex_lock(&dev->struct_mutex);
  709. ret = i915_gem_object_get_pages_or_evict(obj);
  710. if (ret)
  711. goto fail_unlock;
  712. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  713. if (ret != 0)
  714. goto fail_put_pages;
  715. obj_priv = to_intel_bo(obj);
  716. offset = args->offset;
  717. obj_priv->dirty = 1;
  718. while (remain > 0) {
  719. /* Operation in this page
  720. *
  721. * shmem_page_index = page number within shmem file
  722. * shmem_page_offset = offset within page in shmem file
  723. * data_page_index = page number in get_user_pages return
  724. * data_page_offset = offset with data_page_index page.
  725. * page_length = bytes to copy for this page
  726. */
  727. shmem_page_index = offset / PAGE_SIZE;
  728. shmem_page_offset = offset & ~PAGE_MASK;
  729. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  730. data_page_offset = data_ptr & ~PAGE_MASK;
  731. page_length = remain;
  732. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  733. page_length = PAGE_SIZE - shmem_page_offset;
  734. if ((data_page_offset + page_length) > PAGE_SIZE)
  735. page_length = PAGE_SIZE - data_page_offset;
  736. if (do_bit17_swizzling) {
  737. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  738. shmem_page_offset,
  739. user_pages[data_page_index],
  740. data_page_offset,
  741. page_length,
  742. 0);
  743. } else {
  744. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  745. shmem_page_offset,
  746. user_pages[data_page_index],
  747. data_page_offset,
  748. page_length);
  749. }
  750. remain -= page_length;
  751. data_ptr += page_length;
  752. offset += page_length;
  753. }
  754. fail_put_pages:
  755. i915_gem_object_put_pages(obj);
  756. fail_unlock:
  757. mutex_unlock(&dev->struct_mutex);
  758. fail_put_user_pages:
  759. for (i = 0; i < pinned_pages; i++)
  760. page_cache_release(user_pages[i]);
  761. drm_free_large(user_pages);
  762. return ret;
  763. }
  764. /**
  765. * Writes data to the object referenced by handle.
  766. *
  767. * On error, the contents of the buffer that were to be modified are undefined.
  768. */
  769. int
  770. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  771. struct drm_file *file_priv)
  772. {
  773. struct drm_i915_gem_pwrite *args = data;
  774. struct drm_gem_object *obj;
  775. struct drm_i915_gem_object *obj_priv;
  776. int ret = 0;
  777. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  778. if (obj == NULL)
  779. return -EBADF;
  780. obj_priv = to_intel_bo(obj);
  781. /* Bounds check destination.
  782. *
  783. * XXX: This could use review for overflow issues...
  784. */
  785. if (args->offset > obj->size || args->size > obj->size ||
  786. args->offset + args->size > obj->size) {
  787. drm_gem_object_unreference_unlocked(obj);
  788. return -EINVAL;
  789. }
  790. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  791. * it would end up going through the fenced access, and we'll get
  792. * different detiling behavior between reading and writing.
  793. * pread/pwrite currently are reading and writing from the CPU
  794. * perspective, requiring manual detiling by the client.
  795. */
  796. if (obj_priv->phys_obj)
  797. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  798. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  799. dev->gtt_total != 0 &&
  800. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  801. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  802. if (ret == -EFAULT) {
  803. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  804. file_priv);
  805. }
  806. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  807. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  808. } else {
  809. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  810. if (ret == -EFAULT) {
  811. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  812. file_priv);
  813. }
  814. }
  815. #if WATCH_PWRITE
  816. if (ret)
  817. DRM_INFO("pwrite failed %d\n", ret);
  818. #endif
  819. drm_gem_object_unreference_unlocked(obj);
  820. return ret;
  821. }
  822. /**
  823. * Called when user space prepares to use an object with the CPU, either
  824. * through the mmap ioctl's mapping or a GTT mapping.
  825. */
  826. int
  827. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  828. struct drm_file *file_priv)
  829. {
  830. struct drm_i915_private *dev_priv = dev->dev_private;
  831. struct drm_i915_gem_set_domain *args = data;
  832. struct drm_gem_object *obj;
  833. struct drm_i915_gem_object *obj_priv;
  834. uint32_t read_domains = args->read_domains;
  835. uint32_t write_domain = args->write_domain;
  836. int ret;
  837. if (!(dev->driver->driver_features & DRIVER_GEM))
  838. return -ENODEV;
  839. /* Only handle setting domains to types used by the CPU. */
  840. if (write_domain & I915_GEM_GPU_DOMAINS)
  841. return -EINVAL;
  842. if (read_domains & I915_GEM_GPU_DOMAINS)
  843. return -EINVAL;
  844. /* Having something in the write domain implies it's in the read
  845. * domain, and only that read domain. Enforce that in the request.
  846. */
  847. if (write_domain != 0 && read_domains != write_domain)
  848. return -EINVAL;
  849. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  850. if (obj == NULL)
  851. return -EBADF;
  852. obj_priv = to_intel_bo(obj);
  853. mutex_lock(&dev->struct_mutex);
  854. intel_mark_busy(dev, obj);
  855. #if WATCH_BUF
  856. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  857. obj, obj->size, read_domains, write_domain);
  858. #endif
  859. if (read_domains & I915_GEM_DOMAIN_GTT) {
  860. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  861. /* Update the LRU on the fence for the CPU access that's
  862. * about to occur.
  863. */
  864. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  865. struct drm_i915_fence_reg *reg =
  866. &dev_priv->fence_regs[obj_priv->fence_reg];
  867. list_move_tail(&reg->lru_list,
  868. &dev_priv->mm.fence_list);
  869. }
  870. /* Silently promote "you're not bound, there was nothing to do"
  871. * to success, since the client was just asking us to
  872. * make sure everything was done.
  873. */
  874. if (ret == -EINVAL)
  875. ret = 0;
  876. } else {
  877. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  878. }
  879. drm_gem_object_unreference(obj);
  880. mutex_unlock(&dev->struct_mutex);
  881. return ret;
  882. }
  883. /**
  884. * Called when user space has done writes to this buffer
  885. */
  886. int
  887. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  888. struct drm_file *file_priv)
  889. {
  890. struct drm_i915_gem_sw_finish *args = data;
  891. struct drm_gem_object *obj;
  892. struct drm_i915_gem_object *obj_priv;
  893. int ret = 0;
  894. if (!(dev->driver->driver_features & DRIVER_GEM))
  895. return -ENODEV;
  896. mutex_lock(&dev->struct_mutex);
  897. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  898. if (obj == NULL) {
  899. mutex_unlock(&dev->struct_mutex);
  900. return -EBADF;
  901. }
  902. #if WATCH_BUF
  903. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  904. __func__, args->handle, obj, obj->size);
  905. #endif
  906. obj_priv = to_intel_bo(obj);
  907. /* Pinned buffers may be scanout, so flush the cache */
  908. if (obj_priv->pin_count)
  909. i915_gem_object_flush_cpu_write_domain(obj);
  910. drm_gem_object_unreference(obj);
  911. mutex_unlock(&dev->struct_mutex);
  912. return ret;
  913. }
  914. /**
  915. * Maps the contents of an object, returning the address it is mapped
  916. * into.
  917. *
  918. * While the mapping holds a reference on the contents of the object, it doesn't
  919. * imply a ref on the object itself.
  920. */
  921. int
  922. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  923. struct drm_file *file_priv)
  924. {
  925. struct drm_i915_gem_mmap *args = data;
  926. struct drm_gem_object *obj;
  927. loff_t offset;
  928. unsigned long addr;
  929. if (!(dev->driver->driver_features & DRIVER_GEM))
  930. return -ENODEV;
  931. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  932. if (obj == NULL)
  933. return -EBADF;
  934. offset = args->offset;
  935. down_write(&current->mm->mmap_sem);
  936. addr = do_mmap(obj->filp, 0, args->size,
  937. PROT_READ | PROT_WRITE, MAP_SHARED,
  938. args->offset);
  939. up_write(&current->mm->mmap_sem);
  940. drm_gem_object_unreference_unlocked(obj);
  941. if (IS_ERR((void *)addr))
  942. return addr;
  943. args->addr_ptr = (uint64_t) addr;
  944. return 0;
  945. }
  946. /**
  947. * i915_gem_fault - fault a page into the GTT
  948. * vma: VMA in question
  949. * vmf: fault info
  950. *
  951. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  952. * from userspace. The fault handler takes care of binding the object to
  953. * the GTT (if needed), allocating and programming a fence register (again,
  954. * only if needed based on whether the old reg is still valid or the object
  955. * is tiled) and inserting a new PTE into the faulting process.
  956. *
  957. * Note that the faulting process may involve evicting existing objects
  958. * from the GTT and/or fence registers to make room. So performance may
  959. * suffer if the GTT working set is large or there are few fence registers
  960. * left.
  961. */
  962. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  963. {
  964. struct drm_gem_object *obj = vma->vm_private_data;
  965. struct drm_device *dev = obj->dev;
  966. struct drm_i915_private *dev_priv = dev->dev_private;
  967. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  968. pgoff_t page_offset;
  969. unsigned long pfn;
  970. int ret = 0;
  971. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  972. /* We don't use vmf->pgoff since that has the fake offset */
  973. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  974. PAGE_SHIFT;
  975. /* Now bind it into the GTT if needed */
  976. mutex_lock(&dev->struct_mutex);
  977. if (!obj_priv->gtt_space) {
  978. ret = i915_gem_object_bind_to_gtt(obj, 0);
  979. if (ret)
  980. goto unlock;
  981. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  982. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  983. if (ret)
  984. goto unlock;
  985. }
  986. /* Need a new fence register? */
  987. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  988. ret = i915_gem_object_get_fence_reg(obj);
  989. if (ret)
  990. goto unlock;
  991. }
  992. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  993. page_offset;
  994. /* Finally, remap it using the new GTT offset */
  995. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  996. unlock:
  997. mutex_unlock(&dev->struct_mutex);
  998. switch (ret) {
  999. case 0:
  1000. case -ERESTARTSYS:
  1001. return VM_FAULT_NOPAGE;
  1002. case -ENOMEM:
  1003. case -EAGAIN:
  1004. return VM_FAULT_OOM;
  1005. default:
  1006. return VM_FAULT_SIGBUS;
  1007. }
  1008. }
  1009. /**
  1010. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1011. * @obj: obj in question
  1012. *
  1013. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1014. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1015. * up the object based on the offset and sets up the various memory mapping
  1016. * structures.
  1017. *
  1018. * This routine allocates and attaches a fake offset for @obj.
  1019. */
  1020. static int
  1021. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1022. {
  1023. struct drm_device *dev = obj->dev;
  1024. struct drm_gem_mm *mm = dev->mm_private;
  1025. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1026. struct drm_map_list *list;
  1027. struct drm_local_map *map;
  1028. int ret = 0;
  1029. /* Set the object up for mmap'ing */
  1030. list = &obj->map_list;
  1031. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1032. if (!list->map)
  1033. return -ENOMEM;
  1034. map = list->map;
  1035. map->type = _DRM_GEM;
  1036. map->size = obj->size;
  1037. map->handle = obj;
  1038. /* Get a DRM GEM mmap offset allocated... */
  1039. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1040. obj->size / PAGE_SIZE, 0, 0);
  1041. if (!list->file_offset_node) {
  1042. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1043. ret = -ENOMEM;
  1044. goto out_free_list;
  1045. }
  1046. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1047. obj->size / PAGE_SIZE, 0);
  1048. if (!list->file_offset_node) {
  1049. ret = -ENOMEM;
  1050. goto out_free_list;
  1051. }
  1052. list->hash.key = list->file_offset_node->start;
  1053. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1054. DRM_ERROR("failed to add to map hash\n");
  1055. ret = -ENOMEM;
  1056. goto out_free_mm;
  1057. }
  1058. /* By now we should be all set, any drm_mmap request on the offset
  1059. * below will get to our mmap & fault handler */
  1060. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1061. return 0;
  1062. out_free_mm:
  1063. drm_mm_put_block(list->file_offset_node);
  1064. out_free_list:
  1065. kfree(list->map);
  1066. return ret;
  1067. }
  1068. /**
  1069. * i915_gem_release_mmap - remove physical page mappings
  1070. * @obj: obj in question
  1071. *
  1072. * Preserve the reservation of the mmapping with the DRM core code, but
  1073. * relinquish ownership of the pages back to the system.
  1074. *
  1075. * It is vital that we remove the page mapping if we have mapped a tiled
  1076. * object through the GTT and then lose the fence register due to
  1077. * resource pressure. Similarly if the object has been moved out of the
  1078. * aperture, than pages mapped into userspace must be revoked. Removing the
  1079. * mapping will then trigger a page fault on the next user access, allowing
  1080. * fixup by i915_gem_fault().
  1081. */
  1082. void
  1083. i915_gem_release_mmap(struct drm_gem_object *obj)
  1084. {
  1085. struct drm_device *dev = obj->dev;
  1086. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1087. if (dev->dev_mapping)
  1088. unmap_mapping_range(dev->dev_mapping,
  1089. obj_priv->mmap_offset, obj->size, 1);
  1090. }
  1091. static void
  1092. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1093. {
  1094. struct drm_device *dev = obj->dev;
  1095. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1096. struct drm_gem_mm *mm = dev->mm_private;
  1097. struct drm_map_list *list;
  1098. list = &obj->map_list;
  1099. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1100. if (list->file_offset_node) {
  1101. drm_mm_put_block(list->file_offset_node);
  1102. list->file_offset_node = NULL;
  1103. }
  1104. if (list->map) {
  1105. kfree(list->map);
  1106. list->map = NULL;
  1107. }
  1108. obj_priv->mmap_offset = 0;
  1109. }
  1110. /**
  1111. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1112. * @obj: object to check
  1113. *
  1114. * Return the required GTT alignment for an object, taking into account
  1115. * potential fence register mapping if needed.
  1116. */
  1117. static uint32_t
  1118. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1119. {
  1120. struct drm_device *dev = obj->dev;
  1121. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1122. int start, i;
  1123. /*
  1124. * Minimum alignment is 4k (GTT page size), but might be greater
  1125. * if a fence register is needed for the object.
  1126. */
  1127. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1128. return 4096;
  1129. /*
  1130. * Previous chips need to be aligned to the size of the smallest
  1131. * fence register that can contain the object.
  1132. */
  1133. if (IS_I9XX(dev))
  1134. start = 1024*1024;
  1135. else
  1136. start = 512*1024;
  1137. for (i = start; i < obj->size; i <<= 1)
  1138. ;
  1139. return i;
  1140. }
  1141. /**
  1142. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1143. * @dev: DRM device
  1144. * @data: GTT mapping ioctl data
  1145. * @file_priv: GEM object info
  1146. *
  1147. * Simply returns the fake offset to userspace so it can mmap it.
  1148. * The mmap call will end up in drm_gem_mmap(), which will set things
  1149. * up so we can get faults in the handler above.
  1150. *
  1151. * The fault handler will take care of binding the object into the GTT
  1152. * (since it may have been evicted to make room for something), allocating
  1153. * a fence register, and mapping the appropriate aperture address into
  1154. * userspace.
  1155. */
  1156. int
  1157. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1158. struct drm_file *file_priv)
  1159. {
  1160. struct drm_i915_gem_mmap_gtt *args = data;
  1161. struct drm_i915_private *dev_priv = dev->dev_private;
  1162. struct drm_gem_object *obj;
  1163. struct drm_i915_gem_object *obj_priv;
  1164. int ret;
  1165. if (!(dev->driver->driver_features & DRIVER_GEM))
  1166. return -ENODEV;
  1167. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1168. if (obj == NULL)
  1169. return -EBADF;
  1170. mutex_lock(&dev->struct_mutex);
  1171. obj_priv = to_intel_bo(obj);
  1172. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1173. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1174. drm_gem_object_unreference(obj);
  1175. mutex_unlock(&dev->struct_mutex);
  1176. return -EINVAL;
  1177. }
  1178. if (!obj_priv->mmap_offset) {
  1179. ret = i915_gem_create_mmap_offset(obj);
  1180. if (ret) {
  1181. drm_gem_object_unreference(obj);
  1182. mutex_unlock(&dev->struct_mutex);
  1183. return ret;
  1184. }
  1185. }
  1186. args->offset = obj_priv->mmap_offset;
  1187. /*
  1188. * Pull it into the GTT so that we have a page list (makes the
  1189. * initial fault faster and any subsequent flushing possible).
  1190. */
  1191. if (!obj_priv->agp_mem) {
  1192. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1193. if (ret) {
  1194. drm_gem_object_unreference(obj);
  1195. mutex_unlock(&dev->struct_mutex);
  1196. return ret;
  1197. }
  1198. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1199. }
  1200. drm_gem_object_unreference(obj);
  1201. mutex_unlock(&dev->struct_mutex);
  1202. return 0;
  1203. }
  1204. void
  1205. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1206. {
  1207. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1208. int page_count = obj->size / PAGE_SIZE;
  1209. int i;
  1210. BUG_ON(obj_priv->pages_refcount == 0);
  1211. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1212. if (--obj_priv->pages_refcount != 0)
  1213. return;
  1214. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1215. i915_gem_object_save_bit_17_swizzle(obj);
  1216. if (obj_priv->madv == I915_MADV_DONTNEED)
  1217. obj_priv->dirty = 0;
  1218. for (i = 0; i < page_count; i++) {
  1219. if (obj_priv->dirty)
  1220. set_page_dirty(obj_priv->pages[i]);
  1221. if (obj_priv->madv == I915_MADV_WILLNEED)
  1222. mark_page_accessed(obj_priv->pages[i]);
  1223. page_cache_release(obj_priv->pages[i]);
  1224. }
  1225. obj_priv->dirty = 0;
  1226. drm_free_large(obj_priv->pages);
  1227. obj_priv->pages = NULL;
  1228. }
  1229. static void
  1230. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
  1231. struct intel_ring_buffer *ring)
  1232. {
  1233. struct drm_device *dev = obj->dev;
  1234. drm_i915_private_t *dev_priv = dev->dev_private;
  1235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1236. BUG_ON(ring == NULL);
  1237. obj_priv->ring = ring;
  1238. /* Add a reference if we're newly entering the active list. */
  1239. if (!obj_priv->active) {
  1240. drm_gem_object_reference(obj);
  1241. obj_priv->active = 1;
  1242. }
  1243. /* Move from whatever list we were on to the tail of execution. */
  1244. spin_lock(&dev_priv->mm.active_list_lock);
  1245. list_move_tail(&obj_priv->list, &ring->active_list);
  1246. spin_unlock(&dev_priv->mm.active_list_lock);
  1247. obj_priv->last_rendering_seqno = seqno;
  1248. }
  1249. static void
  1250. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1251. {
  1252. struct drm_device *dev = obj->dev;
  1253. drm_i915_private_t *dev_priv = dev->dev_private;
  1254. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1255. BUG_ON(!obj_priv->active);
  1256. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1257. obj_priv->last_rendering_seqno = 0;
  1258. }
  1259. /* Immediately discard the backing storage */
  1260. static void
  1261. i915_gem_object_truncate(struct drm_gem_object *obj)
  1262. {
  1263. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1264. struct inode *inode;
  1265. inode = obj->filp->f_path.dentry->d_inode;
  1266. if (inode->i_op->truncate)
  1267. inode->i_op->truncate (inode);
  1268. obj_priv->madv = __I915_MADV_PURGED;
  1269. }
  1270. static inline int
  1271. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1272. {
  1273. return obj_priv->madv == I915_MADV_DONTNEED;
  1274. }
  1275. static void
  1276. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1277. {
  1278. struct drm_device *dev = obj->dev;
  1279. drm_i915_private_t *dev_priv = dev->dev_private;
  1280. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1281. i915_verify_inactive(dev, __FILE__, __LINE__);
  1282. if (obj_priv->pin_count != 0)
  1283. list_del_init(&obj_priv->list);
  1284. else
  1285. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1286. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1287. obj_priv->last_rendering_seqno = 0;
  1288. obj_priv->ring = NULL;
  1289. if (obj_priv->active) {
  1290. obj_priv->active = 0;
  1291. drm_gem_object_unreference(obj);
  1292. }
  1293. i915_verify_inactive(dev, __FILE__, __LINE__);
  1294. }
  1295. static void
  1296. i915_gem_process_flushing_list(struct drm_device *dev,
  1297. uint32_t flush_domains, uint32_t seqno,
  1298. struct intel_ring_buffer *ring)
  1299. {
  1300. drm_i915_private_t *dev_priv = dev->dev_private;
  1301. struct drm_i915_gem_object *obj_priv, *next;
  1302. list_for_each_entry_safe(obj_priv, next,
  1303. &dev_priv->mm.gpu_write_list,
  1304. gpu_write_list) {
  1305. struct drm_gem_object *obj = &obj_priv->base;
  1306. if ((obj->write_domain & flush_domains) ==
  1307. obj->write_domain &&
  1308. obj_priv->ring->ring_flag == ring->ring_flag) {
  1309. uint32_t old_write_domain = obj->write_domain;
  1310. obj->write_domain = 0;
  1311. list_del_init(&obj_priv->gpu_write_list);
  1312. i915_gem_object_move_to_active(obj, seqno, ring);
  1313. /* update the fence lru list */
  1314. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1315. struct drm_i915_fence_reg *reg =
  1316. &dev_priv->fence_regs[obj_priv->fence_reg];
  1317. list_move_tail(&reg->lru_list,
  1318. &dev_priv->mm.fence_list);
  1319. }
  1320. trace_i915_gem_object_change_domain(obj,
  1321. obj->read_domains,
  1322. old_write_domain);
  1323. }
  1324. }
  1325. }
  1326. uint32_t
  1327. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1328. uint32_t flush_domains, struct intel_ring_buffer *ring)
  1329. {
  1330. drm_i915_private_t *dev_priv = dev->dev_private;
  1331. struct drm_i915_file_private *i915_file_priv = NULL;
  1332. struct drm_i915_gem_request *request;
  1333. uint32_t seqno;
  1334. int was_empty;
  1335. if (file_priv != NULL)
  1336. i915_file_priv = file_priv->driver_priv;
  1337. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1338. if (request == NULL)
  1339. return 0;
  1340. seqno = ring->add_request(dev, ring, file_priv, flush_domains);
  1341. request->seqno = seqno;
  1342. request->ring = ring;
  1343. request->emitted_jiffies = jiffies;
  1344. was_empty = list_empty(&ring->request_list);
  1345. list_add_tail(&request->list, &ring->request_list);
  1346. if (i915_file_priv) {
  1347. list_add_tail(&request->client_list,
  1348. &i915_file_priv->mm.request_list);
  1349. } else {
  1350. INIT_LIST_HEAD(&request->client_list);
  1351. }
  1352. /* Associate any objects on the flushing list matching the write
  1353. * domain we're flushing with our flush.
  1354. */
  1355. if (flush_domains != 0)
  1356. i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
  1357. if (!dev_priv->mm.suspended) {
  1358. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1359. if (was_empty)
  1360. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1361. }
  1362. return seqno;
  1363. }
  1364. /**
  1365. * Command execution barrier
  1366. *
  1367. * Ensures that all commands in the ring are finished
  1368. * before signalling the CPU
  1369. */
  1370. static uint32_t
  1371. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1372. {
  1373. uint32_t flush_domains = 0;
  1374. /* The sampler always gets flushed on i965 (sigh) */
  1375. if (IS_I965G(dev))
  1376. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1377. ring->flush(dev, ring,
  1378. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1379. return flush_domains;
  1380. }
  1381. /**
  1382. * Moves buffers associated only with the given active seqno from the active
  1383. * to inactive list, potentially freeing them.
  1384. */
  1385. static void
  1386. i915_gem_retire_request(struct drm_device *dev,
  1387. struct drm_i915_gem_request *request)
  1388. {
  1389. drm_i915_private_t *dev_priv = dev->dev_private;
  1390. trace_i915_gem_request_retire(dev, request->seqno);
  1391. /* Move any buffers on the active list that are no longer referenced
  1392. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1393. */
  1394. spin_lock(&dev_priv->mm.active_list_lock);
  1395. while (!list_empty(&request->ring->active_list)) {
  1396. struct drm_gem_object *obj;
  1397. struct drm_i915_gem_object *obj_priv;
  1398. obj_priv = list_first_entry(&request->ring->active_list,
  1399. struct drm_i915_gem_object,
  1400. list);
  1401. obj = &obj_priv->base;
  1402. /* If the seqno being retired doesn't match the oldest in the
  1403. * list, then the oldest in the list must still be newer than
  1404. * this seqno.
  1405. */
  1406. if (obj_priv->last_rendering_seqno != request->seqno)
  1407. goto out;
  1408. #if WATCH_LRU
  1409. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1410. __func__, request->seqno, obj);
  1411. #endif
  1412. if (obj->write_domain != 0)
  1413. i915_gem_object_move_to_flushing(obj);
  1414. else {
  1415. /* Take a reference on the object so it won't be
  1416. * freed while the spinlock is held. The list
  1417. * protection for this spinlock is safe when breaking
  1418. * the lock like this since the next thing we do
  1419. * is just get the head of the list again.
  1420. */
  1421. drm_gem_object_reference(obj);
  1422. i915_gem_object_move_to_inactive(obj);
  1423. spin_unlock(&dev_priv->mm.active_list_lock);
  1424. drm_gem_object_unreference(obj);
  1425. spin_lock(&dev_priv->mm.active_list_lock);
  1426. }
  1427. }
  1428. out:
  1429. spin_unlock(&dev_priv->mm.active_list_lock);
  1430. }
  1431. /**
  1432. * Returns true if seq1 is later than seq2.
  1433. */
  1434. bool
  1435. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1436. {
  1437. return (int32_t)(seq1 - seq2) >= 0;
  1438. }
  1439. uint32_t
  1440. i915_get_gem_seqno(struct drm_device *dev,
  1441. struct intel_ring_buffer *ring)
  1442. {
  1443. return ring->get_gem_seqno(dev, ring);
  1444. }
  1445. /**
  1446. * This function clears the request list as sequence numbers are passed.
  1447. */
  1448. static void
  1449. i915_gem_retire_requests_ring(struct drm_device *dev,
  1450. struct intel_ring_buffer *ring)
  1451. {
  1452. drm_i915_private_t *dev_priv = dev->dev_private;
  1453. uint32_t seqno;
  1454. if (!ring->status_page.page_addr
  1455. || list_empty(&ring->request_list))
  1456. return;
  1457. seqno = i915_get_gem_seqno(dev, ring);
  1458. while (!list_empty(&ring->request_list)) {
  1459. struct drm_i915_gem_request *request;
  1460. uint32_t retiring_seqno;
  1461. request = list_first_entry(&ring->request_list,
  1462. struct drm_i915_gem_request,
  1463. list);
  1464. retiring_seqno = request->seqno;
  1465. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1466. atomic_read(&dev_priv->mm.wedged)) {
  1467. i915_gem_retire_request(dev, request);
  1468. list_del(&request->list);
  1469. list_del(&request->client_list);
  1470. kfree(request);
  1471. } else
  1472. break;
  1473. }
  1474. if (unlikely (dev_priv->trace_irq_seqno &&
  1475. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1476. ring->user_irq_put(dev, ring);
  1477. dev_priv->trace_irq_seqno = 0;
  1478. }
  1479. }
  1480. void
  1481. i915_gem_retire_requests(struct drm_device *dev)
  1482. {
  1483. drm_i915_private_t *dev_priv = dev->dev_private;
  1484. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1485. if (HAS_BSD(dev))
  1486. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1487. }
  1488. void
  1489. i915_gem_retire_work_handler(struct work_struct *work)
  1490. {
  1491. drm_i915_private_t *dev_priv;
  1492. struct drm_device *dev;
  1493. dev_priv = container_of(work, drm_i915_private_t,
  1494. mm.retire_work.work);
  1495. dev = dev_priv->dev;
  1496. mutex_lock(&dev->struct_mutex);
  1497. i915_gem_retire_requests(dev);
  1498. if (!dev_priv->mm.suspended &&
  1499. (!list_empty(&dev_priv->render_ring.request_list) ||
  1500. (HAS_BSD(dev) &&
  1501. !list_empty(&dev_priv->bsd_ring.request_list))))
  1502. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1503. mutex_unlock(&dev->struct_mutex);
  1504. }
  1505. int
  1506. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1507. int interruptible, struct intel_ring_buffer *ring)
  1508. {
  1509. drm_i915_private_t *dev_priv = dev->dev_private;
  1510. u32 ier;
  1511. int ret = 0;
  1512. BUG_ON(seqno == 0);
  1513. if (atomic_read(&dev_priv->mm.wedged))
  1514. return -EIO;
  1515. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1516. if (HAS_PCH_SPLIT(dev))
  1517. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1518. else
  1519. ier = I915_READ(IER);
  1520. if (!ier) {
  1521. DRM_ERROR("something (likely vbetool) disabled "
  1522. "interrupts, re-enabling\n");
  1523. i915_driver_irq_preinstall(dev);
  1524. i915_driver_irq_postinstall(dev);
  1525. }
  1526. trace_i915_gem_request_wait_begin(dev, seqno);
  1527. ring->waiting_gem_seqno = seqno;
  1528. ring->user_irq_get(dev, ring);
  1529. if (interruptible)
  1530. ret = wait_event_interruptible(ring->irq_queue,
  1531. i915_seqno_passed(
  1532. ring->get_gem_seqno(dev, ring), seqno)
  1533. || atomic_read(&dev_priv->mm.wedged));
  1534. else
  1535. wait_event(ring->irq_queue,
  1536. i915_seqno_passed(
  1537. ring->get_gem_seqno(dev, ring), seqno)
  1538. || atomic_read(&dev_priv->mm.wedged));
  1539. ring->user_irq_put(dev, ring);
  1540. ring->waiting_gem_seqno = 0;
  1541. trace_i915_gem_request_wait_end(dev, seqno);
  1542. }
  1543. if (atomic_read(&dev_priv->mm.wedged))
  1544. ret = -EIO;
  1545. if (ret && ret != -ERESTARTSYS)
  1546. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1547. __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
  1548. /* Directly dispatch request retiring. While we have the work queue
  1549. * to handle this, the waiter on a request often wants an associated
  1550. * buffer to have made it to the inactive list, and we would need
  1551. * a separate wait queue to handle that.
  1552. */
  1553. if (ret == 0)
  1554. i915_gem_retire_requests_ring(dev, ring);
  1555. return ret;
  1556. }
  1557. /**
  1558. * Waits for a sequence number to be signaled, and cleans up the
  1559. * request and object lists appropriately for that event.
  1560. */
  1561. static int
  1562. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1563. struct intel_ring_buffer *ring)
  1564. {
  1565. return i915_do_wait_request(dev, seqno, 1, ring);
  1566. }
  1567. static void
  1568. i915_gem_flush(struct drm_device *dev,
  1569. uint32_t invalidate_domains,
  1570. uint32_t flush_domains)
  1571. {
  1572. drm_i915_private_t *dev_priv = dev->dev_private;
  1573. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1574. drm_agp_chipset_flush(dev);
  1575. dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
  1576. invalidate_domains,
  1577. flush_domains);
  1578. if (HAS_BSD(dev))
  1579. dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
  1580. invalidate_domains,
  1581. flush_domains);
  1582. }
  1583. static void
  1584. i915_gem_flush_ring(struct drm_device *dev,
  1585. uint32_t invalidate_domains,
  1586. uint32_t flush_domains,
  1587. struct intel_ring_buffer *ring)
  1588. {
  1589. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1590. drm_agp_chipset_flush(dev);
  1591. ring->flush(dev, ring,
  1592. invalidate_domains,
  1593. flush_domains);
  1594. }
  1595. /**
  1596. * Ensures that all rendering to the object has completed and the object is
  1597. * safe to unbind from the GTT or access from the CPU.
  1598. */
  1599. static int
  1600. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1601. {
  1602. struct drm_device *dev = obj->dev;
  1603. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1604. int ret;
  1605. /* This function only exists to support waiting for existing rendering,
  1606. * not for emitting required flushes.
  1607. */
  1608. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1609. /* If there is rendering queued on the buffer being evicted, wait for
  1610. * it.
  1611. */
  1612. if (obj_priv->active) {
  1613. #if WATCH_BUF
  1614. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1615. __func__, obj, obj_priv->last_rendering_seqno);
  1616. #endif
  1617. ret = i915_wait_request(dev,
  1618. obj_priv->last_rendering_seqno, obj_priv->ring);
  1619. if (ret != 0)
  1620. return ret;
  1621. }
  1622. return 0;
  1623. }
  1624. /**
  1625. * Unbinds an object from the GTT aperture.
  1626. */
  1627. int
  1628. i915_gem_object_unbind(struct drm_gem_object *obj)
  1629. {
  1630. struct drm_device *dev = obj->dev;
  1631. drm_i915_private_t *dev_priv = dev->dev_private;
  1632. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1633. int ret = 0;
  1634. #if WATCH_BUF
  1635. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1636. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1637. #endif
  1638. if (obj_priv->gtt_space == NULL)
  1639. return 0;
  1640. if (obj_priv->pin_count != 0) {
  1641. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1642. return -EINVAL;
  1643. }
  1644. /* blow away mappings if mapped through GTT */
  1645. i915_gem_release_mmap(obj);
  1646. /* Move the object to the CPU domain to ensure that
  1647. * any possible CPU writes while it's not in the GTT
  1648. * are flushed when we go to remap it. This will
  1649. * also ensure that all pending GPU writes are finished
  1650. * before we unbind.
  1651. */
  1652. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1653. if (ret) {
  1654. if (ret != -ERESTARTSYS)
  1655. DRM_ERROR("set_domain failed: %d\n", ret);
  1656. return ret;
  1657. }
  1658. BUG_ON(obj_priv->active);
  1659. /* release the fence reg _after_ flushing */
  1660. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1661. i915_gem_clear_fence_reg(obj);
  1662. if (obj_priv->agp_mem != NULL) {
  1663. drm_unbind_agp(obj_priv->agp_mem);
  1664. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1665. obj_priv->agp_mem = NULL;
  1666. }
  1667. i915_gem_object_put_pages(obj);
  1668. BUG_ON(obj_priv->pages_refcount);
  1669. if (obj_priv->gtt_space) {
  1670. atomic_dec(&dev->gtt_count);
  1671. atomic_sub(obj->size, &dev->gtt_memory);
  1672. drm_mm_put_block(obj_priv->gtt_space);
  1673. obj_priv->gtt_space = NULL;
  1674. }
  1675. /* Remove ourselves from the LRU list if present. */
  1676. spin_lock(&dev_priv->mm.active_list_lock);
  1677. if (!list_empty(&obj_priv->list))
  1678. list_del_init(&obj_priv->list);
  1679. spin_unlock(&dev_priv->mm.active_list_lock);
  1680. if (i915_gem_object_is_purgeable(obj_priv))
  1681. i915_gem_object_truncate(obj);
  1682. trace_i915_gem_object_unbind(obj);
  1683. return 0;
  1684. }
  1685. static struct drm_gem_object *
  1686. i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
  1687. {
  1688. drm_i915_private_t *dev_priv = dev->dev_private;
  1689. struct drm_i915_gem_object *obj_priv;
  1690. struct drm_gem_object *best = NULL;
  1691. struct drm_gem_object *first = NULL;
  1692. /* Try to find the smallest clean object */
  1693. list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
  1694. struct drm_gem_object *obj = &obj_priv->base;
  1695. if (obj->size >= min_size) {
  1696. if ((!obj_priv->dirty ||
  1697. i915_gem_object_is_purgeable(obj_priv)) &&
  1698. (!best || obj->size < best->size)) {
  1699. best = obj;
  1700. if (best->size == min_size)
  1701. return best;
  1702. }
  1703. if (!first)
  1704. first = obj;
  1705. }
  1706. }
  1707. return best ? best : first;
  1708. }
  1709. static int
  1710. i915_gpu_idle(struct drm_device *dev)
  1711. {
  1712. drm_i915_private_t *dev_priv = dev->dev_private;
  1713. bool lists_empty;
  1714. uint32_t seqno1, seqno2;
  1715. int ret;
  1716. spin_lock(&dev_priv->mm.active_list_lock);
  1717. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1718. list_empty(&dev_priv->render_ring.active_list) &&
  1719. (!HAS_BSD(dev) ||
  1720. list_empty(&dev_priv->bsd_ring.active_list)));
  1721. spin_unlock(&dev_priv->mm.active_list_lock);
  1722. if (lists_empty)
  1723. return 0;
  1724. /* Flush everything onto the inactive list. */
  1725. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1726. seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1727. &dev_priv->render_ring);
  1728. if (seqno1 == 0)
  1729. return -ENOMEM;
  1730. ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
  1731. if (HAS_BSD(dev)) {
  1732. seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1733. &dev_priv->bsd_ring);
  1734. if (seqno2 == 0)
  1735. return -ENOMEM;
  1736. ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
  1737. if (ret)
  1738. return ret;
  1739. }
  1740. return ret;
  1741. }
  1742. static int
  1743. i915_gem_evict_everything(struct drm_device *dev)
  1744. {
  1745. drm_i915_private_t *dev_priv = dev->dev_private;
  1746. int ret;
  1747. bool lists_empty;
  1748. spin_lock(&dev_priv->mm.active_list_lock);
  1749. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1750. list_empty(&dev_priv->mm.flushing_list) &&
  1751. list_empty(&dev_priv->render_ring.active_list) &&
  1752. (!HAS_BSD(dev)
  1753. || list_empty(&dev_priv->bsd_ring.active_list)));
  1754. spin_unlock(&dev_priv->mm.active_list_lock);
  1755. if (lists_empty)
  1756. return -ENOSPC;
  1757. /* Flush everything (on to the inactive lists) and evict */
  1758. ret = i915_gpu_idle(dev);
  1759. if (ret)
  1760. return ret;
  1761. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  1762. ret = i915_gem_evict_from_inactive_list(dev);
  1763. if (ret)
  1764. return ret;
  1765. spin_lock(&dev_priv->mm.active_list_lock);
  1766. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1767. list_empty(&dev_priv->mm.flushing_list) &&
  1768. list_empty(&dev_priv->render_ring.active_list) &&
  1769. (!HAS_BSD(dev)
  1770. || list_empty(&dev_priv->bsd_ring.active_list)));
  1771. spin_unlock(&dev_priv->mm.active_list_lock);
  1772. BUG_ON(!lists_empty);
  1773. return 0;
  1774. }
  1775. static int
  1776. i915_gem_evict_something(struct drm_device *dev, int min_size)
  1777. {
  1778. drm_i915_private_t *dev_priv = dev->dev_private;
  1779. struct drm_gem_object *obj;
  1780. int ret;
  1781. struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
  1782. struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
  1783. for (;;) {
  1784. i915_gem_retire_requests(dev);
  1785. /* If there's an inactive buffer available now, grab it
  1786. * and be done.
  1787. */
  1788. obj = i915_gem_find_inactive_object(dev, min_size);
  1789. if (obj) {
  1790. struct drm_i915_gem_object *obj_priv;
  1791. #if WATCH_LRU
  1792. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1793. #endif
  1794. obj_priv = to_intel_bo(obj);
  1795. BUG_ON(obj_priv->pin_count != 0);
  1796. BUG_ON(obj_priv->active);
  1797. /* Wait on the rendering and unbind the buffer. */
  1798. return i915_gem_object_unbind(obj);
  1799. }
  1800. /* If we didn't get anything, but the ring is still processing
  1801. * things, wait for the next to finish and hopefully leave us
  1802. * a buffer to evict.
  1803. */
  1804. if (!list_empty(&render_ring->request_list)) {
  1805. struct drm_i915_gem_request *request;
  1806. request = list_first_entry(&render_ring->request_list,
  1807. struct drm_i915_gem_request,
  1808. list);
  1809. ret = i915_wait_request(dev,
  1810. request->seqno, request->ring);
  1811. if (ret)
  1812. return ret;
  1813. continue;
  1814. }
  1815. if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
  1816. struct drm_i915_gem_request *request;
  1817. request = list_first_entry(&bsd_ring->request_list,
  1818. struct drm_i915_gem_request,
  1819. list);
  1820. ret = i915_wait_request(dev,
  1821. request->seqno, request->ring);
  1822. if (ret)
  1823. return ret;
  1824. continue;
  1825. }
  1826. /* If we didn't have anything on the request list but there
  1827. * are buffers awaiting a flush, emit one and try again.
  1828. * When we wait on it, those buffers waiting for that flush
  1829. * will get moved to inactive.
  1830. */
  1831. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1832. struct drm_i915_gem_object *obj_priv;
  1833. /* Find an object that we can immediately reuse */
  1834. list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
  1835. obj = &obj_priv->base;
  1836. if (obj->size >= min_size)
  1837. break;
  1838. obj = NULL;
  1839. }
  1840. if (obj != NULL) {
  1841. uint32_t seqno;
  1842. i915_gem_flush_ring(dev,
  1843. obj->write_domain,
  1844. obj->write_domain,
  1845. obj_priv->ring);
  1846. seqno = i915_add_request(dev, NULL,
  1847. obj->write_domain,
  1848. obj_priv->ring);
  1849. if (seqno == 0)
  1850. return -ENOMEM;
  1851. continue;
  1852. }
  1853. }
  1854. /* If we didn't do any of the above, there's no single buffer
  1855. * large enough to swap out for the new one, so just evict
  1856. * everything and start again. (This should be rare.)
  1857. */
  1858. if (!list_empty (&dev_priv->mm.inactive_list))
  1859. return i915_gem_evict_from_inactive_list(dev);
  1860. else
  1861. return i915_gem_evict_everything(dev);
  1862. }
  1863. }
  1864. int
  1865. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1866. gfp_t gfpmask)
  1867. {
  1868. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1869. int page_count, i;
  1870. struct address_space *mapping;
  1871. struct inode *inode;
  1872. struct page *page;
  1873. BUG_ON(obj_priv->pages_refcount
  1874. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1875. if (obj_priv->pages_refcount++ != 0)
  1876. return 0;
  1877. /* Get the list of pages out of our struct file. They'll be pinned
  1878. * at this point until we release them.
  1879. */
  1880. page_count = obj->size / PAGE_SIZE;
  1881. BUG_ON(obj_priv->pages != NULL);
  1882. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1883. if (obj_priv->pages == NULL) {
  1884. obj_priv->pages_refcount--;
  1885. return -ENOMEM;
  1886. }
  1887. inode = obj->filp->f_path.dentry->d_inode;
  1888. mapping = inode->i_mapping;
  1889. for (i = 0; i < page_count; i++) {
  1890. page = read_cache_page_gfp(mapping, i,
  1891. GFP_HIGHUSER |
  1892. __GFP_COLD |
  1893. __GFP_RECLAIMABLE |
  1894. gfpmask);
  1895. if (IS_ERR(page))
  1896. goto err_pages;
  1897. obj_priv->pages[i] = page;
  1898. }
  1899. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1900. i915_gem_object_do_bit_17_swizzle(obj);
  1901. return 0;
  1902. err_pages:
  1903. while (i--)
  1904. page_cache_release(obj_priv->pages[i]);
  1905. drm_free_large(obj_priv->pages);
  1906. obj_priv->pages = NULL;
  1907. obj_priv->pages_refcount--;
  1908. return PTR_ERR(page);
  1909. }
  1910. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1911. {
  1912. struct drm_gem_object *obj = reg->obj;
  1913. struct drm_device *dev = obj->dev;
  1914. drm_i915_private_t *dev_priv = dev->dev_private;
  1915. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1916. int regnum = obj_priv->fence_reg;
  1917. uint64_t val;
  1918. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1919. 0xfffff000) << 32;
  1920. val |= obj_priv->gtt_offset & 0xfffff000;
  1921. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1922. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1923. if (obj_priv->tiling_mode == I915_TILING_Y)
  1924. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1925. val |= I965_FENCE_REG_VALID;
  1926. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1927. }
  1928. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1929. {
  1930. struct drm_gem_object *obj = reg->obj;
  1931. struct drm_device *dev = obj->dev;
  1932. drm_i915_private_t *dev_priv = dev->dev_private;
  1933. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1934. int regnum = obj_priv->fence_reg;
  1935. uint64_t val;
  1936. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1937. 0xfffff000) << 32;
  1938. val |= obj_priv->gtt_offset & 0xfffff000;
  1939. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1940. if (obj_priv->tiling_mode == I915_TILING_Y)
  1941. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1942. val |= I965_FENCE_REG_VALID;
  1943. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1944. }
  1945. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1946. {
  1947. struct drm_gem_object *obj = reg->obj;
  1948. struct drm_device *dev = obj->dev;
  1949. drm_i915_private_t *dev_priv = dev->dev_private;
  1950. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1951. int regnum = obj_priv->fence_reg;
  1952. int tile_width;
  1953. uint32_t fence_reg, val;
  1954. uint32_t pitch_val;
  1955. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1956. (obj_priv->gtt_offset & (obj->size - 1))) {
  1957. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1958. __func__, obj_priv->gtt_offset, obj->size);
  1959. return;
  1960. }
  1961. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1962. HAS_128_BYTE_Y_TILING(dev))
  1963. tile_width = 128;
  1964. else
  1965. tile_width = 512;
  1966. /* Note: pitch better be a power of two tile widths */
  1967. pitch_val = obj_priv->stride / tile_width;
  1968. pitch_val = ffs(pitch_val) - 1;
  1969. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1970. HAS_128_BYTE_Y_TILING(dev))
  1971. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1972. else
  1973. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1974. val = obj_priv->gtt_offset;
  1975. if (obj_priv->tiling_mode == I915_TILING_Y)
  1976. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1977. val |= I915_FENCE_SIZE_BITS(obj->size);
  1978. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1979. val |= I830_FENCE_REG_VALID;
  1980. if (regnum < 8)
  1981. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1982. else
  1983. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1984. I915_WRITE(fence_reg, val);
  1985. }
  1986. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1987. {
  1988. struct drm_gem_object *obj = reg->obj;
  1989. struct drm_device *dev = obj->dev;
  1990. drm_i915_private_t *dev_priv = dev->dev_private;
  1991. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1992. int regnum = obj_priv->fence_reg;
  1993. uint32_t val;
  1994. uint32_t pitch_val;
  1995. uint32_t fence_size_bits;
  1996. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1997. (obj_priv->gtt_offset & (obj->size - 1))) {
  1998. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1999. __func__, obj_priv->gtt_offset);
  2000. return;
  2001. }
  2002. pitch_val = obj_priv->stride / 128;
  2003. pitch_val = ffs(pitch_val) - 1;
  2004. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2005. val = obj_priv->gtt_offset;
  2006. if (obj_priv->tiling_mode == I915_TILING_Y)
  2007. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2008. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2009. WARN_ON(fence_size_bits & ~0x00000f00);
  2010. val |= fence_size_bits;
  2011. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2012. val |= I830_FENCE_REG_VALID;
  2013. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2014. }
  2015. static int i915_find_fence_reg(struct drm_device *dev)
  2016. {
  2017. struct drm_i915_fence_reg *reg = NULL;
  2018. struct drm_i915_gem_object *obj_priv = NULL;
  2019. struct drm_i915_private *dev_priv = dev->dev_private;
  2020. struct drm_gem_object *obj = NULL;
  2021. int i, avail, ret;
  2022. /* First try to find a free reg */
  2023. avail = 0;
  2024. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2025. reg = &dev_priv->fence_regs[i];
  2026. if (!reg->obj)
  2027. return i;
  2028. obj_priv = to_intel_bo(reg->obj);
  2029. if (!obj_priv->pin_count)
  2030. avail++;
  2031. }
  2032. if (avail == 0)
  2033. return -ENOSPC;
  2034. /* None available, try to steal one or wait for a user to finish */
  2035. i = I915_FENCE_REG_NONE;
  2036. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2037. lru_list) {
  2038. obj = reg->obj;
  2039. obj_priv = to_intel_bo(obj);
  2040. if (obj_priv->pin_count)
  2041. continue;
  2042. /* found one! */
  2043. i = obj_priv->fence_reg;
  2044. break;
  2045. }
  2046. BUG_ON(i == I915_FENCE_REG_NONE);
  2047. /* We only have a reference on obj from the active list. put_fence_reg
  2048. * might drop that one, causing a use-after-free in it. So hold a
  2049. * private reference to obj like the other callers of put_fence_reg
  2050. * (set_tiling ioctl) do. */
  2051. drm_gem_object_reference(obj);
  2052. ret = i915_gem_object_put_fence_reg(obj);
  2053. drm_gem_object_unreference(obj);
  2054. if (ret != 0)
  2055. return ret;
  2056. return i;
  2057. }
  2058. /**
  2059. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2060. * @obj: object to map through a fence reg
  2061. *
  2062. * When mapping objects through the GTT, userspace wants to be able to write
  2063. * to them without having to worry about swizzling if the object is tiled.
  2064. *
  2065. * This function walks the fence regs looking for a free one for @obj,
  2066. * stealing one if it can't find any.
  2067. *
  2068. * It then sets up the reg based on the object's properties: address, pitch
  2069. * and tiling format.
  2070. */
  2071. int
  2072. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  2073. {
  2074. struct drm_device *dev = obj->dev;
  2075. struct drm_i915_private *dev_priv = dev->dev_private;
  2076. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2077. struct drm_i915_fence_reg *reg = NULL;
  2078. int ret;
  2079. /* Just update our place in the LRU if our fence is getting used. */
  2080. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2081. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2082. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2083. return 0;
  2084. }
  2085. switch (obj_priv->tiling_mode) {
  2086. case I915_TILING_NONE:
  2087. WARN(1, "allocating a fence for non-tiled object?\n");
  2088. break;
  2089. case I915_TILING_X:
  2090. if (!obj_priv->stride)
  2091. return -EINVAL;
  2092. WARN((obj_priv->stride & (512 - 1)),
  2093. "object 0x%08x is X tiled but has non-512B pitch\n",
  2094. obj_priv->gtt_offset);
  2095. break;
  2096. case I915_TILING_Y:
  2097. if (!obj_priv->stride)
  2098. return -EINVAL;
  2099. WARN((obj_priv->stride & (128 - 1)),
  2100. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2101. obj_priv->gtt_offset);
  2102. break;
  2103. }
  2104. ret = i915_find_fence_reg(dev);
  2105. if (ret < 0)
  2106. return ret;
  2107. obj_priv->fence_reg = ret;
  2108. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2109. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2110. reg->obj = obj;
  2111. if (IS_GEN6(dev))
  2112. sandybridge_write_fence_reg(reg);
  2113. else if (IS_I965G(dev))
  2114. i965_write_fence_reg(reg);
  2115. else if (IS_I9XX(dev))
  2116. i915_write_fence_reg(reg);
  2117. else
  2118. i830_write_fence_reg(reg);
  2119. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2120. obj_priv->tiling_mode);
  2121. return 0;
  2122. }
  2123. /**
  2124. * i915_gem_clear_fence_reg - clear out fence register info
  2125. * @obj: object to clear
  2126. *
  2127. * Zeroes out the fence register itself and clears out the associated
  2128. * data structures in dev_priv and obj_priv.
  2129. */
  2130. static void
  2131. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2132. {
  2133. struct drm_device *dev = obj->dev;
  2134. drm_i915_private_t *dev_priv = dev->dev_private;
  2135. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2136. struct drm_i915_fence_reg *reg =
  2137. &dev_priv->fence_regs[obj_priv->fence_reg];
  2138. if (IS_GEN6(dev)) {
  2139. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2140. (obj_priv->fence_reg * 8), 0);
  2141. } else if (IS_I965G(dev)) {
  2142. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2143. } else {
  2144. uint32_t fence_reg;
  2145. if (obj_priv->fence_reg < 8)
  2146. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2147. else
  2148. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2149. 8) * 4;
  2150. I915_WRITE(fence_reg, 0);
  2151. }
  2152. reg->obj = NULL;
  2153. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2154. list_del_init(&reg->lru_list);
  2155. }
  2156. /**
  2157. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2158. * to the buffer to finish, and then resets the fence register.
  2159. * @obj: tiled object holding a fence register.
  2160. *
  2161. * Zeroes out the fence register itself and clears out the associated
  2162. * data structures in dev_priv and obj_priv.
  2163. */
  2164. int
  2165. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2166. {
  2167. struct drm_device *dev = obj->dev;
  2168. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2169. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2170. return 0;
  2171. /* If we've changed tiling, GTT-mappings of the object
  2172. * need to re-fault to ensure that the correct fence register
  2173. * setup is in place.
  2174. */
  2175. i915_gem_release_mmap(obj);
  2176. /* On the i915, GPU access to tiled buffers is via a fence,
  2177. * therefore we must wait for any outstanding access to complete
  2178. * before clearing the fence.
  2179. */
  2180. if (!IS_I965G(dev)) {
  2181. int ret;
  2182. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2183. if (ret != 0)
  2184. return ret;
  2185. ret = i915_gem_object_wait_rendering(obj);
  2186. if (ret != 0)
  2187. return ret;
  2188. }
  2189. i915_gem_object_flush_gtt_write_domain(obj);
  2190. i915_gem_clear_fence_reg (obj);
  2191. return 0;
  2192. }
  2193. /**
  2194. * Finds free space in the GTT aperture and binds the object there.
  2195. */
  2196. static int
  2197. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2198. {
  2199. struct drm_device *dev = obj->dev;
  2200. drm_i915_private_t *dev_priv = dev->dev_private;
  2201. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2202. struct drm_mm_node *free_space;
  2203. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2204. int ret;
  2205. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2206. DRM_ERROR("Attempting to bind a purgeable object\n");
  2207. return -EINVAL;
  2208. }
  2209. if (alignment == 0)
  2210. alignment = i915_gem_get_gtt_alignment(obj);
  2211. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2212. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2213. return -EINVAL;
  2214. }
  2215. /* If the object is bigger than the entire aperture, reject it early
  2216. * before evicting everything in a vain attempt to find space.
  2217. */
  2218. if (obj->size > dev->gtt_total) {
  2219. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2220. return -E2BIG;
  2221. }
  2222. search_free:
  2223. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2224. obj->size, alignment, 0);
  2225. if (free_space != NULL) {
  2226. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2227. alignment);
  2228. if (obj_priv->gtt_space != NULL)
  2229. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2230. }
  2231. if (obj_priv->gtt_space == NULL) {
  2232. /* If the gtt is empty and we're still having trouble
  2233. * fitting our object in, we're out of memory.
  2234. */
  2235. #if WATCH_LRU
  2236. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2237. #endif
  2238. ret = i915_gem_evict_something(dev, obj->size);
  2239. if (ret)
  2240. return ret;
  2241. goto search_free;
  2242. }
  2243. #if WATCH_BUF
  2244. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2245. obj->size, obj_priv->gtt_offset);
  2246. #endif
  2247. ret = i915_gem_object_get_pages(obj, gfpmask);
  2248. if (ret) {
  2249. drm_mm_put_block(obj_priv->gtt_space);
  2250. obj_priv->gtt_space = NULL;
  2251. if (ret == -ENOMEM) {
  2252. /* first try to clear up some space from the GTT */
  2253. ret = i915_gem_evict_something(dev, obj->size);
  2254. if (ret) {
  2255. /* now try to shrink everyone else */
  2256. if (gfpmask) {
  2257. gfpmask = 0;
  2258. goto search_free;
  2259. }
  2260. return ret;
  2261. }
  2262. goto search_free;
  2263. }
  2264. return ret;
  2265. }
  2266. /* Create an AGP memory structure pointing at our pages, and bind it
  2267. * into the GTT.
  2268. */
  2269. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2270. obj_priv->pages,
  2271. obj->size >> PAGE_SHIFT,
  2272. obj_priv->gtt_offset,
  2273. obj_priv->agp_type);
  2274. if (obj_priv->agp_mem == NULL) {
  2275. i915_gem_object_put_pages(obj);
  2276. drm_mm_put_block(obj_priv->gtt_space);
  2277. obj_priv->gtt_space = NULL;
  2278. ret = i915_gem_evict_something(dev, obj->size);
  2279. if (ret)
  2280. return ret;
  2281. goto search_free;
  2282. }
  2283. atomic_inc(&dev->gtt_count);
  2284. atomic_add(obj->size, &dev->gtt_memory);
  2285. /* Assert that the object is not currently in any GPU domain. As it
  2286. * wasn't in the GTT, there shouldn't be any way it could have been in
  2287. * a GPU cache
  2288. */
  2289. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2290. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2291. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2292. return 0;
  2293. }
  2294. void
  2295. i915_gem_clflush_object(struct drm_gem_object *obj)
  2296. {
  2297. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2298. /* If we don't have a page list set up, then we're not pinned
  2299. * to GPU, and we can ignore the cache flush because it'll happen
  2300. * again at bind time.
  2301. */
  2302. if (obj_priv->pages == NULL)
  2303. return;
  2304. trace_i915_gem_object_clflush(obj);
  2305. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2306. }
  2307. /** Flushes any GPU write domain for the object if it's dirty. */
  2308. static int
  2309. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2310. {
  2311. struct drm_device *dev = obj->dev;
  2312. uint32_t old_write_domain;
  2313. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2314. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2315. return 0;
  2316. /* Queue the GPU write cache flushing we need. */
  2317. old_write_domain = obj->write_domain;
  2318. i915_gem_flush(dev, 0, obj->write_domain);
  2319. if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
  2320. return -ENOMEM;
  2321. trace_i915_gem_object_change_domain(obj,
  2322. obj->read_domains,
  2323. old_write_domain);
  2324. return 0;
  2325. }
  2326. /** Flushes the GTT write domain for the object if it's dirty. */
  2327. static void
  2328. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2329. {
  2330. uint32_t old_write_domain;
  2331. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2332. return;
  2333. /* No actual flushing is required for the GTT write domain. Writes
  2334. * to it immediately go to main memory as far as we know, so there's
  2335. * no chipset flush. It also doesn't land in render cache.
  2336. */
  2337. old_write_domain = obj->write_domain;
  2338. obj->write_domain = 0;
  2339. trace_i915_gem_object_change_domain(obj,
  2340. obj->read_domains,
  2341. old_write_domain);
  2342. }
  2343. /** Flushes the CPU write domain for the object if it's dirty. */
  2344. static void
  2345. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2346. {
  2347. struct drm_device *dev = obj->dev;
  2348. uint32_t old_write_domain;
  2349. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2350. return;
  2351. i915_gem_clflush_object(obj);
  2352. drm_agp_chipset_flush(dev);
  2353. old_write_domain = obj->write_domain;
  2354. obj->write_domain = 0;
  2355. trace_i915_gem_object_change_domain(obj,
  2356. obj->read_domains,
  2357. old_write_domain);
  2358. }
  2359. int
  2360. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2361. {
  2362. int ret = 0;
  2363. switch (obj->write_domain) {
  2364. case I915_GEM_DOMAIN_GTT:
  2365. i915_gem_object_flush_gtt_write_domain(obj);
  2366. break;
  2367. case I915_GEM_DOMAIN_CPU:
  2368. i915_gem_object_flush_cpu_write_domain(obj);
  2369. break;
  2370. default:
  2371. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2372. break;
  2373. }
  2374. return ret;
  2375. }
  2376. /**
  2377. * Moves a single object to the GTT read, and possibly write domain.
  2378. *
  2379. * This function returns when the move is complete, including waiting on
  2380. * flushes to occur.
  2381. */
  2382. int
  2383. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2384. {
  2385. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2386. uint32_t old_write_domain, old_read_domains;
  2387. int ret;
  2388. /* Not valid to be called on unbound objects. */
  2389. if (obj_priv->gtt_space == NULL)
  2390. return -EINVAL;
  2391. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2392. if (ret != 0)
  2393. return ret;
  2394. /* Wait on any GPU rendering and flushing to occur. */
  2395. ret = i915_gem_object_wait_rendering(obj);
  2396. if (ret != 0)
  2397. return ret;
  2398. old_write_domain = obj->write_domain;
  2399. old_read_domains = obj->read_domains;
  2400. /* If we're writing through the GTT domain, then CPU and GPU caches
  2401. * will need to be invalidated at next use.
  2402. */
  2403. if (write)
  2404. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2405. i915_gem_object_flush_cpu_write_domain(obj);
  2406. /* It should now be out of any other write domains, and we can update
  2407. * the domain values for our changes.
  2408. */
  2409. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2410. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2411. if (write) {
  2412. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2413. obj_priv->dirty = 1;
  2414. }
  2415. trace_i915_gem_object_change_domain(obj,
  2416. old_read_domains,
  2417. old_write_domain);
  2418. return 0;
  2419. }
  2420. /*
  2421. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2422. * wait, as in modesetting process we're not supposed to be interrupted.
  2423. */
  2424. int
  2425. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
  2426. {
  2427. struct drm_device *dev = obj->dev;
  2428. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2429. uint32_t old_write_domain, old_read_domains;
  2430. int ret;
  2431. /* Not valid to be called on unbound objects. */
  2432. if (obj_priv->gtt_space == NULL)
  2433. return -EINVAL;
  2434. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2435. if (ret)
  2436. return ret;
  2437. /* Wait on any GPU rendering and flushing to occur. */
  2438. if (obj_priv->active) {
  2439. #if WATCH_BUF
  2440. DRM_INFO("%s: object %p wait for seqno %08x\n",
  2441. __func__, obj, obj_priv->last_rendering_seqno);
  2442. #endif
  2443. ret = i915_do_wait_request(dev,
  2444. obj_priv->last_rendering_seqno,
  2445. 0,
  2446. obj_priv->ring);
  2447. if (ret != 0)
  2448. return ret;
  2449. }
  2450. i915_gem_object_flush_cpu_write_domain(obj);
  2451. old_write_domain = obj->write_domain;
  2452. old_read_domains = obj->read_domains;
  2453. /* It should now be out of any other write domains, and we can update
  2454. * the domain values for our changes.
  2455. */
  2456. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2457. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2458. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2459. obj_priv->dirty = 1;
  2460. trace_i915_gem_object_change_domain(obj,
  2461. old_read_domains,
  2462. old_write_domain);
  2463. return 0;
  2464. }
  2465. /**
  2466. * Moves a single object to the CPU read, and possibly write domain.
  2467. *
  2468. * This function returns when the move is complete, including waiting on
  2469. * flushes to occur.
  2470. */
  2471. static int
  2472. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2473. {
  2474. uint32_t old_write_domain, old_read_domains;
  2475. int ret;
  2476. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2477. if (ret)
  2478. return ret;
  2479. /* Wait on any GPU rendering and flushing to occur. */
  2480. ret = i915_gem_object_wait_rendering(obj);
  2481. if (ret != 0)
  2482. return ret;
  2483. i915_gem_object_flush_gtt_write_domain(obj);
  2484. /* If we have a partially-valid cache of the object in the CPU,
  2485. * finish invalidating it and free the per-page flags.
  2486. */
  2487. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2488. old_write_domain = obj->write_domain;
  2489. old_read_domains = obj->read_domains;
  2490. /* Flush the CPU cache if it's still invalid. */
  2491. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2492. i915_gem_clflush_object(obj);
  2493. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2494. }
  2495. /* It should now be out of any other write domains, and we can update
  2496. * the domain values for our changes.
  2497. */
  2498. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2499. /* If we're writing through the CPU, then the GPU read domains will
  2500. * need to be invalidated at next use.
  2501. */
  2502. if (write) {
  2503. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2504. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2505. }
  2506. trace_i915_gem_object_change_domain(obj,
  2507. old_read_domains,
  2508. old_write_domain);
  2509. return 0;
  2510. }
  2511. /*
  2512. * Set the next domain for the specified object. This
  2513. * may not actually perform the necessary flushing/invaliding though,
  2514. * as that may want to be batched with other set_domain operations
  2515. *
  2516. * This is (we hope) the only really tricky part of gem. The goal
  2517. * is fairly simple -- track which caches hold bits of the object
  2518. * and make sure they remain coherent. A few concrete examples may
  2519. * help to explain how it works. For shorthand, we use the notation
  2520. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2521. * a pair of read and write domain masks.
  2522. *
  2523. * Case 1: the batch buffer
  2524. *
  2525. * 1. Allocated
  2526. * 2. Written by CPU
  2527. * 3. Mapped to GTT
  2528. * 4. Read by GPU
  2529. * 5. Unmapped from GTT
  2530. * 6. Freed
  2531. *
  2532. * Let's take these a step at a time
  2533. *
  2534. * 1. Allocated
  2535. * Pages allocated from the kernel may still have
  2536. * cache contents, so we set them to (CPU, CPU) always.
  2537. * 2. Written by CPU (using pwrite)
  2538. * The pwrite function calls set_domain (CPU, CPU) and
  2539. * this function does nothing (as nothing changes)
  2540. * 3. Mapped by GTT
  2541. * This function asserts that the object is not
  2542. * currently in any GPU-based read or write domains
  2543. * 4. Read by GPU
  2544. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2545. * As write_domain is zero, this function adds in the
  2546. * current read domains (CPU+COMMAND, 0).
  2547. * flush_domains is set to CPU.
  2548. * invalidate_domains is set to COMMAND
  2549. * clflush is run to get data out of the CPU caches
  2550. * then i915_dev_set_domain calls i915_gem_flush to
  2551. * emit an MI_FLUSH and drm_agp_chipset_flush
  2552. * 5. Unmapped from GTT
  2553. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2554. * flush_domains and invalidate_domains end up both zero
  2555. * so no flushing/invalidating happens
  2556. * 6. Freed
  2557. * yay, done
  2558. *
  2559. * Case 2: The shared render buffer
  2560. *
  2561. * 1. Allocated
  2562. * 2. Mapped to GTT
  2563. * 3. Read/written by GPU
  2564. * 4. set_domain to (CPU,CPU)
  2565. * 5. Read/written by CPU
  2566. * 6. Read/written by GPU
  2567. *
  2568. * 1. Allocated
  2569. * Same as last example, (CPU, CPU)
  2570. * 2. Mapped to GTT
  2571. * Nothing changes (assertions find that it is not in the GPU)
  2572. * 3. Read/written by GPU
  2573. * execbuffer calls set_domain (RENDER, RENDER)
  2574. * flush_domains gets CPU
  2575. * invalidate_domains gets GPU
  2576. * clflush (obj)
  2577. * MI_FLUSH and drm_agp_chipset_flush
  2578. * 4. set_domain (CPU, CPU)
  2579. * flush_domains gets GPU
  2580. * invalidate_domains gets CPU
  2581. * wait_rendering (obj) to make sure all drawing is complete.
  2582. * This will include an MI_FLUSH to get the data from GPU
  2583. * to memory
  2584. * clflush (obj) to invalidate the CPU cache
  2585. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2586. * 5. Read/written by CPU
  2587. * cache lines are loaded and dirtied
  2588. * 6. Read written by GPU
  2589. * Same as last GPU access
  2590. *
  2591. * Case 3: The constant buffer
  2592. *
  2593. * 1. Allocated
  2594. * 2. Written by CPU
  2595. * 3. Read by GPU
  2596. * 4. Updated (written) by CPU again
  2597. * 5. Read by GPU
  2598. *
  2599. * 1. Allocated
  2600. * (CPU, CPU)
  2601. * 2. Written by CPU
  2602. * (CPU, CPU)
  2603. * 3. Read by GPU
  2604. * (CPU+RENDER, 0)
  2605. * flush_domains = CPU
  2606. * invalidate_domains = RENDER
  2607. * clflush (obj)
  2608. * MI_FLUSH
  2609. * drm_agp_chipset_flush
  2610. * 4. Updated (written) by CPU again
  2611. * (CPU, CPU)
  2612. * flush_domains = 0 (no previous write domain)
  2613. * invalidate_domains = 0 (no new read domains)
  2614. * 5. Read by GPU
  2615. * (CPU+RENDER, 0)
  2616. * flush_domains = CPU
  2617. * invalidate_domains = RENDER
  2618. * clflush (obj)
  2619. * MI_FLUSH
  2620. * drm_agp_chipset_flush
  2621. */
  2622. static void
  2623. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2624. {
  2625. struct drm_device *dev = obj->dev;
  2626. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2627. uint32_t invalidate_domains = 0;
  2628. uint32_t flush_domains = 0;
  2629. uint32_t old_read_domains;
  2630. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2631. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2632. intel_mark_busy(dev, obj);
  2633. #if WATCH_BUF
  2634. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2635. __func__, obj,
  2636. obj->read_domains, obj->pending_read_domains,
  2637. obj->write_domain, obj->pending_write_domain);
  2638. #endif
  2639. /*
  2640. * If the object isn't moving to a new write domain,
  2641. * let the object stay in multiple read domains
  2642. */
  2643. if (obj->pending_write_domain == 0)
  2644. obj->pending_read_domains |= obj->read_domains;
  2645. else
  2646. obj_priv->dirty = 1;
  2647. /*
  2648. * Flush the current write domain if
  2649. * the new read domains don't match. Invalidate
  2650. * any read domains which differ from the old
  2651. * write domain
  2652. */
  2653. if (obj->write_domain &&
  2654. obj->write_domain != obj->pending_read_domains) {
  2655. flush_domains |= obj->write_domain;
  2656. invalidate_domains |=
  2657. obj->pending_read_domains & ~obj->write_domain;
  2658. }
  2659. /*
  2660. * Invalidate any read caches which may have
  2661. * stale data. That is, any new read domains.
  2662. */
  2663. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2664. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2665. #if WATCH_BUF
  2666. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2667. __func__, flush_domains, invalidate_domains);
  2668. #endif
  2669. i915_gem_clflush_object(obj);
  2670. }
  2671. old_read_domains = obj->read_domains;
  2672. /* The actual obj->write_domain will be updated with
  2673. * pending_write_domain after we emit the accumulated flush for all
  2674. * of our domain changes in execbuffers (which clears objects'
  2675. * write_domains). So if we have a current write domain that we
  2676. * aren't changing, set pending_write_domain to that.
  2677. */
  2678. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2679. obj->pending_write_domain = obj->write_domain;
  2680. obj->read_domains = obj->pending_read_domains;
  2681. dev->invalidate_domains |= invalidate_domains;
  2682. dev->flush_domains |= flush_domains;
  2683. #if WATCH_BUF
  2684. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2685. __func__,
  2686. obj->read_domains, obj->write_domain,
  2687. dev->invalidate_domains, dev->flush_domains);
  2688. #endif
  2689. trace_i915_gem_object_change_domain(obj,
  2690. old_read_domains,
  2691. obj->write_domain);
  2692. }
  2693. /**
  2694. * Moves the object from a partially CPU read to a full one.
  2695. *
  2696. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2697. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2698. */
  2699. static void
  2700. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2701. {
  2702. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2703. if (!obj_priv->page_cpu_valid)
  2704. return;
  2705. /* If we're partially in the CPU read domain, finish moving it in.
  2706. */
  2707. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2708. int i;
  2709. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2710. if (obj_priv->page_cpu_valid[i])
  2711. continue;
  2712. drm_clflush_pages(obj_priv->pages + i, 1);
  2713. }
  2714. }
  2715. /* Free the page_cpu_valid mappings which are now stale, whether
  2716. * or not we've got I915_GEM_DOMAIN_CPU.
  2717. */
  2718. kfree(obj_priv->page_cpu_valid);
  2719. obj_priv->page_cpu_valid = NULL;
  2720. }
  2721. /**
  2722. * Set the CPU read domain on a range of the object.
  2723. *
  2724. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2725. * not entirely valid. The page_cpu_valid member of the object flags which
  2726. * pages have been flushed, and will be respected by
  2727. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2728. * of the whole object.
  2729. *
  2730. * This function returns when the move is complete, including waiting on
  2731. * flushes to occur.
  2732. */
  2733. static int
  2734. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2735. uint64_t offset, uint64_t size)
  2736. {
  2737. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2738. uint32_t old_read_domains;
  2739. int i, ret;
  2740. if (offset == 0 && size == obj->size)
  2741. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2742. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2743. if (ret)
  2744. return ret;
  2745. /* Wait on any GPU rendering and flushing to occur. */
  2746. ret = i915_gem_object_wait_rendering(obj);
  2747. if (ret != 0)
  2748. return ret;
  2749. i915_gem_object_flush_gtt_write_domain(obj);
  2750. /* If we're already fully in the CPU read domain, we're done. */
  2751. if (obj_priv->page_cpu_valid == NULL &&
  2752. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2753. return 0;
  2754. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2755. * newly adding I915_GEM_DOMAIN_CPU
  2756. */
  2757. if (obj_priv->page_cpu_valid == NULL) {
  2758. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2759. GFP_KERNEL);
  2760. if (obj_priv->page_cpu_valid == NULL)
  2761. return -ENOMEM;
  2762. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2763. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2764. /* Flush the cache on any pages that are still invalid from the CPU's
  2765. * perspective.
  2766. */
  2767. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2768. i++) {
  2769. if (obj_priv->page_cpu_valid[i])
  2770. continue;
  2771. drm_clflush_pages(obj_priv->pages + i, 1);
  2772. obj_priv->page_cpu_valid[i] = 1;
  2773. }
  2774. /* It should now be out of any other write domains, and we can update
  2775. * the domain values for our changes.
  2776. */
  2777. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2778. old_read_domains = obj->read_domains;
  2779. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2780. trace_i915_gem_object_change_domain(obj,
  2781. old_read_domains,
  2782. obj->write_domain);
  2783. return 0;
  2784. }
  2785. /**
  2786. * Pin an object to the GTT and evaluate the relocations landing in it.
  2787. */
  2788. static int
  2789. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2790. struct drm_file *file_priv,
  2791. struct drm_i915_gem_exec_object2 *entry,
  2792. struct drm_i915_gem_relocation_entry *relocs)
  2793. {
  2794. struct drm_device *dev = obj->dev;
  2795. drm_i915_private_t *dev_priv = dev->dev_private;
  2796. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2797. int i, ret;
  2798. void __iomem *reloc_page;
  2799. bool need_fence;
  2800. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2801. obj_priv->tiling_mode != I915_TILING_NONE;
  2802. /* Check fence reg constraints and rebind if necessary */
  2803. if (need_fence &&
  2804. !i915_gem_object_fence_offset_ok(obj,
  2805. obj_priv->tiling_mode)) {
  2806. ret = i915_gem_object_unbind(obj);
  2807. if (ret)
  2808. return ret;
  2809. }
  2810. /* Choose the GTT offset for our buffer and put it there. */
  2811. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2812. if (ret)
  2813. return ret;
  2814. /*
  2815. * Pre-965 chips need a fence register set up in order to
  2816. * properly handle blits to/from tiled surfaces.
  2817. */
  2818. if (need_fence) {
  2819. ret = i915_gem_object_get_fence_reg(obj);
  2820. if (ret != 0) {
  2821. i915_gem_object_unpin(obj);
  2822. return ret;
  2823. }
  2824. }
  2825. entry->offset = obj_priv->gtt_offset;
  2826. /* Apply the relocations, using the GTT aperture to avoid cache
  2827. * flushing requirements.
  2828. */
  2829. for (i = 0; i < entry->relocation_count; i++) {
  2830. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2831. struct drm_gem_object *target_obj;
  2832. struct drm_i915_gem_object *target_obj_priv;
  2833. uint32_t reloc_val, reloc_offset;
  2834. uint32_t __iomem *reloc_entry;
  2835. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2836. reloc->target_handle);
  2837. if (target_obj == NULL) {
  2838. i915_gem_object_unpin(obj);
  2839. return -EBADF;
  2840. }
  2841. target_obj_priv = to_intel_bo(target_obj);
  2842. #if WATCH_RELOC
  2843. DRM_INFO("%s: obj %p offset %08x target %d "
  2844. "read %08x write %08x gtt %08x "
  2845. "presumed %08x delta %08x\n",
  2846. __func__,
  2847. obj,
  2848. (int) reloc->offset,
  2849. (int) reloc->target_handle,
  2850. (int) reloc->read_domains,
  2851. (int) reloc->write_domain,
  2852. (int) target_obj_priv->gtt_offset,
  2853. (int) reloc->presumed_offset,
  2854. reloc->delta);
  2855. #endif
  2856. /* The target buffer should have appeared before us in the
  2857. * exec_object list, so it should have a GTT space bound by now.
  2858. */
  2859. if (target_obj_priv->gtt_space == NULL) {
  2860. DRM_ERROR("No GTT space found for object %d\n",
  2861. reloc->target_handle);
  2862. drm_gem_object_unreference(target_obj);
  2863. i915_gem_object_unpin(obj);
  2864. return -EINVAL;
  2865. }
  2866. /* Validate that the target is in a valid r/w GPU domain */
  2867. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2868. DRM_ERROR("reloc with multiple write domains: "
  2869. "obj %p target %d offset %d "
  2870. "read %08x write %08x",
  2871. obj, reloc->target_handle,
  2872. (int) reloc->offset,
  2873. reloc->read_domains,
  2874. reloc->write_domain);
  2875. return -EINVAL;
  2876. }
  2877. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2878. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2879. DRM_ERROR("reloc with read/write CPU domains: "
  2880. "obj %p target %d offset %d "
  2881. "read %08x write %08x",
  2882. obj, reloc->target_handle,
  2883. (int) reloc->offset,
  2884. reloc->read_domains,
  2885. reloc->write_domain);
  2886. drm_gem_object_unreference(target_obj);
  2887. i915_gem_object_unpin(obj);
  2888. return -EINVAL;
  2889. }
  2890. if (reloc->write_domain && target_obj->pending_write_domain &&
  2891. reloc->write_domain != target_obj->pending_write_domain) {
  2892. DRM_ERROR("Write domain conflict: "
  2893. "obj %p target %d offset %d "
  2894. "new %08x old %08x\n",
  2895. obj, reloc->target_handle,
  2896. (int) reloc->offset,
  2897. reloc->write_domain,
  2898. target_obj->pending_write_domain);
  2899. drm_gem_object_unreference(target_obj);
  2900. i915_gem_object_unpin(obj);
  2901. return -EINVAL;
  2902. }
  2903. target_obj->pending_read_domains |= reloc->read_domains;
  2904. target_obj->pending_write_domain |= reloc->write_domain;
  2905. /* If the relocation already has the right value in it, no
  2906. * more work needs to be done.
  2907. */
  2908. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2909. drm_gem_object_unreference(target_obj);
  2910. continue;
  2911. }
  2912. /* Check that the relocation address is valid... */
  2913. if (reloc->offset > obj->size - 4) {
  2914. DRM_ERROR("Relocation beyond object bounds: "
  2915. "obj %p target %d offset %d size %d.\n",
  2916. obj, reloc->target_handle,
  2917. (int) reloc->offset, (int) obj->size);
  2918. drm_gem_object_unreference(target_obj);
  2919. i915_gem_object_unpin(obj);
  2920. return -EINVAL;
  2921. }
  2922. if (reloc->offset & 3) {
  2923. DRM_ERROR("Relocation not 4-byte aligned: "
  2924. "obj %p target %d offset %d.\n",
  2925. obj, reloc->target_handle,
  2926. (int) reloc->offset);
  2927. drm_gem_object_unreference(target_obj);
  2928. i915_gem_object_unpin(obj);
  2929. return -EINVAL;
  2930. }
  2931. /* and points to somewhere within the target object. */
  2932. if (reloc->delta >= target_obj->size) {
  2933. DRM_ERROR("Relocation beyond target object bounds: "
  2934. "obj %p target %d delta %d size %d.\n",
  2935. obj, reloc->target_handle,
  2936. (int) reloc->delta, (int) target_obj->size);
  2937. drm_gem_object_unreference(target_obj);
  2938. i915_gem_object_unpin(obj);
  2939. return -EINVAL;
  2940. }
  2941. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2942. if (ret != 0) {
  2943. drm_gem_object_unreference(target_obj);
  2944. i915_gem_object_unpin(obj);
  2945. return -EINVAL;
  2946. }
  2947. /* Map the page containing the relocation we're going to
  2948. * perform.
  2949. */
  2950. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2951. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2952. (reloc_offset &
  2953. ~(PAGE_SIZE - 1)));
  2954. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2955. (reloc_offset & (PAGE_SIZE - 1)));
  2956. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2957. #if WATCH_BUF
  2958. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2959. obj, (unsigned int) reloc->offset,
  2960. readl(reloc_entry), reloc_val);
  2961. #endif
  2962. writel(reloc_val, reloc_entry);
  2963. io_mapping_unmap_atomic(reloc_page);
  2964. /* The updated presumed offset for this entry will be
  2965. * copied back out to the user.
  2966. */
  2967. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2968. drm_gem_object_unreference(target_obj);
  2969. }
  2970. #if WATCH_BUF
  2971. if (0)
  2972. i915_gem_dump_object(obj, 128, __func__, ~0);
  2973. #endif
  2974. return 0;
  2975. }
  2976. /* Throttle our rendering by waiting until the ring has completed our requests
  2977. * emitted over 20 msec ago.
  2978. *
  2979. * Note that if we were to use the current jiffies each time around the loop,
  2980. * we wouldn't escape the function with any frames outstanding if the time to
  2981. * render a frame was over 20ms.
  2982. *
  2983. * This should get us reasonable parallelism between CPU and GPU but also
  2984. * relatively low latency when blocking on a particular request to finish.
  2985. */
  2986. static int
  2987. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2988. {
  2989. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2990. int ret = 0;
  2991. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2992. mutex_lock(&dev->struct_mutex);
  2993. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2994. struct drm_i915_gem_request *request;
  2995. request = list_first_entry(&i915_file_priv->mm.request_list,
  2996. struct drm_i915_gem_request,
  2997. client_list);
  2998. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2999. break;
  3000. ret = i915_wait_request(dev, request->seqno, request->ring);
  3001. if (ret != 0)
  3002. break;
  3003. }
  3004. mutex_unlock(&dev->struct_mutex);
  3005. return ret;
  3006. }
  3007. static int
  3008. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  3009. uint32_t buffer_count,
  3010. struct drm_i915_gem_relocation_entry **relocs)
  3011. {
  3012. uint32_t reloc_count = 0, reloc_index = 0, i;
  3013. int ret;
  3014. *relocs = NULL;
  3015. for (i = 0; i < buffer_count; i++) {
  3016. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  3017. return -EINVAL;
  3018. reloc_count += exec_list[i].relocation_count;
  3019. }
  3020. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  3021. if (*relocs == NULL) {
  3022. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  3023. return -ENOMEM;
  3024. }
  3025. for (i = 0; i < buffer_count; i++) {
  3026. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3027. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3028. ret = copy_from_user(&(*relocs)[reloc_index],
  3029. user_relocs,
  3030. exec_list[i].relocation_count *
  3031. sizeof(**relocs));
  3032. if (ret != 0) {
  3033. drm_free_large(*relocs);
  3034. *relocs = NULL;
  3035. return -EFAULT;
  3036. }
  3037. reloc_index += exec_list[i].relocation_count;
  3038. }
  3039. return 0;
  3040. }
  3041. static int
  3042. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  3043. uint32_t buffer_count,
  3044. struct drm_i915_gem_relocation_entry *relocs)
  3045. {
  3046. uint32_t reloc_count = 0, i;
  3047. int ret = 0;
  3048. if (relocs == NULL)
  3049. return 0;
  3050. for (i = 0; i < buffer_count; i++) {
  3051. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3052. int unwritten;
  3053. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3054. unwritten = copy_to_user(user_relocs,
  3055. &relocs[reloc_count],
  3056. exec_list[i].relocation_count *
  3057. sizeof(*relocs));
  3058. if (unwritten) {
  3059. ret = -EFAULT;
  3060. goto err;
  3061. }
  3062. reloc_count += exec_list[i].relocation_count;
  3063. }
  3064. err:
  3065. drm_free_large(relocs);
  3066. return ret;
  3067. }
  3068. static int
  3069. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  3070. uint64_t exec_offset)
  3071. {
  3072. uint32_t exec_start, exec_len;
  3073. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3074. exec_len = (uint32_t) exec->batch_len;
  3075. if ((exec_start | exec_len) & 0x7)
  3076. return -EINVAL;
  3077. if (!exec_start)
  3078. return -EINVAL;
  3079. return 0;
  3080. }
  3081. static int
  3082. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  3083. struct drm_gem_object **object_list,
  3084. int count)
  3085. {
  3086. drm_i915_private_t *dev_priv = dev->dev_private;
  3087. struct drm_i915_gem_object *obj_priv;
  3088. DEFINE_WAIT(wait);
  3089. int i, ret = 0;
  3090. for (;;) {
  3091. prepare_to_wait(&dev_priv->pending_flip_queue,
  3092. &wait, TASK_INTERRUPTIBLE);
  3093. for (i = 0; i < count; i++) {
  3094. obj_priv = to_intel_bo(object_list[i]);
  3095. if (atomic_read(&obj_priv->pending_flip) > 0)
  3096. break;
  3097. }
  3098. if (i == count)
  3099. break;
  3100. if (!signal_pending(current)) {
  3101. mutex_unlock(&dev->struct_mutex);
  3102. schedule();
  3103. mutex_lock(&dev->struct_mutex);
  3104. continue;
  3105. }
  3106. ret = -ERESTARTSYS;
  3107. break;
  3108. }
  3109. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3110. return ret;
  3111. }
  3112. int
  3113. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3114. struct drm_file *file_priv,
  3115. struct drm_i915_gem_execbuffer2 *args,
  3116. struct drm_i915_gem_exec_object2 *exec_list)
  3117. {
  3118. drm_i915_private_t *dev_priv = dev->dev_private;
  3119. struct drm_gem_object **object_list = NULL;
  3120. struct drm_gem_object *batch_obj;
  3121. struct drm_i915_gem_object *obj_priv;
  3122. struct drm_clip_rect *cliprects = NULL;
  3123. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3124. int ret = 0, ret2, i, pinned = 0;
  3125. uint64_t exec_offset;
  3126. uint32_t seqno, flush_domains, reloc_index;
  3127. int pin_tries, flips;
  3128. struct intel_ring_buffer *ring = NULL;
  3129. #if WATCH_EXEC
  3130. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3131. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3132. #endif
  3133. if (args->flags & I915_EXEC_BSD) {
  3134. if (!HAS_BSD(dev)) {
  3135. DRM_ERROR("execbuf with wrong flag\n");
  3136. return -EINVAL;
  3137. }
  3138. ring = &dev_priv->bsd_ring;
  3139. } else {
  3140. ring = &dev_priv->render_ring;
  3141. }
  3142. if (args->buffer_count < 1) {
  3143. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3144. return -EINVAL;
  3145. }
  3146. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3147. if (object_list == NULL) {
  3148. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3149. args->buffer_count);
  3150. ret = -ENOMEM;
  3151. goto pre_mutex_err;
  3152. }
  3153. if (args->num_cliprects != 0) {
  3154. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3155. GFP_KERNEL);
  3156. if (cliprects == NULL) {
  3157. ret = -ENOMEM;
  3158. goto pre_mutex_err;
  3159. }
  3160. ret = copy_from_user(cliprects,
  3161. (struct drm_clip_rect __user *)
  3162. (uintptr_t) args->cliprects_ptr,
  3163. sizeof(*cliprects) * args->num_cliprects);
  3164. if (ret != 0) {
  3165. DRM_ERROR("copy %d cliprects failed: %d\n",
  3166. args->num_cliprects, ret);
  3167. goto pre_mutex_err;
  3168. }
  3169. }
  3170. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3171. &relocs);
  3172. if (ret != 0)
  3173. goto pre_mutex_err;
  3174. mutex_lock(&dev->struct_mutex);
  3175. i915_verify_inactive(dev, __FILE__, __LINE__);
  3176. if (atomic_read(&dev_priv->mm.wedged)) {
  3177. mutex_unlock(&dev->struct_mutex);
  3178. ret = -EIO;
  3179. goto pre_mutex_err;
  3180. }
  3181. if (dev_priv->mm.suspended) {
  3182. mutex_unlock(&dev->struct_mutex);
  3183. ret = -EBUSY;
  3184. goto pre_mutex_err;
  3185. }
  3186. /* Look up object handles */
  3187. flips = 0;
  3188. for (i = 0; i < args->buffer_count; i++) {
  3189. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3190. exec_list[i].handle);
  3191. if (object_list[i] == NULL) {
  3192. DRM_ERROR("Invalid object handle %d at index %d\n",
  3193. exec_list[i].handle, i);
  3194. /* prevent error path from reading uninitialized data */
  3195. args->buffer_count = i + 1;
  3196. ret = -EBADF;
  3197. goto err;
  3198. }
  3199. obj_priv = to_intel_bo(object_list[i]);
  3200. if (obj_priv->in_execbuffer) {
  3201. DRM_ERROR("Object %p appears more than once in object list\n",
  3202. object_list[i]);
  3203. /* prevent error path from reading uninitialized data */
  3204. args->buffer_count = i + 1;
  3205. ret = -EBADF;
  3206. goto err;
  3207. }
  3208. obj_priv->in_execbuffer = true;
  3209. flips += atomic_read(&obj_priv->pending_flip);
  3210. }
  3211. if (flips > 0) {
  3212. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3213. args->buffer_count);
  3214. if (ret)
  3215. goto err;
  3216. }
  3217. /* Pin and relocate */
  3218. for (pin_tries = 0; ; pin_tries++) {
  3219. ret = 0;
  3220. reloc_index = 0;
  3221. for (i = 0; i < args->buffer_count; i++) {
  3222. object_list[i]->pending_read_domains = 0;
  3223. object_list[i]->pending_write_domain = 0;
  3224. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3225. file_priv,
  3226. &exec_list[i],
  3227. &relocs[reloc_index]);
  3228. if (ret)
  3229. break;
  3230. pinned = i + 1;
  3231. reloc_index += exec_list[i].relocation_count;
  3232. }
  3233. /* success */
  3234. if (ret == 0)
  3235. break;
  3236. /* error other than GTT full, or we've already tried again */
  3237. if (ret != -ENOSPC || pin_tries >= 1) {
  3238. if (ret != -ERESTARTSYS) {
  3239. unsigned long long total_size = 0;
  3240. int num_fences = 0;
  3241. for (i = 0; i < args->buffer_count; i++) {
  3242. obj_priv = to_intel_bo(object_list[i]);
  3243. total_size += object_list[i]->size;
  3244. num_fences +=
  3245. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3246. obj_priv->tiling_mode != I915_TILING_NONE;
  3247. }
  3248. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3249. pinned+1, args->buffer_count,
  3250. total_size, num_fences,
  3251. ret);
  3252. DRM_ERROR("%d objects [%d pinned], "
  3253. "%d object bytes [%d pinned], "
  3254. "%d/%d gtt bytes\n",
  3255. atomic_read(&dev->object_count),
  3256. atomic_read(&dev->pin_count),
  3257. atomic_read(&dev->object_memory),
  3258. atomic_read(&dev->pin_memory),
  3259. atomic_read(&dev->gtt_memory),
  3260. dev->gtt_total);
  3261. }
  3262. goto err;
  3263. }
  3264. /* unpin all of our buffers */
  3265. for (i = 0; i < pinned; i++)
  3266. i915_gem_object_unpin(object_list[i]);
  3267. pinned = 0;
  3268. /* evict everyone we can from the aperture */
  3269. ret = i915_gem_evict_everything(dev);
  3270. if (ret && ret != -ENOSPC)
  3271. goto err;
  3272. }
  3273. /* Set the pending read domains for the batch buffer to COMMAND */
  3274. batch_obj = object_list[args->buffer_count-1];
  3275. if (batch_obj->pending_write_domain) {
  3276. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3277. ret = -EINVAL;
  3278. goto err;
  3279. }
  3280. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3281. /* Sanity check the batch buffer, prior to moving objects */
  3282. exec_offset = exec_list[args->buffer_count - 1].offset;
  3283. ret = i915_gem_check_execbuffer (args, exec_offset);
  3284. if (ret != 0) {
  3285. DRM_ERROR("execbuf with invalid offset/length\n");
  3286. goto err;
  3287. }
  3288. i915_verify_inactive(dev, __FILE__, __LINE__);
  3289. /* Zero the global flush/invalidate flags. These
  3290. * will be modified as new domains are computed
  3291. * for each object
  3292. */
  3293. dev->invalidate_domains = 0;
  3294. dev->flush_domains = 0;
  3295. for (i = 0; i < args->buffer_count; i++) {
  3296. struct drm_gem_object *obj = object_list[i];
  3297. /* Compute new gpu domains and update invalidate/flush */
  3298. i915_gem_object_set_to_gpu_domain(obj);
  3299. }
  3300. i915_verify_inactive(dev, __FILE__, __LINE__);
  3301. if (dev->invalidate_domains | dev->flush_domains) {
  3302. #if WATCH_EXEC
  3303. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3304. __func__,
  3305. dev->invalidate_domains,
  3306. dev->flush_domains);
  3307. #endif
  3308. i915_gem_flush(dev,
  3309. dev->invalidate_domains,
  3310. dev->flush_domains);
  3311. if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
  3312. (void)i915_add_request(dev, file_priv,
  3313. dev->flush_domains,
  3314. &dev_priv->render_ring);
  3315. if (HAS_BSD(dev))
  3316. (void)i915_add_request(dev, file_priv,
  3317. dev->flush_domains,
  3318. &dev_priv->bsd_ring);
  3319. }
  3320. }
  3321. for (i = 0; i < args->buffer_count; i++) {
  3322. struct drm_gem_object *obj = object_list[i];
  3323. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3324. uint32_t old_write_domain = obj->write_domain;
  3325. obj->write_domain = obj->pending_write_domain;
  3326. if (obj->write_domain)
  3327. list_move_tail(&obj_priv->gpu_write_list,
  3328. &dev_priv->mm.gpu_write_list);
  3329. else
  3330. list_del_init(&obj_priv->gpu_write_list);
  3331. trace_i915_gem_object_change_domain(obj,
  3332. obj->read_domains,
  3333. old_write_domain);
  3334. }
  3335. i915_verify_inactive(dev, __FILE__, __LINE__);
  3336. #if WATCH_COHERENCY
  3337. for (i = 0; i < args->buffer_count; i++) {
  3338. i915_gem_object_check_coherency(object_list[i],
  3339. exec_list[i].handle);
  3340. }
  3341. #endif
  3342. #if WATCH_EXEC
  3343. i915_gem_dump_object(batch_obj,
  3344. args->batch_len,
  3345. __func__,
  3346. ~0);
  3347. #endif
  3348. /* Exec the batchbuffer */
  3349. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3350. cliprects, exec_offset);
  3351. if (ret) {
  3352. DRM_ERROR("dispatch failed %d\n", ret);
  3353. goto err;
  3354. }
  3355. /*
  3356. * Ensure that the commands in the batch buffer are
  3357. * finished before the interrupt fires
  3358. */
  3359. flush_domains = i915_retire_commands(dev, ring);
  3360. i915_verify_inactive(dev, __FILE__, __LINE__);
  3361. /*
  3362. * Get a seqno representing the execution of the current buffer,
  3363. * which we can wait on. We would like to mitigate these interrupts,
  3364. * likely by only creating seqnos occasionally (so that we have
  3365. * *some* interrupts representing completion of buffers that we can
  3366. * wait on when trying to clear up gtt space).
  3367. */
  3368. seqno = i915_add_request(dev, file_priv, flush_domains, ring);
  3369. BUG_ON(seqno == 0);
  3370. for (i = 0; i < args->buffer_count; i++) {
  3371. struct drm_gem_object *obj = object_list[i];
  3372. obj_priv = to_intel_bo(obj);
  3373. i915_gem_object_move_to_active(obj, seqno, ring);
  3374. #if WATCH_LRU
  3375. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3376. #endif
  3377. }
  3378. #if WATCH_LRU
  3379. i915_dump_lru(dev, __func__);
  3380. #endif
  3381. i915_verify_inactive(dev, __FILE__, __LINE__);
  3382. err:
  3383. for (i = 0; i < pinned; i++)
  3384. i915_gem_object_unpin(object_list[i]);
  3385. for (i = 0; i < args->buffer_count; i++) {
  3386. if (object_list[i]) {
  3387. obj_priv = to_intel_bo(object_list[i]);
  3388. obj_priv->in_execbuffer = false;
  3389. }
  3390. drm_gem_object_unreference(object_list[i]);
  3391. }
  3392. mutex_unlock(&dev->struct_mutex);
  3393. pre_mutex_err:
  3394. /* Copy the updated relocations out regardless of current error
  3395. * state. Failure to update the relocs would mean that the next
  3396. * time userland calls execbuf, it would do so with presumed offset
  3397. * state that didn't match the actual object state.
  3398. */
  3399. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3400. relocs);
  3401. if (ret2 != 0) {
  3402. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3403. if (ret == 0)
  3404. ret = ret2;
  3405. }
  3406. drm_free_large(object_list);
  3407. kfree(cliprects);
  3408. return ret;
  3409. }
  3410. /*
  3411. * Legacy execbuffer just creates an exec2 list from the original exec object
  3412. * list array and passes it to the real function.
  3413. */
  3414. int
  3415. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3416. struct drm_file *file_priv)
  3417. {
  3418. struct drm_i915_gem_execbuffer *args = data;
  3419. struct drm_i915_gem_execbuffer2 exec2;
  3420. struct drm_i915_gem_exec_object *exec_list = NULL;
  3421. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3422. int ret, i;
  3423. #if WATCH_EXEC
  3424. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3425. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3426. #endif
  3427. if (args->buffer_count < 1) {
  3428. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3429. return -EINVAL;
  3430. }
  3431. /* Copy in the exec list from userland */
  3432. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3433. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3434. if (exec_list == NULL || exec2_list == NULL) {
  3435. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3436. args->buffer_count);
  3437. drm_free_large(exec_list);
  3438. drm_free_large(exec2_list);
  3439. return -ENOMEM;
  3440. }
  3441. ret = copy_from_user(exec_list,
  3442. (struct drm_i915_relocation_entry __user *)
  3443. (uintptr_t) args->buffers_ptr,
  3444. sizeof(*exec_list) * args->buffer_count);
  3445. if (ret != 0) {
  3446. DRM_ERROR("copy %d exec entries failed %d\n",
  3447. args->buffer_count, ret);
  3448. drm_free_large(exec_list);
  3449. drm_free_large(exec2_list);
  3450. return -EFAULT;
  3451. }
  3452. for (i = 0; i < args->buffer_count; i++) {
  3453. exec2_list[i].handle = exec_list[i].handle;
  3454. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3455. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3456. exec2_list[i].alignment = exec_list[i].alignment;
  3457. exec2_list[i].offset = exec_list[i].offset;
  3458. if (!IS_I965G(dev))
  3459. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3460. else
  3461. exec2_list[i].flags = 0;
  3462. }
  3463. exec2.buffers_ptr = args->buffers_ptr;
  3464. exec2.buffer_count = args->buffer_count;
  3465. exec2.batch_start_offset = args->batch_start_offset;
  3466. exec2.batch_len = args->batch_len;
  3467. exec2.DR1 = args->DR1;
  3468. exec2.DR4 = args->DR4;
  3469. exec2.num_cliprects = args->num_cliprects;
  3470. exec2.cliprects_ptr = args->cliprects_ptr;
  3471. exec2.flags = I915_EXEC_RENDER;
  3472. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3473. if (!ret) {
  3474. /* Copy the new buffer offsets back to the user's exec list. */
  3475. for (i = 0; i < args->buffer_count; i++)
  3476. exec_list[i].offset = exec2_list[i].offset;
  3477. /* ... and back out to userspace */
  3478. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3479. (uintptr_t) args->buffers_ptr,
  3480. exec_list,
  3481. sizeof(*exec_list) * args->buffer_count);
  3482. if (ret) {
  3483. ret = -EFAULT;
  3484. DRM_ERROR("failed to copy %d exec entries "
  3485. "back to user (%d)\n",
  3486. args->buffer_count, ret);
  3487. }
  3488. }
  3489. drm_free_large(exec_list);
  3490. drm_free_large(exec2_list);
  3491. return ret;
  3492. }
  3493. int
  3494. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3495. struct drm_file *file_priv)
  3496. {
  3497. struct drm_i915_gem_execbuffer2 *args = data;
  3498. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3499. int ret;
  3500. #if WATCH_EXEC
  3501. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3502. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3503. #endif
  3504. if (args->buffer_count < 1) {
  3505. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3506. return -EINVAL;
  3507. }
  3508. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3509. if (exec2_list == NULL) {
  3510. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3511. args->buffer_count);
  3512. return -ENOMEM;
  3513. }
  3514. ret = copy_from_user(exec2_list,
  3515. (struct drm_i915_relocation_entry __user *)
  3516. (uintptr_t) args->buffers_ptr,
  3517. sizeof(*exec2_list) * args->buffer_count);
  3518. if (ret != 0) {
  3519. DRM_ERROR("copy %d exec entries failed %d\n",
  3520. args->buffer_count, ret);
  3521. drm_free_large(exec2_list);
  3522. return -EFAULT;
  3523. }
  3524. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3525. if (!ret) {
  3526. /* Copy the new buffer offsets back to the user's exec list. */
  3527. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3528. (uintptr_t) args->buffers_ptr,
  3529. exec2_list,
  3530. sizeof(*exec2_list) * args->buffer_count);
  3531. if (ret) {
  3532. ret = -EFAULT;
  3533. DRM_ERROR("failed to copy %d exec entries "
  3534. "back to user (%d)\n",
  3535. args->buffer_count, ret);
  3536. }
  3537. }
  3538. drm_free_large(exec2_list);
  3539. return ret;
  3540. }
  3541. int
  3542. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3543. {
  3544. struct drm_device *dev = obj->dev;
  3545. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3546. int ret;
  3547. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3548. i915_verify_inactive(dev, __FILE__, __LINE__);
  3549. if (obj_priv->gtt_space != NULL) {
  3550. if (alignment == 0)
  3551. alignment = i915_gem_get_gtt_alignment(obj);
  3552. if (obj_priv->gtt_offset & (alignment - 1)) {
  3553. ret = i915_gem_object_unbind(obj);
  3554. if (ret)
  3555. return ret;
  3556. }
  3557. }
  3558. if (obj_priv->gtt_space == NULL) {
  3559. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3560. if (ret)
  3561. return ret;
  3562. }
  3563. obj_priv->pin_count++;
  3564. /* If the object is not active and not pending a flush,
  3565. * remove it from the inactive list
  3566. */
  3567. if (obj_priv->pin_count == 1) {
  3568. atomic_inc(&dev->pin_count);
  3569. atomic_add(obj->size, &dev->pin_memory);
  3570. if (!obj_priv->active &&
  3571. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3572. !list_empty(&obj_priv->list))
  3573. list_del_init(&obj_priv->list);
  3574. }
  3575. i915_verify_inactive(dev, __FILE__, __LINE__);
  3576. return 0;
  3577. }
  3578. void
  3579. i915_gem_object_unpin(struct drm_gem_object *obj)
  3580. {
  3581. struct drm_device *dev = obj->dev;
  3582. drm_i915_private_t *dev_priv = dev->dev_private;
  3583. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3584. i915_verify_inactive(dev, __FILE__, __LINE__);
  3585. obj_priv->pin_count--;
  3586. BUG_ON(obj_priv->pin_count < 0);
  3587. BUG_ON(obj_priv->gtt_space == NULL);
  3588. /* If the object is no longer pinned, and is
  3589. * neither active nor being flushed, then stick it on
  3590. * the inactive list
  3591. */
  3592. if (obj_priv->pin_count == 0) {
  3593. if (!obj_priv->active &&
  3594. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3595. list_move_tail(&obj_priv->list,
  3596. &dev_priv->mm.inactive_list);
  3597. atomic_dec(&dev->pin_count);
  3598. atomic_sub(obj->size, &dev->pin_memory);
  3599. }
  3600. i915_verify_inactive(dev, __FILE__, __LINE__);
  3601. }
  3602. int
  3603. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3604. struct drm_file *file_priv)
  3605. {
  3606. struct drm_i915_gem_pin *args = data;
  3607. struct drm_gem_object *obj;
  3608. struct drm_i915_gem_object *obj_priv;
  3609. int ret;
  3610. mutex_lock(&dev->struct_mutex);
  3611. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3612. if (obj == NULL) {
  3613. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3614. args->handle);
  3615. mutex_unlock(&dev->struct_mutex);
  3616. return -EBADF;
  3617. }
  3618. obj_priv = to_intel_bo(obj);
  3619. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3620. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3621. drm_gem_object_unreference(obj);
  3622. mutex_unlock(&dev->struct_mutex);
  3623. return -EINVAL;
  3624. }
  3625. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3626. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3627. args->handle);
  3628. drm_gem_object_unreference(obj);
  3629. mutex_unlock(&dev->struct_mutex);
  3630. return -EINVAL;
  3631. }
  3632. obj_priv->user_pin_count++;
  3633. obj_priv->pin_filp = file_priv;
  3634. if (obj_priv->user_pin_count == 1) {
  3635. ret = i915_gem_object_pin(obj, args->alignment);
  3636. if (ret != 0) {
  3637. drm_gem_object_unreference(obj);
  3638. mutex_unlock(&dev->struct_mutex);
  3639. return ret;
  3640. }
  3641. }
  3642. /* XXX - flush the CPU caches for pinned objects
  3643. * as the X server doesn't manage domains yet
  3644. */
  3645. i915_gem_object_flush_cpu_write_domain(obj);
  3646. args->offset = obj_priv->gtt_offset;
  3647. drm_gem_object_unreference(obj);
  3648. mutex_unlock(&dev->struct_mutex);
  3649. return 0;
  3650. }
  3651. int
  3652. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3653. struct drm_file *file_priv)
  3654. {
  3655. struct drm_i915_gem_pin *args = data;
  3656. struct drm_gem_object *obj;
  3657. struct drm_i915_gem_object *obj_priv;
  3658. mutex_lock(&dev->struct_mutex);
  3659. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3660. if (obj == NULL) {
  3661. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3662. args->handle);
  3663. mutex_unlock(&dev->struct_mutex);
  3664. return -EBADF;
  3665. }
  3666. obj_priv = to_intel_bo(obj);
  3667. if (obj_priv->pin_filp != file_priv) {
  3668. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3669. args->handle);
  3670. drm_gem_object_unreference(obj);
  3671. mutex_unlock(&dev->struct_mutex);
  3672. return -EINVAL;
  3673. }
  3674. obj_priv->user_pin_count--;
  3675. if (obj_priv->user_pin_count == 0) {
  3676. obj_priv->pin_filp = NULL;
  3677. i915_gem_object_unpin(obj);
  3678. }
  3679. drm_gem_object_unreference(obj);
  3680. mutex_unlock(&dev->struct_mutex);
  3681. return 0;
  3682. }
  3683. int
  3684. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3685. struct drm_file *file_priv)
  3686. {
  3687. struct drm_i915_gem_busy *args = data;
  3688. struct drm_gem_object *obj;
  3689. struct drm_i915_gem_object *obj_priv;
  3690. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3691. if (obj == NULL) {
  3692. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3693. args->handle);
  3694. return -EBADF;
  3695. }
  3696. mutex_lock(&dev->struct_mutex);
  3697. /* Update the active list for the hardware's current position.
  3698. * Otherwise this only updates on a delayed timer or when irqs are
  3699. * actually unmasked, and our working set ends up being larger than
  3700. * required.
  3701. */
  3702. i915_gem_retire_requests(dev);
  3703. obj_priv = to_intel_bo(obj);
  3704. /* Don't count being on the flushing list against the object being
  3705. * done. Otherwise, a buffer left on the flushing list but not getting
  3706. * flushed (because nobody's flushing that domain) won't ever return
  3707. * unbusy and get reused by libdrm's bo cache. The other expected
  3708. * consumer of this interface, OpenGL's occlusion queries, also specs
  3709. * that the objects get unbusy "eventually" without any interference.
  3710. */
  3711. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3712. drm_gem_object_unreference(obj);
  3713. mutex_unlock(&dev->struct_mutex);
  3714. return 0;
  3715. }
  3716. int
  3717. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3718. struct drm_file *file_priv)
  3719. {
  3720. return i915_gem_ring_throttle(dev, file_priv);
  3721. }
  3722. int
  3723. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3724. struct drm_file *file_priv)
  3725. {
  3726. struct drm_i915_gem_madvise *args = data;
  3727. struct drm_gem_object *obj;
  3728. struct drm_i915_gem_object *obj_priv;
  3729. switch (args->madv) {
  3730. case I915_MADV_DONTNEED:
  3731. case I915_MADV_WILLNEED:
  3732. break;
  3733. default:
  3734. return -EINVAL;
  3735. }
  3736. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3737. if (obj == NULL) {
  3738. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3739. args->handle);
  3740. return -EBADF;
  3741. }
  3742. mutex_lock(&dev->struct_mutex);
  3743. obj_priv = to_intel_bo(obj);
  3744. if (obj_priv->pin_count) {
  3745. drm_gem_object_unreference(obj);
  3746. mutex_unlock(&dev->struct_mutex);
  3747. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3748. return -EINVAL;
  3749. }
  3750. if (obj_priv->madv != __I915_MADV_PURGED)
  3751. obj_priv->madv = args->madv;
  3752. /* if the object is no longer bound, discard its backing storage */
  3753. if (i915_gem_object_is_purgeable(obj_priv) &&
  3754. obj_priv->gtt_space == NULL)
  3755. i915_gem_object_truncate(obj);
  3756. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3757. drm_gem_object_unreference(obj);
  3758. mutex_unlock(&dev->struct_mutex);
  3759. return 0;
  3760. }
  3761. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3762. size_t size)
  3763. {
  3764. struct drm_i915_gem_object *obj;
  3765. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3766. if (obj == NULL)
  3767. return NULL;
  3768. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3769. kfree(obj);
  3770. return NULL;
  3771. }
  3772. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3773. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3774. obj->agp_type = AGP_USER_MEMORY;
  3775. obj->base.driver_private = NULL;
  3776. obj->fence_reg = I915_FENCE_REG_NONE;
  3777. INIT_LIST_HEAD(&obj->list);
  3778. INIT_LIST_HEAD(&obj->gpu_write_list);
  3779. obj->madv = I915_MADV_WILLNEED;
  3780. trace_i915_gem_object_create(&obj->base);
  3781. return &obj->base;
  3782. }
  3783. int i915_gem_init_object(struct drm_gem_object *obj)
  3784. {
  3785. BUG();
  3786. return 0;
  3787. }
  3788. void i915_gem_free_object(struct drm_gem_object *obj)
  3789. {
  3790. struct drm_device *dev = obj->dev;
  3791. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3792. trace_i915_gem_object_destroy(obj);
  3793. while (obj_priv->pin_count > 0)
  3794. i915_gem_object_unpin(obj);
  3795. if (obj_priv->phys_obj)
  3796. i915_gem_detach_phys_object(dev, obj);
  3797. i915_gem_object_unbind(obj);
  3798. if (obj_priv->mmap_offset)
  3799. i915_gem_free_mmap_offset(obj);
  3800. drm_gem_object_release(obj);
  3801. kfree(obj_priv->page_cpu_valid);
  3802. kfree(obj_priv->bit_17);
  3803. kfree(obj_priv);
  3804. }
  3805. /** Unbinds all inactive objects. */
  3806. static int
  3807. i915_gem_evict_from_inactive_list(struct drm_device *dev)
  3808. {
  3809. drm_i915_private_t *dev_priv = dev->dev_private;
  3810. while (!list_empty(&dev_priv->mm.inactive_list)) {
  3811. struct drm_gem_object *obj;
  3812. int ret;
  3813. obj = &list_first_entry(&dev_priv->mm.inactive_list,
  3814. struct drm_i915_gem_object,
  3815. list)->base;
  3816. ret = i915_gem_object_unbind(obj);
  3817. if (ret != 0) {
  3818. DRM_ERROR("Error unbinding object: %d\n", ret);
  3819. return ret;
  3820. }
  3821. }
  3822. return 0;
  3823. }
  3824. int
  3825. i915_gem_idle(struct drm_device *dev)
  3826. {
  3827. drm_i915_private_t *dev_priv = dev->dev_private;
  3828. int ret;
  3829. mutex_lock(&dev->struct_mutex);
  3830. if (dev_priv->mm.suspended ||
  3831. (dev_priv->render_ring.gem_object == NULL) ||
  3832. (HAS_BSD(dev) &&
  3833. dev_priv->bsd_ring.gem_object == NULL)) {
  3834. mutex_unlock(&dev->struct_mutex);
  3835. return 0;
  3836. }
  3837. ret = i915_gpu_idle(dev);
  3838. if (ret) {
  3839. mutex_unlock(&dev->struct_mutex);
  3840. return ret;
  3841. }
  3842. /* Under UMS, be paranoid and evict. */
  3843. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3844. ret = i915_gem_evict_from_inactive_list(dev);
  3845. if (ret) {
  3846. mutex_unlock(&dev->struct_mutex);
  3847. return ret;
  3848. }
  3849. }
  3850. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3851. * We need to replace this with a semaphore, or something.
  3852. * And not confound mm.suspended!
  3853. */
  3854. dev_priv->mm.suspended = 1;
  3855. del_timer(&dev_priv->hangcheck_timer);
  3856. i915_kernel_lost_context(dev);
  3857. i915_gem_cleanup_ringbuffer(dev);
  3858. mutex_unlock(&dev->struct_mutex);
  3859. /* Cancel the retire work handler, which should be idle now. */
  3860. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3861. return 0;
  3862. }
  3863. /*
  3864. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3865. * over cache flushing.
  3866. */
  3867. static int
  3868. i915_gem_init_pipe_control(struct drm_device *dev)
  3869. {
  3870. drm_i915_private_t *dev_priv = dev->dev_private;
  3871. struct drm_gem_object *obj;
  3872. struct drm_i915_gem_object *obj_priv;
  3873. int ret;
  3874. obj = i915_gem_alloc_object(dev, 4096);
  3875. if (obj == NULL) {
  3876. DRM_ERROR("Failed to allocate seqno page\n");
  3877. ret = -ENOMEM;
  3878. goto err;
  3879. }
  3880. obj_priv = to_intel_bo(obj);
  3881. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3882. ret = i915_gem_object_pin(obj, 4096);
  3883. if (ret)
  3884. goto err_unref;
  3885. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3886. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3887. if (dev_priv->seqno_page == NULL)
  3888. goto err_unpin;
  3889. dev_priv->seqno_obj = obj;
  3890. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3891. return 0;
  3892. err_unpin:
  3893. i915_gem_object_unpin(obj);
  3894. err_unref:
  3895. drm_gem_object_unreference(obj);
  3896. err:
  3897. return ret;
  3898. }
  3899. static void
  3900. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3901. {
  3902. drm_i915_private_t *dev_priv = dev->dev_private;
  3903. struct drm_gem_object *obj;
  3904. struct drm_i915_gem_object *obj_priv;
  3905. obj = dev_priv->seqno_obj;
  3906. obj_priv = to_intel_bo(obj);
  3907. kunmap(obj_priv->pages[0]);
  3908. i915_gem_object_unpin(obj);
  3909. drm_gem_object_unreference(obj);
  3910. dev_priv->seqno_obj = NULL;
  3911. dev_priv->seqno_page = NULL;
  3912. }
  3913. int
  3914. i915_gem_init_ringbuffer(struct drm_device *dev)
  3915. {
  3916. drm_i915_private_t *dev_priv = dev->dev_private;
  3917. int ret;
  3918. dev_priv->render_ring = render_ring;
  3919. if (!I915_NEED_GFX_HWS(dev)) {
  3920. dev_priv->render_ring.status_page.page_addr
  3921. = dev_priv->status_page_dmah->vaddr;
  3922. memset(dev_priv->render_ring.status_page.page_addr,
  3923. 0, PAGE_SIZE);
  3924. }
  3925. if (HAS_PIPE_CONTROL(dev)) {
  3926. ret = i915_gem_init_pipe_control(dev);
  3927. if (ret)
  3928. return ret;
  3929. }
  3930. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3931. if (ret)
  3932. goto cleanup_pipe_control;
  3933. if (HAS_BSD(dev)) {
  3934. dev_priv->bsd_ring = bsd_ring;
  3935. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3936. if (ret)
  3937. goto cleanup_render_ring;
  3938. }
  3939. return 0;
  3940. cleanup_render_ring:
  3941. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3942. cleanup_pipe_control:
  3943. if (HAS_PIPE_CONTROL(dev))
  3944. i915_gem_cleanup_pipe_control(dev);
  3945. return ret;
  3946. }
  3947. void
  3948. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3949. {
  3950. drm_i915_private_t *dev_priv = dev->dev_private;
  3951. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3952. if (HAS_BSD(dev))
  3953. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3954. if (HAS_PIPE_CONTROL(dev))
  3955. i915_gem_cleanup_pipe_control(dev);
  3956. }
  3957. int
  3958. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3959. struct drm_file *file_priv)
  3960. {
  3961. drm_i915_private_t *dev_priv = dev->dev_private;
  3962. int ret;
  3963. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3964. return 0;
  3965. if (atomic_read(&dev_priv->mm.wedged)) {
  3966. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3967. atomic_set(&dev_priv->mm.wedged, 0);
  3968. }
  3969. mutex_lock(&dev->struct_mutex);
  3970. dev_priv->mm.suspended = 0;
  3971. ret = i915_gem_init_ringbuffer(dev);
  3972. if (ret != 0) {
  3973. mutex_unlock(&dev->struct_mutex);
  3974. return ret;
  3975. }
  3976. spin_lock(&dev_priv->mm.active_list_lock);
  3977. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3978. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3979. spin_unlock(&dev_priv->mm.active_list_lock);
  3980. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3981. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3982. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3983. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3984. mutex_unlock(&dev->struct_mutex);
  3985. ret = drm_irq_install(dev);
  3986. if (ret)
  3987. goto cleanup_ringbuffer;
  3988. return 0;
  3989. cleanup_ringbuffer:
  3990. mutex_lock(&dev->struct_mutex);
  3991. i915_gem_cleanup_ringbuffer(dev);
  3992. dev_priv->mm.suspended = 1;
  3993. mutex_unlock(&dev->struct_mutex);
  3994. return ret;
  3995. }
  3996. int
  3997. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3998. struct drm_file *file_priv)
  3999. {
  4000. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4001. return 0;
  4002. drm_irq_uninstall(dev);
  4003. return i915_gem_idle(dev);
  4004. }
  4005. void
  4006. i915_gem_lastclose(struct drm_device *dev)
  4007. {
  4008. int ret;
  4009. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4010. return;
  4011. ret = i915_gem_idle(dev);
  4012. if (ret)
  4013. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4014. }
  4015. void
  4016. i915_gem_load(struct drm_device *dev)
  4017. {
  4018. int i;
  4019. drm_i915_private_t *dev_priv = dev->dev_private;
  4020. spin_lock_init(&dev_priv->mm.active_list_lock);
  4021. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4022. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  4023. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4024. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4025. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  4026. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  4027. if (HAS_BSD(dev)) {
  4028. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  4029. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  4030. }
  4031. for (i = 0; i < 16; i++)
  4032. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4033. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4034. i915_gem_retire_work_handler);
  4035. spin_lock(&shrink_list_lock);
  4036. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  4037. spin_unlock(&shrink_list_lock);
  4038. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4039. if (IS_GEN3(dev)) {
  4040. u32 tmp = I915_READ(MI_ARB_STATE);
  4041. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4042. /* arb state is a masked write, so set bit + bit in mask */
  4043. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4044. I915_WRITE(MI_ARB_STATE, tmp);
  4045. }
  4046. }
  4047. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4048. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4049. dev_priv->fence_reg_start = 3;
  4050. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4051. dev_priv->num_fence_regs = 16;
  4052. else
  4053. dev_priv->num_fence_regs = 8;
  4054. /* Initialize fence registers to zero */
  4055. if (IS_I965G(dev)) {
  4056. for (i = 0; i < 16; i++)
  4057. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4058. } else {
  4059. for (i = 0; i < 8; i++)
  4060. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4061. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4062. for (i = 0; i < 8; i++)
  4063. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4064. }
  4065. i915_gem_detect_bit_6_swizzle(dev);
  4066. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4067. }
  4068. /*
  4069. * Create a physically contiguous memory object for this object
  4070. * e.g. for cursor + overlay regs
  4071. */
  4072. int i915_gem_init_phys_object(struct drm_device *dev,
  4073. int id, int size)
  4074. {
  4075. drm_i915_private_t *dev_priv = dev->dev_private;
  4076. struct drm_i915_gem_phys_object *phys_obj;
  4077. int ret;
  4078. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4079. return 0;
  4080. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4081. if (!phys_obj)
  4082. return -ENOMEM;
  4083. phys_obj->id = id;
  4084. phys_obj->handle = drm_pci_alloc(dev, size, 0);
  4085. if (!phys_obj->handle) {
  4086. ret = -ENOMEM;
  4087. goto kfree_obj;
  4088. }
  4089. #ifdef CONFIG_X86
  4090. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4091. #endif
  4092. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4093. return 0;
  4094. kfree_obj:
  4095. kfree(phys_obj);
  4096. return ret;
  4097. }
  4098. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4099. {
  4100. drm_i915_private_t *dev_priv = dev->dev_private;
  4101. struct drm_i915_gem_phys_object *phys_obj;
  4102. if (!dev_priv->mm.phys_objs[id - 1])
  4103. return;
  4104. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4105. if (phys_obj->cur_obj) {
  4106. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4107. }
  4108. #ifdef CONFIG_X86
  4109. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4110. #endif
  4111. drm_pci_free(dev, phys_obj->handle);
  4112. kfree(phys_obj);
  4113. dev_priv->mm.phys_objs[id - 1] = NULL;
  4114. }
  4115. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4116. {
  4117. int i;
  4118. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4119. i915_gem_free_phys_object(dev, i);
  4120. }
  4121. void i915_gem_detach_phys_object(struct drm_device *dev,
  4122. struct drm_gem_object *obj)
  4123. {
  4124. struct drm_i915_gem_object *obj_priv;
  4125. int i;
  4126. int ret;
  4127. int page_count;
  4128. obj_priv = to_intel_bo(obj);
  4129. if (!obj_priv->phys_obj)
  4130. return;
  4131. ret = i915_gem_object_get_pages(obj, 0);
  4132. if (ret)
  4133. goto out;
  4134. page_count = obj->size / PAGE_SIZE;
  4135. for (i = 0; i < page_count; i++) {
  4136. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4137. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4138. memcpy(dst, src, PAGE_SIZE);
  4139. kunmap_atomic(dst, KM_USER0);
  4140. }
  4141. drm_clflush_pages(obj_priv->pages, page_count);
  4142. drm_agp_chipset_flush(dev);
  4143. i915_gem_object_put_pages(obj);
  4144. out:
  4145. obj_priv->phys_obj->cur_obj = NULL;
  4146. obj_priv->phys_obj = NULL;
  4147. }
  4148. int
  4149. i915_gem_attach_phys_object(struct drm_device *dev,
  4150. struct drm_gem_object *obj, int id)
  4151. {
  4152. drm_i915_private_t *dev_priv = dev->dev_private;
  4153. struct drm_i915_gem_object *obj_priv;
  4154. int ret = 0;
  4155. int page_count;
  4156. int i;
  4157. if (id > I915_MAX_PHYS_OBJECT)
  4158. return -EINVAL;
  4159. obj_priv = to_intel_bo(obj);
  4160. if (obj_priv->phys_obj) {
  4161. if (obj_priv->phys_obj->id == id)
  4162. return 0;
  4163. i915_gem_detach_phys_object(dev, obj);
  4164. }
  4165. /* create a new object */
  4166. if (!dev_priv->mm.phys_objs[id - 1]) {
  4167. ret = i915_gem_init_phys_object(dev, id,
  4168. obj->size);
  4169. if (ret) {
  4170. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4171. goto out;
  4172. }
  4173. }
  4174. /* bind to the object */
  4175. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4176. obj_priv->phys_obj->cur_obj = obj;
  4177. ret = i915_gem_object_get_pages(obj, 0);
  4178. if (ret) {
  4179. DRM_ERROR("failed to get page list\n");
  4180. goto out;
  4181. }
  4182. page_count = obj->size / PAGE_SIZE;
  4183. for (i = 0; i < page_count; i++) {
  4184. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4185. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4186. memcpy(dst, src, PAGE_SIZE);
  4187. kunmap_atomic(src, KM_USER0);
  4188. }
  4189. i915_gem_object_put_pages(obj);
  4190. return 0;
  4191. out:
  4192. return ret;
  4193. }
  4194. static int
  4195. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4196. struct drm_i915_gem_pwrite *args,
  4197. struct drm_file *file_priv)
  4198. {
  4199. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4200. void *obj_addr;
  4201. int ret;
  4202. char __user *user_data;
  4203. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4204. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4205. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4206. ret = copy_from_user(obj_addr, user_data, args->size);
  4207. if (ret)
  4208. return -EFAULT;
  4209. drm_agp_chipset_flush(dev);
  4210. return 0;
  4211. }
  4212. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4213. {
  4214. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4215. /* Clean up our request list when the client is going away, so that
  4216. * later retire_requests won't dereference our soon-to-be-gone
  4217. * file_priv.
  4218. */
  4219. mutex_lock(&dev->struct_mutex);
  4220. while (!list_empty(&i915_file_priv->mm.request_list))
  4221. list_del_init(i915_file_priv->mm.request_list.next);
  4222. mutex_unlock(&dev->struct_mutex);
  4223. }
  4224. static int
  4225. i915_gpu_is_active(struct drm_device *dev)
  4226. {
  4227. drm_i915_private_t *dev_priv = dev->dev_private;
  4228. int lists_empty;
  4229. spin_lock(&dev_priv->mm.active_list_lock);
  4230. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4231. list_empty(&dev_priv->render_ring.active_list);
  4232. if (HAS_BSD(dev))
  4233. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4234. spin_unlock(&dev_priv->mm.active_list_lock);
  4235. return !lists_empty;
  4236. }
  4237. static int
  4238. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4239. {
  4240. drm_i915_private_t *dev_priv, *next_dev;
  4241. struct drm_i915_gem_object *obj_priv, *next_obj;
  4242. int cnt = 0;
  4243. int would_deadlock = 1;
  4244. /* "fast-path" to count number of available objects */
  4245. if (nr_to_scan == 0) {
  4246. spin_lock(&shrink_list_lock);
  4247. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4248. struct drm_device *dev = dev_priv->dev;
  4249. if (mutex_trylock(&dev->struct_mutex)) {
  4250. list_for_each_entry(obj_priv,
  4251. &dev_priv->mm.inactive_list,
  4252. list)
  4253. cnt++;
  4254. mutex_unlock(&dev->struct_mutex);
  4255. }
  4256. }
  4257. spin_unlock(&shrink_list_lock);
  4258. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4259. }
  4260. spin_lock(&shrink_list_lock);
  4261. rescan:
  4262. /* first scan for clean buffers */
  4263. list_for_each_entry_safe(dev_priv, next_dev,
  4264. &shrink_list, mm.shrink_list) {
  4265. struct drm_device *dev = dev_priv->dev;
  4266. if (! mutex_trylock(&dev->struct_mutex))
  4267. continue;
  4268. spin_unlock(&shrink_list_lock);
  4269. i915_gem_retire_requests(dev);
  4270. list_for_each_entry_safe(obj_priv, next_obj,
  4271. &dev_priv->mm.inactive_list,
  4272. list) {
  4273. if (i915_gem_object_is_purgeable(obj_priv)) {
  4274. i915_gem_object_unbind(&obj_priv->base);
  4275. if (--nr_to_scan <= 0)
  4276. break;
  4277. }
  4278. }
  4279. spin_lock(&shrink_list_lock);
  4280. mutex_unlock(&dev->struct_mutex);
  4281. would_deadlock = 0;
  4282. if (nr_to_scan <= 0)
  4283. break;
  4284. }
  4285. /* second pass, evict/count anything still on the inactive list */
  4286. list_for_each_entry_safe(dev_priv, next_dev,
  4287. &shrink_list, mm.shrink_list) {
  4288. struct drm_device *dev = dev_priv->dev;
  4289. if (! mutex_trylock(&dev->struct_mutex))
  4290. continue;
  4291. spin_unlock(&shrink_list_lock);
  4292. list_for_each_entry_safe(obj_priv, next_obj,
  4293. &dev_priv->mm.inactive_list,
  4294. list) {
  4295. if (nr_to_scan > 0) {
  4296. i915_gem_object_unbind(&obj_priv->base);
  4297. nr_to_scan--;
  4298. } else
  4299. cnt++;
  4300. }
  4301. spin_lock(&shrink_list_lock);
  4302. mutex_unlock(&dev->struct_mutex);
  4303. would_deadlock = 0;
  4304. }
  4305. if (nr_to_scan) {
  4306. int active = 0;
  4307. /*
  4308. * We are desperate for pages, so as a last resort, wait
  4309. * for the GPU to finish and discard whatever we can.
  4310. * This has a dramatic impact to reduce the number of
  4311. * OOM-killer events whilst running the GPU aggressively.
  4312. */
  4313. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4314. struct drm_device *dev = dev_priv->dev;
  4315. if (!mutex_trylock(&dev->struct_mutex))
  4316. continue;
  4317. spin_unlock(&shrink_list_lock);
  4318. if (i915_gpu_is_active(dev)) {
  4319. i915_gpu_idle(dev);
  4320. active++;
  4321. }
  4322. spin_lock(&shrink_list_lock);
  4323. mutex_unlock(&dev->struct_mutex);
  4324. }
  4325. if (active)
  4326. goto rescan;
  4327. }
  4328. spin_unlock(&shrink_list_lock);
  4329. if (would_deadlock)
  4330. return -1;
  4331. else if (cnt > 0)
  4332. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4333. else
  4334. return 0;
  4335. }
  4336. static struct shrinker shrinker = {
  4337. .shrink = i915_gem_shrink,
  4338. .seeks = DEFAULT_SEEKS,
  4339. };
  4340. __init void
  4341. i915_gem_shrinker_init(void)
  4342. {
  4343. register_shrinker(&shrinker);
  4344. }
  4345. __exit void
  4346. i915_gem_shrinker_exit(void)
  4347. {
  4348. unregister_shrinker(&shrinker);
  4349. }