hd64572.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * Hitachi (now Renesas) SCA-II HD64572 driver for Linux
  3. *
  4. * Copyright (C) 1998-2008 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Source of information: HD64572 SCA-II User's Manual
  11. *
  12. * We use the following SCA memory map:
  13. *
  14. * Packet buffer descriptor rings - starting from winbase or win0base:
  15. * rx_ring_buffers * sizeof(pkt_desc) = logical channel #0 RX ring
  16. * tx_ring_buffers * sizeof(pkt_desc) = logical channel #0 TX ring
  17. * rx_ring_buffers * sizeof(pkt_desc) = logical channel #1 RX ring (if used)
  18. * tx_ring_buffers * sizeof(pkt_desc) = logical channel #1 TX ring (if used)
  19. *
  20. * Packet data buffers - starting from winbase + buff_offset:
  21. * rx_ring_buffers * HDLC_MAX_MRU = logical channel #0 RX buffers
  22. * tx_ring_buffers * HDLC_MAX_MRU = logical channel #0 TX buffers
  23. * rx_ring_buffers * HDLC_MAX_MRU = logical channel #0 RX buffers (if used)
  24. * tx_ring_buffers * HDLC_MAX_MRU = logical channel #0 TX buffers (if used)
  25. */
  26. #include <linux/bitops.h>
  27. #include <linux/errno.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/hdlc.h>
  30. #include <linux/in.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/ioport.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/kernel.h>
  36. #include <linux/module.h>
  37. #include <linux/netdevice.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/slab.h>
  40. #include <linux/string.h>
  41. #include <linux/types.h>
  42. #include <asm/io.h>
  43. #include <asm/system.h>
  44. #include <asm/uaccess.h>
  45. #include "hd64572.h"
  46. #define NAPI_WEIGHT 16
  47. #define get_msci(port) (phy_node(port) ? MSCI1_OFFSET : MSCI0_OFFSET)
  48. #define get_dmac_rx(port) (phy_node(port) ? DMAC1RX_OFFSET : DMAC0RX_OFFSET)
  49. #define get_dmac_tx(port) (phy_node(port) ? DMAC1TX_OFFSET : DMAC0TX_OFFSET)
  50. #define SCA_INTR_MSCI(node) (node ? 0x10 : 0x01)
  51. #define SCA_INTR_DMAC_RX(node) (node ? 0x20 : 0x02)
  52. #define SCA_INTR_DMAC_TX(node) (node ? 0x40 : 0x04)
  53. static int sca_poll(struct napi_struct *napi, int budget);
  54. static inline struct net_device *port_to_dev(port_t *port)
  55. {
  56. return port->dev;
  57. }
  58. static inline int sca_intr_status(card_t *card)
  59. {
  60. u8 result = 0;
  61. u32 isr0 = sca_inl(ISR0, card);
  62. if (isr0 & 0x0000000F) result |= SCA_INTR_DMAC_RX(0);
  63. if (isr0 & 0x000000F0) result |= SCA_INTR_DMAC_TX(0);
  64. if (isr0 & 0x00000F00) result |= SCA_INTR_DMAC_RX(1);
  65. if (isr0 & 0x0000F000) result |= SCA_INTR_DMAC_TX(1);
  66. if (isr0 & 0x003E0000) result |= SCA_INTR_MSCI(0);
  67. if (isr0 & 0x3E000000) result |= SCA_INTR_MSCI(1);
  68. if (!(result & SCA_INTR_DMAC_TX(0)))
  69. if (sca_in(DSR_TX(0), card) & DSR_EOM)
  70. result |= SCA_INTR_DMAC_TX(0);
  71. if (!(result & SCA_INTR_DMAC_TX(1)))
  72. if (sca_in(DSR_TX(1), card) & DSR_EOM)
  73. result |= SCA_INTR_DMAC_TX(1);
  74. return result;
  75. }
  76. static inline port_t* dev_to_port(struct net_device *dev)
  77. {
  78. return dev_to_hdlc(dev)->priv;
  79. }
  80. static inline void enable_intr(port_t *port)
  81. {
  82. /* DMA & MSCI IRQ enable */
  83. /* IR0_TXINT | IR0_RXINTA | IR0_DMIB* | IR0_DMIA* */
  84. sca_outl(sca_inl(IER0, port->card) |
  85. (phy_node(port) ? 0x0A006600 : 0x000A0066), IER0, port->card);
  86. }
  87. static inline void disable_intr(port_t *port)
  88. {
  89. sca_outl(sca_inl(IER0, port->card) &
  90. (phy_node(port) ? 0x00FF00FF : 0xFF00FF00), IER0, port->card);
  91. }
  92. static inline u16 next_desc(port_t *port, u16 desc, int transmit)
  93. {
  94. return (desc + 1) % (transmit ? port_to_card(port)->tx_ring_buffers
  95. : port_to_card(port)->rx_ring_buffers);
  96. }
  97. static inline u16 desc_abs_number(port_t *port, u16 desc, int transmit)
  98. {
  99. u16 rx_buffs = port_to_card(port)->rx_ring_buffers;
  100. u16 tx_buffs = port_to_card(port)->tx_ring_buffers;
  101. desc %= (transmit ? tx_buffs : rx_buffs); // called with "X + 1" etc.
  102. return log_node(port) * (rx_buffs + tx_buffs) +
  103. transmit * rx_buffs + desc;
  104. }
  105. static inline u16 desc_offset(port_t *port, u16 desc, int transmit)
  106. {
  107. /* Descriptor offset always fits in 16 bytes */
  108. return desc_abs_number(port, desc, transmit) * sizeof(pkt_desc);
  109. }
  110. static inline pkt_desc __iomem *desc_address(port_t *port, u16 desc,
  111. int transmit)
  112. {
  113. return (pkt_desc __iomem *)(winbase(port_to_card(port))
  114. + desc_offset(port, desc, transmit));
  115. }
  116. static inline u32 buffer_offset(port_t *port, u16 desc, int transmit)
  117. {
  118. return port_to_card(port)->buff_offset +
  119. desc_abs_number(port, desc, transmit) * (u32)HDLC_MAX_MRU;
  120. }
  121. static inline void sca_set_carrier(port_t *port)
  122. {
  123. if (!(sca_in(get_msci(port) + ST3, port_to_card(port)) & ST3_DCD)) {
  124. #ifdef DEBUG_LINK
  125. printk(KERN_DEBUG "%s: sca_set_carrier on\n",
  126. port_to_dev(port)->name);
  127. #endif
  128. netif_carrier_on(port_to_dev(port));
  129. } else {
  130. #ifdef DEBUG_LINK
  131. printk(KERN_DEBUG "%s: sca_set_carrier off\n",
  132. port_to_dev(port)->name);
  133. #endif
  134. netif_carrier_off(port_to_dev(port));
  135. }
  136. }
  137. static void sca_init_port(port_t *port)
  138. {
  139. card_t *card = port_to_card(port);
  140. int transmit, i;
  141. port->rxin = 0;
  142. port->txin = 0;
  143. port->txlast = 0;
  144. for (transmit = 0; transmit < 2; transmit++) {
  145. u16 dmac = transmit ? get_dmac_tx(port) : get_dmac_rx(port);
  146. u16 buffs = transmit ? card->tx_ring_buffers
  147. : card->rx_ring_buffers;
  148. for (i = 0; i < buffs; i++) {
  149. pkt_desc __iomem *desc = desc_address(port, i, transmit);
  150. u16 chain_off = desc_offset(port, i + 1, transmit);
  151. u32 buff_off = buffer_offset(port, i, transmit);
  152. writel(chain_off, &desc->cp);
  153. writel(buff_off, &desc->bp);
  154. writew(0, &desc->len);
  155. writeb(0, &desc->stat);
  156. }
  157. /* DMA disable - to halt state */
  158. sca_out(0, transmit ? DSR_TX(phy_node(port)) :
  159. DSR_RX(phy_node(port)), card);
  160. /* software ABORT - to initial state */
  161. sca_out(DCR_ABORT, transmit ? DCR_TX(phy_node(port)) :
  162. DCR_RX(phy_node(port)), card);
  163. /* current desc addr */
  164. sca_outl(desc_offset(port, 0, transmit), dmac + CDAL, card);
  165. if (!transmit)
  166. sca_outl(desc_offset(port, buffs - 1, transmit),
  167. dmac + EDAL, card);
  168. else
  169. sca_outl(desc_offset(port, 0, transmit), dmac + EDAL,
  170. card);
  171. /* clear frame end interrupt counter */
  172. sca_out(DCR_CLEAR_EOF, transmit ? DCR_TX(phy_node(port)) :
  173. DCR_RX(phy_node(port)), card);
  174. if (!transmit) { /* Receive */
  175. /* set buffer length */
  176. sca_outw(HDLC_MAX_MRU, dmac + BFLL, card);
  177. /* Chain mode, Multi-frame */
  178. sca_out(0x14, DMR_RX(phy_node(port)), card);
  179. sca_out(DIR_EOME | DIR_BOFE, DIR_RX(phy_node(port)),
  180. card);
  181. /* DMA enable */
  182. sca_out(DSR_DE, DSR_RX(phy_node(port)), card);
  183. } else { /* Transmit */
  184. /* Chain mode, Multi-frame */
  185. sca_out(0x14, DMR_TX(phy_node(port)), card);
  186. /* enable underflow interrupts */
  187. sca_out(DIR_BOFE, DIR_TX(phy_node(port)), card);
  188. }
  189. }
  190. sca_set_carrier(port);
  191. netif_napi_add(port_to_dev(port), &port->napi, sca_poll, NAPI_WEIGHT);
  192. }
  193. /* MSCI interrupt service */
  194. static inline void sca_msci_intr(port_t *port)
  195. {
  196. u16 msci = get_msci(port);
  197. card_t* card = port_to_card(port);
  198. if (sca_in(msci + ST1, card) & ST1_CDCD) {
  199. /* Reset MSCI CDCD status bit */
  200. sca_out(ST1_CDCD, msci + ST1, card);
  201. sca_set_carrier(port);
  202. }
  203. }
  204. static inline void sca_rx(card_t *card, port_t *port, pkt_desc __iomem *desc,
  205. u16 rxin)
  206. {
  207. struct net_device *dev = port_to_dev(port);
  208. struct sk_buff *skb;
  209. u16 len;
  210. u32 buff;
  211. len = readw(&desc->len);
  212. skb = dev_alloc_skb(len);
  213. if (!skb) {
  214. dev->stats.rx_dropped++;
  215. return;
  216. }
  217. buff = buffer_offset(port, rxin, 0);
  218. memcpy_fromio(skb->data, winbase(card) + buff, len);
  219. skb_put(skb, len);
  220. #ifdef DEBUG_PKT
  221. printk(KERN_DEBUG "%s RX(%i):", dev->name, skb->len);
  222. debug_frame(skb);
  223. #endif
  224. dev->stats.rx_packets++;
  225. dev->stats.rx_bytes += skb->len;
  226. skb->protocol = hdlc_type_trans(skb, dev);
  227. netif_receive_skb(skb);
  228. }
  229. /* Receive DMA service */
  230. static inline int sca_rx_done(port_t *port, int budget)
  231. {
  232. struct net_device *dev = port_to_dev(port);
  233. u16 dmac = get_dmac_rx(port);
  234. card_t *card = port_to_card(port);
  235. u8 stat = sca_in(DSR_RX(phy_node(port)), card); /* read DMA Status */
  236. int received = 0;
  237. /* Reset DSR status bits */
  238. sca_out((stat & (DSR_EOT | DSR_EOM | DSR_BOF | DSR_COF)) | DSR_DWE,
  239. DSR_RX(phy_node(port)), card);
  240. if (stat & DSR_BOF)
  241. /* Dropped one or more frames */
  242. dev->stats.rx_over_errors++;
  243. while (received < budget) {
  244. u32 desc_off = desc_offset(port, port->rxin, 0);
  245. pkt_desc __iomem *desc;
  246. u32 cda = sca_inl(dmac + CDAL, card);
  247. if ((cda >= desc_off) && (cda < desc_off + sizeof(pkt_desc)))
  248. break; /* No frame received */
  249. desc = desc_address(port, port->rxin, 0);
  250. stat = readb(&desc->stat);
  251. if (!(stat & ST_RX_EOM))
  252. port->rxpart = 1; /* partial frame received */
  253. else if ((stat & ST_ERROR_MASK) || port->rxpart) {
  254. dev->stats.rx_errors++;
  255. if (stat & ST_RX_OVERRUN)
  256. dev->stats.rx_fifo_errors++;
  257. else if ((stat & (ST_RX_SHORT | ST_RX_ABORT |
  258. ST_RX_RESBIT)) || port->rxpart)
  259. dev->stats.rx_frame_errors++;
  260. else if (stat & ST_RX_CRC)
  261. dev->stats.rx_crc_errors++;
  262. if (stat & ST_RX_EOM)
  263. port->rxpart = 0; /* received last fragment */
  264. } else {
  265. sca_rx(card, port, desc, port->rxin);
  266. received++;
  267. }
  268. /* Set new error descriptor address */
  269. sca_outl(desc_off, dmac + EDAL, card);
  270. port->rxin = next_desc(port, port->rxin, 0);
  271. }
  272. /* make sure RX DMA is enabled */
  273. sca_out(DSR_DE, DSR_RX(phy_node(port)), card);
  274. return received;
  275. }
  276. /* Transmit DMA service */
  277. static inline void sca_tx_done(port_t *port)
  278. {
  279. struct net_device *dev = port_to_dev(port);
  280. card_t* card = port_to_card(port);
  281. u8 stat;
  282. spin_lock(&port->lock);
  283. stat = sca_in(DSR_TX(phy_node(port)), card); /* read DMA Status */
  284. /* Reset DSR status bits */
  285. sca_out((stat & (DSR_EOT | DSR_EOM | DSR_BOF | DSR_COF)) | DSR_DWE,
  286. DSR_TX(phy_node(port)), card);
  287. while (1) {
  288. pkt_desc __iomem *desc = desc_address(port, port->txlast, 1);
  289. u8 stat = readb(&desc->stat);
  290. if (!(stat & ST_TX_OWNRSHP))
  291. break; /* not yet transmitted */
  292. if (stat & ST_TX_UNDRRUN) {
  293. dev->stats.tx_errors++;
  294. dev->stats.tx_fifo_errors++;
  295. } else {
  296. dev->stats.tx_packets++;
  297. dev->stats.tx_bytes += readw(&desc->len);
  298. }
  299. writeb(0, &desc->stat); /* Free descriptor */
  300. port->txlast = next_desc(port, port->txlast, 1);
  301. }
  302. netif_wake_queue(dev);
  303. spin_unlock(&port->lock);
  304. }
  305. static int sca_poll(struct napi_struct *napi, int budget)
  306. {
  307. port_t *port = container_of(napi, port_t, napi);
  308. u8 stat = sca_intr_status(port->card);
  309. int received = 0;
  310. if (stat & SCA_INTR_MSCI(port->phy_node))
  311. sca_msci_intr(port);
  312. if (stat & SCA_INTR_DMAC_TX(port->phy_node))
  313. sca_tx_done(port);
  314. if (stat & SCA_INTR_DMAC_RX(port->phy_node))
  315. received = sca_rx_done(port, budget);
  316. if (received < budget) {
  317. netif_rx_complete(port->dev, napi);
  318. enable_intr(port);
  319. }
  320. return received;
  321. }
  322. static irqreturn_t sca_intr(int irq, void* dev_id)
  323. {
  324. card_t *card = dev_id;
  325. int i;
  326. u8 stat = sca_intr_status(card);
  327. int handled = 0;
  328. for (i = 0; i < 2; i++) {
  329. port_t *port = get_port(card, i);
  330. if (port && (stat & (SCA_INTR_MSCI(i) | SCA_INTR_DMAC_RX(i) |
  331. SCA_INTR_DMAC_TX(i)))) {
  332. handled = 1;
  333. disable_intr(port);
  334. netif_rx_schedule(port->dev, &port->napi);
  335. }
  336. }
  337. return IRQ_RETVAL(handled);
  338. }
  339. static void sca_set_port(port_t *port)
  340. {
  341. card_t* card = port_to_card(port);
  342. u16 msci = get_msci(port);
  343. u8 md2 = sca_in(msci + MD2, card);
  344. unsigned int tmc, br = 10, brv = 1024;
  345. if (port->settings.clock_rate > 0) {
  346. /* Try lower br for better accuracy*/
  347. do {
  348. br--;
  349. brv >>= 1; /* brv = 2^9 = 512 max in specs */
  350. /* Baud Rate = CLOCK_BASE / TMC / 2^BR */
  351. tmc = CLOCK_BASE / brv / port->settings.clock_rate;
  352. }while (br > 1 && tmc <= 128);
  353. if (tmc < 1) {
  354. tmc = 1;
  355. br = 0; /* For baud=CLOCK_BASE we use tmc=1 br=0 */
  356. brv = 1;
  357. } else if (tmc > 255)
  358. tmc = 256; /* tmc=0 means 256 - low baud rates */
  359. port->settings.clock_rate = CLOCK_BASE / brv / tmc;
  360. } else {
  361. br = 9; /* Minimum clock rate */
  362. tmc = 256; /* 8bit = 0 */
  363. port->settings.clock_rate = CLOCK_BASE / (256 * 512);
  364. }
  365. port->rxs = (port->rxs & ~CLK_BRG_MASK) | br;
  366. port->txs = (port->txs & ~CLK_BRG_MASK) | br;
  367. port->tmc = tmc;
  368. /* baud divisor - time constant*/
  369. sca_out(port->tmc, msci + TMCR, card);
  370. sca_out(port->tmc, msci + TMCT, card);
  371. /* Set BRG bits */
  372. sca_out(port->rxs, msci + RXS, card);
  373. sca_out(port->txs, msci + TXS, card);
  374. if (port->settings.loopback)
  375. md2 |= MD2_LOOPBACK;
  376. else
  377. md2 &= ~MD2_LOOPBACK;
  378. sca_out(md2, msci + MD2, card);
  379. }
  380. static void sca_open(struct net_device *dev)
  381. {
  382. port_t *port = dev_to_port(dev);
  383. card_t* card = port_to_card(port);
  384. u16 msci = get_msci(port);
  385. u8 md0, md2;
  386. switch(port->encoding) {
  387. case ENCODING_NRZ: md2 = MD2_NRZ; break;
  388. case ENCODING_NRZI: md2 = MD2_NRZI; break;
  389. case ENCODING_FM_MARK: md2 = MD2_FM_MARK; break;
  390. case ENCODING_FM_SPACE: md2 = MD2_FM_SPACE; break;
  391. default: md2 = MD2_MANCHESTER;
  392. }
  393. if (port->settings.loopback)
  394. md2 |= MD2_LOOPBACK;
  395. switch(port->parity) {
  396. case PARITY_CRC16_PR0: md0 = MD0_HDLC | MD0_CRC_16_0; break;
  397. case PARITY_CRC16_PR1: md0 = MD0_HDLC | MD0_CRC_16; break;
  398. case PARITY_CRC32_PR1_CCITT: md0 = MD0_HDLC | MD0_CRC_ITU32; break;
  399. case PARITY_CRC16_PR1_CCITT: md0 = MD0_HDLC | MD0_CRC_ITU; break;
  400. default: md0 = MD0_HDLC | MD0_CRC_NONE;
  401. }
  402. sca_out(CMD_RESET, msci + CMD, card);
  403. sca_out(md0, msci + MD0, card);
  404. sca_out(0x00, msci + MD1, card); /* no address field check */
  405. sca_out(md2, msci + MD2, card);
  406. sca_out(0x7E, msci + IDL, card); /* flag character 0x7E */
  407. /* Skip the rest of underrun frame */
  408. sca_out(CTL_IDLE | CTL_URCT | CTL_URSKP, msci + CTL, card);
  409. sca_out(0x0F, msci + RNR, card); /* +1=RX DMA activation condition */
  410. sca_out(0x3C, msci + TFS, card); /* +1 = TX start */
  411. sca_out(0x38, msci + TCR, card); /* =Critical TX DMA activ condition */
  412. sca_out(0x38, msci + TNR0, card); /* =TX DMA activation condition */
  413. sca_out(0x3F, msci + TNR1, card); /* +1=TX DMA deactivation condition*/
  414. /* We're using the following interrupts:
  415. - TXINT (DMAC completed all transmissions and DCD changes)
  416. - all DMA interrupts
  417. */
  418. /* MSCI TXINT and RXINTA interrupt enable */
  419. sca_outl(IE0_TXINT | IE0_RXINTA | IE0_CDCD, msci + IE0, card);
  420. sca_out(port->tmc, msci + TMCR, card);
  421. sca_out(port->tmc, msci + TMCT, card);
  422. sca_out(port->rxs, msci + RXS, card);
  423. sca_out(port->txs, msci + TXS, card);
  424. sca_out(CMD_TX_ENABLE, msci + CMD, card);
  425. sca_out(CMD_RX_ENABLE, msci + CMD, card);
  426. sca_set_carrier(port);
  427. enable_intr(port);
  428. napi_enable(&port->napi);
  429. netif_start_queue(dev);
  430. }
  431. static void sca_close(struct net_device *dev)
  432. {
  433. port_t *port = dev_to_port(dev);
  434. /* reset channel */
  435. sca_out(CMD_RESET, get_msci(port) + CMD, port_to_card(port));
  436. disable_intr(port);
  437. napi_disable(&port->napi);
  438. netif_stop_queue(dev);
  439. }
  440. static int sca_attach(struct net_device *dev, unsigned short encoding,
  441. unsigned short parity)
  442. {
  443. if (encoding != ENCODING_NRZ &&
  444. encoding != ENCODING_NRZI &&
  445. encoding != ENCODING_FM_MARK &&
  446. encoding != ENCODING_FM_SPACE &&
  447. encoding != ENCODING_MANCHESTER)
  448. return -EINVAL;
  449. if (parity != PARITY_NONE &&
  450. parity != PARITY_CRC16_PR0 &&
  451. parity != PARITY_CRC16_PR1 &&
  452. parity != PARITY_CRC32_PR1_CCITT &&
  453. parity != PARITY_CRC16_PR1_CCITT)
  454. return -EINVAL;
  455. dev_to_port(dev)->encoding = encoding;
  456. dev_to_port(dev)->parity = parity;
  457. return 0;
  458. }
  459. #ifdef DEBUG_RINGS
  460. static void sca_dump_rings(struct net_device *dev)
  461. {
  462. port_t *port = dev_to_port(dev);
  463. card_t *card = port_to_card(port);
  464. u16 cnt;
  465. printk(KERN_DEBUG "RX ring: CDA=%u EDA=%u DSR=%02X in=%u %sactive",
  466. sca_inl(get_dmac_rx(port) + CDAL, card),
  467. sca_inl(get_dmac_rx(port) + EDAL, card),
  468. sca_in(DSR_RX(phy_node(port)), card), port->rxin,
  469. sca_in(DSR_RX(phy_node(port)), card) & DSR_DE ? "" : "in");
  470. for (cnt = 0; cnt < port_to_card(port)->rx_ring_buffers; cnt++)
  471. printk(" %02X", readb(&(desc_address(port, cnt, 0)->stat)));
  472. printk("\n" KERN_DEBUG "TX ring: CDA=%u EDA=%u DSR=%02X in=%u "
  473. "last=%u %sactive",
  474. sca_inl(get_dmac_tx(port) + CDAL, card),
  475. sca_inl(get_dmac_tx(port) + EDAL, card),
  476. sca_in(DSR_TX(phy_node(port)), card), port->txin, port->txlast,
  477. sca_in(DSR_TX(phy_node(port)), card) & DSR_DE ? "" : "in");
  478. for (cnt = 0; cnt < port_to_card(port)->tx_ring_buffers; cnt++)
  479. printk(" %02X", readb(&(desc_address(port, cnt, 1)->stat)));
  480. printk("\n");
  481. printk(KERN_DEBUG "MSCI: MD: %02x %02x %02x,"
  482. " ST: %02x %02x %02x %02x %02x, FST: %02x CST: %02x %02x\n",
  483. sca_in(get_msci(port) + MD0, card),
  484. sca_in(get_msci(port) + MD1, card),
  485. sca_in(get_msci(port) + MD2, card),
  486. sca_in(get_msci(port) + ST0, card),
  487. sca_in(get_msci(port) + ST1, card),
  488. sca_in(get_msci(port) + ST2, card),
  489. sca_in(get_msci(port) + ST3, card),
  490. sca_in(get_msci(port) + ST4, card),
  491. sca_in(get_msci(port) + FST, card),
  492. sca_in(get_msci(port) + CST0, card),
  493. sca_in(get_msci(port) + CST1, card));
  494. printk(KERN_DEBUG "ILAR: %02x ISR: %08x %08x\n", sca_in(ILAR, card),
  495. sca_inl(ISR0, card), sca_inl(ISR1, card));
  496. }
  497. #endif /* DEBUG_RINGS */
  498. static int sca_xmit(struct sk_buff *skb, struct net_device *dev)
  499. {
  500. port_t *port = dev_to_port(dev);
  501. card_t *card = port_to_card(port);
  502. pkt_desc __iomem *desc;
  503. u32 buff, len;
  504. spin_lock_irq(&port->lock);
  505. desc = desc_address(port, port->txin + 1, 1);
  506. BUG_ON(readb(&desc->stat)); /* previous xmit should stop queue */
  507. #ifdef DEBUG_PKT
  508. printk(KERN_DEBUG "%s TX(%i):", dev->name, skb->len);
  509. debug_frame(skb);
  510. #endif
  511. desc = desc_address(port, port->txin, 1);
  512. buff = buffer_offset(port, port->txin, 1);
  513. len = skb->len;
  514. memcpy_toio(winbase(card) + buff, skb->data, len);
  515. writew(len, &desc->len);
  516. writeb(ST_TX_EOM, &desc->stat);
  517. dev->trans_start = jiffies;
  518. port->txin = next_desc(port, port->txin, 1);
  519. sca_outl(desc_offset(port, port->txin, 1),
  520. get_dmac_tx(port) + EDAL, card);
  521. sca_out(DSR_DE, DSR_TX(phy_node(port)), card); /* Enable TX DMA */
  522. desc = desc_address(port, port->txin + 1, 1);
  523. if (readb(&desc->stat)) /* allow 1 packet gap */
  524. netif_stop_queue(dev);
  525. spin_unlock_irq(&port->lock);
  526. dev_kfree_skb(skb);
  527. return 0;
  528. }
  529. static u32 __devinit sca_detect_ram(card_t *card, u8 __iomem *rambase,
  530. u32 ramsize)
  531. {
  532. /* Round RAM size to 32 bits, fill from end to start */
  533. u32 i = ramsize &= ~3;
  534. do {
  535. i -= 4;
  536. writel(i ^ 0x12345678, rambase + i);
  537. } while (i > 0);
  538. for (i = 0; i < ramsize ; i += 4) {
  539. if (readl(rambase + i) != (i ^ 0x12345678))
  540. break;
  541. }
  542. return i;
  543. }
  544. static void __devinit sca_init(card_t *card, int wait_states)
  545. {
  546. sca_out(wait_states, WCRL, card); /* Wait Control */
  547. sca_out(wait_states, WCRM, card);
  548. sca_out(wait_states, WCRH, card);
  549. sca_out(0, DMER, card); /* DMA Master disable */
  550. sca_out(0x03, PCR, card); /* DMA priority */
  551. sca_out(0, DSR_RX(0), card); /* DMA disable - to halt state */
  552. sca_out(0, DSR_TX(0), card);
  553. sca_out(0, DSR_RX(1), card);
  554. sca_out(0, DSR_TX(1), card);
  555. sca_out(DMER_DME, DMER, card); /* DMA Master enable */
  556. }