sched_fair.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. */
  19. /*
  20. * Preemption granularity:
  21. * (default: 2 msec, units: nanoseconds)
  22. *
  23. * NOTE: this granularity value is not the same as the concept of
  24. * 'timeslice length' - timeslices in CFS will typically be somewhat
  25. * larger than this value. (to see the precise effective timeslice
  26. * length of your workload, run vmstat and monitor the context-switches
  27. * field)
  28. *
  29. * On SMP systems the value of this is multiplied by the log2 of the
  30. * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
  31. * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
  32. */
  33. unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
  34. /*
  35. * SCHED_BATCH wake-up granularity.
  36. * (default: 10 msec, units: nanoseconds)
  37. *
  38. * This option delays the preemption effects of decoupled workloads
  39. * and reduces their over-scheduling. Synchronous workloads will still
  40. * have immediate wakeup/sleep latencies.
  41. */
  42. unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
  43. 10000000000ULL/HZ;
  44. /*
  45. * SCHED_OTHER wake-up granularity.
  46. * (default: 1 msec, units: nanoseconds)
  47. *
  48. * This option delays the preemption effects of decoupled workloads
  49. * and reduces their over-scheduling. Synchronous workloads will still
  50. * have immediate wakeup/sleep latencies.
  51. */
  52. unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
  53. unsigned int sysctl_sched_stat_granularity __read_mostly;
  54. /*
  55. * Initialized in sched_init_granularity():
  56. */
  57. unsigned int sysctl_sched_runtime_limit __read_mostly;
  58. /*
  59. * Debugging: various feature bits
  60. */
  61. enum {
  62. SCHED_FEAT_FAIR_SLEEPERS = 1,
  63. SCHED_FEAT_SLEEPER_AVG = 2,
  64. SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
  65. SCHED_FEAT_PRECISE_CPU_LOAD = 8,
  66. SCHED_FEAT_START_DEBIT = 16,
  67. SCHED_FEAT_SKIP_INITIAL = 32,
  68. };
  69. unsigned int sysctl_sched_features __read_mostly =
  70. SCHED_FEAT_FAIR_SLEEPERS *1 |
  71. SCHED_FEAT_SLEEPER_AVG *0 |
  72. SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
  73. SCHED_FEAT_PRECISE_CPU_LOAD *1 |
  74. SCHED_FEAT_START_DEBIT *1 |
  75. SCHED_FEAT_SKIP_INITIAL *0;
  76. extern struct sched_class fair_sched_class;
  77. /**************************************************************
  78. * CFS operations on generic schedulable entities:
  79. */
  80. #ifdef CONFIG_FAIR_GROUP_SCHED
  81. /* cpu runqueue to which this cfs_rq is attached */
  82. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  83. {
  84. return cfs_rq->rq;
  85. }
  86. /* currently running entity (if any) on this cfs_rq */
  87. static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
  88. {
  89. return cfs_rq->curr;
  90. }
  91. /* An entity is a task if it doesn't "own" a runqueue */
  92. #define entity_is_task(se) (!se->my_q)
  93. static inline void
  94. set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
  95. {
  96. cfs_rq->curr = se;
  97. }
  98. #else /* CONFIG_FAIR_GROUP_SCHED */
  99. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  100. {
  101. return container_of(cfs_rq, struct rq, cfs);
  102. }
  103. static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
  104. {
  105. struct rq *rq = rq_of(cfs_rq);
  106. if (unlikely(rq->curr->sched_class != &fair_sched_class))
  107. return NULL;
  108. return &rq->curr->se;
  109. }
  110. #define entity_is_task(se) 1
  111. static inline void
  112. set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
  113. #endif /* CONFIG_FAIR_GROUP_SCHED */
  114. static inline struct task_struct *task_of(struct sched_entity *se)
  115. {
  116. return container_of(se, struct task_struct, se);
  117. }
  118. /**************************************************************
  119. * Scheduling class tree data structure manipulation methods:
  120. */
  121. /*
  122. * Enqueue an entity into the rb-tree:
  123. */
  124. static inline void
  125. __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  126. {
  127. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  128. struct rb_node *parent = NULL;
  129. struct sched_entity *entry;
  130. s64 key = se->fair_key;
  131. int leftmost = 1;
  132. /*
  133. * Find the right place in the rbtree:
  134. */
  135. while (*link) {
  136. parent = *link;
  137. entry = rb_entry(parent, struct sched_entity, run_node);
  138. /*
  139. * We dont care about collisions. Nodes with
  140. * the same key stay together.
  141. */
  142. if (key - entry->fair_key < 0) {
  143. link = &parent->rb_left;
  144. } else {
  145. link = &parent->rb_right;
  146. leftmost = 0;
  147. }
  148. }
  149. /*
  150. * Maintain a cache of leftmost tree entries (it is frequently
  151. * used):
  152. */
  153. if (leftmost)
  154. cfs_rq->rb_leftmost = &se->run_node;
  155. rb_link_node(&se->run_node, parent, link);
  156. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  157. update_load_add(&cfs_rq->load, se->load.weight);
  158. cfs_rq->nr_running++;
  159. se->on_rq = 1;
  160. }
  161. static inline void
  162. __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  163. {
  164. if (cfs_rq->rb_leftmost == &se->run_node)
  165. cfs_rq->rb_leftmost = rb_next(&se->run_node);
  166. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  167. update_load_sub(&cfs_rq->load, se->load.weight);
  168. cfs_rq->nr_running--;
  169. se->on_rq = 0;
  170. }
  171. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  172. {
  173. return cfs_rq->rb_leftmost;
  174. }
  175. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  176. {
  177. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  178. }
  179. /**************************************************************
  180. * Scheduling class statistics methods:
  181. */
  182. /*
  183. * We rescale the rescheduling granularity of tasks according to their
  184. * nice level, but only linearly, not exponentially:
  185. */
  186. static long
  187. niced_granularity(struct sched_entity *curr, unsigned long granularity)
  188. {
  189. u64 tmp;
  190. if (likely(curr->load.weight == NICE_0_LOAD))
  191. return granularity;
  192. /*
  193. * Positive nice levels get the same granularity as nice-0:
  194. */
  195. if (likely(curr->load.weight < NICE_0_LOAD)) {
  196. tmp = curr->load.weight * (u64)granularity;
  197. return (long) (tmp >> NICE_0_SHIFT);
  198. }
  199. /*
  200. * Negative nice level tasks get linearly finer
  201. * granularity:
  202. */
  203. tmp = curr->load.inv_weight * (u64)granularity;
  204. /*
  205. * It will always fit into 'long':
  206. */
  207. return (long) (tmp >> WMULT_SHIFT);
  208. }
  209. static inline void
  210. limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
  211. {
  212. long limit = sysctl_sched_runtime_limit;
  213. /*
  214. * Niced tasks have the same history dynamic range as
  215. * non-niced tasks:
  216. */
  217. if (unlikely(se->wait_runtime > limit)) {
  218. se->wait_runtime = limit;
  219. schedstat_inc(se, wait_runtime_overruns);
  220. schedstat_inc(cfs_rq, wait_runtime_overruns);
  221. }
  222. if (unlikely(se->wait_runtime < -limit)) {
  223. se->wait_runtime = -limit;
  224. schedstat_inc(se, wait_runtime_underruns);
  225. schedstat_inc(cfs_rq, wait_runtime_underruns);
  226. }
  227. }
  228. static inline void
  229. __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
  230. {
  231. se->wait_runtime += delta;
  232. schedstat_add(se, sum_wait_runtime, delta);
  233. limit_wait_runtime(cfs_rq, se);
  234. }
  235. static void
  236. add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
  237. {
  238. schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
  239. __add_wait_runtime(cfs_rq, se, delta);
  240. schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
  241. }
  242. /*
  243. * Update the current task's runtime statistics. Skip current tasks that
  244. * are not in our scheduling class.
  245. */
  246. static inline void
  247. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  248. {
  249. unsigned long delta, delta_exec, delta_fair, delta_mine;
  250. struct load_weight *lw = &cfs_rq->load;
  251. unsigned long load = lw->weight;
  252. delta_exec = curr->delta_exec;
  253. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  254. curr->sum_exec_runtime += delta_exec;
  255. cfs_rq->exec_clock += delta_exec;
  256. if (unlikely(!load))
  257. return;
  258. delta_fair = calc_delta_fair(delta_exec, lw);
  259. delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
  260. if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
  261. delta = min(cfs_rq->sleeper_bonus, (u64)delta_exec);
  262. delta = calc_delta_mine(delta, curr->load.weight, lw);
  263. delta = min((u64)delta, cfs_rq->sleeper_bonus);
  264. cfs_rq->sleeper_bonus -= delta;
  265. delta_mine -= delta;
  266. }
  267. cfs_rq->fair_clock += delta_fair;
  268. /*
  269. * We executed delta_exec amount of time on the CPU,
  270. * but we were only entitled to delta_mine amount of
  271. * time during that period (if nr_running == 1 then
  272. * the two values are equal)
  273. * [Note: delta_mine - delta_exec is negative]:
  274. */
  275. add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
  276. }
  277. static void update_curr(struct cfs_rq *cfs_rq)
  278. {
  279. struct sched_entity *curr = cfs_rq_curr(cfs_rq);
  280. unsigned long delta_exec;
  281. if (unlikely(!curr))
  282. return;
  283. /*
  284. * Get the amount of time the current task was running
  285. * since the last time we changed load (this cannot
  286. * overflow on 32 bits):
  287. */
  288. delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
  289. curr->delta_exec += delta_exec;
  290. if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
  291. __update_curr(cfs_rq, curr);
  292. curr->delta_exec = 0;
  293. }
  294. curr->exec_start = rq_of(cfs_rq)->clock;
  295. }
  296. static inline void
  297. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  298. {
  299. se->wait_start_fair = cfs_rq->fair_clock;
  300. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  301. }
  302. /*
  303. * We calculate fair deltas here, so protect against the random effects
  304. * of a multiplication overflow by capping it to the runtime limit:
  305. */
  306. #if BITS_PER_LONG == 32
  307. static inline unsigned long
  308. calc_weighted(unsigned long delta, unsigned long weight, int shift)
  309. {
  310. u64 tmp = (u64)delta * weight >> shift;
  311. if (unlikely(tmp > sysctl_sched_runtime_limit*2))
  312. return sysctl_sched_runtime_limit*2;
  313. return tmp;
  314. }
  315. #else
  316. static inline unsigned long
  317. calc_weighted(unsigned long delta, unsigned long weight, int shift)
  318. {
  319. return delta * weight >> shift;
  320. }
  321. #endif
  322. /*
  323. * Task is being enqueued - update stats:
  324. */
  325. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  326. {
  327. s64 key;
  328. /*
  329. * Are we enqueueing a waiting task? (for current tasks
  330. * a dequeue/enqueue event is a NOP)
  331. */
  332. if (se != cfs_rq_curr(cfs_rq))
  333. update_stats_wait_start(cfs_rq, se);
  334. /*
  335. * Update the key:
  336. */
  337. key = cfs_rq->fair_clock;
  338. /*
  339. * Optimize the common nice 0 case:
  340. */
  341. if (likely(se->load.weight == NICE_0_LOAD)) {
  342. key -= se->wait_runtime;
  343. } else {
  344. u64 tmp;
  345. if (se->wait_runtime < 0) {
  346. tmp = -se->wait_runtime;
  347. key += (tmp * se->load.inv_weight) >>
  348. (WMULT_SHIFT - NICE_0_SHIFT);
  349. } else {
  350. tmp = se->wait_runtime;
  351. key -= (tmp * se->load.inv_weight) >>
  352. (WMULT_SHIFT - NICE_0_SHIFT);
  353. }
  354. }
  355. se->fair_key = key;
  356. }
  357. /*
  358. * Note: must be called with a freshly updated rq->fair_clock.
  359. */
  360. static inline void
  361. __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  362. {
  363. unsigned long delta_fair = se->delta_fair_run;
  364. schedstat_set(se->wait_max, max(se->wait_max,
  365. rq_of(cfs_rq)->clock - se->wait_start));
  366. if (unlikely(se->load.weight != NICE_0_LOAD))
  367. delta_fair = calc_weighted(delta_fair, se->load.weight,
  368. NICE_0_SHIFT);
  369. add_wait_runtime(cfs_rq, se, delta_fair);
  370. }
  371. static void
  372. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  373. {
  374. unsigned long delta_fair;
  375. delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
  376. (u64)(cfs_rq->fair_clock - se->wait_start_fair));
  377. se->delta_fair_run += delta_fair;
  378. if (unlikely(abs(se->delta_fair_run) >=
  379. sysctl_sched_stat_granularity)) {
  380. __update_stats_wait_end(cfs_rq, se);
  381. se->delta_fair_run = 0;
  382. }
  383. se->wait_start_fair = 0;
  384. schedstat_set(se->wait_start, 0);
  385. }
  386. static inline void
  387. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  388. {
  389. update_curr(cfs_rq);
  390. /*
  391. * Mark the end of the wait period if dequeueing a
  392. * waiting task:
  393. */
  394. if (se != cfs_rq_curr(cfs_rq))
  395. update_stats_wait_end(cfs_rq, se);
  396. }
  397. /*
  398. * We are picking a new current task - update its stats:
  399. */
  400. static inline void
  401. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  402. {
  403. /*
  404. * We are starting a new run period:
  405. */
  406. se->exec_start = rq_of(cfs_rq)->clock;
  407. }
  408. /*
  409. * We are descheduling a task - update its stats:
  410. */
  411. static inline void
  412. update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  413. {
  414. se->exec_start = 0;
  415. }
  416. /**************************************************
  417. * Scheduling class queueing methods:
  418. */
  419. static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  420. {
  421. unsigned long load = cfs_rq->load.weight, delta_fair;
  422. long prev_runtime;
  423. if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
  424. load = rq_of(cfs_rq)->cpu_load[2];
  425. delta_fair = se->delta_fair_sleep;
  426. /*
  427. * Fix up delta_fair with the effect of us running
  428. * during the whole sleep period:
  429. */
  430. if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
  431. delta_fair = div64_likely32((u64)delta_fair * load,
  432. load + se->load.weight);
  433. if (unlikely(se->load.weight != NICE_0_LOAD))
  434. delta_fair = calc_weighted(delta_fair, se->load.weight,
  435. NICE_0_SHIFT);
  436. prev_runtime = se->wait_runtime;
  437. __add_wait_runtime(cfs_rq, se, delta_fair);
  438. delta_fair = se->wait_runtime - prev_runtime;
  439. /*
  440. * Track the amount of bonus we've given to sleepers:
  441. */
  442. cfs_rq->sleeper_bonus += delta_fair;
  443. if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
  444. cfs_rq->sleeper_bonus = sysctl_sched_runtime_limit;
  445. schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
  446. }
  447. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  448. {
  449. struct task_struct *tsk = task_of(se);
  450. unsigned long delta_fair;
  451. if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
  452. !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
  453. return;
  454. delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
  455. (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
  456. se->delta_fair_sleep += delta_fair;
  457. if (unlikely(abs(se->delta_fair_sleep) >=
  458. sysctl_sched_stat_granularity)) {
  459. __enqueue_sleeper(cfs_rq, se);
  460. se->delta_fair_sleep = 0;
  461. }
  462. se->sleep_start_fair = 0;
  463. #ifdef CONFIG_SCHEDSTATS
  464. if (se->sleep_start) {
  465. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  466. if ((s64)delta < 0)
  467. delta = 0;
  468. if (unlikely(delta > se->sleep_max))
  469. se->sleep_max = delta;
  470. se->sleep_start = 0;
  471. se->sum_sleep_runtime += delta;
  472. }
  473. if (se->block_start) {
  474. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  475. if ((s64)delta < 0)
  476. delta = 0;
  477. if (unlikely(delta > se->block_max))
  478. se->block_max = delta;
  479. se->block_start = 0;
  480. se->sum_sleep_runtime += delta;
  481. }
  482. #endif
  483. }
  484. static void
  485. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  486. {
  487. /*
  488. * Update the fair clock.
  489. */
  490. update_curr(cfs_rq);
  491. if (wakeup)
  492. enqueue_sleeper(cfs_rq, se);
  493. update_stats_enqueue(cfs_rq, se);
  494. __enqueue_entity(cfs_rq, se);
  495. }
  496. static void
  497. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  498. {
  499. update_stats_dequeue(cfs_rq, se);
  500. if (sleep) {
  501. se->sleep_start_fair = cfs_rq->fair_clock;
  502. #ifdef CONFIG_SCHEDSTATS
  503. if (entity_is_task(se)) {
  504. struct task_struct *tsk = task_of(se);
  505. if (tsk->state & TASK_INTERRUPTIBLE)
  506. se->sleep_start = rq_of(cfs_rq)->clock;
  507. if (tsk->state & TASK_UNINTERRUPTIBLE)
  508. se->block_start = rq_of(cfs_rq)->clock;
  509. }
  510. cfs_rq->wait_runtime -= se->wait_runtime;
  511. #endif
  512. }
  513. __dequeue_entity(cfs_rq, se);
  514. }
  515. /*
  516. * Preempt the current task with a newly woken task if needed:
  517. */
  518. static void
  519. __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
  520. struct sched_entity *curr, unsigned long granularity)
  521. {
  522. s64 __delta = curr->fair_key - se->fair_key;
  523. /*
  524. * Take scheduling granularity into account - do not
  525. * preempt the current task unless the best task has
  526. * a larger than sched_granularity fairness advantage:
  527. */
  528. if (__delta > niced_granularity(curr, granularity))
  529. resched_task(rq_of(cfs_rq)->curr);
  530. }
  531. static inline void
  532. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  533. {
  534. /*
  535. * Any task has to be enqueued before it get to execute on
  536. * a CPU. So account for the time it spent waiting on the
  537. * runqueue. (note, here we rely on pick_next_task() having
  538. * done a put_prev_task_fair() shortly before this, which
  539. * updated rq->fair_clock - used by update_stats_wait_end())
  540. */
  541. update_stats_wait_end(cfs_rq, se);
  542. update_stats_curr_start(cfs_rq, se);
  543. set_cfs_rq_curr(cfs_rq, se);
  544. }
  545. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  546. {
  547. struct sched_entity *se = __pick_next_entity(cfs_rq);
  548. set_next_entity(cfs_rq, se);
  549. return se;
  550. }
  551. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  552. {
  553. /*
  554. * If still on the runqueue then deactivate_task()
  555. * was not called and update_curr() has to be done:
  556. */
  557. if (prev->on_rq)
  558. update_curr(cfs_rq);
  559. update_stats_curr_end(cfs_rq, prev);
  560. if (prev->on_rq)
  561. update_stats_wait_start(cfs_rq, prev);
  562. set_cfs_rq_curr(cfs_rq, NULL);
  563. }
  564. static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  565. {
  566. struct sched_entity *next;
  567. /*
  568. * Dequeue and enqueue the task to update its
  569. * position within the tree:
  570. */
  571. dequeue_entity(cfs_rq, curr, 0);
  572. enqueue_entity(cfs_rq, curr, 0);
  573. /*
  574. * Reschedule if another task tops the current one.
  575. */
  576. next = __pick_next_entity(cfs_rq);
  577. if (next == curr)
  578. return;
  579. __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
  580. }
  581. /**************************************************
  582. * CFS operations on tasks:
  583. */
  584. #ifdef CONFIG_FAIR_GROUP_SCHED
  585. /* Walk up scheduling entities hierarchy */
  586. #define for_each_sched_entity(se) \
  587. for (; se; se = se->parent)
  588. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  589. {
  590. return p->se.cfs_rq;
  591. }
  592. /* runqueue on which this entity is (to be) queued */
  593. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  594. {
  595. return se->cfs_rq;
  596. }
  597. /* runqueue "owned" by this group */
  598. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  599. {
  600. return grp->my_q;
  601. }
  602. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  603. * another cpu ('this_cpu')
  604. */
  605. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  606. {
  607. /* A later patch will take group into account */
  608. return &cpu_rq(this_cpu)->cfs;
  609. }
  610. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  611. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  612. list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  613. /* Do the two (enqueued) tasks belong to the same group ? */
  614. static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
  615. {
  616. if (curr->se.cfs_rq == p->se.cfs_rq)
  617. return 1;
  618. return 0;
  619. }
  620. #else /* CONFIG_FAIR_GROUP_SCHED */
  621. #define for_each_sched_entity(se) \
  622. for (; se; se = NULL)
  623. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  624. {
  625. return &task_rq(p)->cfs;
  626. }
  627. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  628. {
  629. struct task_struct *p = task_of(se);
  630. struct rq *rq = task_rq(p);
  631. return &rq->cfs;
  632. }
  633. /* runqueue "owned" by this group */
  634. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  635. {
  636. return NULL;
  637. }
  638. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  639. {
  640. return &cpu_rq(this_cpu)->cfs;
  641. }
  642. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  643. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  644. static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
  645. {
  646. return 1;
  647. }
  648. #endif /* CONFIG_FAIR_GROUP_SCHED */
  649. /*
  650. * The enqueue_task method is called before nr_running is
  651. * increased. Here we update the fair scheduling stats and
  652. * then put the task into the rbtree:
  653. */
  654. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  655. {
  656. struct cfs_rq *cfs_rq;
  657. struct sched_entity *se = &p->se;
  658. for_each_sched_entity(se) {
  659. if (se->on_rq)
  660. break;
  661. cfs_rq = cfs_rq_of(se);
  662. enqueue_entity(cfs_rq, se, wakeup);
  663. }
  664. }
  665. /*
  666. * The dequeue_task method is called before nr_running is
  667. * decreased. We remove the task from the rbtree and
  668. * update the fair scheduling stats:
  669. */
  670. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  671. {
  672. struct cfs_rq *cfs_rq;
  673. struct sched_entity *se = &p->se;
  674. for_each_sched_entity(se) {
  675. cfs_rq = cfs_rq_of(se);
  676. dequeue_entity(cfs_rq, se, sleep);
  677. /* Don't dequeue parent if it has other entities besides us */
  678. if (cfs_rq->load.weight)
  679. break;
  680. }
  681. }
  682. /*
  683. * sched_yield() support is very simple - we dequeue and enqueue
  684. */
  685. static void yield_task_fair(struct rq *rq, struct task_struct *p)
  686. {
  687. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  688. __update_rq_clock(rq);
  689. /*
  690. * Dequeue and enqueue the task to update its
  691. * position within the tree:
  692. */
  693. dequeue_entity(cfs_rq, &p->se, 0);
  694. enqueue_entity(cfs_rq, &p->se, 0);
  695. }
  696. /*
  697. * Preempt the current task with a newly woken task if needed:
  698. */
  699. static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
  700. {
  701. struct task_struct *curr = rq->curr;
  702. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  703. unsigned long gran;
  704. if (unlikely(rt_prio(p->prio))) {
  705. update_rq_clock(rq);
  706. update_curr(cfs_rq);
  707. resched_task(curr);
  708. return;
  709. }
  710. gran = sysctl_sched_wakeup_granularity;
  711. /*
  712. * Batch tasks prefer throughput over latency:
  713. */
  714. if (unlikely(p->policy == SCHED_BATCH))
  715. gran = sysctl_sched_batch_wakeup_granularity;
  716. if (is_same_group(curr, p))
  717. __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
  718. }
  719. static struct task_struct *pick_next_task_fair(struct rq *rq)
  720. {
  721. struct cfs_rq *cfs_rq = &rq->cfs;
  722. struct sched_entity *se;
  723. if (unlikely(!cfs_rq->nr_running))
  724. return NULL;
  725. do {
  726. se = pick_next_entity(cfs_rq);
  727. cfs_rq = group_cfs_rq(se);
  728. } while (cfs_rq);
  729. return task_of(se);
  730. }
  731. /*
  732. * Account for a descheduled task:
  733. */
  734. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  735. {
  736. struct sched_entity *se = &prev->se;
  737. struct cfs_rq *cfs_rq;
  738. for_each_sched_entity(se) {
  739. cfs_rq = cfs_rq_of(se);
  740. put_prev_entity(cfs_rq, se);
  741. }
  742. }
  743. /**************************************************
  744. * Fair scheduling class load-balancing methods:
  745. */
  746. /*
  747. * Load-balancing iterator. Note: while the runqueue stays locked
  748. * during the whole iteration, the current task might be
  749. * dequeued so the iterator has to be dequeue-safe. Here we
  750. * achieve that by always pre-iterating before returning
  751. * the current task:
  752. */
  753. static inline struct task_struct *
  754. __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
  755. {
  756. struct task_struct *p;
  757. if (!curr)
  758. return NULL;
  759. p = rb_entry(curr, struct task_struct, se.run_node);
  760. cfs_rq->rb_load_balance_curr = rb_next(curr);
  761. return p;
  762. }
  763. static struct task_struct *load_balance_start_fair(void *arg)
  764. {
  765. struct cfs_rq *cfs_rq = arg;
  766. return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
  767. }
  768. static struct task_struct *load_balance_next_fair(void *arg)
  769. {
  770. struct cfs_rq *cfs_rq = arg;
  771. return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
  772. }
  773. #ifdef CONFIG_FAIR_GROUP_SCHED
  774. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  775. {
  776. struct sched_entity *curr;
  777. struct task_struct *p;
  778. if (!cfs_rq->nr_running)
  779. return MAX_PRIO;
  780. curr = __pick_next_entity(cfs_rq);
  781. p = task_of(curr);
  782. return p->prio;
  783. }
  784. #endif
  785. static unsigned long
  786. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  787. unsigned long max_nr_move, unsigned long max_load_move,
  788. struct sched_domain *sd, enum cpu_idle_type idle,
  789. int *all_pinned, int *this_best_prio)
  790. {
  791. struct cfs_rq *busy_cfs_rq;
  792. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  793. long rem_load_move = max_load_move;
  794. struct rq_iterator cfs_rq_iterator;
  795. cfs_rq_iterator.start = load_balance_start_fair;
  796. cfs_rq_iterator.next = load_balance_next_fair;
  797. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  798. #ifdef CONFIG_FAIR_GROUP_SCHED
  799. struct cfs_rq *this_cfs_rq;
  800. long imbalance;
  801. unsigned long maxload;
  802. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  803. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  804. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  805. if (imbalance <= 0)
  806. continue;
  807. /* Don't pull more than imbalance/2 */
  808. imbalance /= 2;
  809. maxload = min(rem_load_move, imbalance);
  810. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  811. #else
  812. # define maxload rem_load_move
  813. #endif
  814. /* pass busy_cfs_rq argument into
  815. * load_balance_[start|next]_fair iterators
  816. */
  817. cfs_rq_iterator.arg = busy_cfs_rq;
  818. nr_moved = balance_tasks(this_rq, this_cpu, busiest,
  819. max_nr_move, maxload, sd, idle, all_pinned,
  820. &load_moved, this_best_prio, &cfs_rq_iterator);
  821. total_nr_moved += nr_moved;
  822. max_nr_move -= nr_moved;
  823. rem_load_move -= load_moved;
  824. if (max_nr_move <= 0 || rem_load_move <= 0)
  825. break;
  826. }
  827. return max_load_move - rem_load_move;
  828. }
  829. /*
  830. * scheduler tick hitting a task of our scheduling class:
  831. */
  832. static void task_tick_fair(struct rq *rq, struct task_struct *curr)
  833. {
  834. struct cfs_rq *cfs_rq;
  835. struct sched_entity *se = &curr->se;
  836. for_each_sched_entity(se) {
  837. cfs_rq = cfs_rq_of(se);
  838. entity_tick(cfs_rq, se);
  839. }
  840. }
  841. /*
  842. * Share the fairness runtime between parent and child, thus the
  843. * total amount of pressure for CPU stays equal - new tasks
  844. * get a chance to run but frequent forkers are not allowed to
  845. * monopolize the CPU. Note: the parent runqueue is locked,
  846. * the child is not running yet.
  847. */
  848. static void task_new_fair(struct rq *rq, struct task_struct *p)
  849. {
  850. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  851. struct sched_entity *se = &p->se;
  852. sched_info_queued(p);
  853. update_stats_enqueue(cfs_rq, se);
  854. /*
  855. * Child runs first: we let it run before the parent
  856. * until it reschedules once. We set up the key so that
  857. * it will preempt the parent:
  858. */
  859. p->se.fair_key = current->se.fair_key -
  860. niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
  861. /*
  862. * The first wait is dominated by the child-runs-first logic,
  863. * so do not credit it with that waiting time yet:
  864. */
  865. if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
  866. p->se.wait_start_fair = 0;
  867. /*
  868. * The statistical average of wait_runtime is about
  869. * -granularity/2, so initialize the task with that:
  870. */
  871. if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
  872. p->se.wait_runtime = -(sysctl_sched_granularity / 2);
  873. __enqueue_entity(cfs_rq, se);
  874. }
  875. #ifdef CONFIG_FAIR_GROUP_SCHED
  876. /* Account for a task changing its policy or group.
  877. *
  878. * This routine is mostly called to set cfs_rq->curr field when a task
  879. * migrates between groups/classes.
  880. */
  881. static void set_curr_task_fair(struct rq *rq)
  882. {
  883. struct sched_entity *se = &rq->curr.se;
  884. for_each_sched_entity(se)
  885. set_next_entity(cfs_rq_of(se), se);
  886. }
  887. #else
  888. static void set_curr_task_fair(struct rq *rq)
  889. {
  890. }
  891. #endif
  892. /*
  893. * All the scheduling class methods:
  894. */
  895. struct sched_class fair_sched_class __read_mostly = {
  896. .enqueue_task = enqueue_task_fair,
  897. .dequeue_task = dequeue_task_fair,
  898. .yield_task = yield_task_fair,
  899. .check_preempt_curr = check_preempt_curr_fair,
  900. .pick_next_task = pick_next_task_fair,
  901. .put_prev_task = put_prev_task_fair,
  902. .load_balance = load_balance_fair,
  903. .set_curr_task = set_curr_task_fair,
  904. .task_tick = task_tick_fair,
  905. .task_new = task_new_fair,
  906. };
  907. #ifdef CONFIG_SCHED_DEBUG
  908. static void print_cfs_stats(struct seq_file *m, int cpu)
  909. {
  910. struct cfs_rq *cfs_rq;
  911. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  912. print_cfs_rq(m, cpu, cfs_rq);
  913. }
  914. #endif