sun4m_irq.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473
  1. /*
  2. * sun4m irq support
  3. *
  4. * djhr: Hacked out of irq.c into a CPU dependent version.
  5. *
  6. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  7. * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  8. * Copyright (C) 1995 Pete A. Zaitcev (zaitcev@yahoo.com)
  9. * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
  10. */
  11. #include <asm/timer.h>
  12. #include <asm/traps.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/irq.h>
  16. #include <asm/io.h>
  17. #include <asm/cacheflush.h>
  18. #include "irq.h"
  19. #include "kernel.h"
  20. /* Sample sun4m IRQ layout:
  21. *
  22. * 0x22 - Power
  23. * 0x24 - ESP SCSI
  24. * 0x26 - Lance ethernet
  25. * 0x2b - Floppy
  26. * 0x2c - Zilog uart
  27. * 0x32 - SBUS level 0
  28. * 0x33 - Parallel port, SBUS level 1
  29. * 0x35 - SBUS level 2
  30. * 0x37 - SBUS level 3
  31. * 0x39 - Audio, Graphics card, SBUS level 4
  32. * 0x3b - SBUS level 5
  33. * 0x3d - SBUS level 6
  34. *
  35. * Each interrupt source has a mask bit in the interrupt registers.
  36. * When the mask bit is set, this blocks interrupt deliver. So you
  37. * clear the bit to enable the interrupt.
  38. *
  39. * Interrupts numbered less than 0x10 are software triggered interrupts
  40. * and unused by Linux.
  41. *
  42. * Interrupt level assignment on sun4m:
  43. *
  44. * level source
  45. * ------------------------------------------------------------
  46. * 1 softint-1
  47. * 2 softint-2, VME/SBUS level 1
  48. * 3 softint-3, VME/SBUS level 2
  49. * 4 softint-4, onboard SCSI
  50. * 5 softint-5, VME/SBUS level 3
  51. * 6 softint-6, onboard ETHERNET
  52. * 7 softint-7, VME/SBUS level 4
  53. * 8 softint-8, onboard VIDEO
  54. * 9 softint-9, VME/SBUS level 5, Module Interrupt
  55. * 10 softint-10, system counter/timer
  56. * 11 softint-11, VME/SBUS level 6, Floppy
  57. * 12 softint-12, Keyboard/Mouse, Serial
  58. * 13 softint-13, VME/SBUS level 7, ISDN Audio
  59. * 14 softint-14, per-processor counter/timer
  60. * 15 softint-15, Asynchronous Errors (broadcast)
  61. *
  62. * Each interrupt source is masked distinctly in the sun4m interrupt
  63. * registers. The PIL level alone is therefore ambiguous, since multiple
  64. * interrupt sources map to a single PIL.
  65. *
  66. * This ambiguity is resolved in the 'intr' property for device nodes
  67. * in the OF device tree. Each 'intr' property entry is composed of
  68. * two 32-bit words. The first word is the IRQ priority value, which
  69. * is what we're intersted in. The second word is the IRQ vector, which
  70. * is unused.
  71. *
  72. * The low 4 bits of the IRQ priority indicate the PIL, and the upper
  73. * 4 bits indicate onboard vs. SBUS leveled vs. VME leveled. 0x20
  74. * means onboard, 0x30 means SBUS leveled, and 0x40 means VME leveled.
  75. *
  76. * For example, an 'intr' IRQ priority value of 0x24 is onboard SCSI
  77. * whereas a value of 0x33 is SBUS level 2. Here are some sample
  78. * 'intr' property IRQ priority values from ss4, ss5, ss10, ss20, and
  79. * Tadpole S3 GX systems.
  80. *
  81. * esp: 0x24 onboard ESP SCSI
  82. * le: 0x26 onboard Lance ETHERNET
  83. * p9100: 0x32 SBUS level 1 P9100 video
  84. * bpp: 0x33 SBUS level 2 BPP parallel port device
  85. * DBRI: 0x39 SBUS level 5 DBRI ISDN audio
  86. * SUNW,leo: 0x39 SBUS level 5 LEO video
  87. * pcmcia: 0x3b SBUS level 6 PCMCIA controller
  88. * uctrl: 0x3b SBUS level 6 UCTRL device
  89. * modem: 0x3d SBUS level 7 MODEM
  90. * zs: 0x2c onboard keyboard/mouse/serial
  91. * floppy: 0x2b onboard Floppy
  92. * power: 0x22 onboard power device (XXX unknown mask bit XXX)
  93. */
  94. /* Code in entry.S needs to get at these register mappings. */
  95. struct sun4m_irq_percpu __iomem *sun4m_irq_percpu[SUN4M_NCPUS];
  96. struct sun4m_irq_global __iomem *sun4m_irq_global;
  97. struct sun4m_handler_data {
  98. bool percpu;
  99. long mask;
  100. };
  101. /* Dave Redman (djhr@tadpole.co.uk)
  102. * The sun4m interrupt registers.
  103. */
  104. #define SUN4M_INT_ENABLE 0x80000000
  105. #define SUN4M_INT_E14 0x00000080
  106. #define SUN4M_INT_E10 0x00080000
  107. #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */
  108. #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */
  109. #define SUN4M_INT_M2S_WRITE_ERR 0x20000000 /* write buffer error */
  110. #define SUN4M_INT_ECC_ERR 0x10000000 /* ecc memory error */
  111. #define SUN4M_INT_VME_ERR 0x08000000 /* vme async error */
  112. #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */
  113. #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */
  114. #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */
  115. #define SUN4M_INT_REALTIME 0x00080000 /* system timer */
  116. #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */
  117. #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */
  118. #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */
  119. #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */
  120. #define SUN4M_INT_KBDMS 0x00004000 /* keyboard/mouse */
  121. #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */
  122. #define SUN4M_INT_VMEBITS 0x0000007F /* vme int bits */
  123. #define SUN4M_INT_ERROR (SUN4M_INT_MODULE_ERR | \
  124. SUN4M_INT_M2S_WRITE_ERR | \
  125. SUN4M_INT_ECC_ERR | \
  126. SUN4M_INT_VME_ERR)
  127. #define SUN4M_INT_SBUS(x) (1 << (x+7))
  128. #define SUN4M_INT_VME(x) (1 << (x))
  129. /* Interrupt levels used by OBP */
  130. #define OBP_INT_LEVEL_SOFT 0x10
  131. #define OBP_INT_LEVEL_ONBOARD 0x20
  132. #define OBP_INT_LEVEL_SBUS 0x30
  133. #define OBP_INT_LEVEL_VME 0x40
  134. #define SUN4M_TIMER_IRQ (OBP_INT_LEVEL_ONBOARD | 10)
  135. #define SUN4M_PROFILE_IRQ (OBP_INT_LEVEL_ONBOARD | 14)
  136. static unsigned long sun4m_imask[0x50] = {
  137. /* 0x00 - SMP */
  138. 0, SUN4M_SOFT_INT(1),
  139. SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3),
  140. SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5),
  141. SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7),
  142. SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9),
  143. SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11),
  144. SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13),
  145. SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15),
  146. /* 0x10 - soft */
  147. 0, SUN4M_SOFT_INT(1),
  148. SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3),
  149. SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5),
  150. SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7),
  151. SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9),
  152. SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11),
  153. SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13),
  154. SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15),
  155. /* 0x20 - onboard */
  156. 0, 0, 0, 0,
  157. SUN4M_INT_SCSI, 0, SUN4M_INT_ETHERNET, 0,
  158. SUN4M_INT_VIDEO, SUN4M_INT_MODULE,
  159. SUN4M_INT_REALTIME, SUN4M_INT_FLOPPY,
  160. (SUN4M_INT_SERIAL | SUN4M_INT_KBDMS),
  161. SUN4M_INT_AUDIO, SUN4M_INT_E14, SUN4M_INT_MODULE_ERR,
  162. /* 0x30 - sbus */
  163. 0, 0, SUN4M_INT_SBUS(0), SUN4M_INT_SBUS(1),
  164. 0, SUN4M_INT_SBUS(2), 0, SUN4M_INT_SBUS(3),
  165. 0, SUN4M_INT_SBUS(4), 0, SUN4M_INT_SBUS(5),
  166. 0, SUN4M_INT_SBUS(6), 0, 0,
  167. /* 0x40 - vme */
  168. 0, 0, SUN4M_INT_VME(0), SUN4M_INT_VME(1),
  169. 0, SUN4M_INT_VME(2), 0, SUN4M_INT_VME(3),
  170. 0, SUN4M_INT_VME(4), 0, SUN4M_INT_VME(5),
  171. 0, SUN4M_INT_VME(6), 0, 0
  172. };
  173. static void sun4m_mask_irq(struct irq_data *data)
  174. {
  175. struct sun4m_handler_data *handler_data = data->handler_data;
  176. int cpu = smp_processor_id();
  177. if (handler_data->mask) {
  178. unsigned long flags;
  179. local_irq_save(flags);
  180. if (handler_data->percpu) {
  181. sbus_writel(handler_data->mask, &sun4m_irq_percpu[cpu]->set);
  182. } else {
  183. sbus_writel(handler_data->mask, &sun4m_irq_global->mask_set);
  184. }
  185. local_irq_restore(flags);
  186. }
  187. }
  188. static void sun4m_unmask_irq(struct irq_data *data)
  189. {
  190. struct sun4m_handler_data *handler_data = data->handler_data;
  191. int cpu = smp_processor_id();
  192. if (handler_data->mask) {
  193. unsigned long flags;
  194. local_irq_save(flags);
  195. if (handler_data->percpu) {
  196. sbus_writel(handler_data->mask, &sun4m_irq_percpu[cpu]->clear);
  197. } else {
  198. sbus_writel(handler_data->mask, &sun4m_irq_global->mask_clear);
  199. }
  200. local_irq_restore(flags);
  201. }
  202. }
  203. static unsigned int sun4m_startup_irq(struct irq_data *data)
  204. {
  205. irq_link(data->irq);
  206. sun4m_unmask_irq(data);
  207. return 0;
  208. }
  209. static void sun4m_shutdown_irq(struct irq_data *data)
  210. {
  211. sun4m_mask_irq(data);
  212. irq_unlink(data->irq);
  213. }
  214. static struct irq_chip sun4m_irq = {
  215. .name = "sun4m",
  216. .irq_startup = sun4m_startup_irq,
  217. .irq_shutdown = sun4m_shutdown_irq,
  218. .irq_mask = sun4m_mask_irq,
  219. .irq_unmask = sun4m_unmask_irq,
  220. };
  221. static unsigned int sun4m_build_device_irq(struct platform_device *op,
  222. unsigned int real_irq)
  223. {
  224. struct sun4m_handler_data *handler_data;
  225. unsigned int irq;
  226. unsigned int pil;
  227. if (real_irq >= OBP_INT_LEVEL_VME) {
  228. prom_printf("Bogus sun4m IRQ %u\n", real_irq);
  229. prom_halt();
  230. }
  231. pil = (real_irq & 0xf);
  232. irq = irq_alloc(real_irq, pil);
  233. if (irq == 0)
  234. goto out;
  235. handler_data = irq_get_handler_data(irq);
  236. if (unlikely(handler_data))
  237. goto out;
  238. handler_data = kzalloc(sizeof(struct sun4m_handler_data), GFP_ATOMIC);
  239. if (unlikely(!handler_data)) {
  240. prom_printf("IRQ: kzalloc(sun4m_handler_data) failed.\n");
  241. prom_halt();
  242. }
  243. handler_data->mask = sun4m_imask[real_irq];
  244. handler_data->percpu = real_irq < OBP_INT_LEVEL_ONBOARD;
  245. irq_set_chip_and_handler_name(irq, &sun4m_irq,
  246. handle_level_irq, "level");
  247. irq_set_handler_data(irq, handler_data);
  248. out:
  249. return irq;
  250. }
  251. struct sun4m_timer_percpu {
  252. u32 l14_limit;
  253. u32 l14_count;
  254. u32 l14_limit_noclear;
  255. u32 user_timer_start_stop;
  256. };
  257. static struct sun4m_timer_percpu __iomem *timers_percpu[SUN4M_NCPUS];
  258. struct sun4m_timer_global {
  259. u32 l10_limit;
  260. u32 l10_count;
  261. u32 l10_limit_noclear;
  262. u32 reserved;
  263. u32 timer_config;
  264. };
  265. static struct sun4m_timer_global __iomem *timers_global;
  266. static void sun4m_clear_clock_irq(void)
  267. {
  268. sbus_readl(&timers_global->l10_limit);
  269. }
  270. void sun4m_nmi(struct pt_regs *regs)
  271. {
  272. unsigned long afsr, afar, si;
  273. printk(KERN_ERR "Aieee: sun4m NMI received!\n");
  274. /* XXX HyperSparc hack XXX */
  275. __asm__ __volatile__("mov 0x500, %%g1\n\t"
  276. "lda [%%g1] 0x4, %0\n\t"
  277. "mov 0x600, %%g1\n\t"
  278. "lda [%%g1] 0x4, %1\n\t" :
  279. "=r" (afsr), "=r" (afar));
  280. printk(KERN_ERR "afsr=%08lx afar=%08lx\n", afsr, afar);
  281. si = sbus_readl(&sun4m_irq_global->pending);
  282. printk(KERN_ERR "si=%08lx\n", si);
  283. if (si & SUN4M_INT_MODULE_ERR)
  284. printk(KERN_ERR "Module async error\n");
  285. if (si & SUN4M_INT_M2S_WRITE_ERR)
  286. printk(KERN_ERR "MBus/SBus async error\n");
  287. if (si & SUN4M_INT_ECC_ERR)
  288. printk(KERN_ERR "ECC memory error\n");
  289. if (si & SUN4M_INT_VME_ERR)
  290. printk(KERN_ERR "VME async error\n");
  291. printk(KERN_ERR "you lose buddy boy...\n");
  292. show_regs(regs);
  293. prom_halt();
  294. }
  295. void sun4m_unmask_profile_irq(void)
  296. {
  297. unsigned long flags;
  298. local_irq_save(flags);
  299. sbus_writel(sun4m_imask[SUN4M_PROFILE_IRQ], &sun4m_irq_global->mask_clear);
  300. local_irq_restore(flags);
  301. }
  302. void sun4m_clear_profile_irq(int cpu)
  303. {
  304. sbus_readl(&timers_percpu[cpu]->l14_limit);
  305. }
  306. static void sun4m_load_profile_irq(int cpu, unsigned int limit)
  307. {
  308. unsigned int value = limit ? timer_value(limit) : 0;
  309. sbus_writel(value, &timers_percpu[cpu]->l14_limit);
  310. }
  311. static void __init sun4m_init_timers(void)
  312. {
  313. struct device_node *dp = of_find_node_by_name(NULL, "counter");
  314. int i, err, len, num_cpu_timers;
  315. unsigned int irq;
  316. const u32 *addr;
  317. if (!dp) {
  318. printk(KERN_ERR "sun4m_init_timers: No 'counter' node.\n");
  319. return;
  320. }
  321. addr = of_get_property(dp, "address", &len);
  322. of_node_put(dp);
  323. if (!addr) {
  324. printk(KERN_ERR "sun4m_init_timers: No 'address' prop.\n");
  325. return;
  326. }
  327. num_cpu_timers = (len / sizeof(u32)) - 1;
  328. for (i = 0; i < num_cpu_timers; i++) {
  329. timers_percpu[i] = (void __iomem *)
  330. (unsigned long) addr[i];
  331. }
  332. timers_global = (void __iomem *)
  333. (unsigned long) addr[num_cpu_timers];
  334. /* Every per-cpu timer works in timer mode */
  335. sbus_writel(0x00000000, &timers_global->timer_config);
  336. #ifdef CONFIG_SMP
  337. sparc_config.cs_period = SBUS_CLOCK_RATE * 2; /* 2 seconds */
  338. sparc_config.features |= FEAT_L14_ONESHOT;
  339. #else
  340. sparc_config.cs_period = SBUS_CLOCK_RATE / HZ; /* 1/HZ sec */
  341. sparc_config.features |= FEAT_L10_CLOCKEVENT;
  342. #endif
  343. sparc_config.features |= FEAT_L10_CLOCKSOURCE;
  344. sbus_writel(timer_value(sparc_config.cs_period),
  345. &timers_global->l10_limit);
  346. master_l10_counter = &timers_global->l10_count;
  347. irq = sun4m_build_device_irq(NULL, SUN4M_TIMER_IRQ);
  348. err = request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", NULL);
  349. if (err) {
  350. printk(KERN_ERR "sun4m_init_timers: Register IRQ error %d.\n",
  351. err);
  352. return;
  353. }
  354. for (i = 0; i < num_cpu_timers; i++)
  355. sbus_writel(0, &timers_percpu[i]->l14_limit);
  356. if (num_cpu_timers == 4)
  357. sbus_writel(SUN4M_INT_E14, &sun4m_irq_global->mask_set);
  358. #ifdef CONFIG_SMP
  359. {
  360. unsigned long flags;
  361. struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)];
  362. /* For SMP we use the level 14 ticker, however the bootup code
  363. * has copied the firmware's level 14 vector into the boot cpu's
  364. * trap table, we must fix this now or we get squashed.
  365. */
  366. local_irq_save(flags);
  367. trap_table->inst_one = lvl14_save[0];
  368. trap_table->inst_two = lvl14_save[1];
  369. trap_table->inst_three = lvl14_save[2];
  370. trap_table->inst_four = lvl14_save[3];
  371. local_ops->cache_all();
  372. local_irq_restore(flags);
  373. }
  374. #endif
  375. }
  376. void __init sun4m_init_IRQ(void)
  377. {
  378. struct device_node *dp = of_find_node_by_name(NULL, "interrupt");
  379. int len, i, mid, num_cpu_iregs;
  380. const u32 *addr;
  381. if (!dp) {
  382. printk(KERN_ERR "sun4m_init_IRQ: No 'interrupt' node.\n");
  383. return;
  384. }
  385. addr = of_get_property(dp, "address", &len);
  386. of_node_put(dp);
  387. if (!addr) {
  388. printk(KERN_ERR "sun4m_init_IRQ: No 'address' prop.\n");
  389. return;
  390. }
  391. num_cpu_iregs = (len / sizeof(u32)) - 1;
  392. for (i = 0; i < num_cpu_iregs; i++) {
  393. sun4m_irq_percpu[i] = (void __iomem *)
  394. (unsigned long) addr[i];
  395. }
  396. sun4m_irq_global = (void __iomem *)
  397. (unsigned long) addr[num_cpu_iregs];
  398. local_irq_disable();
  399. sbus_writel(~SUN4M_INT_MASKALL, &sun4m_irq_global->mask_set);
  400. for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++)
  401. sbus_writel(~0x17fff, &sun4m_irq_percpu[mid]->clear);
  402. if (num_cpu_iregs == 4)
  403. sbus_writel(0, &sun4m_irq_global->interrupt_target);
  404. sparc_config.init_timers = sun4m_init_timers;
  405. sparc_config.build_device_irq = sun4m_build_device_irq;
  406. sparc_config.clock_rate = SBUS_CLOCK_RATE;
  407. sparc_config.clear_clock_irq = sun4m_clear_clock_irq;
  408. sparc_config.load_profile_irq = sun4m_load_profile_irq;
  409. /* Cannot enable interrupts until OBP ticker is disabled. */
  410. }