smp_32.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. /* smp.c: Sparc SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5. * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6. */
  7. #include <asm/head.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/init.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/mm.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/delay.h>
  21. #include <asm/ptrace.h>
  22. #include <linux/atomic.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/cpudata.h>
  31. #include <asm/leon.h>
  32. #include "irq.h"
  33. volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
  34. cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  35. const struct sparc32_ipi_ops *sparc32_ipi_ops;
  36. /* The only guaranteed locking primitive available on all Sparc
  37. * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
  38. * places the current byte at the effective address into dest_reg and
  39. * places 0xff there afterwards. Pretty lame locking primitive
  40. * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
  41. * instruction which is much better...
  42. */
  43. void __cpuinit smp_store_cpu_info(int id)
  44. {
  45. int cpu_node;
  46. int mid;
  47. cpu_data(id).udelay_val = loops_per_jiffy;
  48. cpu_find_by_mid(id, &cpu_node);
  49. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  50. "clock-frequency", 0);
  51. cpu_data(id).prom_node = cpu_node;
  52. mid = cpu_get_hwmid(cpu_node);
  53. if (mid < 0) {
  54. printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
  55. mid = 0;
  56. }
  57. cpu_data(id).mid = mid;
  58. }
  59. void __init smp_cpus_done(unsigned int max_cpus)
  60. {
  61. extern void smp4m_smp_done(void);
  62. extern void smp4d_smp_done(void);
  63. unsigned long bogosum = 0;
  64. int cpu, num = 0;
  65. for_each_online_cpu(cpu) {
  66. num++;
  67. bogosum += cpu_data(cpu).udelay_val;
  68. }
  69. printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  70. num, bogosum/(500000/HZ),
  71. (bogosum/(5000/HZ))%100);
  72. switch(sparc_cpu_model) {
  73. case sun4m:
  74. smp4m_smp_done();
  75. break;
  76. case sun4d:
  77. smp4d_smp_done();
  78. break;
  79. case sparc_leon:
  80. leon_smp_done();
  81. break;
  82. case sun4e:
  83. printk("SUN4E\n");
  84. BUG();
  85. break;
  86. case sun4u:
  87. printk("SUN4U\n");
  88. BUG();
  89. break;
  90. default:
  91. printk("UNKNOWN!\n");
  92. BUG();
  93. break;
  94. }
  95. }
  96. void cpu_panic(void)
  97. {
  98. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  99. panic("SMP bolixed\n");
  100. }
  101. struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
  102. void smp_send_reschedule(int cpu)
  103. {
  104. /*
  105. * CPU model dependent way of implementing IPI generation targeting
  106. * a single CPU. The trap handler needs only to do trap entry/return
  107. * to call schedule.
  108. */
  109. sparc32_ipi_ops->resched(cpu);
  110. }
  111. void smp_send_stop(void)
  112. {
  113. }
  114. void arch_send_call_function_single_ipi(int cpu)
  115. {
  116. /* trigger one IPI single call on one CPU */
  117. sparc32_ipi_ops->single(cpu);
  118. }
  119. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  120. {
  121. int cpu;
  122. /* trigger IPI mask call on each CPU */
  123. for_each_cpu(cpu, mask)
  124. sparc32_ipi_ops->mask_one(cpu);
  125. }
  126. void smp_resched_interrupt(void)
  127. {
  128. irq_enter();
  129. scheduler_ipi();
  130. local_cpu_data().irq_resched_count++;
  131. irq_exit();
  132. /* re-schedule routine called by interrupt return code. */
  133. }
  134. void smp_call_function_single_interrupt(void)
  135. {
  136. irq_enter();
  137. generic_smp_call_function_single_interrupt();
  138. local_cpu_data().irq_call_count++;
  139. irq_exit();
  140. }
  141. void smp_call_function_interrupt(void)
  142. {
  143. irq_enter();
  144. generic_smp_call_function_interrupt();
  145. local_cpu_data().irq_call_count++;
  146. irq_exit();
  147. }
  148. int setup_profiling_timer(unsigned int multiplier)
  149. {
  150. return -EINVAL;
  151. }
  152. void __init smp_prepare_cpus(unsigned int max_cpus)
  153. {
  154. extern void __init smp4m_boot_cpus(void);
  155. extern void __init smp4d_boot_cpus(void);
  156. int i, cpuid, extra;
  157. printk("Entering SMP Mode...\n");
  158. extra = 0;
  159. for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
  160. if (cpuid >= NR_CPUS)
  161. extra++;
  162. }
  163. /* i = number of cpus */
  164. if (extra && max_cpus > i - extra)
  165. printk("Warning: NR_CPUS is too low to start all cpus\n");
  166. smp_store_cpu_info(boot_cpu_id);
  167. switch(sparc_cpu_model) {
  168. case sun4m:
  169. smp4m_boot_cpus();
  170. break;
  171. case sun4d:
  172. smp4d_boot_cpus();
  173. break;
  174. case sparc_leon:
  175. leon_boot_cpus();
  176. break;
  177. case sun4e:
  178. printk("SUN4E\n");
  179. BUG();
  180. break;
  181. case sun4u:
  182. printk("SUN4U\n");
  183. BUG();
  184. break;
  185. default:
  186. printk("UNKNOWN!\n");
  187. BUG();
  188. break;
  189. }
  190. }
  191. /* Set this up early so that things like the scheduler can init
  192. * properly. We use the same cpu mask for both the present and
  193. * possible cpu map.
  194. */
  195. void __init smp_setup_cpu_possible_map(void)
  196. {
  197. int instance, mid;
  198. instance = 0;
  199. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  200. if (mid < NR_CPUS) {
  201. set_cpu_possible(mid, true);
  202. set_cpu_present(mid, true);
  203. }
  204. instance++;
  205. }
  206. }
  207. void __init smp_prepare_boot_cpu(void)
  208. {
  209. int cpuid = hard_smp_processor_id();
  210. if (cpuid >= NR_CPUS) {
  211. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  212. prom_halt();
  213. }
  214. if (cpuid != 0)
  215. printk("boot cpu id != 0, this could work but is untested\n");
  216. current_thread_info()->cpu = cpuid;
  217. set_cpu_online(cpuid, true);
  218. set_cpu_possible(cpuid, true);
  219. }
  220. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
  221. {
  222. extern int __cpuinit smp4m_boot_one_cpu(int, struct task_struct *);
  223. extern int __cpuinit smp4d_boot_one_cpu(int, struct task_struct *);
  224. int ret=0;
  225. switch(sparc_cpu_model) {
  226. case sun4m:
  227. ret = smp4m_boot_one_cpu(cpu, tidle);
  228. break;
  229. case sun4d:
  230. ret = smp4d_boot_one_cpu(cpu, tidle);
  231. break;
  232. case sparc_leon:
  233. ret = leon_boot_one_cpu(cpu, tidle);
  234. break;
  235. case sun4e:
  236. printk("SUN4E\n");
  237. BUG();
  238. break;
  239. case sun4u:
  240. printk("SUN4U\n");
  241. BUG();
  242. break;
  243. default:
  244. printk("UNKNOWN!\n");
  245. BUG();
  246. break;
  247. }
  248. if (!ret) {
  249. cpumask_set_cpu(cpu, &smp_commenced_mask);
  250. while (!cpu_online(cpu))
  251. mb();
  252. }
  253. return ret;
  254. }
  255. void smp_bogo(struct seq_file *m)
  256. {
  257. int i;
  258. for_each_online_cpu(i) {
  259. seq_printf(m,
  260. "Cpu%dBogo\t: %lu.%02lu\n",
  261. i,
  262. cpu_data(i).udelay_val/(500000/HZ),
  263. (cpu_data(i).udelay_val/(5000/HZ))%100);
  264. }
  265. }
  266. void smp_info(struct seq_file *m)
  267. {
  268. int i;
  269. seq_printf(m, "State:\n");
  270. for_each_online_cpu(i)
  271. seq_printf(m, "CPU%d\t\t: online\n", i);
  272. }