huge_memory.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is enabled for all mappings
  28. * and khugepaged scans all mappings. Defrag is only invoked by
  29. * khugepaged hugepage allocations and by page faults inside
  30. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  31. * allocations.
  32. */
  33. unsigned long transparent_hugepage_flags __read_mostly =
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  35. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  36. #endif
  37. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  38. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  39. #endif
  40. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  43. /* default scan 8*512 pte (or vmas) every 30 second */
  44. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  45. static unsigned int khugepaged_pages_collapsed;
  46. static unsigned int khugepaged_full_scans;
  47. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  48. /* during fragmentation poll the hugepage allocator once every minute */
  49. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  50. static struct task_struct *khugepaged_thread __read_mostly;
  51. static DEFINE_MUTEX(khugepaged_mutex);
  52. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  53. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  54. /*
  55. * default collapse hugepages if there is at least one pte mapped like
  56. * it would have happened if the vma was large enough during page
  57. * fault.
  58. */
  59. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  60. static int khugepaged(void *none);
  61. static int khugepaged_slab_init(void);
  62. #define MM_SLOTS_HASH_BITS 10
  63. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static struct page *huge_zero_page __read_mostly;
  145. static inline bool is_huge_zero_page(struct page *page)
  146. {
  147. return ACCESS_ONCE(huge_zero_page) == page;
  148. }
  149. static inline bool is_huge_zero_pmd(pmd_t pmd)
  150. {
  151. return is_huge_zero_page(pmd_page(pmd));
  152. }
  153. static struct page *get_huge_zero_page(void)
  154. {
  155. struct page *zero_page;
  156. retry:
  157. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  158. return ACCESS_ONCE(huge_zero_page);
  159. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  160. HPAGE_PMD_ORDER);
  161. if (!zero_page) {
  162. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  163. return NULL;
  164. }
  165. count_vm_event(THP_ZERO_PAGE_ALLOC);
  166. preempt_disable();
  167. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  168. preempt_enable();
  169. __free_page(zero_page);
  170. goto retry;
  171. }
  172. /* We take additional reference here. It will be put back by shrinker */
  173. atomic_set(&huge_zero_refcount, 2);
  174. preempt_enable();
  175. return ACCESS_ONCE(huge_zero_page);
  176. }
  177. static void put_huge_zero_page(void)
  178. {
  179. /*
  180. * Counter should never go to zero here. Only shrinker can put
  181. * last reference.
  182. */
  183. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  184. }
  185. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  186. struct shrink_control *sc)
  187. {
  188. /* we can free zero page only if last reference remains */
  189. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  190. }
  191. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  195. struct page *zero_page = xchg(&huge_zero_page, NULL);
  196. BUG_ON(zero_page == NULL);
  197. __free_page(zero_page);
  198. return HPAGE_PMD_NR;
  199. }
  200. return 0;
  201. }
  202. static struct shrinker huge_zero_page_shrinker = {
  203. .count_objects = shrink_huge_zero_page_count,
  204. .scan_objects = shrink_huge_zero_page_scan,
  205. .seeks = DEFAULT_SEEKS,
  206. };
  207. #ifdef CONFIG_SYSFS
  208. static ssize_t double_flag_show(struct kobject *kobj,
  209. struct kobj_attribute *attr, char *buf,
  210. enum transparent_hugepage_flag enabled,
  211. enum transparent_hugepage_flag req_madv)
  212. {
  213. if (test_bit(enabled, &transparent_hugepage_flags)) {
  214. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  215. return sprintf(buf, "[always] madvise never\n");
  216. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  217. return sprintf(buf, "always [madvise] never\n");
  218. else
  219. return sprintf(buf, "always madvise [never]\n");
  220. }
  221. static ssize_t double_flag_store(struct kobject *kobj,
  222. struct kobj_attribute *attr,
  223. const char *buf, size_t count,
  224. enum transparent_hugepage_flag enabled,
  225. enum transparent_hugepage_flag req_madv)
  226. {
  227. if (!memcmp("always", buf,
  228. min(sizeof("always")-1, count))) {
  229. set_bit(enabled, &transparent_hugepage_flags);
  230. clear_bit(req_madv, &transparent_hugepage_flags);
  231. } else if (!memcmp("madvise", buf,
  232. min(sizeof("madvise")-1, count))) {
  233. clear_bit(enabled, &transparent_hugepage_flags);
  234. set_bit(req_madv, &transparent_hugepage_flags);
  235. } else if (!memcmp("never", buf,
  236. min(sizeof("never")-1, count))) {
  237. clear_bit(enabled, &transparent_hugepage_flags);
  238. clear_bit(req_madv, &transparent_hugepage_flags);
  239. } else
  240. return -EINVAL;
  241. return count;
  242. }
  243. static ssize_t enabled_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return double_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_FLAG,
  248. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  249. }
  250. static ssize_t enabled_store(struct kobject *kobj,
  251. struct kobj_attribute *attr,
  252. const char *buf, size_t count)
  253. {
  254. ssize_t ret;
  255. ret = double_flag_store(kobj, attr, buf, count,
  256. TRANSPARENT_HUGEPAGE_FLAG,
  257. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  258. if (ret > 0) {
  259. int err;
  260. mutex_lock(&khugepaged_mutex);
  261. err = start_khugepaged();
  262. mutex_unlock(&khugepaged_mutex);
  263. if (err)
  264. ret = err;
  265. }
  266. return ret;
  267. }
  268. static struct kobj_attribute enabled_attr =
  269. __ATTR(enabled, 0644, enabled_show, enabled_store);
  270. static ssize_t single_flag_show(struct kobject *kobj,
  271. struct kobj_attribute *attr, char *buf,
  272. enum transparent_hugepage_flag flag)
  273. {
  274. return sprintf(buf, "%d\n",
  275. !!test_bit(flag, &transparent_hugepage_flags));
  276. }
  277. static ssize_t single_flag_store(struct kobject *kobj,
  278. struct kobj_attribute *attr,
  279. const char *buf, size_t count,
  280. enum transparent_hugepage_flag flag)
  281. {
  282. unsigned long value;
  283. int ret;
  284. ret = kstrtoul(buf, 10, &value);
  285. if (ret < 0)
  286. return ret;
  287. if (value > 1)
  288. return -EINVAL;
  289. if (value)
  290. set_bit(flag, &transparent_hugepage_flags);
  291. else
  292. clear_bit(flag, &transparent_hugepage_flags);
  293. return count;
  294. }
  295. /*
  296. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  297. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  298. * memory just to allocate one more hugepage.
  299. */
  300. static ssize_t defrag_show(struct kobject *kobj,
  301. struct kobj_attribute *attr, char *buf)
  302. {
  303. return double_flag_show(kobj, attr, buf,
  304. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  305. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  306. }
  307. static ssize_t defrag_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. return double_flag_store(kobj, attr, buf, count,
  312. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  313. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  314. }
  315. static struct kobj_attribute defrag_attr =
  316. __ATTR(defrag, 0644, defrag_show, defrag_store);
  317. static ssize_t use_zero_page_show(struct kobject *kobj,
  318. struct kobj_attribute *attr, char *buf)
  319. {
  320. return single_flag_show(kobj, attr, buf,
  321. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  322. }
  323. static ssize_t use_zero_page_store(struct kobject *kobj,
  324. struct kobj_attribute *attr, const char *buf, size_t count)
  325. {
  326. return single_flag_store(kobj, attr, buf, count,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static struct kobj_attribute use_zero_page_attr =
  330. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  331. #ifdef CONFIG_DEBUG_VM
  332. static ssize_t debug_cow_show(struct kobject *kobj,
  333. struct kobj_attribute *attr, char *buf)
  334. {
  335. return single_flag_show(kobj, attr, buf,
  336. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  337. }
  338. static ssize_t debug_cow_store(struct kobject *kobj,
  339. struct kobj_attribute *attr,
  340. const char *buf, size_t count)
  341. {
  342. return single_flag_store(kobj, attr, buf, count,
  343. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  344. }
  345. static struct kobj_attribute debug_cow_attr =
  346. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  347. #endif /* CONFIG_DEBUG_VM */
  348. static struct attribute *hugepage_attr[] = {
  349. &enabled_attr.attr,
  350. &defrag_attr.attr,
  351. &use_zero_page_attr.attr,
  352. #ifdef CONFIG_DEBUG_VM
  353. &debug_cow_attr.attr,
  354. #endif
  355. NULL,
  356. };
  357. static struct attribute_group hugepage_attr_group = {
  358. .attrs = hugepage_attr,
  359. };
  360. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  361. struct kobj_attribute *attr,
  362. char *buf)
  363. {
  364. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  365. }
  366. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. unsigned long msecs;
  371. int err;
  372. err = kstrtoul(buf, 10, &msecs);
  373. if (err || msecs > UINT_MAX)
  374. return -EINVAL;
  375. khugepaged_scan_sleep_millisecs = msecs;
  376. wake_up_interruptible(&khugepaged_wait);
  377. return count;
  378. }
  379. static struct kobj_attribute scan_sleep_millisecs_attr =
  380. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  381. scan_sleep_millisecs_store);
  382. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  383. struct kobj_attribute *attr,
  384. char *buf)
  385. {
  386. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  387. }
  388. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. const char *buf, size_t count)
  391. {
  392. unsigned long msecs;
  393. int err;
  394. err = kstrtoul(buf, 10, &msecs);
  395. if (err || msecs > UINT_MAX)
  396. return -EINVAL;
  397. khugepaged_alloc_sleep_millisecs = msecs;
  398. wake_up_interruptible(&khugepaged_wait);
  399. return count;
  400. }
  401. static struct kobj_attribute alloc_sleep_millisecs_attr =
  402. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  403. alloc_sleep_millisecs_store);
  404. static ssize_t pages_to_scan_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  409. }
  410. static ssize_t pages_to_scan_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long pages;
  416. err = kstrtoul(buf, 10, &pages);
  417. if (err || !pages || pages > UINT_MAX)
  418. return -EINVAL;
  419. khugepaged_pages_to_scan = pages;
  420. return count;
  421. }
  422. static struct kobj_attribute pages_to_scan_attr =
  423. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  424. pages_to_scan_store);
  425. static ssize_t pages_collapsed_show(struct kobject *kobj,
  426. struct kobj_attribute *attr,
  427. char *buf)
  428. {
  429. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  430. }
  431. static struct kobj_attribute pages_collapsed_attr =
  432. __ATTR_RO(pages_collapsed);
  433. static ssize_t full_scans_show(struct kobject *kobj,
  434. struct kobj_attribute *attr,
  435. char *buf)
  436. {
  437. return sprintf(buf, "%u\n", khugepaged_full_scans);
  438. }
  439. static struct kobj_attribute full_scans_attr =
  440. __ATTR_RO(full_scans);
  441. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  442. struct kobj_attribute *attr, char *buf)
  443. {
  444. return single_flag_show(kobj, attr, buf,
  445. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  446. }
  447. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  448. struct kobj_attribute *attr,
  449. const char *buf, size_t count)
  450. {
  451. return single_flag_store(kobj, attr, buf, count,
  452. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  453. }
  454. static struct kobj_attribute khugepaged_defrag_attr =
  455. __ATTR(defrag, 0644, khugepaged_defrag_show,
  456. khugepaged_defrag_store);
  457. /*
  458. * max_ptes_none controls if khugepaged should collapse hugepages over
  459. * any unmapped ptes in turn potentially increasing the memory
  460. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  461. * reduce the available free memory in the system as it
  462. * runs. Increasing max_ptes_none will instead potentially reduce the
  463. * free memory in the system during the khugepaged scan.
  464. */
  465. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  466. struct kobj_attribute *attr,
  467. char *buf)
  468. {
  469. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  470. }
  471. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. const char *buf, size_t count)
  474. {
  475. int err;
  476. unsigned long max_ptes_none;
  477. err = kstrtoul(buf, 10, &max_ptes_none);
  478. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  479. return -EINVAL;
  480. khugepaged_max_ptes_none = max_ptes_none;
  481. return count;
  482. }
  483. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  484. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  485. khugepaged_max_ptes_none_store);
  486. static struct attribute *khugepaged_attr[] = {
  487. &khugepaged_defrag_attr.attr,
  488. &khugepaged_max_ptes_none_attr.attr,
  489. &pages_to_scan_attr.attr,
  490. &pages_collapsed_attr.attr,
  491. &full_scans_attr.attr,
  492. &scan_sleep_millisecs_attr.attr,
  493. &alloc_sleep_millisecs_attr.attr,
  494. NULL,
  495. };
  496. static struct attribute_group khugepaged_attr_group = {
  497. .attrs = khugepaged_attr,
  498. .name = "khugepaged",
  499. };
  500. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  501. {
  502. int err;
  503. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  504. if (unlikely(!*hugepage_kobj)) {
  505. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  506. return -ENOMEM;
  507. }
  508. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  509. if (err) {
  510. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  511. goto delete_obj;
  512. }
  513. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  514. if (err) {
  515. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  516. goto remove_hp_group;
  517. }
  518. return 0;
  519. remove_hp_group:
  520. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  521. delete_obj:
  522. kobject_put(*hugepage_kobj);
  523. return err;
  524. }
  525. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  526. {
  527. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  528. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  529. kobject_put(hugepage_kobj);
  530. }
  531. #else
  532. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  533. {
  534. return 0;
  535. }
  536. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  537. {
  538. }
  539. #endif /* CONFIG_SYSFS */
  540. static int __init hugepage_init(void)
  541. {
  542. int err;
  543. struct kobject *hugepage_kobj;
  544. if (!has_transparent_hugepage()) {
  545. transparent_hugepage_flags = 0;
  546. return -EINVAL;
  547. }
  548. err = hugepage_init_sysfs(&hugepage_kobj);
  549. if (err)
  550. return err;
  551. err = khugepaged_slab_init();
  552. if (err)
  553. goto out;
  554. register_shrinker(&huge_zero_page_shrinker);
  555. /*
  556. * By default disable transparent hugepages on smaller systems,
  557. * where the extra memory used could hurt more than TLB overhead
  558. * is likely to save. The admin can still enable it through /sys.
  559. */
  560. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  561. transparent_hugepage_flags = 0;
  562. start_khugepaged();
  563. return 0;
  564. out:
  565. hugepage_exit_sysfs(hugepage_kobj);
  566. return err;
  567. }
  568. module_init(hugepage_init)
  569. static int __init setup_transparent_hugepage(char *str)
  570. {
  571. int ret = 0;
  572. if (!str)
  573. goto out;
  574. if (!strcmp(str, "always")) {
  575. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  576. &transparent_hugepage_flags);
  577. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  578. &transparent_hugepage_flags);
  579. ret = 1;
  580. } else if (!strcmp(str, "madvise")) {
  581. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  582. &transparent_hugepage_flags);
  583. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  584. &transparent_hugepage_flags);
  585. ret = 1;
  586. } else if (!strcmp(str, "never")) {
  587. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  588. &transparent_hugepage_flags);
  589. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  590. &transparent_hugepage_flags);
  591. ret = 1;
  592. }
  593. out:
  594. if (!ret)
  595. printk(KERN_WARNING
  596. "transparent_hugepage= cannot parse, ignored\n");
  597. return ret;
  598. }
  599. __setup("transparent_hugepage=", setup_transparent_hugepage);
  600. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  601. {
  602. if (likely(vma->vm_flags & VM_WRITE))
  603. pmd = pmd_mkwrite(pmd);
  604. return pmd;
  605. }
  606. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  607. {
  608. pmd_t entry;
  609. entry = mk_pmd(page, prot);
  610. entry = pmd_mkhuge(entry);
  611. return entry;
  612. }
  613. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  614. struct vm_area_struct *vma,
  615. unsigned long haddr, pmd_t *pmd,
  616. struct page *page)
  617. {
  618. pgtable_t pgtable;
  619. VM_BUG_ON(!PageCompound(page));
  620. pgtable = pte_alloc_one(mm, haddr);
  621. if (unlikely(!pgtable))
  622. return VM_FAULT_OOM;
  623. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  624. /*
  625. * The memory barrier inside __SetPageUptodate makes sure that
  626. * clear_huge_page writes become visible before the set_pmd_at()
  627. * write.
  628. */
  629. __SetPageUptodate(page);
  630. spin_lock(&mm->page_table_lock);
  631. if (unlikely(!pmd_none(*pmd))) {
  632. spin_unlock(&mm->page_table_lock);
  633. mem_cgroup_uncharge_page(page);
  634. put_page(page);
  635. pte_free(mm, pgtable);
  636. } else {
  637. pmd_t entry;
  638. entry = mk_huge_pmd(page, vma->vm_page_prot);
  639. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  640. page_add_new_anon_rmap(page, vma, haddr);
  641. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  642. set_pmd_at(mm, haddr, pmd, entry);
  643. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  644. mm->nr_ptes++;
  645. spin_unlock(&mm->page_table_lock);
  646. }
  647. return 0;
  648. }
  649. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  650. {
  651. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  652. }
  653. static inline struct page *alloc_hugepage_vma(int defrag,
  654. struct vm_area_struct *vma,
  655. unsigned long haddr, int nd,
  656. gfp_t extra_gfp)
  657. {
  658. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  659. HPAGE_PMD_ORDER, vma, haddr, nd);
  660. }
  661. #ifndef CONFIG_NUMA
  662. static inline struct page *alloc_hugepage(int defrag)
  663. {
  664. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  665. HPAGE_PMD_ORDER);
  666. }
  667. #endif
  668. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  669. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  670. struct page *zero_page)
  671. {
  672. pmd_t entry;
  673. if (!pmd_none(*pmd))
  674. return false;
  675. entry = mk_pmd(zero_page, vma->vm_page_prot);
  676. entry = pmd_wrprotect(entry);
  677. entry = pmd_mkhuge(entry);
  678. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  679. set_pmd_at(mm, haddr, pmd, entry);
  680. mm->nr_ptes++;
  681. return true;
  682. }
  683. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  684. unsigned long address, pmd_t *pmd,
  685. unsigned int flags)
  686. {
  687. struct page *page;
  688. unsigned long haddr = address & HPAGE_PMD_MASK;
  689. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  690. return VM_FAULT_FALLBACK;
  691. if (unlikely(anon_vma_prepare(vma)))
  692. return VM_FAULT_OOM;
  693. if (unlikely(khugepaged_enter(vma)))
  694. return VM_FAULT_OOM;
  695. if (!(flags & FAULT_FLAG_WRITE) &&
  696. transparent_hugepage_use_zero_page()) {
  697. pgtable_t pgtable;
  698. struct page *zero_page;
  699. bool set;
  700. pgtable = pte_alloc_one(mm, haddr);
  701. if (unlikely(!pgtable))
  702. return VM_FAULT_OOM;
  703. zero_page = get_huge_zero_page();
  704. if (unlikely(!zero_page)) {
  705. pte_free(mm, pgtable);
  706. count_vm_event(THP_FAULT_FALLBACK);
  707. return VM_FAULT_FALLBACK;
  708. }
  709. spin_lock(&mm->page_table_lock);
  710. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  711. zero_page);
  712. spin_unlock(&mm->page_table_lock);
  713. if (!set) {
  714. pte_free(mm, pgtable);
  715. put_huge_zero_page();
  716. }
  717. return 0;
  718. }
  719. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  720. vma, haddr, numa_node_id(), 0);
  721. if (unlikely(!page)) {
  722. count_vm_event(THP_FAULT_FALLBACK);
  723. return VM_FAULT_FALLBACK;
  724. }
  725. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  726. put_page(page);
  727. count_vm_event(THP_FAULT_FALLBACK);
  728. return VM_FAULT_FALLBACK;
  729. }
  730. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
  731. mem_cgroup_uncharge_page(page);
  732. put_page(page);
  733. count_vm_event(THP_FAULT_FALLBACK);
  734. return VM_FAULT_FALLBACK;
  735. }
  736. count_vm_event(THP_FAULT_ALLOC);
  737. return 0;
  738. }
  739. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  740. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  741. struct vm_area_struct *vma)
  742. {
  743. struct page *src_page;
  744. pmd_t pmd;
  745. pgtable_t pgtable;
  746. int ret;
  747. ret = -ENOMEM;
  748. pgtable = pte_alloc_one(dst_mm, addr);
  749. if (unlikely(!pgtable))
  750. goto out;
  751. spin_lock(&dst_mm->page_table_lock);
  752. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  753. ret = -EAGAIN;
  754. pmd = *src_pmd;
  755. if (unlikely(!pmd_trans_huge(pmd))) {
  756. pte_free(dst_mm, pgtable);
  757. goto out_unlock;
  758. }
  759. /*
  760. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  761. * under splitting since we don't split the page itself, only pmd to
  762. * a page table.
  763. */
  764. if (is_huge_zero_pmd(pmd)) {
  765. struct page *zero_page;
  766. bool set;
  767. /*
  768. * get_huge_zero_page() will never allocate a new page here,
  769. * since we already have a zero page to copy. It just takes a
  770. * reference.
  771. */
  772. zero_page = get_huge_zero_page();
  773. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  774. zero_page);
  775. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  776. ret = 0;
  777. goto out_unlock;
  778. }
  779. if (unlikely(pmd_trans_splitting(pmd))) {
  780. /* split huge page running from under us */
  781. spin_unlock(&src_mm->page_table_lock);
  782. spin_unlock(&dst_mm->page_table_lock);
  783. pte_free(dst_mm, pgtable);
  784. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  785. goto out;
  786. }
  787. src_page = pmd_page(pmd);
  788. VM_BUG_ON(!PageHead(src_page));
  789. get_page(src_page);
  790. page_dup_rmap(src_page);
  791. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  792. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  793. pmd = pmd_mkold(pmd_wrprotect(pmd));
  794. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  795. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  796. dst_mm->nr_ptes++;
  797. ret = 0;
  798. out_unlock:
  799. spin_unlock(&src_mm->page_table_lock);
  800. spin_unlock(&dst_mm->page_table_lock);
  801. out:
  802. return ret;
  803. }
  804. void huge_pmd_set_accessed(struct mm_struct *mm,
  805. struct vm_area_struct *vma,
  806. unsigned long address,
  807. pmd_t *pmd, pmd_t orig_pmd,
  808. int dirty)
  809. {
  810. pmd_t entry;
  811. unsigned long haddr;
  812. spin_lock(&mm->page_table_lock);
  813. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  814. goto unlock;
  815. entry = pmd_mkyoung(orig_pmd);
  816. haddr = address & HPAGE_PMD_MASK;
  817. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  818. update_mmu_cache_pmd(vma, address, pmd);
  819. unlock:
  820. spin_unlock(&mm->page_table_lock);
  821. }
  822. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  823. struct vm_area_struct *vma, unsigned long address,
  824. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  825. {
  826. pgtable_t pgtable;
  827. pmd_t _pmd;
  828. struct page *page;
  829. int i, ret = 0;
  830. unsigned long mmun_start; /* For mmu_notifiers */
  831. unsigned long mmun_end; /* For mmu_notifiers */
  832. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  833. if (!page) {
  834. ret |= VM_FAULT_OOM;
  835. goto out;
  836. }
  837. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  838. put_page(page);
  839. ret |= VM_FAULT_OOM;
  840. goto out;
  841. }
  842. clear_user_highpage(page, address);
  843. __SetPageUptodate(page);
  844. mmun_start = haddr;
  845. mmun_end = haddr + HPAGE_PMD_SIZE;
  846. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  847. spin_lock(&mm->page_table_lock);
  848. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  849. goto out_free_page;
  850. pmdp_clear_flush(vma, haddr, pmd);
  851. /* leave pmd empty until pte is filled */
  852. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  853. pmd_populate(mm, &_pmd, pgtable);
  854. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  855. pte_t *pte, entry;
  856. if (haddr == (address & PAGE_MASK)) {
  857. entry = mk_pte(page, vma->vm_page_prot);
  858. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  859. page_add_new_anon_rmap(page, vma, haddr);
  860. } else {
  861. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  862. entry = pte_mkspecial(entry);
  863. }
  864. pte = pte_offset_map(&_pmd, haddr);
  865. VM_BUG_ON(!pte_none(*pte));
  866. set_pte_at(mm, haddr, pte, entry);
  867. pte_unmap(pte);
  868. }
  869. smp_wmb(); /* make pte visible before pmd */
  870. pmd_populate(mm, pmd, pgtable);
  871. spin_unlock(&mm->page_table_lock);
  872. put_huge_zero_page();
  873. inc_mm_counter(mm, MM_ANONPAGES);
  874. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  875. ret |= VM_FAULT_WRITE;
  876. out:
  877. return ret;
  878. out_free_page:
  879. spin_unlock(&mm->page_table_lock);
  880. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  881. mem_cgroup_uncharge_page(page);
  882. put_page(page);
  883. goto out;
  884. }
  885. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  886. struct vm_area_struct *vma,
  887. unsigned long address,
  888. pmd_t *pmd, pmd_t orig_pmd,
  889. struct page *page,
  890. unsigned long haddr)
  891. {
  892. pgtable_t pgtable;
  893. pmd_t _pmd;
  894. int ret = 0, i;
  895. struct page **pages;
  896. unsigned long mmun_start; /* For mmu_notifiers */
  897. unsigned long mmun_end; /* For mmu_notifiers */
  898. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  899. GFP_KERNEL);
  900. if (unlikely(!pages)) {
  901. ret |= VM_FAULT_OOM;
  902. goto out;
  903. }
  904. for (i = 0; i < HPAGE_PMD_NR; i++) {
  905. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  906. __GFP_OTHER_NODE,
  907. vma, address, page_to_nid(page));
  908. if (unlikely(!pages[i] ||
  909. mem_cgroup_newpage_charge(pages[i], mm,
  910. GFP_KERNEL))) {
  911. if (pages[i])
  912. put_page(pages[i]);
  913. mem_cgroup_uncharge_start();
  914. while (--i >= 0) {
  915. mem_cgroup_uncharge_page(pages[i]);
  916. put_page(pages[i]);
  917. }
  918. mem_cgroup_uncharge_end();
  919. kfree(pages);
  920. ret |= VM_FAULT_OOM;
  921. goto out;
  922. }
  923. }
  924. for (i = 0; i < HPAGE_PMD_NR; i++) {
  925. copy_user_highpage(pages[i], page + i,
  926. haddr + PAGE_SIZE * i, vma);
  927. __SetPageUptodate(pages[i]);
  928. cond_resched();
  929. }
  930. mmun_start = haddr;
  931. mmun_end = haddr + HPAGE_PMD_SIZE;
  932. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  933. spin_lock(&mm->page_table_lock);
  934. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  935. goto out_free_pages;
  936. VM_BUG_ON(!PageHead(page));
  937. pmdp_clear_flush(vma, haddr, pmd);
  938. /* leave pmd empty until pte is filled */
  939. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  940. pmd_populate(mm, &_pmd, pgtable);
  941. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  942. pte_t *pte, entry;
  943. entry = mk_pte(pages[i], vma->vm_page_prot);
  944. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  945. page_add_new_anon_rmap(pages[i], vma, haddr);
  946. pte = pte_offset_map(&_pmd, haddr);
  947. VM_BUG_ON(!pte_none(*pte));
  948. set_pte_at(mm, haddr, pte, entry);
  949. pte_unmap(pte);
  950. }
  951. kfree(pages);
  952. smp_wmb(); /* make pte visible before pmd */
  953. pmd_populate(mm, pmd, pgtable);
  954. page_remove_rmap(page);
  955. spin_unlock(&mm->page_table_lock);
  956. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  957. ret |= VM_FAULT_WRITE;
  958. put_page(page);
  959. out:
  960. return ret;
  961. out_free_pages:
  962. spin_unlock(&mm->page_table_lock);
  963. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  964. mem_cgroup_uncharge_start();
  965. for (i = 0; i < HPAGE_PMD_NR; i++) {
  966. mem_cgroup_uncharge_page(pages[i]);
  967. put_page(pages[i]);
  968. }
  969. mem_cgroup_uncharge_end();
  970. kfree(pages);
  971. goto out;
  972. }
  973. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  974. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  975. {
  976. int ret = 0;
  977. struct page *page = NULL, *new_page;
  978. unsigned long haddr;
  979. unsigned long mmun_start; /* For mmu_notifiers */
  980. unsigned long mmun_end; /* For mmu_notifiers */
  981. VM_BUG_ON(!vma->anon_vma);
  982. haddr = address & HPAGE_PMD_MASK;
  983. if (is_huge_zero_pmd(orig_pmd))
  984. goto alloc;
  985. spin_lock(&mm->page_table_lock);
  986. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  987. goto out_unlock;
  988. page = pmd_page(orig_pmd);
  989. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  990. if (page_mapcount(page) == 1) {
  991. pmd_t entry;
  992. entry = pmd_mkyoung(orig_pmd);
  993. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  994. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  995. update_mmu_cache_pmd(vma, address, pmd);
  996. ret |= VM_FAULT_WRITE;
  997. goto out_unlock;
  998. }
  999. get_page(page);
  1000. spin_unlock(&mm->page_table_lock);
  1001. alloc:
  1002. if (transparent_hugepage_enabled(vma) &&
  1003. !transparent_hugepage_debug_cow())
  1004. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1005. vma, haddr, numa_node_id(), 0);
  1006. else
  1007. new_page = NULL;
  1008. if (unlikely(!new_page)) {
  1009. if (is_huge_zero_pmd(orig_pmd)) {
  1010. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1011. address, pmd, orig_pmd, haddr);
  1012. } else {
  1013. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1014. pmd, orig_pmd, page, haddr);
  1015. if (ret & VM_FAULT_OOM)
  1016. split_huge_page(page);
  1017. put_page(page);
  1018. }
  1019. count_vm_event(THP_FAULT_FALLBACK);
  1020. goto out;
  1021. }
  1022. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1023. put_page(new_page);
  1024. if (page) {
  1025. split_huge_page(page);
  1026. put_page(page);
  1027. }
  1028. count_vm_event(THP_FAULT_FALLBACK);
  1029. ret |= VM_FAULT_OOM;
  1030. goto out;
  1031. }
  1032. count_vm_event(THP_FAULT_ALLOC);
  1033. if (is_huge_zero_pmd(orig_pmd))
  1034. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1035. else
  1036. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1037. __SetPageUptodate(new_page);
  1038. mmun_start = haddr;
  1039. mmun_end = haddr + HPAGE_PMD_SIZE;
  1040. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1041. spin_lock(&mm->page_table_lock);
  1042. if (page)
  1043. put_page(page);
  1044. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1045. spin_unlock(&mm->page_table_lock);
  1046. mem_cgroup_uncharge_page(new_page);
  1047. put_page(new_page);
  1048. goto out_mn;
  1049. } else {
  1050. pmd_t entry;
  1051. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1052. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1053. pmdp_clear_flush(vma, haddr, pmd);
  1054. page_add_new_anon_rmap(new_page, vma, haddr);
  1055. set_pmd_at(mm, haddr, pmd, entry);
  1056. update_mmu_cache_pmd(vma, address, pmd);
  1057. if (is_huge_zero_pmd(orig_pmd)) {
  1058. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1059. put_huge_zero_page();
  1060. } else {
  1061. VM_BUG_ON(!PageHead(page));
  1062. page_remove_rmap(page);
  1063. put_page(page);
  1064. }
  1065. ret |= VM_FAULT_WRITE;
  1066. }
  1067. spin_unlock(&mm->page_table_lock);
  1068. out_mn:
  1069. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1070. out:
  1071. return ret;
  1072. out_unlock:
  1073. spin_unlock(&mm->page_table_lock);
  1074. return ret;
  1075. }
  1076. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1077. unsigned long addr,
  1078. pmd_t *pmd,
  1079. unsigned int flags)
  1080. {
  1081. struct mm_struct *mm = vma->vm_mm;
  1082. struct page *page = NULL;
  1083. assert_spin_locked(&mm->page_table_lock);
  1084. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1085. goto out;
  1086. /* Avoid dumping huge zero page */
  1087. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1088. return ERR_PTR(-EFAULT);
  1089. page = pmd_page(*pmd);
  1090. VM_BUG_ON(!PageHead(page));
  1091. if (flags & FOLL_TOUCH) {
  1092. pmd_t _pmd;
  1093. /*
  1094. * We should set the dirty bit only for FOLL_WRITE but
  1095. * for now the dirty bit in the pmd is meaningless.
  1096. * And if the dirty bit will become meaningful and
  1097. * we'll only set it with FOLL_WRITE, an atomic
  1098. * set_bit will be required on the pmd to set the
  1099. * young bit, instead of the current set_pmd_at.
  1100. */
  1101. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1102. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1103. pmd, _pmd, 1))
  1104. update_mmu_cache_pmd(vma, addr, pmd);
  1105. }
  1106. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1107. if (page->mapping && trylock_page(page)) {
  1108. lru_add_drain();
  1109. if (page->mapping)
  1110. mlock_vma_page(page);
  1111. unlock_page(page);
  1112. }
  1113. }
  1114. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1115. VM_BUG_ON(!PageCompound(page));
  1116. if (flags & FOLL_GET)
  1117. get_page_foll(page);
  1118. out:
  1119. return page;
  1120. }
  1121. /* NUMA hinting page fault entry point for trans huge pmds */
  1122. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1123. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1124. {
  1125. struct anon_vma *anon_vma = NULL;
  1126. struct page *page;
  1127. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1128. int page_nid = -1, this_nid = numa_node_id();
  1129. int target_nid;
  1130. bool page_locked;
  1131. bool migrated = false;
  1132. spin_lock(&mm->page_table_lock);
  1133. if (unlikely(!pmd_same(pmd, *pmdp)))
  1134. goto out_unlock;
  1135. page = pmd_page(pmd);
  1136. page_nid = page_to_nid(page);
  1137. count_vm_numa_event(NUMA_HINT_FAULTS);
  1138. if (page_nid == this_nid)
  1139. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1140. /*
  1141. * Acquire the page lock to serialise THP migrations but avoid dropping
  1142. * page_table_lock if at all possible
  1143. */
  1144. page_locked = trylock_page(page);
  1145. target_nid = mpol_misplaced(page, vma, haddr);
  1146. if (target_nid == -1) {
  1147. /* If the page was locked, there are no parallel migrations */
  1148. if (page_locked)
  1149. goto clear_pmdnuma;
  1150. /*
  1151. * Otherwise wait for potential migrations and retry. We do
  1152. * relock and check_same as the page may no longer be mapped.
  1153. * As the fault is being retried, do not account for it.
  1154. */
  1155. spin_unlock(&mm->page_table_lock);
  1156. wait_on_page_locked(page);
  1157. page_nid = -1;
  1158. goto out;
  1159. }
  1160. /* Page is misplaced, serialise migrations and parallel THP splits */
  1161. get_page(page);
  1162. spin_unlock(&mm->page_table_lock);
  1163. if (!page_locked)
  1164. lock_page(page);
  1165. anon_vma = page_lock_anon_vma_read(page);
  1166. /* Confirm the PTE did not while locked */
  1167. spin_lock(&mm->page_table_lock);
  1168. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1169. unlock_page(page);
  1170. put_page(page);
  1171. page_nid = -1;
  1172. goto out_unlock;
  1173. }
  1174. /*
  1175. * Migrate the THP to the requested node, returns with page unlocked
  1176. * and pmd_numa cleared.
  1177. */
  1178. spin_unlock(&mm->page_table_lock);
  1179. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1180. pmdp, pmd, addr, page, target_nid);
  1181. if (migrated)
  1182. page_nid = target_nid;
  1183. goto out;
  1184. clear_pmdnuma:
  1185. BUG_ON(!PageLocked(page));
  1186. pmd = pmd_mknonnuma(pmd);
  1187. set_pmd_at(mm, haddr, pmdp, pmd);
  1188. VM_BUG_ON(pmd_numa(*pmdp));
  1189. update_mmu_cache_pmd(vma, addr, pmdp);
  1190. unlock_page(page);
  1191. out_unlock:
  1192. spin_unlock(&mm->page_table_lock);
  1193. out:
  1194. if (anon_vma)
  1195. page_unlock_anon_vma_read(anon_vma);
  1196. if (page_nid != -1)
  1197. task_numa_fault(page_nid, HPAGE_PMD_NR, migrated);
  1198. return 0;
  1199. }
  1200. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1201. pmd_t *pmd, unsigned long addr)
  1202. {
  1203. int ret = 0;
  1204. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1205. struct page *page;
  1206. pgtable_t pgtable;
  1207. pmd_t orig_pmd;
  1208. /*
  1209. * For architectures like ppc64 we look at deposited pgtable
  1210. * when calling pmdp_get_and_clear. So do the
  1211. * pgtable_trans_huge_withdraw after finishing pmdp related
  1212. * operations.
  1213. */
  1214. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1215. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1216. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1217. if (is_huge_zero_pmd(orig_pmd)) {
  1218. tlb->mm->nr_ptes--;
  1219. spin_unlock(&tlb->mm->page_table_lock);
  1220. put_huge_zero_page();
  1221. } else {
  1222. page = pmd_page(orig_pmd);
  1223. page_remove_rmap(page);
  1224. VM_BUG_ON(page_mapcount(page) < 0);
  1225. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1226. VM_BUG_ON(!PageHead(page));
  1227. tlb->mm->nr_ptes--;
  1228. spin_unlock(&tlb->mm->page_table_lock);
  1229. tlb_remove_page(tlb, page);
  1230. }
  1231. pte_free(tlb->mm, pgtable);
  1232. ret = 1;
  1233. }
  1234. return ret;
  1235. }
  1236. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1237. unsigned long addr, unsigned long end,
  1238. unsigned char *vec)
  1239. {
  1240. int ret = 0;
  1241. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1242. /*
  1243. * All logical pages in the range are present
  1244. * if backed by a huge page.
  1245. */
  1246. spin_unlock(&vma->vm_mm->page_table_lock);
  1247. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1248. ret = 1;
  1249. }
  1250. return ret;
  1251. }
  1252. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1253. unsigned long old_addr,
  1254. unsigned long new_addr, unsigned long old_end,
  1255. pmd_t *old_pmd, pmd_t *new_pmd)
  1256. {
  1257. int ret = 0;
  1258. pmd_t pmd;
  1259. struct mm_struct *mm = vma->vm_mm;
  1260. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1261. (new_addr & ~HPAGE_PMD_MASK) ||
  1262. old_end - old_addr < HPAGE_PMD_SIZE ||
  1263. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1264. goto out;
  1265. /*
  1266. * The destination pmd shouldn't be established, free_pgtables()
  1267. * should have release it.
  1268. */
  1269. if (WARN_ON(!pmd_none(*new_pmd))) {
  1270. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1271. goto out;
  1272. }
  1273. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1274. if (ret == 1) {
  1275. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1276. VM_BUG_ON(!pmd_none(*new_pmd));
  1277. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1278. spin_unlock(&mm->page_table_lock);
  1279. }
  1280. out:
  1281. return ret;
  1282. }
  1283. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1284. unsigned long addr, pgprot_t newprot, int prot_numa)
  1285. {
  1286. struct mm_struct *mm = vma->vm_mm;
  1287. int ret = 0;
  1288. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1289. pmd_t entry;
  1290. entry = pmdp_get_and_clear(mm, addr, pmd);
  1291. if (!prot_numa) {
  1292. entry = pmd_modify(entry, newprot);
  1293. BUG_ON(pmd_write(entry));
  1294. } else {
  1295. struct page *page = pmd_page(*pmd);
  1296. /* only check non-shared pages */
  1297. if (page_mapcount(page) == 1 &&
  1298. !pmd_numa(*pmd)) {
  1299. entry = pmd_mknuma(entry);
  1300. }
  1301. }
  1302. set_pmd_at(mm, addr, pmd, entry);
  1303. spin_unlock(&vma->vm_mm->page_table_lock);
  1304. ret = 1;
  1305. }
  1306. return ret;
  1307. }
  1308. /*
  1309. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1310. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1311. *
  1312. * Note that if it returns 1, this routine returns without unlocking page
  1313. * table locks. So callers must unlock them.
  1314. */
  1315. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1316. {
  1317. spin_lock(&vma->vm_mm->page_table_lock);
  1318. if (likely(pmd_trans_huge(*pmd))) {
  1319. if (unlikely(pmd_trans_splitting(*pmd))) {
  1320. spin_unlock(&vma->vm_mm->page_table_lock);
  1321. wait_split_huge_page(vma->anon_vma, pmd);
  1322. return -1;
  1323. } else {
  1324. /* Thp mapped by 'pmd' is stable, so we can
  1325. * handle it as it is. */
  1326. return 1;
  1327. }
  1328. }
  1329. spin_unlock(&vma->vm_mm->page_table_lock);
  1330. return 0;
  1331. }
  1332. pmd_t *page_check_address_pmd(struct page *page,
  1333. struct mm_struct *mm,
  1334. unsigned long address,
  1335. enum page_check_address_pmd_flag flag)
  1336. {
  1337. pmd_t *pmd, *ret = NULL;
  1338. if (address & ~HPAGE_PMD_MASK)
  1339. goto out;
  1340. pmd = mm_find_pmd(mm, address);
  1341. if (!pmd)
  1342. goto out;
  1343. if (pmd_none(*pmd))
  1344. goto out;
  1345. if (pmd_page(*pmd) != page)
  1346. goto out;
  1347. /*
  1348. * split_vma() may create temporary aliased mappings. There is
  1349. * no risk as long as all huge pmd are found and have their
  1350. * splitting bit set before __split_huge_page_refcount
  1351. * runs. Finding the same huge pmd more than once during the
  1352. * same rmap walk is not a problem.
  1353. */
  1354. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1355. pmd_trans_splitting(*pmd))
  1356. goto out;
  1357. if (pmd_trans_huge(*pmd)) {
  1358. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1359. !pmd_trans_splitting(*pmd));
  1360. ret = pmd;
  1361. }
  1362. out:
  1363. return ret;
  1364. }
  1365. static int __split_huge_page_splitting(struct page *page,
  1366. struct vm_area_struct *vma,
  1367. unsigned long address)
  1368. {
  1369. struct mm_struct *mm = vma->vm_mm;
  1370. pmd_t *pmd;
  1371. int ret = 0;
  1372. /* For mmu_notifiers */
  1373. const unsigned long mmun_start = address;
  1374. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1375. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1376. spin_lock(&mm->page_table_lock);
  1377. pmd = page_check_address_pmd(page, mm, address,
  1378. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1379. if (pmd) {
  1380. /*
  1381. * We can't temporarily set the pmd to null in order
  1382. * to split it, the pmd must remain marked huge at all
  1383. * times or the VM won't take the pmd_trans_huge paths
  1384. * and it won't wait on the anon_vma->root->rwsem to
  1385. * serialize against split_huge_page*.
  1386. */
  1387. pmdp_splitting_flush(vma, address, pmd);
  1388. ret = 1;
  1389. }
  1390. spin_unlock(&mm->page_table_lock);
  1391. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1392. return ret;
  1393. }
  1394. static void __split_huge_page_refcount(struct page *page,
  1395. struct list_head *list)
  1396. {
  1397. int i;
  1398. struct zone *zone = page_zone(page);
  1399. struct lruvec *lruvec;
  1400. int tail_count = 0;
  1401. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1402. spin_lock_irq(&zone->lru_lock);
  1403. lruvec = mem_cgroup_page_lruvec(page, zone);
  1404. compound_lock(page);
  1405. /* complete memcg works before add pages to LRU */
  1406. mem_cgroup_split_huge_fixup(page);
  1407. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1408. struct page *page_tail = page + i;
  1409. /* tail_page->_mapcount cannot change */
  1410. BUG_ON(page_mapcount(page_tail) < 0);
  1411. tail_count += page_mapcount(page_tail);
  1412. /* check for overflow */
  1413. BUG_ON(tail_count < 0);
  1414. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1415. /*
  1416. * tail_page->_count is zero and not changing from
  1417. * under us. But get_page_unless_zero() may be running
  1418. * from under us on the tail_page. If we used
  1419. * atomic_set() below instead of atomic_add(), we
  1420. * would then run atomic_set() concurrently with
  1421. * get_page_unless_zero(), and atomic_set() is
  1422. * implemented in C not using locked ops. spin_unlock
  1423. * on x86 sometime uses locked ops because of PPro
  1424. * errata 66, 92, so unless somebody can guarantee
  1425. * atomic_set() here would be safe on all archs (and
  1426. * not only on x86), it's safer to use atomic_add().
  1427. */
  1428. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1429. &page_tail->_count);
  1430. /* after clearing PageTail the gup refcount can be released */
  1431. smp_mb();
  1432. /*
  1433. * retain hwpoison flag of the poisoned tail page:
  1434. * fix for the unsuitable process killed on Guest Machine(KVM)
  1435. * by the memory-failure.
  1436. */
  1437. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1438. page_tail->flags |= (page->flags &
  1439. ((1L << PG_referenced) |
  1440. (1L << PG_swapbacked) |
  1441. (1L << PG_mlocked) |
  1442. (1L << PG_uptodate) |
  1443. (1L << PG_active) |
  1444. (1L << PG_unevictable)));
  1445. page_tail->flags |= (1L << PG_dirty);
  1446. /* clear PageTail before overwriting first_page */
  1447. smp_wmb();
  1448. /*
  1449. * __split_huge_page_splitting() already set the
  1450. * splitting bit in all pmd that could map this
  1451. * hugepage, that will ensure no CPU can alter the
  1452. * mapcount on the head page. The mapcount is only
  1453. * accounted in the head page and it has to be
  1454. * transferred to all tail pages in the below code. So
  1455. * for this code to be safe, the split the mapcount
  1456. * can't change. But that doesn't mean userland can't
  1457. * keep changing and reading the page contents while
  1458. * we transfer the mapcount, so the pmd splitting
  1459. * status is achieved setting a reserved bit in the
  1460. * pmd, not by clearing the present bit.
  1461. */
  1462. page_tail->_mapcount = page->_mapcount;
  1463. BUG_ON(page_tail->mapping);
  1464. page_tail->mapping = page->mapping;
  1465. page_tail->index = page->index + i;
  1466. page_nid_xchg_last(page_tail, page_nid_last(page));
  1467. BUG_ON(!PageAnon(page_tail));
  1468. BUG_ON(!PageUptodate(page_tail));
  1469. BUG_ON(!PageDirty(page_tail));
  1470. BUG_ON(!PageSwapBacked(page_tail));
  1471. lru_add_page_tail(page, page_tail, lruvec, list);
  1472. }
  1473. atomic_sub(tail_count, &page->_count);
  1474. BUG_ON(atomic_read(&page->_count) <= 0);
  1475. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1476. ClearPageCompound(page);
  1477. compound_unlock(page);
  1478. spin_unlock_irq(&zone->lru_lock);
  1479. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1480. struct page *page_tail = page + i;
  1481. BUG_ON(page_count(page_tail) <= 0);
  1482. /*
  1483. * Tail pages may be freed if there wasn't any mapping
  1484. * like if add_to_swap() is running on a lru page that
  1485. * had its mapping zapped. And freeing these pages
  1486. * requires taking the lru_lock so we do the put_page
  1487. * of the tail pages after the split is complete.
  1488. */
  1489. put_page(page_tail);
  1490. }
  1491. /*
  1492. * Only the head page (now become a regular page) is required
  1493. * to be pinned by the caller.
  1494. */
  1495. BUG_ON(page_count(page) <= 0);
  1496. }
  1497. static int __split_huge_page_map(struct page *page,
  1498. struct vm_area_struct *vma,
  1499. unsigned long address)
  1500. {
  1501. struct mm_struct *mm = vma->vm_mm;
  1502. pmd_t *pmd, _pmd;
  1503. int ret = 0, i;
  1504. pgtable_t pgtable;
  1505. unsigned long haddr;
  1506. spin_lock(&mm->page_table_lock);
  1507. pmd = page_check_address_pmd(page, mm, address,
  1508. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1509. if (pmd) {
  1510. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1511. pmd_populate(mm, &_pmd, pgtable);
  1512. haddr = address;
  1513. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1514. pte_t *pte, entry;
  1515. BUG_ON(PageCompound(page+i));
  1516. entry = mk_pte(page + i, vma->vm_page_prot);
  1517. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1518. if (!pmd_write(*pmd))
  1519. entry = pte_wrprotect(entry);
  1520. else
  1521. BUG_ON(page_mapcount(page) != 1);
  1522. if (!pmd_young(*pmd))
  1523. entry = pte_mkold(entry);
  1524. if (pmd_numa(*pmd))
  1525. entry = pte_mknuma(entry);
  1526. pte = pte_offset_map(&_pmd, haddr);
  1527. BUG_ON(!pte_none(*pte));
  1528. set_pte_at(mm, haddr, pte, entry);
  1529. pte_unmap(pte);
  1530. }
  1531. smp_wmb(); /* make pte visible before pmd */
  1532. /*
  1533. * Up to this point the pmd is present and huge and
  1534. * userland has the whole access to the hugepage
  1535. * during the split (which happens in place). If we
  1536. * overwrite the pmd with the not-huge version
  1537. * pointing to the pte here (which of course we could
  1538. * if all CPUs were bug free), userland could trigger
  1539. * a small page size TLB miss on the small sized TLB
  1540. * while the hugepage TLB entry is still established
  1541. * in the huge TLB. Some CPU doesn't like that. See
  1542. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1543. * Erratum 383 on page 93. Intel should be safe but is
  1544. * also warns that it's only safe if the permission
  1545. * and cache attributes of the two entries loaded in
  1546. * the two TLB is identical (which should be the case
  1547. * here). But it is generally safer to never allow
  1548. * small and huge TLB entries for the same virtual
  1549. * address to be loaded simultaneously. So instead of
  1550. * doing "pmd_populate(); flush_tlb_range();" we first
  1551. * mark the current pmd notpresent (atomically because
  1552. * here the pmd_trans_huge and pmd_trans_splitting
  1553. * must remain set at all times on the pmd until the
  1554. * split is complete for this pmd), then we flush the
  1555. * SMP TLB and finally we write the non-huge version
  1556. * of the pmd entry with pmd_populate.
  1557. */
  1558. pmdp_invalidate(vma, address, pmd);
  1559. pmd_populate(mm, pmd, pgtable);
  1560. ret = 1;
  1561. }
  1562. spin_unlock(&mm->page_table_lock);
  1563. return ret;
  1564. }
  1565. /* must be called with anon_vma->root->rwsem held */
  1566. static void __split_huge_page(struct page *page,
  1567. struct anon_vma *anon_vma,
  1568. struct list_head *list)
  1569. {
  1570. int mapcount, mapcount2;
  1571. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1572. struct anon_vma_chain *avc;
  1573. BUG_ON(!PageHead(page));
  1574. BUG_ON(PageTail(page));
  1575. mapcount = 0;
  1576. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1577. struct vm_area_struct *vma = avc->vma;
  1578. unsigned long addr = vma_address(page, vma);
  1579. BUG_ON(is_vma_temporary_stack(vma));
  1580. mapcount += __split_huge_page_splitting(page, vma, addr);
  1581. }
  1582. /*
  1583. * It is critical that new vmas are added to the tail of the
  1584. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1585. * and establishes a child pmd before
  1586. * __split_huge_page_splitting() freezes the parent pmd (so if
  1587. * we fail to prevent copy_huge_pmd() from running until the
  1588. * whole __split_huge_page() is complete), we will still see
  1589. * the newly established pmd of the child later during the
  1590. * walk, to be able to set it as pmd_trans_splitting too.
  1591. */
  1592. if (mapcount != page_mapcount(page))
  1593. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1594. mapcount, page_mapcount(page));
  1595. BUG_ON(mapcount != page_mapcount(page));
  1596. __split_huge_page_refcount(page, list);
  1597. mapcount2 = 0;
  1598. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1599. struct vm_area_struct *vma = avc->vma;
  1600. unsigned long addr = vma_address(page, vma);
  1601. BUG_ON(is_vma_temporary_stack(vma));
  1602. mapcount2 += __split_huge_page_map(page, vma, addr);
  1603. }
  1604. if (mapcount != mapcount2)
  1605. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1606. mapcount, mapcount2, page_mapcount(page));
  1607. BUG_ON(mapcount != mapcount2);
  1608. }
  1609. /*
  1610. * Split a hugepage into normal pages. This doesn't change the position of head
  1611. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1612. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1613. * from the hugepage.
  1614. * Return 0 if the hugepage is split successfully otherwise return 1.
  1615. */
  1616. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1617. {
  1618. struct anon_vma *anon_vma;
  1619. int ret = 1;
  1620. BUG_ON(is_huge_zero_page(page));
  1621. BUG_ON(!PageAnon(page));
  1622. /*
  1623. * The caller does not necessarily hold an mmap_sem that would prevent
  1624. * the anon_vma disappearing so we first we take a reference to it
  1625. * and then lock the anon_vma for write. This is similar to
  1626. * page_lock_anon_vma_read except the write lock is taken to serialise
  1627. * against parallel split or collapse operations.
  1628. */
  1629. anon_vma = page_get_anon_vma(page);
  1630. if (!anon_vma)
  1631. goto out;
  1632. anon_vma_lock_write(anon_vma);
  1633. ret = 0;
  1634. if (!PageCompound(page))
  1635. goto out_unlock;
  1636. BUG_ON(!PageSwapBacked(page));
  1637. __split_huge_page(page, anon_vma, list);
  1638. count_vm_event(THP_SPLIT);
  1639. BUG_ON(PageCompound(page));
  1640. out_unlock:
  1641. anon_vma_unlock_write(anon_vma);
  1642. put_anon_vma(anon_vma);
  1643. out:
  1644. return ret;
  1645. }
  1646. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1647. int hugepage_madvise(struct vm_area_struct *vma,
  1648. unsigned long *vm_flags, int advice)
  1649. {
  1650. struct mm_struct *mm = vma->vm_mm;
  1651. switch (advice) {
  1652. case MADV_HUGEPAGE:
  1653. /*
  1654. * Be somewhat over-protective like KSM for now!
  1655. */
  1656. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1657. return -EINVAL;
  1658. if (mm->def_flags & VM_NOHUGEPAGE)
  1659. return -EINVAL;
  1660. *vm_flags &= ~VM_NOHUGEPAGE;
  1661. *vm_flags |= VM_HUGEPAGE;
  1662. /*
  1663. * If the vma become good for khugepaged to scan,
  1664. * register it here without waiting a page fault that
  1665. * may not happen any time soon.
  1666. */
  1667. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1668. return -ENOMEM;
  1669. break;
  1670. case MADV_NOHUGEPAGE:
  1671. /*
  1672. * Be somewhat over-protective like KSM for now!
  1673. */
  1674. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1675. return -EINVAL;
  1676. *vm_flags &= ~VM_HUGEPAGE;
  1677. *vm_flags |= VM_NOHUGEPAGE;
  1678. /*
  1679. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1680. * this vma even if we leave the mm registered in khugepaged if
  1681. * it got registered before VM_NOHUGEPAGE was set.
  1682. */
  1683. break;
  1684. }
  1685. return 0;
  1686. }
  1687. static int __init khugepaged_slab_init(void)
  1688. {
  1689. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1690. sizeof(struct mm_slot),
  1691. __alignof__(struct mm_slot), 0, NULL);
  1692. if (!mm_slot_cache)
  1693. return -ENOMEM;
  1694. return 0;
  1695. }
  1696. static inline struct mm_slot *alloc_mm_slot(void)
  1697. {
  1698. if (!mm_slot_cache) /* initialization failed */
  1699. return NULL;
  1700. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1701. }
  1702. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1703. {
  1704. kmem_cache_free(mm_slot_cache, mm_slot);
  1705. }
  1706. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1707. {
  1708. struct mm_slot *mm_slot;
  1709. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1710. if (mm == mm_slot->mm)
  1711. return mm_slot;
  1712. return NULL;
  1713. }
  1714. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1715. struct mm_slot *mm_slot)
  1716. {
  1717. mm_slot->mm = mm;
  1718. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1719. }
  1720. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1721. {
  1722. return atomic_read(&mm->mm_users) == 0;
  1723. }
  1724. int __khugepaged_enter(struct mm_struct *mm)
  1725. {
  1726. struct mm_slot *mm_slot;
  1727. int wakeup;
  1728. mm_slot = alloc_mm_slot();
  1729. if (!mm_slot)
  1730. return -ENOMEM;
  1731. /* __khugepaged_exit() must not run from under us */
  1732. VM_BUG_ON(khugepaged_test_exit(mm));
  1733. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1734. free_mm_slot(mm_slot);
  1735. return 0;
  1736. }
  1737. spin_lock(&khugepaged_mm_lock);
  1738. insert_to_mm_slots_hash(mm, mm_slot);
  1739. /*
  1740. * Insert just behind the scanning cursor, to let the area settle
  1741. * down a little.
  1742. */
  1743. wakeup = list_empty(&khugepaged_scan.mm_head);
  1744. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1745. spin_unlock(&khugepaged_mm_lock);
  1746. atomic_inc(&mm->mm_count);
  1747. if (wakeup)
  1748. wake_up_interruptible(&khugepaged_wait);
  1749. return 0;
  1750. }
  1751. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1752. {
  1753. unsigned long hstart, hend;
  1754. if (!vma->anon_vma)
  1755. /*
  1756. * Not yet faulted in so we will register later in the
  1757. * page fault if needed.
  1758. */
  1759. return 0;
  1760. if (vma->vm_ops)
  1761. /* khugepaged not yet working on file or special mappings */
  1762. return 0;
  1763. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1764. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1765. hend = vma->vm_end & HPAGE_PMD_MASK;
  1766. if (hstart < hend)
  1767. return khugepaged_enter(vma);
  1768. return 0;
  1769. }
  1770. void __khugepaged_exit(struct mm_struct *mm)
  1771. {
  1772. struct mm_slot *mm_slot;
  1773. int free = 0;
  1774. spin_lock(&khugepaged_mm_lock);
  1775. mm_slot = get_mm_slot(mm);
  1776. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1777. hash_del(&mm_slot->hash);
  1778. list_del(&mm_slot->mm_node);
  1779. free = 1;
  1780. }
  1781. spin_unlock(&khugepaged_mm_lock);
  1782. if (free) {
  1783. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1784. free_mm_slot(mm_slot);
  1785. mmdrop(mm);
  1786. } else if (mm_slot) {
  1787. /*
  1788. * This is required to serialize against
  1789. * khugepaged_test_exit() (which is guaranteed to run
  1790. * under mmap sem read mode). Stop here (after we
  1791. * return all pagetables will be destroyed) until
  1792. * khugepaged has finished working on the pagetables
  1793. * under the mmap_sem.
  1794. */
  1795. down_write(&mm->mmap_sem);
  1796. up_write(&mm->mmap_sem);
  1797. }
  1798. }
  1799. static void release_pte_page(struct page *page)
  1800. {
  1801. /* 0 stands for page_is_file_cache(page) == false */
  1802. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1803. unlock_page(page);
  1804. putback_lru_page(page);
  1805. }
  1806. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1807. {
  1808. while (--_pte >= pte) {
  1809. pte_t pteval = *_pte;
  1810. if (!pte_none(pteval))
  1811. release_pte_page(pte_page(pteval));
  1812. }
  1813. }
  1814. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1815. unsigned long address,
  1816. pte_t *pte)
  1817. {
  1818. struct page *page;
  1819. pte_t *_pte;
  1820. int referenced = 0, none = 0;
  1821. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1822. _pte++, address += PAGE_SIZE) {
  1823. pte_t pteval = *_pte;
  1824. if (pte_none(pteval)) {
  1825. if (++none <= khugepaged_max_ptes_none)
  1826. continue;
  1827. else
  1828. goto out;
  1829. }
  1830. if (!pte_present(pteval) || !pte_write(pteval))
  1831. goto out;
  1832. page = vm_normal_page(vma, address, pteval);
  1833. if (unlikely(!page))
  1834. goto out;
  1835. VM_BUG_ON(PageCompound(page));
  1836. BUG_ON(!PageAnon(page));
  1837. VM_BUG_ON(!PageSwapBacked(page));
  1838. /* cannot use mapcount: can't collapse if there's a gup pin */
  1839. if (page_count(page) != 1)
  1840. goto out;
  1841. /*
  1842. * We can do it before isolate_lru_page because the
  1843. * page can't be freed from under us. NOTE: PG_lock
  1844. * is needed to serialize against split_huge_page
  1845. * when invoked from the VM.
  1846. */
  1847. if (!trylock_page(page))
  1848. goto out;
  1849. /*
  1850. * Isolate the page to avoid collapsing an hugepage
  1851. * currently in use by the VM.
  1852. */
  1853. if (isolate_lru_page(page)) {
  1854. unlock_page(page);
  1855. goto out;
  1856. }
  1857. /* 0 stands for page_is_file_cache(page) == false */
  1858. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1859. VM_BUG_ON(!PageLocked(page));
  1860. VM_BUG_ON(PageLRU(page));
  1861. /* If there is no mapped pte young don't collapse the page */
  1862. if (pte_young(pteval) || PageReferenced(page) ||
  1863. mmu_notifier_test_young(vma->vm_mm, address))
  1864. referenced = 1;
  1865. }
  1866. if (likely(referenced))
  1867. return 1;
  1868. out:
  1869. release_pte_pages(pte, _pte);
  1870. return 0;
  1871. }
  1872. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1873. struct vm_area_struct *vma,
  1874. unsigned long address,
  1875. spinlock_t *ptl)
  1876. {
  1877. pte_t *_pte;
  1878. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1879. pte_t pteval = *_pte;
  1880. struct page *src_page;
  1881. if (pte_none(pteval)) {
  1882. clear_user_highpage(page, address);
  1883. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1884. } else {
  1885. src_page = pte_page(pteval);
  1886. copy_user_highpage(page, src_page, address, vma);
  1887. VM_BUG_ON(page_mapcount(src_page) != 1);
  1888. release_pte_page(src_page);
  1889. /*
  1890. * ptl mostly unnecessary, but preempt has to
  1891. * be disabled to update the per-cpu stats
  1892. * inside page_remove_rmap().
  1893. */
  1894. spin_lock(ptl);
  1895. /*
  1896. * paravirt calls inside pte_clear here are
  1897. * superfluous.
  1898. */
  1899. pte_clear(vma->vm_mm, address, _pte);
  1900. page_remove_rmap(src_page);
  1901. spin_unlock(ptl);
  1902. free_page_and_swap_cache(src_page);
  1903. }
  1904. address += PAGE_SIZE;
  1905. page++;
  1906. }
  1907. }
  1908. static void khugepaged_alloc_sleep(void)
  1909. {
  1910. wait_event_freezable_timeout(khugepaged_wait, false,
  1911. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1912. }
  1913. #ifdef CONFIG_NUMA
  1914. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1915. {
  1916. if (IS_ERR(*hpage)) {
  1917. if (!*wait)
  1918. return false;
  1919. *wait = false;
  1920. *hpage = NULL;
  1921. khugepaged_alloc_sleep();
  1922. } else if (*hpage) {
  1923. put_page(*hpage);
  1924. *hpage = NULL;
  1925. }
  1926. return true;
  1927. }
  1928. static struct page
  1929. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1930. struct vm_area_struct *vma, unsigned long address,
  1931. int node)
  1932. {
  1933. VM_BUG_ON(*hpage);
  1934. /*
  1935. * Allocate the page while the vma is still valid and under
  1936. * the mmap_sem read mode so there is no memory allocation
  1937. * later when we take the mmap_sem in write mode. This is more
  1938. * friendly behavior (OTOH it may actually hide bugs) to
  1939. * filesystems in userland with daemons allocating memory in
  1940. * the userland I/O paths. Allocating memory with the
  1941. * mmap_sem in read mode is good idea also to allow greater
  1942. * scalability.
  1943. */
  1944. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1945. node, __GFP_OTHER_NODE);
  1946. /*
  1947. * After allocating the hugepage, release the mmap_sem read lock in
  1948. * preparation for taking it in write mode.
  1949. */
  1950. up_read(&mm->mmap_sem);
  1951. if (unlikely(!*hpage)) {
  1952. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1953. *hpage = ERR_PTR(-ENOMEM);
  1954. return NULL;
  1955. }
  1956. count_vm_event(THP_COLLAPSE_ALLOC);
  1957. return *hpage;
  1958. }
  1959. #else
  1960. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1961. {
  1962. struct page *hpage;
  1963. do {
  1964. hpage = alloc_hugepage(khugepaged_defrag());
  1965. if (!hpage) {
  1966. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1967. if (!*wait)
  1968. return NULL;
  1969. *wait = false;
  1970. khugepaged_alloc_sleep();
  1971. } else
  1972. count_vm_event(THP_COLLAPSE_ALLOC);
  1973. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1974. return hpage;
  1975. }
  1976. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1977. {
  1978. if (!*hpage)
  1979. *hpage = khugepaged_alloc_hugepage(wait);
  1980. if (unlikely(!*hpage))
  1981. return false;
  1982. return true;
  1983. }
  1984. static struct page
  1985. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1986. struct vm_area_struct *vma, unsigned long address,
  1987. int node)
  1988. {
  1989. up_read(&mm->mmap_sem);
  1990. VM_BUG_ON(!*hpage);
  1991. return *hpage;
  1992. }
  1993. #endif
  1994. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1995. {
  1996. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1997. (vma->vm_flags & VM_NOHUGEPAGE))
  1998. return false;
  1999. if (!vma->anon_vma || vma->vm_ops)
  2000. return false;
  2001. if (is_vma_temporary_stack(vma))
  2002. return false;
  2003. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  2004. return true;
  2005. }
  2006. static void collapse_huge_page(struct mm_struct *mm,
  2007. unsigned long address,
  2008. struct page **hpage,
  2009. struct vm_area_struct *vma,
  2010. int node)
  2011. {
  2012. pmd_t *pmd, _pmd;
  2013. pte_t *pte;
  2014. pgtable_t pgtable;
  2015. struct page *new_page;
  2016. spinlock_t *ptl;
  2017. int isolated;
  2018. unsigned long hstart, hend;
  2019. unsigned long mmun_start; /* For mmu_notifiers */
  2020. unsigned long mmun_end; /* For mmu_notifiers */
  2021. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2022. /* release the mmap_sem read lock. */
  2023. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2024. if (!new_page)
  2025. return;
  2026. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2027. return;
  2028. /*
  2029. * Prevent all access to pagetables with the exception of
  2030. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2031. * handled by the anon_vma lock + PG_lock.
  2032. */
  2033. down_write(&mm->mmap_sem);
  2034. if (unlikely(khugepaged_test_exit(mm)))
  2035. goto out;
  2036. vma = find_vma(mm, address);
  2037. if (!vma)
  2038. goto out;
  2039. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2040. hend = vma->vm_end & HPAGE_PMD_MASK;
  2041. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2042. goto out;
  2043. if (!hugepage_vma_check(vma))
  2044. goto out;
  2045. pmd = mm_find_pmd(mm, address);
  2046. if (!pmd)
  2047. goto out;
  2048. if (pmd_trans_huge(*pmd))
  2049. goto out;
  2050. anon_vma_lock_write(vma->anon_vma);
  2051. pte = pte_offset_map(pmd, address);
  2052. ptl = pte_lockptr(mm, pmd);
  2053. mmun_start = address;
  2054. mmun_end = address + HPAGE_PMD_SIZE;
  2055. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2056. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2057. /*
  2058. * After this gup_fast can't run anymore. This also removes
  2059. * any huge TLB entry from the CPU so we won't allow
  2060. * huge and small TLB entries for the same virtual address
  2061. * to avoid the risk of CPU bugs in that area.
  2062. */
  2063. _pmd = pmdp_clear_flush(vma, address, pmd);
  2064. spin_unlock(&mm->page_table_lock);
  2065. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2066. spin_lock(ptl);
  2067. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2068. spin_unlock(ptl);
  2069. if (unlikely(!isolated)) {
  2070. pte_unmap(pte);
  2071. spin_lock(&mm->page_table_lock);
  2072. BUG_ON(!pmd_none(*pmd));
  2073. /*
  2074. * We can only use set_pmd_at when establishing
  2075. * hugepmds and never for establishing regular pmds that
  2076. * points to regular pagetables. Use pmd_populate for that
  2077. */
  2078. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2079. spin_unlock(&mm->page_table_lock);
  2080. anon_vma_unlock_write(vma->anon_vma);
  2081. goto out;
  2082. }
  2083. /*
  2084. * All pages are isolated and locked so anon_vma rmap
  2085. * can't run anymore.
  2086. */
  2087. anon_vma_unlock_write(vma->anon_vma);
  2088. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2089. pte_unmap(pte);
  2090. __SetPageUptodate(new_page);
  2091. pgtable = pmd_pgtable(_pmd);
  2092. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2093. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2094. /*
  2095. * spin_lock() below is not the equivalent of smp_wmb(), so
  2096. * this is needed to avoid the copy_huge_page writes to become
  2097. * visible after the set_pmd_at() write.
  2098. */
  2099. smp_wmb();
  2100. spin_lock(&mm->page_table_lock);
  2101. BUG_ON(!pmd_none(*pmd));
  2102. page_add_new_anon_rmap(new_page, vma, address);
  2103. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2104. set_pmd_at(mm, address, pmd, _pmd);
  2105. update_mmu_cache_pmd(vma, address, pmd);
  2106. spin_unlock(&mm->page_table_lock);
  2107. *hpage = NULL;
  2108. khugepaged_pages_collapsed++;
  2109. out_up_write:
  2110. up_write(&mm->mmap_sem);
  2111. return;
  2112. out:
  2113. mem_cgroup_uncharge_page(new_page);
  2114. goto out_up_write;
  2115. }
  2116. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2117. struct vm_area_struct *vma,
  2118. unsigned long address,
  2119. struct page **hpage)
  2120. {
  2121. pmd_t *pmd;
  2122. pte_t *pte, *_pte;
  2123. int ret = 0, referenced = 0, none = 0;
  2124. struct page *page;
  2125. unsigned long _address;
  2126. spinlock_t *ptl;
  2127. int node = NUMA_NO_NODE;
  2128. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2129. pmd = mm_find_pmd(mm, address);
  2130. if (!pmd)
  2131. goto out;
  2132. if (pmd_trans_huge(*pmd))
  2133. goto out;
  2134. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2135. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2136. _pte++, _address += PAGE_SIZE) {
  2137. pte_t pteval = *_pte;
  2138. if (pte_none(pteval)) {
  2139. if (++none <= khugepaged_max_ptes_none)
  2140. continue;
  2141. else
  2142. goto out_unmap;
  2143. }
  2144. if (!pte_present(pteval) || !pte_write(pteval))
  2145. goto out_unmap;
  2146. page = vm_normal_page(vma, _address, pteval);
  2147. if (unlikely(!page))
  2148. goto out_unmap;
  2149. /*
  2150. * Chose the node of the first page. This could
  2151. * be more sophisticated and look at more pages,
  2152. * but isn't for now.
  2153. */
  2154. if (node == NUMA_NO_NODE)
  2155. node = page_to_nid(page);
  2156. VM_BUG_ON(PageCompound(page));
  2157. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2158. goto out_unmap;
  2159. /* cannot use mapcount: can't collapse if there's a gup pin */
  2160. if (page_count(page) != 1)
  2161. goto out_unmap;
  2162. if (pte_young(pteval) || PageReferenced(page) ||
  2163. mmu_notifier_test_young(vma->vm_mm, address))
  2164. referenced = 1;
  2165. }
  2166. if (referenced)
  2167. ret = 1;
  2168. out_unmap:
  2169. pte_unmap_unlock(pte, ptl);
  2170. if (ret)
  2171. /* collapse_huge_page will return with the mmap_sem released */
  2172. collapse_huge_page(mm, address, hpage, vma, node);
  2173. out:
  2174. return ret;
  2175. }
  2176. static void collect_mm_slot(struct mm_slot *mm_slot)
  2177. {
  2178. struct mm_struct *mm = mm_slot->mm;
  2179. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2180. if (khugepaged_test_exit(mm)) {
  2181. /* free mm_slot */
  2182. hash_del(&mm_slot->hash);
  2183. list_del(&mm_slot->mm_node);
  2184. /*
  2185. * Not strictly needed because the mm exited already.
  2186. *
  2187. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2188. */
  2189. /* khugepaged_mm_lock actually not necessary for the below */
  2190. free_mm_slot(mm_slot);
  2191. mmdrop(mm);
  2192. }
  2193. }
  2194. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2195. struct page **hpage)
  2196. __releases(&khugepaged_mm_lock)
  2197. __acquires(&khugepaged_mm_lock)
  2198. {
  2199. struct mm_slot *mm_slot;
  2200. struct mm_struct *mm;
  2201. struct vm_area_struct *vma;
  2202. int progress = 0;
  2203. VM_BUG_ON(!pages);
  2204. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2205. if (khugepaged_scan.mm_slot)
  2206. mm_slot = khugepaged_scan.mm_slot;
  2207. else {
  2208. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2209. struct mm_slot, mm_node);
  2210. khugepaged_scan.address = 0;
  2211. khugepaged_scan.mm_slot = mm_slot;
  2212. }
  2213. spin_unlock(&khugepaged_mm_lock);
  2214. mm = mm_slot->mm;
  2215. down_read(&mm->mmap_sem);
  2216. if (unlikely(khugepaged_test_exit(mm)))
  2217. vma = NULL;
  2218. else
  2219. vma = find_vma(mm, khugepaged_scan.address);
  2220. progress++;
  2221. for (; vma; vma = vma->vm_next) {
  2222. unsigned long hstart, hend;
  2223. cond_resched();
  2224. if (unlikely(khugepaged_test_exit(mm))) {
  2225. progress++;
  2226. break;
  2227. }
  2228. if (!hugepage_vma_check(vma)) {
  2229. skip:
  2230. progress++;
  2231. continue;
  2232. }
  2233. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2234. hend = vma->vm_end & HPAGE_PMD_MASK;
  2235. if (hstart >= hend)
  2236. goto skip;
  2237. if (khugepaged_scan.address > hend)
  2238. goto skip;
  2239. if (khugepaged_scan.address < hstart)
  2240. khugepaged_scan.address = hstart;
  2241. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2242. while (khugepaged_scan.address < hend) {
  2243. int ret;
  2244. cond_resched();
  2245. if (unlikely(khugepaged_test_exit(mm)))
  2246. goto breakouterloop;
  2247. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2248. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2249. hend);
  2250. ret = khugepaged_scan_pmd(mm, vma,
  2251. khugepaged_scan.address,
  2252. hpage);
  2253. /* move to next address */
  2254. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2255. progress += HPAGE_PMD_NR;
  2256. if (ret)
  2257. /* we released mmap_sem so break loop */
  2258. goto breakouterloop_mmap_sem;
  2259. if (progress >= pages)
  2260. goto breakouterloop;
  2261. }
  2262. }
  2263. breakouterloop:
  2264. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2265. breakouterloop_mmap_sem:
  2266. spin_lock(&khugepaged_mm_lock);
  2267. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2268. /*
  2269. * Release the current mm_slot if this mm is about to die, or
  2270. * if we scanned all vmas of this mm.
  2271. */
  2272. if (khugepaged_test_exit(mm) || !vma) {
  2273. /*
  2274. * Make sure that if mm_users is reaching zero while
  2275. * khugepaged runs here, khugepaged_exit will find
  2276. * mm_slot not pointing to the exiting mm.
  2277. */
  2278. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2279. khugepaged_scan.mm_slot = list_entry(
  2280. mm_slot->mm_node.next,
  2281. struct mm_slot, mm_node);
  2282. khugepaged_scan.address = 0;
  2283. } else {
  2284. khugepaged_scan.mm_slot = NULL;
  2285. khugepaged_full_scans++;
  2286. }
  2287. collect_mm_slot(mm_slot);
  2288. }
  2289. return progress;
  2290. }
  2291. static int khugepaged_has_work(void)
  2292. {
  2293. return !list_empty(&khugepaged_scan.mm_head) &&
  2294. khugepaged_enabled();
  2295. }
  2296. static int khugepaged_wait_event(void)
  2297. {
  2298. return !list_empty(&khugepaged_scan.mm_head) ||
  2299. kthread_should_stop();
  2300. }
  2301. static void khugepaged_do_scan(void)
  2302. {
  2303. struct page *hpage = NULL;
  2304. unsigned int progress = 0, pass_through_head = 0;
  2305. unsigned int pages = khugepaged_pages_to_scan;
  2306. bool wait = true;
  2307. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2308. while (progress < pages) {
  2309. if (!khugepaged_prealloc_page(&hpage, &wait))
  2310. break;
  2311. cond_resched();
  2312. if (unlikely(kthread_should_stop() || freezing(current)))
  2313. break;
  2314. spin_lock(&khugepaged_mm_lock);
  2315. if (!khugepaged_scan.mm_slot)
  2316. pass_through_head++;
  2317. if (khugepaged_has_work() &&
  2318. pass_through_head < 2)
  2319. progress += khugepaged_scan_mm_slot(pages - progress,
  2320. &hpage);
  2321. else
  2322. progress = pages;
  2323. spin_unlock(&khugepaged_mm_lock);
  2324. }
  2325. if (!IS_ERR_OR_NULL(hpage))
  2326. put_page(hpage);
  2327. }
  2328. static void khugepaged_wait_work(void)
  2329. {
  2330. try_to_freeze();
  2331. if (khugepaged_has_work()) {
  2332. if (!khugepaged_scan_sleep_millisecs)
  2333. return;
  2334. wait_event_freezable_timeout(khugepaged_wait,
  2335. kthread_should_stop(),
  2336. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2337. return;
  2338. }
  2339. if (khugepaged_enabled())
  2340. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2341. }
  2342. static int khugepaged(void *none)
  2343. {
  2344. struct mm_slot *mm_slot;
  2345. set_freezable();
  2346. set_user_nice(current, 19);
  2347. while (!kthread_should_stop()) {
  2348. khugepaged_do_scan();
  2349. khugepaged_wait_work();
  2350. }
  2351. spin_lock(&khugepaged_mm_lock);
  2352. mm_slot = khugepaged_scan.mm_slot;
  2353. khugepaged_scan.mm_slot = NULL;
  2354. if (mm_slot)
  2355. collect_mm_slot(mm_slot);
  2356. spin_unlock(&khugepaged_mm_lock);
  2357. return 0;
  2358. }
  2359. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2360. unsigned long haddr, pmd_t *pmd)
  2361. {
  2362. struct mm_struct *mm = vma->vm_mm;
  2363. pgtable_t pgtable;
  2364. pmd_t _pmd;
  2365. int i;
  2366. pmdp_clear_flush(vma, haddr, pmd);
  2367. /* leave pmd empty until pte is filled */
  2368. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2369. pmd_populate(mm, &_pmd, pgtable);
  2370. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2371. pte_t *pte, entry;
  2372. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2373. entry = pte_mkspecial(entry);
  2374. pte = pte_offset_map(&_pmd, haddr);
  2375. VM_BUG_ON(!pte_none(*pte));
  2376. set_pte_at(mm, haddr, pte, entry);
  2377. pte_unmap(pte);
  2378. }
  2379. smp_wmb(); /* make pte visible before pmd */
  2380. pmd_populate(mm, pmd, pgtable);
  2381. put_huge_zero_page();
  2382. }
  2383. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2384. pmd_t *pmd)
  2385. {
  2386. struct page *page;
  2387. struct mm_struct *mm = vma->vm_mm;
  2388. unsigned long haddr = address & HPAGE_PMD_MASK;
  2389. unsigned long mmun_start; /* For mmu_notifiers */
  2390. unsigned long mmun_end; /* For mmu_notifiers */
  2391. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2392. mmun_start = haddr;
  2393. mmun_end = haddr + HPAGE_PMD_SIZE;
  2394. again:
  2395. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2396. spin_lock(&mm->page_table_lock);
  2397. if (unlikely(!pmd_trans_huge(*pmd))) {
  2398. spin_unlock(&mm->page_table_lock);
  2399. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2400. return;
  2401. }
  2402. if (is_huge_zero_pmd(*pmd)) {
  2403. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2404. spin_unlock(&mm->page_table_lock);
  2405. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2406. return;
  2407. }
  2408. page = pmd_page(*pmd);
  2409. VM_BUG_ON(!page_count(page));
  2410. get_page(page);
  2411. spin_unlock(&mm->page_table_lock);
  2412. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2413. split_huge_page(page);
  2414. put_page(page);
  2415. /*
  2416. * We don't always have down_write of mmap_sem here: a racing
  2417. * do_huge_pmd_wp_page() might have copied-on-write to another
  2418. * huge page before our split_huge_page() got the anon_vma lock.
  2419. */
  2420. if (unlikely(pmd_trans_huge(*pmd)))
  2421. goto again;
  2422. }
  2423. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2424. pmd_t *pmd)
  2425. {
  2426. struct vm_area_struct *vma;
  2427. vma = find_vma(mm, address);
  2428. BUG_ON(vma == NULL);
  2429. split_huge_page_pmd(vma, address, pmd);
  2430. }
  2431. static void split_huge_page_address(struct mm_struct *mm,
  2432. unsigned long address)
  2433. {
  2434. pmd_t *pmd;
  2435. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2436. pmd = mm_find_pmd(mm, address);
  2437. if (!pmd)
  2438. return;
  2439. /*
  2440. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2441. * materialize from under us.
  2442. */
  2443. split_huge_page_pmd_mm(mm, address, pmd);
  2444. }
  2445. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2446. unsigned long start,
  2447. unsigned long end,
  2448. long adjust_next)
  2449. {
  2450. /*
  2451. * If the new start address isn't hpage aligned and it could
  2452. * previously contain an hugepage: check if we need to split
  2453. * an huge pmd.
  2454. */
  2455. if (start & ~HPAGE_PMD_MASK &&
  2456. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2457. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2458. split_huge_page_address(vma->vm_mm, start);
  2459. /*
  2460. * If the new end address isn't hpage aligned and it could
  2461. * previously contain an hugepage: check if we need to split
  2462. * an huge pmd.
  2463. */
  2464. if (end & ~HPAGE_PMD_MASK &&
  2465. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2466. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2467. split_huge_page_address(vma->vm_mm, end);
  2468. /*
  2469. * If we're also updating the vma->vm_next->vm_start, if the new
  2470. * vm_next->vm_start isn't page aligned and it could previously
  2471. * contain an hugepage: check if we need to split an huge pmd.
  2472. */
  2473. if (adjust_next > 0) {
  2474. struct vm_area_struct *next = vma->vm_next;
  2475. unsigned long nstart = next->vm_start;
  2476. nstart += adjust_next << PAGE_SHIFT;
  2477. if (nstart & ~HPAGE_PMD_MASK &&
  2478. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2479. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2480. split_huge_page_address(next->vm_mm, nstart);
  2481. }
  2482. }