ring_buffer.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. /*
  2. * Performance events ring-buffer code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/slab.h>
  14. #include "internal.h"
  15. static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
  16. unsigned long offset, unsigned long head)
  17. {
  18. unsigned long sz = perf_data_size(rb);
  19. unsigned long mask = sz - 1;
  20. /*
  21. * check if user-writable
  22. * overwrite : over-write its own tail
  23. * !overwrite: buffer possibly drops events.
  24. */
  25. if (rb->overwrite)
  26. return true;
  27. /*
  28. * verify that payload is not bigger than buffer
  29. * otherwise masking logic may fail to detect
  30. * the "not enough space" condition
  31. */
  32. if ((head - offset) > sz)
  33. return false;
  34. offset = (offset - tail) & mask;
  35. head = (head - tail) & mask;
  36. if ((int)(head - offset) < 0)
  37. return false;
  38. return true;
  39. }
  40. static void perf_output_wakeup(struct perf_output_handle *handle)
  41. {
  42. atomic_set(&handle->rb->poll, POLL_IN);
  43. handle->event->pending_wakeup = 1;
  44. irq_work_queue(&handle->event->pending);
  45. }
  46. /*
  47. * We need to ensure a later event_id doesn't publish a head when a former
  48. * event isn't done writing. However since we need to deal with NMIs we
  49. * cannot fully serialize things.
  50. *
  51. * We only publish the head (and generate a wakeup) when the outer-most
  52. * event completes.
  53. */
  54. static void perf_output_get_handle(struct perf_output_handle *handle)
  55. {
  56. struct ring_buffer *rb = handle->rb;
  57. preempt_disable();
  58. local_inc(&rb->nest);
  59. handle->wakeup = local_read(&rb->wakeup);
  60. }
  61. static void perf_output_put_handle(struct perf_output_handle *handle)
  62. {
  63. struct ring_buffer *rb = handle->rb;
  64. unsigned long head;
  65. again:
  66. head = local_read(&rb->head);
  67. /*
  68. * IRQ/NMI can happen here, which means we can miss a head update.
  69. */
  70. if (!local_dec_and_test(&rb->nest))
  71. goto out;
  72. /*
  73. * Since the mmap() consumer (userspace) can run on a different CPU:
  74. *
  75. * kernel user
  76. *
  77. * READ ->data_tail READ ->data_head
  78. * smp_mb() (A) smp_rmb() (C)
  79. * WRITE $data READ $data
  80. * smp_wmb() (B) smp_mb() (D)
  81. * STORE ->data_head WRITE ->data_tail
  82. *
  83. * Where A pairs with D, and B pairs with C.
  84. *
  85. * I don't think A needs to be a full barrier because we won't in fact
  86. * write data until we see the store from userspace. So we simply don't
  87. * issue the data WRITE until we observe it. Be conservative for now.
  88. *
  89. * OTOH, D needs to be a full barrier since it separates the data READ
  90. * from the tail WRITE.
  91. *
  92. * For B a WMB is sufficient since it separates two WRITEs, and for C
  93. * an RMB is sufficient since it separates two READs.
  94. *
  95. * See perf_output_begin().
  96. */
  97. smp_wmb();
  98. rb->user_page->data_head = head;
  99. /*
  100. * Now check if we missed an update, rely on the (compiler)
  101. * barrier in atomic_dec_and_test() to re-read rb->head.
  102. */
  103. if (unlikely(head != local_read(&rb->head))) {
  104. local_inc(&rb->nest);
  105. goto again;
  106. }
  107. if (handle->wakeup != local_read(&rb->wakeup))
  108. perf_output_wakeup(handle);
  109. out:
  110. preempt_enable();
  111. }
  112. int perf_output_begin(struct perf_output_handle *handle,
  113. struct perf_event *event, unsigned int size)
  114. {
  115. struct ring_buffer *rb;
  116. unsigned long tail, offset, head;
  117. int have_lost;
  118. struct perf_sample_data sample_data;
  119. struct {
  120. struct perf_event_header header;
  121. u64 id;
  122. u64 lost;
  123. } lost_event;
  124. rcu_read_lock();
  125. /*
  126. * For inherited events we send all the output towards the parent.
  127. */
  128. if (event->parent)
  129. event = event->parent;
  130. rb = rcu_dereference(event->rb);
  131. if (!rb)
  132. goto out;
  133. handle->rb = rb;
  134. handle->event = event;
  135. if (!rb->nr_pages)
  136. goto out;
  137. have_lost = local_read(&rb->lost);
  138. if (have_lost) {
  139. lost_event.header.size = sizeof(lost_event);
  140. perf_event_header__init_id(&lost_event.header, &sample_data,
  141. event);
  142. size += lost_event.header.size;
  143. }
  144. perf_output_get_handle(handle);
  145. do {
  146. /*
  147. * Userspace could choose to issue a mb() before updating the
  148. * tail pointer. So that all reads will be completed before the
  149. * write is issued.
  150. *
  151. * See perf_output_put_handle().
  152. */
  153. tail = ACCESS_ONCE(rb->user_page->data_tail);
  154. smp_mb();
  155. offset = head = local_read(&rb->head);
  156. head += size;
  157. if (unlikely(!perf_output_space(rb, tail, offset, head)))
  158. goto fail;
  159. } while (local_cmpxchg(&rb->head, offset, head) != offset);
  160. if (head - local_read(&rb->wakeup) > rb->watermark)
  161. local_add(rb->watermark, &rb->wakeup);
  162. handle->page = offset >> (PAGE_SHIFT + page_order(rb));
  163. handle->page &= rb->nr_pages - 1;
  164. handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
  165. handle->addr = rb->data_pages[handle->page];
  166. handle->addr += handle->size;
  167. handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
  168. if (have_lost) {
  169. lost_event.header.type = PERF_RECORD_LOST;
  170. lost_event.header.misc = 0;
  171. lost_event.id = event->id;
  172. lost_event.lost = local_xchg(&rb->lost, 0);
  173. perf_output_put(handle, lost_event);
  174. perf_event__output_id_sample(event, handle, &sample_data);
  175. }
  176. return 0;
  177. fail:
  178. local_inc(&rb->lost);
  179. perf_output_put_handle(handle);
  180. out:
  181. rcu_read_unlock();
  182. return -ENOSPC;
  183. }
  184. unsigned int perf_output_copy(struct perf_output_handle *handle,
  185. const void *buf, unsigned int len)
  186. {
  187. return __output_copy(handle, buf, len);
  188. }
  189. unsigned int perf_output_skip(struct perf_output_handle *handle,
  190. unsigned int len)
  191. {
  192. return __output_skip(handle, NULL, len);
  193. }
  194. void perf_output_end(struct perf_output_handle *handle)
  195. {
  196. perf_output_put_handle(handle);
  197. rcu_read_unlock();
  198. }
  199. static void
  200. ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
  201. {
  202. long max_size = perf_data_size(rb);
  203. if (watermark)
  204. rb->watermark = min(max_size, watermark);
  205. if (!rb->watermark)
  206. rb->watermark = max_size / 2;
  207. if (flags & RING_BUFFER_WRITABLE)
  208. rb->overwrite = 0;
  209. else
  210. rb->overwrite = 1;
  211. atomic_set(&rb->refcount, 1);
  212. INIT_LIST_HEAD(&rb->event_list);
  213. spin_lock_init(&rb->event_lock);
  214. }
  215. #ifndef CONFIG_PERF_USE_VMALLOC
  216. /*
  217. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  218. */
  219. struct page *
  220. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  221. {
  222. if (pgoff > rb->nr_pages)
  223. return NULL;
  224. if (pgoff == 0)
  225. return virt_to_page(rb->user_page);
  226. return virt_to_page(rb->data_pages[pgoff - 1]);
  227. }
  228. static void *perf_mmap_alloc_page(int cpu)
  229. {
  230. struct page *page;
  231. int node;
  232. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  233. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  234. if (!page)
  235. return NULL;
  236. return page_address(page);
  237. }
  238. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  239. {
  240. struct ring_buffer *rb;
  241. unsigned long size;
  242. int i;
  243. size = sizeof(struct ring_buffer);
  244. size += nr_pages * sizeof(void *);
  245. rb = kzalloc(size, GFP_KERNEL);
  246. if (!rb)
  247. goto fail;
  248. rb->user_page = perf_mmap_alloc_page(cpu);
  249. if (!rb->user_page)
  250. goto fail_user_page;
  251. for (i = 0; i < nr_pages; i++) {
  252. rb->data_pages[i] = perf_mmap_alloc_page(cpu);
  253. if (!rb->data_pages[i])
  254. goto fail_data_pages;
  255. }
  256. rb->nr_pages = nr_pages;
  257. ring_buffer_init(rb, watermark, flags);
  258. return rb;
  259. fail_data_pages:
  260. for (i--; i >= 0; i--)
  261. free_page((unsigned long)rb->data_pages[i]);
  262. free_page((unsigned long)rb->user_page);
  263. fail_user_page:
  264. kfree(rb);
  265. fail:
  266. return NULL;
  267. }
  268. static void perf_mmap_free_page(unsigned long addr)
  269. {
  270. struct page *page = virt_to_page((void *)addr);
  271. page->mapping = NULL;
  272. __free_page(page);
  273. }
  274. void rb_free(struct ring_buffer *rb)
  275. {
  276. int i;
  277. perf_mmap_free_page((unsigned long)rb->user_page);
  278. for (i = 0; i < rb->nr_pages; i++)
  279. perf_mmap_free_page((unsigned long)rb->data_pages[i]);
  280. kfree(rb);
  281. }
  282. #else
  283. static int data_page_nr(struct ring_buffer *rb)
  284. {
  285. return rb->nr_pages << page_order(rb);
  286. }
  287. struct page *
  288. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  289. {
  290. /* The '>' counts in the user page. */
  291. if (pgoff > data_page_nr(rb))
  292. return NULL;
  293. return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
  294. }
  295. static void perf_mmap_unmark_page(void *addr)
  296. {
  297. struct page *page = vmalloc_to_page(addr);
  298. page->mapping = NULL;
  299. }
  300. static void rb_free_work(struct work_struct *work)
  301. {
  302. struct ring_buffer *rb;
  303. void *base;
  304. int i, nr;
  305. rb = container_of(work, struct ring_buffer, work);
  306. nr = data_page_nr(rb);
  307. base = rb->user_page;
  308. /* The '<=' counts in the user page. */
  309. for (i = 0; i <= nr; i++)
  310. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  311. vfree(base);
  312. kfree(rb);
  313. }
  314. void rb_free(struct ring_buffer *rb)
  315. {
  316. schedule_work(&rb->work);
  317. }
  318. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  319. {
  320. struct ring_buffer *rb;
  321. unsigned long size;
  322. void *all_buf;
  323. size = sizeof(struct ring_buffer);
  324. size += sizeof(void *);
  325. rb = kzalloc(size, GFP_KERNEL);
  326. if (!rb)
  327. goto fail;
  328. INIT_WORK(&rb->work, rb_free_work);
  329. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  330. if (!all_buf)
  331. goto fail_all_buf;
  332. rb->user_page = all_buf;
  333. rb->data_pages[0] = all_buf + PAGE_SIZE;
  334. rb->page_order = ilog2(nr_pages);
  335. rb->nr_pages = !!nr_pages;
  336. ring_buffer_init(rb, watermark, flags);
  337. return rb;
  338. fail_all_buf:
  339. kfree(rb);
  340. fail:
  341. return NULL;
  342. }
  343. #endif