greth.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633
  1. /*
  2. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  3. *
  4. * 2005-2009 (c) Aeroflex Gaisler AB
  5. *
  6. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  7. * available in the GRLIB VHDL IP core library.
  8. *
  9. * Full documentation of both cores can be found here:
  10. * http://www.gaisler.com/products/grlib/grip.pdf
  11. *
  12. * The Gigabit version supports scatter/gather DMA, any alignment of
  13. * buffers and checksum offloading.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Contributors: Kristoffer Glembo
  21. * Daniel Hellstrom
  22. * Marko Isomaki
  23. */
  24. #include <linux/module.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/init.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/io.h>
  32. #include <linux/crc32.h>
  33. #include <linux/mii.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_platform.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/byteorder.h>
  38. #ifdef CONFIG_SPARC
  39. #include <asm/idprom.h>
  40. #endif
  41. #include "greth.h"
  42. #define GRETH_DEF_MSG_ENABLE \
  43. (NETIF_MSG_DRV | \
  44. NETIF_MSG_PROBE | \
  45. NETIF_MSG_LINK | \
  46. NETIF_MSG_IFDOWN | \
  47. NETIF_MSG_IFUP | \
  48. NETIF_MSG_RX_ERR | \
  49. NETIF_MSG_TX_ERR)
  50. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  51. module_param(greth_debug, int, 0);
  52. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  53. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  54. static int macaddr[6];
  55. module_param_array(macaddr, int, NULL, 0);
  56. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  57. static int greth_edcl = 1;
  58. module_param(greth_edcl, int, 0);
  59. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  60. static int greth_open(struct net_device *dev);
  61. static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
  62. struct net_device *dev);
  63. static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
  64. struct net_device *dev);
  65. static int greth_rx(struct net_device *dev, int limit);
  66. static int greth_rx_gbit(struct net_device *dev, int limit);
  67. static void greth_clean_tx(struct net_device *dev);
  68. static void greth_clean_tx_gbit(struct net_device *dev);
  69. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  70. static int greth_close(struct net_device *dev);
  71. static int greth_set_mac_add(struct net_device *dev, void *p);
  72. static void greth_set_multicast_list(struct net_device *dev);
  73. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  74. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  75. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  76. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  77. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  78. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  79. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  80. static void greth_print_rx_packet(void *addr, int len)
  81. {
  82. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  83. addr, len, true);
  84. }
  85. static void greth_print_tx_packet(struct sk_buff *skb)
  86. {
  87. int i;
  88. int length;
  89. if (skb_shinfo(skb)->nr_frags == 0)
  90. length = skb->len;
  91. else
  92. length = skb_headlen(skb);
  93. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  94. skb->data, length, true);
  95. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  96. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  97. phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
  98. skb_shinfo(skb)->frags[i].page_offset,
  99. length, true);
  100. }
  101. }
  102. static inline void greth_enable_tx(struct greth_private *greth)
  103. {
  104. wmb();
  105. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  106. }
  107. static inline void greth_disable_tx(struct greth_private *greth)
  108. {
  109. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  110. }
  111. static inline void greth_enable_rx(struct greth_private *greth)
  112. {
  113. wmb();
  114. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  115. }
  116. static inline void greth_disable_rx(struct greth_private *greth)
  117. {
  118. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  119. }
  120. static inline void greth_enable_irqs(struct greth_private *greth)
  121. {
  122. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  123. }
  124. static inline void greth_disable_irqs(struct greth_private *greth)
  125. {
  126. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  127. }
  128. static inline void greth_write_bd(u32 *bd, u32 val)
  129. {
  130. __raw_writel(cpu_to_be32(val), bd);
  131. }
  132. static inline u32 greth_read_bd(u32 *bd)
  133. {
  134. return be32_to_cpu(__raw_readl(bd));
  135. }
  136. static void greth_clean_rings(struct greth_private *greth)
  137. {
  138. int i;
  139. struct greth_bd *rx_bdp = greth->rx_bd_base;
  140. struct greth_bd *tx_bdp = greth->tx_bd_base;
  141. if (greth->gbit_mac) {
  142. /* Free and unmap RX buffers */
  143. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  144. if (greth->rx_skbuff[i] != NULL) {
  145. dev_kfree_skb(greth->rx_skbuff[i]);
  146. dma_unmap_single(greth->dev,
  147. greth_read_bd(&rx_bdp->addr),
  148. MAX_FRAME_SIZE+NET_IP_ALIGN,
  149. DMA_FROM_DEVICE);
  150. }
  151. }
  152. /* TX buffers */
  153. while (greth->tx_free < GRETH_TXBD_NUM) {
  154. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  155. int nr_frags = skb_shinfo(skb)->nr_frags;
  156. tx_bdp = greth->tx_bd_base + greth->tx_last;
  157. greth->tx_last = NEXT_TX(greth->tx_last);
  158. dma_unmap_single(greth->dev,
  159. greth_read_bd(&tx_bdp->addr),
  160. skb_headlen(skb),
  161. DMA_TO_DEVICE);
  162. for (i = 0; i < nr_frags; i++) {
  163. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  164. tx_bdp = greth->tx_bd_base + greth->tx_last;
  165. dma_unmap_page(greth->dev,
  166. greth_read_bd(&tx_bdp->addr),
  167. frag->size,
  168. DMA_TO_DEVICE);
  169. greth->tx_last = NEXT_TX(greth->tx_last);
  170. }
  171. greth->tx_free += nr_frags+1;
  172. dev_kfree_skb(skb);
  173. }
  174. } else { /* 10/100 Mbps MAC */
  175. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  176. kfree(greth->rx_bufs[i]);
  177. dma_unmap_single(greth->dev,
  178. greth_read_bd(&rx_bdp->addr),
  179. MAX_FRAME_SIZE,
  180. DMA_FROM_DEVICE);
  181. }
  182. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  183. kfree(greth->tx_bufs[i]);
  184. dma_unmap_single(greth->dev,
  185. greth_read_bd(&tx_bdp->addr),
  186. MAX_FRAME_SIZE,
  187. DMA_TO_DEVICE);
  188. }
  189. }
  190. }
  191. static int greth_init_rings(struct greth_private *greth)
  192. {
  193. struct sk_buff *skb;
  194. struct greth_bd *rx_bd, *tx_bd;
  195. u32 dma_addr;
  196. int i;
  197. rx_bd = greth->rx_bd_base;
  198. tx_bd = greth->tx_bd_base;
  199. /* Initialize descriptor rings and buffers */
  200. if (greth->gbit_mac) {
  201. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  202. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  203. if (skb == NULL) {
  204. if (netif_msg_ifup(greth))
  205. dev_err(greth->dev, "Error allocating DMA ring.\n");
  206. goto cleanup;
  207. }
  208. skb_reserve(skb, NET_IP_ALIGN);
  209. dma_addr = dma_map_single(greth->dev,
  210. skb->data,
  211. MAX_FRAME_SIZE+NET_IP_ALIGN,
  212. DMA_FROM_DEVICE);
  213. if (dma_mapping_error(greth->dev, dma_addr)) {
  214. if (netif_msg_ifup(greth))
  215. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  216. goto cleanup;
  217. }
  218. greth->rx_skbuff[i] = skb;
  219. greth_write_bd(&rx_bd[i].addr, dma_addr);
  220. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  221. }
  222. } else {
  223. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  224. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  225. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  226. if (greth->rx_bufs[i] == NULL) {
  227. if (netif_msg_ifup(greth))
  228. dev_err(greth->dev, "Error allocating DMA ring.\n");
  229. goto cleanup;
  230. }
  231. dma_addr = dma_map_single(greth->dev,
  232. greth->rx_bufs[i],
  233. MAX_FRAME_SIZE,
  234. DMA_FROM_DEVICE);
  235. if (dma_mapping_error(greth->dev, dma_addr)) {
  236. if (netif_msg_ifup(greth))
  237. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  238. goto cleanup;
  239. }
  240. greth_write_bd(&rx_bd[i].addr, dma_addr);
  241. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  242. }
  243. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  244. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  245. if (greth->tx_bufs[i] == NULL) {
  246. if (netif_msg_ifup(greth))
  247. dev_err(greth->dev, "Error allocating DMA ring.\n");
  248. goto cleanup;
  249. }
  250. dma_addr = dma_map_single(greth->dev,
  251. greth->tx_bufs[i],
  252. MAX_FRAME_SIZE,
  253. DMA_TO_DEVICE);
  254. if (dma_mapping_error(greth->dev, dma_addr)) {
  255. if (netif_msg_ifup(greth))
  256. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  257. goto cleanup;
  258. }
  259. greth_write_bd(&tx_bd[i].addr, dma_addr);
  260. greth_write_bd(&tx_bd[i].stat, 0);
  261. }
  262. }
  263. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  264. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  265. /* Initialize pointers. */
  266. greth->rx_cur = 0;
  267. greth->tx_next = 0;
  268. greth->tx_last = 0;
  269. greth->tx_free = GRETH_TXBD_NUM;
  270. /* Initialize descriptor base address */
  271. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  272. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  273. return 0;
  274. cleanup:
  275. greth_clean_rings(greth);
  276. return -ENOMEM;
  277. }
  278. static int greth_open(struct net_device *dev)
  279. {
  280. struct greth_private *greth = netdev_priv(dev);
  281. int err;
  282. err = greth_init_rings(greth);
  283. if (err) {
  284. if (netif_msg_ifup(greth))
  285. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  286. return err;
  287. }
  288. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  289. if (err) {
  290. if (netif_msg_ifup(greth))
  291. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  292. greth_clean_rings(greth);
  293. return err;
  294. }
  295. if (netif_msg_ifup(greth))
  296. dev_dbg(&dev->dev, " starting queue\n");
  297. netif_start_queue(dev);
  298. napi_enable(&greth->napi);
  299. greth_enable_irqs(greth);
  300. greth_enable_tx(greth);
  301. greth_enable_rx(greth);
  302. return 0;
  303. }
  304. static int greth_close(struct net_device *dev)
  305. {
  306. struct greth_private *greth = netdev_priv(dev);
  307. napi_disable(&greth->napi);
  308. greth_disable_tx(greth);
  309. netif_stop_queue(dev);
  310. free_irq(greth->irq, (void *) dev);
  311. greth_clean_rings(greth);
  312. return 0;
  313. }
  314. static netdev_tx_t
  315. greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  316. {
  317. struct greth_private *greth = netdev_priv(dev);
  318. struct greth_bd *bdp;
  319. int err = NETDEV_TX_OK;
  320. u32 status, dma_addr;
  321. bdp = greth->tx_bd_base + greth->tx_next;
  322. if (unlikely(greth->tx_free <= 0)) {
  323. netif_stop_queue(dev);
  324. return NETDEV_TX_BUSY;
  325. }
  326. if (netif_msg_pktdata(greth))
  327. greth_print_tx_packet(skb);
  328. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  329. dev->stats.tx_errors++;
  330. goto out;
  331. }
  332. dma_addr = greth_read_bd(&bdp->addr);
  333. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  334. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  335. status = GRETH_BD_EN | (skb->len & GRETH_BD_LEN);
  336. /* Wrap around descriptor ring */
  337. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  338. status |= GRETH_BD_WR;
  339. }
  340. greth->tx_next = NEXT_TX(greth->tx_next);
  341. greth->tx_free--;
  342. /* No more descriptors */
  343. if (unlikely(greth->tx_free == 0)) {
  344. /* Free transmitted descriptors */
  345. greth_clean_tx(dev);
  346. /* If nothing was cleaned, stop queue & wait for irq */
  347. if (unlikely(greth->tx_free == 0)) {
  348. status |= GRETH_BD_IE;
  349. netif_stop_queue(dev);
  350. }
  351. }
  352. /* Write descriptor control word and enable transmission */
  353. greth_write_bd(&bdp->stat, status);
  354. greth_enable_tx(greth);
  355. out:
  356. dev_kfree_skb(skb);
  357. return err;
  358. }
  359. static netdev_tx_t
  360. greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  361. {
  362. struct greth_private *greth = netdev_priv(dev);
  363. struct greth_bd *bdp;
  364. u32 status = 0, dma_addr;
  365. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  366. nr_frags = skb_shinfo(skb)->nr_frags;
  367. if (greth->tx_free < nr_frags + 1) {
  368. netif_stop_queue(dev);
  369. err = NETDEV_TX_BUSY;
  370. goto out;
  371. }
  372. if (netif_msg_pktdata(greth))
  373. greth_print_tx_packet(skb);
  374. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  375. dev->stats.tx_errors++;
  376. goto out;
  377. }
  378. /* Save skb pointer. */
  379. greth->tx_skbuff[greth->tx_next] = skb;
  380. /* Linear buf */
  381. if (nr_frags != 0)
  382. status = GRETH_TXBD_MORE;
  383. status |= GRETH_TXBD_CSALL;
  384. status |= skb_headlen(skb) & GRETH_BD_LEN;
  385. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  386. status |= GRETH_BD_WR;
  387. bdp = greth->tx_bd_base + greth->tx_next;
  388. greth_write_bd(&bdp->stat, status);
  389. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  390. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  391. goto map_error;
  392. greth_write_bd(&bdp->addr, dma_addr);
  393. curr_tx = NEXT_TX(greth->tx_next);
  394. /* Frags */
  395. for (i = 0; i < nr_frags; i++) {
  396. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  397. greth->tx_skbuff[curr_tx] = NULL;
  398. bdp = greth->tx_bd_base + curr_tx;
  399. status = GRETH_TXBD_CSALL;
  400. status |= frag->size & GRETH_BD_LEN;
  401. /* Wrap around descriptor ring */
  402. if (curr_tx == GRETH_TXBD_NUM_MASK)
  403. status |= GRETH_BD_WR;
  404. /* More fragments left */
  405. if (i < nr_frags - 1)
  406. status |= GRETH_TXBD_MORE;
  407. /* ... last fragment, check if out of descriptors */
  408. else if (greth->tx_free - nr_frags - 1 < (MAX_SKB_FRAGS + 1)) {
  409. /* Enable interrupts and stop queue */
  410. status |= GRETH_BD_IE;
  411. netif_stop_queue(dev);
  412. }
  413. greth_write_bd(&bdp->stat, status);
  414. dma_addr = dma_map_page(greth->dev,
  415. frag->page,
  416. frag->page_offset,
  417. frag->size,
  418. DMA_TO_DEVICE);
  419. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  420. goto frag_map_error;
  421. greth_write_bd(&bdp->addr, dma_addr);
  422. curr_tx = NEXT_TX(curr_tx);
  423. }
  424. wmb();
  425. /* Enable the descriptors that we configured ... */
  426. for (i = 0; i < nr_frags + 1; i++) {
  427. bdp = greth->tx_bd_base + greth->tx_next;
  428. greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  429. greth->tx_next = NEXT_TX(greth->tx_next);
  430. greth->tx_free--;
  431. }
  432. greth_enable_tx(greth);
  433. return NETDEV_TX_OK;
  434. frag_map_error:
  435. /* Unmap SKB mappings that succeeded */
  436. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  437. bdp = greth->tx_bd_base + greth->tx_next + i;
  438. dma_unmap_single(greth->dev,
  439. greth_read_bd(&bdp->addr),
  440. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  441. DMA_TO_DEVICE);
  442. }
  443. map_error:
  444. if (net_ratelimit())
  445. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  446. dev_kfree_skb(skb);
  447. out:
  448. return err;
  449. }
  450. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  451. {
  452. struct net_device *dev = dev_id;
  453. struct greth_private *greth;
  454. u32 status;
  455. irqreturn_t retval = IRQ_NONE;
  456. greth = netdev_priv(dev);
  457. spin_lock(&greth->devlock);
  458. /* Get the interrupt events that caused us to be here. */
  459. status = GRETH_REGLOAD(greth->regs->status);
  460. /* Handle rx and tx interrupts through poll */
  461. if (status & (GRETH_INT_RX | GRETH_INT_TX)) {
  462. /* Clear interrupt status */
  463. GRETH_REGORIN(greth->regs->status,
  464. status & (GRETH_INT_RX | GRETH_INT_TX));
  465. retval = IRQ_HANDLED;
  466. /* Disable interrupts and schedule poll() */
  467. greth_disable_irqs(greth);
  468. napi_schedule(&greth->napi);
  469. }
  470. mmiowb();
  471. spin_unlock(&greth->devlock);
  472. return retval;
  473. }
  474. static void greth_clean_tx(struct net_device *dev)
  475. {
  476. struct greth_private *greth;
  477. struct greth_bd *bdp;
  478. u32 stat;
  479. greth = netdev_priv(dev);
  480. while (1) {
  481. bdp = greth->tx_bd_base + greth->tx_last;
  482. stat = greth_read_bd(&bdp->stat);
  483. if (unlikely(stat & GRETH_BD_EN))
  484. break;
  485. if (greth->tx_free == GRETH_TXBD_NUM)
  486. break;
  487. /* Check status for errors */
  488. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  489. dev->stats.tx_errors++;
  490. if (stat & GRETH_TXBD_ERR_AL)
  491. dev->stats.tx_aborted_errors++;
  492. if (stat & GRETH_TXBD_ERR_UE)
  493. dev->stats.tx_fifo_errors++;
  494. }
  495. dev->stats.tx_packets++;
  496. greth->tx_last = NEXT_TX(greth->tx_last);
  497. greth->tx_free++;
  498. }
  499. if (greth->tx_free > 0) {
  500. netif_wake_queue(dev);
  501. }
  502. }
  503. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  504. {
  505. /* Check status for errors */
  506. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  507. dev->stats.tx_errors++;
  508. if (stat & GRETH_TXBD_ERR_AL)
  509. dev->stats.tx_aborted_errors++;
  510. if (stat & GRETH_TXBD_ERR_UE)
  511. dev->stats.tx_fifo_errors++;
  512. if (stat & GRETH_TXBD_ERR_LC)
  513. dev->stats.tx_aborted_errors++;
  514. }
  515. dev->stats.tx_packets++;
  516. }
  517. static void greth_clean_tx_gbit(struct net_device *dev)
  518. {
  519. struct greth_private *greth;
  520. struct greth_bd *bdp, *bdp_last_frag;
  521. struct sk_buff *skb;
  522. u32 stat;
  523. int nr_frags, i;
  524. greth = netdev_priv(dev);
  525. while (greth->tx_free < GRETH_TXBD_NUM) {
  526. skb = greth->tx_skbuff[greth->tx_last];
  527. nr_frags = skb_shinfo(skb)->nr_frags;
  528. /* We only clean fully completed SKBs */
  529. bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
  530. stat = bdp_last_frag->stat;
  531. if (stat & GRETH_BD_EN)
  532. break;
  533. greth->tx_skbuff[greth->tx_last] = NULL;
  534. greth_update_tx_stats(dev, stat);
  535. bdp = greth->tx_bd_base + greth->tx_last;
  536. greth->tx_last = NEXT_TX(greth->tx_last);
  537. dma_unmap_single(greth->dev,
  538. greth_read_bd(&bdp->addr),
  539. skb_headlen(skb),
  540. DMA_TO_DEVICE);
  541. for (i = 0; i < nr_frags; i++) {
  542. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  543. bdp = greth->tx_bd_base + greth->tx_last;
  544. dma_unmap_page(greth->dev,
  545. greth_read_bd(&bdp->addr),
  546. frag->size,
  547. DMA_TO_DEVICE);
  548. greth->tx_last = NEXT_TX(greth->tx_last);
  549. }
  550. greth->tx_free += nr_frags+1;
  551. dev_kfree_skb(skb);
  552. }
  553. if (greth->tx_free > (MAX_SKB_FRAGS + 1)) {
  554. netif_wake_queue(dev);
  555. }
  556. }
  557. static int greth_pending_packets(struct greth_private *greth)
  558. {
  559. struct greth_bd *bdp;
  560. u32 status;
  561. bdp = greth->rx_bd_base + greth->rx_cur;
  562. status = greth_read_bd(&bdp->stat);
  563. if (status & GRETH_BD_EN)
  564. return 0;
  565. else
  566. return 1;
  567. }
  568. static int greth_rx(struct net_device *dev, int limit)
  569. {
  570. struct greth_private *greth;
  571. struct greth_bd *bdp;
  572. struct sk_buff *skb;
  573. int pkt_len;
  574. int bad, count;
  575. u32 status, dma_addr;
  576. greth = netdev_priv(dev);
  577. for (count = 0; count < limit; ++count) {
  578. bdp = greth->rx_bd_base + greth->rx_cur;
  579. status = greth_read_bd(&bdp->stat);
  580. dma_addr = greth_read_bd(&bdp->addr);
  581. bad = 0;
  582. if (unlikely(status & GRETH_BD_EN)) {
  583. break;
  584. }
  585. /* Check status for errors. */
  586. if (unlikely(status & GRETH_RXBD_STATUS)) {
  587. if (status & GRETH_RXBD_ERR_FT) {
  588. dev->stats.rx_length_errors++;
  589. bad = 1;
  590. }
  591. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  592. dev->stats.rx_frame_errors++;
  593. bad = 1;
  594. }
  595. if (status & GRETH_RXBD_ERR_CRC) {
  596. dev->stats.rx_crc_errors++;
  597. bad = 1;
  598. }
  599. }
  600. if (unlikely(bad)) {
  601. dev->stats.rx_errors++;
  602. } else {
  603. pkt_len = status & GRETH_BD_LEN;
  604. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  605. if (unlikely(skb == NULL)) {
  606. if (net_ratelimit())
  607. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  608. dev->stats.rx_dropped++;
  609. } else {
  610. skb_reserve(skb, NET_IP_ALIGN);
  611. skb->dev = dev;
  612. dma_sync_single_for_cpu(greth->dev,
  613. dma_addr,
  614. pkt_len,
  615. DMA_FROM_DEVICE);
  616. if (netif_msg_pktdata(greth))
  617. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  618. memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
  619. skb->protocol = eth_type_trans(skb, dev);
  620. dev->stats.rx_packets++;
  621. netif_receive_skb(skb);
  622. }
  623. }
  624. status = GRETH_BD_EN | GRETH_BD_IE;
  625. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  626. status |= GRETH_BD_WR;
  627. }
  628. wmb();
  629. greth_write_bd(&bdp->stat, status);
  630. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  631. greth_enable_rx(greth);
  632. greth->rx_cur = NEXT_RX(greth->rx_cur);
  633. }
  634. return count;
  635. }
  636. static inline int hw_checksummed(u32 status)
  637. {
  638. if (status & GRETH_RXBD_IP_FRAG)
  639. return 0;
  640. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  641. return 0;
  642. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  643. return 0;
  644. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  645. return 0;
  646. return 1;
  647. }
  648. static int greth_rx_gbit(struct net_device *dev, int limit)
  649. {
  650. struct greth_private *greth;
  651. struct greth_bd *bdp;
  652. struct sk_buff *skb, *newskb;
  653. int pkt_len;
  654. int bad, count = 0;
  655. u32 status, dma_addr;
  656. greth = netdev_priv(dev);
  657. for (count = 0; count < limit; ++count) {
  658. bdp = greth->rx_bd_base + greth->rx_cur;
  659. skb = greth->rx_skbuff[greth->rx_cur];
  660. status = greth_read_bd(&bdp->stat);
  661. bad = 0;
  662. if (status & GRETH_BD_EN)
  663. break;
  664. /* Check status for errors. */
  665. if (unlikely(status & GRETH_RXBD_STATUS)) {
  666. if (status & GRETH_RXBD_ERR_FT) {
  667. dev->stats.rx_length_errors++;
  668. bad = 1;
  669. } else if (status &
  670. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  671. dev->stats.rx_frame_errors++;
  672. bad = 1;
  673. } else if (status & GRETH_RXBD_ERR_CRC) {
  674. dev->stats.rx_crc_errors++;
  675. bad = 1;
  676. }
  677. }
  678. /* Allocate new skb to replace current */
  679. newskb = netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN);
  680. if (!bad && newskb) {
  681. skb_reserve(newskb, NET_IP_ALIGN);
  682. dma_addr = dma_map_single(greth->dev,
  683. newskb->data,
  684. MAX_FRAME_SIZE + NET_IP_ALIGN,
  685. DMA_FROM_DEVICE);
  686. if (!dma_mapping_error(greth->dev, dma_addr)) {
  687. /* Process the incoming frame. */
  688. pkt_len = status & GRETH_BD_LEN;
  689. dma_unmap_single(greth->dev,
  690. greth_read_bd(&bdp->addr),
  691. MAX_FRAME_SIZE + NET_IP_ALIGN,
  692. DMA_FROM_DEVICE);
  693. if (netif_msg_pktdata(greth))
  694. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  695. skb_put(skb, pkt_len);
  696. if (greth->flags & GRETH_FLAG_RX_CSUM && hw_checksummed(status))
  697. skb->ip_summed = CHECKSUM_UNNECESSARY;
  698. else
  699. skb->ip_summed = CHECKSUM_NONE;
  700. skb->protocol = eth_type_trans(skb, dev);
  701. dev->stats.rx_packets++;
  702. netif_receive_skb(skb);
  703. greth->rx_skbuff[greth->rx_cur] = newskb;
  704. greth_write_bd(&bdp->addr, dma_addr);
  705. } else {
  706. if (net_ratelimit())
  707. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  708. dev_kfree_skb(newskb);
  709. dev->stats.rx_dropped++;
  710. }
  711. } else {
  712. if (net_ratelimit())
  713. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  714. dev->stats.rx_dropped++;
  715. }
  716. status = GRETH_BD_EN | GRETH_BD_IE;
  717. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  718. status |= GRETH_BD_WR;
  719. }
  720. wmb();
  721. greth_write_bd(&bdp->stat, status);
  722. greth_enable_rx(greth);
  723. greth->rx_cur = NEXT_RX(greth->rx_cur);
  724. }
  725. return count;
  726. }
  727. static int greth_poll(struct napi_struct *napi, int budget)
  728. {
  729. struct greth_private *greth;
  730. int work_done = 0;
  731. greth = container_of(napi, struct greth_private, napi);
  732. if (greth->gbit_mac) {
  733. greth_clean_tx_gbit(greth->netdev);
  734. } else {
  735. greth_clean_tx(greth->netdev);
  736. }
  737. restart_poll:
  738. if (greth->gbit_mac) {
  739. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  740. } else {
  741. work_done += greth_rx(greth->netdev, budget - work_done);
  742. }
  743. if (work_done < budget) {
  744. napi_complete(napi);
  745. if (greth_pending_packets(greth)) {
  746. napi_reschedule(napi);
  747. goto restart_poll;
  748. }
  749. }
  750. greth_enable_irqs(greth);
  751. return work_done;
  752. }
  753. static int greth_set_mac_add(struct net_device *dev, void *p)
  754. {
  755. struct sockaddr *addr = p;
  756. struct greth_private *greth;
  757. struct greth_regs *regs;
  758. greth = netdev_priv(dev);
  759. regs = (struct greth_regs *) greth->regs;
  760. if (!is_valid_ether_addr(addr->sa_data))
  761. return -EINVAL;
  762. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  763. GRETH_REGSAVE(regs->esa_msb, addr->sa_data[0] << 8 | addr->sa_data[1]);
  764. GRETH_REGSAVE(regs->esa_lsb,
  765. addr->sa_data[2] << 24 | addr->
  766. sa_data[3] << 16 | addr->sa_data[4] << 8 | addr->sa_data[5]);
  767. return 0;
  768. }
  769. static u32 greth_hash_get_index(__u8 *addr)
  770. {
  771. return (ether_crc(6, addr)) & 0x3F;
  772. }
  773. static void greth_set_hash_filter(struct net_device *dev)
  774. {
  775. struct dev_mc_list *curr;
  776. struct greth_private *greth = netdev_priv(dev);
  777. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  778. u32 mc_filter[2];
  779. unsigned int bitnr;
  780. mc_filter[0] = mc_filter[1] = 0;
  781. netdev_for_each_mc_addr(curr, dev) {
  782. bitnr = greth_hash_get_index(curr->dmi_addr);
  783. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  784. }
  785. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  786. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  787. }
  788. static void greth_set_multicast_list(struct net_device *dev)
  789. {
  790. int cfg;
  791. struct greth_private *greth = netdev_priv(dev);
  792. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  793. cfg = GRETH_REGLOAD(regs->control);
  794. if (dev->flags & IFF_PROMISC)
  795. cfg |= GRETH_CTRL_PR;
  796. else
  797. cfg &= ~GRETH_CTRL_PR;
  798. if (greth->multicast) {
  799. if (dev->flags & IFF_ALLMULTI) {
  800. GRETH_REGSAVE(regs->hash_msb, -1);
  801. GRETH_REGSAVE(regs->hash_lsb, -1);
  802. cfg |= GRETH_CTRL_MCEN;
  803. GRETH_REGSAVE(regs->control, cfg);
  804. return;
  805. }
  806. if (netdev_mc_empty(dev)) {
  807. cfg &= ~GRETH_CTRL_MCEN;
  808. GRETH_REGSAVE(regs->control, cfg);
  809. return;
  810. }
  811. /* Setup multicast filter */
  812. greth_set_hash_filter(dev);
  813. cfg |= GRETH_CTRL_MCEN;
  814. }
  815. GRETH_REGSAVE(regs->control, cfg);
  816. }
  817. static u32 greth_get_msglevel(struct net_device *dev)
  818. {
  819. struct greth_private *greth = netdev_priv(dev);
  820. return greth->msg_enable;
  821. }
  822. static void greth_set_msglevel(struct net_device *dev, u32 value)
  823. {
  824. struct greth_private *greth = netdev_priv(dev);
  825. greth->msg_enable = value;
  826. }
  827. static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  828. {
  829. struct greth_private *greth = netdev_priv(dev);
  830. struct phy_device *phy = greth->phy;
  831. if (!phy)
  832. return -ENODEV;
  833. return phy_ethtool_gset(phy, cmd);
  834. }
  835. static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  836. {
  837. struct greth_private *greth = netdev_priv(dev);
  838. struct phy_device *phy = greth->phy;
  839. if (!phy)
  840. return -ENODEV;
  841. return phy_ethtool_sset(phy, cmd);
  842. }
  843. static int greth_get_regs_len(struct net_device *dev)
  844. {
  845. return sizeof(struct greth_regs);
  846. }
  847. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  848. {
  849. struct greth_private *greth = netdev_priv(dev);
  850. strncpy(info->driver, dev_driver_string(greth->dev), 32);
  851. strncpy(info->version, "revision: 1.0", 32);
  852. strncpy(info->bus_info, greth->dev->bus->name, 32);
  853. strncpy(info->fw_version, "N/A", 32);
  854. info->eedump_len = 0;
  855. info->regdump_len = sizeof(struct greth_regs);
  856. }
  857. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  858. {
  859. int i;
  860. struct greth_private *greth = netdev_priv(dev);
  861. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  862. u32 *buff = p;
  863. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  864. buff[i] = greth_read_bd(&greth_regs[i]);
  865. }
  866. static u32 greth_get_rx_csum(struct net_device *dev)
  867. {
  868. struct greth_private *greth = netdev_priv(dev);
  869. return (greth->flags & GRETH_FLAG_RX_CSUM) != 0;
  870. }
  871. static int greth_set_rx_csum(struct net_device *dev, u32 data)
  872. {
  873. struct greth_private *greth = netdev_priv(dev);
  874. spin_lock_bh(&greth->devlock);
  875. if (data)
  876. greth->flags |= GRETH_FLAG_RX_CSUM;
  877. else
  878. greth->flags &= ~GRETH_FLAG_RX_CSUM;
  879. spin_unlock_bh(&greth->devlock);
  880. return 0;
  881. }
  882. static u32 greth_get_tx_csum(struct net_device *dev)
  883. {
  884. return (dev->features & NETIF_F_IP_CSUM) != 0;
  885. }
  886. static int greth_set_tx_csum(struct net_device *dev, u32 data)
  887. {
  888. netif_tx_lock_bh(dev);
  889. ethtool_op_set_tx_csum(dev, data);
  890. netif_tx_unlock_bh(dev);
  891. return 0;
  892. }
  893. static const struct ethtool_ops greth_ethtool_ops = {
  894. .get_msglevel = greth_get_msglevel,
  895. .set_msglevel = greth_set_msglevel,
  896. .get_settings = greth_get_settings,
  897. .set_settings = greth_set_settings,
  898. .get_drvinfo = greth_get_drvinfo,
  899. .get_regs_len = greth_get_regs_len,
  900. .get_regs = greth_get_regs,
  901. .get_rx_csum = greth_get_rx_csum,
  902. .set_rx_csum = greth_set_rx_csum,
  903. .get_tx_csum = greth_get_tx_csum,
  904. .set_tx_csum = greth_set_tx_csum,
  905. .get_link = ethtool_op_get_link,
  906. };
  907. static struct net_device_ops greth_netdev_ops = {
  908. .ndo_open = greth_open,
  909. .ndo_stop = greth_close,
  910. .ndo_start_xmit = greth_start_xmit,
  911. .ndo_set_mac_address = greth_set_mac_add,
  912. .ndo_validate_addr = eth_validate_addr,
  913. };
  914. static inline int wait_for_mdio(struct greth_private *greth)
  915. {
  916. unsigned long timeout = jiffies + 4*HZ/100;
  917. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  918. if (time_after(jiffies, timeout))
  919. return 0;
  920. }
  921. return 1;
  922. }
  923. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  924. {
  925. struct greth_private *greth = bus->priv;
  926. int data;
  927. if (!wait_for_mdio(greth))
  928. return -EBUSY;
  929. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  930. if (!wait_for_mdio(greth))
  931. return -EBUSY;
  932. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  933. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  934. return data;
  935. } else {
  936. return -1;
  937. }
  938. }
  939. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  940. {
  941. struct greth_private *greth = bus->priv;
  942. if (!wait_for_mdio(greth))
  943. return -EBUSY;
  944. GRETH_REGSAVE(greth->regs->mdio,
  945. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  946. if (!wait_for_mdio(greth))
  947. return -EBUSY;
  948. return 0;
  949. }
  950. static int greth_mdio_reset(struct mii_bus *bus)
  951. {
  952. return 0;
  953. }
  954. static void greth_link_change(struct net_device *dev)
  955. {
  956. struct greth_private *greth = netdev_priv(dev);
  957. struct phy_device *phydev = greth->phy;
  958. unsigned long flags;
  959. int status_change = 0;
  960. spin_lock_irqsave(&greth->devlock, flags);
  961. if (phydev->link) {
  962. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  963. GRETH_REGANDIN(greth->regs->control,
  964. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB));
  965. if (phydev->duplex)
  966. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_FD);
  967. if (phydev->speed == SPEED_100) {
  968. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_SP);
  969. }
  970. else if (phydev->speed == SPEED_1000)
  971. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_GB);
  972. greth->speed = phydev->speed;
  973. greth->duplex = phydev->duplex;
  974. status_change = 1;
  975. }
  976. }
  977. if (phydev->link != greth->link) {
  978. if (!phydev->link) {
  979. greth->speed = 0;
  980. greth->duplex = -1;
  981. }
  982. greth->link = phydev->link;
  983. status_change = 1;
  984. }
  985. spin_unlock_irqrestore(&greth->devlock, flags);
  986. if (status_change) {
  987. if (phydev->link)
  988. pr_debug("%s: link up (%d/%s)\n",
  989. dev->name, phydev->speed,
  990. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  991. else
  992. pr_debug("%s: link down\n", dev->name);
  993. }
  994. }
  995. static int greth_mdio_probe(struct net_device *dev)
  996. {
  997. struct greth_private *greth = netdev_priv(dev);
  998. struct phy_device *phy = NULL;
  999. int ret;
  1000. /* Find the first PHY */
  1001. phy = phy_find_first(greth->mdio);
  1002. if (!phy) {
  1003. if (netif_msg_probe(greth))
  1004. dev_err(&dev->dev, "no PHY found\n");
  1005. return -ENXIO;
  1006. }
  1007. ret = phy_connect_direct(dev, phy, &greth_link_change,
  1008. 0, greth->gbit_mac ?
  1009. PHY_INTERFACE_MODE_GMII :
  1010. PHY_INTERFACE_MODE_MII);
  1011. if (ret) {
  1012. if (netif_msg_ifup(greth))
  1013. dev_err(&dev->dev, "could not attach to PHY\n");
  1014. return ret;
  1015. }
  1016. if (greth->gbit_mac)
  1017. phy->supported &= PHY_GBIT_FEATURES;
  1018. else
  1019. phy->supported &= PHY_BASIC_FEATURES;
  1020. phy->advertising = phy->supported;
  1021. greth->link = 0;
  1022. greth->speed = 0;
  1023. greth->duplex = -1;
  1024. greth->phy = phy;
  1025. return 0;
  1026. }
  1027. static inline int phy_aneg_done(struct phy_device *phydev)
  1028. {
  1029. int retval;
  1030. retval = phy_read(phydev, MII_BMSR);
  1031. return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
  1032. }
  1033. static int greth_mdio_init(struct greth_private *greth)
  1034. {
  1035. int ret, phy;
  1036. unsigned long timeout;
  1037. greth->mdio = mdiobus_alloc();
  1038. if (!greth->mdio) {
  1039. return -ENOMEM;
  1040. }
  1041. greth->mdio->name = "greth-mdio";
  1042. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1043. greth->mdio->read = greth_mdio_read;
  1044. greth->mdio->write = greth_mdio_write;
  1045. greth->mdio->reset = greth_mdio_reset;
  1046. greth->mdio->priv = greth;
  1047. greth->mdio->irq = greth->mdio_irqs;
  1048. for (phy = 0; phy < PHY_MAX_ADDR; phy++)
  1049. greth->mdio->irq[phy] = PHY_POLL;
  1050. ret = mdiobus_register(greth->mdio);
  1051. if (ret) {
  1052. goto error;
  1053. }
  1054. ret = greth_mdio_probe(greth->netdev);
  1055. if (ret) {
  1056. if (netif_msg_probe(greth))
  1057. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1058. goto unreg_mdio;
  1059. }
  1060. phy_start(greth->phy);
  1061. /* If Ethernet debug link is used make autoneg happen right away */
  1062. if (greth->edcl && greth_edcl == 1) {
  1063. phy_start_aneg(greth->phy);
  1064. timeout = jiffies + 6*HZ;
  1065. while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
  1066. }
  1067. genphy_read_status(greth->phy);
  1068. greth_link_change(greth->netdev);
  1069. }
  1070. return 0;
  1071. unreg_mdio:
  1072. mdiobus_unregister(greth->mdio);
  1073. error:
  1074. mdiobus_free(greth->mdio);
  1075. return ret;
  1076. }
  1077. /* Initialize the GRETH MAC */
  1078. static int __devinit greth_of_probe(struct of_device *ofdev, const struct of_device_id *match)
  1079. {
  1080. struct net_device *dev;
  1081. struct greth_private *greth;
  1082. struct greth_regs *regs;
  1083. int i;
  1084. int err;
  1085. int tmp;
  1086. unsigned long timeout;
  1087. dev = alloc_etherdev(sizeof(struct greth_private));
  1088. if (dev == NULL)
  1089. return -ENOMEM;
  1090. greth = netdev_priv(dev);
  1091. greth->netdev = dev;
  1092. greth->dev = &ofdev->dev;
  1093. if (greth_debug > 0)
  1094. greth->msg_enable = greth_debug;
  1095. else
  1096. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1097. spin_lock_init(&greth->devlock);
  1098. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1099. resource_size(&ofdev->resource[0]),
  1100. "grlib-greth regs");
  1101. if (greth->regs == NULL) {
  1102. if (netif_msg_probe(greth))
  1103. dev_err(greth->dev, "ioremap failure.\n");
  1104. err = -EIO;
  1105. goto error1;
  1106. }
  1107. regs = (struct greth_regs *) greth->regs;
  1108. greth->irq = ofdev->irqs[0];
  1109. dev_set_drvdata(greth->dev, dev);
  1110. SET_NETDEV_DEV(dev, greth->dev);
  1111. if (netif_msg_probe(greth))
  1112. dev_dbg(greth->dev, "reseting controller.\n");
  1113. /* Reset the controller. */
  1114. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1115. /* Wait for MAC to reset itself */
  1116. timeout = jiffies + HZ/100;
  1117. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1118. if (time_after(jiffies, timeout)) {
  1119. err = -EIO;
  1120. if (netif_msg_probe(greth))
  1121. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1122. goto error2;
  1123. }
  1124. }
  1125. /* Get default PHY address */
  1126. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1127. /* Check if we have GBIT capable MAC */
  1128. tmp = GRETH_REGLOAD(regs->control);
  1129. greth->gbit_mac = (tmp >> 27) & 1;
  1130. /* Check for multicast capability */
  1131. greth->multicast = (tmp >> 25) & 1;
  1132. greth->edcl = (tmp >> 31) & 1;
  1133. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1134. * it doesn't interfere with the software */
  1135. if (greth->edcl != 0)
  1136. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1137. /* Check if MAC can handle MDIO interrupts */
  1138. greth->mdio_int_en = (tmp >> 26) & 1;
  1139. err = greth_mdio_init(greth);
  1140. if (err) {
  1141. if (netif_msg_probe(greth))
  1142. dev_err(greth->dev, "failed to register MDIO bus\n");
  1143. goto error2;
  1144. }
  1145. /* Allocate TX descriptor ring in coherent memory */
  1146. greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1147. 1024,
  1148. &greth->tx_bd_base_phys,
  1149. GFP_KERNEL);
  1150. if (!greth->tx_bd_base) {
  1151. if (netif_msg_probe(greth))
  1152. dev_err(&dev->dev, "could not allocate descriptor memory.\n");
  1153. err = -ENOMEM;
  1154. goto error3;
  1155. }
  1156. memset(greth->tx_bd_base, 0, 1024);
  1157. /* Allocate RX descriptor ring in coherent memory */
  1158. greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1159. 1024,
  1160. &greth->rx_bd_base_phys,
  1161. GFP_KERNEL);
  1162. if (!greth->rx_bd_base) {
  1163. if (netif_msg_probe(greth))
  1164. dev_err(greth->dev, "could not allocate descriptor memory.\n");
  1165. err = -ENOMEM;
  1166. goto error4;
  1167. }
  1168. memset(greth->rx_bd_base, 0, 1024);
  1169. /* Get MAC address from: module param, OF property or ID prom */
  1170. for (i = 0; i < 6; i++) {
  1171. if (macaddr[i] != 0)
  1172. break;
  1173. }
  1174. if (i == 6) {
  1175. const unsigned char *addr;
  1176. int len;
  1177. addr = of_get_property(ofdev->node, "local-mac-address", &len);
  1178. if (addr != NULL && len == 6) {
  1179. for (i = 0; i < 6; i++)
  1180. macaddr[i] = (unsigned int) addr[i];
  1181. } else {
  1182. #ifdef CONFIG_SPARC
  1183. for (i = 0; i < 6; i++)
  1184. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1185. #endif
  1186. }
  1187. }
  1188. for (i = 0; i < 6; i++)
  1189. dev->dev_addr[i] = macaddr[i];
  1190. macaddr[5]++;
  1191. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1192. if (netif_msg_probe(greth))
  1193. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1194. err = -EINVAL;
  1195. goto error5;
  1196. }
  1197. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1198. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1199. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1200. /* Clear all pending interrupts except PHY irq */
  1201. GRETH_REGSAVE(regs->status, 0xFF);
  1202. if (greth->gbit_mac) {
  1203. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
  1204. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1205. greth->flags = GRETH_FLAG_RX_CSUM;
  1206. }
  1207. if (greth->multicast) {
  1208. greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
  1209. dev->flags |= IFF_MULTICAST;
  1210. } else {
  1211. dev->flags &= ~IFF_MULTICAST;
  1212. }
  1213. dev->netdev_ops = &greth_netdev_ops;
  1214. dev->ethtool_ops = &greth_ethtool_ops;
  1215. if (register_netdev(dev)) {
  1216. if (netif_msg_probe(greth))
  1217. dev_err(greth->dev, "netdevice registration failed.\n");
  1218. err = -ENOMEM;
  1219. goto error5;
  1220. }
  1221. /* setup NAPI */
  1222. memset(&greth->napi, 0, sizeof(greth->napi));
  1223. netif_napi_add(dev, &greth->napi, greth_poll, 64);
  1224. return 0;
  1225. error5:
  1226. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1227. error4:
  1228. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1229. error3:
  1230. mdiobus_unregister(greth->mdio);
  1231. error2:
  1232. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1233. error1:
  1234. free_netdev(dev);
  1235. return err;
  1236. }
  1237. static int __devexit greth_of_remove(struct of_device *of_dev)
  1238. {
  1239. struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
  1240. struct greth_private *greth = netdev_priv(ndev);
  1241. /* Free descriptor areas */
  1242. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1243. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1244. dev_set_drvdata(&of_dev->dev, NULL);
  1245. if (greth->phy)
  1246. phy_stop(greth->phy);
  1247. mdiobus_unregister(greth->mdio);
  1248. unregister_netdev(ndev);
  1249. free_netdev(ndev);
  1250. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1251. return 0;
  1252. }
  1253. static struct of_device_id greth_of_match[] = {
  1254. {
  1255. .name = "GAISLER_ETHMAC",
  1256. },
  1257. {},
  1258. };
  1259. MODULE_DEVICE_TABLE(of, greth_of_match);
  1260. static struct of_platform_driver greth_of_driver = {
  1261. .name = "grlib-greth",
  1262. .match_table = greth_of_match,
  1263. .probe = greth_of_probe,
  1264. .remove = __devexit_p(greth_of_remove),
  1265. .driver = {
  1266. .owner = THIS_MODULE,
  1267. .name = "grlib-greth",
  1268. },
  1269. };
  1270. static int __init greth_init(void)
  1271. {
  1272. return of_register_platform_driver(&greth_of_driver);
  1273. }
  1274. static void __exit greth_cleanup(void)
  1275. {
  1276. of_unregister_platform_driver(&greth_of_driver);
  1277. }
  1278. module_init(greth_init);
  1279. module_exit(greth_cleanup);
  1280. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1281. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1282. MODULE_LICENSE("GPL");