sched.c 165 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Update the per-runqueue clock, as finegrained as the platform can give
  281. * us, but without assuming monotonicity, etc.:
  282. */
  283. static void __update_rq_clock(struct rq *rq)
  284. {
  285. u64 prev_raw = rq->prev_clock_raw;
  286. u64 now = sched_clock();
  287. s64 delta = now - prev_raw;
  288. u64 clock = rq->clock;
  289. #ifdef CONFIG_SCHED_DEBUG
  290. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  291. #endif
  292. /*
  293. * Protect against sched_clock() occasionally going backwards:
  294. */
  295. if (unlikely(delta < 0)) {
  296. clock++;
  297. rq->clock_warps++;
  298. } else {
  299. /*
  300. * Catch too large forward jumps too:
  301. */
  302. if (unlikely(delta > 2*TICK_NSEC)) {
  303. clock++;
  304. rq->clock_overflows++;
  305. } else {
  306. if (unlikely(delta > rq->clock_max_delta))
  307. rq->clock_max_delta = delta;
  308. clock += delta;
  309. }
  310. }
  311. rq->prev_clock_raw = now;
  312. rq->clock = clock;
  313. }
  314. static void update_rq_clock(struct rq *rq)
  315. {
  316. if (likely(smp_processor_id() == cpu_of(rq)))
  317. __update_rq_clock(rq);
  318. }
  319. static u64 __rq_clock(struct rq *rq)
  320. {
  321. __update_rq_clock(rq);
  322. return rq->clock;
  323. }
  324. static u64 rq_clock(struct rq *rq)
  325. {
  326. update_rq_clock(rq);
  327. return rq->clock;
  328. }
  329. /*
  330. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  331. * See detach_destroy_domains: synchronize_sched for details.
  332. *
  333. * The domain tree of any CPU may only be accessed from within
  334. * preempt-disabled sections.
  335. */
  336. #define for_each_domain(cpu, __sd) \
  337. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  338. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  339. #define this_rq() (&__get_cpu_var(runqueues))
  340. #define task_rq(p) cpu_rq(task_cpu(p))
  341. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  342. /*
  343. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  344. * clock constructed from sched_clock():
  345. */
  346. unsigned long long cpu_clock(int cpu)
  347. {
  348. unsigned long long now;
  349. unsigned long flags;
  350. struct rq *rq;
  351. local_irq_save(flags);
  352. rq = cpu_rq(cpu);
  353. update_rq_clock(rq);
  354. now = rq->clock;
  355. local_irq_restore(flags);
  356. return now;
  357. }
  358. #ifdef CONFIG_FAIR_GROUP_SCHED
  359. /* Change a task's ->cfs_rq if it moves across CPUs */
  360. static inline void set_task_cfs_rq(struct task_struct *p)
  361. {
  362. p->se.cfs_rq = &task_rq(p)->cfs;
  363. }
  364. #else
  365. static inline void set_task_cfs_rq(struct task_struct *p)
  366. {
  367. }
  368. #endif
  369. #ifndef prepare_arch_switch
  370. # define prepare_arch_switch(next) do { } while (0)
  371. #endif
  372. #ifndef finish_arch_switch
  373. # define finish_arch_switch(prev) do { } while (0)
  374. #endif
  375. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  376. static inline int task_running(struct rq *rq, struct task_struct *p)
  377. {
  378. return rq->curr == p;
  379. }
  380. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  381. {
  382. }
  383. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  384. {
  385. #ifdef CONFIG_DEBUG_SPINLOCK
  386. /* this is a valid case when another task releases the spinlock */
  387. rq->lock.owner = current;
  388. #endif
  389. /*
  390. * If we are tracking spinlock dependencies then we have to
  391. * fix up the runqueue lock - which gets 'carried over' from
  392. * prev into current:
  393. */
  394. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  395. spin_unlock_irq(&rq->lock);
  396. }
  397. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  398. static inline int task_running(struct rq *rq, struct task_struct *p)
  399. {
  400. #ifdef CONFIG_SMP
  401. return p->oncpu;
  402. #else
  403. return rq->curr == p;
  404. #endif
  405. }
  406. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  407. {
  408. #ifdef CONFIG_SMP
  409. /*
  410. * We can optimise this out completely for !SMP, because the
  411. * SMP rebalancing from interrupt is the only thing that cares
  412. * here.
  413. */
  414. next->oncpu = 1;
  415. #endif
  416. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  417. spin_unlock_irq(&rq->lock);
  418. #else
  419. spin_unlock(&rq->lock);
  420. #endif
  421. }
  422. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  423. {
  424. #ifdef CONFIG_SMP
  425. /*
  426. * After ->oncpu is cleared, the task can be moved to a different CPU.
  427. * We must ensure this doesn't happen until the switch is completely
  428. * finished.
  429. */
  430. smp_wmb();
  431. prev->oncpu = 0;
  432. #endif
  433. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  434. local_irq_enable();
  435. #endif
  436. }
  437. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  438. /*
  439. * __task_rq_lock - lock the runqueue a given task resides on.
  440. * Must be called interrupts disabled.
  441. */
  442. static inline struct rq *__task_rq_lock(struct task_struct *p)
  443. __acquires(rq->lock)
  444. {
  445. struct rq *rq;
  446. repeat_lock_task:
  447. rq = task_rq(p);
  448. spin_lock(&rq->lock);
  449. if (unlikely(rq != task_rq(p))) {
  450. spin_unlock(&rq->lock);
  451. goto repeat_lock_task;
  452. }
  453. return rq;
  454. }
  455. /*
  456. * task_rq_lock - lock the runqueue a given task resides on and disable
  457. * interrupts. Note the ordering: we can safely lookup the task_rq without
  458. * explicitly disabling preemption.
  459. */
  460. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  461. __acquires(rq->lock)
  462. {
  463. struct rq *rq;
  464. repeat_lock_task:
  465. local_irq_save(*flags);
  466. rq = task_rq(p);
  467. spin_lock(&rq->lock);
  468. if (unlikely(rq != task_rq(p))) {
  469. spin_unlock_irqrestore(&rq->lock, *flags);
  470. goto repeat_lock_task;
  471. }
  472. return rq;
  473. }
  474. static inline void __task_rq_unlock(struct rq *rq)
  475. __releases(rq->lock)
  476. {
  477. spin_unlock(&rq->lock);
  478. }
  479. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  480. __releases(rq->lock)
  481. {
  482. spin_unlock_irqrestore(&rq->lock, *flags);
  483. }
  484. /*
  485. * this_rq_lock - lock this runqueue and disable interrupts.
  486. */
  487. static inline struct rq *this_rq_lock(void)
  488. __acquires(rq->lock)
  489. {
  490. struct rq *rq;
  491. local_irq_disable();
  492. rq = this_rq();
  493. spin_lock(&rq->lock);
  494. return rq;
  495. }
  496. /*
  497. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  498. */
  499. void sched_clock_unstable_event(void)
  500. {
  501. unsigned long flags;
  502. struct rq *rq;
  503. rq = task_rq_lock(current, &flags);
  504. rq->prev_clock_raw = sched_clock();
  505. rq->clock_unstable_events++;
  506. task_rq_unlock(rq, &flags);
  507. }
  508. /*
  509. * resched_task - mark a task 'to be rescheduled now'.
  510. *
  511. * On UP this means the setting of the need_resched flag, on SMP it
  512. * might also involve a cross-CPU call to trigger the scheduler on
  513. * the target CPU.
  514. */
  515. #ifdef CONFIG_SMP
  516. #ifndef tsk_is_polling
  517. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  518. #endif
  519. static void resched_task(struct task_struct *p)
  520. {
  521. int cpu;
  522. assert_spin_locked(&task_rq(p)->lock);
  523. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  524. return;
  525. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  526. cpu = task_cpu(p);
  527. if (cpu == smp_processor_id())
  528. return;
  529. /* NEED_RESCHED must be visible before we test polling */
  530. smp_mb();
  531. if (!tsk_is_polling(p))
  532. smp_send_reschedule(cpu);
  533. }
  534. static void resched_cpu(int cpu)
  535. {
  536. struct rq *rq = cpu_rq(cpu);
  537. unsigned long flags;
  538. if (!spin_trylock_irqsave(&rq->lock, flags))
  539. return;
  540. resched_task(cpu_curr(cpu));
  541. spin_unlock_irqrestore(&rq->lock, flags);
  542. }
  543. #else
  544. static inline void resched_task(struct task_struct *p)
  545. {
  546. assert_spin_locked(&task_rq(p)->lock);
  547. set_tsk_need_resched(p);
  548. }
  549. #endif
  550. static u64 div64_likely32(u64 divident, unsigned long divisor)
  551. {
  552. #if BITS_PER_LONG == 32
  553. if (likely(divident <= 0xffffffffULL))
  554. return (u32)divident / divisor;
  555. do_div(divident, divisor);
  556. return divident;
  557. #else
  558. return divident / divisor;
  559. #endif
  560. }
  561. #if BITS_PER_LONG == 32
  562. # define WMULT_CONST (~0UL)
  563. #else
  564. # define WMULT_CONST (1UL << 32)
  565. #endif
  566. #define WMULT_SHIFT 32
  567. static unsigned long
  568. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  569. struct load_weight *lw)
  570. {
  571. u64 tmp;
  572. if (unlikely(!lw->inv_weight))
  573. lw->inv_weight = WMULT_CONST / lw->weight;
  574. tmp = (u64)delta_exec * weight;
  575. /*
  576. * Check whether we'd overflow the 64-bit multiplication:
  577. */
  578. if (unlikely(tmp > WMULT_CONST)) {
  579. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  580. >> (WMULT_SHIFT/2);
  581. } else {
  582. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  583. }
  584. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  585. }
  586. static inline unsigned long
  587. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  588. {
  589. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  590. }
  591. static void update_load_add(struct load_weight *lw, unsigned long inc)
  592. {
  593. lw->weight += inc;
  594. lw->inv_weight = 0;
  595. }
  596. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  597. {
  598. lw->weight -= dec;
  599. lw->inv_weight = 0;
  600. }
  601. /*
  602. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  603. * of tasks with abnormal "nice" values across CPUs the contribution that
  604. * each task makes to its run queue's load is weighted according to its
  605. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  606. * scaled version of the new time slice allocation that they receive on time
  607. * slice expiry etc.
  608. */
  609. #define WEIGHT_IDLEPRIO 2
  610. #define WMULT_IDLEPRIO (1 << 31)
  611. /*
  612. * Nice levels are multiplicative, with a gentle 10% change for every
  613. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  614. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  615. * that remained on nice 0.
  616. *
  617. * The "10% effect" is relative and cumulative: from _any_ nice level,
  618. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  619. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  620. * If a task goes up by ~10% and another task goes down by ~10% then
  621. * the relative distance between them is ~25%.)
  622. */
  623. static const int prio_to_weight[40] = {
  624. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  625. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  626. /* 0 */ NICE_0_LOAD /* 1024 */,
  627. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  628. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  629. };
  630. /*
  631. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  632. *
  633. * In cases where the weight does not change often, we can use the
  634. * precalculated inverse to speed up arithmetics by turning divisions
  635. * into multiplications:
  636. */
  637. static const u32 prio_to_wmult[40] = {
  638. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  639. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  640. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  641. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  642. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  643. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  644. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  645. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  646. };
  647. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  648. /*
  649. * runqueue iterator, to support SMP load-balancing between different
  650. * scheduling classes, without having to expose their internal data
  651. * structures to the load-balancing proper:
  652. */
  653. struct rq_iterator {
  654. void *arg;
  655. struct task_struct *(*start)(void *);
  656. struct task_struct *(*next)(void *);
  657. };
  658. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  659. unsigned long max_nr_move, unsigned long max_load_move,
  660. struct sched_domain *sd, enum cpu_idle_type idle,
  661. int *all_pinned, unsigned long *load_moved,
  662. int *this_best_prio, struct rq_iterator *iterator);
  663. #include "sched_stats.h"
  664. #include "sched_rt.c"
  665. #include "sched_fair.c"
  666. #include "sched_idletask.c"
  667. #ifdef CONFIG_SCHED_DEBUG
  668. # include "sched_debug.c"
  669. #endif
  670. #define sched_class_highest (&rt_sched_class)
  671. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  672. {
  673. if (rq->curr != rq->idle && ls->load.weight) {
  674. ls->delta_exec += ls->delta_stat;
  675. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  676. ls->delta_stat = 0;
  677. }
  678. }
  679. /*
  680. * Update delta_exec, delta_fair fields for rq.
  681. *
  682. * delta_fair clock advances at a rate inversely proportional to
  683. * total load (rq->ls.load.weight) on the runqueue, while
  684. * delta_exec advances at the same rate as wall-clock (provided
  685. * cpu is not idle).
  686. *
  687. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  688. * runqueue over any given interval. This (smoothened) load is used
  689. * during load balance.
  690. *
  691. * This function is called /before/ updating rq->ls.load
  692. * and when switching tasks.
  693. */
  694. static void update_curr_load(struct rq *rq, u64 now)
  695. {
  696. struct load_stat *ls = &rq->ls;
  697. u64 start;
  698. start = ls->load_update_start;
  699. ls->load_update_start = now;
  700. ls->delta_stat += now - start;
  701. /*
  702. * Stagger updates to ls->delta_fair. Very frequent updates
  703. * can be expensive.
  704. */
  705. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  706. __update_curr_load(rq, ls);
  707. }
  708. static inline void
  709. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  710. {
  711. update_curr_load(rq, now);
  712. update_load_add(&rq->ls.load, p->se.load.weight);
  713. }
  714. static inline void
  715. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  716. {
  717. update_curr_load(rq, now);
  718. update_load_sub(&rq->ls.load, p->se.load.weight);
  719. }
  720. static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  721. {
  722. rq->nr_running++;
  723. inc_load(rq, p, now);
  724. }
  725. static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  726. {
  727. rq->nr_running--;
  728. dec_load(rq, p, now);
  729. }
  730. static void set_load_weight(struct task_struct *p)
  731. {
  732. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  733. p->se.wait_runtime = 0;
  734. if (task_has_rt_policy(p)) {
  735. p->se.load.weight = prio_to_weight[0] * 2;
  736. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  737. return;
  738. }
  739. /*
  740. * SCHED_IDLE tasks get minimal weight:
  741. */
  742. if (p->policy == SCHED_IDLE) {
  743. p->se.load.weight = WEIGHT_IDLEPRIO;
  744. p->se.load.inv_weight = WMULT_IDLEPRIO;
  745. return;
  746. }
  747. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  748. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  749. }
  750. static void
  751. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  752. {
  753. sched_info_queued(p);
  754. p->sched_class->enqueue_task(rq, p, wakeup, now);
  755. p->se.on_rq = 1;
  756. }
  757. static void
  758. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  759. {
  760. p->sched_class->dequeue_task(rq, p, sleep, now);
  761. p->se.on_rq = 0;
  762. }
  763. /*
  764. * __normal_prio - return the priority that is based on the static prio
  765. */
  766. static inline int __normal_prio(struct task_struct *p)
  767. {
  768. return p->static_prio;
  769. }
  770. /*
  771. * Calculate the expected normal priority: i.e. priority
  772. * without taking RT-inheritance into account. Might be
  773. * boosted by interactivity modifiers. Changes upon fork,
  774. * setprio syscalls, and whenever the interactivity
  775. * estimator recalculates.
  776. */
  777. static inline int normal_prio(struct task_struct *p)
  778. {
  779. int prio;
  780. if (task_has_rt_policy(p))
  781. prio = MAX_RT_PRIO-1 - p->rt_priority;
  782. else
  783. prio = __normal_prio(p);
  784. return prio;
  785. }
  786. /*
  787. * Calculate the current priority, i.e. the priority
  788. * taken into account by the scheduler. This value might
  789. * be boosted by RT tasks, or might be boosted by
  790. * interactivity modifiers. Will be RT if the task got
  791. * RT-boosted. If not then it returns p->normal_prio.
  792. */
  793. static int effective_prio(struct task_struct *p)
  794. {
  795. p->normal_prio = normal_prio(p);
  796. /*
  797. * If we are RT tasks or we were boosted to RT priority,
  798. * keep the priority unchanged. Otherwise, update priority
  799. * to the normal priority:
  800. */
  801. if (!rt_prio(p->prio))
  802. return p->normal_prio;
  803. return p->prio;
  804. }
  805. /*
  806. * activate_task - move a task to the runqueue.
  807. */
  808. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  809. {
  810. u64 now = rq_clock(rq);
  811. if (p->state == TASK_UNINTERRUPTIBLE)
  812. rq->nr_uninterruptible--;
  813. enqueue_task(rq, p, wakeup, now);
  814. inc_nr_running(p, rq, now);
  815. }
  816. /*
  817. * activate_idle_task - move idle task to the _front_ of runqueue.
  818. */
  819. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  820. {
  821. u64 now = rq_clock(rq);
  822. if (p->state == TASK_UNINTERRUPTIBLE)
  823. rq->nr_uninterruptible--;
  824. enqueue_task(rq, p, 0, now);
  825. inc_nr_running(p, rq, now);
  826. }
  827. /*
  828. * deactivate_task - remove a task from the runqueue.
  829. */
  830. static void
  831. deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  832. {
  833. if (p->state == TASK_UNINTERRUPTIBLE)
  834. rq->nr_uninterruptible++;
  835. dequeue_task(rq, p, sleep, now);
  836. dec_nr_running(p, rq, now);
  837. }
  838. /**
  839. * task_curr - is this task currently executing on a CPU?
  840. * @p: the task in question.
  841. */
  842. inline int task_curr(const struct task_struct *p)
  843. {
  844. return cpu_curr(task_cpu(p)) == p;
  845. }
  846. /* Used instead of source_load when we know the type == 0 */
  847. unsigned long weighted_cpuload(const int cpu)
  848. {
  849. return cpu_rq(cpu)->ls.load.weight;
  850. }
  851. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  852. {
  853. #ifdef CONFIG_SMP
  854. task_thread_info(p)->cpu = cpu;
  855. set_task_cfs_rq(p);
  856. #endif
  857. }
  858. #ifdef CONFIG_SMP
  859. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  860. {
  861. int old_cpu = task_cpu(p);
  862. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  863. u64 clock_offset, fair_clock_offset;
  864. clock_offset = old_rq->clock - new_rq->clock;
  865. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  866. if (p->se.wait_start_fair)
  867. p->se.wait_start_fair -= fair_clock_offset;
  868. if (p->se.sleep_start_fair)
  869. p->se.sleep_start_fair -= fair_clock_offset;
  870. #ifdef CONFIG_SCHEDSTATS
  871. if (p->se.wait_start)
  872. p->se.wait_start -= clock_offset;
  873. if (p->se.sleep_start)
  874. p->se.sleep_start -= clock_offset;
  875. if (p->se.block_start)
  876. p->se.block_start -= clock_offset;
  877. #endif
  878. __set_task_cpu(p, new_cpu);
  879. }
  880. struct migration_req {
  881. struct list_head list;
  882. struct task_struct *task;
  883. int dest_cpu;
  884. struct completion done;
  885. };
  886. /*
  887. * The task's runqueue lock must be held.
  888. * Returns true if you have to wait for migration thread.
  889. */
  890. static int
  891. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  892. {
  893. struct rq *rq = task_rq(p);
  894. /*
  895. * If the task is not on a runqueue (and not running), then
  896. * it is sufficient to simply update the task's cpu field.
  897. */
  898. if (!p->se.on_rq && !task_running(rq, p)) {
  899. set_task_cpu(p, dest_cpu);
  900. return 0;
  901. }
  902. init_completion(&req->done);
  903. req->task = p;
  904. req->dest_cpu = dest_cpu;
  905. list_add(&req->list, &rq->migration_queue);
  906. return 1;
  907. }
  908. /*
  909. * wait_task_inactive - wait for a thread to unschedule.
  910. *
  911. * The caller must ensure that the task *will* unschedule sometime soon,
  912. * else this function might spin for a *long* time. This function can't
  913. * be called with interrupts off, or it may introduce deadlock with
  914. * smp_call_function() if an IPI is sent by the same process we are
  915. * waiting to become inactive.
  916. */
  917. void wait_task_inactive(struct task_struct *p)
  918. {
  919. unsigned long flags;
  920. int running, on_rq;
  921. struct rq *rq;
  922. repeat:
  923. /*
  924. * We do the initial early heuristics without holding
  925. * any task-queue locks at all. We'll only try to get
  926. * the runqueue lock when things look like they will
  927. * work out!
  928. */
  929. rq = task_rq(p);
  930. /*
  931. * If the task is actively running on another CPU
  932. * still, just relax and busy-wait without holding
  933. * any locks.
  934. *
  935. * NOTE! Since we don't hold any locks, it's not
  936. * even sure that "rq" stays as the right runqueue!
  937. * But we don't care, since "task_running()" will
  938. * return false if the runqueue has changed and p
  939. * is actually now running somewhere else!
  940. */
  941. while (task_running(rq, p))
  942. cpu_relax();
  943. /*
  944. * Ok, time to look more closely! We need the rq
  945. * lock now, to be *sure*. If we're wrong, we'll
  946. * just go back and repeat.
  947. */
  948. rq = task_rq_lock(p, &flags);
  949. running = task_running(rq, p);
  950. on_rq = p->se.on_rq;
  951. task_rq_unlock(rq, &flags);
  952. /*
  953. * Was it really running after all now that we
  954. * checked with the proper locks actually held?
  955. *
  956. * Oops. Go back and try again..
  957. */
  958. if (unlikely(running)) {
  959. cpu_relax();
  960. goto repeat;
  961. }
  962. /*
  963. * It's not enough that it's not actively running,
  964. * it must be off the runqueue _entirely_, and not
  965. * preempted!
  966. *
  967. * So if it wa still runnable (but just not actively
  968. * running right now), it's preempted, and we should
  969. * yield - it could be a while.
  970. */
  971. if (unlikely(on_rq)) {
  972. yield();
  973. goto repeat;
  974. }
  975. /*
  976. * Ahh, all good. It wasn't running, and it wasn't
  977. * runnable, which means that it will never become
  978. * running in the future either. We're all done!
  979. */
  980. }
  981. /***
  982. * kick_process - kick a running thread to enter/exit the kernel
  983. * @p: the to-be-kicked thread
  984. *
  985. * Cause a process which is running on another CPU to enter
  986. * kernel-mode, without any delay. (to get signals handled.)
  987. *
  988. * NOTE: this function doesnt have to take the runqueue lock,
  989. * because all it wants to ensure is that the remote task enters
  990. * the kernel. If the IPI races and the task has been migrated
  991. * to another CPU then no harm is done and the purpose has been
  992. * achieved as well.
  993. */
  994. void kick_process(struct task_struct *p)
  995. {
  996. int cpu;
  997. preempt_disable();
  998. cpu = task_cpu(p);
  999. if ((cpu != smp_processor_id()) && task_curr(p))
  1000. smp_send_reschedule(cpu);
  1001. preempt_enable();
  1002. }
  1003. /*
  1004. * Return a low guess at the load of a migration-source cpu weighted
  1005. * according to the scheduling class and "nice" value.
  1006. *
  1007. * We want to under-estimate the load of migration sources, to
  1008. * balance conservatively.
  1009. */
  1010. static inline unsigned long source_load(int cpu, int type)
  1011. {
  1012. struct rq *rq = cpu_rq(cpu);
  1013. unsigned long total = weighted_cpuload(cpu);
  1014. if (type == 0)
  1015. return total;
  1016. return min(rq->cpu_load[type-1], total);
  1017. }
  1018. /*
  1019. * Return a high guess at the load of a migration-target cpu weighted
  1020. * according to the scheduling class and "nice" value.
  1021. */
  1022. static inline unsigned long target_load(int cpu, int type)
  1023. {
  1024. struct rq *rq = cpu_rq(cpu);
  1025. unsigned long total = weighted_cpuload(cpu);
  1026. if (type == 0)
  1027. return total;
  1028. return max(rq->cpu_load[type-1], total);
  1029. }
  1030. /*
  1031. * Return the average load per task on the cpu's run queue
  1032. */
  1033. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1034. {
  1035. struct rq *rq = cpu_rq(cpu);
  1036. unsigned long total = weighted_cpuload(cpu);
  1037. unsigned long n = rq->nr_running;
  1038. return n ? total / n : SCHED_LOAD_SCALE;
  1039. }
  1040. /*
  1041. * find_idlest_group finds and returns the least busy CPU group within the
  1042. * domain.
  1043. */
  1044. static struct sched_group *
  1045. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1046. {
  1047. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1048. unsigned long min_load = ULONG_MAX, this_load = 0;
  1049. int load_idx = sd->forkexec_idx;
  1050. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1051. do {
  1052. unsigned long load, avg_load;
  1053. int local_group;
  1054. int i;
  1055. /* Skip over this group if it has no CPUs allowed */
  1056. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1057. goto nextgroup;
  1058. local_group = cpu_isset(this_cpu, group->cpumask);
  1059. /* Tally up the load of all CPUs in the group */
  1060. avg_load = 0;
  1061. for_each_cpu_mask(i, group->cpumask) {
  1062. /* Bias balancing toward cpus of our domain */
  1063. if (local_group)
  1064. load = source_load(i, load_idx);
  1065. else
  1066. load = target_load(i, load_idx);
  1067. avg_load += load;
  1068. }
  1069. /* Adjust by relative CPU power of the group */
  1070. avg_load = sg_div_cpu_power(group,
  1071. avg_load * SCHED_LOAD_SCALE);
  1072. if (local_group) {
  1073. this_load = avg_load;
  1074. this = group;
  1075. } else if (avg_load < min_load) {
  1076. min_load = avg_load;
  1077. idlest = group;
  1078. }
  1079. nextgroup:
  1080. group = group->next;
  1081. } while (group != sd->groups);
  1082. if (!idlest || 100*this_load < imbalance*min_load)
  1083. return NULL;
  1084. return idlest;
  1085. }
  1086. /*
  1087. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1088. */
  1089. static int
  1090. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1091. {
  1092. cpumask_t tmp;
  1093. unsigned long load, min_load = ULONG_MAX;
  1094. int idlest = -1;
  1095. int i;
  1096. /* Traverse only the allowed CPUs */
  1097. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1098. for_each_cpu_mask(i, tmp) {
  1099. load = weighted_cpuload(i);
  1100. if (load < min_load || (load == min_load && i == this_cpu)) {
  1101. min_load = load;
  1102. idlest = i;
  1103. }
  1104. }
  1105. return idlest;
  1106. }
  1107. /*
  1108. * sched_balance_self: balance the current task (running on cpu) in domains
  1109. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1110. * SD_BALANCE_EXEC.
  1111. *
  1112. * Balance, ie. select the least loaded group.
  1113. *
  1114. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1115. *
  1116. * preempt must be disabled.
  1117. */
  1118. static int sched_balance_self(int cpu, int flag)
  1119. {
  1120. struct task_struct *t = current;
  1121. struct sched_domain *tmp, *sd = NULL;
  1122. for_each_domain(cpu, tmp) {
  1123. /*
  1124. * If power savings logic is enabled for a domain, stop there.
  1125. */
  1126. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1127. break;
  1128. if (tmp->flags & flag)
  1129. sd = tmp;
  1130. }
  1131. while (sd) {
  1132. cpumask_t span;
  1133. struct sched_group *group;
  1134. int new_cpu, weight;
  1135. if (!(sd->flags & flag)) {
  1136. sd = sd->child;
  1137. continue;
  1138. }
  1139. span = sd->span;
  1140. group = find_idlest_group(sd, t, cpu);
  1141. if (!group) {
  1142. sd = sd->child;
  1143. continue;
  1144. }
  1145. new_cpu = find_idlest_cpu(group, t, cpu);
  1146. if (new_cpu == -1 || new_cpu == cpu) {
  1147. /* Now try balancing at a lower domain level of cpu */
  1148. sd = sd->child;
  1149. continue;
  1150. }
  1151. /* Now try balancing at a lower domain level of new_cpu */
  1152. cpu = new_cpu;
  1153. sd = NULL;
  1154. weight = cpus_weight(span);
  1155. for_each_domain(cpu, tmp) {
  1156. if (weight <= cpus_weight(tmp->span))
  1157. break;
  1158. if (tmp->flags & flag)
  1159. sd = tmp;
  1160. }
  1161. /* while loop will break here if sd == NULL */
  1162. }
  1163. return cpu;
  1164. }
  1165. #endif /* CONFIG_SMP */
  1166. /*
  1167. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1168. * not idle and an idle cpu is available. The span of cpus to
  1169. * search starts with cpus closest then further out as needed,
  1170. * so we always favor a closer, idle cpu.
  1171. *
  1172. * Returns the CPU we should wake onto.
  1173. */
  1174. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1175. static int wake_idle(int cpu, struct task_struct *p)
  1176. {
  1177. cpumask_t tmp;
  1178. struct sched_domain *sd;
  1179. int i;
  1180. /*
  1181. * If it is idle, then it is the best cpu to run this task.
  1182. *
  1183. * This cpu is also the best, if it has more than one task already.
  1184. * Siblings must be also busy(in most cases) as they didn't already
  1185. * pickup the extra load from this cpu and hence we need not check
  1186. * sibling runqueue info. This will avoid the checks and cache miss
  1187. * penalities associated with that.
  1188. */
  1189. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1190. return cpu;
  1191. for_each_domain(cpu, sd) {
  1192. if (sd->flags & SD_WAKE_IDLE) {
  1193. cpus_and(tmp, sd->span, p->cpus_allowed);
  1194. for_each_cpu_mask(i, tmp) {
  1195. if (idle_cpu(i))
  1196. return i;
  1197. }
  1198. } else {
  1199. break;
  1200. }
  1201. }
  1202. return cpu;
  1203. }
  1204. #else
  1205. static inline int wake_idle(int cpu, struct task_struct *p)
  1206. {
  1207. return cpu;
  1208. }
  1209. #endif
  1210. /***
  1211. * try_to_wake_up - wake up a thread
  1212. * @p: the to-be-woken-up thread
  1213. * @state: the mask of task states that can be woken
  1214. * @sync: do a synchronous wakeup?
  1215. *
  1216. * Put it on the run-queue if it's not already there. The "current"
  1217. * thread is always on the run-queue (except when the actual
  1218. * re-schedule is in progress), and as such you're allowed to do
  1219. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1220. * runnable without the overhead of this.
  1221. *
  1222. * returns failure only if the task is already active.
  1223. */
  1224. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1225. {
  1226. int cpu, this_cpu, success = 0;
  1227. unsigned long flags;
  1228. long old_state;
  1229. struct rq *rq;
  1230. #ifdef CONFIG_SMP
  1231. struct sched_domain *sd, *this_sd = NULL;
  1232. unsigned long load, this_load;
  1233. int new_cpu;
  1234. #endif
  1235. rq = task_rq_lock(p, &flags);
  1236. old_state = p->state;
  1237. if (!(old_state & state))
  1238. goto out;
  1239. if (p->se.on_rq)
  1240. goto out_running;
  1241. cpu = task_cpu(p);
  1242. this_cpu = smp_processor_id();
  1243. #ifdef CONFIG_SMP
  1244. if (unlikely(task_running(rq, p)))
  1245. goto out_activate;
  1246. new_cpu = cpu;
  1247. schedstat_inc(rq, ttwu_cnt);
  1248. if (cpu == this_cpu) {
  1249. schedstat_inc(rq, ttwu_local);
  1250. goto out_set_cpu;
  1251. }
  1252. for_each_domain(this_cpu, sd) {
  1253. if (cpu_isset(cpu, sd->span)) {
  1254. schedstat_inc(sd, ttwu_wake_remote);
  1255. this_sd = sd;
  1256. break;
  1257. }
  1258. }
  1259. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1260. goto out_set_cpu;
  1261. /*
  1262. * Check for affine wakeup and passive balancing possibilities.
  1263. */
  1264. if (this_sd) {
  1265. int idx = this_sd->wake_idx;
  1266. unsigned int imbalance;
  1267. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1268. load = source_load(cpu, idx);
  1269. this_load = target_load(this_cpu, idx);
  1270. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1271. if (this_sd->flags & SD_WAKE_AFFINE) {
  1272. unsigned long tl = this_load;
  1273. unsigned long tl_per_task;
  1274. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1275. /*
  1276. * If sync wakeup then subtract the (maximum possible)
  1277. * effect of the currently running task from the load
  1278. * of the current CPU:
  1279. */
  1280. if (sync)
  1281. tl -= current->se.load.weight;
  1282. if ((tl <= load &&
  1283. tl + target_load(cpu, idx) <= tl_per_task) ||
  1284. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1285. /*
  1286. * This domain has SD_WAKE_AFFINE and
  1287. * p is cache cold in this domain, and
  1288. * there is no bad imbalance.
  1289. */
  1290. schedstat_inc(this_sd, ttwu_move_affine);
  1291. goto out_set_cpu;
  1292. }
  1293. }
  1294. /*
  1295. * Start passive balancing when half the imbalance_pct
  1296. * limit is reached.
  1297. */
  1298. if (this_sd->flags & SD_WAKE_BALANCE) {
  1299. if (imbalance*this_load <= 100*load) {
  1300. schedstat_inc(this_sd, ttwu_move_balance);
  1301. goto out_set_cpu;
  1302. }
  1303. }
  1304. }
  1305. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1306. out_set_cpu:
  1307. new_cpu = wake_idle(new_cpu, p);
  1308. if (new_cpu != cpu) {
  1309. set_task_cpu(p, new_cpu);
  1310. task_rq_unlock(rq, &flags);
  1311. /* might preempt at this point */
  1312. rq = task_rq_lock(p, &flags);
  1313. old_state = p->state;
  1314. if (!(old_state & state))
  1315. goto out;
  1316. if (p->se.on_rq)
  1317. goto out_running;
  1318. this_cpu = smp_processor_id();
  1319. cpu = task_cpu(p);
  1320. }
  1321. out_activate:
  1322. #endif /* CONFIG_SMP */
  1323. activate_task(rq, p, 1);
  1324. /*
  1325. * Sync wakeups (i.e. those types of wakeups where the waker
  1326. * has indicated that it will leave the CPU in short order)
  1327. * don't trigger a preemption, if the woken up task will run on
  1328. * this cpu. (in this case the 'I will reschedule' promise of
  1329. * the waker guarantees that the freshly woken up task is going
  1330. * to be considered on this CPU.)
  1331. */
  1332. if (!sync || cpu != this_cpu)
  1333. check_preempt_curr(rq, p);
  1334. success = 1;
  1335. out_running:
  1336. p->state = TASK_RUNNING;
  1337. out:
  1338. task_rq_unlock(rq, &flags);
  1339. return success;
  1340. }
  1341. int fastcall wake_up_process(struct task_struct *p)
  1342. {
  1343. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1344. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1345. }
  1346. EXPORT_SYMBOL(wake_up_process);
  1347. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1348. {
  1349. return try_to_wake_up(p, state, 0);
  1350. }
  1351. /*
  1352. * Perform scheduler related setup for a newly forked process p.
  1353. * p is forked by current.
  1354. *
  1355. * __sched_fork() is basic setup used by init_idle() too:
  1356. */
  1357. static void __sched_fork(struct task_struct *p)
  1358. {
  1359. p->se.wait_start_fair = 0;
  1360. p->se.exec_start = 0;
  1361. p->se.sum_exec_runtime = 0;
  1362. p->se.delta_exec = 0;
  1363. p->se.delta_fair_run = 0;
  1364. p->se.delta_fair_sleep = 0;
  1365. p->se.wait_runtime = 0;
  1366. p->se.sleep_start_fair = 0;
  1367. #ifdef CONFIG_SCHEDSTATS
  1368. p->se.wait_start = 0;
  1369. p->se.sum_wait_runtime = 0;
  1370. p->se.sum_sleep_runtime = 0;
  1371. p->se.sleep_start = 0;
  1372. p->se.block_start = 0;
  1373. p->se.sleep_max = 0;
  1374. p->se.block_max = 0;
  1375. p->se.exec_max = 0;
  1376. p->se.wait_max = 0;
  1377. p->se.wait_runtime_overruns = 0;
  1378. p->se.wait_runtime_underruns = 0;
  1379. #endif
  1380. INIT_LIST_HEAD(&p->run_list);
  1381. p->se.on_rq = 0;
  1382. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1383. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1384. #endif
  1385. /*
  1386. * We mark the process as running here, but have not actually
  1387. * inserted it onto the runqueue yet. This guarantees that
  1388. * nobody will actually run it, and a signal or other external
  1389. * event cannot wake it up and insert it on the runqueue either.
  1390. */
  1391. p->state = TASK_RUNNING;
  1392. }
  1393. /*
  1394. * fork()/clone()-time setup:
  1395. */
  1396. void sched_fork(struct task_struct *p, int clone_flags)
  1397. {
  1398. int cpu = get_cpu();
  1399. __sched_fork(p);
  1400. #ifdef CONFIG_SMP
  1401. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1402. #endif
  1403. __set_task_cpu(p, cpu);
  1404. /*
  1405. * Make sure we do not leak PI boosting priority to the child:
  1406. */
  1407. p->prio = current->normal_prio;
  1408. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1409. if (likely(sched_info_on()))
  1410. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1411. #endif
  1412. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1413. p->oncpu = 0;
  1414. #endif
  1415. #ifdef CONFIG_PREEMPT
  1416. /* Want to start with kernel preemption disabled. */
  1417. task_thread_info(p)->preempt_count = 1;
  1418. #endif
  1419. put_cpu();
  1420. }
  1421. /*
  1422. * After fork, child runs first. (default) If set to 0 then
  1423. * parent will (try to) run first.
  1424. */
  1425. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1426. /*
  1427. * wake_up_new_task - wake up a newly created task for the first time.
  1428. *
  1429. * This function will do some initial scheduler statistics housekeeping
  1430. * that must be done for every newly created context, then puts the task
  1431. * on the runqueue and wakes it.
  1432. */
  1433. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1434. {
  1435. unsigned long flags;
  1436. struct rq *rq;
  1437. int this_cpu;
  1438. u64 now;
  1439. rq = task_rq_lock(p, &flags);
  1440. BUG_ON(p->state != TASK_RUNNING);
  1441. this_cpu = smp_processor_id(); /* parent's CPU */
  1442. now = rq_clock(rq);
  1443. p->prio = effective_prio(p);
  1444. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1445. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1446. !current->se.on_rq) {
  1447. activate_task(rq, p, 0);
  1448. } else {
  1449. /*
  1450. * Let the scheduling class do new task startup
  1451. * management (if any):
  1452. */
  1453. p->sched_class->task_new(rq, p, now);
  1454. inc_nr_running(p, rq, now);
  1455. }
  1456. check_preempt_curr(rq, p);
  1457. task_rq_unlock(rq, &flags);
  1458. }
  1459. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1460. /**
  1461. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1462. * @notifier: notifier struct to register
  1463. */
  1464. void preempt_notifier_register(struct preempt_notifier *notifier)
  1465. {
  1466. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1467. }
  1468. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1469. /**
  1470. * preempt_notifier_unregister - no longer interested in preemption notifications
  1471. * @notifier: notifier struct to unregister
  1472. *
  1473. * This is safe to call from within a preemption notifier.
  1474. */
  1475. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1476. {
  1477. hlist_del(&notifier->link);
  1478. }
  1479. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1480. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1481. {
  1482. struct preempt_notifier *notifier;
  1483. struct hlist_node *node;
  1484. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1485. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1486. }
  1487. static void
  1488. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1489. struct task_struct *next)
  1490. {
  1491. struct preempt_notifier *notifier;
  1492. struct hlist_node *node;
  1493. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1494. notifier->ops->sched_out(notifier, next);
  1495. }
  1496. #else
  1497. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1498. {
  1499. }
  1500. static void
  1501. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1502. struct task_struct *next)
  1503. {
  1504. }
  1505. #endif
  1506. /**
  1507. * prepare_task_switch - prepare to switch tasks
  1508. * @rq: the runqueue preparing to switch
  1509. * @prev: the current task that is being switched out
  1510. * @next: the task we are going to switch to.
  1511. *
  1512. * This is called with the rq lock held and interrupts off. It must
  1513. * be paired with a subsequent finish_task_switch after the context
  1514. * switch.
  1515. *
  1516. * prepare_task_switch sets up locking and calls architecture specific
  1517. * hooks.
  1518. */
  1519. static inline void
  1520. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1521. struct task_struct *next)
  1522. {
  1523. fire_sched_out_preempt_notifiers(prev, next);
  1524. prepare_lock_switch(rq, next);
  1525. prepare_arch_switch(next);
  1526. }
  1527. /**
  1528. * finish_task_switch - clean up after a task-switch
  1529. * @rq: runqueue associated with task-switch
  1530. * @prev: the thread we just switched away from.
  1531. *
  1532. * finish_task_switch must be called after the context switch, paired
  1533. * with a prepare_task_switch call before the context switch.
  1534. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1535. * and do any other architecture-specific cleanup actions.
  1536. *
  1537. * Note that we may have delayed dropping an mm in context_switch(). If
  1538. * so, we finish that here outside of the runqueue lock. (Doing it
  1539. * with the lock held can cause deadlocks; see schedule() for
  1540. * details.)
  1541. */
  1542. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1543. __releases(rq->lock)
  1544. {
  1545. struct mm_struct *mm = rq->prev_mm;
  1546. long prev_state;
  1547. rq->prev_mm = NULL;
  1548. /*
  1549. * A task struct has one reference for the use as "current".
  1550. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1551. * schedule one last time. The schedule call will never return, and
  1552. * the scheduled task must drop that reference.
  1553. * The test for TASK_DEAD must occur while the runqueue locks are
  1554. * still held, otherwise prev could be scheduled on another cpu, die
  1555. * there before we look at prev->state, and then the reference would
  1556. * be dropped twice.
  1557. * Manfred Spraul <manfred@colorfullife.com>
  1558. */
  1559. prev_state = prev->state;
  1560. finish_arch_switch(prev);
  1561. finish_lock_switch(rq, prev);
  1562. fire_sched_in_preempt_notifiers(current);
  1563. if (mm)
  1564. mmdrop(mm);
  1565. if (unlikely(prev_state == TASK_DEAD)) {
  1566. /*
  1567. * Remove function-return probe instances associated with this
  1568. * task and put them back on the free list.
  1569. */
  1570. kprobe_flush_task(prev);
  1571. put_task_struct(prev);
  1572. }
  1573. }
  1574. /**
  1575. * schedule_tail - first thing a freshly forked thread must call.
  1576. * @prev: the thread we just switched away from.
  1577. */
  1578. asmlinkage void schedule_tail(struct task_struct *prev)
  1579. __releases(rq->lock)
  1580. {
  1581. struct rq *rq = this_rq();
  1582. finish_task_switch(rq, prev);
  1583. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1584. /* In this case, finish_task_switch does not reenable preemption */
  1585. preempt_enable();
  1586. #endif
  1587. if (current->set_child_tid)
  1588. put_user(current->pid, current->set_child_tid);
  1589. }
  1590. /*
  1591. * context_switch - switch to the new MM and the new
  1592. * thread's register state.
  1593. */
  1594. static inline void
  1595. context_switch(struct rq *rq, struct task_struct *prev,
  1596. struct task_struct *next)
  1597. {
  1598. struct mm_struct *mm, *oldmm;
  1599. prepare_task_switch(rq, prev, next);
  1600. mm = next->mm;
  1601. oldmm = prev->active_mm;
  1602. /*
  1603. * For paravirt, this is coupled with an exit in switch_to to
  1604. * combine the page table reload and the switch backend into
  1605. * one hypercall.
  1606. */
  1607. arch_enter_lazy_cpu_mode();
  1608. if (unlikely(!mm)) {
  1609. next->active_mm = oldmm;
  1610. atomic_inc(&oldmm->mm_count);
  1611. enter_lazy_tlb(oldmm, next);
  1612. } else
  1613. switch_mm(oldmm, mm, next);
  1614. if (unlikely(!prev->mm)) {
  1615. prev->active_mm = NULL;
  1616. rq->prev_mm = oldmm;
  1617. }
  1618. /*
  1619. * Since the runqueue lock will be released by the next
  1620. * task (which is an invalid locking op but in the case
  1621. * of the scheduler it's an obvious special-case), so we
  1622. * do an early lockdep release here:
  1623. */
  1624. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1625. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1626. #endif
  1627. /* Here we just switch the register state and the stack. */
  1628. switch_to(prev, next, prev);
  1629. barrier();
  1630. /*
  1631. * this_rq must be evaluated again because prev may have moved
  1632. * CPUs since it called schedule(), thus the 'rq' on its stack
  1633. * frame will be invalid.
  1634. */
  1635. finish_task_switch(this_rq(), prev);
  1636. }
  1637. /*
  1638. * nr_running, nr_uninterruptible and nr_context_switches:
  1639. *
  1640. * externally visible scheduler statistics: current number of runnable
  1641. * threads, current number of uninterruptible-sleeping threads, total
  1642. * number of context switches performed since bootup.
  1643. */
  1644. unsigned long nr_running(void)
  1645. {
  1646. unsigned long i, sum = 0;
  1647. for_each_online_cpu(i)
  1648. sum += cpu_rq(i)->nr_running;
  1649. return sum;
  1650. }
  1651. unsigned long nr_uninterruptible(void)
  1652. {
  1653. unsigned long i, sum = 0;
  1654. for_each_possible_cpu(i)
  1655. sum += cpu_rq(i)->nr_uninterruptible;
  1656. /*
  1657. * Since we read the counters lockless, it might be slightly
  1658. * inaccurate. Do not allow it to go below zero though:
  1659. */
  1660. if (unlikely((long)sum < 0))
  1661. sum = 0;
  1662. return sum;
  1663. }
  1664. unsigned long long nr_context_switches(void)
  1665. {
  1666. int i;
  1667. unsigned long long sum = 0;
  1668. for_each_possible_cpu(i)
  1669. sum += cpu_rq(i)->nr_switches;
  1670. return sum;
  1671. }
  1672. unsigned long nr_iowait(void)
  1673. {
  1674. unsigned long i, sum = 0;
  1675. for_each_possible_cpu(i)
  1676. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1677. return sum;
  1678. }
  1679. unsigned long nr_active(void)
  1680. {
  1681. unsigned long i, running = 0, uninterruptible = 0;
  1682. for_each_online_cpu(i) {
  1683. running += cpu_rq(i)->nr_running;
  1684. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1685. }
  1686. if (unlikely((long)uninterruptible < 0))
  1687. uninterruptible = 0;
  1688. return running + uninterruptible;
  1689. }
  1690. /*
  1691. * Update rq->cpu_load[] statistics. This function is usually called every
  1692. * scheduler tick (TICK_NSEC).
  1693. */
  1694. static void update_cpu_load(struct rq *this_rq)
  1695. {
  1696. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1697. unsigned long total_load = this_rq->ls.load.weight;
  1698. unsigned long this_load = total_load;
  1699. struct load_stat *ls = &this_rq->ls;
  1700. u64 now = __rq_clock(this_rq);
  1701. int i, scale;
  1702. this_rq->nr_load_updates++;
  1703. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1704. goto do_avg;
  1705. /* Update delta_fair/delta_exec fields first */
  1706. update_curr_load(this_rq, now);
  1707. fair_delta64 = ls->delta_fair + 1;
  1708. ls->delta_fair = 0;
  1709. exec_delta64 = ls->delta_exec + 1;
  1710. ls->delta_exec = 0;
  1711. sample_interval64 = now - ls->load_update_last;
  1712. ls->load_update_last = now;
  1713. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1714. sample_interval64 = TICK_NSEC;
  1715. if (exec_delta64 > sample_interval64)
  1716. exec_delta64 = sample_interval64;
  1717. idle_delta64 = sample_interval64 - exec_delta64;
  1718. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1719. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1720. this_load = (unsigned long)tmp64;
  1721. do_avg:
  1722. /* Update our load: */
  1723. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1724. unsigned long old_load, new_load;
  1725. /* scale is effectively 1 << i now, and >> i divides by scale */
  1726. old_load = this_rq->cpu_load[i];
  1727. new_load = this_load;
  1728. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1729. }
  1730. }
  1731. #ifdef CONFIG_SMP
  1732. /*
  1733. * double_rq_lock - safely lock two runqueues
  1734. *
  1735. * Note this does not disable interrupts like task_rq_lock,
  1736. * you need to do so manually before calling.
  1737. */
  1738. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1739. __acquires(rq1->lock)
  1740. __acquires(rq2->lock)
  1741. {
  1742. BUG_ON(!irqs_disabled());
  1743. if (rq1 == rq2) {
  1744. spin_lock(&rq1->lock);
  1745. __acquire(rq2->lock); /* Fake it out ;) */
  1746. } else {
  1747. if (rq1 < rq2) {
  1748. spin_lock(&rq1->lock);
  1749. spin_lock(&rq2->lock);
  1750. } else {
  1751. spin_lock(&rq2->lock);
  1752. spin_lock(&rq1->lock);
  1753. }
  1754. }
  1755. }
  1756. /*
  1757. * double_rq_unlock - safely unlock two runqueues
  1758. *
  1759. * Note this does not restore interrupts like task_rq_unlock,
  1760. * you need to do so manually after calling.
  1761. */
  1762. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1763. __releases(rq1->lock)
  1764. __releases(rq2->lock)
  1765. {
  1766. spin_unlock(&rq1->lock);
  1767. if (rq1 != rq2)
  1768. spin_unlock(&rq2->lock);
  1769. else
  1770. __release(rq2->lock);
  1771. }
  1772. /*
  1773. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1774. */
  1775. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1776. __releases(this_rq->lock)
  1777. __acquires(busiest->lock)
  1778. __acquires(this_rq->lock)
  1779. {
  1780. if (unlikely(!irqs_disabled())) {
  1781. /* printk() doesn't work good under rq->lock */
  1782. spin_unlock(&this_rq->lock);
  1783. BUG_ON(1);
  1784. }
  1785. if (unlikely(!spin_trylock(&busiest->lock))) {
  1786. if (busiest < this_rq) {
  1787. spin_unlock(&this_rq->lock);
  1788. spin_lock(&busiest->lock);
  1789. spin_lock(&this_rq->lock);
  1790. } else
  1791. spin_lock(&busiest->lock);
  1792. }
  1793. }
  1794. /*
  1795. * If dest_cpu is allowed for this process, migrate the task to it.
  1796. * This is accomplished by forcing the cpu_allowed mask to only
  1797. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1798. * the cpu_allowed mask is restored.
  1799. */
  1800. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1801. {
  1802. struct migration_req req;
  1803. unsigned long flags;
  1804. struct rq *rq;
  1805. rq = task_rq_lock(p, &flags);
  1806. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1807. || unlikely(cpu_is_offline(dest_cpu)))
  1808. goto out;
  1809. /* force the process onto the specified CPU */
  1810. if (migrate_task(p, dest_cpu, &req)) {
  1811. /* Need to wait for migration thread (might exit: take ref). */
  1812. struct task_struct *mt = rq->migration_thread;
  1813. get_task_struct(mt);
  1814. task_rq_unlock(rq, &flags);
  1815. wake_up_process(mt);
  1816. put_task_struct(mt);
  1817. wait_for_completion(&req.done);
  1818. return;
  1819. }
  1820. out:
  1821. task_rq_unlock(rq, &flags);
  1822. }
  1823. /*
  1824. * sched_exec - execve() is a valuable balancing opportunity, because at
  1825. * this point the task has the smallest effective memory and cache footprint.
  1826. */
  1827. void sched_exec(void)
  1828. {
  1829. int new_cpu, this_cpu = get_cpu();
  1830. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1831. put_cpu();
  1832. if (new_cpu != this_cpu)
  1833. sched_migrate_task(current, new_cpu);
  1834. }
  1835. /*
  1836. * pull_task - move a task from a remote runqueue to the local runqueue.
  1837. * Both runqueues must be locked.
  1838. */
  1839. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1840. struct rq *this_rq, int this_cpu)
  1841. {
  1842. deactivate_task(src_rq, p, 0, rq_clock(src_rq));
  1843. set_task_cpu(p, this_cpu);
  1844. activate_task(this_rq, p, 0);
  1845. /*
  1846. * Note that idle threads have a prio of MAX_PRIO, for this test
  1847. * to be always true for them.
  1848. */
  1849. check_preempt_curr(this_rq, p);
  1850. }
  1851. /*
  1852. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1853. */
  1854. static
  1855. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1856. struct sched_domain *sd, enum cpu_idle_type idle,
  1857. int *all_pinned)
  1858. {
  1859. /*
  1860. * We do not migrate tasks that are:
  1861. * 1) running (obviously), or
  1862. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1863. * 3) are cache-hot on their current CPU.
  1864. */
  1865. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1866. return 0;
  1867. *all_pinned = 0;
  1868. if (task_running(rq, p))
  1869. return 0;
  1870. /*
  1871. * Aggressive migration if too many balance attempts have failed:
  1872. */
  1873. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1874. return 1;
  1875. return 1;
  1876. }
  1877. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1878. unsigned long max_nr_move, unsigned long max_load_move,
  1879. struct sched_domain *sd, enum cpu_idle_type idle,
  1880. int *all_pinned, unsigned long *load_moved,
  1881. int *this_best_prio, struct rq_iterator *iterator)
  1882. {
  1883. int pulled = 0, pinned = 0, skip_for_load;
  1884. struct task_struct *p;
  1885. long rem_load_move = max_load_move;
  1886. if (max_nr_move == 0 || max_load_move == 0)
  1887. goto out;
  1888. pinned = 1;
  1889. /*
  1890. * Start the load-balancing iterator:
  1891. */
  1892. p = iterator->start(iterator->arg);
  1893. next:
  1894. if (!p)
  1895. goto out;
  1896. /*
  1897. * To help distribute high priority tasks accross CPUs we don't
  1898. * skip a task if it will be the highest priority task (i.e. smallest
  1899. * prio value) on its new queue regardless of its load weight
  1900. */
  1901. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1902. SCHED_LOAD_SCALE_FUZZ;
  1903. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1904. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1905. p = iterator->next(iterator->arg);
  1906. goto next;
  1907. }
  1908. pull_task(busiest, p, this_rq, this_cpu);
  1909. pulled++;
  1910. rem_load_move -= p->se.load.weight;
  1911. /*
  1912. * We only want to steal up to the prescribed number of tasks
  1913. * and the prescribed amount of weighted load.
  1914. */
  1915. if (pulled < max_nr_move && rem_load_move > 0) {
  1916. if (p->prio < *this_best_prio)
  1917. *this_best_prio = p->prio;
  1918. p = iterator->next(iterator->arg);
  1919. goto next;
  1920. }
  1921. out:
  1922. /*
  1923. * Right now, this is the only place pull_task() is called,
  1924. * so we can safely collect pull_task() stats here rather than
  1925. * inside pull_task().
  1926. */
  1927. schedstat_add(sd, lb_gained[idle], pulled);
  1928. if (all_pinned)
  1929. *all_pinned = pinned;
  1930. *load_moved = max_load_move - rem_load_move;
  1931. return pulled;
  1932. }
  1933. /*
  1934. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1935. * this_rq, as part of a balancing operation within domain "sd".
  1936. * Returns 1 if successful and 0 otherwise.
  1937. *
  1938. * Called with both runqueues locked.
  1939. */
  1940. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1941. unsigned long max_load_move,
  1942. struct sched_domain *sd, enum cpu_idle_type idle,
  1943. int *all_pinned)
  1944. {
  1945. struct sched_class *class = sched_class_highest;
  1946. unsigned long total_load_moved = 0;
  1947. int this_best_prio = this_rq->curr->prio;
  1948. do {
  1949. total_load_moved +=
  1950. class->load_balance(this_rq, this_cpu, busiest,
  1951. ULONG_MAX, max_load_move - total_load_moved,
  1952. sd, idle, all_pinned, &this_best_prio);
  1953. class = class->next;
  1954. } while (class && max_load_move > total_load_moved);
  1955. return total_load_moved > 0;
  1956. }
  1957. /*
  1958. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1959. * part of active balancing operations within "domain".
  1960. * Returns 1 if successful and 0 otherwise.
  1961. *
  1962. * Called with both runqueues locked.
  1963. */
  1964. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1965. struct sched_domain *sd, enum cpu_idle_type idle)
  1966. {
  1967. struct sched_class *class;
  1968. int this_best_prio = MAX_PRIO;
  1969. for (class = sched_class_highest; class; class = class->next)
  1970. if (class->load_balance(this_rq, this_cpu, busiest,
  1971. 1, ULONG_MAX, sd, idle, NULL,
  1972. &this_best_prio))
  1973. return 1;
  1974. return 0;
  1975. }
  1976. /*
  1977. * find_busiest_group finds and returns the busiest CPU group within the
  1978. * domain. It calculates and returns the amount of weighted load which
  1979. * should be moved to restore balance via the imbalance parameter.
  1980. */
  1981. static struct sched_group *
  1982. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1983. unsigned long *imbalance, enum cpu_idle_type idle,
  1984. int *sd_idle, cpumask_t *cpus, int *balance)
  1985. {
  1986. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1987. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1988. unsigned long max_pull;
  1989. unsigned long busiest_load_per_task, busiest_nr_running;
  1990. unsigned long this_load_per_task, this_nr_running;
  1991. int load_idx;
  1992. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1993. int power_savings_balance = 1;
  1994. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1995. unsigned long min_nr_running = ULONG_MAX;
  1996. struct sched_group *group_min = NULL, *group_leader = NULL;
  1997. #endif
  1998. max_load = this_load = total_load = total_pwr = 0;
  1999. busiest_load_per_task = busiest_nr_running = 0;
  2000. this_load_per_task = this_nr_running = 0;
  2001. if (idle == CPU_NOT_IDLE)
  2002. load_idx = sd->busy_idx;
  2003. else if (idle == CPU_NEWLY_IDLE)
  2004. load_idx = sd->newidle_idx;
  2005. else
  2006. load_idx = sd->idle_idx;
  2007. do {
  2008. unsigned long load, group_capacity;
  2009. int local_group;
  2010. int i;
  2011. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2012. unsigned long sum_nr_running, sum_weighted_load;
  2013. local_group = cpu_isset(this_cpu, group->cpumask);
  2014. if (local_group)
  2015. balance_cpu = first_cpu(group->cpumask);
  2016. /* Tally up the load of all CPUs in the group */
  2017. sum_weighted_load = sum_nr_running = avg_load = 0;
  2018. for_each_cpu_mask(i, group->cpumask) {
  2019. struct rq *rq;
  2020. if (!cpu_isset(i, *cpus))
  2021. continue;
  2022. rq = cpu_rq(i);
  2023. if (*sd_idle && rq->nr_running)
  2024. *sd_idle = 0;
  2025. /* Bias balancing toward cpus of our domain */
  2026. if (local_group) {
  2027. if (idle_cpu(i) && !first_idle_cpu) {
  2028. first_idle_cpu = 1;
  2029. balance_cpu = i;
  2030. }
  2031. load = target_load(i, load_idx);
  2032. } else
  2033. load = source_load(i, load_idx);
  2034. avg_load += load;
  2035. sum_nr_running += rq->nr_running;
  2036. sum_weighted_load += weighted_cpuload(i);
  2037. }
  2038. /*
  2039. * First idle cpu or the first cpu(busiest) in this sched group
  2040. * is eligible for doing load balancing at this and above
  2041. * domains. In the newly idle case, we will allow all the cpu's
  2042. * to do the newly idle load balance.
  2043. */
  2044. if (idle != CPU_NEWLY_IDLE && local_group &&
  2045. balance_cpu != this_cpu && balance) {
  2046. *balance = 0;
  2047. goto ret;
  2048. }
  2049. total_load += avg_load;
  2050. total_pwr += group->__cpu_power;
  2051. /* Adjust by relative CPU power of the group */
  2052. avg_load = sg_div_cpu_power(group,
  2053. avg_load * SCHED_LOAD_SCALE);
  2054. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2055. if (local_group) {
  2056. this_load = avg_load;
  2057. this = group;
  2058. this_nr_running = sum_nr_running;
  2059. this_load_per_task = sum_weighted_load;
  2060. } else if (avg_load > max_load &&
  2061. sum_nr_running > group_capacity) {
  2062. max_load = avg_load;
  2063. busiest = group;
  2064. busiest_nr_running = sum_nr_running;
  2065. busiest_load_per_task = sum_weighted_load;
  2066. }
  2067. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2068. /*
  2069. * Busy processors will not participate in power savings
  2070. * balance.
  2071. */
  2072. if (idle == CPU_NOT_IDLE ||
  2073. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2074. goto group_next;
  2075. /*
  2076. * If the local group is idle or completely loaded
  2077. * no need to do power savings balance at this domain
  2078. */
  2079. if (local_group && (this_nr_running >= group_capacity ||
  2080. !this_nr_running))
  2081. power_savings_balance = 0;
  2082. /*
  2083. * If a group is already running at full capacity or idle,
  2084. * don't include that group in power savings calculations
  2085. */
  2086. if (!power_savings_balance || sum_nr_running >= group_capacity
  2087. || !sum_nr_running)
  2088. goto group_next;
  2089. /*
  2090. * Calculate the group which has the least non-idle load.
  2091. * This is the group from where we need to pick up the load
  2092. * for saving power
  2093. */
  2094. if ((sum_nr_running < min_nr_running) ||
  2095. (sum_nr_running == min_nr_running &&
  2096. first_cpu(group->cpumask) <
  2097. first_cpu(group_min->cpumask))) {
  2098. group_min = group;
  2099. min_nr_running = sum_nr_running;
  2100. min_load_per_task = sum_weighted_load /
  2101. sum_nr_running;
  2102. }
  2103. /*
  2104. * Calculate the group which is almost near its
  2105. * capacity but still has some space to pick up some load
  2106. * from other group and save more power
  2107. */
  2108. if (sum_nr_running <= group_capacity - 1) {
  2109. if (sum_nr_running > leader_nr_running ||
  2110. (sum_nr_running == leader_nr_running &&
  2111. first_cpu(group->cpumask) >
  2112. first_cpu(group_leader->cpumask))) {
  2113. group_leader = group;
  2114. leader_nr_running = sum_nr_running;
  2115. }
  2116. }
  2117. group_next:
  2118. #endif
  2119. group = group->next;
  2120. } while (group != sd->groups);
  2121. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2122. goto out_balanced;
  2123. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2124. if (this_load >= avg_load ||
  2125. 100*max_load <= sd->imbalance_pct*this_load)
  2126. goto out_balanced;
  2127. busiest_load_per_task /= busiest_nr_running;
  2128. /*
  2129. * We're trying to get all the cpus to the average_load, so we don't
  2130. * want to push ourselves above the average load, nor do we wish to
  2131. * reduce the max loaded cpu below the average load, as either of these
  2132. * actions would just result in more rebalancing later, and ping-pong
  2133. * tasks around. Thus we look for the minimum possible imbalance.
  2134. * Negative imbalances (*we* are more loaded than anyone else) will
  2135. * be counted as no imbalance for these purposes -- we can't fix that
  2136. * by pulling tasks to us. Be careful of negative numbers as they'll
  2137. * appear as very large values with unsigned longs.
  2138. */
  2139. if (max_load <= busiest_load_per_task)
  2140. goto out_balanced;
  2141. /*
  2142. * In the presence of smp nice balancing, certain scenarios can have
  2143. * max load less than avg load(as we skip the groups at or below
  2144. * its cpu_power, while calculating max_load..)
  2145. */
  2146. if (max_load < avg_load) {
  2147. *imbalance = 0;
  2148. goto small_imbalance;
  2149. }
  2150. /* Don't want to pull so many tasks that a group would go idle */
  2151. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2152. /* How much load to actually move to equalise the imbalance */
  2153. *imbalance = min(max_pull * busiest->__cpu_power,
  2154. (avg_load - this_load) * this->__cpu_power)
  2155. / SCHED_LOAD_SCALE;
  2156. /*
  2157. * if *imbalance is less than the average load per runnable task
  2158. * there is no gaurantee that any tasks will be moved so we'll have
  2159. * a think about bumping its value to force at least one task to be
  2160. * moved
  2161. */
  2162. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2163. unsigned long tmp, pwr_now, pwr_move;
  2164. unsigned int imbn;
  2165. small_imbalance:
  2166. pwr_move = pwr_now = 0;
  2167. imbn = 2;
  2168. if (this_nr_running) {
  2169. this_load_per_task /= this_nr_running;
  2170. if (busiest_load_per_task > this_load_per_task)
  2171. imbn = 1;
  2172. } else
  2173. this_load_per_task = SCHED_LOAD_SCALE;
  2174. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2175. busiest_load_per_task * imbn) {
  2176. *imbalance = busiest_load_per_task;
  2177. return busiest;
  2178. }
  2179. /*
  2180. * OK, we don't have enough imbalance to justify moving tasks,
  2181. * however we may be able to increase total CPU power used by
  2182. * moving them.
  2183. */
  2184. pwr_now += busiest->__cpu_power *
  2185. min(busiest_load_per_task, max_load);
  2186. pwr_now += this->__cpu_power *
  2187. min(this_load_per_task, this_load);
  2188. pwr_now /= SCHED_LOAD_SCALE;
  2189. /* Amount of load we'd subtract */
  2190. tmp = sg_div_cpu_power(busiest,
  2191. busiest_load_per_task * SCHED_LOAD_SCALE);
  2192. if (max_load > tmp)
  2193. pwr_move += busiest->__cpu_power *
  2194. min(busiest_load_per_task, max_load - tmp);
  2195. /* Amount of load we'd add */
  2196. if (max_load * busiest->__cpu_power <
  2197. busiest_load_per_task * SCHED_LOAD_SCALE)
  2198. tmp = sg_div_cpu_power(this,
  2199. max_load * busiest->__cpu_power);
  2200. else
  2201. tmp = sg_div_cpu_power(this,
  2202. busiest_load_per_task * SCHED_LOAD_SCALE);
  2203. pwr_move += this->__cpu_power *
  2204. min(this_load_per_task, this_load + tmp);
  2205. pwr_move /= SCHED_LOAD_SCALE;
  2206. /* Move if we gain throughput */
  2207. if (pwr_move <= pwr_now)
  2208. goto out_balanced;
  2209. *imbalance = busiest_load_per_task;
  2210. }
  2211. return busiest;
  2212. out_balanced:
  2213. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2214. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2215. goto ret;
  2216. if (this == group_leader && group_leader != group_min) {
  2217. *imbalance = min_load_per_task;
  2218. return group_min;
  2219. }
  2220. #endif
  2221. ret:
  2222. *imbalance = 0;
  2223. return NULL;
  2224. }
  2225. /*
  2226. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2227. */
  2228. static struct rq *
  2229. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2230. unsigned long imbalance, cpumask_t *cpus)
  2231. {
  2232. struct rq *busiest = NULL, *rq;
  2233. unsigned long max_load = 0;
  2234. int i;
  2235. for_each_cpu_mask(i, group->cpumask) {
  2236. unsigned long wl;
  2237. if (!cpu_isset(i, *cpus))
  2238. continue;
  2239. rq = cpu_rq(i);
  2240. wl = weighted_cpuload(i);
  2241. if (rq->nr_running == 1 && wl > imbalance)
  2242. continue;
  2243. if (wl > max_load) {
  2244. max_load = wl;
  2245. busiest = rq;
  2246. }
  2247. }
  2248. return busiest;
  2249. }
  2250. /*
  2251. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2252. * so long as it is large enough.
  2253. */
  2254. #define MAX_PINNED_INTERVAL 512
  2255. /*
  2256. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2257. * tasks if there is an imbalance.
  2258. */
  2259. static int load_balance(int this_cpu, struct rq *this_rq,
  2260. struct sched_domain *sd, enum cpu_idle_type idle,
  2261. int *balance)
  2262. {
  2263. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2264. struct sched_group *group;
  2265. unsigned long imbalance;
  2266. struct rq *busiest;
  2267. cpumask_t cpus = CPU_MASK_ALL;
  2268. unsigned long flags;
  2269. /*
  2270. * When power savings policy is enabled for the parent domain, idle
  2271. * sibling can pick up load irrespective of busy siblings. In this case,
  2272. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2273. * portraying it as CPU_NOT_IDLE.
  2274. */
  2275. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2276. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2277. sd_idle = 1;
  2278. schedstat_inc(sd, lb_cnt[idle]);
  2279. redo:
  2280. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2281. &cpus, balance);
  2282. if (*balance == 0)
  2283. goto out_balanced;
  2284. if (!group) {
  2285. schedstat_inc(sd, lb_nobusyg[idle]);
  2286. goto out_balanced;
  2287. }
  2288. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2289. if (!busiest) {
  2290. schedstat_inc(sd, lb_nobusyq[idle]);
  2291. goto out_balanced;
  2292. }
  2293. BUG_ON(busiest == this_rq);
  2294. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2295. ld_moved = 0;
  2296. if (busiest->nr_running > 1) {
  2297. /*
  2298. * Attempt to move tasks. If find_busiest_group has found
  2299. * an imbalance but busiest->nr_running <= 1, the group is
  2300. * still unbalanced. ld_moved simply stays zero, so it is
  2301. * correctly treated as an imbalance.
  2302. */
  2303. local_irq_save(flags);
  2304. double_rq_lock(this_rq, busiest);
  2305. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2306. imbalance, sd, idle, &all_pinned);
  2307. double_rq_unlock(this_rq, busiest);
  2308. local_irq_restore(flags);
  2309. /*
  2310. * some other cpu did the load balance for us.
  2311. */
  2312. if (ld_moved && this_cpu != smp_processor_id())
  2313. resched_cpu(this_cpu);
  2314. /* All tasks on this runqueue were pinned by CPU affinity */
  2315. if (unlikely(all_pinned)) {
  2316. cpu_clear(cpu_of(busiest), cpus);
  2317. if (!cpus_empty(cpus))
  2318. goto redo;
  2319. goto out_balanced;
  2320. }
  2321. }
  2322. if (!ld_moved) {
  2323. schedstat_inc(sd, lb_failed[idle]);
  2324. sd->nr_balance_failed++;
  2325. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2326. spin_lock_irqsave(&busiest->lock, flags);
  2327. /* don't kick the migration_thread, if the curr
  2328. * task on busiest cpu can't be moved to this_cpu
  2329. */
  2330. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2331. spin_unlock_irqrestore(&busiest->lock, flags);
  2332. all_pinned = 1;
  2333. goto out_one_pinned;
  2334. }
  2335. if (!busiest->active_balance) {
  2336. busiest->active_balance = 1;
  2337. busiest->push_cpu = this_cpu;
  2338. active_balance = 1;
  2339. }
  2340. spin_unlock_irqrestore(&busiest->lock, flags);
  2341. if (active_balance)
  2342. wake_up_process(busiest->migration_thread);
  2343. /*
  2344. * We've kicked active balancing, reset the failure
  2345. * counter.
  2346. */
  2347. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2348. }
  2349. } else
  2350. sd->nr_balance_failed = 0;
  2351. if (likely(!active_balance)) {
  2352. /* We were unbalanced, so reset the balancing interval */
  2353. sd->balance_interval = sd->min_interval;
  2354. } else {
  2355. /*
  2356. * If we've begun active balancing, start to back off. This
  2357. * case may not be covered by the all_pinned logic if there
  2358. * is only 1 task on the busy runqueue (because we don't call
  2359. * move_tasks).
  2360. */
  2361. if (sd->balance_interval < sd->max_interval)
  2362. sd->balance_interval *= 2;
  2363. }
  2364. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2365. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2366. return -1;
  2367. return ld_moved;
  2368. out_balanced:
  2369. schedstat_inc(sd, lb_balanced[idle]);
  2370. sd->nr_balance_failed = 0;
  2371. out_one_pinned:
  2372. /* tune up the balancing interval */
  2373. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2374. (sd->balance_interval < sd->max_interval))
  2375. sd->balance_interval *= 2;
  2376. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2377. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2378. return -1;
  2379. return 0;
  2380. }
  2381. /*
  2382. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2383. * tasks if there is an imbalance.
  2384. *
  2385. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2386. * this_rq is locked.
  2387. */
  2388. static int
  2389. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2390. {
  2391. struct sched_group *group;
  2392. struct rq *busiest = NULL;
  2393. unsigned long imbalance;
  2394. int ld_moved = 0;
  2395. int sd_idle = 0;
  2396. int all_pinned = 0;
  2397. cpumask_t cpus = CPU_MASK_ALL;
  2398. /*
  2399. * When power savings policy is enabled for the parent domain, idle
  2400. * sibling can pick up load irrespective of busy siblings. In this case,
  2401. * let the state of idle sibling percolate up as IDLE, instead of
  2402. * portraying it as CPU_NOT_IDLE.
  2403. */
  2404. if (sd->flags & SD_SHARE_CPUPOWER &&
  2405. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2406. sd_idle = 1;
  2407. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2408. redo:
  2409. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2410. &sd_idle, &cpus, NULL);
  2411. if (!group) {
  2412. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2413. goto out_balanced;
  2414. }
  2415. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2416. &cpus);
  2417. if (!busiest) {
  2418. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2419. goto out_balanced;
  2420. }
  2421. BUG_ON(busiest == this_rq);
  2422. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2423. ld_moved = 0;
  2424. if (busiest->nr_running > 1) {
  2425. /* Attempt to move tasks */
  2426. double_lock_balance(this_rq, busiest);
  2427. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2428. imbalance, sd, CPU_NEWLY_IDLE,
  2429. &all_pinned);
  2430. spin_unlock(&busiest->lock);
  2431. if (unlikely(all_pinned)) {
  2432. cpu_clear(cpu_of(busiest), cpus);
  2433. if (!cpus_empty(cpus))
  2434. goto redo;
  2435. }
  2436. }
  2437. if (!ld_moved) {
  2438. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2439. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2440. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2441. return -1;
  2442. } else
  2443. sd->nr_balance_failed = 0;
  2444. return ld_moved;
  2445. out_balanced:
  2446. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2447. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2448. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2449. return -1;
  2450. sd->nr_balance_failed = 0;
  2451. return 0;
  2452. }
  2453. /*
  2454. * idle_balance is called by schedule() if this_cpu is about to become
  2455. * idle. Attempts to pull tasks from other CPUs.
  2456. */
  2457. static void idle_balance(int this_cpu, struct rq *this_rq)
  2458. {
  2459. struct sched_domain *sd;
  2460. int pulled_task = -1;
  2461. unsigned long next_balance = jiffies + HZ;
  2462. for_each_domain(this_cpu, sd) {
  2463. unsigned long interval;
  2464. if (!(sd->flags & SD_LOAD_BALANCE))
  2465. continue;
  2466. if (sd->flags & SD_BALANCE_NEWIDLE)
  2467. /* If we've pulled tasks over stop searching: */
  2468. pulled_task = load_balance_newidle(this_cpu,
  2469. this_rq, sd);
  2470. interval = msecs_to_jiffies(sd->balance_interval);
  2471. if (time_after(next_balance, sd->last_balance + interval))
  2472. next_balance = sd->last_balance + interval;
  2473. if (pulled_task)
  2474. break;
  2475. }
  2476. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2477. /*
  2478. * We are going idle. next_balance may be set based on
  2479. * a busy processor. So reset next_balance.
  2480. */
  2481. this_rq->next_balance = next_balance;
  2482. }
  2483. }
  2484. /*
  2485. * active_load_balance is run by migration threads. It pushes running tasks
  2486. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2487. * running on each physical CPU where possible, and avoids physical /
  2488. * logical imbalances.
  2489. *
  2490. * Called with busiest_rq locked.
  2491. */
  2492. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2493. {
  2494. int target_cpu = busiest_rq->push_cpu;
  2495. struct sched_domain *sd;
  2496. struct rq *target_rq;
  2497. /* Is there any task to move? */
  2498. if (busiest_rq->nr_running <= 1)
  2499. return;
  2500. target_rq = cpu_rq(target_cpu);
  2501. /*
  2502. * This condition is "impossible", if it occurs
  2503. * we need to fix it. Originally reported by
  2504. * Bjorn Helgaas on a 128-cpu setup.
  2505. */
  2506. BUG_ON(busiest_rq == target_rq);
  2507. /* move a task from busiest_rq to target_rq */
  2508. double_lock_balance(busiest_rq, target_rq);
  2509. /* Search for an sd spanning us and the target CPU. */
  2510. for_each_domain(target_cpu, sd) {
  2511. if ((sd->flags & SD_LOAD_BALANCE) &&
  2512. cpu_isset(busiest_cpu, sd->span))
  2513. break;
  2514. }
  2515. if (likely(sd)) {
  2516. schedstat_inc(sd, alb_cnt);
  2517. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2518. sd, CPU_IDLE))
  2519. schedstat_inc(sd, alb_pushed);
  2520. else
  2521. schedstat_inc(sd, alb_failed);
  2522. }
  2523. spin_unlock(&target_rq->lock);
  2524. }
  2525. #ifdef CONFIG_NO_HZ
  2526. static struct {
  2527. atomic_t load_balancer;
  2528. cpumask_t cpu_mask;
  2529. } nohz ____cacheline_aligned = {
  2530. .load_balancer = ATOMIC_INIT(-1),
  2531. .cpu_mask = CPU_MASK_NONE,
  2532. };
  2533. /*
  2534. * This routine will try to nominate the ilb (idle load balancing)
  2535. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2536. * load balancing on behalf of all those cpus. If all the cpus in the system
  2537. * go into this tickless mode, then there will be no ilb owner (as there is
  2538. * no need for one) and all the cpus will sleep till the next wakeup event
  2539. * arrives...
  2540. *
  2541. * For the ilb owner, tick is not stopped. And this tick will be used
  2542. * for idle load balancing. ilb owner will still be part of
  2543. * nohz.cpu_mask..
  2544. *
  2545. * While stopping the tick, this cpu will become the ilb owner if there
  2546. * is no other owner. And will be the owner till that cpu becomes busy
  2547. * or if all cpus in the system stop their ticks at which point
  2548. * there is no need for ilb owner.
  2549. *
  2550. * When the ilb owner becomes busy, it nominates another owner, during the
  2551. * next busy scheduler_tick()
  2552. */
  2553. int select_nohz_load_balancer(int stop_tick)
  2554. {
  2555. int cpu = smp_processor_id();
  2556. if (stop_tick) {
  2557. cpu_set(cpu, nohz.cpu_mask);
  2558. cpu_rq(cpu)->in_nohz_recently = 1;
  2559. /*
  2560. * If we are going offline and still the leader, give up!
  2561. */
  2562. if (cpu_is_offline(cpu) &&
  2563. atomic_read(&nohz.load_balancer) == cpu) {
  2564. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2565. BUG();
  2566. return 0;
  2567. }
  2568. /* time for ilb owner also to sleep */
  2569. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2570. if (atomic_read(&nohz.load_balancer) == cpu)
  2571. atomic_set(&nohz.load_balancer, -1);
  2572. return 0;
  2573. }
  2574. if (atomic_read(&nohz.load_balancer) == -1) {
  2575. /* make me the ilb owner */
  2576. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2577. return 1;
  2578. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2579. return 1;
  2580. } else {
  2581. if (!cpu_isset(cpu, nohz.cpu_mask))
  2582. return 0;
  2583. cpu_clear(cpu, nohz.cpu_mask);
  2584. if (atomic_read(&nohz.load_balancer) == cpu)
  2585. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2586. BUG();
  2587. }
  2588. return 0;
  2589. }
  2590. #endif
  2591. static DEFINE_SPINLOCK(balancing);
  2592. /*
  2593. * It checks each scheduling domain to see if it is due to be balanced,
  2594. * and initiates a balancing operation if so.
  2595. *
  2596. * Balancing parameters are set up in arch_init_sched_domains.
  2597. */
  2598. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2599. {
  2600. int balance = 1;
  2601. struct rq *rq = cpu_rq(cpu);
  2602. unsigned long interval;
  2603. struct sched_domain *sd;
  2604. /* Earliest time when we have to do rebalance again */
  2605. unsigned long next_balance = jiffies + 60*HZ;
  2606. for_each_domain(cpu, sd) {
  2607. if (!(sd->flags & SD_LOAD_BALANCE))
  2608. continue;
  2609. interval = sd->balance_interval;
  2610. if (idle != CPU_IDLE)
  2611. interval *= sd->busy_factor;
  2612. /* scale ms to jiffies */
  2613. interval = msecs_to_jiffies(interval);
  2614. if (unlikely(!interval))
  2615. interval = 1;
  2616. if (interval > HZ*NR_CPUS/10)
  2617. interval = HZ*NR_CPUS/10;
  2618. if (sd->flags & SD_SERIALIZE) {
  2619. if (!spin_trylock(&balancing))
  2620. goto out;
  2621. }
  2622. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2623. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2624. /*
  2625. * We've pulled tasks over so either we're no
  2626. * longer idle, or one of our SMT siblings is
  2627. * not idle.
  2628. */
  2629. idle = CPU_NOT_IDLE;
  2630. }
  2631. sd->last_balance = jiffies;
  2632. }
  2633. if (sd->flags & SD_SERIALIZE)
  2634. spin_unlock(&balancing);
  2635. out:
  2636. if (time_after(next_balance, sd->last_balance + interval))
  2637. next_balance = sd->last_balance + interval;
  2638. /*
  2639. * Stop the load balance at this level. There is another
  2640. * CPU in our sched group which is doing load balancing more
  2641. * actively.
  2642. */
  2643. if (!balance)
  2644. break;
  2645. }
  2646. rq->next_balance = next_balance;
  2647. }
  2648. /*
  2649. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2650. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2651. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2652. */
  2653. static void run_rebalance_domains(struct softirq_action *h)
  2654. {
  2655. int this_cpu = smp_processor_id();
  2656. struct rq *this_rq = cpu_rq(this_cpu);
  2657. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2658. CPU_IDLE : CPU_NOT_IDLE;
  2659. rebalance_domains(this_cpu, idle);
  2660. #ifdef CONFIG_NO_HZ
  2661. /*
  2662. * If this cpu is the owner for idle load balancing, then do the
  2663. * balancing on behalf of the other idle cpus whose ticks are
  2664. * stopped.
  2665. */
  2666. if (this_rq->idle_at_tick &&
  2667. atomic_read(&nohz.load_balancer) == this_cpu) {
  2668. cpumask_t cpus = nohz.cpu_mask;
  2669. struct rq *rq;
  2670. int balance_cpu;
  2671. cpu_clear(this_cpu, cpus);
  2672. for_each_cpu_mask(balance_cpu, cpus) {
  2673. /*
  2674. * If this cpu gets work to do, stop the load balancing
  2675. * work being done for other cpus. Next load
  2676. * balancing owner will pick it up.
  2677. */
  2678. if (need_resched())
  2679. break;
  2680. rebalance_domains(balance_cpu, SCHED_IDLE);
  2681. rq = cpu_rq(balance_cpu);
  2682. if (time_after(this_rq->next_balance, rq->next_balance))
  2683. this_rq->next_balance = rq->next_balance;
  2684. }
  2685. }
  2686. #endif
  2687. }
  2688. /*
  2689. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2690. *
  2691. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2692. * idle load balancing owner or decide to stop the periodic load balancing,
  2693. * if the whole system is idle.
  2694. */
  2695. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2696. {
  2697. #ifdef CONFIG_NO_HZ
  2698. /*
  2699. * If we were in the nohz mode recently and busy at the current
  2700. * scheduler tick, then check if we need to nominate new idle
  2701. * load balancer.
  2702. */
  2703. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2704. rq->in_nohz_recently = 0;
  2705. if (atomic_read(&nohz.load_balancer) == cpu) {
  2706. cpu_clear(cpu, nohz.cpu_mask);
  2707. atomic_set(&nohz.load_balancer, -1);
  2708. }
  2709. if (atomic_read(&nohz.load_balancer) == -1) {
  2710. /*
  2711. * simple selection for now: Nominate the
  2712. * first cpu in the nohz list to be the next
  2713. * ilb owner.
  2714. *
  2715. * TBD: Traverse the sched domains and nominate
  2716. * the nearest cpu in the nohz.cpu_mask.
  2717. */
  2718. int ilb = first_cpu(nohz.cpu_mask);
  2719. if (ilb != NR_CPUS)
  2720. resched_cpu(ilb);
  2721. }
  2722. }
  2723. /*
  2724. * If this cpu is idle and doing idle load balancing for all the
  2725. * cpus with ticks stopped, is it time for that to stop?
  2726. */
  2727. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2728. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2729. resched_cpu(cpu);
  2730. return;
  2731. }
  2732. /*
  2733. * If this cpu is idle and the idle load balancing is done by
  2734. * someone else, then no need raise the SCHED_SOFTIRQ
  2735. */
  2736. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2737. cpu_isset(cpu, nohz.cpu_mask))
  2738. return;
  2739. #endif
  2740. if (time_after_eq(jiffies, rq->next_balance))
  2741. raise_softirq(SCHED_SOFTIRQ);
  2742. }
  2743. #else /* CONFIG_SMP */
  2744. /*
  2745. * on UP we do not need to balance between CPUs:
  2746. */
  2747. static inline void idle_balance(int cpu, struct rq *rq)
  2748. {
  2749. }
  2750. /* Avoid "used but not defined" warning on UP */
  2751. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2752. unsigned long max_nr_move, unsigned long max_load_move,
  2753. struct sched_domain *sd, enum cpu_idle_type idle,
  2754. int *all_pinned, unsigned long *load_moved,
  2755. int *this_best_prio, struct rq_iterator *iterator)
  2756. {
  2757. *load_moved = 0;
  2758. return 0;
  2759. }
  2760. #endif
  2761. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2762. EXPORT_PER_CPU_SYMBOL(kstat);
  2763. /*
  2764. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2765. * that have not yet been banked in case the task is currently running.
  2766. */
  2767. unsigned long long task_sched_runtime(struct task_struct *p)
  2768. {
  2769. unsigned long flags;
  2770. u64 ns, delta_exec;
  2771. struct rq *rq;
  2772. rq = task_rq_lock(p, &flags);
  2773. ns = p->se.sum_exec_runtime;
  2774. if (rq->curr == p) {
  2775. delta_exec = rq_clock(rq) - p->se.exec_start;
  2776. if ((s64)delta_exec > 0)
  2777. ns += delta_exec;
  2778. }
  2779. task_rq_unlock(rq, &flags);
  2780. return ns;
  2781. }
  2782. /*
  2783. * Account user cpu time to a process.
  2784. * @p: the process that the cpu time gets accounted to
  2785. * @hardirq_offset: the offset to subtract from hardirq_count()
  2786. * @cputime: the cpu time spent in user space since the last update
  2787. */
  2788. void account_user_time(struct task_struct *p, cputime_t cputime)
  2789. {
  2790. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2791. cputime64_t tmp;
  2792. p->utime = cputime_add(p->utime, cputime);
  2793. /* Add user time to cpustat. */
  2794. tmp = cputime_to_cputime64(cputime);
  2795. if (TASK_NICE(p) > 0)
  2796. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2797. else
  2798. cpustat->user = cputime64_add(cpustat->user, tmp);
  2799. }
  2800. /*
  2801. * Account system cpu time to a process.
  2802. * @p: the process that the cpu time gets accounted to
  2803. * @hardirq_offset: the offset to subtract from hardirq_count()
  2804. * @cputime: the cpu time spent in kernel space since the last update
  2805. */
  2806. void account_system_time(struct task_struct *p, int hardirq_offset,
  2807. cputime_t cputime)
  2808. {
  2809. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2810. struct rq *rq = this_rq();
  2811. cputime64_t tmp;
  2812. p->stime = cputime_add(p->stime, cputime);
  2813. /* Add system time to cpustat. */
  2814. tmp = cputime_to_cputime64(cputime);
  2815. if (hardirq_count() - hardirq_offset)
  2816. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2817. else if (softirq_count())
  2818. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2819. else if (p != rq->idle)
  2820. cpustat->system = cputime64_add(cpustat->system, tmp);
  2821. else if (atomic_read(&rq->nr_iowait) > 0)
  2822. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2823. else
  2824. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2825. /* Account for system time used */
  2826. acct_update_integrals(p);
  2827. }
  2828. /*
  2829. * Account for involuntary wait time.
  2830. * @p: the process from which the cpu time has been stolen
  2831. * @steal: the cpu time spent in involuntary wait
  2832. */
  2833. void account_steal_time(struct task_struct *p, cputime_t steal)
  2834. {
  2835. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2836. cputime64_t tmp = cputime_to_cputime64(steal);
  2837. struct rq *rq = this_rq();
  2838. if (p == rq->idle) {
  2839. p->stime = cputime_add(p->stime, steal);
  2840. if (atomic_read(&rq->nr_iowait) > 0)
  2841. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2842. else
  2843. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2844. } else
  2845. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2846. }
  2847. /*
  2848. * This function gets called by the timer code, with HZ frequency.
  2849. * We call it with interrupts disabled.
  2850. *
  2851. * It also gets called by the fork code, when changing the parent's
  2852. * timeslices.
  2853. */
  2854. void scheduler_tick(void)
  2855. {
  2856. int cpu = smp_processor_id();
  2857. struct rq *rq = cpu_rq(cpu);
  2858. struct task_struct *curr = rq->curr;
  2859. spin_lock(&rq->lock);
  2860. update_cpu_load(rq);
  2861. if (curr != rq->idle) /* FIXME: needed? */
  2862. curr->sched_class->task_tick(rq, curr);
  2863. spin_unlock(&rq->lock);
  2864. #ifdef CONFIG_SMP
  2865. rq->idle_at_tick = idle_cpu(cpu);
  2866. trigger_load_balance(rq, cpu);
  2867. #endif
  2868. }
  2869. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2870. void fastcall add_preempt_count(int val)
  2871. {
  2872. /*
  2873. * Underflow?
  2874. */
  2875. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2876. return;
  2877. preempt_count() += val;
  2878. /*
  2879. * Spinlock count overflowing soon?
  2880. */
  2881. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2882. PREEMPT_MASK - 10);
  2883. }
  2884. EXPORT_SYMBOL(add_preempt_count);
  2885. void fastcall sub_preempt_count(int val)
  2886. {
  2887. /*
  2888. * Underflow?
  2889. */
  2890. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2891. return;
  2892. /*
  2893. * Is the spinlock portion underflowing?
  2894. */
  2895. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2896. !(preempt_count() & PREEMPT_MASK)))
  2897. return;
  2898. preempt_count() -= val;
  2899. }
  2900. EXPORT_SYMBOL(sub_preempt_count);
  2901. #endif
  2902. /*
  2903. * Print scheduling while atomic bug:
  2904. */
  2905. static noinline void __schedule_bug(struct task_struct *prev)
  2906. {
  2907. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2908. prev->comm, preempt_count(), prev->pid);
  2909. debug_show_held_locks(prev);
  2910. if (irqs_disabled())
  2911. print_irqtrace_events(prev);
  2912. dump_stack();
  2913. }
  2914. /*
  2915. * Various schedule()-time debugging checks and statistics:
  2916. */
  2917. static inline void schedule_debug(struct task_struct *prev)
  2918. {
  2919. /*
  2920. * Test if we are atomic. Since do_exit() needs to call into
  2921. * schedule() atomically, we ignore that path for now.
  2922. * Otherwise, whine if we are scheduling when we should not be.
  2923. */
  2924. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2925. __schedule_bug(prev);
  2926. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2927. schedstat_inc(this_rq(), sched_cnt);
  2928. }
  2929. /*
  2930. * Pick up the highest-prio task:
  2931. */
  2932. static inline struct task_struct *
  2933. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2934. {
  2935. struct sched_class *class;
  2936. struct task_struct *p;
  2937. /*
  2938. * Optimization: we know that if all tasks are in
  2939. * the fair class we can call that function directly:
  2940. */
  2941. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2942. p = fair_sched_class.pick_next_task(rq, now);
  2943. if (likely(p))
  2944. return p;
  2945. }
  2946. class = sched_class_highest;
  2947. for ( ; ; ) {
  2948. p = class->pick_next_task(rq, now);
  2949. if (p)
  2950. return p;
  2951. /*
  2952. * Will never be NULL as the idle class always
  2953. * returns a non-NULL p:
  2954. */
  2955. class = class->next;
  2956. }
  2957. }
  2958. /*
  2959. * schedule() is the main scheduler function.
  2960. */
  2961. asmlinkage void __sched schedule(void)
  2962. {
  2963. struct task_struct *prev, *next;
  2964. long *switch_count;
  2965. struct rq *rq;
  2966. u64 now;
  2967. int cpu;
  2968. need_resched:
  2969. preempt_disable();
  2970. cpu = smp_processor_id();
  2971. rq = cpu_rq(cpu);
  2972. rcu_qsctr_inc(cpu);
  2973. prev = rq->curr;
  2974. switch_count = &prev->nivcsw;
  2975. release_kernel_lock(prev);
  2976. need_resched_nonpreemptible:
  2977. schedule_debug(prev);
  2978. spin_lock_irq(&rq->lock);
  2979. clear_tsk_need_resched(prev);
  2980. now = __rq_clock(rq);
  2981. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2982. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2983. unlikely(signal_pending(prev)))) {
  2984. prev->state = TASK_RUNNING;
  2985. } else {
  2986. deactivate_task(rq, prev, 1, now);
  2987. }
  2988. switch_count = &prev->nvcsw;
  2989. }
  2990. if (unlikely(!rq->nr_running))
  2991. idle_balance(cpu, rq);
  2992. prev->sched_class->put_prev_task(rq, prev, now);
  2993. next = pick_next_task(rq, prev, now);
  2994. sched_info_switch(prev, next);
  2995. if (likely(prev != next)) {
  2996. rq->nr_switches++;
  2997. rq->curr = next;
  2998. ++*switch_count;
  2999. context_switch(rq, prev, next); /* unlocks the rq */
  3000. } else
  3001. spin_unlock_irq(&rq->lock);
  3002. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3003. cpu = smp_processor_id();
  3004. rq = cpu_rq(cpu);
  3005. goto need_resched_nonpreemptible;
  3006. }
  3007. preempt_enable_no_resched();
  3008. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3009. goto need_resched;
  3010. }
  3011. EXPORT_SYMBOL(schedule);
  3012. #ifdef CONFIG_PREEMPT
  3013. /*
  3014. * this is the entry point to schedule() from in-kernel preemption
  3015. * off of preempt_enable. Kernel preemptions off return from interrupt
  3016. * occur there and call schedule directly.
  3017. */
  3018. asmlinkage void __sched preempt_schedule(void)
  3019. {
  3020. struct thread_info *ti = current_thread_info();
  3021. #ifdef CONFIG_PREEMPT_BKL
  3022. struct task_struct *task = current;
  3023. int saved_lock_depth;
  3024. #endif
  3025. /*
  3026. * If there is a non-zero preempt_count or interrupts are disabled,
  3027. * we do not want to preempt the current task. Just return..
  3028. */
  3029. if (likely(ti->preempt_count || irqs_disabled()))
  3030. return;
  3031. need_resched:
  3032. add_preempt_count(PREEMPT_ACTIVE);
  3033. /*
  3034. * We keep the big kernel semaphore locked, but we
  3035. * clear ->lock_depth so that schedule() doesnt
  3036. * auto-release the semaphore:
  3037. */
  3038. #ifdef CONFIG_PREEMPT_BKL
  3039. saved_lock_depth = task->lock_depth;
  3040. task->lock_depth = -1;
  3041. #endif
  3042. schedule();
  3043. #ifdef CONFIG_PREEMPT_BKL
  3044. task->lock_depth = saved_lock_depth;
  3045. #endif
  3046. sub_preempt_count(PREEMPT_ACTIVE);
  3047. /* we could miss a preemption opportunity between schedule and now */
  3048. barrier();
  3049. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3050. goto need_resched;
  3051. }
  3052. EXPORT_SYMBOL(preempt_schedule);
  3053. /*
  3054. * this is the entry point to schedule() from kernel preemption
  3055. * off of irq context.
  3056. * Note, that this is called and return with irqs disabled. This will
  3057. * protect us against recursive calling from irq.
  3058. */
  3059. asmlinkage void __sched preempt_schedule_irq(void)
  3060. {
  3061. struct thread_info *ti = current_thread_info();
  3062. #ifdef CONFIG_PREEMPT_BKL
  3063. struct task_struct *task = current;
  3064. int saved_lock_depth;
  3065. #endif
  3066. /* Catch callers which need to be fixed */
  3067. BUG_ON(ti->preempt_count || !irqs_disabled());
  3068. need_resched:
  3069. add_preempt_count(PREEMPT_ACTIVE);
  3070. /*
  3071. * We keep the big kernel semaphore locked, but we
  3072. * clear ->lock_depth so that schedule() doesnt
  3073. * auto-release the semaphore:
  3074. */
  3075. #ifdef CONFIG_PREEMPT_BKL
  3076. saved_lock_depth = task->lock_depth;
  3077. task->lock_depth = -1;
  3078. #endif
  3079. local_irq_enable();
  3080. schedule();
  3081. local_irq_disable();
  3082. #ifdef CONFIG_PREEMPT_BKL
  3083. task->lock_depth = saved_lock_depth;
  3084. #endif
  3085. sub_preempt_count(PREEMPT_ACTIVE);
  3086. /* we could miss a preemption opportunity between schedule and now */
  3087. barrier();
  3088. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3089. goto need_resched;
  3090. }
  3091. #endif /* CONFIG_PREEMPT */
  3092. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3093. void *key)
  3094. {
  3095. return try_to_wake_up(curr->private, mode, sync);
  3096. }
  3097. EXPORT_SYMBOL(default_wake_function);
  3098. /*
  3099. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3100. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3101. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3102. *
  3103. * There are circumstances in which we can try to wake a task which has already
  3104. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3105. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3106. */
  3107. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3108. int nr_exclusive, int sync, void *key)
  3109. {
  3110. struct list_head *tmp, *next;
  3111. list_for_each_safe(tmp, next, &q->task_list) {
  3112. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3113. unsigned flags = curr->flags;
  3114. if (curr->func(curr, mode, sync, key) &&
  3115. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3116. break;
  3117. }
  3118. }
  3119. /**
  3120. * __wake_up - wake up threads blocked on a waitqueue.
  3121. * @q: the waitqueue
  3122. * @mode: which threads
  3123. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3124. * @key: is directly passed to the wakeup function
  3125. */
  3126. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3127. int nr_exclusive, void *key)
  3128. {
  3129. unsigned long flags;
  3130. spin_lock_irqsave(&q->lock, flags);
  3131. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3132. spin_unlock_irqrestore(&q->lock, flags);
  3133. }
  3134. EXPORT_SYMBOL(__wake_up);
  3135. /*
  3136. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3137. */
  3138. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3139. {
  3140. __wake_up_common(q, mode, 1, 0, NULL);
  3141. }
  3142. /**
  3143. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3144. * @q: the waitqueue
  3145. * @mode: which threads
  3146. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3147. *
  3148. * The sync wakeup differs that the waker knows that it will schedule
  3149. * away soon, so while the target thread will be woken up, it will not
  3150. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3151. * with each other. This can prevent needless bouncing between CPUs.
  3152. *
  3153. * On UP it can prevent extra preemption.
  3154. */
  3155. void fastcall
  3156. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3157. {
  3158. unsigned long flags;
  3159. int sync = 1;
  3160. if (unlikely(!q))
  3161. return;
  3162. if (unlikely(!nr_exclusive))
  3163. sync = 0;
  3164. spin_lock_irqsave(&q->lock, flags);
  3165. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3166. spin_unlock_irqrestore(&q->lock, flags);
  3167. }
  3168. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3169. void fastcall complete(struct completion *x)
  3170. {
  3171. unsigned long flags;
  3172. spin_lock_irqsave(&x->wait.lock, flags);
  3173. x->done++;
  3174. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3175. 1, 0, NULL);
  3176. spin_unlock_irqrestore(&x->wait.lock, flags);
  3177. }
  3178. EXPORT_SYMBOL(complete);
  3179. void fastcall complete_all(struct completion *x)
  3180. {
  3181. unsigned long flags;
  3182. spin_lock_irqsave(&x->wait.lock, flags);
  3183. x->done += UINT_MAX/2;
  3184. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3185. 0, 0, NULL);
  3186. spin_unlock_irqrestore(&x->wait.lock, flags);
  3187. }
  3188. EXPORT_SYMBOL(complete_all);
  3189. void fastcall __sched wait_for_completion(struct completion *x)
  3190. {
  3191. might_sleep();
  3192. spin_lock_irq(&x->wait.lock);
  3193. if (!x->done) {
  3194. DECLARE_WAITQUEUE(wait, current);
  3195. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3196. __add_wait_queue_tail(&x->wait, &wait);
  3197. do {
  3198. __set_current_state(TASK_UNINTERRUPTIBLE);
  3199. spin_unlock_irq(&x->wait.lock);
  3200. schedule();
  3201. spin_lock_irq(&x->wait.lock);
  3202. } while (!x->done);
  3203. __remove_wait_queue(&x->wait, &wait);
  3204. }
  3205. x->done--;
  3206. spin_unlock_irq(&x->wait.lock);
  3207. }
  3208. EXPORT_SYMBOL(wait_for_completion);
  3209. unsigned long fastcall __sched
  3210. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3211. {
  3212. might_sleep();
  3213. spin_lock_irq(&x->wait.lock);
  3214. if (!x->done) {
  3215. DECLARE_WAITQUEUE(wait, current);
  3216. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3217. __add_wait_queue_tail(&x->wait, &wait);
  3218. do {
  3219. __set_current_state(TASK_UNINTERRUPTIBLE);
  3220. spin_unlock_irq(&x->wait.lock);
  3221. timeout = schedule_timeout(timeout);
  3222. spin_lock_irq(&x->wait.lock);
  3223. if (!timeout) {
  3224. __remove_wait_queue(&x->wait, &wait);
  3225. goto out;
  3226. }
  3227. } while (!x->done);
  3228. __remove_wait_queue(&x->wait, &wait);
  3229. }
  3230. x->done--;
  3231. out:
  3232. spin_unlock_irq(&x->wait.lock);
  3233. return timeout;
  3234. }
  3235. EXPORT_SYMBOL(wait_for_completion_timeout);
  3236. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3237. {
  3238. int ret = 0;
  3239. might_sleep();
  3240. spin_lock_irq(&x->wait.lock);
  3241. if (!x->done) {
  3242. DECLARE_WAITQUEUE(wait, current);
  3243. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3244. __add_wait_queue_tail(&x->wait, &wait);
  3245. do {
  3246. if (signal_pending(current)) {
  3247. ret = -ERESTARTSYS;
  3248. __remove_wait_queue(&x->wait, &wait);
  3249. goto out;
  3250. }
  3251. __set_current_state(TASK_INTERRUPTIBLE);
  3252. spin_unlock_irq(&x->wait.lock);
  3253. schedule();
  3254. spin_lock_irq(&x->wait.lock);
  3255. } while (!x->done);
  3256. __remove_wait_queue(&x->wait, &wait);
  3257. }
  3258. x->done--;
  3259. out:
  3260. spin_unlock_irq(&x->wait.lock);
  3261. return ret;
  3262. }
  3263. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3264. unsigned long fastcall __sched
  3265. wait_for_completion_interruptible_timeout(struct completion *x,
  3266. unsigned long timeout)
  3267. {
  3268. might_sleep();
  3269. spin_lock_irq(&x->wait.lock);
  3270. if (!x->done) {
  3271. DECLARE_WAITQUEUE(wait, current);
  3272. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3273. __add_wait_queue_tail(&x->wait, &wait);
  3274. do {
  3275. if (signal_pending(current)) {
  3276. timeout = -ERESTARTSYS;
  3277. __remove_wait_queue(&x->wait, &wait);
  3278. goto out;
  3279. }
  3280. __set_current_state(TASK_INTERRUPTIBLE);
  3281. spin_unlock_irq(&x->wait.lock);
  3282. timeout = schedule_timeout(timeout);
  3283. spin_lock_irq(&x->wait.lock);
  3284. if (!timeout) {
  3285. __remove_wait_queue(&x->wait, &wait);
  3286. goto out;
  3287. }
  3288. } while (!x->done);
  3289. __remove_wait_queue(&x->wait, &wait);
  3290. }
  3291. x->done--;
  3292. out:
  3293. spin_unlock_irq(&x->wait.lock);
  3294. return timeout;
  3295. }
  3296. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3297. static inline void
  3298. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3299. {
  3300. spin_lock_irqsave(&q->lock, *flags);
  3301. __add_wait_queue(q, wait);
  3302. spin_unlock(&q->lock);
  3303. }
  3304. static inline void
  3305. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3306. {
  3307. spin_lock_irq(&q->lock);
  3308. __remove_wait_queue(q, wait);
  3309. spin_unlock_irqrestore(&q->lock, *flags);
  3310. }
  3311. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3312. {
  3313. unsigned long flags;
  3314. wait_queue_t wait;
  3315. init_waitqueue_entry(&wait, current);
  3316. current->state = TASK_INTERRUPTIBLE;
  3317. sleep_on_head(q, &wait, &flags);
  3318. schedule();
  3319. sleep_on_tail(q, &wait, &flags);
  3320. }
  3321. EXPORT_SYMBOL(interruptible_sleep_on);
  3322. long __sched
  3323. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3324. {
  3325. unsigned long flags;
  3326. wait_queue_t wait;
  3327. init_waitqueue_entry(&wait, current);
  3328. current->state = TASK_INTERRUPTIBLE;
  3329. sleep_on_head(q, &wait, &flags);
  3330. timeout = schedule_timeout(timeout);
  3331. sleep_on_tail(q, &wait, &flags);
  3332. return timeout;
  3333. }
  3334. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3335. void __sched sleep_on(wait_queue_head_t *q)
  3336. {
  3337. unsigned long flags;
  3338. wait_queue_t wait;
  3339. init_waitqueue_entry(&wait, current);
  3340. current->state = TASK_UNINTERRUPTIBLE;
  3341. sleep_on_head(q, &wait, &flags);
  3342. schedule();
  3343. sleep_on_tail(q, &wait, &flags);
  3344. }
  3345. EXPORT_SYMBOL(sleep_on);
  3346. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3347. {
  3348. unsigned long flags;
  3349. wait_queue_t wait;
  3350. init_waitqueue_entry(&wait, current);
  3351. current->state = TASK_UNINTERRUPTIBLE;
  3352. sleep_on_head(q, &wait, &flags);
  3353. timeout = schedule_timeout(timeout);
  3354. sleep_on_tail(q, &wait, &flags);
  3355. return timeout;
  3356. }
  3357. EXPORT_SYMBOL(sleep_on_timeout);
  3358. #ifdef CONFIG_RT_MUTEXES
  3359. /*
  3360. * rt_mutex_setprio - set the current priority of a task
  3361. * @p: task
  3362. * @prio: prio value (kernel-internal form)
  3363. *
  3364. * This function changes the 'effective' priority of a task. It does
  3365. * not touch ->normal_prio like __setscheduler().
  3366. *
  3367. * Used by the rt_mutex code to implement priority inheritance logic.
  3368. */
  3369. void rt_mutex_setprio(struct task_struct *p, int prio)
  3370. {
  3371. unsigned long flags;
  3372. int oldprio, on_rq;
  3373. struct rq *rq;
  3374. u64 now;
  3375. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3376. rq = task_rq_lock(p, &flags);
  3377. now = rq_clock(rq);
  3378. oldprio = p->prio;
  3379. on_rq = p->se.on_rq;
  3380. if (on_rq)
  3381. dequeue_task(rq, p, 0, now);
  3382. if (rt_prio(prio))
  3383. p->sched_class = &rt_sched_class;
  3384. else
  3385. p->sched_class = &fair_sched_class;
  3386. p->prio = prio;
  3387. if (on_rq) {
  3388. enqueue_task(rq, p, 0, now);
  3389. /*
  3390. * Reschedule if we are currently running on this runqueue and
  3391. * our priority decreased, or if we are not currently running on
  3392. * this runqueue and our priority is higher than the current's
  3393. */
  3394. if (task_running(rq, p)) {
  3395. if (p->prio > oldprio)
  3396. resched_task(rq->curr);
  3397. } else {
  3398. check_preempt_curr(rq, p);
  3399. }
  3400. }
  3401. task_rq_unlock(rq, &flags);
  3402. }
  3403. #endif
  3404. void set_user_nice(struct task_struct *p, long nice)
  3405. {
  3406. int old_prio, delta, on_rq;
  3407. unsigned long flags;
  3408. struct rq *rq;
  3409. u64 now;
  3410. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3411. return;
  3412. /*
  3413. * We have to be careful, if called from sys_setpriority(),
  3414. * the task might be in the middle of scheduling on another CPU.
  3415. */
  3416. rq = task_rq_lock(p, &flags);
  3417. now = rq_clock(rq);
  3418. /*
  3419. * The RT priorities are set via sched_setscheduler(), but we still
  3420. * allow the 'normal' nice value to be set - but as expected
  3421. * it wont have any effect on scheduling until the task is
  3422. * SCHED_FIFO/SCHED_RR:
  3423. */
  3424. if (task_has_rt_policy(p)) {
  3425. p->static_prio = NICE_TO_PRIO(nice);
  3426. goto out_unlock;
  3427. }
  3428. on_rq = p->se.on_rq;
  3429. if (on_rq) {
  3430. dequeue_task(rq, p, 0, now);
  3431. dec_load(rq, p, now);
  3432. }
  3433. p->static_prio = NICE_TO_PRIO(nice);
  3434. set_load_weight(p);
  3435. old_prio = p->prio;
  3436. p->prio = effective_prio(p);
  3437. delta = p->prio - old_prio;
  3438. if (on_rq) {
  3439. enqueue_task(rq, p, 0, now);
  3440. inc_load(rq, p, now);
  3441. /*
  3442. * If the task increased its priority or is running and
  3443. * lowered its priority, then reschedule its CPU:
  3444. */
  3445. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3446. resched_task(rq->curr);
  3447. }
  3448. out_unlock:
  3449. task_rq_unlock(rq, &flags);
  3450. }
  3451. EXPORT_SYMBOL(set_user_nice);
  3452. /*
  3453. * can_nice - check if a task can reduce its nice value
  3454. * @p: task
  3455. * @nice: nice value
  3456. */
  3457. int can_nice(const struct task_struct *p, const int nice)
  3458. {
  3459. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3460. int nice_rlim = 20 - nice;
  3461. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3462. capable(CAP_SYS_NICE));
  3463. }
  3464. #ifdef __ARCH_WANT_SYS_NICE
  3465. /*
  3466. * sys_nice - change the priority of the current process.
  3467. * @increment: priority increment
  3468. *
  3469. * sys_setpriority is a more generic, but much slower function that
  3470. * does similar things.
  3471. */
  3472. asmlinkage long sys_nice(int increment)
  3473. {
  3474. long nice, retval;
  3475. /*
  3476. * Setpriority might change our priority at the same moment.
  3477. * We don't have to worry. Conceptually one call occurs first
  3478. * and we have a single winner.
  3479. */
  3480. if (increment < -40)
  3481. increment = -40;
  3482. if (increment > 40)
  3483. increment = 40;
  3484. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3485. if (nice < -20)
  3486. nice = -20;
  3487. if (nice > 19)
  3488. nice = 19;
  3489. if (increment < 0 && !can_nice(current, nice))
  3490. return -EPERM;
  3491. retval = security_task_setnice(current, nice);
  3492. if (retval)
  3493. return retval;
  3494. set_user_nice(current, nice);
  3495. return 0;
  3496. }
  3497. #endif
  3498. /**
  3499. * task_prio - return the priority value of a given task.
  3500. * @p: the task in question.
  3501. *
  3502. * This is the priority value as seen by users in /proc.
  3503. * RT tasks are offset by -200. Normal tasks are centered
  3504. * around 0, value goes from -16 to +15.
  3505. */
  3506. int task_prio(const struct task_struct *p)
  3507. {
  3508. return p->prio - MAX_RT_PRIO;
  3509. }
  3510. /**
  3511. * task_nice - return the nice value of a given task.
  3512. * @p: the task in question.
  3513. */
  3514. int task_nice(const struct task_struct *p)
  3515. {
  3516. return TASK_NICE(p);
  3517. }
  3518. EXPORT_SYMBOL_GPL(task_nice);
  3519. /**
  3520. * idle_cpu - is a given cpu idle currently?
  3521. * @cpu: the processor in question.
  3522. */
  3523. int idle_cpu(int cpu)
  3524. {
  3525. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3526. }
  3527. /**
  3528. * idle_task - return the idle task for a given cpu.
  3529. * @cpu: the processor in question.
  3530. */
  3531. struct task_struct *idle_task(int cpu)
  3532. {
  3533. return cpu_rq(cpu)->idle;
  3534. }
  3535. /**
  3536. * find_process_by_pid - find a process with a matching PID value.
  3537. * @pid: the pid in question.
  3538. */
  3539. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3540. {
  3541. return pid ? find_task_by_pid(pid) : current;
  3542. }
  3543. /* Actually do priority change: must hold rq lock. */
  3544. static void
  3545. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3546. {
  3547. BUG_ON(p->se.on_rq);
  3548. p->policy = policy;
  3549. switch (p->policy) {
  3550. case SCHED_NORMAL:
  3551. case SCHED_BATCH:
  3552. case SCHED_IDLE:
  3553. p->sched_class = &fair_sched_class;
  3554. break;
  3555. case SCHED_FIFO:
  3556. case SCHED_RR:
  3557. p->sched_class = &rt_sched_class;
  3558. break;
  3559. }
  3560. p->rt_priority = prio;
  3561. p->normal_prio = normal_prio(p);
  3562. /* we are holding p->pi_lock already */
  3563. p->prio = rt_mutex_getprio(p);
  3564. set_load_weight(p);
  3565. }
  3566. /**
  3567. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3568. * @p: the task in question.
  3569. * @policy: new policy.
  3570. * @param: structure containing the new RT priority.
  3571. *
  3572. * NOTE that the task may be already dead.
  3573. */
  3574. int sched_setscheduler(struct task_struct *p, int policy,
  3575. struct sched_param *param)
  3576. {
  3577. int retval, oldprio, oldpolicy = -1, on_rq;
  3578. unsigned long flags;
  3579. struct rq *rq;
  3580. /* may grab non-irq protected spin_locks */
  3581. BUG_ON(in_interrupt());
  3582. recheck:
  3583. /* double check policy once rq lock held */
  3584. if (policy < 0)
  3585. policy = oldpolicy = p->policy;
  3586. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3587. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3588. policy != SCHED_IDLE)
  3589. return -EINVAL;
  3590. /*
  3591. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3592. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3593. * SCHED_BATCH and SCHED_IDLE is 0.
  3594. */
  3595. if (param->sched_priority < 0 ||
  3596. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3597. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3598. return -EINVAL;
  3599. if (rt_policy(policy) != (param->sched_priority != 0))
  3600. return -EINVAL;
  3601. /*
  3602. * Allow unprivileged RT tasks to decrease priority:
  3603. */
  3604. if (!capable(CAP_SYS_NICE)) {
  3605. if (rt_policy(policy)) {
  3606. unsigned long rlim_rtprio;
  3607. if (!lock_task_sighand(p, &flags))
  3608. return -ESRCH;
  3609. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3610. unlock_task_sighand(p, &flags);
  3611. /* can't set/change the rt policy */
  3612. if (policy != p->policy && !rlim_rtprio)
  3613. return -EPERM;
  3614. /* can't increase priority */
  3615. if (param->sched_priority > p->rt_priority &&
  3616. param->sched_priority > rlim_rtprio)
  3617. return -EPERM;
  3618. }
  3619. /*
  3620. * Like positive nice levels, dont allow tasks to
  3621. * move out of SCHED_IDLE either:
  3622. */
  3623. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3624. return -EPERM;
  3625. /* can't change other user's priorities */
  3626. if ((current->euid != p->euid) &&
  3627. (current->euid != p->uid))
  3628. return -EPERM;
  3629. }
  3630. retval = security_task_setscheduler(p, policy, param);
  3631. if (retval)
  3632. return retval;
  3633. /*
  3634. * make sure no PI-waiters arrive (or leave) while we are
  3635. * changing the priority of the task:
  3636. */
  3637. spin_lock_irqsave(&p->pi_lock, flags);
  3638. /*
  3639. * To be able to change p->policy safely, the apropriate
  3640. * runqueue lock must be held.
  3641. */
  3642. rq = __task_rq_lock(p);
  3643. /* recheck policy now with rq lock held */
  3644. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3645. policy = oldpolicy = -1;
  3646. __task_rq_unlock(rq);
  3647. spin_unlock_irqrestore(&p->pi_lock, flags);
  3648. goto recheck;
  3649. }
  3650. on_rq = p->se.on_rq;
  3651. if (on_rq)
  3652. deactivate_task(rq, p, 0, rq_clock(rq));
  3653. oldprio = p->prio;
  3654. __setscheduler(rq, p, policy, param->sched_priority);
  3655. if (on_rq) {
  3656. activate_task(rq, p, 0);
  3657. /*
  3658. * Reschedule if we are currently running on this runqueue and
  3659. * our priority decreased, or if we are not currently running on
  3660. * this runqueue and our priority is higher than the current's
  3661. */
  3662. if (task_running(rq, p)) {
  3663. if (p->prio > oldprio)
  3664. resched_task(rq->curr);
  3665. } else {
  3666. check_preempt_curr(rq, p);
  3667. }
  3668. }
  3669. __task_rq_unlock(rq);
  3670. spin_unlock_irqrestore(&p->pi_lock, flags);
  3671. rt_mutex_adjust_pi(p);
  3672. return 0;
  3673. }
  3674. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3675. static int
  3676. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3677. {
  3678. struct sched_param lparam;
  3679. struct task_struct *p;
  3680. int retval;
  3681. if (!param || pid < 0)
  3682. return -EINVAL;
  3683. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3684. return -EFAULT;
  3685. rcu_read_lock();
  3686. retval = -ESRCH;
  3687. p = find_process_by_pid(pid);
  3688. if (p != NULL)
  3689. retval = sched_setscheduler(p, policy, &lparam);
  3690. rcu_read_unlock();
  3691. return retval;
  3692. }
  3693. /**
  3694. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3695. * @pid: the pid in question.
  3696. * @policy: new policy.
  3697. * @param: structure containing the new RT priority.
  3698. */
  3699. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3700. struct sched_param __user *param)
  3701. {
  3702. /* negative values for policy are not valid */
  3703. if (policy < 0)
  3704. return -EINVAL;
  3705. return do_sched_setscheduler(pid, policy, param);
  3706. }
  3707. /**
  3708. * sys_sched_setparam - set/change the RT priority of a thread
  3709. * @pid: the pid in question.
  3710. * @param: structure containing the new RT priority.
  3711. */
  3712. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3713. {
  3714. return do_sched_setscheduler(pid, -1, param);
  3715. }
  3716. /**
  3717. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3718. * @pid: the pid in question.
  3719. */
  3720. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3721. {
  3722. struct task_struct *p;
  3723. int retval = -EINVAL;
  3724. if (pid < 0)
  3725. goto out_nounlock;
  3726. retval = -ESRCH;
  3727. read_lock(&tasklist_lock);
  3728. p = find_process_by_pid(pid);
  3729. if (p) {
  3730. retval = security_task_getscheduler(p);
  3731. if (!retval)
  3732. retval = p->policy;
  3733. }
  3734. read_unlock(&tasklist_lock);
  3735. out_nounlock:
  3736. return retval;
  3737. }
  3738. /**
  3739. * sys_sched_getscheduler - get the RT priority of a thread
  3740. * @pid: the pid in question.
  3741. * @param: structure containing the RT priority.
  3742. */
  3743. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3744. {
  3745. struct sched_param lp;
  3746. struct task_struct *p;
  3747. int retval = -EINVAL;
  3748. if (!param || pid < 0)
  3749. goto out_nounlock;
  3750. read_lock(&tasklist_lock);
  3751. p = find_process_by_pid(pid);
  3752. retval = -ESRCH;
  3753. if (!p)
  3754. goto out_unlock;
  3755. retval = security_task_getscheduler(p);
  3756. if (retval)
  3757. goto out_unlock;
  3758. lp.sched_priority = p->rt_priority;
  3759. read_unlock(&tasklist_lock);
  3760. /*
  3761. * This one might sleep, we cannot do it with a spinlock held ...
  3762. */
  3763. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3764. out_nounlock:
  3765. return retval;
  3766. out_unlock:
  3767. read_unlock(&tasklist_lock);
  3768. return retval;
  3769. }
  3770. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3771. {
  3772. cpumask_t cpus_allowed;
  3773. struct task_struct *p;
  3774. int retval;
  3775. mutex_lock(&sched_hotcpu_mutex);
  3776. read_lock(&tasklist_lock);
  3777. p = find_process_by_pid(pid);
  3778. if (!p) {
  3779. read_unlock(&tasklist_lock);
  3780. mutex_unlock(&sched_hotcpu_mutex);
  3781. return -ESRCH;
  3782. }
  3783. /*
  3784. * It is not safe to call set_cpus_allowed with the
  3785. * tasklist_lock held. We will bump the task_struct's
  3786. * usage count and then drop tasklist_lock.
  3787. */
  3788. get_task_struct(p);
  3789. read_unlock(&tasklist_lock);
  3790. retval = -EPERM;
  3791. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3792. !capable(CAP_SYS_NICE))
  3793. goto out_unlock;
  3794. retval = security_task_setscheduler(p, 0, NULL);
  3795. if (retval)
  3796. goto out_unlock;
  3797. cpus_allowed = cpuset_cpus_allowed(p);
  3798. cpus_and(new_mask, new_mask, cpus_allowed);
  3799. retval = set_cpus_allowed(p, new_mask);
  3800. out_unlock:
  3801. put_task_struct(p);
  3802. mutex_unlock(&sched_hotcpu_mutex);
  3803. return retval;
  3804. }
  3805. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3806. cpumask_t *new_mask)
  3807. {
  3808. if (len < sizeof(cpumask_t)) {
  3809. memset(new_mask, 0, sizeof(cpumask_t));
  3810. } else if (len > sizeof(cpumask_t)) {
  3811. len = sizeof(cpumask_t);
  3812. }
  3813. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3814. }
  3815. /**
  3816. * sys_sched_setaffinity - set the cpu affinity of a process
  3817. * @pid: pid of the process
  3818. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3819. * @user_mask_ptr: user-space pointer to the new cpu mask
  3820. */
  3821. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3822. unsigned long __user *user_mask_ptr)
  3823. {
  3824. cpumask_t new_mask;
  3825. int retval;
  3826. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3827. if (retval)
  3828. return retval;
  3829. return sched_setaffinity(pid, new_mask);
  3830. }
  3831. /*
  3832. * Represents all cpu's present in the system
  3833. * In systems capable of hotplug, this map could dynamically grow
  3834. * as new cpu's are detected in the system via any platform specific
  3835. * method, such as ACPI for e.g.
  3836. */
  3837. cpumask_t cpu_present_map __read_mostly;
  3838. EXPORT_SYMBOL(cpu_present_map);
  3839. #ifndef CONFIG_SMP
  3840. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3841. EXPORT_SYMBOL(cpu_online_map);
  3842. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3843. EXPORT_SYMBOL(cpu_possible_map);
  3844. #endif
  3845. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3846. {
  3847. struct task_struct *p;
  3848. int retval;
  3849. mutex_lock(&sched_hotcpu_mutex);
  3850. read_lock(&tasklist_lock);
  3851. retval = -ESRCH;
  3852. p = find_process_by_pid(pid);
  3853. if (!p)
  3854. goto out_unlock;
  3855. retval = security_task_getscheduler(p);
  3856. if (retval)
  3857. goto out_unlock;
  3858. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3859. out_unlock:
  3860. read_unlock(&tasklist_lock);
  3861. mutex_unlock(&sched_hotcpu_mutex);
  3862. return retval;
  3863. }
  3864. /**
  3865. * sys_sched_getaffinity - get the cpu affinity of a process
  3866. * @pid: pid of the process
  3867. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3868. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3869. */
  3870. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3871. unsigned long __user *user_mask_ptr)
  3872. {
  3873. int ret;
  3874. cpumask_t mask;
  3875. if (len < sizeof(cpumask_t))
  3876. return -EINVAL;
  3877. ret = sched_getaffinity(pid, &mask);
  3878. if (ret < 0)
  3879. return ret;
  3880. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3881. return -EFAULT;
  3882. return sizeof(cpumask_t);
  3883. }
  3884. /**
  3885. * sys_sched_yield - yield the current processor to other threads.
  3886. *
  3887. * This function yields the current CPU to other tasks. If there are no
  3888. * other threads running on this CPU then this function will return.
  3889. */
  3890. asmlinkage long sys_sched_yield(void)
  3891. {
  3892. struct rq *rq = this_rq_lock();
  3893. schedstat_inc(rq, yld_cnt);
  3894. if (unlikely(rq->nr_running == 1))
  3895. schedstat_inc(rq, yld_act_empty);
  3896. else
  3897. current->sched_class->yield_task(rq, current);
  3898. /*
  3899. * Since we are going to call schedule() anyway, there's
  3900. * no need to preempt or enable interrupts:
  3901. */
  3902. __release(rq->lock);
  3903. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3904. _raw_spin_unlock(&rq->lock);
  3905. preempt_enable_no_resched();
  3906. schedule();
  3907. return 0;
  3908. }
  3909. static void __cond_resched(void)
  3910. {
  3911. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3912. __might_sleep(__FILE__, __LINE__);
  3913. #endif
  3914. /*
  3915. * The BKS might be reacquired before we have dropped
  3916. * PREEMPT_ACTIVE, which could trigger a second
  3917. * cond_resched() call.
  3918. */
  3919. do {
  3920. add_preempt_count(PREEMPT_ACTIVE);
  3921. schedule();
  3922. sub_preempt_count(PREEMPT_ACTIVE);
  3923. } while (need_resched());
  3924. }
  3925. int __sched cond_resched(void)
  3926. {
  3927. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3928. system_state == SYSTEM_RUNNING) {
  3929. __cond_resched();
  3930. return 1;
  3931. }
  3932. return 0;
  3933. }
  3934. EXPORT_SYMBOL(cond_resched);
  3935. /*
  3936. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3937. * call schedule, and on return reacquire the lock.
  3938. *
  3939. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3940. * operations here to prevent schedule() from being called twice (once via
  3941. * spin_unlock(), once by hand).
  3942. */
  3943. int cond_resched_lock(spinlock_t *lock)
  3944. {
  3945. int ret = 0;
  3946. if (need_lockbreak(lock)) {
  3947. spin_unlock(lock);
  3948. cpu_relax();
  3949. ret = 1;
  3950. spin_lock(lock);
  3951. }
  3952. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3953. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3954. _raw_spin_unlock(lock);
  3955. preempt_enable_no_resched();
  3956. __cond_resched();
  3957. ret = 1;
  3958. spin_lock(lock);
  3959. }
  3960. return ret;
  3961. }
  3962. EXPORT_SYMBOL(cond_resched_lock);
  3963. int __sched cond_resched_softirq(void)
  3964. {
  3965. BUG_ON(!in_softirq());
  3966. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3967. local_bh_enable();
  3968. __cond_resched();
  3969. local_bh_disable();
  3970. return 1;
  3971. }
  3972. return 0;
  3973. }
  3974. EXPORT_SYMBOL(cond_resched_softirq);
  3975. /**
  3976. * yield - yield the current processor to other threads.
  3977. *
  3978. * This is a shortcut for kernel-space yielding - it marks the
  3979. * thread runnable and calls sys_sched_yield().
  3980. */
  3981. void __sched yield(void)
  3982. {
  3983. set_current_state(TASK_RUNNING);
  3984. sys_sched_yield();
  3985. }
  3986. EXPORT_SYMBOL(yield);
  3987. /*
  3988. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3989. * that process accounting knows that this is a task in IO wait state.
  3990. *
  3991. * But don't do that if it is a deliberate, throttling IO wait (this task
  3992. * has set its backing_dev_info: the queue against which it should throttle)
  3993. */
  3994. void __sched io_schedule(void)
  3995. {
  3996. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3997. delayacct_blkio_start();
  3998. atomic_inc(&rq->nr_iowait);
  3999. schedule();
  4000. atomic_dec(&rq->nr_iowait);
  4001. delayacct_blkio_end();
  4002. }
  4003. EXPORT_SYMBOL(io_schedule);
  4004. long __sched io_schedule_timeout(long timeout)
  4005. {
  4006. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4007. long ret;
  4008. delayacct_blkio_start();
  4009. atomic_inc(&rq->nr_iowait);
  4010. ret = schedule_timeout(timeout);
  4011. atomic_dec(&rq->nr_iowait);
  4012. delayacct_blkio_end();
  4013. return ret;
  4014. }
  4015. /**
  4016. * sys_sched_get_priority_max - return maximum RT priority.
  4017. * @policy: scheduling class.
  4018. *
  4019. * this syscall returns the maximum rt_priority that can be used
  4020. * by a given scheduling class.
  4021. */
  4022. asmlinkage long sys_sched_get_priority_max(int policy)
  4023. {
  4024. int ret = -EINVAL;
  4025. switch (policy) {
  4026. case SCHED_FIFO:
  4027. case SCHED_RR:
  4028. ret = MAX_USER_RT_PRIO-1;
  4029. break;
  4030. case SCHED_NORMAL:
  4031. case SCHED_BATCH:
  4032. case SCHED_IDLE:
  4033. ret = 0;
  4034. break;
  4035. }
  4036. return ret;
  4037. }
  4038. /**
  4039. * sys_sched_get_priority_min - return minimum RT priority.
  4040. * @policy: scheduling class.
  4041. *
  4042. * this syscall returns the minimum rt_priority that can be used
  4043. * by a given scheduling class.
  4044. */
  4045. asmlinkage long sys_sched_get_priority_min(int policy)
  4046. {
  4047. int ret = -EINVAL;
  4048. switch (policy) {
  4049. case SCHED_FIFO:
  4050. case SCHED_RR:
  4051. ret = 1;
  4052. break;
  4053. case SCHED_NORMAL:
  4054. case SCHED_BATCH:
  4055. case SCHED_IDLE:
  4056. ret = 0;
  4057. }
  4058. return ret;
  4059. }
  4060. /**
  4061. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4062. * @pid: pid of the process.
  4063. * @interval: userspace pointer to the timeslice value.
  4064. *
  4065. * this syscall writes the default timeslice value of a given process
  4066. * into the user-space timespec buffer. A value of '0' means infinity.
  4067. */
  4068. asmlinkage
  4069. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4070. {
  4071. struct task_struct *p;
  4072. int retval = -EINVAL;
  4073. struct timespec t;
  4074. if (pid < 0)
  4075. goto out_nounlock;
  4076. retval = -ESRCH;
  4077. read_lock(&tasklist_lock);
  4078. p = find_process_by_pid(pid);
  4079. if (!p)
  4080. goto out_unlock;
  4081. retval = security_task_getscheduler(p);
  4082. if (retval)
  4083. goto out_unlock;
  4084. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4085. 0 : static_prio_timeslice(p->static_prio), &t);
  4086. read_unlock(&tasklist_lock);
  4087. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4088. out_nounlock:
  4089. return retval;
  4090. out_unlock:
  4091. read_unlock(&tasklist_lock);
  4092. return retval;
  4093. }
  4094. static const char stat_nam[] = "RSDTtZX";
  4095. static void show_task(struct task_struct *p)
  4096. {
  4097. unsigned long free = 0;
  4098. unsigned state;
  4099. state = p->state ? __ffs(p->state) + 1 : 0;
  4100. printk("%-13.13s %c", p->comm,
  4101. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4102. #if BITS_PER_LONG == 32
  4103. if (state == TASK_RUNNING)
  4104. printk(" running ");
  4105. else
  4106. printk(" %08lx ", thread_saved_pc(p));
  4107. #else
  4108. if (state == TASK_RUNNING)
  4109. printk(" running task ");
  4110. else
  4111. printk(" %016lx ", thread_saved_pc(p));
  4112. #endif
  4113. #ifdef CONFIG_DEBUG_STACK_USAGE
  4114. {
  4115. unsigned long *n = end_of_stack(p);
  4116. while (!*n)
  4117. n++;
  4118. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4119. }
  4120. #endif
  4121. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4122. if (state != TASK_RUNNING)
  4123. show_stack(p, NULL);
  4124. }
  4125. void show_state_filter(unsigned long state_filter)
  4126. {
  4127. struct task_struct *g, *p;
  4128. #if BITS_PER_LONG == 32
  4129. printk(KERN_INFO
  4130. " task PC stack pid father\n");
  4131. #else
  4132. printk(KERN_INFO
  4133. " task PC stack pid father\n");
  4134. #endif
  4135. read_lock(&tasklist_lock);
  4136. do_each_thread(g, p) {
  4137. /*
  4138. * reset the NMI-timeout, listing all files on a slow
  4139. * console might take alot of time:
  4140. */
  4141. touch_nmi_watchdog();
  4142. if (!state_filter || (p->state & state_filter))
  4143. show_task(p);
  4144. } while_each_thread(g, p);
  4145. touch_all_softlockup_watchdogs();
  4146. #ifdef CONFIG_SCHED_DEBUG
  4147. sysrq_sched_debug_show();
  4148. #endif
  4149. read_unlock(&tasklist_lock);
  4150. /*
  4151. * Only show locks if all tasks are dumped:
  4152. */
  4153. if (state_filter == -1)
  4154. debug_show_all_locks();
  4155. }
  4156. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4157. {
  4158. idle->sched_class = &idle_sched_class;
  4159. }
  4160. /**
  4161. * init_idle - set up an idle thread for a given CPU
  4162. * @idle: task in question
  4163. * @cpu: cpu the idle task belongs to
  4164. *
  4165. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4166. * flag, to make booting more robust.
  4167. */
  4168. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4169. {
  4170. struct rq *rq = cpu_rq(cpu);
  4171. unsigned long flags;
  4172. __sched_fork(idle);
  4173. idle->se.exec_start = sched_clock();
  4174. idle->prio = idle->normal_prio = MAX_PRIO;
  4175. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4176. __set_task_cpu(idle, cpu);
  4177. spin_lock_irqsave(&rq->lock, flags);
  4178. rq->curr = rq->idle = idle;
  4179. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4180. idle->oncpu = 1;
  4181. #endif
  4182. spin_unlock_irqrestore(&rq->lock, flags);
  4183. /* Set the preempt count _outside_ the spinlocks! */
  4184. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4185. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4186. #else
  4187. task_thread_info(idle)->preempt_count = 0;
  4188. #endif
  4189. /*
  4190. * The idle tasks have their own, simple scheduling class:
  4191. */
  4192. idle->sched_class = &idle_sched_class;
  4193. }
  4194. /*
  4195. * In a system that switches off the HZ timer nohz_cpu_mask
  4196. * indicates which cpus entered this state. This is used
  4197. * in the rcu update to wait only for active cpus. For system
  4198. * which do not switch off the HZ timer nohz_cpu_mask should
  4199. * always be CPU_MASK_NONE.
  4200. */
  4201. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4202. /*
  4203. * Increase the granularity value when there are more CPUs,
  4204. * because with more CPUs the 'effective latency' as visible
  4205. * to users decreases. But the relationship is not linear,
  4206. * so pick a second-best guess by going with the log2 of the
  4207. * number of CPUs.
  4208. *
  4209. * This idea comes from the SD scheduler of Con Kolivas:
  4210. */
  4211. static inline void sched_init_granularity(void)
  4212. {
  4213. unsigned int factor = 1 + ilog2(num_online_cpus());
  4214. const unsigned long gran_limit = 100000000;
  4215. sysctl_sched_granularity *= factor;
  4216. if (sysctl_sched_granularity > gran_limit)
  4217. sysctl_sched_granularity = gran_limit;
  4218. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4219. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4220. }
  4221. #ifdef CONFIG_SMP
  4222. /*
  4223. * This is how migration works:
  4224. *
  4225. * 1) we queue a struct migration_req structure in the source CPU's
  4226. * runqueue and wake up that CPU's migration thread.
  4227. * 2) we down() the locked semaphore => thread blocks.
  4228. * 3) migration thread wakes up (implicitly it forces the migrated
  4229. * thread off the CPU)
  4230. * 4) it gets the migration request and checks whether the migrated
  4231. * task is still in the wrong runqueue.
  4232. * 5) if it's in the wrong runqueue then the migration thread removes
  4233. * it and puts it into the right queue.
  4234. * 6) migration thread up()s the semaphore.
  4235. * 7) we wake up and the migration is done.
  4236. */
  4237. /*
  4238. * Change a given task's CPU affinity. Migrate the thread to a
  4239. * proper CPU and schedule it away if the CPU it's executing on
  4240. * is removed from the allowed bitmask.
  4241. *
  4242. * NOTE: the caller must have a valid reference to the task, the
  4243. * task must not exit() & deallocate itself prematurely. The
  4244. * call is not atomic; no spinlocks may be held.
  4245. */
  4246. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4247. {
  4248. struct migration_req req;
  4249. unsigned long flags;
  4250. struct rq *rq;
  4251. int ret = 0;
  4252. rq = task_rq_lock(p, &flags);
  4253. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4254. ret = -EINVAL;
  4255. goto out;
  4256. }
  4257. p->cpus_allowed = new_mask;
  4258. /* Can the task run on the task's current CPU? If so, we're done */
  4259. if (cpu_isset(task_cpu(p), new_mask))
  4260. goto out;
  4261. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4262. /* Need help from migration thread: drop lock and wait. */
  4263. task_rq_unlock(rq, &flags);
  4264. wake_up_process(rq->migration_thread);
  4265. wait_for_completion(&req.done);
  4266. tlb_migrate_finish(p->mm);
  4267. return 0;
  4268. }
  4269. out:
  4270. task_rq_unlock(rq, &flags);
  4271. return ret;
  4272. }
  4273. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4274. /*
  4275. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4276. * this because either it can't run here any more (set_cpus_allowed()
  4277. * away from this CPU, or CPU going down), or because we're
  4278. * attempting to rebalance this task on exec (sched_exec).
  4279. *
  4280. * So we race with normal scheduler movements, but that's OK, as long
  4281. * as the task is no longer on this CPU.
  4282. *
  4283. * Returns non-zero if task was successfully migrated.
  4284. */
  4285. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4286. {
  4287. struct rq *rq_dest, *rq_src;
  4288. int ret = 0, on_rq;
  4289. if (unlikely(cpu_is_offline(dest_cpu)))
  4290. return ret;
  4291. rq_src = cpu_rq(src_cpu);
  4292. rq_dest = cpu_rq(dest_cpu);
  4293. double_rq_lock(rq_src, rq_dest);
  4294. /* Already moved. */
  4295. if (task_cpu(p) != src_cpu)
  4296. goto out;
  4297. /* Affinity changed (again). */
  4298. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4299. goto out;
  4300. on_rq = p->se.on_rq;
  4301. if (on_rq)
  4302. deactivate_task(rq_src, p, 0, rq_clock(rq_src));
  4303. set_task_cpu(p, dest_cpu);
  4304. if (on_rq) {
  4305. activate_task(rq_dest, p, 0);
  4306. check_preempt_curr(rq_dest, p);
  4307. }
  4308. ret = 1;
  4309. out:
  4310. double_rq_unlock(rq_src, rq_dest);
  4311. return ret;
  4312. }
  4313. /*
  4314. * migration_thread - this is a highprio system thread that performs
  4315. * thread migration by bumping thread off CPU then 'pushing' onto
  4316. * another runqueue.
  4317. */
  4318. static int migration_thread(void *data)
  4319. {
  4320. int cpu = (long)data;
  4321. struct rq *rq;
  4322. rq = cpu_rq(cpu);
  4323. BUG_ON(rq->migration_thread != current);
  4324. set_current_state(TASK_INTERRUPTIBLE);
  4325. while (!kthread_should_stop()) {
  4326. struct migration_req *req;
  4327. struct list_head *head;
  4328. spin_lock_irq(&rq->lock);
  4329. if (cpu_is_offline(cpu)) {
  4330. spin_unlock_irq(&rq->lock);
  4331. goto wait_to_die;
  4332. }
  4333. if (rq->active_balance) {
  4334. active_load_balance(rq, cpu);
  4335. rq->active_balance = 0;
  4336. }
  4337. head = &rq->migration_queue;
  4338. if (list_empty(head)) {
  4339. spin_unlock_irq(&rq->lock);
  4340. schedule();
  4341. set_current_state(TASK_INTERRUPTIBLE);
  4342. continue;
  4343. }
  4344. req = list_entry(head->next, struct migration_req, list);
  4345. list_del_init(head->next);
  4346. spin_unlock(&rq->lock);
  4347. __migrate_task(req->task, cpu, req->dest_cpu);
  4348. local_irq_enable();
  4349. complete(&req->done);
  4350. }
  4351. __set_current_state(TASK_RUNNING);
  4352. return 0;
  4353. wait_to_die:
  4354. /* Wait for kthread_stop */
  4355. set_current_state(TASK_INTERRUPTIBLE);
  4356. while (!kthread_should_stop()) {
  4357. schedule();
  4358. set_current_state(TASK_INTERRUPTIBLE);
  4359. }
  4360. __set_current_state(TASK_RUNNING);
  4361. return 0;
  4362. }
  4363. #ifdef CONFIG_HOTPLUG_CPU
  4364. /*
  4365. * Figure out where task on dead CPU should go, use force if neccessary.
  4366. * NOTE: interrupts should be disabled by the caller
  4367. */
  4368. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4369. {
  4370. unsigned long flags;
  4371. cpumask_t mask;
  4372. struct rq *rq;
  4373. int dest_cpu;
  4374. restart:
  4375. /* On same node? */
  4376. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4377. cpus_and(mask, mask, p->cpus_allowed);
  4378. dest_cpu = any_online_cpu(mask);
  4379. /* On any allowed CPU? */
  4380. if (dest_cpu == NR_CPUS)
  4381. dest_cpu = any_online_cpu(p->cpus_allowed);
  4382. /* No more Mr. Nice Guy. */
  4383. if (dest_cpu == NR_CPUS) {
  4384. rq = task_rq_lock(p, &flags);
  4385. cpus_setall(p->cpus_allowed);
  4386. dest_cpu = any_online_cpu(p->cpus_allowed);
  4387. task_rq_unlock(rq, &flags);
  4388. /*
  4389. * Don't tell them about moving exiting tasks or
  4390. * kernel threads (both mm NULL), since they never
  4391. * leave kernel.
  4392. */
  4393. if (p->mm && printk_ratelimit())
  4394. printk(KERN_INFO "process %d (%s) no "
  4395. "longer affine to cpu%d\n",
  4396. p->pid, p->comm, dead_cpu);
  4397. }
  4398. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4399. goto restart;
  4400. }
  4401. /*
  4402. * While a dead CPU has no uninterruptible tasks queued at this point,
  4403. * it might still have a nonzero ->nr_uninterruptible counter, because
  4404. * for performance reasons the counter is not stricly tracking tasks to
  4405. * their home CPUs. So we just add the counter to another CPU's counter,
  4406. * to keep the global sum constant after CPU-down:
  4407. */
  4408. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4409. {
  4410. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4411. unsigned long flags;
  4412. local_irq_save(flags);
  4413. double_rq_lock(rq_src, rq_dest);
  4414. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4415. rq_src->nr_uninterruptible = 0;
  4416. double_rq_unlock(rq_src, rq_dest);
  4417. local_irq_restore(flags);
  4418. }
  4419. /* Run through task list and migrate tasks from the dead cpu. */
  4420. static void migrate_live_tasks(int src_cpu)
  4421. {
  4422. struct task_struct *p, *t;
  4423. write_lock_irq(&tasklist_lock);
  4424. do_each_thread(t, p) {
  4425. if (p == current)
  4426. continue;
  4427. if (task_cpu(p) == src_cpu)
  4428. move_task_off_dead_cpu(src_cpu, p);
  4429. } while_each_thread(t, p);
  4430. write_unlock_irq(&tasklist_lock);
  4431. }
  4432. /*
  4433. * Schedules idle task to be the next runnable task on current CPU.
  4434. * It does so by boosting its priority to highest possible and adding it to
  4435. * the _front_ of the runqueue. Used by CPU offline code.
  4436. */
  4437. void sched_idle_next(void)
  4438. {
  4439. int this_cpu = smp_processor_id();
  4440. struct rq *rq = cpu_rq(this_cpu);
  4441. struct task_struct *p = rq->idle;
  4442. unsigned long flags;
  4443. /* cpu has to be offline */
  4444. BUG_ON(cpu_online(this_cpu));
  4445. /*
  4446. * Strictly not necessary since rest of the CPUs are stopped by now
  4447. * and interrupts disabled on the current cpu.
  4448. */
  4449. spin_lock_irqsave(&rq->lock, flags);
  4450. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4451. /* Add idle task to the _front_ of its priority queue: */
  4452. activate_idle_task(p, rq);
  4453. spin_unlock_irqrestore(&rq->lock, flags);
  4454. }
  4455. /*
  4456. * Ensures that the idle task is using init_mm right before its cpu goes
  4457. * offline.
  4458. */
  4459. void idle_task_exit(void)
  4460. {
  4461. struct mm_struct *mm = current->active_mm;
  4462. BUG_ON(cpu_online(smp_processor_id()));
  4463. if (mm != &init_mm)
  4464. switch_mm(mm, &init_mm, current);
  4465. mmdrop(mm);
  4466. }
  4467. /* called under rq->lock with disabled interrupts */
  4468. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4469. {
  4470. struct rq *rq = cpu_rq(dead_cpu);
  4471. /* Must be exiting, otherwise would be on tasklist. */
  4472. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4473. /* Cannot have done final schedule yet: would have vanished. */
  4474. BUG_ON(p->state == TASK_DEAD);
  4475. get_task_struct(p);
  4476. /*
  4477. * Drop lock around migration; if someone else moves it,
  4478. * that's OK. No task can be added to this CPU, so iteration is
  4479. * fine.
  4480. * NOTE: interrupts should be left disabled --dev@
  4481. */
  4482. spin_unlock(&rq->lock);
  4483. move_task_off_dead_cpu(dead_cpu, p);
  4484. spin_lock(&rq->lock);
  4485. put_task_struct(p);
  4486. }
  4487. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4488. static void migrate_dead_tasks(unsigned int dead_cpu)
  4489. {
  4490. struct rq *rq = cpu_rq(dead_cpu);
  4491. struct task_struct *next;
  4492. for ( ; ; ) {
  4493. if (!rq->nr_running)
  4494. break;
  4495. next = pick_next_task(rq, rq->curr, rq_clock(rq));
  4496. if (!next)
  4497. break;
  4498. migrate_dead(dead_cpu, next);
  4499. }
  4500. }
  4501. #endif /* CONFIG_HOTPLUG_CPU */
  4502. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4503. static struct ctl_table sd_ctl_dir[] = {
  4504. {
  4505. .procname = "sched_domain",
  4506. .mode = 0755,
  4507. },
  4508. {0,},
  4509. };
  4510. static struct ctl_table sd_ctl_root[] = {
  4511. {
  4512. .procname = "kernel",
  4513. .mode = 0755,
  4514. .child = sd_ctl_dir,
  4515. },
  4516. {0,},
  4517. };
  4518. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4519. {
  4520. struct ctl_table *entry =
  4521. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4522. BUG_ON(!entry);
  4523. memset(entry, 0, n * sizeof(struct ctl_table));
  4524. return entry;
  4525. }
  4526. static void
  4527. set_table_entry(struct ctl_table *entry,
  4528. const char *procname, void *data, int maxlen,
  4529. mode_t mode, proc_handler *proc_handler)
  4530. {
  4531. entry->procname = procname;
  4532. entry->data = data;
  4533. entry->maxlen = maxlen;
  4534. entry->mode = mode;
  4535. entry->proc_handler = proc_handler;
  4536. }
  4537. static struct ctl_table *
  4538. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4539. {
  4540. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4541. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4542. sizeof(long), 0644, proc_doulongvec_minmax);
  4543. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4544. sizeof(long), 0644, proc_doulongvec_minmax);
  4545. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4546. sizeof(int), 0644, proc_dointvec_minmax);
  4547. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4548. sizeof(int), 0644, proc_dointvec_minmax);
  4549. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4550. sizeof(int), 0644, proc_dointvec_minmax);
  4551. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4552. sizeof(int), 0644, proc_dointvec_minmax);
  4553. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4554. sizeof(int), 0644, proc_dointvec_minmax);
  4555. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4556. sizeof(int), 0644, proc_dointvec_minmax);
  4557. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4558. sizeof(int), 0644, proc_dointvec_minmax);
  4559. set_table_entry(&table[10], "cache_nice_tries",
  4560. &sd->cache_nice_tries,
  4561. sizeof(int), 0644, proc_dointvec_minmax);
  4562. set_table_entry(&table[12], "flags", &sd->flags,
  4563. sizeof(int), 0644, proc_dointvec_minmax);
  4564. return table;
  4565. }
  4566. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4567. {
  4568. struct ctl_table *entry, *table;
  4569. struct sched_domain *sd;
  4570. int domain_num = 0, i;
  4571. char buf[32];
  4572. for_each_domain(cpu, sd)
  4573. domain_num++;
  4574. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4575. i = 0;
  4576. for_each_domain(cpu, sd) {
  4577. snprintf(buf, 32, "domain%d", i);
  4578. entry->procname = kstrdup(buf, GFP_KERNEL);
  4579. entry->mode = 0755;
  4580. entry->child = sd_alloc_ctl_domain_table(sd);
  4581. entry++;
  4582. i++;
  4583. }
  4584. return table;
  4585. }
  4586. static struct ctl_table_header *sd_sysctl_header;
  4587. static void init_sched_domain_sysctl(void)
  4588. {
  4589. int i, cpu_num = num_online_cpus();
  4590. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4591. char buf[32];
  4592. sd_ctl_dir[0].child = entry;
  4593. for (i = 0; i < cpu_num; i++, entry++) {
  4594. snprintf(buf, 32, "cpu%d", i);
  4595. entry->procname = kstrdup(buf, GFP_KERNEL);
  4596. entry->mode = 0755;
  4597. entry->child = sd_alloc_ctl_cpu_table(i);
  4598. }
  4599. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4600. }
  4601. #else
  4602. static void init_sched_domain_sysctl(void)
  4603. {
  4604. }
  4605. #endif
  4606. /*
  4607. * migration_call - callback that gets triggered when a CPU is added.
  4608. * Here we can start up the necessary migration thread for the new CPU.
  4609. */
  4610. static int __cpuinit
  4611. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4612. {
  4613. struct task_struct *p;
  4614. int cpu = (long)hcpu;
  4615. unsigned long flags;
  4616. struct rq *rq;
  4617. switch (action) {
  4618. case CPU_LOCK_ACQUIRE:
  4619. mutex_lock(&sched_hotcpu_mutex);
  4620. break;
  4621. case CPU_UP_PREPARE:
  4622. case CPU_UP_PREPARE_FROZEN:
  4623. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4624. if (IS_ERR(p))
  4625. return NOTIFY_BAD;
  4626. kthread_bind(p, cpu);
  4627. /* Must be high prio: stop_machine expects to yield to it. */
  4628. rq = task_rq_lock(p, &flags);
  4629. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4630. task_rq_unlock(rq, &flags);
  4631. cpu_rq(cpu)->migration_thread = p;
  4632. break;
  4633. case CPU_ONLINE:
  4634. case CPU_ONLINE_FROZEN:
  4635. /* Strictly unneccessary, as first user will wake it. */
  4636. wake_up_process(cpu_rq(cpu)->migration_thread);
  4637. break;
  4638. #ifdef CONFIG_HOTPLUG_CPU
  4639. case CPU_UP_CANCELED:
  4640. case CPU_UP_CANCELED_FROZEN:
  4641. if (!cpu_rq(cpu)->migration_thread)
  4642. break;
  4643. /* Unbind it from offline cpu so it can run. Fall thru. */
  4644. kthread_bind(cpu_rq(cpu)->migration_thread,
  4645. any_online_cpu(cpu_online_map));
  4646. kthread_stop(cpu_rq(cpu)->migration_thread);
  4647. cpu_rq(cpu)->migration_thread = NULL;
  4648. break;
  4649. case CPU_DEAD:
  4650. case CPU_DEAD_FROZEN:
  4651. migrate_live_tasks(cpu);
  4652. rq = cpu_rq(cpu);
  4653. kthread_stop(rq->migration_thread);
  4654. rq->migration_thread = NULL;
  4655. /* Idle task back to normal (off runqueue, low prio) */
  4656. rq = task_rq_lock(rq->idle, &flags);
  4657. deactivate_task(rq, rq->idle, 0, rq_clock(rq));
  4658. rq->idle->static_prio = MAX_PRIO;
  4659. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4660. rq->idle->sched_class = &idle_sched_class;
  4661. migrate_dead_tasks(cpu);
  4662. task_rq_unlock(rq, &flags);
  4663. migrate_nr_uninterruptible(rq);
  4664. BUG_ON(rq->nr_running != 0);
  4665. /* No need to migrate the tasks: it was best-effort if
  4666. * they didn't take sched_hotcpu_mutex. Just wake up
  4667. * the requestors. */
  4668. spin_lock_irq(&rq->lock);
  4669. while (!list_empty(&rq->migration_queue)) {
  4670. struct migration_req *req;
  4671. req = list_entry(rq->migration_queue.next,
  4672. struct migration_req, list);
  4673. list_del_init(&req->list);
  4674. complete(&req->done);
  4675. }
  4676. spin_unlock_irq(&rq->lock);
  4677. break;
  4678. #endif
  4679. case CPU_LOCK_RELEASE:
  4680. mutex_unlock(&sched_hotcpu_mutex);
  4681. break;
  4682. }
  4683. return NOTIFY_OK;
  4684. }
  4685. /* Register at highest priority so that task migration (migrate_all_tasks)
  4686. * happens before everything else.
  4687. */
  4688. static struct notifier_block __cpuinitdata migration_notifier = {
  4689. .notifier_call = migration_call,
  4690. .priority = 10
  4691. };
  4692. int __init migration_init(void)
  4693. {
  4694. void *cpu = (void *)(long)smp_processor_id();
  4695. int err;
  4696. /* Start one for the boot CPU: */
  4697. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4698. BUG_ON(err == NOTIFY_BAD);
  4699. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4700. register_cpu_notifier(&migration_notifier);
  4701. return 0;
  4702. }
  4703. #endif
  4704. #ifdef CONFIG_SMP
  4705. /* Number of possible processor ids */
  4706. int nr_cpu_ids __read_mostly = NR_CPUS;
  4707. EXPORT_SYMBOL(nr_cpu_ids);
  4708. #undef SCHED_DOMAIN_DEBUG
  4709. #ifdef SCHED_DOMAIN_DEBUG
  4710. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4711. {
  4712. int level = 0;
  4713. if (!sd) {
  4714. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4715. return;
  4716. }
  4717. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4718. do {
  4719. int i;
  4720. char str[NR_CPUS];
  4721. struct sched_group *group = sd->groups;
  4722. cpumask_t groupmask;
  4723. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4724. cpus_clear(groupmask);
  4725. printk(KERN_DEBUG);
  4726. for (i = 0; i < level + 1; i++)
  4727. printk(" ");
  4728. printk("domain %d: ", level);
  4729. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4730. printk("does not load-balance\n");
  4731. if (sd->parent)
  4732. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4733. " has parent");
  4734. break;
  4735. }
  4736. printk("span %s\n", str);
  4737. if (!cpu_isset(cpu, sd->span))
  4738. printk(KERN_ERR "ERROR: domain->span does not contain "
  4739. "CPU%d\n", cpu);
  4740. if (!cpu_isset(cpu, group->cpumask))
  4741. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4742. " CPU%d\n", cpu);
  4743. printk(KERN_DEBUG);
  4744. for (i = 0; i < level + 2; i++)
  4745. printk(" ");
  4746. printk("groups:");
  4747. do {
  4748. if (!group) {
  4749. printk("\n");
  4750. printk(KERN_ERR "ERROR: group is NULL\n");
  4751. break;
  4752. }
  4753. if (!group->__cpu_power) {
  4754. printk("\n");
  4755. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4756. "set\n");
  4757. }
  4758. if (!cpus_weight(group->cpumask)) {
  4759. printk("\n");
  4760. printk(KERN_ERR "ERROR: empty group\n");
  4761. }
  4762. if (cpus_intersects(groupmask, group->cpumask)) {
  4763. printk("\n");
  4764. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4765. }
  4766. cpus_or(groupmask, groupmask, group->cpumask);
  4767. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4768. printk(" %s", str);
  4769. group = group->next;
  4770. } while (group != sd->groups);
  4771. printk("\n");
  4772. if (!cpus_equal(sd->span, groupmask))
  4773. printk(KERN_ERR "ERROR: groups don't span "
  4774. "domain->span\n");
  4775. level++;
  4776. sd = sd->parent;
  4777. if (!sd)
  4778. continue;
  4779. if (!cpus_subset(groupmask, sd->span))
  4780. printk(KERN_ERR "ERROR: parent span is not a superset "
  4781. "of domain->span\n");
  4782. } while (sd);
  4783. }
  4784. #else
  4785. # define sched_domain_debug(sd, cpu) do { } while (0)
  4786. #endif
  4787. static int sd_degenerate(struct sched_domain *sd)
  4788. {
  4789. if (cpus_weight(sd->span) == 1)
  4790. return 1;
  4791. /* Following flags need at least 2 groups */
  4792. if (sd->flags & (SD_LOAD_BALANCE |
  4793. SD_BALANCE_NEWIDLE |
  4794. SD_BALANCE_FORK |
  4795. SD_BALANCE_EXEC |
  4796. SD_SHARE_CPUPOWER |
  4797. SD_SHARE_PKG_RESOURCES)) {
  4798. if (sd->groups != sd->groups->next)
  4799. return 0;
  4800. }
  4801. /* Following flags don't use groups */
  4802. if (sd->flags & (SD_WAKE_IDLE |
  4803. SD_WAKE_AFFINE |
  4804. SD_WAKE_BALANCE))
  4805. return 0;
  4806. return 1;
  4807. }
  4808. static int
  4809. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4810. {
  4811. unsigned long cflags = sd->flags, pflags = parent->flags;
  4812. if (sd_degenerate(parent))
  4813. return 1;
  4814. if (!cpus_equal(sd->span, parent->span))
  4815. return 0;
  4816. /* Does parent contain flags not in child? */
  4817. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4818. if (cflags & SD_WAKE_AFFINE)
  4819. pflags &= ~SD_WAKE_BALANCE;
  4820. /* Flags needing groups don't count if only 1 group in parent */
  4821. if (parent->groups == parent->groups->next) {
  4822. pflags &= ~(SD_LOAD_BALANCE |
  4823. SD_BALANCE_NEWIDLE |
  4824. SD_BALANCE_FORK |
  4825. SD_BALANCE_EXEC |
  4826. SD_SHARE_CPUPOWER |
  4827. SD_SHARE_PKG_RESOURCES);
  4828. }
  4829. if (~cflags & pflags)
  4830. return 0;
  4831. return 1;
  4832. }
  4833. /*
  4834. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4835. * hold the hotplug lock.
  4836. */
  4837. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4838. {
  4839. struct rq *rq = cpu_rq(cpu);
  4840. struct sched_domain *tmp;
  4841. /* Remove the sched domains which do not contribute to scheduling. */
  4842. for (tmp = sd; tmp; tmp = tmp->parent) {
  4843. struct sched_domain *parent = tmp->parent;
  4844. if (!parent)
  4845. break;
  4846. if (sd_parent_degenerate(tmp, parent)) {
  4847. tmp->parent = parent->parent;
  4848. if (parent->parent)
  4849. parent->parent->child = tmp;
  4850. }
  4851. }
  4852. if (sd && sd_degenerate(sd)) {
  4853. sd = sd->parent;
  4854. if (sd)
  4855. sd->child = NULL;
  4856. }
  4857. sched_domain_debug(sd, cpu);
  4858. rcu_assign_pointer(rq->sd, sd);
  4859. }
  4860. /* cpus with isolated domains */
  4861. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4862. /* Setup the mask of cpus configured for isolated domains */
  4863. static int __init isolated_cpu_setup(char *str)
  4864. {
  4865. int ints[NR_CPUS], i;
  4866. str = get_options(str, ARRAY_SIZE(ints), ints);
  4867. cpus_clear(cpu_isolated_map);
  4868. for (i = 1; i <= ints[0]; i++)
  4869. if (ints[i] < NR_CPUS)
  4870. cpu_set(ints[i], cpu_isolated_map);
  4871. return 1;
  4872. }
  4873. __setup ("isolcpus=", isolated_cpu_setup);
  4874. /*
  4875. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4876. * to a function which identifies what group(along with sched group) a CPU
  4877. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4878. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4879. *
  4880. * init_sched_build_groups will build a circular linked list of the groups
  4881. * covered by the given span, and will set each group's ->cpumask correctly,
  4882. * and ->cpu_power to 0.
  4883. */
  4884. static void
  4885. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4886. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4887. struct sched_group **sg))
  4888. {
  4889. struct sched_group *first = NULL, *last = NULL;
  4890. cpumask_t covered = CPU_MASK_NONE;
  4891. int i;
  4892. for_each_cpu_mask(i, span) {
  4893. struct sched_group *sg;
  4894. int group = group_fn(i, cpu_map, &sg);
  4895. int j;
  4896. if (cpu_isset(i, covered))
  4897. continue;
  4898. sg->cpumask = CPU_MASK_NONE;
  4899. sg->__cpu_power = 0;
  4900. for_each_cpu_mask(j, span) {
  4901. if (group_fn(j, cpu_map, NULL) != group)
  4902. continue;
  4903. cpu_set(j, covered);
  4904. cpu_set(j, sg->cpumask);
  4905. }
  4906. if (!first)
  4907. first = sg;
  4908. if (last)
  4909. last->next = sg;
  4910. last = sg;
  4911. }
  4912. last->next = first;
  4913. }
  4914. #define SD_NODES_PER_DOMAIN 16
  4915. #ifdef CONFIG_NUMA
  4916. /**
  4917. * find_next_best_node - find the next node to include in a sched_domain
  4918. * @node: node whose sched_domain we're building
  4919. * @used_nodes: nodes already in the sched_domain
  4920. *
  4921. * Find the next node to include in a given scheduling domain. Simply
  4922. * finds the closest node not already in the @used_nodes map.
  4923. *
  4924. * Should use nodemask_t.
  4925. */
  4926. static int find_next_best_node(int node, unsigned long *used_nodes)
  4927. {
  4928. int i, n, val, min_val, best_node = 0;
  4929. min_val = INT_MAX;
  4930. for (i = 0; i < MAX_NUMNODES; i++) {
  4931. /* Start at @node */
  4932. n = (node + i) % MAX_NUMNODES;
  4933. if (!nr_cpus_node(n))
  4934. continue;
  4935. /* Skip already used nodes */
  4936. if (test_bit(n, used_nodes))
  4937. continue;
  4938. /* Simple min distance search */
  4939. val = node_distance(node, n);
  4940. if (val < min_val) {
  4941. min_val = val;
  4942. best_node = n;
  4943. }
  4944. }
  4945. set_bit(best_node, used_nodes);
  4946. return best_node;
  4947. }
  4948. /**
  4949. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4950. * @node: node whose cpumask we're constructing
  4951. * @size: number of nodes to include in this span
  4952. *
  4953. * Given a node, construct a good cpumask for its sched_domain to span. It
  4954. * should be one that prevents unnecessary balancing, but also spreads tasks
  4955. * out optimally.
  4956. */
  4957. static cpumask_t sched_domain_node_span(int node)
  4958. {
  4959. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4960. cpumask_t span, nodemask;
  4961. int i;
  4962. cpus_clear(span);
  4963. bitmap_zero(used_nodes, MAX_NUMNODES);
  4964. nodemask = node_to_cpumask(node);
  4965. cpus_or(span, span, nodemask);
  4966. set_bit(node, used_nodes);
  4967. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4968. int next_node = find_next_best_node(node, used_nodes);
  4969. nodemask = node_to_cpumask(next_node);
  4970. cpus_or(span, span, nodemask);
  4971. }
  4972. return span;
  4973. }
  4974. #endif
  4975. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4976. /*
  4977. * SMT sched-domains:
  4978. */
  4979. #ifdef CONFIG_SCHED_SMT
  4980. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4981. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4982. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4983. struct sched_group **sg)
  4984. {
  4985. if (sg)
  4986. *sg = &per_cpu(sched_group_cpus, cpu);
  4987. return cpu;
  4988. }
  4989. #endif
  4990. /*
  4991. * multi-core sched-domains:
  4992. */
  4993. #ifdef CONFIG_SCHED_MC
  4994. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4995. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4996. #endif
  4997. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4998. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4999. struct sched_group **sg)
  5000. {
  5001. int group;
  5002. cpumask_t mask = cpu_sibling_map[cpu];
  5003. cpus_and(mask, mask, *cpu_map);
  5004. group = first_cpu(mask);
  5005. if (sg)
  5006. *sg = &per_cpu(sched_group_core, group);
  5007. return group;
  5008. }
  5009. #elif defined(CONFIG_SCHED_MC)
  5010. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5011. struct sched_group **sg)
  5012. {
  5013. if (sg)
  5014. *sg = &per_cpu(sched_group_core, cpu);
  5015. return cpu;
  5016. }
  5017. #endif
  5018. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5019. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5020. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5021. struct sched_group **sg)
  5022. {
  5023. int group;
  5024. #ifdef CONFIG_SCHED_MC
  5025. cpumask_t mask = cpu_coregroup_map(cpu);
  5026. cpus_and(mask, mask, *cpu_map);
  5027. group = first_cpu(mask);
  5028. #elif defined(CONFIG_SCHED_SMT)
  5029. cpumask_t mask = cpu_sibling_map[cpu];
  5030. cpus_and(mask, mask, *cpu_map);
  5031. group = first_cpu(mask);
  5032. #else
  5033. group = cpu;
  5034. #endif
  5035. if (sg)
  5036. *sg = &per_cpu(sched_group_phys, group);
  5037. return group;
  5038. }
  5039. #ifdef CONFIG_NUMA
  5040. /*
  5041. * The init_sched_build_groups can't handle what we want to do with node
  5042. * groups, so roll our own. Now each node has its own list of groups which
  5043. * gets dynamically allocated.
  5044. */
  5045. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5046. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5047. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5048. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5049. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5050. struct sched_group **sg)
  5051. {
  5052. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5053. int group;
  5054. cpus_and(nodemask, nodemask, *cpu_map);
  5055. group = first_cpu(nodemask);
  5056. if (sg)
  5057. *sg = &per_cpu(sched_group_allnodes, group);
  5058. return group;
  5059. }
  5060. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5061. {
  5062. struct sched_group *sg = group_head;
  5063. int j;
  5064. if (!sg)
  5065. return;
  5066. next_sg:
  5067. for_each_cpu_mask(j, sg->cpumask) {
  5068. struct sched_domain *sd;
  5069. sd = &per_cpu(phys_domains, j);
  5070. if (j != first_cpu(sd->groups->cpumask)) {
  5071. /*
  5072. * Only add "power" once for each
  5073. * physical package.
  5074. */
  5075. continue;
  5076. }
  5077. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5078. }
  5079. sg = sg->next;
  5080. if (sg != group_head)
  5081. goto next_sg;
  5082. }
  5083. #endif
  5084. #ifdef CONFIG_NUMA
  5085. /* Free memory allocated for various sched_group structures */
  5086. static void free_sched_groups(const cpumask_t *cpu_map)
  5087. {
  5088. int cpu, i;
  5089. for_each_cpu_mask(cpu, *cpu_map) {
  5090. struct sched_group **sched_group_nodes
  5091. = sched_group_nodes_bycpu[cpu];
  5092. if (!sched_group_nodes)
  5093. continue;
  5094. for (i = 0; i < MAX_NUMNODES; i++) {
  5095. cpumask_t nodemask = node_to_cpumask(i);
  5096. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5097. cpus_and(nodemask, nodemask, *cpu_map);
  5098. if (cpus_empty(nodemask))
  5099. continue;
  5100. if (sg == NULL)
  5101. continue;
  5102. sg = sg->next;
  5103. next_sg:
  5104. oldsg = sg;
  5105. sg = sg->next;
  5106. kfree(oldsg);
  5107. if (oldsg != sched_group_nodes[i])
  5108. goto next_sg;
  5109. }
  5110. kfree(sched_group_nodes);
  5111. sched_group_nodes_bycpu[cpu] = NULL;
  5112. }
  5113. }
  5114. #else
  5115. static void free_sched_groups(const cpumask_t *cpu_map)
  5116. {
  5117. }
  5118. #endif
  5119. /*
  5120. * Initialize sched groups cpu_power.
  5121. *
  5122. * cpu_power indicates the capacity of sched group, which is used while
  5123. * distributing the load between different sched groups in a sched domain.
  5124. * Typically cpu_power for all the groups in a sched domain will be same unless
  5125. * there are asymmetries in the topology. If there are asymmetries, group
  5126. * having more cpu_power will pickup more load compared to the group having
  5127. * less cpu_power.
  5128. *
  5129. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5130. * the maximum number of tasks a group can handle in the presence of other idle
  5131. * or lightly loaded groups in the same sched domain.
  5132. */
  5133. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5134. {
  5135. struct sched_domain *child;
  5136. struct sched_group *group;
  5137. WARN_ON(!sd || !sd->groups);
  5138. if (cpu != first_cpu(sd->groups->cpumask))
  5139. return;
  5140. child = sd->child;
  5141. sd->groups->__cpu_power = 0;
  5142. /*
  5143. * For perf policy, if the groups in child domain share resources
  5144. * (for example cores sharing some portions of the cache hierarchy
  5145. * or SMT), then set this domain groups cpu_power such that each group
  5146. * can handle only one task, when there are other idle groups in the
  5147. * same sched domain.
  5148. */
  5149. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5150. (child->flags &
  5151. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5152. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5153. return;
  5154. }
  5155. /*
  5156. * add cpu_power of each child group to this groups cpu_power
  5157. */
  5158. group = child->groups;
  5159. do {
  5160. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5161. group = group->next;
  5162. } while (group != child->groups);
  5163. }
  5164. /*
  5165. * Build sched domains for a given set of cpus and attach the sched domains
  5166. * to the individual cpus
  5167. */
  5168. static int build_sched_domains(const cpumask_t *cpu_map)
  5169. {
  5170. int i;
  5171. #ifdef CONFIG_NUMA
  5172. struct sched_group **sched_group_nodes = NULL;
  5173. int sd_allnodes = 0;
  5174. /*
  5175. * Allocate the per-node list of sched groups
  5176. */
  5177. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5178. GFP_KERNEL);
  5179. if (!sched_group_nodes) {
  5180. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5181. return -ENOMEM;
  5182. }
  5183. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5184. #endif
  5185. /*
  5186. * Set up domains for cpus specified by the cpu_map.
  5187. */
  5188. for_each_cpu_mask(i, *cpu_map) {
  5189. struct sched_domain *sd = NULL, *p;
  5190. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5191. cpus_and(nodemask, nodemask, *cpu_map);
  5192. #ifdef CONFIG_NUMA
  5193. if (cpus_weight(*cpu_map) >
  5194. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5195. sd = &per_cpu(allnodes_domains, i);
  5196. *sd = SD_ALLNODES_INIT;
  5197. sd->span = *cpu_map;
  5198. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5199. p = sd;
  5200. sd_allnodes = 1;
  5201. } else
  5202. p = NULL;
  5203. sd = &per_cpu(node_domains, i);
  5204. *sd = SD_NODE_INIT;
  5205. sd->span = sched_domain_node_span(cpu_to_node(i));
  5206. sd->parent = p;
  5207. if (p)
  5208. p->child = sd;
  5209. cpus_and(sd->span, sd->span, *cpu_map);
  5210. #endif
  5211. p = sd;
  5212. sd = &per_cpu(phys_domains, i);
  5213. *sd = SD_CPU_INIT;
  5214. sd->span = nodemask;
  5215. sd->parent = p;
  5216. if (p)
  5217. p->child = sd;
  5218. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5219. #ifdef CONFIG_SCHED_MC
  5220. p = sd;
  5221. sd = &per_cpu(core_domains, i);
  5222. *sd = SD_MC_INIT;
  5223. sd->span = cpu_coregroup_map(i);
  5224. cpus_and(sd->span, sd->span, *cpu_map);
  5225. sd->parent = p;
  5226. p->child = sd;
  5227. cpu_to_core_group(i, cpu_map, &sd->groups);
  5228. #endif
  5229. #ifdef CONFIG_SCHED_SMT
  5230. p = sd;
  5231. sd = &per_cpu(cpu_domains, i);
  5232. *sd = SD_SIBLING_INIT;
  5233. sd->span = cpu_sibling_map[i];
  5234. cpus_and(sd->span, sd->span, *cpu_map);
  5235. sd->parent = p;
  5236. p->child = sd;
  5237. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5238. #endif
  5239. }
  5240. #ifdef CONFIG_SCHED_SMT
  5241. /* Set up CPU (sibling) groups */
  5242. for_each_cpu_mask(i, *cpu_map) {
  5243. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5244. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5245. if (i != first_cpu(this_sibling_map))
  5246. continue;
  5247. init_sched_build_groups(this_sibling_map, cpu_map,
  5248. &cpu_to_cpu_group);
  5249. }
  5250. #endif
  5251. #ifdef CONFIG_SCHED_MC
  5252. /* Set up multi-core groups */
  5253. for_each_cpu_mask(i, *cpu_map) {
  5254. cpumask_t this_core_map = cpu_coregroup_map(i);
  5255. cpus_and(this_core_map, this_core_map, *cpu_map);
  5256. if (i != first_cpu(this_core_map))
  5257. continue;
  5258. init_sched_build_groups(this_core_map, cpu_map,
  5259. &cpu_to_core_group);
  5260. }
  5261. #endif
  5262. /* Set up physical groups */
  5263. for (i = 0; i < MAX_NUMNODES; i++) {
  5264. cpumask_t nodemask = node_to_cpumask(i);
  5265. cpus_and(nodemask, nodemask, *cpu_map);
  5266. if (cpus_empty(nodemask))
  5267. continue;
  5268. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5269. }
  5270. #ifdef CONFIG_NUMA
  5271. /* Set up node groups */
  5272. if (sd_allnodes)
  5273. init_sched_build_groups(*cpu_map, cpu_map,
  5274. &cpu_to_allnodes_group);
  5275. for (i = 0; i < MAX_NUMNODES; i++) {
  5276. /* Set up node groups */
  5277. struct sched_group *sg, *prev;
  5278. cpumask_t nodemask = node_to_cpumask(i);
  5279. cpumask_t domainspan;
  5280. cpumask_t covered = CPU_MASK_NONE;
  5281. int j;
  5282. cpus_and(nodemask, nodemask, *cpu_map);
  5283. if (cpus_empty(nodemask)) {
  5284. sched_group_nodes[i] = NULL;
  5285. continue;
  5286. }
  5287. domainspan = sched_domain_node_span(i);
  5288. cpus_and(domainspan, domainspan, *cpu_map);
  5289. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5290. if (!sg) {
  5291. printk(KERN_WARNING "Can not alloc domain group for "
  5292. "node %d\n", i);
  5293. goto error;
  5294. }
  5295. sched_group_nodes[i] = sg;
  5296. for_each_cpu_mask(j, nodemask) {
  5297. struct sched_domain *sd;
  5298. sd = &per_cpu(node_domains, j);
  5299. sd->groups = sg;
  5300. }
  5301. sg->__cpu_power = 0;
  5302. sg->cpumask = nodemask;
  5303. sg->next = sg;
  5304. cpus_or(covered, covered, nodemask);
  5305. prev = sg;
  5306. for (j = 0; j < MAX_NUMNODES; j++) {
  5307. cpumask_t tmp, notcovered;
  5308. int n = (i + j) % MAX_NUMNODES;
  5309. cpus_complement(notcovered, covered);
  5310. cpus_and(tmp, notcovered, *cpu_map);
  5311. cpus_and(tmp, tmp, domainspan);
  5312. if (cpus_empty(tmp))
  5313. break;
  5314. nodemask = node_to_cpumask(n);
  5315. cpus_and(tmp, tmp, nodemask);
  5316. if (cpus_empty(tmp))
  5317. continue;
  5318. sg = kmalloc_node(sizeof(struct sched_group),
  5319. GFP_KERNEL, i);
  5320. if (!sg) {
  5321. printk(KERN_WARNING
  5322. "Can not alloc domain group for node %d\n", j);
  5323. goto error;
  5324. }
  5325. sg->__cpu_power = 0;
  5326. sg->cpumask = tmp;
  5327. sg->next = prev->next;
  5328. cpus_or(covered, covered, tmp);
  5329. prev->next = sg;
  5330. prev = sg;
  5331. }
  5332. }
  5333. #endif
  5334. /* Calculate CPU power for physical packages and nodes */
  5335. #ifdef CONFIG_SCHED_SMT
  5336. for_each_cpu_mask(i, *cpu_map) {
  5337. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5338. init_sched_groups_power(i, sd);
  5339. }
  5340. #endif
  5341. #ifdef CONFIG_SCHED_MC
  5342. for_each_cpu_mask(i, *cpu_map) {
  5343. struct sched_domain *sd = &per_cpu(core_domains, i);
  5344. init_sched_groups_power(i, sd);
  5345. }
  5346. #endif
  5347. for_each_cpu_mask(i, *cpu_map) {
  5348. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5349. init_sched_groups_power(i, sd);
  5350. }
  5351. #ifdef CONFIG_NUMA
  5352. for (i = 0; i < MAX_NUMNODES; i++)
  5353. init_numa_sched_groups_power(sched_group_nodes[i]);
  5354. if (sd_allnodes) {
  5355. struct sched_group *sg;
  5356. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5357. init_numa_sched_groups_power(sg);
  5358. }
  5359. #endif
  5360. /* Attach the domains */
  5361. for_each_cpu_mask(i, *cpu_map) {
  5362. struct sched_domain *sd;
  5363. #ifdef CONFIG_SCHED_SMT
  5364. sd = &per_cpu(cpu_domains, i);
  5365. #elif defined(CONFIG_SCHED_MC)
  5366. sd = &per_cpu(core_domains, i);
  5367. #else
  5368. sd = &per_cpu(phys_domains, i);
  5369. #endif
  5370. cpu_attach_domain(sd, i);
  5371. }
  5372. return 0;
  5373. #ifdef CONFIG_NUMA
  5374. error:
  5375. free_sched_groups(cpu_map);
  5376. return -ENOMEM;
  5377. #endif
  5378. }
  5379. /*
  5380. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5381. */
  5382. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5383. {
  5384. cpumask_t cpu_default_map;
  5385. int err;
  5386. /*
  5387. * Setup mask for cpus without special case scheduling requirements.
  5388. * For now this just excludes isolated cpus, but could be used to
  5389. * exclude other special cases in the future.
  5390. */
  5391. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5392. err = build_sched_domains(&cpu_default_map);
  5393. return err;
  5394. }
  5395. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5396. {
  5397. free_sched_groups(cpu_map);
  5398. }
  5399. /*
  5400. * Detach sched domains from a group of cpus specified in cpu_map
  5401. * These cpus will now be attached to the NULL domain
  5402. */
  5403. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5404. {
  5405. int i;
  5406. for_each_cpu_mask(i, *cpu_map)
  5407. cpu_attach_domain(NULL, i);
  5408. synchronize_sched();
  5409. arch_destroy_sched_domains(cpu_map);
  5410. }
  5411. /*
  5412. * Partition sched domains as specified by the cpumasks below.
  5413. * This attaches all cpus from the cpumasks to the NULL domain,
  5414. * waits for a RCU quiescent period, recalculates sched
  5415. * domain information and then attaches them back to the
  5416. * correct sched domains
  5417. * Call with hotplug lock held
  5418. */
  5419. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5420. {
  5421. cpumask_t change_map;
  5422. int err = 0;
  5423. cpus_and(*partition1, *partition1, cpu_online_map);
  5424. cpus_and(*partition2, *partition2, cpu_online_map);
  5425. cpus_or(change_map, *partition1, *partition2);
  5426. /* Detach sched domains from all of the affected cpus */
  5427. detach_destroy_domains(&change_map);
  5428. if (!cpus_empty(*partition1))
  5429. err = build_sched_domains(partition1);
  5430. if (!err && !cpus_empty(*partition2))
  5431. err = build_sched_domains(partition2);
  5432. return err;
  5433. }
  5434. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5435. int arch_reinit_sched_domains(void)
  5436. {
  5437. int err;
  5438. mutex_lock(&sched_hotcpu_mutex);
  5439. detach_destroy_domains(&cpu_online_map);
  5440. err = arch_init_sched_domains(&cpu_online_map);
  5441. mutex_unlock(&sched_hotcpu_mutex);
  5442. return err;
  5443. }
  5444. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5445. {
  5446. int ret;
  5447. if (buf[0] != '0' && buf[0] != '1')
  5448. return -EINVAL;
  5449. if (smt)
  5450. sched_smt_power_savings = (buf[0] == '1');
  5451. else
  5452. sched_mc_power_savings = (buf[0] == '1');
  5453. ret = arch_reinit_sched_domains();
  5454. return ret ? ret : count;
  5455. }
  5456. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5457. {
  5458. int err = 0;
  5459. #ifdef CONFIG_SCHED_SMT
  5460. if (smt_capable())
  5461. err = sysfs_create_file(&cls->kset.kobj,
  5462. &attr_sched_smt_power_savings.attr);
  5463. #endif
  5464. #ifdef CONFIG_SCHED_MC
  5465. if (!err && mc_capable())
  5466. err = sysfs_create_file(&cls->kset.kobj,
  5467. &attr_sched_mc_power_savings.attr);
  5468. #endif
  5469. return err;
  5470. }
  5471. #endif
  5472. #ifdef CONFIG_SCHED_MC
  5473. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5474. {
  5475. return sprintf(page, "%u\n", sched_mc_power_savings);
  5476. }
  5477. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5478. const char *buf, size_t count)
  5479. {
  5480. return sched_power_savings_store(buf, count, 0);
  5481. }
  5482. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5483. sched_mc_power_savings_store);
  5484. #endif
  5485. #ifdef CONFIG_SCHED_SMT
  5486. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5487. {
  5488. return sprintf(page, "%u\n", sched_smt_power_savings);
  5489. }
  5490. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5491. const char *buf, size_t count)
  5492. {
  5493. return sched_power_savings_store(buf, count, 1);
  5494. }
  5495. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5496. sched_smt_power_savings_store);
  5497. #endif
  5498. /*
  5499. * Force a reinitialization of the sched domains hierarchy. The domains
  5500. * and groups cannot be updated in place without racing with the balancing
  5501. * code, so we temporarily attach all running cpus to the NULL domain
  5502. * which will prevent rebalancing while the sched domains are recalculated.
  5503. */
  5504. static int update_sched_domains(struct notifier_block *nfb,
  5505. unsigned long action, void *hcpu)
  5506. {
  5507. switch (action) {
  5508. case CPU_UP_PREPARE:
  5509. case CPU_UP_PREPARE_FROZEN:
  5510. case CPU_DOWN_PREPARE:
  5511. case CPU_DOWN_PREPARE_FROZEN:
  5512. detach_destroy_domains(&cpu_online_map);
  5513. return NOTIFY_OK;
  5514. case CPU_UP_CANCELED:
  5515. case CPU_UP_CANCELED_FROZEN:
  5516. case CPU_DOWN_FAILED:
  5517. case CPU_DOWN_FAILED_FROZEN:
  5518. case CPU_ONLINE:
  5519. case CPU_ONLINE_FROZEN:
  5520. case CPU_DEAD:
  5521. case CPU_DEAD_FROZEN:
  5522. /*
  5523. * Fall through and re-initialise the domains.
  5524. */
  5525. break;
  5526. default:
  5527. return NOTIFY_DONE;
  5528. }
  5529. /* The hotplug lock is already held by cpu_up/cpu_down */
  5530. arch_init_sched_domains(&cpu_online_map);
  5531. return NOTIFY_OK;
  5532. }
  5533. void __init sched_init_smp(void)
  5534. {
  5535. cpumask_t non_isolated_cpus;
  5536. mutex_lock(&sched_hotcpu_mutex);
  5537. arch_init_sched_domains(&cpu_online_map);
  5538. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5539. if (cpus_empty(non_isolated_cpus))
  5540. cpu_set(smp_processor_id(), non_isolated_cpus);
  5541. mutex_unlock(&sched_hotcpu_mutex);
  5542. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5543. hotcpu_notifier(update_sched_domains, 0);
  5544. init_sched_domain_sysctl();
  5545. /* Move init over to a non-isolated CPU */
  5546. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5547. BUG();
  5548. sched_init_granularity();
  5549. }
  5550. #else
  5551. void __init sched_init_smp(void)
  5552. {
  5553. sched_init_granularity();
  5554. }
  5555. #endif /* CONFIG_SMP */
  5556. int in_sched_functions(unsigned long addr)
  5557. {
  5558. /* Linker adds these: start and end of __sched functions */
  5559. extern char __sched_text_start[], __sched_text_end[];
  5560. return in_lock_functions(addr) ||
  5561. (addr >= (unsigned long)__sched_text_start
  5562. && addr < (unsigned long)__sched_text_end);
  5563. }
  5564. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5565. {
  5566. cfs_rq->tasks_timeline = RB_ROOT;
  5567. cfs_rq->fair_clock = 1;
  5568. #ifdef CONFIG_FAIR_GROUP_SCHED
  5569. cfs_rq->rq = rq;
  5570. #endif
  5571. }
  5572. void __init sched_init(void)
  5573. {
  5574. u64 now = sched_clock();
  5575. int highest_cpu = 0;
  5576. int i, j;
  5577. /*
  5578. * Link up the scheduling class hierarchy:
  5579. */
  5580. rt_sched_class.next = &fair_sched_class;
  5581. fair_sched_class.next = &idle_sched_class;
  5582. idle_sched_class.next = NULL;
  5583. for_each_possible_cpu(i) {
  5584. struct rt_prio_array *array;
  5585. struct rq *rq;
  5586. rq = cpu_rq(i);
  5587. spin_lock_init(&rq->lock);
  5588. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5589. rq->nr_running = 0;
  5590. rq->clock = 1;
  5591. init_cfs_rq(&rq->cfs, rq);
  5592. #ifdef CONFIG_FAIR_GROUP_SCHED
  5593. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5594. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5595. #endif
  5596. rq->ls.load_update_last = now;
  5597. rq->ls.load_update_start = now;
  5598. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5599. rq->cpu_load[j] = 0;
  5600. #ifdef CONFIG_SMP
  5601. rq->sd = NULL;
  5602. rq->active_balance = 0;
  5603. rq->next_balance = jiffies;
  5604. rq->push_cpu = 0;
  5605. rq->cpu = i;
  5606. rq->migration_thread = NULL;
  5607. INIT_LIST_HEAD(&rq->migration_queue);
  5608. #endif
  5609. atomic_set(&rq->nr_iowait, 0);
  5610. array = &rq->rt.active;
  5611. for (j = 0; j < MAX_RT_PRIO; j++) {
  5612. INIT_LIST_HEAD(array->queue + j);
  5613. __clear_bit(j, array->bitmap);
  5614. }
  5615. highest_cpu = i;
  5616. /* delimiter for bitsearch: */
  5617. __set_bit(MAX_RT_PRIO, array->bitmap);
  5618. }
  5619. set_load_weight(&init_task);
  5620. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5621. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5622. #endif
  5623. #ifdef CONFIG_SMP
  5624. nr_cpu_ids = highest_cpu + 1;
  5625. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5626. #endif
  5627. #ifdef CONFIG_RT_MUTEXES
  5628. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5629. #endif
  5630. /*
  5631. * The boot idle thread does lazy MMU switching as well:
  5632. */
  5633. atomic_inc(&init_mm.mm_count);
  5634. enter_lazy_tlb(&init_mm, current);
  5635. /*
  5636. * Make us the idle thread. Technically, schedule() should not be
  5637. * called from this thread, however somewhere below it might be,
  5638. * but because we are the idle thread, we just pick up running again
  5639. * when this runqueue becomes "idle".
  5640. */
  5641. init_idle(current, smp_processor_id());
  5642. /*
  5643. * During early bootup we pretend to be a normal task:
  5644. */
  5645. current->sched_class = &fair_sched_class;
  5646. }
  5647. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5648. void __might_sleep(char *file, int line)
  5649. {
  5650. #ifdef in_atomic
  5651. static unsigned long prev_jiffy; /* ratelimiting */
  5652. if ((in_atomic() || irqs_disabled()) &&
  5653. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5654. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5655. return;
  5656. prev_jiffy = jiffies;
  5657. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5658. " context at %s:%d\n", file, line);
  5659. printk("in_atomic():%d, irqs_disabled():%d\n",
  5660. in_atomic(), irqs_disabled());
  5661. debug_show_held_locks(current);
  5662. if (irqs_disabled())
  5663. print_irqtrace_events(current);
  5664. dump_stack();
  5665. }
  5666. #endif
  5667. }
  5668. EXPORT_SYMBOL(__might_sleep);
  5669. #endif
  5670. #ifdef CONFIG_MAGIC_SYSRQ
  5671. void normalize_rt_tasks(void)
  5672. {
  5673. struct task_struct *g, *p;
  5674. unsigned long flags;
  5675. struct rq *rq;
  5676. int on_rq;
  5677. read_lock_irq(&tasklist_lock);
  5678. do_each_thread(g, p) {
  5679. p->se.fair_key = 0;
  5680. p->se.wait_runtime = 0;
  5681. p->se.exec_start = 0;
  5682. p->se.wait_start_fair = 0;
  5683. p->se.sleep_start_fair = 0;
  5684. #ifdef CONFIG_SCHEDSTATS
  5685. p->se.wait_start = 0;
  5686. p->se.sleep_start = 0;
  5687. p->se.block_start = 0;
  5688. #endif
  5689. task_rq(p)->cfs.fair_clock = 0;
  5690. task_rq(p)->clock = 0;
  5691. if (!rt_task(p)) {
  5692. /*
  5693. * Renice negative nice level userspace
  5694. * tasks back to 0:
  5695. */
  5696. if (TASK_NICE(p) < 0 && p->mm)
  5697. set_user_nice(p, 0);
  5698. continue;
  5699. }
  5700. spin_lock_irqsave(&p->pi_lock, flags);
  5701. rq = __task_rq_lock(p);
  5702. #ifdef CONFIG_SMP
  5703. /*
  5704. * Do not touch the migration thread:
  5705. */
  5706. if (p == rq->migration_thread)
  5707. goto out_unlock;
  5708. #endif
  5709. on_rq = p->se.on_rq;
  5710. if (on_rq)
  5711. deactivate_task(task_rq(p), p, 0, rq_clock(task_rq(p)));
  5712. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5713. if (on_rq) {
  5714. activate_task(task_rq(p), p, 0);
  5715. resched_task(rq->curr);
  5716. }
  5717. #ifdef CONFIG_SMP
  5718. out_unlock:
  5719. #endif
  5720. __task_rq_unlock(rq);
  5721. spin_unlock_irqrestore(&p->pi_lock, flags);
  5722. } while_each_thread(g, p);
  5723. read_unlock_irq(&tasklist_lock);
  5724. }
  5725. #endif /* CONFIG_MAGIC_SYSRQ */
  5726. #ifdef CONFIG_IA64
  5727. /*
  5728. * These functions are only useful for the IA64 MCA handling.
  5729. *
  5730. * They can only be called when the whole system has been
  5731. * stopped - every CPU needs to be quiescent, and no scheduling
  5732. * activity can take place. Using them for anything else would
  5733. * be a serious bug, and as a result, they aren't even visible
  5734. * under any other configuration.
  5735. */
  5736. /**
  5737. * curr_task - return the current task for a given cpu.
  5738. * @cpu: the processor in question.
  5739. *
  5740. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5741. */
  5742. struct task_struct *curr_task(int cpu)
  5743. {
  5744. return cpu_curr(cpu);
  5745. }
  5746. /**
  5747. * set_curr_task - set the current task for a given cpu.
  5748. * @cpu: the processor in question.
  5749. * @p: the task pointer to set.
  5750. *
  5751. * Description: This function must only be used when non-maskable interrupts
  5752. * are serviced on a separate stack. It allows the architecture to switch the
  5753. * notion of the current task on a cpu in a non-blocking manner. This function
  5754. * must be called with all CPU's synchronized, and interrupts disabled, the
  5755. * and caller must save the original value of the current task (see
  5756. * curr_task() above) and restore that value before reenabling interrupts and
  5757. * re-starting the system.
  5758. *
  5759. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5760. */
  5761. void set_curr_task(int cpu, struct task_struct *p)
  5762. {
  5763. cpu_curr(cpu) = p;
  5764. }
  5765. #endif