processor_idle.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/acpi.h>
  37. #include <linux/dmi.h>
  38. #include <linux/moduleparam.h>
  39. #include <linux/sched.h> /* need_resched() */
  40. #include <linux/pm_qos_params.h>
  41. #include <linux/clockchips.h>
  42. #include <linux/cpuidle.h>
  43. #include <linux/cpuidle.h>
  44. /*
  45. * Include the apic definitions for x86 to have the APIC timer related defines
  46. * available also for UP (on SMP it gets magically included via linux/smp.h).
  47. * asm/acpi.h is not an option, as it would require more include magic. Also
  48. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  49. */
  50. #ifdef CONFIG_X86
  51. #include <asm/apic.h>
  52. #endif
  53. #include <asm/io.h>
  54. #include <asm/uaccess.h>
  55. #include <acpi/acpi_bus.h>
  56. #include <acpi/processor.h>
  57. #include <asm/processor.h>
  58. #define ACPI_PROCESSOR_COMPONENT 0x01000000
  59. #define ACPI_PROCESSOR_CLASS "processor"
  60. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  61. ACPI_MODULE_NAME("processor_idle");
  62. #define ACPI_PROCESSOR_FILE_POWER "power"
  63. #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
  64. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  65. #ifndef CONFIG_CPU_IDLE
  66. #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
  67. #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
  68. static void (*pm_idle_save) (void) __read_mostly;
  69. #else
  70. #define C2_OVERHEAD 1 /* 1us */
  71. #define C3_OVERHEAD 1 /* 1us */
  72. #endif
  73. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  74. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  75. #ifdef CONFIG_CPU_IDLE
  76. module_param(max_cstate, uint, 0000);
  77. #else
  78. module_param(max_cstate, uint, 0644);
  79. #endif
  80. static unsigned int nocst __read_mostly;
  81. module_param(nocst, uint, 0000);
  82. #ifndef CONFIG_CPU_IDLE
  83. /*
  84. * bm_history -- bit-mask with a bit per jiffy of bus-master activity
  85. * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
  86. * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
  87. * 100 HZ: 0x0000000F: 4 jiffies = 40ms
  88. * reduce history for more aggressive entry into C3
  89. */
  90. static unsigned int bm_history __read_mostly =
  91. (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
  92. module_param(bm_history, uint, 0644);
  93. static int acpi_processor_set_power_policy(struct acpi_processor *pr);
  94. #else /* CONFIG_CPU_IDLE */
  95. static unsigned int latency_factor __read_mostly = 2;
  96. module_param(latency_factor, uint, 0644);
  97. #endif
  98. /*
  99. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  100. * For now disable this. Probably a bug somewhere else.
  101. *
  102. * To skip this limit, boot/load with a large max_cstate limit.
  103. */
  104. static int set_max_cstate(const struct dmi_system_id *id)
  105. {
  106. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  107. return 0;
  108. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  109. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  110. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  111. max_cstate = (long)id->driver_data;
  112. return 0;
  113. }
  114. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  115. callers to only run once -AK */
  116. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  117. { set_max_cstate, "IBM ThinkPad R40e", {
  118. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  119. DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
  120. { set_max_cstate, "IBM ThinkPad R40e", {
  121. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  122. DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
  123. { set_max_cstate, "IBM ThinkPad R40e", {
  124. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  125. DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
  126. { set_max_cstate, "IBM ThinkPad R40e", {
  127. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  128. DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
  129. { set_max_cstate, "IBM ThinkPad R40e", {
  130. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  131. DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
  132. { set_max_cstate, "IBM ThinkPad R40e", {
  133. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  134. DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
  135. { set_max_cstate, "IBM ThinkPad R40e", {
  136. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  137. DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
  138. { set_max_cstate, "IBM ThinkPad R40e", {
  139. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  140. DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
  141. { set_max_cstate, "IBM ThinkPad R40e", {
  142. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  143. DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
  144. { set_max_cstate, "IBM ThinkPad R40e", {
  145. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  146. DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
  147. { set_max_cstate, "IBM ThinkPad R40e", {
  148. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  149. DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
  150. { set_max_cstate, "IBM ThinkPad R40e", {
  151. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  152. DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
  153. { set_max_cstate, "IBM ThinkPad R40e", {
  154. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  155. DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
  156. { set_max_cstate, "IBM ThinkPad R40e", {
  157. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  158. DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
  159. { set_max_cstate, "IBM ThinkPad R40e", {
  160. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  161. DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
  162. { set_max_cstate, "IBM ThinkPad R40e", {
  163. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  164. DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
  165. { set_max_cstate, "Medion 41700", {
  166. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  167. DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
  168. { set_max_cstate, "Clevo 5600D", {
  169. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  170. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  171. (void *)2},
  172. {},
  173. };
  174. static inline u32 ticks_elapsed(u32 t1, u32 t2)
  175. {
  176. if (t2 >= t1)
  177. return (t2 - t1);
  178. else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
  179. return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
  180. else
  181. return ((0xFFFFFFFF - t1) + t2);
  182. }
  183. static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
  184. {
  185. if (t2 >= t1)
  186. return PM_TIMER_TICKS_TO_US(t2 - t1);
  187. else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
  188. return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
  189. else
  190. return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
  191. }
  192. /*
  193. * Callers should disable interrupts before the call and enable
  194. * interrupts after return.
  195. */
  196. static void acpi_safe_halt(void)
  197. {
  198. current_thread_info()->status &= ~TS_POLLING;
  199. /*
  200. * TS_POLLING-cleared state must be visible before we
  201. * test NEED_RESCHED:
  202. */
  203. smp_mb();
  204. if (!need_resched()) {
  205. safe_halt();
  206. local_irq_disable();
  207. }
  208. current_thread_info()->status |= TS_POLLING;
  209. }
  210. #ifndef CONFIG_CPU_IDLE
  211. static void
  212. acpi_processor_power_activate(struct acpi_processor *pr,
  213. struct acpi_processor_cx *new)
  214. {
  215. struct acpi_processor_cx *old;
  216. if (!pr || !new)
  217. return;
  218. old = pr->power.state;
  219. if (old)
  220. old->promotion.count = 0;
  221. new->demotion.count = 0;
  222. /* Cleanup from old state. */
  223. if (old) {
  224. switch (old->type) {
  225. case ACPI_STATE_C3:
  226. /* Disable bus master reload */
  227. if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
  228. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
  229. break;
  230. }
  231. }
  232. /* Prepare to use new state. */
  233. switch (new->type) {
  234. case ACPI_STATE_C3:
  235. /* Enable bus master reload */
  236. if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
  237. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  238. break;
  239. }
  240. pr->power.state = new;
  241. return;
  242. }
  243. static atomic_t c3_cpu_count;
  244. /* Common C-state entry for C2, C3, .. */
  245. static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
  246. {
  247. /* Don't trace irqs off for idle */
  248. stop_critical_timings();
  249. if (cstate->entry_method == ACPI_CSTATE_FFH) {
  250. /* Call into architectural FFH based C-state */
  251. acpi_processor_ffh_cstate_enter(cstate);
  252. } else {
  253. int unused;
  254. /* IO port based C-state */
  255. inb(cstate->address);
  256. /* Dummy wait op - must do something useless after P_LVL2 read
  257. because chipsets cannot guarantee that STPCLK# signal
  258. gets asserted in time to freeze execution properly. */
  259. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  260. }
  261. start_critical_timings();
  262. }
  263. #endif /* !CONFIG_CPU_IDLE */
  264. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  265. /*
  266. * Some BIOS implementations switch to C3 in the published C2 state.
  267. * This seems to be a common problem on AMD boxen, but other vendors
  268. * are affected too. We pick the most conservative approach: we assume
  269. * that the local APIC stops in both C2 and C3.
  270. */
  271. static void acpi_timer_check_state(int state, struct acpi_processor *pr,
  272. struct acpi_processor_cx *cx)
  273. {
  274. struct acpi_processor_power *pwr = &pr->power;
  275. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  276. /*
  277. * Check, if one of the previous states already marked the lapic
  278. * unstable
  279. */
  280. if (pwr->timer_broadcast_on_state < state)
  281. return;
  282. if (cx->type >= type)
  283. pr->power.timer_broadcast_on_state = state;
  284. }
  285. static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
  286. {
  287. unsigned long reason;
  288. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  289. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  290. clockevents_notify(reason, &pr->id);
  291. }
  292. /* Power(C) State timer broadcast control */
  293. static void acpi_state_timer_broadcast(struct acpi_processor *pr,
  294. struct acpi_processor_cx *cx,
  295. int broadcast)
  296. {
  297. int state = cx - pr->power.states;
  298. if (state >= pr->power.timer_broadcast_on_state) {
  299. unsigned long reason;
  300. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  301. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  302. clockevents_notify(reason, &pr->id);
  303. }
  304. }
  305. #else
  306. static void acpi_timer_check_state(int state, struct acpi_processor *pr,
  307. struct acpi_processor_cx *cstate) { }
  308. static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
  309. static void acpi_state_timer_broadcast(struct acpi_processor *pr,
  310. struct acpi_processor_cx *cx,
  311. int broadcast)
  312. {
  313. }
  314. #endif
  315. /*
  316. * Suspend / resume control
  317. */
  318. static int acpi_idle_suspend;
  319. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  320. {
  321. acpi_idle_suspend = 1;
  322. return 0;
  323. }
  324. int acpi_processor_resume(struct acpi_device * device)
  325. {
  326. acpi_idle_suspend = 0;
  327. return 0;
  328. }
  329. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  330. static int tsc_halts_in_c(int state)
  331. {
  332. switch (boot_cpu_data.x86_vendor) {
  333. case X86_VENDOR_AMD:
  334. /*
  335. * AMD Fam10h TSC will tick in all
  336. * C/P/S0/S1 states when this bit is set.
  337. */
  338. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  339. return 0;
  340. /*FALL THROUGH*/
  341. case X86_VENDOR_INTEL:
  342. /* Several cases known where TSC halts in C2 too */
  343. default:
  344. return state > ACPI_STATE_C1;
  345. }
  346. }
  347. #endif
  348. #ifndef CONFIG_CPU_IDLE
  349. static void acpi_processor_idle(void)
  350. {
  351. struct acpi_processor *pr = NULL;
  352. struct acpi_processor_cx *cx = NULL;
  353. struct acpi_processor_cx *next_state = NULL;
  354. int sleep_ticks = 0;
  355. u32 t1, t2 = 0;
  356. /*
  357. * Interrupts must be disabled during bus mastering calculations and
  358. * for C2/C3 transitions.
  359. */
  360. local_irq_disable();
  361. pr = __get_cpu_var(processors);
  362. if (!pr) {
  363. local_irq_enable();
  364. return;
  365. }
  366. /*
  367. * Check whether we truly need to go idle, or should
  368. * reschedule:
  369. */
  370. if (unlikely(need_resched())) {
  371. local_irq_enable();
  372. return;
  373. }
  374. cx = pr->power.state;
  375. if (!cx || acpi_idle_suspend) {
  376. if (pm_idle_save) {
  377. pm_idle_save(); /* enables IRQs */
  378. } else {
  379. acpi_safe_halt();
  380. local_irq_enable();
  381. }
  382. return;
  383. }
  384. /*
  385. * Check BM Activity
  386. * -----------------
  387. * Check for bus mastering activity (if required), record, and check
  388. * for demotion.
  389. */
  390. if (pr->flags.bm_check) {
  391. u32 bm_status = 0;
  392. unsigned long diff = jiffies - pr->power.bm_check_timestamp;
  393. if (diff > 31)
  394. diff = 31;
  395. pr->power.bm_activity <<= diff;
  396. acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  397. if (bm_status) {
  398. pr->power.bm_activity |= 0x1;
  399. acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  400. }
  401. /*
  402. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  403. * the true state of bus mastering activity; forcing us to
  404. * manually check the BMIDEA bit of each IDE channel.
  405. */
  406. else if (errata.piix4.bmisx) {
  407. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  408. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  409. pr->power.bm_activity |= 0x1;
  410. }
  411. pr->power.bm_check_timestamp = jiffies;
  412. /*
  413. * If bus mastering is or was active this jiffy, demote
  414. * to avoid a faulty transition. Note that the processor
  415. * won't enter a low-power state during this call (to this
  416. * function) but should upon the next.
  417. *
  418. * TBD: A better policy might be to fallback to the demotion
  419. * state (use it for this quantum only) istead of
  420. * demoting -- and rely on duration as our sole demotion
  421. * qualification. This may, however, introduce DMA
  422. * issues (e.g. floppy DMA transfer overrun/underrun).
  423. */
  424. if ((pr->power.bm_activity & 0x1) &&
  425. cx->demotion.threshold.bm) {
  426. local_irq_enable();
  427. next_state = cx->demotion.state;
  428. goto end;
  429. }
  430. }
  431. #ifdef CONFIG_HOTPLUG_CPU
  432. /*
  433. * Check for P_LVL2_UP flag before entering C2 and above on
  434. * an SMP system. We do it here instead of doing it at _CST/P_LVL
  435. * detection phase, to work cleanly with logical CPU hotplug.
  436. */
  437. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  438. !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  439. cx = &pr->power.states[ACPI_STATE_C1];
  440. #endif
  441. /*
  442. * Sleep:
  443. * ------
  444. * Invoke the current Cx state to put the processor to sleep.
  445. */
  446. if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
  447. current_thread_info()->status &= ~TS_POLLING;
  448. /*
  449. * TS_POLLING-cleared state must be visible before we
  450. * test NEED_RESCHED:
  451. */
  452. smp_mb();
  453. if (need_resched()) {
  454. current_thread_info()->status |= TS_POLLING;
  455. local_irq_enable();
  456. return;
  457. }
  458. }
  459. switch (cx->type) {
  460. case ACPI_STATE_C1:
  461. /*
  462. * Invoke C1.
  463. * Use the appropriate idle routine, the one that would
  464. * be used without acpi C-states.
  465. */
  466. if (pm_idle_save) {
  467. pm_idle_save(); /* enables IRQs */
  468. } else {
  469. acpi_safe_halt();
  470. local_irq_enable();
  471. }
  472. /*
  473. * TBD: Can't get time duration while in C1, as resumes
  474. * go to an ISR rather than here. Need to instrument
  475. * base interrupt handler.
  476. *
  477. * Note: the TSC better not stop in C1, sched_clock() will
  478. * skew otherwise.
  479. */
  480. sleep_ticks = 0xFFFFFFFF;
  481. break;
  482. case ACPI_STATE_C2:
  483. /* Get start time (ticks) */
  484. t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  485. /* Tell the scheduler that we are going deep-idle: */
  486. sched_clock_idle_sleep_event();
  487. /* Invoke C2 */
  488. acpi_state_timer_broadcast(pr, cx, 1);
  489. acpi_cstate_enter(cx);
  490. /* Get end time (ticks) */
  491. t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  492. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  493. /* TSC halts in C2, so notify users */
  494. if (tsc_halts_in_c(ACPI_STATE_C2))
  495. mark_tsc_unstable("possible TSC halt in C2");
  496. #endif
  497. /* Compute time (ticks) that we were actually asleep */
  498. sleep_ticks = ticks_elapsed(t1, t2);
  499. /* Tell the scheduler how much we idled: */
  500. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  501. /* Re-enable interrupts */
  502. local_irq_enable();
  503. /* Do not account our idle-switching overhead: */
  504. sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
  505. current_thread_info()->status |= TS_POLLING;
  506. acpi_state_timer_broadcast(pr, cx, 0);
  507. break;
  508. case ACPI_STATE_C3:
  509. acpi_unlazy_tlb(smp_processor_id());
  510. /*
  511. * Must be done before busmaster disable as we might
  512. * need to access HPET !
  513. */
  514. acpi_state_timer_broadcast(pr, cx, 1);
  515. /*
  516. * disable bus master
  517. * bm_check implies we need ARB_DIS
  518. * !bm_check implies we need cache flush
  519. * bm_control implies whether we can do ARB_DIS
  520. *
  521. * That leaves a case where bm_check is set and bm_control is
  522. * not set. In that case we cannot do much, we enter C3
  523. * without doing anything.
  524. */
  525. if (pr->flags.bm_check && pr->flags.bm_control) {
  526. if (atomic_inc_return(&c3_cpu_count) ==
  527. num_online_cpus()) {
  528. /*
  529. * All CPUs are trying to go to C3
  530. * Disable bus master arbitration
  531. */
  532. acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
  533. }
  534. } else if (!pr->flags.bm_check) {
  535. /* SMP with no shared cache... Invalidate cache */
  536. ACPI_FLUSH_CPU_CACHE();
  537. }
  538. /* Get start time (ticks) */
  539. t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  540. /* Invoke C3 */
  541. /* Tell the scheduler that we are going deep-idle: */
  542. sched_clock_idle_sleep_event();
  543. acpi_cstate_enter(cx);
  544. /* Get end time (ticks) */
  545. t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  546. if (pr->flags.bm_check && pr->flags.bm_control) {
  547. /* Enable bus master arbitration */
  548. atomic_dec(&c3_cpu_count);
  549. acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
  550. }
  551. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  552. /* TSC halts in C3, so notify users */
  553. if (tsc_halts_in_c(ACPI_STATE_C3))
  554. mark_tsc_unstable("TSC halts in C3");
  555. #endif
  556. /* Compute time (ticks) that we were actually asleep */
  557. sleep_ticks = ticks_elapsed(t1, t2);
  558. /* Tell the scheduler how much we idled: */
  559. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  560. /* Re-enable interrupts */
  561. local_irq_enable();
  562. /* Do not account our idle-switching overhead: */
  563. sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
  564. current_thread_info()->status |= TS_POLLING;
  565. acpi_state_timer_broadcast(pr, cx, 0);
  566. break;
  567. default:
  568. local_irq_enable();
  569. return;
  570. }
  571. cx->usage++;
  572. if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
  573. cx->time += sleep_ticks;
  574. next_state = pr->power.state;
  575. #ifdef CONFIG_HOTPLUG_CPU
  576. /* Don't do promotion/demotion */
  577. if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  578. !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
  579. next_state = cx;
  580. goto end;
  581. }
  582. #endif
  583. /*
  584. * Promotion?
  585. * ----------
  586. * Track the number of longs (time asleep is greater than threshold)
  587. * and promote when the count threshold is reached. Note that bus
  588. * mastering activity may prevent promotions.
  589. * Do not promote above max_cstate.
  590. */
  591. if (cx->promotion.state &&
  592. ((cx->promotion.state - pr->power.states) <= max_cstate)) {
  593. if (sleep_ticks > cx->promotion.threshold.ticks &&
  594. cx->promotion.state->latency <=
  595. pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
  596. cx->promotion.count++;
  597. cx->demotion.count = 0;
  598. if (cx->promotion.count >=
  599. cx->promotion.threshold.count) {
  600. if (pr->flags.bm_check) {
  601. if (!
  602. (pr->power.bm_activity & cx->
  603. promotion.threshold.bm)) {
  604. next_state =
  605. cx->promotion.state;
  606. goto end;
  607. }
  608. } else {
  609. next_state = cx->promotion.state;
  610. goto end;
  611. }
  612. }
  613. }
  614. }
  615. /*
  616. * Demotion?
  617. * ---------
  618. * Track the number of shorts (time asleep is less than time threshold)
  619. * and demote when the usage threshold is reached.
  620. */
  621. if (cx->demotion.state) {
  622. if (sleep_ticks < cx->demotion.threshold.ticks) {
  623. cx->demotion.count++;
  624. cx->promotion.count = 0;
  625. if (cx->demotion.count >= cx->demotion.threshold.count) {
  626. next_state = cx->demotion.state;
  627. goto end;
  628. }
  629. }
  630. }
  631. end:
  632. /*
  633. * Demote if current state exceeds max_cstate
  634. * or if the latency of the current state is unacceptable
  635. */
  636. if ((pr->power.state - pr->power.states) > max_cstate ||
  637. pr->power.state->latency >
  638. pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
  639. if (cx->demotion.state)
  640. next_state = cx->demotion.state;
  641. }
  642. /*
  643. * New Cx State?
  644. * -------------
  645. * If we're going to start using a new Cx state we must clean up
  646. * from the previous and prepare to use the new.
  647. */
  648. if (next_state != pr->power.state)
  649. acpi_processor_power_activate(pr, next_state);
  650. }
  651. static int acpi_processor_set_power_policy(struct acpi_processor *pr)
  652. {
  653. unsigned int i;
  654. unsigned int state_is_set = 0;
  655. struct acpi_processor_cx *lower = NULL;
  656. struct acpi_processor_cx *higher = NULL;
  657. struct acpi_processor_cx *cx;
  658. if (!pr)
  659. return -EINVAL;
  660. /*
  661. * This function sets the default Cx state policy (OS idle handler).
  662. * Our scheme is to promote quickly to C2 but more conservatively
  663. * to C3. We're favoring C2 for its characteristics of low latency
  664. * (quick response), good power savings, and ability to allow bus
  665. * mastering activity. Note that the Cx state policy is completely
  666. * customizable and can be altered dynamically.
  667. */
  668. /* startup state */
  669. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  670. cx = &pr->power.states[i];
  671. if (!cx->valid)
  672. continue;
  673. if (!state_is_set)
  674. pr->power.state = cx;
  675. state_is_set++;
  676. break;
  677. }
  678. if (!state_is_set)
  679. return -ENODEV;
  680. /* demotion */
  681. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  682. cx = &pr->power.states[i];
  683. if (!cx->valid)
  684. continue;
  685. if (lower) {
  686. cx->demotion.state = lower;
  687. cx->demotion.threshold.ticks = cx->latency_ticks;
  688. cx->demotion.threshold.count = 1;
  689. if (cx->type == ACPI_STATE_C3)
  690. cx->demotion.threshold.bm = bm_history;
  691. }
  692. lower = cx;
  693. }
  694. /* promotion */
  695. for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
  696. cx = &pr->power.states[i];
  697. if (!cx->valid)
  698. continue;
  699. if (higher) {
  700. cx->promotion.state = higher;
  701. cx->promotion.threshold.ticks = cx->latency_ticks;
  702. if (cx->type >= ACPI_STATE_C2)
  703. cx->promotion.threshold.count = 4;
  704. else
  705. cx->promotion.threshold.count = 10;
  706. if (higher->type == ACPI_STATE_C3)
  707. cx->promotion.threshold.bm = bm_history;
  708. }
  709. higher = cx;
  710. }
  711. return 0;
  712. }
  713. #endif /* !CONFIG_CPU_IDLE */
  714. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  715. {
  716. if (!pr)
  717. return -EINVAL;
  718. if (!pr->pblk)
  719. return -ENODEV;
  720. /* if info is obtained from pblk/fadt, type equals state */
  721. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  722. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  723. #ifndef CONFIG_HOTPLUG_CPU
  724. /*
  725. * Check for P_LVL2_UP flag before entering C2 and above on
  726. * an SMP system.
  727. */
  728. if ((num_online_cpus() > 1) &&
  729. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  730. return -ENODEV;
  731. #endif
  732. /* determine C2 and C3 address from pblk */
  733. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  734. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  735. /* determine latencies from FADT */
  736. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  737. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  738. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  739. "lvl2[0x%08x] lvl3[0x%08x]\n",
  740. pr->power.states[ACPI_STATE_C2].address,
  741. pr->power.states[ACPI_STATE_C3].address));
  742. return 0;
  743. }
  744. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  745. {
  746. if (!pr->power.states[ACPI_STATE_C1].valid) {
  747. /* set the first C-State to C1 */
  748. /* all processors need to support C1 */
  749. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  750. pr->power.states[ACPI_STATE_C1].valid = 1;
  751. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  752. }
  753. /* the C0 state only exists as a filler in our array */
  754. pr->power.states[ACPI_STATE_C0].valid = 1;
  755. return 0;
  756. }
  757. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  758. {
  759. acpi_status status = 0;
  760. acpi_integer count;
  761. int current_count;
  762. int i;
  763. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  764. union acpi_object *cst;
  765. if (nocst)
  766. return -ENODEV;
  767. current_count = 0;
  768. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  769. if (ACPI_FAILURE(status)) {
  770. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  771. return -ENODEV;
  772. }
  773. cst = buffer.pointer;
  774. /* There must be at least 2 elements */
  775. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  776. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  777. status = -EFAULT;
  778. goto end;
  779. }
  780. count = cst->package.elements[0].integer.value;
  781. /* Validate number of power states. */
  782. if (count < 1 || count != cst->package.count - 1) {
  783. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  784. status = -EFAULT;
  785. goto end;
  786. }
  787. /* Tell driver that at least _CST is supported. */
  788. pr->flags.has_cst = 1;
  789. for (i = 1; i <= count; i++) {
  790. union acpi_object *element;
  791. union acpi_object *obj;
  792. struct acpi_power_register *reg;
  793. struct acpi_processor_cx cx;
  794. memset(&cx, 0, sizeof(cx));
  795. element = &(cst->package.elements[i]);
  796. if (element->type != ACPI_TYPE_PACKAGE)
  797. continue;
  798. if (element->package.count != 4)
  799. continue;
  800. obj = &(element->package.elements[0]);
  801. if (obj->type != ACPI_TYPE_BUFFER)
  802. continue;
  803. reg = (struct acpi_power_register *)obj->buffer.pointer;
  804. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  805. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  806. continue;
  807. /* There should be an easy way to extract an integer... */
  808. obj = &(element->package.elements[1]);
  809. if (obj->type != ACPI_TYPE_INTEGER)
  810. continue;
  811. cx.type = obj->integer.value;
  812. /*
  813. * Some buggy BIOSes won't list C1 in _CST -
  814. * Let acpi_processor_get_power_info_default() handle them later
  815. */
  816. if (i == 1 && cx.type != ACPI_STATE_C1)
  817. current_count++;
  818. cx.address = reg->address;
  819. cx.index = current_count + 1;
  820. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  821. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  822. if (acpi_processor_ffh_cstate_probe
  823. (pr->id, &cx, reg) == 0) {
  824. cx.entry_method = ACPI_CSTATE_FFH;
  825. } else if (cx.type == ACPI_STATE_C1) {
  826. /*
  827. * C1 is a special case where FIXED_HARDWARE
  828. * can be handled in non-MWAIT way as well.
  829. * In that case, save this _CST entry info.
  830. * Otherwise, ignore this info and continue.
  831. */
  832. cx.entry_method = ACPI_CSTATE_HALT;
  833. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  834. } else {
  835. continue;
  836. }
  837. if (cx.type == ACPI_STATE_C1 &&
  838. (idle_halt || idle_nomwait)) {
  839. /*
  840. * In most cases the C1 space_id obtained from
  841. * _CST object is FIXED_HARDWARE access mode.
  842. * But when the option of idle=halt is added,
  843. * the entry_method type should be changed from
  844. * CSTATE_FFH to CSTATE_HALT.
  845. * When the option of idle=nomwait is added,
  846. * the C1 entry_method type should be
  847. * CSTATE_HALT.
  848. */
  849. cx.entry_method = ACPI_CSTATE_HALT;
  850. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  851. }
  852. } else {
  853. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  854. cx.address);
  855. }
  856. if (cx.type == ACPI_STATE_C1) {
  857. cx.valid = 1;
  858. }
  859. obj = &(element->package.elements[2]);
  860. if (obj->type != ACPI_TYPE_INTEGER)
  861. continue;
  862. cx.latency = obj->integer.value;
  863. obj = &(element->package.elements[3]);
  864. if (obj->type != ACPI_TYPE_INTEGER)
  865. continue;
  866. cx.power = obj->integer.value;
  867. current_count++;
  868. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  869. /*
  870. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  871. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  872. */
  873. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  874. printk(KERN_WARNING
  875. "Limiting number of power states to max (%d)\n",
  876. ACPI_PROCESSOR_MAX_POWER);
  877. printk(KERN_WARNING
  878. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  879. break;
  880. }
  881. }
  882. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  883. current_count));
  884. /* Validate number of power states discovered */
  885. if (current_count < 2)
  886. status = -EFAULT;
  887. end:
  888. kfree(buffer.pointer);
  889. return status;
  890. }
  891. static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
  892. {
  893. if (!cx->address)
  894. return;
  895. /*
  896. * C2 latency must be less than or equal to 100
  897. * microseconds.
  898. */
  899. else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  900. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  901. "latency too large [%d]\n", cx->latency));
  902. return;
  903. }
  904. /*
  905. * Otherwise we've met all of our C2 requirements.
  906. * Normalize the C2 latency to expidite policy
  907. */
  908. cx->valid = 1;
  909. #ifndef CONFIG_CPU_IDLE
  910. cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
  911. #else
  912. cx->latency_ticks = cx->latency;
  913. #endif
  914. return;
  915. }
  916. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  917. struct acpi_processor_cx *cx)
  918. {
  919. static int bm_check_flag;
  920. if (!cx->address)
  921. return;
  922. /*
  923. * C3 latency must be less than or equal to 1000
  924. * microseconds.
  925. */
  926. else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  927. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  928. "latency too large [%d]\n", cx->latency));
  929. return;
  930. }
  931. /*
  932. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  933. * DMA transfers are used by any ISA device to avoid livelock.
  934. * Note that we could disable Type-F DMA (as recommended by
  935. * the erratum), but this is known to disrupt certain ISA
  936. * devices thus we take the conservative approach.
  937. */
  938. else if (errata.piix4.fdma) {
  939. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  940. "C3 not supported on PIIX4 with Type-F DMA\n"));
  941. return;
  942. }
  943. /* All the logic here assumes flags.bm_check is same across all CPUs */
  944. if (!bm_check_flag) {
  945. /* Determine whether bm_check is needed based on CPU */
  946. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  947. bm_check_flag = pr->flags.bm_check;
  948. } else {
  949. pr->flags.bm_check = bm_check_flag;
  950. }
  951. if (pr->flags.bm_check) {
  952. if (!pr->flags.bm_control) {
  953. if (pr->flags.has_cst != 1) {
  954. /* bus mastering control is necessary */
  955. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  956. "C3 support requires BM control\n"));
  957. return;
  958. } else {
  959. /* Here we enter C3 without bus mastering */
  960. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  961. "C3 support without BM control\n"));
  962. }
  963. }
  964. } else {
  965. /*
  966. * WBINVD should be set in fadt, for C3 state to be
  967. * supported on when bm_check is not required.
  968. */
  969. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  970. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  971. "Cache invalidation should work properly"
  972. " for C3 to be enabled on SMP systems\n"));
  973. return;
  974. }
  975. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
  976. }
  977. /*
  978. * Otherwise we've met all of our C3 requirements.
  979. * Normalize the C3 latency to expidite policy. Enable
  980. * checking of bus mastering status (bm_check) so we can
  981. * use this in our C3 policy
  982. */
  983. cx->valid = 1;
  984. #ifndef CONFIG_CPU_IDLE
  985. cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
  986. #else
  987. cx->latency_ticks = cx->latency;
  988. #endif
  989. return;
  990. }
  991. static int acpi_processor_power_verify(struct acpi_processor *pr)
  992. {
  993. unsigned int i;
  994. unsigned int working = 0;
  995. pr->power.timer_broadcast_on_state = INT_MAX;
  996. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  997. struct acpi_processor_cx *cx = &pr->power.states[i];
  998. switch (cx->type) {
  999. case ACPI_STATE_C1:
  1000. cx->valid = 1;
  1001. break;
  1002. case ACPI_STATE_C2:
  1003. acpi_processor_power_verify_c2(cx);
  1004. if (cx->valid)
  1005. acpi_timer_check_state(i, pr, cx);
  1006. break;
  1007. case ACPI_STATE_C3:
  1008. acpi_processor_power_verify_c3(pr, cx);
  1009. if (cx->valid)
  1010. acpi_timer_check_state(i, pr, cx);
  1011. break;
  1012. }
  1013. if (cx->valid)
  1014. working++;
  1015. }
  1016. acpi_propagate_timer_broadcast(pr);
  1017. return (working);
  1018. }
  1019. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  1020. {
  1021. unsigned int i;
  1022. int result;
  1023. /* NOTE: the idle thread may not be running while calling
  1024. * this function */
  1025. /* Zero initialize all the C-states info. */
  1026. memset(pr->power.states, 0, sizeof(pr->power.states));
  1027. result = acpi_processor_get_power_info_cst(pr);
  1028. if (result == -ENODEV)
  1029. result = acpi_processor_get_power_info_fadt(pr);
  1030. if (result)
  1031. return result;
  1032. acpi_processor_get_power_info_default(pr);
  1033. pr->power.count = acpi_processor_power_verify(pr);
  1034. #ifndef CONFIG_CPU_IDLE
  1035. /*
  1036. * Set Default Policy
  1037. * ------------------
  1038. * Now that we know which states are supported, set the default
  1039. * policy. Note that this policy can be changed dynamically
  1040. * (e.g. encourage deeper sleeps to conserve battery life when
  1041. * not on AC).
  1042. */
  1043. result = acpi_processor_set_power_policy(pr);
  1044. if (result)
  1045. return result;
  1046. #endif
  1047. /*
  1048. * if one state of type C2 or C3 is available, mark this
  1049. * CPU as being "idle manageable"
  1050. */
  1051. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  1052. if (pr->power.states[i].valid) {
  1053. pr->power.count = i;
  1054. if (pr->power.states[i].type >= ACPI_STATE_C2)
  1055. pr->flags.power = 1;
  1056. }
  1057. }
  1058. return 0;
  1059. }
  1060. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  1061. {
  1062. struct acpi_processor *pr = seq->private;
  1063. unsigned int i;
  1064. if (!pr)
  1065. goto end;
  1066. seq_printf(seq, "active state: C%zd\n"
  1067. "max_cstate: C%d\n"
  1068. "bus master activity: %08x\n"
  1069. "maximum allowed latency: %d usec\n",
  1070. pr->power.state ? pr->power.state - pr->power.states : 0,
  1071. max_cstate, (unsigned)pr->power.bm_activity,
  1072. pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
  1073. seq_puts(seq, "states:\n");
  1074. for (i = 1; i <= pr->power.count; i++) {
  1075. seq_printf(seq, " %cC%d: ",
  1076. (&pr->power.states[i] ==
  1077. pr->power.state ? '*' : ' '), i);
  1078. if (!pr->power.states[i].valid) {
  1079. seq_puts(seq, "<not supported>\n");
  1080. continue;
  1081. }
  1082. switch (pr->power.states[i].type) {
  1083. case ACPI_STATE_C1:
  1084. seq_printf(seq, "type[C1] ");
  1085. break;
  1086. case ACPI_STATE_C2:
  1087. seq_printf(seq, "type[C2] ");
  1088. break;
  1089. case ACPI_STATE_C3:
  1090. seq_printf(seq, "type[C3] ");
  1091. break;
  1092. default:
  1093. seq_printf(seq, "type[--] ");
  1094. break;
  1095. }
  1096. if (pr->power.states[i].promotion.state)
  1097. seq_printf(seq, "promotion[C%zd] ",
  1098. (pr->power.states[i].promotion.state -
  1099. pr->power.states));
  1100. else
  1101. seq_puts(seq, "promotion[--] ");
  1102. if (pr->power.states[i].demotion.state)
  1103. seq_printf(seq, "demotion[C%zd] ",
  1104. (pr->power.states[i].demotion.state -
  1105. pr->power.states));
  1106. else
  1107. seq_puts(seq, "demotion[--] ");
  1108. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
  1109. pr->power.states[i].latency,
  1110. pr->power.states[i].usage,
  1111. (unsigned long long)pr->power.states[i].time);
  1112. }
  1113. end:
  1114. return 0;
  1115. }
  1116. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  1117. {
  1118. return single_open(file, acpi_processor_power_seq_show,
  1119. PDE(inode)->data);
  1120. }
  1121. static const struct file_operations acpi_processor_power_fops = {
  1122. .owner = THIS_MODULE,
  1123. .open = acpi_processor_power_open_fs,
  1124. .read = seq_read,
  1125. .llseek = seq_lseek,
  1126. .release = single_release,
  1127. };
  1128. #ifndef CONFIG_CPU_IDLE
  1129. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  1130. {
  1131. int result = 0;
  1132. if (boot_option_idle_override)
  1133. return 0;
  1134. if (!pr)
  1135. return -EINVAL;
  1136. if (nocst) {
  1137. return -ENODEV;
  1138. }
  1139. if (!pr->flags.power_setup_done)
  1140. return -ENODEV;
  1141. /*
  1142. * Fall back to the default idle loop, when pm_idle_save had
  1143. * been initialized.
  1144. */
  1145. if (pm_idle_save) {
  1146. pm_idle = pm_idle_save;
  1147. /* Relies on interrupts forcing exit from idle. */
  1148. synchronize_sched();
  1149. }
  1150. pr->flags.power = 0;
  1151. result = acpi_processor_get_power_info(pr);
  1152. if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
  1153. pm_idle = acpi_processor_idle;
  1154. return result;
  1155. }
  1156. #ifdef CONFIG_SMP
  1157. static void smp_callback(void *v)
  1158. {
  1159. /* we already woke the CPU up, nothing more to do */
  1160. }
  1161. /*
  1162. * This function gets called when a part of the kernel has a new latency
  1163. * requirement. This means we need to get all processors out of their C-state,
  1164. * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
  1165. * wakes them all right up.
  1166. */
  1167. static int acpi_processor_latency_notify(struct notifier_block *b,
  1168. unsigned long l, void *v)
  1169. {
  1170. smp_call_function(smp_callback, NULL, 1);
  1171. return NOTIFY_OK;
  1172. }
  1173. static struct notifier_block acpi_processor_latency_notifier = {
  1174. .notifier_call = acpi_processor_latency_notify,
  1175. };
  1176. #endif
  1177. #else /* CONFIG_CPU_IDLE */
  1178. /**
  1179. * acpi_idle_bm_check - checks if bus master activity was detected
  1180. */
  1181. static int acpi_idle_bm_check(void)
  1182. {
  1183. u32 bm_status = 0;
  1184. acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  1185. if (bm_status)
  1186. acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  1187. /*
  1188. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  1189. * the true state of bus mastering activity; forcing us to
  1190. * manually check the BMIDEA bit of each IDE channel.
  1191. */
  1192. else if (errata.piix4.bmisx) {
  1193. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  1194. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  1195. bm_status = 1;
  1196. }
  1197. return bm_status;
  1198. }
  1199. /**
  1200. * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
  1201. * @pr: the processor
  1202. * @target: the new target state
  1203. */
  1204. static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
  1205. struct acpi_processor_cx *target)
  1206. {
  1207. if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
  1208. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
  1209. pr->flags.bm_rld_set = 0;
  1210. }
  1211. if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
  1212. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  1213. pr->flags.bm_rld_set = 1;
  1214. }
  1215. }
  1216. /**
  1217. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  1218. * @cx: cstate data
  1219. *
  1220. * Caller disables interrupt before call and enables interrupt after return.
  1221. */
  1222. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  1223. {
  1224. /* Don't trace irqs off for idle */
  1225. stop_critical_timings();
  1226. if (cx->entry_method == ACPI_CSTATE_FFH) {
  1227. /* Call into architectural FFH based C-state */
  1228. acpi_processor_ffh_cstate_enter(cx);
  1229. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  1230. acpi_safe_halt();
  1231. } else {
  1232. int unused;
  1233. /* IO port based C-state */
  1234. inb(cx->address);
  1235. /* Dummy wait op - must do something useless after P_LVL2 read
  1236. because chipsets cannot guarantee that STPCLK# signal
  1237. gets asserted in time to freeze execution properly. */
  1238. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  1239. }
  1240. start_critical_timings();
  1241. }
  1242. /**
  1243. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  1244. * @dev: the target CPU
  1245. * @state: the state data
  1246. *
  1247. * This is equivalent to the HALT instruction.
  1248. */
  1249. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  1250. struct cpuidle_state *state)
  1251. {
  1252. u32 t1, t2;
  1253. struct acpi_processor *pr;
  1254. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  1255. pr = __get_cpu_var(processors);
  1256. if (unlikely(!pr))
  1257. return 0;
  1258. local_irq_disable();
  1259. /* Do not access any ACPI IO ports in suspend path */
  1260. if (acpi_idle_suspend) {
  1261. acpi_safe_halt();
  1262. local_irq_enable();
  1263. return 0;
  1264. }
  1265. if (pr->flags.bm_check)
  1266. acpi_idle_update_bm_rld(pr, cx);
  1267. t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  1268. acpi_idle_do_entry(cx);
  1269. t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  1270. local_irq_enable();
  1271. cx->usage++;
  1272. return ticks_elapsed_in_us(t1, t2);
  1273. }
  1274. /**
  1275. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  1276. * @dev: the target CPU
  1277. * @state: the state data
  1278. */
  1279. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  1280. struct cpuidle_state *state)
  1281. {
  1282. struct acpi_processor *pr;
  1283. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  1284. u32 t1, t2;
  1285. int sleep_ticks = 0;
  1286. pr = __get_cpu_var(processors);
  1287. if (unlikely(!pr))
  1288. return 0;
  1289. if (acpi_idle_suspend)
  1290. return(acpi_idle_enter_c1(dev, state));
  1291. local_irq_disable();
  1292. current_thread_info()->status &= ~TS_POLLING;
  1293. /*
  1294. * TS_POLLING-cleared state must be visible before we test
  1295. * NEED_RESCHED:
  1296. */
  1297. smp_mb();
  1298. if (unlikely(need_resched())) {
  1299. current_thread_info()->status |= TS_POLLING;
  1300. local_irq_enable();
  1301. return 0;
  1302. }
  1303. /*
  1304. * Must be done before busmaster disable as we might need to
  1305. * access HPET !
  1306. */
  1307. acpi_state_timer_broadcast(pr, cx, 1);
  1308. if (pr->flags.bm_check)
  1309. acpi_idle_update_bm_rld(pr, cx);
  1310. if (cx->type == ACPI_STATE_C3)
  1311. ACPI_FLUSH_CPU_CACHE();
  1312. t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  1313. /* Tell the scheduler that we are going deep-idle: */
  1314. sched_clock_idle_sleep_event();
  1315. acpi_idle_do_entry(cx);
  1316. t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  1317. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  1318. /* TSC could halt in idle, so notify users */
  1319. if (tsc_halts_in_c(cx->type))
  1320. mark_tsc_unstable("TSC halts in idle");;
  1321. #endif
  1322. sleep_ticks = ticks_elapsed(t1, t2);
  1323. /* Tell the scheduler how much we idled: */
  1324. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  1325. local_irq_enable();
  1326. current_thread_info()->status |= TS_POLLING;
  1327. cx->usage++;
  1328. acpi_state_timer_broadcast(pr, cx, 0);
  1329. cx->time += sleep_ticks;
  1330. return ticks_elapsed_in_us(t1, t2);
  1331. }
  1332. static int c3_cpu_count;
  1333. static DEFINE_SPINLOCK(c3_lock);
  1334. /**
  1335. * acpi_idle_enter_bm - enters C3 with proper BM handling
  1336. * @dev: the target CPU
  1337. * @state: the state data
  1338. *
  1339. * If BM is detected, the deepest non-C3 idle state is entered instead.
  1340. */
  1341. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  1342. struct cpuidle_state *state)
  1343. {
  1344. struct acpi_processor *pr;
  1345. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  1346. u32 t1, t2;
  1347. int sleep_ticks = 0;
  1348. pr = __get_cpu_var(processors);
  1349. if (unlikely(!pr))
  1350. return 0;
  1351. if (acpi_idle_suspend)
  1352. return(acpi_idle_enter_c1(dev, state));
  1353. if (acpi_idle_bm_check()) {
  1354. if (dev->safe_state) {
  1355. return dev->safe_state->enter(dev, dev->safe_state);
  1356. } else {
  1357. local_irq_disable();
  1358. acpi_safe_halt();
  1359. local_irq_enable();
  1360. return 0;
  1361. }
  1362. }
  1363. local_irq_disable();
  1364. current_thread_info()->status &= ~TS_POLLING;
  1365. /*
  1366. * TS_POLLING-cleared state must be visible before we test
  1367. * NEED_RESCHED:
  1368. */
  1369. smp_mb();
  1370. if (unlikely(need_resched())) {
  1371. current_thread_info()->status |= TS_POLLING;
  1372. local_irq_enable();
  1373. return 0;
  1374. }
  1375. acpi_unlazy_tlb(smp_processor_id());
  1376. /* Tell the scheduler that we are going deep-idle: */
  1377. sched_clock_idle_sleep_event();
  1378. /*
  1379. * Must be done before busmaster disable as we might need to
  1380. * access HPET !
  1381. */
  1382. acpi_state_timer_broadcast(pr, cx, 1);
  1383. acpi_idle_update_bm_rld(pr, cx);
  1384. /*
  1385. * disable bus master
  1386. * bm_check implies we need ARB_DIS
  1387. * !bm_check implies we need cache flush
  1388. * bm_control implies whether we can do ARB_DIS
  1389. *
  1390. * That leaves a case where bm_check is set and bm_control is
  1391. * not set. In that case we cannot do much, we enter C3
  1392. * without doing anything.
  1393. */
  1394. if (pr->flags.bm_check && pr->flags.bm_control) {
  1395. spin_lock(&c3_lock);
  1396. c3_cpu_count++;
  1397. /* Disable bus master arbitration when all CPUs are in C3 */
  1398. if (c3_cpu_count == num_online_cpus())
  1399. acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
  1400. spin_unlock(&c3_lock);
  1401. } else if (!pr->flags.bm_check) {
  1402. ACPI_FLUSH_CPU_CACHE();
  1403. }
  1404. t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  1405. acpi_idle_do_entry(cx);
  1406. t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
  1407. /* Re-enable bus master arbitration */
  1408. if (pr->flags.bm_check && pr->flags.bm_control) {
  1409. spin_lock(&c3_lock);
  1410. acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
  1411. c3_cpu_count--;
  1412. spin_unlock(&c3_lock);
  1413. }
  1414. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  1415. /* TSC could halt in idle, so notify users */
  1416. if (tsc_halts_in_c(ACPI_STATE_C3))
  1417. mark_tsc_unstable("TSC halts in idle");
  1418. #endif
  1419. sleep_ticks = ticks_elapsed(t1, t2);
  1420. /* Tell the scheduler how much we idled: */
  1421. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  1422. local_irq_enable();
  1423. current_thread_info()->status |= TS_POLLING;
  1424. cx->usage++;
  1425. acpi_state_timer_broadcast(pr, cx, 0);
  1426. cx->time += sleep_ticks;
  1427. return ticks_elapsed_in_us(t1, t2);
  1428. }
  1429. struct cpuidle_driver acpi_idle_driver = {
  1430. .name = "acpi_idle",
  1431. .owner = THIS_MODULE,
  1432. };
  1433. /**
  1434. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  1435. * @pr: the ACPI processor
  1436. */
  1437. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  1438. {
  1439. int i, count = CPUIDLE_DRIVER_STATE_START;
  1440. struct acpi_processor_cx *cx;
  1441. struct cpuidle_state *state;
  1442. struct cpuidle_device *dev = &pr->power.dev;
  1443. if (!pr->flags.power_setup_done)
  1444. return -EINVAL;
  1445. if (pr->flags.power == 0) {
  1446. return -EINVAL;
  1447. }
  1448. dev->cpu = pr->id;
  1449. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  1450. dev->states[i].name[0] = '\0';
  1451. dev->states[i].desc[0] = '\0';
  1452. }
  1453. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  1454. cx = &pr->power.states[i];
  1455. state = &dev->states[count];
  1456. if (!cx->valid)
  1457. continue;
  1458. #ifdef CONFIG_HOTPLUG_CPU
  1459. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  1460. !pr->flags.has_cst &&
  1461. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  1462. continue;
  1463. #endif
  1464. cpuidle_set_statedata(state, cx);
  1465. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  1466. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  1467. state->exit_latency = cx->latency;
  1468. state->target_residency = cx->latency * latency_factor;
  1469. state->power_usage = cx->power;
  1470. state->flags = 0;
  1471. switch (cx->type) {
  1472. case ACPI_STATE_C1:
  1473. state->flags |= CPUIDLE_FLAG_SHALLOW;
  1474. if (cx->entry_method == ACPI_CSTATE_FFH)
  1475. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  1476. state->enter = acpi_idle_enter_c1;
  1477. dev->safe_state = state;
  1478. break;
  1479. case ACPI_STATE_C2:
  1480. state->flags |= CPUIDLE_FLAG_BALANCED;
  1481. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  1482. state->enter = acpi_idle_enter_simple;
  1483. dev->safe_state = state;
  1484. break;
  1485. case ACPI_STATE_C3:
  1486. state->flags |= CPUIDLE_FLAG_DEEP;
  1487. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  1488. state->flags |= CPUIDLE_FLAG_CHECK_BM;
  1489. state->enter = pr->flags.bm_check ?
  1490. acpi_idle_enter_bm :
  1491. acpi_idle_enter_simple;
  1492. break;
  1493. }
  1494. count++;
  1495. if (count == CPUIDLE_STATE_MAX)
  1496. break;
  1497. }
  1498. dev->state_count = count;
  1499. if (!count)
  1500. return -EINVAL;
  1501. return 0;
  1502. }
  1503. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  1504. {
  1505. int ret = 0;
  1506. if (boot_option_idle_override)
  1507. return 0;
  1508. if (!pr)
  1509. return -EINVAL;
  1510. if (nocst) {
  1511. return -ENODEV;
  1512. }
  1513. if (!pr->flags.power_setup_done)
  1514. return -ENODEV;
  1515. cpuidle_pause_and_lock();
  1516. cpuidle_disable_device(&pr->power.dev);
  1517. acpi_processor_get_power_info(pr);
  1518. if (pr->flags.power) {
  1519. acpi_processor_setup_cpuidle(pr);
  1520. ret = cpuidle_enable_device(&pr->power.dev);
  1521. }
  1522. cpuidle_resume_and_unlock();
  1523. return ret;
  1524. }
  1525. #endif /* CONFIG_CPU_IDLE */
  1526. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  1527. struct acpi_device *device)
  1528. {
  1529. acpi_status status = 0;
  1530. static int first_run;
  1531. struct proc_dir_entry *entry = NULL;
  1532. unsigned int i;
  1533. if (boot_option_idle_override)
  1534. return 0;
  1535. if (!first_run) {
  1536. if (idle_halt) {
  1537. /*
  1538. * When the boot option of "idle=halt" is added, halt
  1539. * is used for CPU IDLE.
  1540. * In such case C2/C3 is meaningless. So the max_cstate
  1541. * is set to one.
  1542. */
  1543. max_cstate = 1;
  1544. }
  1545. dmi_check_system(processor_power_dmi_table);
  1546. max_cstate = acpi_processor_cstate_check(max_cstate);
  1547. if (max_cstate < ACPI_C_STATES_MAX)
  1548. printk(KERN_NOTICE
  1549. "ACPI: processor limited to max C-state %d\n",
  1550. max_cstate);
  1551. first_run++;
  1552. #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
  1553. pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
  1554. &acpi_processor_latency_notifier);
  1555. #endif
  1556. }
  1557. if (!pr)
  1558. return -EINVAL;
  1559. if (acpi_gbl_FADT.cst_control && !nocst) {
  1560. status =
  1561. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  1562. if (ACPI_FAILURE(status)) {
  1563. ACPI_EXCEPTION((AE_INFO, status,
  1564. "Notifying BIOS of _CST ability failed"));
  1565. }
  1566. }
  1567. acpi_processor_get_power_info(pr);
  1568. pr->flags.power_setup_done = 1;
  1569. /*
  1570. * Install the idle handler if processor power management is supported.
  1571. * Note that we use previously set idle handler will be used on
  1572. * platforms that only support C1.
  1573. */
  1574. if (pr->flags.power) {
  1575. #ifdef CONFIG_CPU_IDLE
  1576. acpi_processor_setup_cpuidle(pr);
  1577. if (cpuidle_register_device(&pr->power.dev))
  1578. return -EIO;
  1579. #endif
  1580. printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
  1581. for (i = 1; i <= pr->power.count; i++)
  1582. if (pr->power.states[i].valid)
  1583. printk(" C%d[C%d]", i,
  1584. pr->power.states[i].type);
  1585. printk(")\n");
  1586. #ifndef CONFIG_CPU_IDLE
  1587. if (pr->id == 0) {
  1588. pm_idle_save = pm_idle;
  1589. pm_idle = acpi_processor_idle;
  1590. }
  1591. #endif
  1592. }
  1593. /* 'power' [R] */
  1594. entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
  1595. S_IRUGO, acpi_device_dir(device),
  1596. &acpi_processor_power_fops,
  1597. acpi_driver_data(device));
  1598. if (!entry)
  1599. return -EIO;
  1600. return 0;
  1601. }
  1602. int acpi_processor_power_exit(struct acpi_processor *pr,
  1603. struct acpi_device *device)
  1604. {
  1605. if (boot_option_idle_override)
  1606. return 0;
  1607. #ifdef CONFIG_CPU_IDLE
  1608. cpuidle_unregister_device(&pr->power.dev);
  1609. #endif
  1610. pr->flags.power_setup_done = 0;
  1611. if (acpi_device_dir(device))
  1612. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  1613. acpi_device_dir(device));
  1614. #ifndef CONFIG_CPU_IDLE
  1615. /* Unregister the idle handler when processor #0 is removed. */
  1616. if (pr->id == 0) {
  1617. if (pm_idle_save)
  1618. pm_idle = pm_idle_save;
  1619. /*
  1620. * We are about to unload the current idle thread pm callback
  1621. * (pm_idle), Wait for all processors to update cached/local
  1622. * copies of pm_idle before proceeding.
  1623. */
  1624. cpu_idle_wait();
  1625. #ifdef CONFIG_SMP
  1626. pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
  1627. &acpi_processor_latency_notifier);
  1628. #endif
  1629. }
  1630. #endif
  1631. return 0;
  1632. }