sky2.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/crc32.h>
  25. #include <linux/kernel.h>
  26. #include <linux/version.h>
  27. #include <linux/module.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/ip.h>
  34. #include <linux/tcp.h>
  35. #include <linux/in.h>
  36. #include <linux/delay.h>
  37. #include <linux/workqueue.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/prefetch.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  43. #define SKY2_VLAN_TAG_USED 1
  44. #endif
  45. #include "sky2.h"
  46. #define DRV_NAME "sky2"
  47. #define DRV_VERSION "1.11.1"
  48. #define PFX DRV_NAME " "
  49. /*
  50. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  51. * that are organized into three (receive, transmit, status) different rings
  52. * similar to Tigon3.
  53. */
  54. #define RX_LE_SIZE 1024
  55. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  56. #define RX_MAX_PENDING (RX_LE_SIZE/6 - 2)
  57. #define RX_DEF_PENDING RX_MAX_PENDING
  58. #define RX_SKB_ALIGN 8
  59. #define RX_BUF_WRITE 16
  60. #define TX_RING_SIZE 512
  61. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  62. #define TX_MIN_PENDING 64
  63. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  64. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  65. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  66. #define TX_WATCHDOG (5 * HZ)
  67. #define NAPI_WEIGHT 64
  68. #define PHY_RETRIES 1000
  69. #define RING_NEXT(x,s) (((x)+1) & ((s)-1))
  70. static const u32 default_msg =
  71. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  72. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  73. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  74. static int debug = -1; /* defaults above */
  75. module_param(debug, int, 0);
  76. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  77. static int copybreak __read_mostly = 128;
  78. module_param(copybreak, int, 0);
  79. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  80. static int disable_msi = 0;
  81. module_param(disable_msi, int, 0);
  82. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  83. static int idle_timeout = 0;
  84. module_param(idle_timeout, int, 0);
  85. MODULE_PARM_DESC(idle_timeout, "Watchdog timer for lost interrupts (ms)");
  86. static const struct pci_device_id sky2_id_table[] = {
  87. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) }, /* SK-9Sxx */
  88. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
  89. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
  90. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
  91. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B02) }, /* DGE-560SX */
  92. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) }, /* 88E8021 */
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) }, /* 88E8022 */
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) }, /* 88E8061 */
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) }, /* 88E8062 */
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) }, /* 88E8021 */
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) }, /* 88E8022 */
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) }, /* 88E8061 */
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) }, /* 88E8062 */
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) }, /* 88E8035 */
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) }, /* 88E8036 */
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) }, /* 88E8038 */
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) }, /* 88E8039 */
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4356) }, /* 88EC033 */
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) }, /* 88E8052 */
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) }, /* 88E8050 */
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) }, /* 88E8053 */
  108. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) }, /* 88E8055 */
  109. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) }, /* 88E8056 */
  110. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) }, /* 88EC036 */
  111. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) }, /* 88EC032 */
  112. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) }, /* 88EC034 */
  113. { 0 }
  114. };
  115. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  116. /* Avoid conditionals by using array */
  117. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  118. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  119. static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
  120. /* This driver supports yukon2 chipset only */
  121. static const char *yukon2_name[] = {
  122. "XL", /* 0xb3 */
  123. "EC Ultra", /* 0xb4 */
  124. "UNKNOWN", /* 0xb5 */
  125. "EC", /* 0xb6 */
  126. "FE", /* 0xb7 */
  127. };
  128. /* Access to external PHY */
  129. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  130. {
  131. int i;
  132. gma_write16(hw, port, GM_SMI_DATA, val);
  133. gma_write16(hw, port, GM_SMI_CTRL,
  134. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  135. for (i = 0; i < PHY_RETRIES; i++) {
  136. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  137. return 0;
  138. udelay(1);
  139. }
  140. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  141. return -ETIMEDOUT;
  142. }
  143. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  144. {
  145. int i;
  146. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  147. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  148. for (i = 0; i < PHY_RETRIES; i++) {
  149. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  150. *val = gma_read16(hw, port, GM_SMI_DATA);
  151. return 0;
  152. }
  153. udelay(1);
  154. }
  155. return -ETIMEDOUT;
  156. }
  157. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  158. {
  159. u16 v;
  160. if (__gm_phy_read(hw, port, reg, &v) != 0)
  161. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  162. return v;
  163. }
  164. static void sky2_power_on(struct sky2_hw *hw)
  165. {
  166. /* switch power to VCC (WA for VAUX problem) */
  167. sky2_write8(hw, B0_POWER_CTRL,
  168. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  169. /* disable Core Clock Division, */
  170. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  171. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  172. /* enable bits are inverted */
  173. sky2_write8(hw, B2_Y2_CLK_GATE,
  174. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  175. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  176. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  177. else
  178. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  179. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  180. u32 reg1;
  181. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  182. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  183. reg1 &= P_ASPM_CONTROL_MSK;
  184. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  185. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  186. }
  187. }
  188. static void sky2_power_aux(struct sky2_hw *hw)
  189. {
  190. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  191. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  192. else
  193. /* enable bits are inverted */
  194. sky2_write8(hw, B2_Y2_CLK_GATE,
  195. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  196. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  197. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  198. /* switch power to VAUX */
  199. if (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL)
  200. sky2_write8(hw, B0_POWER_CTRL,
  201. (PC_VAUX_ENA | PC_VCC_ENA |
  202. PC_VAUX_ON | PC_VCC_OFF));
  203. }
  204. static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
  205. {
  206. u16 reg;
  207. /* disable all GMAC IRQ's */
  208. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  209. /* disable PHY IRQs */
  210. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  211. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  212. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  213. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  214. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  215. reg = gma_read16(hw, port, GM_RX_CTRL);
  216. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  217. gma_write16(hw, port, GM_RX_CTRL, reg);
  218. }
  219. /* flow control to advertise bits */
  220. static const u16 copper_fc_adv[] = {
  221. [FC_NONE] = 0,
  222. [FC_TX] = PHY_M_AN_ASP,
  223. [FC_RX] = PHY_M_AN_PC,
  224. [FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP,
  225. };
  226. /* flow control to advertise bits when using 1000BaseX */
  227. static const u16 fiber_fc_adv[] = {
  228. [FC_BOTH] = PHY_M_P_BOTH_MD_X,
  229. [FC_TX] = PHY_M_P_ASYM_MD_X,
  230. [FC_RX] = PHY_M_P_SYM_MD_X,
  231. [FC_NONE] = PHY_M_P_NO_PAUSE_X,
  232. };
  233. /* flow control to GMA disable bits */
  234. static const u16 gm_fc_disable[] = {
  235. [FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS,
  236. [FC_TX] = GM_GPCR_FC_RX_DIS,
  237. [FC_RX] = GM_GPCR_FC_TX_DIS,
  238. [FC_BOTH] = 0,
  239. };
  240. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  241. {
  242. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  243. u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
  244. if (sky2->autoneg == AUTONEG_ENABLE &&
  245. !(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  246. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  247. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  248. PHY_M_EC_MAC_S_MSK);
  249. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  250. if (hw->chip_id == CHIP_ID_YUKON_EC)
  251. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  252. else
  253. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  254. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  255. }
  256. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  257. if (sky2_is_copper(hw)) {
  258. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  259. /* enable automatic crossover */
  260. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  261. } else {
  262. /* disable energy detect */
  263. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  264. /* enable automatic crossover */
  265. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  266. if (sky2->autoneg == AUTONEG_ENABLE &&
  267. (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  268. ctrl &= ~PHY_M_PC_DSC_MSK;
  269. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  270. }
  271. }
  272. } else {
  273. /* workaround for deviation #4.88 (CRC errors) */
  274. /* disable Automatic Crossover */
  275. ctrl &= ~PHY_M_PC_MDIX_MSK;
  276. }
  277. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  278. /* special setup for PHY 88E1112 Fiber */
  279. if (hw->chip_id == CHIP_ID_YUKON_XL && !sky2_is_copper(hw)) {
  280. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  281. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  282. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  283. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  284. ctrl &= ~PHY_M_MAC_MD_MSK;
  285. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  286. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  287. if (hw->pmd_type == 'P') {
  288. /* select page 1 to access Fiber registers */
  289. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  290. /* for SFP-module set SIGDET polarity to low */
  291. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  292. ctrl |= PHY_M_FIB_SIGD_POL;
  293. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  294. }
  295. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  296. }
  297. ctrl = PHY_CT_RESET;
  298. ct1000 = 0;
  299. adv = PHY_AN_CSMA;
  300. reg = 0;
  301. if (sky2->autoneg == AUTONEG_ENABLE) {
  302. if (sky2_is_copper(hw)) {
  303. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  304. ct1000 |= PHY_M_1000C_AFD;
  305. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  306. ct1000 |= PHY_M_1000C_AHD;
  307. if (sky2->advertising & ADVERTISED_100baseT_Full)
  308. adv |= PHY_M_AN_100_FD;
  309. if (sky2->advertising & ADVERTISED_100baseT_Half)
  310. adv |= PHY_M_AN_100_HD;
  311. if (sky2->advertising & ADVERTISED_10baseT_Full)
  312. adv |= PHY_M_AN_10_FD;
  313. if (sky2->advertising & ADVERTISED_10baseT_Half)
  314. adv |= PHY_M_AN_10_HD;
  315. adv |= copper_fc_adv[sky2->flow_mode];
  316. } else { /* special defines for FIBER (88E1040S only) */
  317. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  318. adv |= PHY_M_AN_1000X_AFD;
  319. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  320. adv |= PHY_M_AN_1000X_AHD;
  321. adv |= fiber_fc_adv[sky2->flow_mode];
  322. }
  323. /* Restart Auto-negotiation */
  324. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  325. } else {
  326. /* forced speed/duplex settings */
  327. ct1000 = PHY_M_1000C_MSE;
  328. /* Disable auto update for duplex flow control and speed */
  329. reg |= GM_GPCR_AU_ALL_DIS;
  330. switch (sky2->speed) {
  331. case SPEED_1000:
  332. ctrl |= PHY_CT_SP1000;
  333. reg |= GM_GPCR_SPEED_1000;
  334. break;
  335. case SPEED_100:
  336. ctrl |= PHY_CT_SP100;
  337. reg |= GM_GPCR_SPEED_100;
  338. break;
  339. }
  340. if (sky2->duplex == DUPLEX_FULL) {
  341. reg |= GM_GPCR_DUP_FULL;
  342. ctrl |= PHY_CT_DUP_MD;
  343. } else if (sky2->speed < SPEED_1000)
  344. sky2->flow_mode = FC_NONE;
  345. reg |= gm_fc_disable[sky2->flow_mode];
  346. /* Forward pause packets to GMAC? */
  347. if (sky2->flow_mode & FC_RX)
  348. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  349. else
  350. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  351. }
  352. gma_write16(hw, port, GM_GP_CTRL, reg);
  353. if (hw->chip_id != CHIP_ID_YUKON_FE)
  354. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  355. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  356. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  357. /* Setup Phy LED's */
  358. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  359. ledover = 0;
  360. switch (hw->chip_id) {
  361. case CHIP_ID_YUKON_FE:
  362. /* on 88E3082 these bits are at 11..9 (shifted left) */
  363. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  364. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  365. /* delete ACT LED control bits */
  366. ctrl &= ~PHY_M_FELP_LED1_MSK;
  367. /* change ACT LED control to blink mode */
  368. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  369. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  370. break;
  371. case CHIP_ID_YUKON_XL:
  372. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  373. /* select page 3 to access LED control register */
  374. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  375. /* set LED Function Control register */
  376. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  377. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  378. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  379. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  380. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  381. /* set Polarity Control register */
  382. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  383. (PHY_M_POLC_LS1_P_MIX(4) |
  384. PHY_M_POLC_IS0_P_MIX(4) |
  385. PHY_M_POLC_LOS_CTRL(2) |
  386. PHY_M_POLC_INIT_CTRL(2) |
  387. PHY_M_POLC_STA1_CTRL(2) |
  388. PHY_M_POLC_STA0_CTRL(2)));
  389. /* restore page register */
  390. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  391. break;
  392. case CHIP_ID_YUKON_EC_U:
  393. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  394. /* select page 3 to access LED control register */
  395. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  396. /* set LED Function Control register */
  397. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  398. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  399. PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
  400. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  401. PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
  402. /* set Blink Rate in LED Timer Control Register */
  403. gm_phy_write(hw, port, PHY_MARV_INT_MASK,
  404. ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
  405. /* restore page register */
  406. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  407. break;
  408. default:
  409. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  410. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  411. /* turn off the Rx LED (LED_RX) */
  412. ledover &= ~PHY_M_LED_MO_RX;
  413. }
  414. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  415. /* apply fixes in PHY AFE */
  416. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  417. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
  418. /* increase differential signal amplitude in 10BASE-T */
  419. gm_phy_write(hw, port, 0x18, 0xaa99);
  420. gm_phy_write(hw, port, 0x17, 0x2011);
  421. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  422. gm_phy_write(hw, port, 0x18, 0xa204);
  423. gm_phy_write(hw, port, 0x17, 0x2002);
  424. /* set page register to 0 */
  425. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  426. } else {
  427. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  428. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  429. /* turn on 100 Mbps LED (LED_LINK100) */
  430. ledover |= PHY_M_LED_MO_100;
  431. }
  432. if (ledover)
  433. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  434. }
  435. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  436. if (sky2->autoneg == AUTONEG_ENABLE)
  437. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  438. else
  439. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  440. }
  441. static void sky2_phy_power(struct sky2_hw *hw, unsigned port, int onoff)
  442. {
  443. u32 reg1;
  444. static const u32 phy_power[]
  445. = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
  446. /* looks like this XL is back asswards .. */
  447. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  448. onoff = !onoff;
  449. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  450. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  451. if (onoff)
  452. /* Turn off phy power saving */
  453. reg1 &= ~phy_power[port];
  454. else
  455. reg1 |= phy_power[port];
  456. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  457. sky2_pci_read32(hw, PCI_DEV_REG1);
  458. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  459. udelay(100);
  460. }
  461. /* Force a renegotiation */
  462. static void sky2_phy_reinit(struct sky2_port *sky2)
  463. {
  464. spin_lock_bh(&sky2->phy_lock);
  465. sky2_phy_init(sky2->hw, sky2->port);
  466. spin_unlock_bh(&sky2->phy_lock);
  467. }
  468. /* Put device in state to listen for Wake On Lan */
  469. static void sky2_wol_init(struct sky2_port *sky2)
  470. {
  471. struct sky2_hw *hw = sky2->hw;
  472. unsigned port = sky2->port;
  473. enum flow_control save_mode;
  474. u16 ctrl;
  475. u32 reg1;
  476. /* Bring hardware out of reset */
  477. sky2_write16(hw, B0_CTST, CS_RST_CLR);
  478. sky2_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  479. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
  480. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  481. /* Force to 10/100
  482. * sky2_reset will re-enable on resume
  483. */
  484. save_mode = sky2->flow_mode;
  485. ctrl = sky2->advertising;
  486. sky2->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  487. sky2->flow_mode = FC_NONE;
  488. sky2_phy_power(hw, port, 1);
  489. sky2_phy_reinit(sky2);
  490. sky2->flow_mode = save_mode;
  491. sky2->advertising = ctrl;
  492. /* Set GMAC to no flow control and auto update for speed/duplex */
  493. gma_write16(hw, port, GM_GP_CTRL,
  494. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  495. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  496. /* Set WOL address */
  497. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  498. sky2->netdev->dev_addr, ETH_ALEN);
  499. /* Turn on appropriate WOL control bits */
  500. sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  501. ctrl = 0;
  502. if (sky2->wol & WAKE_PHY)
  503. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  504. else
  505. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  506. if (sky2->wol & WAKE_MAGIC)
  507. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  508. else
  509. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  510. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  511. sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  512. /* Turn on legacy PCI-Express PME mode */
  513. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  514. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  515. reg1 |= PCI_Y2_PME_LEGACY;
  516. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  517. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  518. /* block receiver */
  519. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  520. }
  521. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  522. {
  523. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  524. u16 reg;
  525. int i;
  526. const u8 *addr = hw->dev[port]->dev_addr;
  527. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  528. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  529. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  530. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  531. /* WA DEV_472 -- looks like crossed wires on port 2 */
  532. /* clear GMAC 1 Control reset */
  533. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  534. do {
  535. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  536. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  537. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  538. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  539. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  540. }
  541. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  542. /* Enable Transmit FIFO Underrun */
  543. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  544. spin_lock_bh(&sky2->phy_lock);
  545. sky2_phy_init(hw, port);
  546. spin_unlock_bh(&sky2->phy_lock);
  547. /* MIB clear */
  548. reg = gma_read16(hw, port, GM_PHY_ADDR);
  549. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  550. for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
  551. gma_read16(hw, port, i);
  552. gma_write16(hw, port, GM_PHY_ADDR, reg);
  553. /* transmit control */
  554. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  555. /* receive control reg: unicast + multicast + no FCS */
  556. gma_write16(hw, port, GM_RX_CTRL,
  557. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  558. /* transmit flow control */
  559. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  560. /* transmit parameter */
  561. gma_write16(hw, port, GM_TX_PARAM,
  562. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  563. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  564. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  565. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  566. /* serial mode register */
  567. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  568. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  569. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  570. reg |= GM_SMOD_JUMBO_ENA;
  571. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  572. /* virtual address for data */
  573. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  574. /* physical address: used for pause frames */
  575. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  576. /* ignore counter overflows */
  577. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  578. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  579. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  580. /* Configure Rx MAC FIFO */
  581. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  582. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  583. GMF_OPER_ON | GMF_RX_F_FL_ON);
  584. /* Flush Rx MAC FIFO on any flow control or error */
  585. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  586. /* Set threshold to 0xa (64 bytes) + 1 to workaround pause bug */
  587. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  588. /* Configure Tx MAC FIFO */
  589. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  590. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  591. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  592. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  593. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  594. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  595. /* set Tx GMAC FIFO Almost Empty Threshold */
  596. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  597. /* Disable Store & Forward mode for TX */
  598. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  599. }
  600. }
  601. }
  602. /* Assign Ram Buffer allocation to queue */
  603. static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, u32 space)
  604. {
  605. u32 end;
  606. /* convert from K bytes to qwords used for hw register */
  607. start *= 1024/8;
  608. space *= 1024/8;
  609. end = start + space - 1;
  610. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  611. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  612. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  613. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  614. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  615. if (q == Q_R1 || q == Q_R2) {
  616. u32 tp = space - space/4;
  617. /* On receive queue's set the thresholds
  618. * give receiver priority when > 3/4 full
  619. * send pause when down to 2K
  620. */
  621. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  622. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  623. tp = space - 2048/8;
  624. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  625. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  626. } else {
  627. /* Enable store & forward on Tx queue's because
  628. * Tx FIFO is only 1K on Yukon
  629. */
  630. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  631. }
  632. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  633. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  634. }
  635. /* Setup Bus Memory Interface */
  636. static void sky2_qset(struct sky2_hw *hw, u16 q)
  637. {
  638. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  639. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  640. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  641. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  642. }
  643. /* Setup prefetch unit registers. This is the interface between
  644. * hardware and driver list elements
  645. */
  646. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  647. u64 addr, u32 last)
  648. {
  649. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  650. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  651. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  652. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  653. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  654. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  655. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  656. }
  657. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  658. {
  659. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  660. sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
  661. le->ctrl = 0;
  662. return le;
  663. }
  664. static inline struct tx_ring_info *tx_le_re(struct sky2_port *sky2,
  665. struct sky2_tx_le *le)
  666. {
  667. return sky2->tx_ring + (le - sky2->tx_le);
  668. }
  669. /* Update chip's next pointer */
  670. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  671. {
  672. q = Y2_QADDR(q, PREF_UNIT_PUT_IDX);
  673. wmb();
  674. sky2_write16(hw, q, idx);
  675. sky2_read16(hw, q);
  676. }
  677. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  678. {
  679. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  680. sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
  681. le->ctrl = 0;
  682. return le;
  683. }
  684. /* Return high part of DMA address (could be 32 or 64 bit) */
  685. static inline u32 high32(dma_addr_t a)
  686. {
  687. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  688. }
  689. /* Build description to hardware for one receive segment */
  690. static void sky2_rx_add(struct sky2_port *sky2, u8 op,
  691. dma_addr_t map, unsigned len)
  692. {
  693. struct sky2_rx_le *le;
  694. u32 hi = high32(map);
  695. if (sky2->rx_addr64 != hi) {
  696. le = sky2_next_rx(sky2);
  697. le->addr = cpu_to_le32(hi);
  698. le->opcode = OP_ADDR64 | HW_OWNER;
  699. sky2->rx_addr64 = high32(map + len);
  700. }
  701. le = sky2_next_rx(sky2);
  702. le->addr = cpu_to_le32((u32) map);
  703. le->length = cpu_to_le16(len);
  704. le->opcode = op | HW_OWNER;
  705. }
  706. /* Build description to hardware for one possibly fragmented skb */
  707. static void sky2_rx_submit(struct sky2_port *sky2,
  708. const struct rx_ring_info *re)
  709. {
  710. int i;
  711. sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size);
  712. for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++)
  713. sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE);
  714. }
  715. static void sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re,
  716. unsigned size)
  717. {
  718. struct sk_buff *skb = re->skb;
  719. int i;
  720. re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE);
  721. pci_unmap_len_set(re, data_size, size);
  722. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  723. re->frag_addr[i] = pci_map_page(pdev,
  724. skb_shinfo(skb)->frags[i].page,
  725. skb_shinfo(skb)->frags[i].page_offset,
  726. skb_shinfo(skb)->frags[i].size,
  727. PCI_DMA_FROMDEVICE);
  728. }
  729. static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re)
  730. {
  731. struct sk_buff *skb = re->skb;
  732. int i;
  733. pci_unmap_single(pdev, re->data_addr, pci_unmap_len(re, data_size),
  734. PCI_DMA_FROMDEVICE);
  735. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  736. pci_unmap_page(pdev, re->frag_addr[i],
  737. skb_shinfo(skb)->frags[i].size,
  738. PCI_DMA_FROMDEVICE);
  739. }
  740. /* Tell chip where to start receive checksum.
  741. * Actually has two checksums, but set both same to avoid possible byte
  742. * order problems.
  743. */
  744. static void rx_set_checksum(struct sky2_port *sky2)
  745. {
  746. struct sky2_rx_le *le;
  747. le = sky2_next_rx(sky2);
  748. le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
  749. le->ctrl = 0;
  750. le->opcode = OP_TCPSTART | HW_OWNER;
  751. sky2_write32(sky2->hw,
  752. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  753. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  754. }
  755. /*
  756. * The RX Stop command will not work for Yukon-2 if the BMU does not
  757. * reach the end of packet and since we can't make sure that we have
  758. * incoming data, we must reset the BMU while it is not doing a DMA
  759. * transfer. Since it is possible that the RX path is still active,
  760. * the RX RAM buffer will be stopped first, so any possible incoming
  761. * data will not trigger a DMA. After the RAM buffer is stopped, the
  762. * BMU is polled until any DMA in progress is ended and only then it
  763. * will be reset.
  764. */
  765. static void sky2_rx_stop(struct sky2_port *sky2)
  766. {
  767. struct sky2_hw *hw = sky2->hw;
  768. unsigned rxq = rxqaddr[sky2->port];
  769. int i;
  770. /* disable the RAM Buffer receive queue */
  771. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  772. for (i = 0; i < 0xffff; i++)
  773. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  774. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  775. goto stopped;
  776. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  777. sky2->netdev->name);
  778. stopped:
  779. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  780. /* reset the Rx prefetch unit */
  781. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  782. }
  783. /* Clean out receive buffer area, assumes receiver hardware stopped */
  784. static void sky2_rx_clean(struct sky2_port *sky2)
  785. {
  786. unsigned i;
  787. memset(sky2->rx_le, 0, RX_LE_BYTES);
  788. for (i = 0; i < sky2->rx_pending; i++) {
  789. struct rx_ring_info *re = sky2->rx_ring + i;
  790. if (re->skb) {
  791. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  792. kfree_skb(re->skb);
  793. re->skb = NULL;
  794. }
  795. }
  796. }
  797. /* Basic MII support */
  798. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  799. {
  800. struct mii_ioctl_data *data = if_mii(ifr);
  801. struct sky2_port *sky2 = netdev_priv(dev);
  802. struct sky2_hw *hw = sky2->hw;
  803. int err = -EOPNOTSUPP;
  804. if (!netif_running(dev))
  805. return -ENODEV; /* Phy still in reset */
  806. switch (cmd) {
  807. case SIOCGMIIPHY:
  808. data->phy_id = PHY_ADDR_MARV;
  809. /* fallthru */
  810. case SIOCGMIIREG: {
  811. u16 val = 0;
  812. spin_lock_bh(&sky2->phy_lock);
  813. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  814. spin_unlock_bh(&sky2->phy_lock);
  815. data->val_out = val;
  816. break;
  817. }
  818. case SIOCSMIIREG:
  819. if (!capable(CAP_NET_ADMIN))
  820. return -EPERM;
  821. spin_lock_bh(&sky2->phy_lock);
  822. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  823. data->val_in);
  824. spin_unlock_bh(&sky2->phy_lock);
  825. break;
  826. }
  827. return err;
  828. }
  829. #ifdef SKY2_VLAN_TAG_USED
  830. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  831. {
  832. struct sky2_port *sky2 = netdev_priv(dev);
  833. struct sky2_hw *hw = sky2->hw;
  834. u16 port = sky2->port;
  835. netif_tx_lock_bh(dev);
  836. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  837. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  838. sky2->vlgrp = grp;
  839. netif_tx_unlock_bh(dev);
  840. }
  841. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  842. {
  843. struct sky2_port *sky2 = netdev_priv(dev);
  844. struct sky2_hw *hw = sky2->hw;
  845. u16 port = sky2->port;
  846. netif_tx_lock_bh(dev);
  847. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  848. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  849. if (sky2->vlgrp)
  850. sky2->vlgrp->vlan_devices[vid] = NULL;
  851. netif_tx_unlock_bh(dev);
  852. }
  853. #endif
  854. /*
  855. * Allocate an skb for receiving. If the MTU is large enough
  856. * make the skb non-linear with a fragment list of pages.
  857. *
  858. * It appears the hardware has a bug in the FIFO logic that
  859. * cause it to hang if the FIFO gets overrun and the receive buffer
  860. * is not 64 byte aligned. The buffer returned from netdev_alloc_skb is
  861. * aligned except if slab debugging is enabled.
  862. */
  863. static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2)
  864. {
  865. struct sk_buff *skb;
  866. unsigned long p;
  867. int i;
  868. skb = netdev_alloc_skb(sky2->netdev, sky2->rx_data_size + RX_SKB_ALIGN);
  869. if (!skb)
  870. goto nomem;
  871. p = (unsigned long) skb->data;
  872. skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
  873. for (i = 0; i < sky2->rx_nfrags; i++) {
  874. struct page *page = alloc_page(GFP_ATOMIC);
  875. if (!page)
  876. goto free_partial;
  877. skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE);
  878. }
  879. return skb;
  880. free_partial:
  881. kfree_skb(skb);
  882. nomem:
  883. return NULL;
  884. }
  885. /*
  886. * Allocate and setup receiver buffer pool.
  887. * Normal case this ends up creating one list element for skb
  888. * in the receive ring. Worst case if using large MTU and each
  889. * allocation falls on a different 64 bit region, that results
  890. * in 6 list elements per ring entry.
  891. * One element is used for checksum enable/disable, and one
  892. * extra to avoid wrap.
  893. */
  894. static int sky2_rx_start(struct sky2_port *sky2)
  895. {
  896. struct sky2_hw *hw = sky2->hw;
  897. struct rx_ring_info *re;
  898. unsigned rxq = rxqaddr[sky2->port];
  899. unsigned i, size, space, thresh;
  900. sky2->rx_put = sky2->rx_next = 0;
  901. sky2_qset(hw, rxq);
  902. /* On PCI express lowering the watermark gives better performance */
  903. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  904. sky2_write32(hw, Q_ADDR(rxq, Q_WM), BMU_WM_PEX);
  905. /* These chips have no ram buffer?
  906. * MAC Rx RAM Read is controlled by hardware */
  907. if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
  908. (hw->chip_rev == CHIP_REV_YU_EC_U_A1
  909. || hw->chip_rev == CHIP_REV_YU_EC_U_B0))
  910. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  911. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  912. rx_set_checksum(sky2);
  913. /* Space needed for frame data + headers rounded up */
  914. size = ALIGN(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8)
  915. + 8;
  916. /* Stopping point for hardware truncation */
  917. thresh = (size - 8) / sizeof(u32);
  918. /* Account for overhead of skb - to avoid order > 0 allocation */
  919. space = SKB_DATA_ALIGN(size) + NET_SKB_PAD
  920. + sizeof(struct skb_shared_info);
  921. sky2->rx_nfrags = space >> PAGE_SHIFT;
  922. BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr));
  923. if (sky2->rx_nfrags != 0) {
  924. /* Compute residue after pages */
  925. space = sky2->rx_nfrags << PAGE_SHIFT;
  926. if (space < size)
  927. size -= space;
  928. else
  929. size = 0;
  930. /* Optimize to handle small packets and headers */
  931. if (size < copybreak)
  932. size = copybreak;
  933. if (size < ETH_HLEN)
  934. size = ETH_HLEN;
  935. }
  936. sky2->rx_data_size = size;
  937. /* Fill Rx ring */
  938. for (i = 0; i < sky2->rx_pending; i++) {
  939. re = sky2->rx_ring + i;
  940. re->skb = sky2_rx_alloc(sky2);
  941. if (!re->skb)
  942. goto nomem;
  943. sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size);
  944. sky2_rx_submit(sky2, re);
  945. }
  946. /*
  947. * The receiver hangs if it receives frames larger than the
  948. * packet buffer. As a workaround, truncate oversize frames, but
  949. * the register is limited to 9 bits, so if you do frames > 2052
  950. * you better get the MTU right!
  951. */
  952. if (thresh > 0x1ff)
  953. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
  954. else {
  955. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
  956. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  957. }
  958. /* Tell chip about available buffers */
  959. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  960. return 0;
  961. nomem:
  962. sky2_rx_clean(sky2);
  963. return -ENOMEM;
  964. }
  965. /* Bring up network interface. */
  966. static int sky2_up(struct net_device *dev)
  967. {
  968. struct sky2_port *sky2 = netdev_priv(dev);
  969. struct sky2_hw *hw = sky2->hw;
  970. unsigned port = sky2->port;
  971. u32 ramsize, imask;
  972. int cap, err = -ENOMEM;
  973. struct net_device *otherdev = hw->dev[sky2->port^1];
  974. /*
  975. * On dual port PCI-X card, there is an problem where status
  976. * can be received out of order due to split transactions
  977. */
  978. if (otherdev && netif_running(otherdev) &&
  979. (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
  980. struct sky2_port *osky2 = netdev_priv(otherdev);
  981. u16 cmd;
  982. cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
  983. cmd &= ~PCI_X_CMD_MAX_SPLIT;
  984. sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
  985. sky2->rx_csum = 0;
  986. osky2->rx_csum = 0;
  987. }
  988. if (netif_msg_ifup(sky2))
  989. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  990. /* must be power of 2 */
  991. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  992. TX_RING_SIZE *
  993. sizeof(struct sky2_tx_le),
  994. &sky2->tx_le_map);
  995. if (!sky2->tx_le)
  996. goto err_out;
  997. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  998. GFP_KERNEL);
  999. if (!sky2->tx_ring)
  1000. goto err_out;
  1001. sky2->tx_prod = sky2->tx_cons = 0;
  1002. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  1003. &sky2->rx_le_map);
  1004. if (!sky2->rx_le)
  1005. goto err_out;
  1006. memset(sky2->rx_le, 0, RX_LE_BYTES);
  1007. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info),
  1008. GFP_KERNEL);
  1009. if (!sky2->rx_ring)
  1010. goto err_out;
  1011. sky2_phy_power(hw, port, 1);
  1012. sky2_mac_init(hw, port);
  1013. /* Register is number of 4K blocks on internal RAM buffer. */
  1014. ramsize = sky2_read8(hw, B2_E_0) * 4;
  1015. printk(KERN_INFO PFX "%s: ram buffer %dK\n", dev->name, ramsize);
  1016. if (ramsize > 0) {
  1017. u32 rxspace;
  1018. if (ramsize < 16)
  1019. rxspace = ramsize / 2;
  1020. else
  1021. rxspace = 8 + (2*(ramsize - 16))/3;
  1022. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  1023. sky2_ramset(hw, txqaddr[port], rxspace, ramsize - rxspace);
  1024. /* Make sure SyncQ is disabled */
  1025. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  1026. RB_RST_SET);
  1027. }
  1028. sky2_qset(hw, txqaddr[port]);
  1029. /* Set almost empty threshold */
  1030. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  1031. && hw->chip_rev == CHIP_REV_YU_EC_U_A0)
  1032. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  1033. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  1034. TX_RING_SIZE - 1);
  1035. err = sky2_rx_start(sky2);
  1036. if (err)
  1037. goto err_out;
  1038. /* Enable interrupts from phy/mac for port */
  1039. imask = sky2_read32(hw, B0_IMSK);
  1040. imask |= portirq_msk[port];
  1041. sky2_write32(hw, B0_IMSK, imask);
  1042. return 0;
  1043. err_out:
  1044. if (sky2->rx_le) {
  1045. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1046. sky2->rx_le, sky2->rx_le_map);
  1047. sky2->rx_le = NULL;
  1048. }
  1049. if (sky2->tx_le) {
  1050. pci_free_consistent(hw->pdev,
  1051. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1052. sky2->tx_le, sky2->tx_le_map);
  1053. sky2->tx_le = NULL;
  1054. }
  1055. kfree(sky2->tx_ring);
  1056. kfree(sky2->rx_ring);
  1057. sky2->tx_ring = NULL;
  1058. sky2->rx_ring = NULL;
  1059. return err;
  1060. }
  1061. /* Modular subtraction in ring */
  1062. static inline int tx_dist(unsigned tail, unsigned head)
  1063. {
  1064. return (head - tail) & (TX_RING_SIZE - 1);
  1065. }
  1066. /* Number of list elements available for next tx */
  1067. static inline int tx_avail(const struct sky2_port *sky2)
  1068. {
  1069. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  1070. }
  1071. /* Estimate of number of transmit list elements required */
  1072. static unsigned tx_le_req(const struct sk_buff *skb)
  1073. {
  1074. unsigned count;
  1075. count = sizeof(dma_addr_t) / sizeof(u32);
  1076. count += skb_shinfo(skb)->nr_frags * count;
  1077. if (skb_is_gso(skb))
  1078. ++count;
  1079. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1080. ++count;
  1081. return count;
  1082. }
  1083. /*
  1084. * Put one packet in ring for transmit.
  1085. * A single packet can generate multiple list elements, and
  1086. * the number of ring elements will probably be less than the number
  1087. * of list elements used.
  1088. */
  1089. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1090. {
  1091. struct sky2_port *sky2 = netdev_priv(dev);
  1092. struct sky2_hw *hw = sky2->hw;
  1093. struct sky2_tx_le *le = NULL;
  1094. struct tx_ring_info *re;
  1095. unsigned i, len;
  1096. dma_addr_t mapping;
  1097. u32 addr64;
  1098. u16 mss;
  1099. u8 ctrl;
  1100. if (unlikely(tx_avail(sky2) < tx_le_req(skb)))
  1101. return NETDEV_TX_BUSY;
  1102. if (unlikely(netif_msg_tx_queued(sky2)))
  1103. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  1104. dev->name, sky2->tx_prod, skb->len);
  1105. len = skb_headlen(skb);
  1106. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1107. addr64 = high32(mapping);
  1108. /* Send high bits if changed or crosses boundary */
  1109. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  1110. le = get_tx_le(sky2);
  1111. le->addr = cpu_to_le32(addr64);
  1112. le->opcode = OP_ADDR64 | HW_OWNER;
  1113. sky2->tx_addr64 = high32(mapping + len);
  1114. }
  1115. /* Check for TCP Segmentation Offload */
  1116. mss = skb_shinfo(skb)->gso_size;
  1117. if (mss != 0) {
  1118. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  1119. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  1120. mss += ETH_HLEN;
  1121. if (mss != sky2->tx_last_mss) {
  1122. le = get_tx_le(sky2);
  1123. le->addr = cpu_to_le32(mss);
  1124. le->opcode = OP_LRGLEN | HW_OWNER;
  1125. sky2->tx_last_mss = mss;
  1126. }
  1127. }
  1128. ctrl = 0;
  1129. #ifdef SKY2_VLAN_TAG_USED
  1130. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  1131. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  1132. if (!le) {
  1133. le = get_tx_le(sky2);
  1134. le->addr = 0;
  1135. le->opcode = OP_VLAN|HW_OWNER;
  1136. } else
  1137. le->opcode |= OP_VLAN;
  1138. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  1139. ctrl |= INS_VLAN;
  1140. }
  1141. #endif
  1142. /* Handle TCP checksum offload */
  1143. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1144. unsigned offset = skb->h.raw - skb->data;
  1145. u32 tcpsum;
  1146. tcpsum = offset << 16; /* sum start */
  1147. tcpsum |= offset + skb->csum_offset; /* sum write */
  1148. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  1149. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1150. ctrl |= UDPTCP;
  1151. if (tcpsum != sky2->tx_tcpsum) {
  1152. sky2->tx_tcpsum = tcpsum;
  1153. le = get_tx_le(sky2);
  1154. le->addr = cpu_to_le32(tcpsum);
  1155. le->length = 0; /* initial checksum value */
  1156. le->ctrl = 1; /* one packet */
  1157. le->opcode = OP_TCPLISW | HW_OWNER;
  1158. }
  1159. }
  1160. le = get_tx_le(sky2);
  1161. le->addr = cpu_to_le32((u32) mapping);
  1162. le->length = cpu_to_le16(len);
  1163. le->ctrl = ctrl;
  1164. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1165. re = tx_le_re(sky2, le);
  1166. re->skb = skb;
  1167. pci_unmap_addr_set(re, mapaddr, mapping);
  1168. pci_unmap_len_set(re, maplen, len);
  1169. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1170. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1171. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1172. frag->size, PCI_DMA_TODEVICE);
  1173. addr64 = high32(mapping);
  1174. if (addr64 != sky2->tx_addr64) {
  1175. le = get_tx_le(sky2);
  1176. le->addr = cpu_to_le32(addr64);
  1177. le->ctrl = 0;
  1178. le->opcode = OP_ADDR64 | HW_OWNER;
  1179. sky2->tx_addr64 = addr64;
  1180. }
  1181. le = get_tx_le(sky2);
  1182. le->addr = cpu_to_le32((u32) mapping);
  1183. le->length = cpu_to_le16(frag->size);
  1184. le->ctrl = ctrl;
  1185. le->opcode = OP_BUFFER | HW_OWNER;
  1186. re = tx_le_re(sky2, le);
  1187. re->skb = skb;
  1188. pci_unmap_addr_set(re, mapaddr, mapping);
  1189. pci_unmap_len_set(re, maplen, frag->size);
  1190. }
  1191. le->ctrl |= EOP;
  1192. if (tx_avail(sky2) <= MAX_SKB_TX_LE)
  1193. netif_stop_queue(dev);
  1194. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1195. dev->trans_start = jiffies;
  1196. return NETDEV_TX_OK;
  1197. }
  1198. /*
  1199. * Free ring elements from starting at tx_cons until "done"
  1200. *
  1201. * NB: the hardware will tell us about partial completion of multi-part
  1202. * buffers so make sure not to free skb to early.
  1203. */
  1204. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1205. {
  1206. struct net_device *dev = sky2->netdev;
  1207. struct pci_dev *pdev = sky2->hw->pdev;
  1208. unsigned idx;
  1209. BUG_ON(done >= TX_RING_SIZE);
  1210. for (idx = sky2->tx_cons; idx != done;
  1211. idx = RING_NEXT(idx, TX_RING_SIZE)) {
  1212. struct sky2_tx_le *le = sky2->tx_le + idx;
  1213. struct tx_ring_info *re = sky2->tx_ring + idx;
  1214. switch(le->opcode & ~HW_OWNER) {
  1215. case OP_LARGESEND:
  1216. case OP_PACKET:
  1217. pci_unmap_single(pdev,
  1218. pci_unmap_addr(re, mapaddr),
  1219. pci_unmap_len(re, maplen),
  1220. PCI_DMA_TODEVICE);
  1221. break;
  1222. case OP_BUFFER:
  1223. pci_unmap_page(pdev, pci_unmap_addr(re, mapaddr),
  1224. pci_unmap_len(re, maplen),
  1225. PCI_DMA_TODEVICE);
  1226. break;
  1227. }
  1228. if (le->ctrl & EOP) {
  1229. if (unlikely(netif_msg_tx_done(sky2)))
  1230. printk(KERN_DEBUG "%s: tx done %u\n",
  1231. dev->name, idx);
  1232. sky2->net_stats.tx_packets++;
  1233. sky2->net_stats.tx_bytes += re->skb->len;
  1234. dev_kfree_skb_any(re->skb);
  1235. }
  1236. le->opcode = 0; /* paranoia */
  1237. }
  1238. sky2->tx_cons = idx;
  1239. if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
  1240. netif_wake_queue(dev);
  1241. }
  1242. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1243. static void sky2_tx_clean(struct net_device *dev)
  1244. {
  1245. struct sky2_port *sky2 = netdev_priv(dev);
  1246. netif_tx_lock_bh(dev);
  1247. sky2_tx_complete(sky2, sky2->tx_prod);
  1248. netif_tx_unlock_bh(dev);
  1249. }
  1250. /* Network shutdown */
  1251. static int sky2_down(struct net_device *dev)
  1252. {
  1253. struct sky2_port *sky2 = netdev_priv(dev);
  1254. struct sky2_hw *hw = sky2->hw;
  1255. unsigned port = sky2->port;
  1256. u16 ctrl;
  1257. u32 imask;
  1258. /* Never really got started! */
  1259. if (!sky2->tx_le)
  1260. return 0;
  1261. if (netif_msg_ifdown(sky2))
  1262. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1263. /* Stop more packets from being queued */
  1264. netif_stop_queue(dev);
  1265. /* Disable port IRQ */
  1266. imask = sky2_read32(hw, B0_IMSK);
  1267. imask &= ~portirq_msk[port];
  1268. sky2_write32(hw, B0_IMSK, imask);
  1269. /*
  1270. * Both ports share the NAPI poll on port 0, so if necessary undo the
  1271. * the disable that is done in dev_close.
  1272. */
  1273. if (sky2->port == 0 && hw->ports > 1)
  1274. netif_poll_enable(dev);
  1275. sky2_gmac_reset(hw, port);
  1276. /* Stop transmitter */
  1277. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1278. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1279. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1280. RB_RST_SET | RB_DIS_OP_MD);
  1281. /* WA for dev. #4.209 */
  1282. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  1283. && (hw->chip_rev == CHIP_REV_YU_EC_U_A1 || hw->chip_rev == CHIP_REV_YU_EC_U_B0))
  1284. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
  1285. sky2->speed != SPEED_1000 ?
  1286. TX_STFW_ENA : TX_STFW_DIS);
  1287. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1288. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1289. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1290. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1291. /* Workaround shared GMAC reset */
  1292. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1293. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1294. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1295. /* Disable Force Sync bit and Enable Alloc bit */
  1296. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1297. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1298. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1299. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1300. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1301. /* Reset the PCI FIFO of the async Tx queue */
  1302. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1303. BMU_RST_SET | BMU_FIFO_RST);
  1304. /* Reset the Tx prefetch units */
  1305. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1306. PREF_UNIT_RST_SET);
  1307. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1308. sky2_rx_stop(sky2);
  1309. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1310. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1311. sky2_phy_power(hw, port, 0);
  1312. /* turn off LED's */
  1313. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1314. synchronize_irq(hw->pdev->irq);
  1315. sky2_tx_clean(dev);
  1316. sky2_rx_clean(sky2);
  1317. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1318. sky2->rx_le, sky2->rx_le_map);
  1319. kfree(sky2->rx_ring);
  1320. pci_free_consistent(hw->pdev,
  1321. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1322. sky2->tx_le, sky2->tx_le_map);
  1323. kfree(sky2->tx_ring);
  1324. sky2->tx_le = NULL;
  1325. sky2->rx_le = NULL;
  1326. sky2->rx_ring = NULL;
  1327. sky2->tx_ring = NULL;
  1328. return 0;
  1329. }
  1330. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1331. {
  1332. if (!sky2_is_copper(hw))
  1333. return SPEED_1000;
  1334. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1335. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1336. switch (aux & PHY_M_PS_SPEED_MSK) {
  1337. case PHY_M_PS_SPEED_1000:
  1338. return SPEED_1000;
  1339. case PHY_M_PS_SPEED_100:
  1340. return SPEED_100;
  1341. default:
  1342. return SPEED_10;
  1343. }
  1344. }
  1345. static void sky2_link_up(struct sky2_port *sky2)
  1346. {
  1347. struct sky2_hw *hw = sky2->hw;
  1348. unsigned port = sky2->port;
  1349. u16 reg;
  1350. static const char *fc_name[] = {
  1351. [FC_NONE] = "none",
  1352. [FC_TX] = "tx",
  1353. [FC_RX] = "rx",
  1354. [FC_BOTH] = "both",
  1355. };
  1356. /* enable Rx/Tx */
  1357. reg = gma_read16(hw, port, GM_GP_CTRL);
  1358. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1359. gma_write16(hw, port, GM_GP_CTRL, reg);
  1360. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1361. netif_carrier_on(sky2->netdev);
  1362. netif_wake_queue(sky2->netdev);
  1363. /* Turn on link LED */
  1364. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1365. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1366. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1367. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1368. u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
  1369. switch(sky2->speed) {
  1370. case SPEED_10:
  1371. led |= PHY_M_LEDC_INIT_CTRL(7);
  1372. break;
  1373. case SPEED_100:
  1374. led |= PHY_M_LEDC_STA1_CTRL(7);
  1375. break;
  1376. case SPEED_1000:
  1377. led |= PHY_M_LEDC_STA0_CTRL(7);
  1378. break;
  1379. }
  1380. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1381. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
  1382. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1383. }
  1384. if (netif_msg_link(sky2))
  1385. printk(KERN_INFO PFX
  1386. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1387. sky2->netdev->name, sky2->speed,
  1388. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1389. fc_name[sky2->flow_status]);
  1390. }
  1391. static void sky2_link_down(struct sky2_port *sky2)
  1392. {
  1393. struct sky2_hw *hw = sky2->hw;
  1394. unsigned port = sky2->port;
  1395. u16 reg;
  1396. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1397. reg = gma_read16(hw, port, GM_GP_CTRL);
  1398. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1399. gma_write16(hw, port, GM_GP_CTRL, reg);
  1400. if (sky2->flow_status == FC_RX) {
  1401. /* restore Asymmetric Pause bit */
  1402. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1403. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1404. | PHY_M_AN_ASP);
  1405. }
  1406. netif_carrier_off(sky2->netdev);
  1407. netif_stop_queue(sky2->netdev);
  1408. /* Turn on link LED */
  1409. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1410. if (netif_msg_link(sky2))
  1411. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1412. sky2_phy_init(hw, port);
  1413. }
  1414. static enum flow_control sky2_flow(int rx, int tx)
  1415. {
  1416. if (rx)
  1417. return tx ? FC_BOTH : FC_RX;
  1418. else
  1419. return tx ? FC_TX : FC_NONE;
  1420. }
  1421. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1422. {
  1423. struct sky2_hw *hw = sky2->hw;
  1424. unsigned port = sky2->port;
  1425. u16 lpa;
  1426. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1427. if (lpa & PHY_M_AN_RF) {
  1428. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1429. return -1;
  1430. }
  1431. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1432. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1433. sky2->netdev->name);
  1434. return -1;
  1435. }
  1436. sky2->speed = sky2_phy_speed(hw, aux);
  1437. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1438. /* Pause bits are offset (9..8) */
  1439. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
  1440. aux >>= 6;
  1441. sky2->flow_status = sky2_flow(aux & PHY_M_PS_RX_P_EN,
  1442. aux & PHY_M_PS_TX_P_EN);
  1443. if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000
  1444. && hw->chip_id != CHIP_ID_YUKON_EC_U)
  1445. sky2->flow_status = FC_NONE;
  1446. if (aux & PHY_M_PS_RX_P_EN)
  1447. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1448. else
  1449. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1450. return 0;
  1451. }
  1452. /* Interrupt from PHY */
  1453. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1454. {
  1455. struct net_device *dev = hw->dev[port];
  1456. struct sky2_port *sky2 = netdev_priv(dev);
  1457. u16 istatus, phystat;
  1458. if (!netif_running(dev))
  1459. return;
  1460. spin_lock(&sky2->phy_lock);
  1461. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1462. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1463. if (netif_msg_intr(sky2))
  1464. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1465. sky2->netdev->name, istatus, phystat);
  1466. if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) {
  1467. if (sky2_autoneg_done(sky2, phystat) == 0)
  1468. sky2_link_up(sky2);
  1469. goto out;
  1470. }
  1471. if (istatus & PHY_M_IS_LSP_CHANGE)
  1472. sky2->speed = sky2_phy_speed(hw, phystat);
  1473. if (istatus & PHY_M_IS_DUP_CHANGE)
  1474. sky2->duplex =
  1475. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1476. if (istatus & PHY_M_IS_LST_CHANGE) {
  1477. if (phystat & PHY_M_PS_LINK_UP)
  1478. sky2_link_up(sky2);
  1479. else
  1480. sky2_link_down(sky2);
  1481. }
  1482. out:
  1483. spin_unlock(&sky2->phy_lock);
  1484. }
  1485. /* Transmit timeout is only called if we are running, carries is up
  1486. * and tx queue is full (stopped).
  1487. */
  1488. static void sky2_tx_timeout(struct net_device *dev)
  1489. {
  1490. struct sky2_port *sky2 = netdev_priv(dev);
  1491. struct sky2_hw *hw = sky2->hw;
  1492. unsigned txq = txqaddr[sky2->port];
  1493. u16 report, done;
  1494. if (netif_msg_timer(sky2))
  1495. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1496. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1497. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1498. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1499. dev->name,
  1500. sky2->tx_cons, sky2->tx_prod, report, done);
  1501. if (report != done) {
  1502. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1503. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1504. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1505. } else if (report != sky2->tx_cons) {
  1506. printk(KERN_INFO PFX "status report lost?\n");
  1507. netif_tx_lock_bh(dev);
  1508. sky2_tx_complete(sky2, report);
  1509. netif_tx_unlock_bh(dev);
  1510. } else {
  1511. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1512. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1513. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1514. sky2_tx_clean(dev);
  1515. sky2_qset(hw, txq);
  1516. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1517. }
  1518. }
  1519. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1520. {
  1521. struct sky2_port *sky2 = netdev_priv(dev);
  1522. struct sky2_hw *hw = sky2->hw;
  1523. int err;
  1524. u16 ctl, mode;
  1525. u32 imask;
  1526. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1527. return -EINVAL;
  1528. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1529. return -EINVAL;
  1530. if (!netif_running(dev)) {
  1531. dev->mtu = new_mtu;
  1532. return 0;
  1533. }
  1534. imask = sky2_read32(hw, B0_IMSK);
  1535. sky2_write32(hw, B0_IMSK, 0);
  1536. dev->trans_start = jiffies; /* prevent tx timeout */
  1537. netif_stop_queue(dev);
  1538. netif_poll_disable(hw->dev[0]);
  1539. synchronize_irq(hw->pdev->irq);
  1540. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1541. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1542. sky2_rx_stop(sky2);
  1543. sky2_rx_clean(sky2);
  1544. dev->mtu = new_mtu;
  1545. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1546. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1547. if (dev->mtu > ETH_DATA_LEN)
  1548. mode |= GM_SMOD_JUMBO_ENA;
  1549. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1550. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1551. err = sky2_rx_start(sky2);
  1552. sky2_write32(hw, B0_IMSK, imask);
  1553. if (err)
  1554. dev_close(dev);
  1555. else {
  1556. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1557. netif_poll_enable(hw->dev[0]);
  1558. netif_wake_queue(dev);
  1559. }
  1560. return err;
  1561. }
  1562. /* For small just reuse existing skb for next receive */
  1563. static struct sk_buff *receive_copy(struct sky2_port *sky2,
  1564. const struct rx_ring_info *re,
  1565. unsigned length)
  1566. {
  1567. struct sk_buff *skb;
  1568. skb = netdev_alloc_skb(sky2->netdev, length + 2);
  1569. if (likely(skb)) {
  1570. skb_reserve(skb, 2);
  1571. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr,
  1572. length, PCI_DMA_FROMDEVICE);
  1573. memcpy(skb->data, re->skb->data, length);
  1574. skb->ip_summed = re->skb->ip_summed;
  1575. skb->csum = re->skb->csum;
  1576. pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr,
  1577. length, PCI_DMA_FROMDEVICE);
  1578. re->skb->ip_summed = CHECKSUM_NONE;
  1579. skb_put(skb, length);
  1580. }
  1581. return skb;
  1582. }
  1583. /* Adjust length of skb with fragments to match received data */
  1584. static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space,
  1585. unsigned int length)
  1586. {
  1587. int i, num_frags;
  1588. unsigned int size;
  1589. /* put header into skb */
  1590. size = min(length, hdr_space);
  1591. skb->tail += size;
  1592. skb->len += size;
  1593. length -= size;
  1594. num_frags = skb_shinfo(skb)->nr_frags;
  1595. for (i = 0; i < num_frags; i++) {
  1596. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1597. if (length == 0) {
  1598. /* don't need this page */
  1599. __free_page(frag->page);
  1600. --skb_shinfo(skb)->nr_frags;
  1601. } else {
  1602. size = min(length, (unsigned) PAGE_SIZE);
  1603. frag->size = size;
  1604. skb->data_len += size;
  1605. skb->truesize += size;
  1606. skb->len += size;
  1607. length -= size;
  1608. }
  1609. }
  1610. }
  1611. /* Normal packet - take skb from ring element and put in a new one */
  1612. static struct sk_buff *receive_new(struct sky2_port *sky2,
  1613. struct rx_ring_info *re,
  1614. unsigned int length)
  1615. {
  1616. struct sk_buff *skb, *nskb;
  1617. unsigned hdr_space = sky2->rx_data_size;
  1618. pr_debug(PFX "receive new length=%d\n", length);
  1619. /* Don't be tricky about reusing pages (yet) */
  1620. nskb = sky2_rx_alloc(sky2);
  1621. if (unlikely(!nskb))
  1622. return NULL;
  1623. skb = re->skb;
  1624. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  1625. prefetch(skb->data);
  1626. re->skb = nskb;
  1627. sky2_rx_map_skb(sky2->hw->pdev, re, hdr_space);
  1628. if (skb_shinfo(skb)->nr_frags)
  1629. skb_put_frags(skb, hdr_space, length);
  1630. else
  1631. skb_put(skb, length);
  1632. return skb;
  1633. }
  1634. /*
  1635. * Receive one packet.
  1636. * For larger packets, get new buffer.
  1637. */
  1638. static struct sk_buff *sky2_receive(struct net_device *dev,
  1639. u16 length, u32 status)
  1640. {
  1641. struct sky2_port *sky2 = netdev_priv(dev);
  1642. struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next;
  1643. struct sk_buff *skb = NULL;
  1644. if (unlikely(netif_msg_rx_status(sky2)))
  1645. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1646. dev->name, sky2->rx_next, status, length);
  1647. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1648. prefetch(sky2->rx_ring + sky2->rx_next);
  1649. if (status & GMR_FS_ANY_ERR)
  1650. goto error;
  1651. if (!(status & GMR_FS_RX_OK))
  1652. goto resubmit;
  1653. if (length > dev->mtu + ETH_HLEN)
  1654. goto oversize;
  1655. if (length < copybreak)
  1656. skb = receive_copy(sky2, re, length);
  1657. else
  1658. skb = receive_new(sky2, re, length);
  1659. resubmit:
  1660. sky2_rx_submit(sky2, re);
  1661. return skb;
  1662. oversize:
  1663. ++sky2->net_stats.rx_over_errors;
  1664. goto resubmit;
  1665. error:
  1666. ++sky2->net_stats.rx_errors;
  1667. if (status & GMR_FS_RX_FF_OV) {
  1668. sky2->net_stats.rx_fifo_errors++;
  1669. goto resubmit;
  1670. }
  1671. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1672. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1673. dev->name, status, length);
  1674. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1675. sky2->net_stats.rx_length_errors++;
  1676. if (status & GMR_FS_FRAGMENT)
  1677. sky2->net_stats.rx_frame_errors++;
  1678. if (status & GMR_FS_CRC_ERR)
  1679. sky2->net_stats.rx_crc_errors++;
  1680. goto resubmit;
  1681. }
  1682. /* Transmit complete */
  1683. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1684. {
  1685. struct sky2_port *sky2 = netdev_priv(dev);
  1686. if (netif_running(dev)) {
  1687. netif_tx_lock(dev);
  1688. sky2_tx_complete(sky2, last);
  1689. netif_tx_unlock(dev);
  1690. }
  1691. }
  1692. /* Process status response ring */
  1693. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1694. {
  1695. struct sky2_port *sky2;
  1696. int work_done = 0;
  1697. unsigned buf_write[2] = { 0, 0 };
  1698. u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1699. rmb();
  1700. while (hw->st_idx != hwidx) {
  1701. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1702. struct net_device *dev;
  1703. struct sk_buff *skb;
  1704. u32 status;
  1705. u16 length;
  1706. hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
  1707. BUG_ON(le->link >= 2);
  1708. dev = hw->dev[le->link];
  1709. sky2 = netdev_priv(dev);
  1710. length = le16_to_cpu(le->length);
  1711. status = le32_to_cpu(le->status);
  1712. switch (le->opcode & ~HW_OWNER) {
  1713. case OP_RXSTAT:
  1714. skb = sky2_receive(dev, length, status);
  1715. if (!skb)
  1716. goto force_update;
  1717. skb->protocol = eth_type_trans(skb, dev);
  1718. sky2->net_stats.rx_packets++;
  1719. sky2->net_stats.rx_bytes += skb->len;
  1720. dev->last_rx = jiffies;
  1721. #ifdef SKY2_VLAN_TAG_USED
  1722. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1723. vlan_hwaccel_receive_skb(skb,
  1724. sky2->vlgrp,
  1725. be16_to_cpu(sky2->rx_tag));
  1726. } else
  1727. #endif
  1728. netif_receive_skb(skb);
  1729. /* Update receiver after 16 frames */
  1730. if (++buf_write[le->link] == RX_BUF_WRITE) {
  1731. force_update:
  1732. sky2_put_idx(hw, rxqaddr[le->link], sky2->rx_put);
  1733. buf_write[le->link] = 0;
  1734. }
  1735. /* Stop after net poll weight */
  1736. if (++work_done >= to_do)
  1737. goto exit_loop;
  1738. break;
  1739. #ifdef SKY2_VLAN_TAG_USED
  1740. case OP_RXVLAN:
  1741. sky2->rx_tag = length;
  1742. break;
  1743. case OP_RXCHKSVLAN:
  1744. sky2->rx_tag = length;
  1745. /* fall through */
  1746. #endif
  1747. case OP_RXCHKS:
  1748. skb = sky2->rx_ring[sky2->rx_next].skb;
  1749. skb->ip_summed = CHECKSUM_COMPLETE;
  1750. skb->csum = status & 0xffff;
  1751. break;
  1752. case OP_TXINDEXLE:
  1753. /* TX index reports status for both ports */
  1754. BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
  1755. sky2_tx_done(hw->dev[0], status & 0xfff);
  1756. if (hw->dev[1])
  1757. sky2_tx_done(hw->dev[1],
  1758. ((status >> 24) & 0xff)
  1759. | (u16)(length & 0xf) << 8);
  1760. break;
  1761. default:
  1762. if (net_ratelimit())
  1763. printk(KERN_WARNING PFX
  1764. "unknown status opcode 0x%x\n", le->opcode);
  1765. goto exit_loop;
  1766. }
  1767. }
  1768. /* Fully processed status ring so clear irq */
  1769. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1770. exit_loop:
  1771. if (buf_write[0]) {
  1772. sky2 = netdev_priv(hw->dev[0]);
  1773. sky2_put_idx(hw, Q_R1, sky2->rx_put);
  1774. }
  1775. if (buf_write[1]) {
  1776. sky2 = netdev_priv(hw->dev[1]);
  1777. sky2_put_idx(hw, Q_R2, sky2->rx_put);
  1778. }
  1779. return work_done;
  1780. }
  1781. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1782. {
  1783. struct net_device *dev = hw->dev[port];
  1784. if (net_ratelimit())
  1785. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1786. dev->name, status);
  1787. if (status & Y2_IS_PAR_RD1) {
  1788. if (net_ratelimit())
  1789. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1790. dev->name);
  1791. /* Clear IRQ */
  1792. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1793. }
  1794. if (status & Y2_IS_PAR_WR1) {
  1795. if (net_ratelimit())
  1796. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1797. dev->name);
  1798. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1799. }
  1800. if (status & Y2_IS_PAR_MAC1) {
  1801. if (net_ratelimit())
  1802. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1803. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1804. }
  1805. if (status & Y2_IS_PAR_RX1) {
  1806. if (net_ratelimit())
  1807. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1808. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1809. }
  1810. if (status & Y2_IS_TCP_TXA1) {
  1811. if (net_ratelimit())
  1812. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1813. dev->name);
  1814. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1815. }
  1816. }
  1817. static void sky2_hw_intr(struct sky2_hw *hw)
  1818. {
  1819. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1820. if (status & Y2_IS_TIST_OV)
  1821. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1822. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1823. u16 pci_err;
  1824. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1825. if (net_ratelimit())
  1826. dev_err(&hw->pdev->dev, "PCI hardware error (0x%x)\n",
  1827. pci_err);
  1828. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1829. sky2_pci_write16(hw, PCI_STATUS,
  1830. pci_err | PCI_STATUS_ERROR_BITS);
  1831. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1832. }
  1833. if (status & Y2_IS_PCI_EXP) {
  1834. /* PCI-Express uncorrectable Error occurred */
  1835. u32 pex_err;
  1836. pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
  1837. if (net_ratelimit())
  1838. dev_err(&hw->pdev->dev, "PCI Express error (0x%x)\n",
  1839. pex_err);
  1840. /* clear the interrupt */
  1841. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1842. sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
  1843. 0xffffffffUL);
  1844. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1845. if (pex_err & PEX_FATAL_ERRORS) {
  1846. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1847. hwmsk &= ~Y2_IS_PCI_EXP;
  1848. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1849. }
  1850. }
  1851. if (status & Y2_HWE_L1_MASK)
  1852. sky2_hw_error(hw, 0, status);
  1853. status >>= 8;
  1854. if (status & Y2_HWE_L1_MASK)
  1855. sky2_hw_error(hw, 1, status);
  1856. }
  1857. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1858. {
  1859. struct net_device *dev = hw->dev[port];
  1860. struct sky2_port *sky2 = netdev_priv(dev);
  1861. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1862. if (netif_msg_intr(sky2))
  1863. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1864. dev->name, status);
  1865. if (status & GM_IS_RX_FF_OR) {
  1866. ++sky2->net_stats.rx_fifo_errors;
  1867. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1868. }
  1869. if (status & GM_IS_TX_FF_UR) {
  1870. ++sky2->net_stats.tx_fifo_errors;
  1871. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1872. }
  1873. }
  1874. /* This should never happen it is a fatal situation */
  1875. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1876. const char *rxtx, u32 mask)
  1877. {
  1878. struct net_device *dev = hw->dev[port];
  1879. struct sky2_port *sky2 = netdev_priv(dev);
  1880. u32 imask;
  1881. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1882. dev ? dev->name : "<not registered>", rxtx);
  1883. imask = sky2_read32(hw, B0_IMSK);
  1884. imask &= ~mask;
  1885. sky2_write32(hw, B0_IMSK, imask);
  1886. if (dev) {
  1887. spin_lock(&sky2->phy_lock);
  1888. sky2_link_down(sky2);
  1889. spin_unlock(&sky2->phy_lock);
  1890. }
  1891. }
  1892. /* If idle then force a fake soft NAPI poll once a second
  1893. * to work around cases where sharing an edge triggered interrupt.
  1894. */
  1895. static inline void sky2_idle_start(struct sky2_hw *hw)
  1896. {
  1897. if (idle_timeout > 0)
  1898. mod_timer(&hw->idle_timer,
  1899. jiffies + msecs_to_jiffies(idle_timeout));
  1900. }
  1901. static void sky2_idle(unsigned long arg)
  1902. {
  1903. struct sky2_hw *hw = (struct sky2_hw *) arg;
  1904. struct net_device *dev = hw->dev[0];
  1905. if (__netif_rx_schedule_prep(dev))
  1906. __netif_rx_schedule(dev);
  1907. mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
  1908. }
  1909. static int sky2_poll(struct net_device *dev0, int *budget)
  1910. {
  1911. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1912. int work_limit = min(dev0->quota, *budget);
  1913. int work_done = 0;
  1914. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1915. if (status & Y2_IS_HW_ERR)
  1916. sky2_hw_intr(hw);
  1917. if (status & Y2_IS_IRQ_PHY1)
  1918. sky2_phy_intr(hw, 0);
  1919. if (status & Y2_IS_IRQ_PHY2)
  1920. sky2_phy_intr(hw, 1);
  1921. if (status & Y2_IS_IRQ_MAC1)
  1922. sky2_mac_intr(hw, 0);
  1923. if (status & Y2_IS_IRQ_MAC2)
  1924. sky2_mac_intr(hw, 1);
  1925. if (status & Y2_IS_CHK_RX1)
  1926. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1927. if (status & Y2_IS_CHK_RX2)
  1928. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1929. if (status & Y2_IS_CHK_TXA1)
  1930. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1931. if (status & Y2_IS_CHK_TXA2)
  1932. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1933. work_done = sky2_status_intr(hw, work_limit);
  1934. if (work_done < work_limit) {
  1935. netif_rx_complete(dev0);
  1936. sky2_read32(hw, B0_Y2_SP_LISR);
  1937. return 0;
  1938. } else {
  1939. *budget -= work_done;
  1940. dev0->quota -= work_done;
  1941. return 1;
  1942. }
  1943. }
  1944. static irqreturn_t sky2_intr(int irq, void *dev_id)
  1945. {
  1946. struct sky2_hw *hw = dev_id;
  1947. struct net_device *dev0 = hw->dev[0];
  1948. u32 status;
  1949. /* Reading this mask interrupts as side effect */
  1950. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1951. if (status == 0 || status == ~0)
  1952. return IRQ_NONE;
  1953. prefetch(&hw->st_le[hw->st_idx]);
  1954. if (likely(__netif_rx_schedule_prep(dev0)))
  1955. __netif_rx_schedule(dev0);
  1956. return IRQ_HANDLED;
  1957. }
  1958. #ifdef CONFIG_NET_POLL_CONTROLLER
  1959. static void sky2_netpoll(struct net_device *dev)
  1960. {
  1961. struct sky2_port *sky2 = netdev_priv(dev);
  1962. struct net_device *dev0 = sky2->hw->dev[0];
  1963. if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
  1964. __netif_rx_schedule(dev0);
  1965. }
  1966. #endif
  1967. /* Chip internal frequency for clock calculations */
  1968. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1969. {
  1970. switch (hw->chip_id) {
  1971. case CHIP_ID_YUKON_EC:
  1972. case CHIP_ID_YUKON_EC_U:
  1973. return 125; /* 125 Mhz */
  1974. case CHIP_ID_YUKON_FE:
  1975. return 100; /* 100 Mhz */
  1976. default: /* YUKON_XL */
  1977. return 156; /* 156 Mhz */
  1978. }
  1979. }
  1980. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1981. {
  1982. return sky2_mhz(hw) * us;
  1983. }
  1984. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1985. {
  1986. return clk / sky2_mhz(hw);
  1987. }
  1988. static int __devinit sky2_init(struct sky2_hw *hw)
  1989. {
  1990. u8 t8;
  1991. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1992. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1993. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1994. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  1995. hw->chip_id);
  1996. return -EOPNOTSUPP;
  1997. }
  1998. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1999. /* This rev is really old, and requires untested workarounds */
  2000. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  2001. dev_err(&hw->pdev->dev, "unsupported revision Yukon-%s (0x%x) rev %d\n",
  2002. yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2003. hw->chip_id, hw->chip_rev);
  2004. return -EOPNOTSUPP;
  2005. }
  2006. hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
  2007. hw->ports = 1;
  2008. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  2009. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  2010. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  2011. ++hw->ports;
  2012. }
  2013. return 0;
  2014. }
  2015. static void sky2_reset(struct sky2_hw *hw)
  2016. {
  2017. u16 status;
  2018. int i;
  2019. /* disable ASF */
  2020. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  2021. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  2022. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  2023. }
  2024. /* do a SW reset */
  2025. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2026. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  2027. /* clear PCI errors, if any */
  2028. status = sky2_pci_read16(hw, PCI_STATUS);
  2029. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2030. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  2031. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  2032. /* clear any PEX errors */
  2033. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  2034. sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
  2035. sky2_power_on(hw);
  2036. for (i = 0; i < hw->ports; i++) {
  2037. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2038. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2039. }
  2040. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2041. /* Clear I2C IRQ noise */
  2042. sky2_write32(hw, B2_I2C_IRQ, 1);
  2043. /* turn off hardware timer (unused) */
  2044. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  2045. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2046. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  2047. /* Turn off descriptor polling */
  2048. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  2049. /* Turn off receive timestamp */
  2050. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  2051. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2052. /* enable the Tx Arbiters */
  2053. for (i = 0; i < hw->ports; i++)
  2054. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2055. /* Initialize ram interface */
  2056. for (i = 0; i < hw->ports; i++) {
  2057. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  2058. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  2059. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  2060. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  2061. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  2062. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  2063. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  2064. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  2065. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  2066. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  2067. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  2068. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  2069. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  2070. }
  2071. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  2072. for (i = 0; i < hw->ports; i++)
  2073. sky2_gmac_reset(hw, i);
  2074. memset(hw->st_le, 0, STATUS_LE_BYTES);
  2075. hw->st_idx = 0;
  2076. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  2077. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  2078. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  2079. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  2080. /* Set the list last index */
  2081. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  2082. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  2083. sky2_write8(hw, STAT_FIFO_WM, 16);
  2084. /* set Status-FIFO ISR watermark */
  2085. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  2086. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  2087. else
  2088. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  2089. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  2090. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  2091. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  2092. /* enable status unit */
  2093. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  2094. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2095. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2096. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2097. }
  2098. static inline u8 sky2_wol_supported(const struct sky2_hw *hw)
  2099. {
  2100. return sky2_is_copper(hw) ? (WAKE_PHY | WAKE_MAGIC) : 0;
  2101. }
  2102. static void sky2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2103. {
  2104. const struct sky2_port *sky2 = netdev_priv(dev);
  2105. wol->supported = sky2_wol_supported(sky2->hw);
  2106. wol->wolopts = sky2->wol;
  2107. }
  2108. static int sky2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2109. {
  2110. struct sky2_port *sky2 = netdev_priv(dev);
  2111. struct sky2_hw *hw = sky2->hw;
  2112. if (wol->wolopts & ~sky2_wol_supported(sky2->hw))
  2113. return -EOPNOTSUPP;
  2114. sky2->wol = wol->wolopts;
  2115. if (hw->chip_id == CHIP_ID_YUKON_EC_U)
  2116. sky2_write32(hw, B0_CTST, sky2->wol
  2117. ? Y2_HW_WOL_ON : Y2_HW_WOL_OFF);
  2118. if (!netif_running(dev))
  2119. sky2_wol_init(sky2);
  2120. return 0;
  2121. }
  2122. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  2123. {
  2124. if (sky2_is_copper(hw)) {
  2125. u32 modes = SUPPORTED_10baseT_Half
  2126. | SUPPORTED_10baseT_Full
  2127. | SUPPORTED_100baseT_Half
  2128. | SUPPORTED_100baseT_Full
  2129. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2130. if (hw->chip_id != CHIP_ID_YUKON_FE)
  2131. modes |= SUPPORTED_1000baseT_Half
  2132. | SUPPORTED_1000baseT_Full;
  2133. return modes;
  2134. } else
  2135. return SUPPORTED_1000baseT_Half
  2136. | SUPPORTED_1000baseT_Full
  2137. | SUPPORTED_Autoneg
  2138. | SUPPORTED_FIBRE;
  2139. }
  2140. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2141. {
  2142. struct sky2_port *sky2 = netdev_priv(dev);
  2143. struct sky2_hw *hw = sky2->hw;
  2144. ecmd->transceiver = XCVR_INTERNAL;
  2145. ecmd->supported = sky2_supported_modes(hw);
  2146. ecmd->phy_address = PHY_ADDR_MARV;
  2147. if (sky2_is_copper(hw)) {
  2148. ecmd->supported = SUPPORTED_10baseT_Half
  2149. | SUPPORTED_10baseT_Full
  2150. | SUPPORTED_100baseT_Half
  2151. | SUPPORTED_100baseT_Full
  2152. | SUPPORTED_1000baseT_Half
  2153. | SUPPORTED_1000baseT_Full
  2154. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2155. ecmd->port = PORT_TP;
  2156. ecmd->speed = sky2->speed;
  2157. } else {
  2158. ecmd->speed = SPEED_1000;
  2159. ecmd->port = PORT_FIBRE;
  2160. }
  2161. ecmd->advertising = sky2->advertising;
  2162. ecmd->autoneg = sky2->autoneg;
  2163. ecmd->duplex = sky2->duplex;
  2164. return 0;
  2165. }
  2166. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2167. {
  2168. struct sky2_port *sky2 = netdev_priv(dev);
  2169. const struct sky2_hw *hw = sky2->hw;
  2170. u32 supported = sky2_supported_modes(hw);
  2171. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2172. ecmd->advertising = supported;
  2173. sky2->duplex = -1;
  2174. sky2->speed = -1;
  2175. } else {
  2176. u32 setting;
  2177. switch (ecmd->speed) {
  2178. case SPEED_1000:
  2179. if (ecmd->duplex == DUPLEX_FULL)
  2180. setting = SUPPORTED_1000baseT_Full;
  2181. else if (ecmd->duplex == DUPLEX_HALF)
  2182. setting = SUPPORTED_1000baseT_Half;
  2183. else
  2184. return -EINVAL;
  2185. break;
  2186. case SPEED_100:
  2187. if (ecmd->duplex == DUPLEX_FULL)
  2188. setting = SUPPORTED_100baseT_Full;
  2189. else if (ecmd->duplex == DUPLEX_HALF)
  2190. setting = SUPPORTED_100baseT_Half;
  2191. else
  2192. return -EINVAL;
  2193. break;
  2194. case SPEED_10:
  2195. if (ecmd->duplex == DUPLEX_FULL)
  2196. setting = SUPPORTED_10baseT_Full;
  2197. else if (ecmd->duplex == DUPLEX_HALF)
  2198. setting = SUPPORTED_10baseT_Half;
  2199. else
  2200. return -EINVAL;
  2201. break;
  2202. default:
  2203. return -EINVAL;
  2204. }
  2205. if ((setting & supported) == 0)
  2206. return -EINVAL;
  2207. sky2->speed = ecmd->speed;
  2208. sky2->duplex = ecmd->duplex;
  2209. }
  2210. sky2->autoneg = ecmd->autoneg;
  2211. sky2->advertising = ecmd->advertising;
  2212. if (netif_running(dev))
  2213. sky2_phy_reinit(sky2);
  2214. return 0;
  2215. }
  2216. static void sky2_get_drvinfo(struct net_device *dev,
  2217. struct ethtool_drvinfo *info)
  2218. {
  2219. struct sky2_port *sky2 = netdev_priv(dev);
  2220. strcpy(info->driver, DRV_NAME);
  2221. strcpy(info->version, DRV_VERSION);
  2222. strcpy(info->fw_version, "N/A");
  2223. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  2224. }
  2225. static const struct sky2_stat {
  2226. char name[ETH_GSTRING_LEN];
  2227. u16 offset;
  2228. } sky2_stats[] = {
  2229. { "tx_bytes", GM_TXO_OK_HI },
  2230. { "rx_bytes", GM_RXO_OK_HI },
  2231. { "tx_broadcast", GM_TXF_BC_OK },
  2232. { "rx_broadcast", GM_RXF_BC_OK },
  2233. { "tx_multicast", GM_TXF_MC_OK },
  2234. { "rx_multicast", GM_RXF_MC_OK },
  2235. { "tx_unicast", GM_TXF_UC_OK },
  2236. { "rx_unicast", GM_RXF_UC_OK },
  2237. { "tx_mac_pause", GM_TXF_MPAUSE },
  2238. { "rx_mac_pause", GM_RXF_MPAUSE },
  2239. { "collisions", GM_TXF_COL },
  2240. { "late_collision",GM_TXF_LAT_COL },
  2241. { "aborted", GM_TXF_ABO_COL },
  2242. { "single_collisions", GM_TXF_SNG_COL },
  2243. { "multi_collisions", GM_TXF_MUL_COL },
  2244. { "rx_short", GM_RXF_SHT },
  2245. { "rx_runt", GM_RXE_FRAG },
  2246. { "rx_64_byte_packets", GM_RXF_64B },
  2247. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2248. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2249. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2250. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2251. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2252. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2253. { "rx_too_long", GM_RXF_LNG_ERR },
  2254. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2255. { "rx_jabber", GM_RXF_JAB_PKT },
  2256. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2257. { "tx_64_byte_packets", GM_TXF_64B },
  2258. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2259. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2260. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2261. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2262. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2263. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2264. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2265. };
  2266. static u32 sky2_get_rx_csum(struct net_device *dev)
  2267. {
  2268. struct sky2_port *sky2 = netdev_priv(dev);
  2269. return sky2->rx_csum;
  2270. }
  2271. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2272. {
  2273. struct sky2_port *sky2 = netdev_priv(dev);
  2274. sky2->rx_csum = data;
  2275. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2276. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2277. return 0;
  2278. }
  2279. static u32 sky2_get_msglevel(struct net_device *netdev)
  2280. {
  2281. struct sky2_port *sky2 = netdev_priv(netdev);
  2282. return sky2->msg_enable;
  2283. }
  2284. static int sky2_nway_reset(struct net_device *dev)
  2285. {
  2286. struct sky2_port *sky2 = netdev_priv(dev);
  2287. if (!netif_running(dev) || sky2->autoneg != AUTONEG_ENABLE)
  2288. return -EINVAL;
  2289. sky2_phy_reinit(sky2);
  2290. return 0;
  2291. }
  2292. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2293. {
  2294. struct sky2_hw *hw = sky2->hw;
  2295. unsigned port = sky2->port;
  2296. int i;
  2297. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2298. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2299. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2300. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2301. for (i = 2; i < count; i++)
  2302. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2303. }
  2304. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2305. {
  2306. struct sky2_port *sky2 = netdev_priv(netdev);
  2307. sky2->msg_enable = value;
  2308. }
  2309. static int sky2_get_stats_count(struct net_device *dev)
  2310. {
  2311. return ARRAY_SIZE(sky2_stats);
  2312. }
  2313. static void sky2_get_ethtool_stats(struct net_device *dev,
  2314. struct ethtool_stats *stats, u64 * data)
  2315. {
  2316. struct sky2_port *sky2 = netdev_priv(dev);
  2317. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2318. }
  2319. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2320. {
  2321. int i;
  2322. switch (stringset) {
  2323. case ETH_SS_STATS:
  2324. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2325. memcpy(data + i * ETH_GSTRING_LEN,
  2326. sky2_stats[i].name, ETH_GSTRING_LEN);
  2327. break;
  2328. }
  2329. }
  2330. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2331. {
  2332. struct sky2_port *sky2 = netdev_priv(dev);
  2333. return &sky2->net_stats;
  2334. }
  2335. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2336. {
  2337. struct sky2_port *sky2 = netdev_priv(dev);
  2338. struct sky2_hw *hw = sky2->hw;
  2339. unsigned port = sky2->port;
  2340. const struct sockaddr *addr = p;
  2341. if (!is_valid_ether_addr(addr->sa_data))
  2342. return -EADDRNOTAVAIL;
  2343. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2344. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2345. dev->dev_addr, ETH_ALEN);
  2346. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2347. dev->dev_addr, ETH_ALEN);
  2348. /* virtual address for data */
  2349. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2350. /* physical address: used for pause frames */
  2351. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2352. return 0;
  2353. }
  2354. static void inline sky2_add_filter(u8 filter[8], const u8 *addr)
  2355. {
  2356. u32 bit;
  2357. bit = ether_crc(ETH_ALEN, addr) & 63;
  2358. filter[bit >> 3] |= 1 << (bit & 7);
  2359. }
  2360. static void sky2_set_multicast(struct net_device *dev)
  2361. {
  2362. struct sky2_port *sky2 = netdev_priv(dev);
  2363. struct sky2_hw *hw = sky2->hw;
  2364. unsigned port = sky2->port;
  2365. struct dev_mc_list *list = dev->mc_list;
  2366. u16 reg;
  2367. u8 filter[8];
  2368. int rx_pause;
  2369. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2370. rx_pause = (sky2->flow_status == FC_RX || sky2->flow_status == FC_BOTH);
  2371. memset(filter, 0, sizeof(filter));
  2372. reg = gma_read16(hw, port, GM_RX_CTRL);
  2373. reg |= GM_RXCR_UCF_ENA;
  2374. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2375. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2376. else if (dev->flags & IFF_ALLMULTI)
  2377. memset(filter, 0xff, sizeof(filter));
  2378. else if (dev->mc_count == 0 && !rx_pause)
  2379. reg &= ~GM_RXCR_MCF_ENA;
  2380. else {
  2381. int i;
  2382. reg |= GM_RXCR_MCF_ENA;
  2383. if (rx_pause)
  2384. sky2_add_filter(filter, pause_mc_addr);
  2385. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2386. sky2_add_filter(filter, list->dmi_addr);
  2387. }
  2388. gma_write16(hw, port, GM_MC_ADDR_H1,
  2389. (u16) filter[0] | ((u16) filter[1] << 8));
  2390. gma_write16(hw, port, GM_MC_ADDR_H2,
  2391. (u16) filter[2] | ((u16) filter[3] << 8));
  2392. gma_write16(hw, port, GM_MC_ADDR_H3,
  2393. (u16) filter[4] | ((u16) filter[5] << 8));
  2394. gma_write16(hw, port, GM_MC_ADDR_H4,
  2395. (u16) filter[6] | ((u16) filter[7] << 8));
  2396. gma_write16(hw, port, GM_RX_CTRL, reg);
  2397. }
  2398. /* Can have one global because blinking is controlled by
  2399. * ethtool and that is always under RTNL mutex
  2400. */
  2401. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2402. {
  2403. u16 pg;
  2404. switch (hw->chip_id) {
  2405. case CHIP_ID_YUKON_XL:
  2406. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2407. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2408. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2409. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2410. PHY_M_LEDC_INIT_CTRL(7) |
  2411. PHY_M_LEDC_STA1_CTRL(7) |
  2412. PHY_M_LEDC_STA0_CTRL(7))
  2413. : 0);
  2414. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2415. break;
  2416. default:
  2417. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2418. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2419. on ? PHY_M_LED_ALL : 0);
  2420. }
  2421. }
  2422. /* blink LED's for finding board */
  2423. static int sky2_phys_id(struct net_device *dev, u32 data)
  2424. {
  2425. struct sky2_port *sky2 = netdev_priv(dev);
  2426. struct sky2_hw *hw = sky2->hw;
  2427. unsigned port = sky2->port;
  2428. u16 ledctrl, ledover = 0;
  2429. long ms;
  2430. int interrupted;
  2431. int onoff = 1;
  2432. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2433. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2434. else
  2435. ms = data * 1000;
  2436. /* save initial values */
  2437. spin_lock_bh(&sky2->phy_lock);
  2438. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2439. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2440. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2441. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2442. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2443. } else {
  2444. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2445. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2446. }
  2447. interrupted = 0;
  2448. while (!interrupted && ms > 0) {
  2449. sky2_led(hw, port, onoff);
  2450. onoff = !onoff;
  2451. spin_unlock_bh(&sky2->phy_lock);
  2452. interrupted = msleep_interruptible(250);
  2453. spin_lock_bh(&sky2->phy_lock);
  2454. ms -= 250;
  2455. }
  2456. /* resume regularly scheduled programming */
  2457. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2458. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2459. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2460. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2461. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2462. } else {
  2463. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2464. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2465. }
  2466. spin_unlock_bh(&sky2->phy_lock);
  2467. return 0;
  2468. }
  2469. static void sky2_get_pauseparam(struct net_device *dev,
  2470. struct ethtool_pauseparam *ecmd)
  2471. {
  2472. struct sky2_port *sky2 = netdev_priv(dev);
  2473. switch (sky2->flow_mode) {
  2474. case FC_NONE:
  2475. ecmd->tx_pause = ecmd->rx_pause = 0;
  2476. break;
  2477. case FC_TX:
  2478. ecmd->tx_pause = 1, ecmd->rx_pause = 0;
  2479. break;
  2480. case FC_RX:
  2481. ecmd->tx_pause = 0, ecmd->rx_pause = 1;
  2482. break;
  2483. case FC_BOTH:
  2484. ecmd->tx_pause = ecmd->rx_pause = 1;
  2485. }
  2486. ecmd->autoneg = sky2->autoneg;
  2487. }
  2488. static int sky2_set_pauseparam(struct net_device *dev,
  2489. struct ethtool_pauseparam *ecmd)
  2490. {
  2491. struct sky2_port *sky2 = netdev_priv(dev);
  2492. sky2->autoneg = ecmd->autoneg;
  2493. sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause);
  2494. if (netif_running(dev))
  2495. sky2_phy_reinit(sky2);
  2496. return 0;
  2497. }
  2498. static int sky2_get_coalesce(struct net_device *dev,
  2499. struct ethtool_coalesce *ecmd)
  2500. {
  2501. struct sky2_port *sky2 = netdev_priv(dev);
  2502. struct sky2_hw *hw = sky2->hw;
  2503. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2504. ecmd->tx_coalesce_usecs = 0;
  2505. else {
  2506. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2507. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2508. }
  2509. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2510. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2511. ecmd->rx_coalesce_usecs = 0;
  2512. else {
  2513. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2514. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2515. }
  2516. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2517. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2518. ecmd->rx_coalesce_usecs_irq = 0;
  2519. else {
  2520. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2521. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2522. }
  2523. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2524. return 0;
  2525. }
  2526. /* Note: this affect both ports */
  2527. static int sky2_set_coalesce(struct net_device *dev,
  2528. struct ethtool_coalesce *ecmd)
  2529. {
  2530. struct sky2_port *sky2 = netdev_priv(dev);
  2531. struct sky2_hw *hw = sky2->hw;
  2532. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2533. if (ecmd->tx_coalesce_usecs > tmax ||
  2534. ecmd->rx_coalesce_usecs > tmax ||
  2535. ecmd->rx_coalesce_usecs_irq > tmax)
  2536. return -EINVAL;
  2537. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2538. return -EINVAL;
  2539. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2540. return -EINVAL;
  2541. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2542. return -EINVAL;
  2543. if (ecmd->tx_coalesce_usecs == 0)
  2544. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2545. else {
  2546. sky2_write32(hw, STAT_TX_TIMER_INI,
  2547. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2548. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2549. }
  2550. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2551. if (ecmd->rx_coalesce_usecs == 0)
  2552. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2553. else {
  2554. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2555. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2556. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2557. }
  2558. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2559. if (ecmd->rx_coalesce_usecs_irq == 0)
  2560. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2561. else {
  2562. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2563. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2564. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2565. }
  2566. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2567. return 0;
  2568. }
  2569. static void sky2_get_ringparam(struct net_device *dev,
  2570. struct ethtool_ringparam *ering)
  2571. {
  2572. struct sky2_port *sky2 = netdev_priv(dev);
  2573. ering->rx_max_pending = RX_MAX_PENDING;
  2574. ering->rx_mini_max_pending = 0;
  2575. ering->rx_jumbo_max_pending = 0;
  2576. ering->tx_max_pending = TX_RING_SIZE - 1;
  2577. ering->rx_pending = sky2->rx_pending;
  2578. ering->rx_mini_pending = 0;
  2579. ering->rx_jumbo_pending = 0;
  2580. ering->tx_pending = sky2->tx_pending;
  2581. }
  2582. static int sky2_set_ringparam(struct net_device *dev,
  2583. struct ethtool_ringparam *ering)
  2584. {
  2585. struct sky2_port *sky2 = netdev_priv(dev);
  2586. int err = 0;
  2587. if (ering->rx_pending > RX_MAX_PENDING ||
  2588. ering->rx_pending < 8 ||
  2589. ering->tx_pending < MAX_SKB_TX_LE ||
  2590. ering->tx_pending > TX_RING_SIZE - 1)
  2591. return -EINVAL;
  2592. if (netif_running(dev))
  2593. sky2_down(dev);
  2594. sky2->rx_pending = ering->rx_pending;
  2595. sky2->tx_pending = ering->tx_pending;
  2596. if (netif_running(dev)) {
  2597. err = sky2_up(dev);
  2598. if (err)
  2599. dev_close(dev);
  2600. else
  2601. sky2_set_multicast(dev);
  2602. }
  2603. return err;
  2604. }
  2605. static int sky2_get_regs_len(struct net_device *dev)
  2606. {
  2607. return 0x4000;
  2608. }
  2609. /*
  2610. * Returns copy of control register region
  2611. * Note: access to the RAM address register set will cause timeouts.
  2612. */
  2613. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2614. void *p)
  2615. {
  2616. const struct sky2_port *sky2 = netdev_priv(dev);
  2617. const void __iomem *io = sky2->hw->regs;
  2618. BUG_ON(regs->len < B3_RI_WTO_R1);
  2619. regs->version = 1;
  2620. memset(p, 0, regs->len);
  2621. memcpy_fromio(p, io, B3_RAM_ADDR);
  2622. memcpy_fromio(p + B3_RI_WTO_R1,
  2623. io + B3_RI_WTO_R1,
  2624. regs->len - B3_RI_WTO_R1);
  2625. }
  2626. static const struct ethtool_ops sky2_ethtool_ops = {
  2627. .get_settings = sky2_get_settings,
  2628. .set_settings = sky2_set_settings,
  2629. .get_drvinfo = sky2_get_drvinfo,
  2630. .get_wol = sky2_get_wol,
  2631. .set_wol = sky2_set_wol,
  2632. .get_msglevel = sky2_get_msglevel,
  2633. .set_msglevel = sky2_set_msglevel,
  2634. .nway_reset = sky2_nway_reset,
  2635. .get_regs_len = sky2_get_regs_len,
  2636. .get_regs = sky2_get_regs,
  2637. .get_link = ethtool_op_get_link,
  2638. .get_sg = ethtool_op_get_sg,
  2639. .set_sg = ethtool_op_set_sg,
  2640. .get_tx_csum = ethtool_op_get_tx_csum,
  2641. .set_tx_csum = ethtool_op_set_tx_csum,
  2642. .get_tso = ethtool_op_get_tso,
  2643. .set_tso = ethtool_op_set_tso,
  2644. .get_rx_csum = sky2_get_rx_csum,
  2645. .set_rx_csum = sky2_set_rx_csum,
  2646. .get_strings = sky2_get_strings,
  2647. .get_coalesce = sky2_get_coalesce,
  2648. .set_coalesce = sky2_set_coalesce,
  2649. .get_ringparam = sky2_get_ringparam,
  2650. .set_ringparam = sky2_set_ringparam,
  2651. .get_pauseparam = sky2_get_pauseparam,
  2652. .set_pauseparam = sky2_set_pauseparam,
  2653. .phys_id = sky2_phys_id,
  2654. .get_stats_count = sky2_get_stats_count,
  2655. .get_ethtool_stats = sky2_get_ethtool_stats,
  2656. .get_perm_addr = ethtool_op_get_perm_addr,
  2657. };
  2658. /* Initialize network device */
  2659. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2660. unsigned port,
  2661. int highmem, int wol)
  2662. {
  2663. struct sky2_port *sky2;
  2664. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2665. if (!dev) {
  2666. dev_err(&hw->pdev->dev, "etherdev alloc failed");
  2667. return NULL;
  2668. }
  2669. SET_MODULE_OWNER(dev);
  2670. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2671. dev->irq = hw->pdev->irq;
  2672. dev->open = sky2_up;
  2673. dev->stop = sky2_down;
  2674. dev->do_ioctl = sky2_ioctl;
  2675. dev->hard_start_xmit = sky2_xmit_frame;
  2676. dev->get_stats = sky2_get_stats;
  2677. dev->set_multicast_list = sky2_set_multicast;
  2678. dev->set_mac_address = sky2_set_mac_address;
  2679. dev->change_mtu = sky2_change_mtu;
  2680. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2681. dev->tx_timeout = sky2_tx_timeout;
  2682. dev->watchdog_timeo = TX_WATCHDOG;
  2683. if (port == 0)
  2684. dev->poll = sky2_poll;
  2685. dev->weight = NAPI_WEIGHT;
  2686. #ifdef CONFIG_NET_POLL_CONTROLLER
  2687. /* Network console (only works on port 0)
  2688. * because netpoll makes assumptions about NAPI
  2689. */
  2690. if (port == 0)
  2691. dev->poll_controller = sky2_netpoll;
  2692. #endif
  2693. sky2 = netdev_priv(dev);
  2694. sky2->netdev = dev;
  2695. sky2->hw = hw;
  2696. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2697. /* Auto speed and flow control */
  2698. sky2->autoneg = AUTONEG_ENABLE;
  2699. sky2->flow_mode = FC_BOTH;
  2700. sky2->duplex = -1;
  2701. sky2->speed = -1;
  2702. sky2->advertising = sky2_supported_modes(hw);
  2703. sky2->rx_csum = 1;
  2704. sky2->wol = wol;
  2705. spin_lock_init(&sky2->phy_lock);
  2706. sky2->tx_pending = TX_DEF_PENDING;
  2707. sky2->rx_pending = RX_DEF_PENDING;
  2708. hw->dev[port] = dev;
  2709. sky2->port = port;
  2710. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2711. dev->features |= NETIF_F_TSO;
  2712. if (highmem)
  2713. dev->features |= NETIF_F_HIGHDMA;
  2714. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2715. #ifdef SKY2_VLAN_TAG_USED
  2716. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2717. dev->vlan_rx_register = sky2_vlan_rx_register;
  2718. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2719. #endif
  2720. /* read the mac address */
  2721. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2722. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2723. /* device is off until link detection */
  2724. netif_carrier_off(dev);
  2725. netif_stop_queue(dev);
  2726. return dev;
  2727. }
  2728. static void __devinit sky2_show_addr(struct net_device *dev)
  2729. {
  2730. const struct sky2_port *sky2 = netdev_priv(dev);
  2731. if (netif_msg_probe(sky2))
  2732. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2733. dev->name,
  2734. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2735. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2736. }
  2737. /* Handle software interrupt used during MSI test */
  2738. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id)
  2739. {
  2740. struct sky2_hw *hw = dev_id;
  2741. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2742. if (status == 0)
  2743. return IRQ_NONE;
  2744. if (status & Y2_IS_IRQ_SW) {
  2745. hw->msi = 1;
  2746. wake_up(&hw->msi_wait);
  2747. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2748. }
  2749. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2750. return IRQ_HANDLED;
  2751. }
  2752. /* Test interrupt path by forcing a a software IRQ */
  2753. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2754. {
  2755. struct pci_dev *pdev = hw->pdev;
  2756. int err;
  2757. init_waitqueue_head (&hw->msi_wait);
  2758. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2759. err = request_irq(pdev->irq, sky2_test_intr, 0, DRV_NAME, hw);
  2760. if (err) {
  2761. dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq);
  2762. return err;
  2763. }
  2764. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2765. sky2_read8(hw, B0_CTST);
  2766. wait_event_timeout(hw->msi_wait, hw->msi, HZ/10);
  2767. if (!hw->msi) {
  2768. /* MSI test failed, go back to INTx mode */
  2769. dev_info(&pdev->dev, "No interrupt generated using MSI, "
  2770. "switching to INTx mode.\n");
  2771. err = -EOPNOTSUPP;
  2772. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2773. }
  2774. sky2_write32(hw, B0_IMSK, 0);
  2775. sky2_read32(hw, B0_IMSK);
  2776. free_irq(pdev->irq, hw);
  2777. return err;
  2778. }
  2779. static int __devinit pci_wake_enabled(struct pci_dev *dev)
  2780. {
  2781. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  2782. u16 value;
  2783. if (!pm)
  2784. return 0;
  2785. if (pci_read_config_word(dev, pm + PCI_PM_CTRL, &value))
  2786. return 0;
  2787. return value & PCI_PM_CTRL_PME_ENABLE;
  2788. }
  2789. static int __devinit sky2_probe(struct pci_dev *pdev,
  2790. const struct pci_device_id *ent)
  2791. {
  2792. struct net_device *dev;
  2793. struct sky2_hw *hw;
  2794. int err, using_dac = 0, wol_default;
  2795. err = pci_enable_device(pdev);
  2796. if (err) {
  2797. dev_err(&pdev->dev, "cannot enable PCI device\n");
  2798. goto err_out;
  2799. }
  2800. err = pci_request_regions(pdev, DRV_NAME);
  2801. if (err) {
  2802. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  2803. goto err_out;
  2804. }
  2805. pci_set_master(pdev);
  2806. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2807. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2808. using_dac = 1;
  2809. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2810. if (err < 0) {
  2811. dev_err(&pdev->dev, "unable to obtain 64 bit DMA "
  2812. "for consistent allocations\n");
  2813. goto err_out_free_regions;
  2814. }
  2815. } else {
  2816. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2817. if (err) {
  2818. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2819. goto err_out_free_regions;
  2820. }
  2821. }
  2822. wol_default = pci_wake_enabled(pdev) ? WAKE_MAGIC : 0;
  2823. err = -ENOMEM;
  2824. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2825. if (!hw) {
  2826. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  2827. goto err_out_free_regions;
  2828. }
  2829. hw->pdev = pdev;
  2830. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2831. if (!hw->regs) {
  2832. dev_err(&pdev->dev, "cannot map device registers\n");
  2833. goto err_out_free_hw;
  2834. }
  2835. #ifdef __BIG_ENDIAN
  2836. /* The sk98lin vendor driver uses hardware byte swapping but
  2837. * this driver uses software swapping.
  2838. */
  2839. {
  2840. u32 reg;
  2841. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2842. reg &= ~PCI_REV_DESC;
  2843. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2844. }
  2845. #endif
  2846. /* ring for status responses */
  2847. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2848. &hw->st_dma);
  2849. if (!hw->st_le)
  2850. goto err_out_iounmap;
  2851. err = sky2_init(hw);
  2852. if (err)
  2853. goto err_out_iounmap;
  2854. dev_info(&pdev->dev, "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
  2855. DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
  2856. pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2857. hw->chip_id, hw->chip_rev);
  2858. sky2_reset(hw);
  2859. dev = sky2_init_netdev(hw, 0, using_dac, wol_default);
  2860. if (!dev) {
  2861. err = -ENOMEM;
  2862. goto err_out_free_pci;
  2863. }
  2864. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2865. err = sky2_test_msi(hw);
  2866. if (err == -EOPNOTSUPP)
  2867. pci_disable_msi(pdev);
  2868. else if (err)
  2869. goto err_out_free_netdev;
  2870. }
  2871. err = register_netdev(dev);
  2872. if (err) {
  2873. dev_err(&pdev->dev, "cannot register net device\n");
  2874. goto err_out_free_netdev;
  2875. }
  2876. err = request_irq(pdev->irq, sky2_intr, hw->msi ? 0 : IRQF_SHARED,
  2877. dev->name, hw);
  2878. if (err) {
  2879. dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq);
  2880. goto err_out_unregister;
  2881. }
  2882. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2883. sky2_show_addr(dev);
  2884. if (hw->ports > 1) {
  2885. struct net_device *dev1;
  2886. dev1 = sky2_init_netdev(hw, 1, using_dac, wol_default);
  2887. if (!dev1)
  2888. dev_warn(&pdev->dev, "allocation for second device failed\n");
  2889. else if ((err = register_netdev(dev1))) {
  2890. dev_warn(&pdev->dev,
  2891. "register of second port failed (%d)\n", err);
  2892. hw->dev[1] = NULL;
  2893. free_netdev(dev1);
  2894. } else
  2895. sky2_show_addr(dev1);
  2896. }
  2897. setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
  2898. sky2_idle_start(hw);
  2899. pci_set_drvdata(pdev, hw);
  2900. return 0;
  2901. err_out_unregister:
  2902. if (hw->msi)
  2903. pci_disable_msi(pdev);
  2904. unregister_netdev(dev);
  2905. err_out_free_netdev:
  2906. free_netdev(dev);
  2907. err_out_free_pci:
  2908. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2909. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2910. err_out_iounmap:
  2911. iounmap(hw->regs);
  2912. err_out_free_hw:
  2913. kfree(hw);
  2914. err_out_free_regions:
  2915. pci_release_regions(pdev);
  2916. pci_disable_device(pdev);
  2917. err_out:
  2918. return err;
  2919. }
  2920. static void __devexit sky2_remove(struct pci_dev *pdev)
  2921. {
  2922. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2923. struct net_device *dev0, *dev1;
  2924. if (!hw)
  2925. return;
  2926. del_timer_sync(&hw->idle_timer);
  2927. sky2_write32(hw, B0_IMSK, 0);
  2928. synchronize_irq(hw->pdev->irq);
  2929. dev0 = hw->dev[0];
  2930. dev1 = hw->dev[1];
  2931. if (dev1)
  2932. unregister_netdev(dev1);
  2933. unregister_netdev(dev0);
  2934. sky2_power_aux(hw);
  2935. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2936. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2937. sky2_read8(hw, B0_CTST);
  2938. free_irq(pdev->irq, hw);
  2939. if (hw->msi)
  2940. pci_disable_msi(pdev);
  2941. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2942. pci_release_regions(pdev);
  2943. pci_disable_device(pdev);
  2944. if (dev1)
  2945. free_netdev(dev1);
  2946. free_netdev(dev0);
  2947. iounmap(hw->regs);
  2948. kfree(hw);
  2949. pci_set_drvdata(pdev, NULL);
  2950. }
  2951. #ifdef CONFIG_PM
  2952. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2953. {
  2954. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2955. int i, wol = 0;
  2956. del_timer_sync(&hw->idle_timer);
  2957. netif_poll_disable(hw->dev[0]);
  2958. for (i = 0; i < hw->ports; i++) {
  2959. struct net_device *dev = hw->dev[i];
  2960. struct sky2_port *sky2 = netdev_priv(dev);
  2961. if (netif_running(dev))
  2962. sky2_down(dev);
  2963. if (sky2->wol)
  2964. sky2_wol_init(sky2);
  2965. wol |= sky2->wol;
  2966. }
  2967. sky2_write32(hw, B0_IMSK, 0);
  2968. sky2_power_aux(hw);
  2969. pci_save_state(pdev);
  2970. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2971. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2972. return 0;
  2973. }
  2974. static int sky2_resume(struct pci_dev *pdev)
  2975. {
  2976. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2977. int i, err;
  2978. err = pci_set_power_state(pdev, PCI_D0);
  2979. if (err)
  2980. goto out;
  2981. err = pci_restore_state(pdev);
  2982. if (err)
  2983. goto out;
  2984. pci_enable_wake(pdev, PCI_D0, 0);
  2985. sky2_reset(hw);
  2986. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2987. for (i = 0; i < hw->ports; i++) {
  2988. struct net_device *dev = hw->dev[i];
  2989. if (netif_running(dev)) {
  2990. err = sky2_up(dev);
  2991. if (err) {
  2992. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2993. dev->name, err);
  2994. dev_close(dev);
  2995. goto out;
  2996. }
  2997. }
  2998. }
  2999. netif_poll_enable(hw->dev[0]);
  3000. sky2_idle_start(hw);
  3001. return 0;
  3002. out:
  3003. dev_err(&pdev->dev, "resume failed (%d)\n", err);
  3004. pci_disable_device(pdev);
  3005. return err;
  3006. }
  3007. #endif
  3008. static void sky2_shutdown(struct pci_dev *pdev)
  3009. {
  3010. struct sky2_hw *hw = pci_get_drvdata(pdev);
  3011. int i, wol = 0;
  3012. del_timer_sync(&hw->idle_timer);
  3013. netif_poll_disable(hw->dev[0]);
  3014. for (i = 0; i < hw->ports; i++) {
  3015. struct net_device *dev = hw->dev[i];
  3016. struct sky2_port *sky2 = netdev_priv(dev);
  3017. if (sky2->wol) {
  3018. wol = 1;
  3019. sky2_wol_init(sky2);
  3020. }
  3021. }
  3022. if (wol)
  3023. sky2_power_aux(hw);
  3024. pci_enable_wake(pdev, PCI_D3hot, wol);
  3025. pci_enable_wake(pdev, PCI_D3cold, wol);
  3026. pci_disable_device(pdev);
  3027. pci_set_power_state(pdev, PCI_D3hot);
  3028. }
  3029. static struct pci_driver sky2_driver = {
  3030. .name = DRV_NAME,
  3031. .id_table = sky2_id_table,
  3032. .probe = sky2_probe,
  3033. .remove = __devexit_p(sky2_remove),
  3034. #ifdef CONFIG_PM
  3035. .suspend = sky2_suspend,
  3036. .resume = sky2_resume,
  3037. #endif
  3038. .shutdown = sky2_shutdown,
  3039. };
  3040. static int __init sky2_init_module(void)
  3041. {
  3042. return pci_register_driver(&sky2_driver);
  3043. }
  3044. static void __exit sky2_cleanup_module(void)
  3045. {
  3046. pci_unregister_driver(&sky2_driver);
  3047. }
  3048. module_init(sky2_init_module);
  3049. module_exit(sky2_cleanup_module);
  3050. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  3051. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  3052. MODULE_LICENSE("GPL");
  3053. MODULE_VERSION(DRV_VERSION);