ordered-data.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. #include "disk-io.h"
  27. static struct kmem_cache *btrfs_ordered_extent_cache;
  28. static u64 entry_end(struct btrfs_ordered_extent *entry)
  29. {
  30. if (entry->file_offset + entry->len < entry->file_offset)
  31. return (u64)-1;
  32. return entry->file_offset + entry->len;
  33. }
  34. /* returns NULL if the insertion worked, or it returns the node it did find
  35. * in the tree
  36. */
  37. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  38. struct rb_node *node)
  39. {
  40. struct rb_node **p = &root->rb_node;
  41. struct rb_node *parent = NULL;
  42. struct btrfs_ordered_extent *entry;
  43. while (*p) {
  44. parent = *p;
  45. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46. if (file_offset < entry->file_offset)
  47. p = &(*p)->rb_left;
  48. else if (file_offset >= entry_end(entry))
  49. p = &(*p)->rb_right;
  50. else
  51. return parent;
  52. }
  53. rb_link_node(node, parent, p);
  54. rb_insert_color(node, root);
  55. return NULL;
  56. }
  57. static void ordered_data_tree_panic(struct inode *inode, int errno,
  58. u64 offset)
  59. {
  60. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  61. btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  62. "%llu\n", offset);
  63. }
  64. /*
  65. * look for a given offset in the tree, and if it can't be found return the
  66. * first lesser offset
  67. */
  68. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  69. struct rb_node **prev_ret)
  70. {
  71. struct rb_node *n = root->rb_node;
  72. struct rb_node *prev = NULL;
  73. struct rb_node *test;
  74. struct btrfs_ordered_extent *entry;
  75. struct btrfs_ordered_extent *prev_entry = NULL;
  76. while (n) {
  77. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  78. prev = n;
  79. prev_entry = entry;
  80. if (file_offset < entry->file_offset)
  81. n = n->rb_left;
  82. else if (file_offset >= entry_end(entry))
  83. n = n->rb_right;
  84. else
  85. return n;
  86. }
  87. if (!prev_ret)
  88. return NULL;
  89. while (prev && file_offset >= entry_end(prev_entry)) {
  90. test = rb_next(prev);
  91. if (!test)
  92. break;
  93. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  94. rb_node);
  95. if (file_offset < entry_end(prev_entry))
  96. break;
  97. prev = test;
  98. }
  99. if (prev)
  100. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  101. rb_node);
  102. while (prev && file_offset < entry_end(prev_entry)) {
  103. test = rb_prev(prev);
  104. if (!test)
  105. break;
  106. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  107. rb_node);
  108. prev = test;
  109. }
  110. *prev_ret = prev;
  111. return NULL;
  112. }
  113. /*
  114. * helper to check if a given offset is inside a given entry
  115. */
  116. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  117. {
  118. if (file_offset < entry->file_offset ||
  119. entry->file_offset + entry->len <= file_offset)
  120. return 0;
  121. return 1;
  122. }
  123. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  124. u64 len)
  125. {
  126. if (file_offset + len <= entry->file_offset ||
  127. entry->file_offset + entry->len <= file_offset)
  128. return 0;
  129. return 1;
  130. }
  131. /*
  132. * look find the first ordered struct that has this offset, otherwise
  133. * the first one less than this offset
  134. */
  135. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  136. u64 file_offset)
  137. {
  138. struct rb_root *root = &tree->tree;
  139. struct rb_node *prev = NULL;
  140. struct rb_node *ret;
  141. struct btrfs_ordered_extent *entry;
  142. if (tree->last) {
  143. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  144. rb_node);
  145. if (offset_in_entry(entry, file_offset))
  146. return tree->last;
  147. }
  148. ret = __tree_search(root, file_offset, &prev);
  149. if (!ret)
  150. ret = prev;
  151. if (ret)
  152. tree->last = ret;
  153. return ret;
  154. }
  155. /* allocate and add a new ordered_extent into the per-inode tree.
  156. * file_offset is the logical offset in the file
  157. *
  158. * start is the disk block number of an extent already reserved in the
  159. * extent allocation tree
  160. *
  161. * len is the length of the extent
  162. *
  163. * The tree is given a single reference on the ordered extent that was
  164. * inserted.
  165. */
  166. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  167. u64 start, u64 len, u64 disk_len,
  168. int type, int dio, int compress_type)
  169. {
  170. struct btrfs_root *root = BTRFS_I(inode)->root;
  171. struct btrfs_ordered_inode_tree *tree;
  172. struct rb_node *node;
  173. struct btrfs_ordered_extent *entry;
  174. tree = &BTRFS_I(inode)->ordered_tree;
  175. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  176. if (!entry)
  177. return -ENOMEM;
  178. entry->file_offset = file_offset;
  179. entry->start = start;
  180. entry->len = len;
  181. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
  182. !(type == BTRFS_ORDERED_NOCOW))
  183. entry->csum_bytes_left = disk_len;
  184. entry->disk_len = disk_len;
  185. entry->bytes_left = len;
  186. entry->inode = igrab(inode);
  187. entry->compress_type = compress_type;
  188. entry->truncated_len = (u64)-1;
  189. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  190. set_bit(type, &entry->flags);
  191. if (dio)
  192. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  193. /* one ref for the tree */
  194. atomic_set(&entry->refs, 1);
  195. init_waitqueue_head(&entry->wait);
  196. INIT_LIST_HEAD(&entry->list);
  197. INIT_LIST_HEAD(&entry->root_extent_list);
  198. INIT_LIST_HEAD(&entry->work_list);
  199. init_completion(&entry->completion);
  200. INIT_LIST_HEAD(&entry->log_list);
  201. trace_btrfs_ordered_extent_add(inode, entry);
  202. spin_lock_irq(&tree->lock);
  203. node = tree_insert(&tree->tree, file_offset,
  204. &entry->rb_node);
  205. if (node)
  206. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  207. spin_unlock_irq(&tree->lock);
  208. spin_lock(&root->ordered_extent_lock);
  209. list_add_tail(&entry->root_extent_list,
  210. &root->ordered_extents);
  211. root->nr_ordered_extents++;
  212. if (root->nr_ordered_extents == 1) {
  213. spin_lock(&root->fs_info->ordered_root_lock);
  214. BUG_ON(!list_empty(&root->ordered_root));
  215. list_add_tail(&root->ordered_root,
  216. &root->fs_info->ordered_roots);
  217. spin_unlock(&root->fs_info->ordered_root_lock);
  218. }
  219. spin_unlock(&root->ordered_extent_lock);
  220. return 0;
  221. }
  222. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  223. u64 start, u64 len, u64 disk_len, int type)
  224. {
  225. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  226. disk_len, type, 0,
  227. BTRFS_COMPRESS_NONE);
  228. }
  229. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  230. u64 start, u64 len, u64 disk_len, int type)
  231. {
  232. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  233. disk_len, type, 1,
  234. BTRFS_COMPRESS_NONE);
  235. }
  236. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  237. u64 start, u64 len, u64 disk_len,
  238. int type, int compress_type)
  239. {
  240. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  241. disk_len, type, 0,
  242. compress_type);
  243. }
  244. /*
  245. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  246. * when an ordered extent is finished. If the list covers more than one
  247. * ordered extent, it is split across multiples.
  248. */
  249. void btrfs_add_ordered_sum(struct inode *inode,
  250. struct btrfs_ordered_extent *entry,
  251. struct btrfs_ordered_sum *sum)
  252. {
  253. struct btrfs_ordered_inode_tree *tree;
  254. tree = &BTRFS_I(inode)->ordered_tree;
  255. spin_lock_irq(&tree->lock);
  256. list_add_tail(&sum->list, &entry->list);
  257. WARN_ON(entry->csum_bytes_left < sum->len);
  258. entry->csum_bytes_left -= sum->len;
  259. if (entry->csum_bytes_left == 0)
  260. wake_up(&entry->wait);
  261. spin_unlock_irq(&tree->lock);
  262. }
  263. /*
  264. * this is used to account for finished IO across a given range
  265. * of the file. The IO may span ordered extents. If
  266. * a given ordered_extent is completely done, 1 is returned, otherwise
  267. * 0.
  268. *
  269. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  270. * to make sure this function only returns 1 once for a given ordered extent.
  271. *
  272. * file_offset is updated to one byte past the range that is recorded as
  273. * complete. This allows you to walk forward in the file.
  274. */
  275. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  276. struct btrfs_ordered_extent **cached,
  277. u64 *file_offset, u64 io_size, int uptodate)
  278. {
  279. struct btrfs_ordered_inode_tree *tree;
  280. struct rb_node *node;
  281. struct btrfs_ordered_extent *entry = NULL;
  282. int ret;
  283. unsigned long flags;
  284. u64 dec_end;
  285. u64 dec_start;
  286. u64 to_dec;
  287. tree = &BTRFS_I(inode)->ordered_tree;
  288. spin_lock_irqsave(&tree->lock, flags);
  289. node = tree_search(tree, *file_offset);
  290. if (!node) {
  291. ret = 1;
  292. goto out;
  293. }
  294. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  295. if (!offset_in_entry(entry, *file_offset)) {
  296. ret = 1;
  297. goto out;
  298. }
  299. dec_start = max(*file_offset, entry->file_offset);
  300. dec_end = min(*file_offset + io_size, entry->file_offset +
  301. entry->len);
  302. *file_offset = dec_end;
  303. if (dec_start > dec_end) {
  304. printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
  305. dec_start, dec_end);
  306. }
  307. to_dec = dec_end - dec_start;
  308. if (to_dec > entry->bytes_left) {
  309. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  310. entry->bytes_left, to_dec);
  311. }
  312. entry->bytes_left -= to_dec;
  313. if (!uptodate)
  314. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  315. if (entry->bytes_left == 0)
  316. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  317. else
  318. ret = 1;
  319. out:
  320. if (!ret && cached && entry) {
  321. *cached = entry;
  322. atomic_inc(&entry->refs);
  323. }
  324. spin_unlock_irqrestore(&tree->lock, flags);
  325. return ret == 0;
  326. }
  327. /*
  328. * this is used to account for finished IO across a given range
  329. * of the file. The IO should not span ordered extents. If
  330. * a given ordered_extent is completely done, 1 is returned, otherwise
  331. * 0.
  332. *
  333. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  334. * to make sure this function only returns 1 once for a given ordered extent.
  335. */
  336. int btrfs_dec_test_ordered_pending(struct inode *inode,
  337. struct btrfs_ordered_extent **cached,
  338. u64 file_offset, u64 io_size, int uptodate)
  339. {
  340. struct btrfs_ordered_inode_tree *tree;
  341. struct rb_node *node;
  342. struct btrfs_ordered_extent *entry = NULL;
  343. unsigned long flags;
  344. int ret;
  345. tree = &BTRFS_I(inode)->ordered_tree;
  346. spin_lock_irqsave(&tree->lock, flags);
  347. if (cached && *cached) {
  348. entry = *cached;
  349. goto have_entry;
  350. }
  351. node = tree_search(tree, file_offset);
  352. if (!node) {
  353. ret = 1;
  354. goto out;
  355. }
  356. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  357. have_entry:
  358. if (!offset_in_entry(entry, file_offset)) {
  359. ret = 1;
  360. goto out;
  361. }
  362. if (io_size > entry->bytes_left) {
  363. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  364. entry->bytes_left, io_size);
  365. }
  366. entry->bytes_left -= io_size;
  367. if (!uptodate)
  368. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  369. if (entry->bytes_left == 0)
  370. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  371. else
  372. ret = 1;
  373. out:
  374. if (!ret && cached && entry) {
  375. *cached = entry;
  376. atomic_inc(&entry->refs);
  377. }
  378. spin_unlock_irqrestore(&tree->lock, flags);
  379. return ret == 0;
  380. }
  381. /* Needs to either be called under a log transaction or the log_mutex */
  382. void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
  383. {
  384. struct btrfs_ordered_inode_tree *tree;
  385. struct btrfs_ordered_extent *ordered;
  386. struct rb_node *n;
  387. int index = log->log_transid % 2;
  388. tree = &BTRFS_I(inode)->ordered_tree;
  389. spin_lock_irq(&tree->lock);
  390. for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
  391. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  392. spin_lock(&log->log_extents_lock[index]);
  393. if (list_empty(&ordered->log_list)) {
  394. list_add_tail(&ordered->log_list, &log->logged_list[index]);
  395. atomic_inc(&ordered->refs);
  396. }
  397. spin_unlock(&log->log_extents_lock[index]);
  398. }
  399. spin_unlock_irq(&tree->lock);
  400. }
  401. void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
  402. {
  403. struct btrfs_ordered_extent *ordered;
  404. int index = transid % 2;
  405. spin_lock_irq(&log->log_extents_lock[index]);
  406. while (!list_empty(&log->logged_list[index])) {
  407. ordered = list_first_entry(&log->logged_list[index],
  408. struct btrfs_ordered_extent,
  409. log_list);
  410. list_del_init(&ordered->log_list);
  411. spin_unlock_irq(&log->log_extents_lock[index]);
  412. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  413. &ordered->flags));
  414. btrfs_put_ordered_extent(ordered);
  415. spin_lock_irq(&log->log_extents_lock[index]);
  416. }
  417. spin_unlock_irq(&log->log_extents_lock[index]);
  418. }
  419. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  420. {
  421. struct btrfs_ordered_extent *ordered;
  422. int index = transid % 2;
  423. spin_lock_irq(&log->log_extents_lock[index]);
  424. while (!list_empty(&log->logged_list[index])) {
  425. ordered = list_first_entry(&log->logged_list[index],
  426. struct btrfs_ordered_extent,
  427. log_list);
  428. list_del_init(&ordered->log_list);
  429. spin_unlock_irq(&log->log_extents_lock[index]);
  430. btrfs_put_ordered_extent(ordered);
  431. spin_lock_irq(&log->log_extents_lock[index]);
  432. }
  433. spin_unlock_irq(&log->log_extents_lock[index]);
  434. }
  435. /*
  436. * used to drop a reference on an ordered extent. This will free
  437. * the extent if the last reference is dropped
  438. */
  439. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  440. {
  441. struct list_head *cur;
  442. struct btrfs_ordered_sum *sum;
  443. trace_btrfs_ordered_extent_put(entry->inode, entry);
  444. if (atomic_dec_and_test(&entry->refs)) {
  445. if (entry->inode)
  446. btrfs_add_delayed_iput(entry->inode);
  447. while (!list_empty(&entry->list)) {
  448. cur = entry->list.next;
  449. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  450. list_del(&sum->list);
  451. kfree(sum);
  452. }
  453. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  454. }
  455. }
  456. /*
  457. * remove an ordered extent from the tree. No references are dropped
  458. * and waiters are woken up.
  459. */
  460. void btrfs_remove_ordered_extent(struct inode *inode,
  461. struct btrfs_ordered_extent *entry)
  462. {
  463. struct btrfs_ordered_inode_tree *tree;
  464. struct btrfs_root *root = BTRFS_I(inode)->root;
  465. struct rb_node *node;
  466. tree = &BTRFS_I(inode)->ordered_tree;
  467. spin_lock_irq(&tree->lock);
  468. node = &entry->rb_node;
  469. rb_erase(node, &tree->tree);
  470. tree->last = NULL;
  471. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  472. spin_unlock_irq(&tree->lock);
  473. spin_lock(&root->ordered_extent_lock);
  474. list_del_init(&entry->root_extent_list);
  475. root->nr_ordered_extents--;
  476. trace_btrfs_ordered_extent_remove(inode, entry);
  477. /*
  478. * we have no more ordered extents for this inode and
  479. * no dirty pages. We can safely remove it from the
  480. * list of ordered extents
  481. */
  482. if (RB_EMPTY_ROOT(&tree->tree) &&
  483. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  484. spin_lock(&root->fs_info->ordered_root_lock);
  485. list_del_init(&BTRFS_I(inode)->ordered_operations);
  486. spin_unlock(&root->fs_info->ordered_root_lock);
  487. }
  488. if (!root->nr_ordered_extents) {
  489. spin_lock(&root->fs_info->ordered_root_lock);
  490. BUG_ON(list_empty(&root->ordered_root));
  491. list_del_init(&root->ordered_root);
  492. spin_unlock(&root->fs_info->ordered_root_lock);
  493. }
  494. spin_unlock(&root->ordered_extent_lock);
  495. wake_up(&entry->wait);
  496. }
  497. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  498. {
  499. struct btrfs_ordered_extent *ordered;
  500. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  501. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  502. complete(&ordered->completion);
  503. }
  504. /*
  505. * wait for all the ordered extents in a root. This is done when balancing
  506. * space between drives.
  507. */
  508. int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
  509. {
  510. struct list_head splice, works;
  511. struct btrfs_ordered_extent *ordered, *next;
  512. int count = 0;
  513. INIT_LIST_HEAD(&splice);
  514. INIT_LIST_HEAD(&works);
  515. mutex_lock(&root->fs_info->ordered_operations_mutex);
  516. spin_lock(&root->ordered_extent_lock);
  517. list_splice_init(&root->ordered_extents, &splice);
  518. while (!list_empty(&splice) && nr) {
  519. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  520. root_extent_list);
  521. list_move_tail(&ordered->root_extent_list,
  522. &root->ordered_extents);
  523. atomic_inc(&ordered->refs);
  524. spin_unlock(&root->ordered_extent_lock);
  525. ordered->flush_work.func = btrfs_run_ordered_extent_work;
  526. list_add_tail(&ordered->work_list, &works);
  527. btrfs_queue_worker(&root->fs_info->flush_workers,
  528. &ordered->flush_work);
  529. cond_resched();
  530. spin_lock(&root->ordered_extent_lock);
  531. if (nr != -1)
  532. nr--;
  533. count++;
  534. }
  535. list_splice_tail(&splice, &root->ordered_extents);
  536. spin_unlock(&root->ordered_extent_lock);
  537. list_for_each_entry_safe(ordered, next, &works, work_list) {
  538. list_del_init(&ordered->work_list);
  539. wait_for_completion(&ordered->completion);
  540. btrfs_put_ordered_extent(ordered);
  541. cond_resched();
  542. }
  543. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  544. return count;
  545. }
  546. void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
  547. {
  548. struct btrfs_root *root;
  549. struct list_head splice;
  550. int done;
  551. INIT_LIST_HEAD(&splice);
  552. spin_lock(&fs_info->ordered_root_lock);
  553. list_splice_init(&fs_info->ordered_roots, &splice);
  554. while (!list_empty(&splice) && nr) {
  555. root = list_first_entry(&splice, struct btrfs_root,
  556. ordered_root);
  557. root = btrfs_grab_fs_root(root);
  558. BUG_ON(!root);
  559. list_move_tail(&root->ordered_root,
  560. &fs_info->ordered_roots);
  561. spin_unlock(&fs_info->ordered_root_lock);
  562. done = btrfs_wait_ordered_extents(root, nr);
  563. btrfs_put_fs_root(root);
  564. spin_lock(&fs_info->ordered_root_lock);
  565. if (nr != -1) {
  566. nr -= done;
  567. WARN_ON(nr < 0);
  568. }
  569. }
  570. spin_unlock(&fs_info->ordered_root_lock);
  571. }
  572. /*
  573. * this is used during transaction commit to write all the inodes
  574. * added to the ordered operation list. These files must be fully on
  575. * disk before the transaction commits.
  576. *
  577. * we have two modes here, one is to just start the IO via filemap_flush
  578. * and the other is to wait for all the io. When we wait, we have an
  579. * extra check to make sure the ordered operation list really is empty
  580. * before we return
  581. */
  582. int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
  583. struct btrfs_root *root, int wait)
  584. {
  585. struct btrfs_inode *btrfs_inode;
  586. struct inode *inode;
  587. struct btrfs_transaction *cur_trans = trans->transaction;
  588. struct list_head splice;
  589. struct list_head works;
  590. struct btrfs_delalloc_work *work, *next;
  591. int ret = 0;
  592. INIT_LIST_HEAD(&splice);
  593. INIT_LIST_HEAD(&works);
  594. mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
  595. spin_lock(&root->fs_info->ordered_root_lock);
  596. list_splice_init(&cur_trans->ordered_operations, &splice);
  597. while (!list_empty(&splice)) {
  598. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  599. ordered_operations);
  600. inode = &btrfs_inode->vfs_inode;
  601. list_del_init(&btrfs_inode->ordered_operations);
  602. /*
  603. * the inode may be getting freed (in sys_unlink path).
  604. */
  605. inode = igrab(inode);
  606. if (!inode)
  607. continue;
  608. if (!wait)
  609. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  610. &cur_trans->ordered_operations);
  611. spin_unlock(&root->fs_info->ordered_root_lock);
  612. work = btrfs_alloc_delalloc_work(inode, wait, 1);
  613. if (!work) {
  614. spin_lock(&root->fs_info->ordered_root_lock);
  615. if (list_empty(&BTRFS_I(inode)->ordered_operations))
  616. list_add_tail(&btrfs_inode->ordered_operations,
  617. &splice);
  618. list_splice_tail(&splice,
  619. &cur_trans->ordered_operations);
  620. spin_unlock(&root->fs_info->ordered_root_lock);
  621. ret = -ENOMEM;
  622. goto out;
  623. }
  624. list_add_tail(&work->list, &works);
  625. btrfs_queue_worker(&root->fs_info->flush_workers,
  626. &work->work);
  627. cond_resched();
  628. spin_lock(&root->fs_info->ordered_root_lock);
  629. }
  630. spin_unlock(&root->fs_info->ordered_root_lock);
  631. out:
  632. list_for_each_entry_safe(work, next, &works, list) {
  633. list_del_init(&work->list);
  634. btrfs_wait_and_free_delalloc_work(work);
  635. }
  636. mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
  637. return ret;
  638. }
  639. /*
  640. * Used to start IO or wait for a given ordered extent to finish.
  641. *
  642. * If wait is one, this effectively waits on page writeback for all the pages
  643. * in the extent, and it waits on the io completion code to insert
  644. * metadata into the btree corresponding to the extent
  645. */
  646. void btrfs_start_ordered_extent(struct inode *inode,
  647. struct btrfs_ordered_extent *entry,
  648. int wait)
  649. {
  650. u64 start = entry->file_offset;
  651. u64 end = start + entry->len - 1;
  652. trace_btrfs_ordered_extent_start(inode, entry);
  653. /*
  654. * pages in the range can be dirty, clean or writeback. We
  655. * start IO on any dirty ones so the wait doesn't stall waiting
  656. * for the flusher thread to find them
  657. */
  658. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  659. filemap_fdatawrite_range(inode->i_mapping, start, end);
  660. if (wait) {
  661. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  662. &entry->flags));
  663. }
  664. }
  665. /*
  666. * Used to wait on ordered extents across a large range of bytes.
  667. */
  668. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  669. {
  670. int ret = 0;
  671. u64 end;
  672. u64 orig_end;
  673. struct btrfs_ordered_extent *ordered;
  674. if (start + len < start) {
  675. orig_end = INT_LIMIT(loff_t);
  676. } else {
  677. orig_end = start + len - 1;
  678. if (orig_end > INT_LIMIT(loff_t))
  679. orig_end = INT_LIMIT(loff_t);
  680. }
  681. /* start IO across the range first to instantiate any delalloc
  682. * extents
  683. */
  684. ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  685. if (ret)
  686. return ret;
  687. /*
  688. * So with compression we will find and lock a dirty page and clear the
  689. * first one as dirty, setup an async extent, and immediately return
  690. * with the entire range locked but with nobody actually marked with
  691. * writeback. So we can't just filemap_write_and_wait_range() and
  692. * expect it to work since it will just kick off a thread to do the
  693. * actual work. So we need to call filemap_fdatawrite_range _again_
  694. * since it will wait on the page lock, which won't be unlocked until
  695. * after the pages have been marked as writeback and so we're good to go
  696. * from there. We have to do this otherwise we'll miss the ordered
  697. * extents and that results in badness. Please Josef, do not think you
  698. * know better and pull this out at some point in the future, it is
  699. * right and you are wrong.
  700. */
  701. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  702. &BTRFS_I(inode)->runtime_flags)) {
  703. ret = filemap_fdatawrite_range(inode->i_mapping, start,
  704. orig_end);
  705. if (ret)
  706. return ret;
  707. }
  708. ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  709. if (ret)
  710. return ret;
  711. end = orig_end;
  712. while (1) {
  713. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  714. if (!ordered)
  715. break;
  716. if (ordered->file_offset > orig_end) {
  717. btrfs_put_ordered_extent(ordered);
  718. break;
  719. }
  720. if (ordered->file_offset + ordered->len < start) {
  721. btrfs_put_ordered_extent(ordered);
  722. break;
  723. }
  724. btrfs_start_ordered_extent(inode, ordered, 1);
  725. end = ordered->file_offset;
  726. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  727. ret = -EIO;
  728. btrfs_put_ordered_extent(ordered);
  729. if (ret || end == 0 || end == start)
  730. break;
  731. end--;
  732. }
  733. return ret;
  734. }
  735. /*
  736. * find an ordered extent corresponding to file_offset. return NULL if
  737. * nothing is found, otherwise take a reference on the extent and return it
  738. */
  739. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  740. u64 file_offset)
  741. {
  742. struct btrfs_ordered_inode_tree *tree;
  743. struct rb_node *node;
  744. struct btrfs_ordered_extent *entry = NULL;
  745. tree = &BTRFS_I(inode)->ordered_tree;
  746. spin_lock_irq(&tree->lock);
  747. node = tree_search(tree, file_offset);
  748. if (!node)
  749. goto out;
  750. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  751. if (!offset_in_entry(entry, file_offset))
  752. entry = NULL;
  753. if (entry)
  754. atomic_inc(&entry->refs);
  755. out:
  756. spin_unlock_irq(&tree->lock);
  757. return entry;
  758. }
  759. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  760. * extents that exist in the range, rather than just the start of the range.
  761. */
  762. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  763. u64 file_offset,
  764. u64 len)
  765. {
  766. struct btrfs_ordered_inode_tree *tree;
  767. struct rb_node *node;
  768. struct btrfs_ordered_extent *entry = NULL;
  769. tree = &BTRFS_I(inode)->ordered_tree;
  770. spin_lock_irq(&tree->lock);
  771. node = tree_search(tree, file_offset);
  772. if (!node) {
  773. node = tree_search(tree, file_offset + len);
  774. if (!node)
  775. goto out;
  776. }
  777. while (1) {
  778. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  779. if (range_overlaps(entry, file_offset, len))
  780. break;
  781. if (entry->file_offset >= file_offset + len) {
  782. entry = NULL;
  783. break;
  784. }
  785. entry = NULL;
  786. node = rb_next(node);
  787. if (!node)
  788. break;
  789. }
  790. out:
  791. if (entry)
  792. atomic_inc(&entry->refs);
  793. spin_unlock_irq(&tree->lock);
  794. return entry;
  795. }
  796. /*
  797. * lookup and return any extent before 'file_offset'. NULL is returned
  798. * if none is found
  799. */
  800. struct btrfs_ordered_extent *
  801. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  802. {
  803. struct btrfs_ordered_inode_tree *tree;
  804. struct rb_node *node;
  805. struct btrfs_ordered_extent *entry = NULL;
  806. tree = &BTRFS_I(inode)->ordered_tree;
  807. spin_lock_irq(&tree->lock);
  808. node = tree_search(tree, file_offset);
  809. if (!node)
  810. goto out;
  811. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  812. atomic_inc(&entry->refs);
  813. out:
  814. spin_unlock_irq(&tree->lock);
  815. return entry;
  816. }
  817. /*
  818. * After an extent is done, call this to conditionally update the on disk
  819. * i_size. i_size is updated to cover any fully written part of the file.
  820. */
  821. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  822. struct btrfs_ordered_extent *ordered)
  823. {
  824. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  825. u64 disk_i_size;
  826. u64 new_i_size;
  827. u64 i_size = i_size_read(inode);
  828. struct rb_node *node;
  829. struct rb_node *prev = NULL;
  830. struct btrfs_ordered_extent *test;
  831. int ret = 1;
  832. spin_lock_irq(&tree->lock);
  833. if (ordered) {
  834. offset = entry_end(ordered);
  835. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  836. offset = min(offset,
  837. ordered->file_offset +
  838. ordered->truncated_len);
  839. } else {
  840. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  841. }
  842. disk_i_size = BTRFS_I(inode)->disk_i_size;
  843. /* truncate file */
  844. if (disk_i_size > i_size) {
  845. BTRFS_I(inode)->disk_i_size = i_size;
  846. ret = 0;
  847. goto out;
  848. }
  849. /*
  850. * if the disk i_size is already at the inode->i_size, or
  851. * this ordered extent is inside the disk i_size, we're done
  852. */
  853. if (disk_i_size == i_size)
  854. goto out;
  855. /*
  856. * We still need to update disk_i_size if outstanding_isize is greater
  857. * than disk_i_size.
  858. */
  859. if (offset <= disk_i_size &&
  860. (!ordered || ordered->outstanding_isize <= disk_i_size))
  861. goto out;
  862. /*
  863. * walk backward from this ordered extent to disk_i_size.
  864. * if we find an ordered extent then we can't update disk i_size
  865. * yet
  866. */
  867. if (ordered) {
  868. node = rb_prev(&ordered->rb_node);
  869. } else {
  870. prev = tree_search(tree, offset);
  871. /*
  872. * we insert file extents without involving ordered struct,
  873. * so there should be no ordered struct cover this offset
  874. */
  875. if (prev) {
  876. test = rb_entry(prev, struct btrfs_ordered_extent,
  877. rb_node);
  878. BUG_ON(offset_in_entry(test, offset));
  879. }
  880. node = prev;
  881. }
  882. for (; node; node = rb_prev(node)) {
  883. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  884. /* We treat this entry as if it doesnt exist */
  885. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  886. continue;
  887. if (test->file_offset + test->len <= disk_i_size)
  888. break;
  889. if (test->file_offset >= i_size)
  890. break;
  891. if (entry_end(test) > disk_i_size) {
  892. /*
  893. * we don't update disk_i_size now, so record this
  894. * undealt i_size. Or we will not know the real
  895. * i_size.
  896. */
  897. if (test->outstanding_isize < offset)
  898. test->outstanding_isize = offset;
  899. if (ordered &&
  900. ordered->outstanding_isize >
  901. test->outstanding_isize)
  902. test->outstanding_isize =
  903. ordered->outstanding_isize;
  904. goto out;
  905. }
  906. }
  907. new_i_size = min_t(u64, offset, i_size);
  908. /*
  909. * Some ordered extents may completed before the current one, and
  910. * we hold the real i_size in ->outstanding_isize.
  911. */
  912. if (ordered && ordered->outstanding_isize > new_i_size)
  913. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  914. BTRFS_I(inode)->disk_i_size = new_i_size;
  915. ret = 0;
  916. out:
  917. /*
  918. * We need to do this because we can't remove ordered extents until
  919. * after the i_disk_size has been updated and then the inode has been
  920. * updated to reflect the change, so we need to tell anybody who finds
  921. * this ordered extent that we've already done all the real work, we
  922. * just haven't completed all the other work.
  923. */
  924. if (ordered)
  925. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  926. spin_unlock_irq(&tree->lock);
  927. return ret;
  928. }
  929. /*
  930. * search the ordered extents for one corresponding to 'offset' and
  931. * try to find a checksum. This is used because we allow pages to
  932. * be reclaimed before their checksum is actually put into the btree
  933. */
  934. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  935. u32 *sum, int len)
  936. {
  937. struct btrfs_ordered_sum *ordered_sum;
  938. struct btrfs_ordered_extent *ordered;
  939. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  940. unsigned long num_sectors;
  941. unsigned long i;
  942. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  943. int index = 0;
  944. ordered = btrfs_lookup_ordered_extent(inode, offset);
  945. if (!ordered)
  946. return 0;
  947. spin_lock_irq(&tree->lock);
  948. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  949. if (disk_bytenr >= ordered_sum->bytenr &&
  950. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  951. i = (disk_bytenr - ordered_sum->bytenr) >>
  952. inode->i_sb->s_blocksize_bits;
  953. num_sectors = ordered_sum->len >>
  954. inode->i_sb->s_blocksize_bits;
  955. num_sectors = min_t(int, len - index, num_sectors - i);
  956. memcpy(sum + index, ordered_sum->sums + i,
  957. num_sectors);
  958. index += (int)num_sectors;
  959. if (index == len)
  960. goto out;
  961. disk_bytenr += num_sectors * sectorsize;
  962. }
  963. }
  964. out:
  965. spin_unlock_irq(&tree->lock);
  966. btrfs_put_ordered_extent(ordered);
  967. return index;
  968. }
  969. /*
  970. * add a given inode to the list of inodes that must be fully on
  971. * disk before a transaction commit finishes.
  972. *
  973. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  974. * used to make sure renamed files are fully on disk.
  975. *
  976. * It is a noop if the inode is already fully on disk.
  977. *
  978. * If trans is not null, we'll do a friendly check for a transaction that
  979. * is already flushing things and force the IO down ourselves.
  980. */
  981. void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  982. struct btrfs_root *root, struct inode *inode)
  983. {
  984. struct btrfs_transaction *cur_trans = trans->transaction;
  985. u64 last_mod;
  986. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  987. /*
  988. * if this file hasn't been changed since the last transaction
  989. * commit, we can safely return without doing anything
  990. */
  991. if (last_mod <= root->fs_info->last_trans_committed)
  992. return;
  993. spin_lock(&root->fs_info->ordered_root_lock);
  994. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  995. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  996. &cur_trans->ordered_operations);
  997. }
  998. spin_unlock(&root->fs_info->ordered_root_lock);
  999. }
  1000. int __init ordered_data_init(void)
  1001. {
  1002. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  1003. sizeof(struct btrfs_ordered_extent), 0,
  1004. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  1005. NULL);
  1006. if (!btrfs_ordered_extent_cache)
  1007. return -ENOMEM;
  1008. return 0;
  1009. }
  1010. void ordered_data_exit(void)
  1011. {
  1012. if (btrfs_ordered_extent_cache)
  1013. kmem_cache_destroy(btrfs_ordered_extent_cache);
  1014. }