raid1.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/module.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/ratelimit.h>
  39. #include "md.h"
  40. #include "raid1.h"
  41. #include "bitmap.h"
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. /* When there are this many requests queue to be written by
  47. * the raid1 thread, we become 'congested' to provide back-pressure
  48. * for writeback.
  49. */
  50. static int max_queued_requests = 1024;
  51. static void allow_barrier(struct r1conf *conf);
  52. static void lower_barrier(struct r1conf *conf);
  53. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  54. {
  55. struct pool_info *pi = data;
  56. int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  57. /* allocate a r1bio with room for raid_disks entries in the bios array */
  58. return kzalloc(size, gfp_flags);
  59. }
  60. static void r1bio_pool_free(void *r1_bio, void *data)
  61. {
  62. kfree(r1_bio);
  63. }
  64. #define RESYNC_BLOCK_SIZE (64*1024)
  65. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  66. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  67. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  68. #define RESYNC_WINDOW (2048*1024)
  69. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  70. {
  71. struct pool_info *pi = data;
  72. struct page *page;
  73. struct r1bio *r1_bio;
  74. struct bio *bio;
  75. int i, j;
  76. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  77. if (!r1_bio)
  78. return NULL;
  79. /*
  80. * Allocate bios : 1 for reading, n-1 for writing
  81. */
  82. for (j = pi->raid_disks ; j-- ; ) {
  83. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  84. if (!bio)
  85. goto out_free_bio;
  86. r1_bio->bios[j] = bio;
  87. }
  88. /*
  89. * Allocate RESYNC_PAGES data pages and attach them to
  90. * the first bio.
  91. * If this is a user-requested check/repair, allocate
  92. * RESYNC_PAGES for each bio.
  93. */
  94. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  95. j = pi->raid_disks;
  96. else
  97. j = 1;
  98. while(j--) {
  99. bio = r1_bio->bios[j];
  100. for (i = 0; i < RESYNC_PAGES; i++) {
  101. page = alloc_page(gfp_flags);
  102. if (unlikely(!page))
  103. goto out_free_pages;
  104. bio->bi_io_vec[i].bv_page = page;
  105. bio->bi_vcnt = i+1;
  106. }
  107. }
  108. /* If not user-requests, copy the page pointers to all bios */
  109. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  110. for (i=0; i<RESYNC_PAGES ; i++)
  111. for (j=1; j<pi->raid_disks; j++)
  112. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  113. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  114. }
  115. r1_bio->master_bio = NULL;
  116. return r1_bio;
  117. out_free_pages:
  118. for (j=0 ; j < pi->raid_disks; j++)
  119. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  120. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  121. j = -1;
  122. out_free_bio:
  123. while (++j < pi->raid_disks)
  124. bio_put(r1_bio->bios[j]);
  125. r1bio_pool_free(r1_bio, data);
  126. return NULL;
  127. }
  128. static void r1buf_pool_free(void *__r1_bio, void *data)
  129. {
  130. struct pool_info *pi = data;
  131. int i,j;
  132. struct r1bio *r1bio = __r1_bio;
  133. for (i = 0; i < RESYNC_PAGES; i++)
  134. for (j = pi->raid_disks; j-- ;) {
  135. if (j == 0 ||
  136. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  137. r1bio->bios[0]->bi_io_vec[i].bv_page)
  138. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  139. }
  140. for (i=0 ; i < pi->raid_disks; i++)
  141. bio_put(r1bio->bios[i]);
  142. r1bio_pool_free(r1bio, data);
  143. }
  144. static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
  145. {
  146. int i;
  147. for (i = 0; i < conf->raid_disks * 2; i++) {
  148. struct bio **bio = r1_bio->bios + i;
  149. if (!BIO_SPECIAL(*bio))
  150. bio_put(*bio);
  151. *bio = NULL;
  152. }
  153. }
  154. static void free_r1bio(struct r1bio *r1_bio)
  155. {
  156. struct r1conf *conf = r1_bio->mddev->private;
  157. put_all_bios(conf, r1_bio);
  158. mempool_free(r1_bio, conf->r1bio_pool);
  159. }
  160. static void put_buf(struct r1bio *r1_bio)
  161. {
  162. struct r1conf *conf = r1_bio->mddev->private;
  163. int i;
  164. for (i = 0; i < conf->raid_disks * 2; i++) {
  165. struct bio *bio = r1_bio->bios[i];
  166. if (bio->bi_end_io)
  167. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  168. }
  169. mempool_free(r1_bio, conf->r1buf_pool);
  170. lower_barrier(conf);
  171. }
  172. static void reschedule_retry(struct r1bio *r1_bio)
  173. {
  174. unsigned long flags;
  175. struct mddev *mddev = r1_bio->mddev;
  176. struct r1conf *conf = mddev->private;
  177. spin_lock_irqsave(&conf->device_lock, flags);
  178. list_add(&r1_bio->retry_list, &conf->retry_list);
  179. conf->nr_queued ++;
  180. spin_unlock_irqrestore(&conf->device_lock, flags);
  181. wake_up(&conf->wait_barrier);
  182. md_wakeup_thread(mddev->thread);
  183. }
  184. /*
  185. * raid_end_bio_io() is called when we have finished servicing a mirrored
  186. * operation and are ready to return a success/failure code to the buffer
  187. * cache layer.
  188. */
  189. static void call_bio_endio(struct r1bio *r1_bio)
  190. {
  191. struct bio *bio = r1_bio->master_bio;
  192. int done;
  193. struct r1conf *conf = r1_bio->mddev->private;
  194. if (bio->bi_phys_segments) {
  195. unsigned long flags;
  196. spin_lock_irqsave(&conf->device_lock, flags);
  197. bio->bi_phys_segments--;
  198. done = (bio->bi_phys_segments == 0);
  199. spin_unlock_irqrestore(&conf->device_lock, flags);
  200. } else
  201. done = 1;
  202. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  203. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  204. if (done) {
  205. bio_endio(bio, 0);
  206. /*
  207. * Wake up any possible resync thread that waits for the device
  208. * to go idle.
  209. */
  210. allow_barrier(conf);
  211. }
  212. }
  213. static void raid_end_bio_io(struct r1bio *r1_bio)
  214. {
  215. struct bio *bio = r1_bio->master_bio;
  216. /* if nobody has done the final endio yet, do it now */
  217. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  218. pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
  219. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  220. (unsigned long long) bio->bi_sector,
  221. (unsigned long long) bio->bi_sector +
  222. (bio->bi_size >> 9) - 1);
  223. call_bio_endio(r1_bio);
  224. }
  225. free_r1bio(r1_bio);
  226. }
  227. /*
  228. * Update disk head position estimator based on IRQ completion info.
  229. */
  230. static inline void update_head_pos(int disk, struct r1bio *r1_bio)
  231. {
  232. struct r1conf *conf = r1_bio->mddev->private;
  233. conf->mirrors[disk].head_position =
  234. r1_bio->sector + (r1_bio->sectors);
  235. }
  236. /*
  237. * Find the disk number which triggered given bio
  238. */
  239. static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
  240. {
  241. int mirror;
  242. struct r1conf *conf = r1_bio->mddev->private;
  243. int raid_disks = conf->raid_disks;
  244. for (mirror = 0; mirror < raid_disks * 2; mirror++)
  245. if (r1_bio->bios[mirror] == bio)
  246. break;
  247. BUG_ON(mirror == raid_disks * 2);
  248. update_head_pos(mirror, r1_bio);
  249. return mirror;
  250. }
  251. static void raid1_end_read_request(struct bio *bio, int error)
  252. {
  253. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  254. struct r1bio *r1_bio = bio->bi_private;
  255. int mirror;
  256. struct r1conf *conf = r1_bio->mddev->private;
  257. mirror = r1_bio->read_disk;
  258. /*
  259. * this branch is our 'one mirror IO has finished' event handler:
  260. */
  261. update_head_pos(mirror, r1_bio);
  262. if (uptodate)
  263. set_bit(R1BIO_Uptodate, &r1_bio->state);
  264. else {
  265. /* If all other devices have failed, we want to return
  266. * the error upwards rather than fail the last device.
  267. * Here we redefine "uptodate" to mean "Don't want to retry"
  268. */
  269. unsigned long flags;
  270. spin_lock_irqsave(&conf->device_lock, flags);
  271. if (r1_bio->mddev->degraded == conf->raid_disks ||
  272. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  273. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  274. uptodate = 1;
  275. spin_unlock_irqrestore(&conf->device_lock, flags);
  276. }
  277. if (uptodate)
  278. raid_end_bio_io(r1_bio);
  279. else {
  280. /*
  281. * oops, read error:
  282. */
  283. char b[BDEVNAME_SIZE];
  284. printk_ratelimited(
  285. KERN_ERR "md/raid1:%s: %s: "
  286. "rescheduling sector %llu\n",
  287. mdname(conf->mddev),
  288. bdevname(conf->mirrors[mirror].rdev->bdev,
  289. b),
  290. (unsigned long long)r1_bio->sector);
  291. set_bit(R1BIO_ReadError, &r1_bio->state);
  292. reschedule_retry(r1_bio);
  293. }
  294. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  295. }
  296. static void close_write(struct r1bio *r1_bio)
  297. {
  298. /* it really is the end of this request */
  299. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  300. /* free extra copy of the data pages */
  301. int i = r1_bio->behind_page_count;
  302. while (i--)
  303. safe_put_page(r1_bio->behind_bvecs[i].bv_page);
  304. kfree(r1_bio->behind_bvecs);
  305. r1_bio->behind_bvecs = NULL;
  306. }
  307. /* clear the bitmap if all writes complete successfully */
  308. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  309. r1_bio->sectors,
  310. !test_bit(R1BIO_Degraded, &r1_bio->state),
  311. test_bit(R1BIO_BehindIO, &r1_bio->state));
  312. md_write_end(r1_bio->mddev);
  313. }
  314. static void r1_bio_write_done(struct r1bio *r1_bio)
  315. {
  316. if (!atomic_dec_and_test(&r1_bio->remaining))
  317. return;
  318. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  319. reschedule_retry(r1_bio);
  320. else {
  321. close_write(r1_bio);
  322. if (test_bit(R1BIO_MadeGood, &r1_bio->state))
  323. reschedule_retry(r1_bio);
  324. else
  325. raid_end_bio_io(r1_bio);
  326. }
  327. }
  328. static void raid1_end_write_request(struct bio *bio, int error)
  329. {
  330. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  331. struct r1bio *r1_bio = bio->bi_private;
  332. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  333. struct r1conf *conf = r1_bio->mddev->private;
  334. struct bio *to_put = NULL;
  335. mirror = find_bio_disk(r1_bio, bio);
  336. /*
  337. * 'one mirror IO has finished' event handler:
  338. */
  339. if (!uptodate) {
  340. set_bit(WriteErrorSeen,
  341. &conf->mirrors[mirror].rdev->flags);
  342. set_bit(R1BIO_WriteError, &r1_bio->state);
  343. } else {
  344. /*
  345. * Set R1BIO_Uptodate in our master bio, so that we
  346. * will return a good error code for to the higher
  347. * levels even if IO on some other mirrored buffer
  348. * fails.
  349. *
  350. * The 'master' represents the composite IO operation
  351. * to user-side. So if something waits for IO, then it
  352. * will wait for the 'master' bio.
  353. */
  354. sector_t first_bad;
  355. int bad_sectors;
  356. r1_bio->bios[mirror] = NULL;
  357. to_put = bio;
  358. set_bit(R1BIO_Uptodate, &r1_bio->state);
  359. /* Maybe we can clear some bad blocks. */
  360. if (is_badblock(conf->mirrors[mirror].rdev,
  361. r1_bio->sector, r1_bio->sectors,
  362. &first_bad, &bad_sectors)) {
  363. r1_bio->bios[mirror] = IO_MADE_GOOD;
  364. set_bit(R1BIO_MadeGood, &r1_bio->state);
  365. }
  366. }
  367. if (behind) {
  368. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  369. atomic_dec(&r1_bio->behind_remaining);
  370. /*
  371. * In behind mode, we ACK the master bio once the I/O
  372. * has safely reached all non-writemostly
  373. * disks. Setting the Returned bit ensures that this
  374. * gets done only once -- we don't ever want to return
  375. * -EIO here, instead we'll wait
  376. */
  377. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  378. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  379. /* Maybe we can return now */
  380. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  381. struct bio *mbio = r1_bio->master_bio;
  382. pr_debug("raid1: behind end write sectors"
  383. " %llu-%llu\n",
  384. (unsigned long long) mbio->bi_sector,
  385. (unsigned long long) mbio->bi_sector +
  386. (mbio->bi_size >> 9) - 1);
  387. call_bio_endio(r1_bio);
  388. }
  389. }
  390. }
  391. if (r1_bio->bios[mirror] == NULL)
  392. rdev_dec_pending(conf->mirrors[mirror].rdev,
  393. conf->mddev);
  394. /*
  395. * Let's see if all mirrored write operations have finished
  396. * already.
  397. */
  398. r1_bio_write_done(r1_bio);
  399. if (to_put)
  400. bio_put(to_put);
  401. }
  402. /*
  403. * This routine returns the disk from which the requested read should
  404. * be done. There is a per-array 'next expected sequential IO' sector
  405. * number - if this matches on the next IO then we use the last disk.
  406. * There is also a per-disk 'last know head position' sector that is
  407. * maintained from IRQ contexts, both the normal and the resync IO
  408. * completion handlers update this position correctly. If there is no
  409. * perfect sequential match then we pick the disk whose head is closest.
  410. *
  411. * If there are 2 mirrors in the same 2 devices, performance degrades
  412. * because position is mirror, not device based.
  413. *
  414. * The rdev for the device selected will have nr_pending incremented.
  415. */
  416. static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
  417. {
  418. const sector_t this_sector = r1_bio->sector;
  419. int sectors;
  420. int best_good_sectors;
  421. int start_disk;
  422. int best_disk;
  423. int i;
  424. sector_t best_dist;
  425. struct md_rdev *rdev;
  426. int choose_first;
  427. rcu_read_lock();
  428. /*
  429. * Check if we can balance. We can balance on the whole
  430. * device if no resync is going on, or below the resync window.
  431. * We take the first readable disk when above the resync window.
  432. */
  433. retry:
  434. sectors = r1_bio->sectors;
  435. best_disk = -1;
  436. best_dist = MaxSector;
  437. best_good_sectors = 0;
  438. if (conf->mddev->recovery_cp < MaxSector &&
  439. (this_sector + sectors >= conf->next_resync)) {
  440. choose_first = 1;
  441. start_disk = 0;
  442. } else {
  443. choose_first = 0;
  444. start_disk = conf->last_used;
  445. }
  446. for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
  447. sector_t dist;
  448. sector_t first_bad;
  449. int bad_sectors;
  450. int disk = start_disk + i;
  451. if (disk >= conf->raid_disks)
  452. disk -= conf->raid_disks;
  453. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  454. if (r1_bio->bios[disk] == IO_BLOCKED
  455. || rdev == NULL
  456. || test_bit(Faulty, &rdev->flags))
  457. continue;
  458. if (!test_bit(In_sync, &rdev->flags) &&
  459. rdev->recovery_offset < this_sector + sectors)
  460. continue;
  461. if (test_bit(WriteMostly, &rdev->flags)) {
  462. /* Don't balance among write-mostly, just
  463. * use the first as a last resort */
  464. if (best_disk < 0)
  465. best_disk = disk;
  466. continue;
  467. }
  468. /* This is a reasonable device to use. It might
  469. * even be best.
  470. */
  471. if (is_badblock(rdev, this_sector, sectors,
  472. &first_bad, &bad_sectors)) {
  473. if (best_dist < MaxSector)
  474. /* already have a better device */
  475. continue;
  476. if (first_bad <= this_sector) {
  477. /* cannot read here. If this is the 'primary'
  478. * device, then we must not read beyond
  479. * bad_sectors from another device..
  480. */
  481. bad_sectors -= (this_sector - first_bad);
  482. if (choose_first && sectors > bad_sectors)
  483. sectors = bad_sectors;
  484. if (best_good_sectors > sectors)
  485. best_good_sectors = sectors;
  486. } else {
  487. sector_t good_sectors = first_bad - this_sector;
  488. if (good_sectors > best_good_sectors) {
  489. best_good_sectors = good_sectors;
  490. best_disk = disk;
  491. }
  492. if (choose_first)
  493. break;
  494. }
  495. continue;
  496. } else
  497. best_good_sectors = sectors;
  498. dist = abs(this_sector - conf->mirrors[disk].head_position);
  499. if (choose_first
  500. /* Don't change to another disk for sequential reads */
  501. || conf->next_seq_sect == this_sector
  502. || dist == 0
  503. /* If device is idle, use it */
  504. || atomic_read(&rdev->nr_pending) == 0) {
  505. best_disk = disk;
  506. break;
  507. }
  508. if (dist < best_dist) {
  509. best_dist = dist;
  510. best_disk = disk;
  511. }
  512. }
  513. if (best_disk >= 0) {
  514. rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
  515. if (!rdev)
  516. goto retry;
  517. atomic_inc(&rdev->nr_pending);
  518. if (test_bit(Faulty, &rdev->flags)) {
  519. /* cannot risk returning a device that failed
  520. * before we inc'ed nr_pending
  521. */
  522. rdev_dec_pending(rdev, conf->mddev);
  523. goto retry;
  524. }
  525. sectors = best_good_sectors;
  526. conf->next_seq_sect = this_sector + sectors;
  527. conf->last_used = best_disk;
  528. }
  529. rcu_read_unlock();
  530. *max_sectors = sectors;
  531. return best_disk;
  532. }
  533. int md_raid1_congested(struct mddev *mddev, int bits)
  534. {
  535. struct r1conf *conf = mddev->private;
  536. int i, ret = 0;
  537. if ((bits & (1 << BDI_async_congested)) &&
  538. conf->pending_count >= max_queued_requests)
  539. return 1;
  540. rcu_read_lock();
  541. for (i = 0; i < conf->raid_disks; i++) {
  542. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  543. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  544. struct request_queue *q = bdev_get_queue(rdev->bdev);
  545. BUG_ON(!q);
  546. /* Note the '|| 1' - when read_balance prefers
  547. * non-congested targets, it can be removed
  548. */
  549. if ((bits & (1<<BDI_async_congested)) || 1)
  550. ret |= bdi_congested(&q->backing_dev_info, bits);
  551. else
  552. ret &= bdi_congested(&q->backing_dev_info, bits);
  553. }
  554. }
  555. rcu_read_unlock();
  556. return ret;
  557. }
  558. EXPORT_SYMBOL_GPL(md_raid1_congested);
  559. static int raid1_congested(void *data, int bits)
  560. {
  561. struct mddev *mddev = data;
  562. return mddev_congested(mddev, bits) ||
  563. md_raid1_congested(mddev, bits);
  564. }
  565. static void flush_pending_writes(struct r1conf *conf)
  566. {
  567. /* Any writes that have been queued but are awaiting
  568. * bitmap updates get flushed here.
  569. */
  570. spin_lock_irq(&conf->device_lock);
  571. if (conf->pending_bio_list.head) {
  572. struct bio *bio;
  573. bio = bio_list_get(&conf->pending_bio_list);
  574. conf->pending_count = 0;
  575. spin_unlock_irq(&conf->device_lock);
  576. /* flush any pending bitmap writes to
  577. * disk before proceeding w/ I/O */
  578. bitmap_unplug(conf->mddev->bitmap);
  579. wake_up(&conf->wait_barrier);
  580. while (bio) { /* submit pending writes */
  581. struct bio *next = bio->bi_next;
  582. bio->bi_next = NULL;
  583. generic_make_request(bio);
  584. bio = next;
  585. }
  586. } else
  587. spin_unlock_irq(&conf->device_lock);
  588. }
  589. /* Barriers....
  590. * Sometimes we need to suspend IO while we do something else,
  591. * either some resync/recovery, or reconfigure the array.
  592. * To do this we raise a 'barrier'.
  593. * The 'barrier' is a counter that can be raised multiple times
  594. * to count how many activities are happening which preclude
  595. * normal IO.
  596. * We can only raise the barrier if there is no pending IO.
  597. * i.e. if nr_pending == 0.
  598. * We choose only to raise the barrier if no-one is waiting for the
  599. * barrier to go down. This means that as soon as an IO request
  600. * is ready, no other operations which require a barrier will start
  601. * until the IO request has had a chance.
  602. *
  603. * So: regular IO calls 'wait_barrier'. When that returns there
  604. * is no backgroup IO happening, It must arrange to call
  605. * allow_barrier when it has finished its IO.
  606. * backgroup IO calls must call raise_barrier. Once that returns
  607. * there is no normal IO happeing. It must arrange to call
  608. * lower_barrier when the particular background IO completes.
  609. */
  610. #define RESYNC_DEPTH 32
  611. static void raise_barrier(struct r1conf *conf)
  612. {
  613. spin_lock_irq(&conf->resync_lock);
  614. /* Wait until no block IO is waiting */
  615. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  616. conf->resync_lock, );
  617. /* block any new IO from starting */
  618. conf->barrier++;
  619. /* Now wait for all pending IO to complete */
  620. wait_event_lock_irq(conf->wait_barrier,
  621. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  622. conf->resync_lock, );
  623. spin_unlock_irq(&conf->resync_lock);
  624. }
  625. static void lower_barrier(struct r1conf *conf)
  626. {
  627. unsigned long flags;
  628. BUG_ON(conf->barrier <= 0);
  629. spin_lock_irqsave(&conf->resync_lock, flags);
  630. conf->barrier--;
  631. spin_unlock_irqrestore(&conf->resync_lock, flags);
  632. wake_up(&conf->wait_barrier);
  633. }
  634. static void wait_barrier(struct r1conf *conf)
  635. {
  636. spin_lock_irq(&conf->resync_lock);
  637. if (conf->barrier) {
  638. conf->nr_waiting++;
  639. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  640. conf->resync_lock,
  641. );
  642. conf->nr_waiting--;
  643. }
  644. conf->nr_pending++;
  645. spin_unlock_irq(&conf->resync_lock);
  646. }
  647. static void allow_barrier(struct r1conf *conf)
  648. {
  649. unsigned long flags;
  650. spin_lock_irqsave(&conf->resync_lock, flags);
  651. conf->nr_pending--;
  652. spin_unlock_irqrestore(&conf->resync_lock, flags);
  653. wake_up(&conf->wait_barrier);
  654. }
  655. static void freeze_array(struct r1conf *conf)
  656. {
  657. /* stop syncio and normal IO and wait for everything to
  658. * go quite.
  659. * We increment barrier and nr_waiting, and then
  660. * wait until nr_pending match nr_queued+1
  661. * This is called in the context of one normal IO request
  662. * that has failed. Thus any sync request that might be pending
  663. * will be blocked by nr_pending, and we need to wait for
  664. * pending IO requests to complete or be queued for re-try.
  665. * Thus the number queued (nr_queued) plus this request (1)
  666. * must match the number of pending IOs (nr_pending) before
  667. * we continue.
  668. */
  669. spin_lock_irq(&conf->resync_lock);
  670. conf->barrier++;
  671. conf->nr_waiting++;
  672. wait_event_lock_irq(conf->wait_barrier,
  673. conf->nr_pending == conf->nr_queued+1,
  674. conf->resync_lock,
  675. flush_pending_writes(conf));
  676. spin_unlock_irq(&conf->resync_lock);
  677. }
  678. static void unfreeze_array(struct r1conf *conf)
  679. {
  680. /* reverse the effect of the freeze */
  681. spin_lock_irq(&conf->resync_lock);
  682. conf->barrier--;
  683. conf->nr_waiting--;
  684. wake_up(&conf->wait_barrier);
  685. spin_unlock_irq(&conf->resync_lock);
  686. }
  687. /* duplicate the data pages for behind I/O
  688. */
  689. static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
  690. {
  691. int i;
  692. struct bio_vec *bvec;
  693. struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
  694. GFP_NOIO);
  695. if (unlikely(!bvecs))
  696. return;
  697. bio_for_each_segment(bvec, bio, i) {
  698. bvecs[i] = *bvec;
  699. bvecs[i].bv_page = alloc_page(GFP_NOIO);
  700. if (unlikely(!bvecs[i].bv_page))
  701. goto do_sync_io;
  702. memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
  703. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  704. kunmap(bvecs[i].bv_page);
  705. kunmap(bvec->bv_page);
  706. }
  707. r1_bio->behind_bvecs = bvecs;
  708. r1_bio->behind_page_count = bio->bi_vcnt;
  709. set_bit(R1BIO_BehindIO, &r1_bio->state);
  710. return;
  711. do_sync_io:
  712. for (i = 0; i < bio->bi_vcnt; i++)
  713. if (bvecs[i].bv_page)
  714. put_page(bvecs[i].bv_page);
  715. kfree(bvecs);
  716. pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  717. }
  718. static void make_request(struct mddev *mddev, struct bio * bio)
  719. {
  720. struct r1conf *conf = mddev->private;
  721. struct mirror_info *mirror;
  722. struct r1bio *r1_bio;
  723. struct bio *read_bio;
  724. int i, disks;
  725. struct bitmap *bitmap;
  726. unsigned long flags;
  727. const int rw = bio_data_dir(bio);
  728. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  729. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  730. struct md_rdev *blocked_rdev;
  731. int plugged;
  732. int first_clone;
  733. int sectors_handled;
  734. int max_sectors;
  735. /*
  736. * Register the new request and wait if the reconstruction
  737. * thread has put up a bar for new requests.
  738. * Continue immediately if no resync is active currently.
  739. */
  740. md_write_start(mddev, bio); /* wait on superblock update early */
  741. if (bio_data_dir(bio) == WRITE &&
  742. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  743. bio->bi_sector < mddev->suspend_hi) {
  744. /* As the suspend_* range is controlled by
  745. * userspace, we want an interruptible
  746. * wait.
  747. */
  748. DEFINE_WAIT(w);
  749. for (;;) {
  750. flush_signals(current);
  751. prepare_to_wait(&conf->wait_barrier,
  752. &w, TASK_INTERRUPTIBLE);
  753. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  754. bio->bi_sector >= mddev->suspend_hi)
  755. break;
  756. schedule();
  757. }
  758. finish_wait(&conf->wait_barrier, &w);
  759. }
  760. wait_barrier(conf);
  761. bitmap = mddev->bitmap;
  762. /*
  763. * make_request() can abort the operation when READA is being
  764. * used and no empty request is available.
  765. *
  766. */
  767. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  768. r1_bio->master_bio = bio;
  769. r1_bio->sectors = bio->bi_size >> 9;
  770. r1_bio->state = 0;
  771. r1_bio->mddev = mddev;
  772. r1_bio->sector = bio->bi_sector;
  773. /* We might need to issue multiple reads to different
  774. * devices if there are bad blocks around, so we keep
  775. * track of the number of reads in bio->bi_phys_segments.
  776. * If this is 0, there is only one r1_bio and no locking
  777. * will be needed when requests complete. If it is
  778. * non-zero, then it is the number of not-completed requests.
  779. */
  780. bio->bi_phys_segments = 0;
  781. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  782. if (rw == READ) {
  783. /*
  784. * read balancing logic:
  785. */
  786. int rdisk;
  787. read_again:
  788. rdisk = read_balance(conf, r1_bio, &max_sectors);
  789. if (rdisk < 0) {
  790. /* couldn't find anywhere to read from */
  791. raid_end_bio_io(r1_bio);
  792. return;
  793. }
  794. mirror = conf->mirrors + rdisk;
  795. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  796. bitmap) {
  797. /* Reading from a write-mostly device must
  798. * take care not to over-take any writes
  799. * that are 'behind'
  800. */
  801. wait_event(bitmap->behind_wait,
  802. atomic_read(&bitmap->behind_writes) == 0);
  803. }
  804. r1_bio->read_disk = rdisk;
  805. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  806. md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
  807. max_sectors);
  808. r1_bio->bios[rdisk] = read_bio;
  809. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  810. read_bio->bi_bdev = mirror->rdev->bdev;
  811. read_bio->bi_end_io = raid1_end_read_request;
  812. read_bio->bi_rw = READ | do_sync;
  813. read_bio->bi_private = r1_bio;
  814. if (max_sectors < r1_bio->sectors) {
  815. /* could not read all from this device, so we will
  816. * need another r1_bio.
  817. */
  818. sectors_handled = (r1_bio->sector + max_sectors
  819. - bio->bi_sector);
  820. r1_bio->sectors = max_sectors;
  821. spin_lock_irq(&conf->device_lock);
  822. if (bio->bi_phys_segments == 0)
  823. bio->bi_phys_segments = 2;
  824. else
  825. bio->bi_phys_segments++;
  826. spin_unlock_irq(&conf->device_lock);
  827. /* Cannot call generic_make_request directly
  828. * as that will be queued in __make_request
  829. * and subsequent mempool_alloc might block waiting
  830. * for it. So hand bio over to raid1d.
  831. */
  832. reschedule_retry(r1_bio);
  833. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  834. r1_bio->master_bio = bio;
  835. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  836. r1_bio->state = 0;
  837. r1_bio->mddev = mddev;
  838. r1_bio->sector = bio->bi_sector + sectors_handled;
  839. goto read_again;
  840. } else
  841. generic_make_request(read_bio);
  842. return;
  843. }
  844. /*
  845. * WRITE:
  846. */
  847. if (conf->pending_count >= max_queued_requests) {
  848. md_wakeup_thread(mddev->thread);
  849. wait_event(conf->wait_barrier,
  850. conf->pending_count < max_queued_requests);
  851. }
  852. /* first select target devices under rcu_lock and
  853. * inc refcount on their rdev. Record them by setting
  854. * bios[x] to bio
  855. * If there are known/acknowledged bad blocks on any device on
  856. * which we have seen a write error, we want to avoid writing those
  857. * blocks.
  858. * This potentially requires several writes to write around
  859. * the bad blocks. Each set of writes gets it's own r1bio
  860. * with a set of bios attached.
  861. */
  862. plugged = mddev_check_plugged(mddev);
  863. disks = conf->raid_disks * 2;
  864. retry_write:
  865. blocked_rdev = NULL;
  866. rcu_read_lock();
  867. max_sectors = r1_bio->sectors;
  868. for (i = 0; i < disks; i++) {
  869. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  870. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  871. atomic_inc(&rdev->nr_pending);
  872. blocked_rdev = rdev;
  873. break;
  874. }
  875. r1_bio->bios[i] = NULL;
  876. if (!rdev || test_bit(Faulty, &rdev->flags)) {
  877. if (i < conf->raid_disks)
  878. set_bit(R1BIO_Degraded, &r1_bio->state);
  879. continue;
  880. }
  881. atomic_inc(&rdev->nr_pending);
  882. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  883. sector_t first_bad;
  884. int bad_sectors;
  885. int is_bad;
  886. is_bad = is_badblock(rdev, r1_bio->sector,
  887. max_sectors,
  888. &first_bad, &bad_sectors);
  889. if (is_bad < 0) {
  890. /* mustn't write here until the bad block is
  891. * acknowledged*/
  892. set_bit(BlockedBadBlocks, &rdev->flags);
  893. blocked_rdev = rdev;
  894. break;
  895. }
  896. if (is_bad && first_bad <= r1_bio->sector) {
  897. /* Cannot write here at all */
  898. bad_sectors -= (r1_bio->sector - first_bad);
  899. if (bad_sectors < max_sectors)
  900. /* mustn't write more than bad_sectors
  901. * to other devices yet
  902. */
  903. max_sectors = bad_sectors;
  904. rdev_dec_pending(rdev, mddev);
  905. /* We don't set R1BIO_Degraded as that
  906. * only applies if the disk is
  907. * missing, so it might be re-added,
  908. * and we want to know to recover this
  909. * chunk.
  910. * In this case the device is here,
  911. * and the fact that this chunk is not
  912. * in-sync is recorded in the bad
  913. * block log
  914. */
  915. continue;
  916. }
  917. if (is_bad) {
  918. int good_sectors = first_bad - r1_bio->sector;
  919. if (good_sectors < max_sectors)
  920. max_sectors = good_sectors;
  921. }
  922. }
  923. r1_bio->bios[i] = bio;
  924. }
  925. rcu_read_unlock();
  926. if (unlikely(blocked_rdev)) {
  927. /* Wait for this device to become unblocked */
  928. int j;
  929. for (j = 0; j < i; j++)
  930. if (r1_bio->bios[j])
  931. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  932. r1_bio->state = 0;
  933. allow_barrier(conf);
  934. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  935. wait_barrier(conf);
  936. goto retry_write;
  937. }
  938. if (max_sectors < r1_bio->sectors) {
  939. /* We are splitting this write into multiple parts, so
  940. * we need to prepare for allocating another r1_bio.
  941. */
  942. r1_bio->sectors = max_sectors;
  943. spin_lock_irq(&conf->device_lock);
  944. if (bio->bi_phys_segments == 0)
  945. bio->bi_phys_segments = 2;
  946. else
  947. bio->bi_phys_segments++;
  948. spin_unlock_irq(&conf->device_lock);
  949. }
  950. sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
  951. atomic_set(&r1_bio->remaining, 1);
  952. atomic_set(&r1_bio->behind_remaining, 0);
  953. first_clone = 1;
  954. for (i = 0; i < disks; i++) {
  955. struct bio *mbio;
  956. if (!r1_bio->bios[i])
  957. continue;
  958. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  959. md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
  960. if (first_clone) {
  961. /* do behind I/O ?
  962. * Not if there are too many, or cannot
  963. * allocate memory, or a reader on WriteMostly
  964. * is waiting for behind writes to flush */
  965. if (bitmap &&
  966. (atomic_read(&bitmap->behind_writes)
  967. < mddev->bitmap_info.max_write_behind) &&
  968. !waitqueue_active(&bitmap->behind_wait))
  969. alloc_behind_pages(mbio, r1_bio);
  970. bitmap_startwrite(bitmap, r1_bio->sector,
  971. r1_bio->sectors,
  972. test_bit(R1BIO_BehindIO,
  973. &r1_bio->state));
  974. first_clone = 0;
  975. }
  976. if (r1_bio->behind_bvecs) {
  977. struct bio_vec *bvec;
  978. int j;
  979. /* Yes, I really want the '__' version so that
  980. * we clear any unused pointer in the io_vec, rather
  981. * than leave them unchanged. This is important
  982. * because when we come to free the pages, we won't
  983. * know the original bi_idx, so we just free
  984. * them all
  985. */
  986. __bio_for_each_segment(bvec, mbio, j, 0)
  987. bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
  988. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  989. atomic_inc(&r1_bio->behind_remaining);
  990. }
  991. r1_bio->bios[i] = mbio;
  992. mbio->bi_sector = (r1_bio->sector +
  993. conf->mirrors[i].rdev->data_offset);
  994. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  995. mbio->bi_end_io = raid1_end_write_request;
  996. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  997. mbio->bi_private = r1_bio;
  998. atomic_inc(&r1_bio->remaining);
  999. spin_lock_irqsave(&conf->device_lock, flags);
  1000. bio_list_add(&conf->pending_bio_list, mbio);
  1001. conf->pending_count++;
  1002. spin_unlock_irqrestore(&conf->device_lock, flags);
  1003. }
  1004. /* Mustn't call r1_bio_write_done before this next test,
  1005. * as it could result in the bio being freed.
  1006. */
  1007. if (sectors_handled < (bio->bi_size >> 9)) {
  1008. r1_bio_write_done(r1_bio);
  1009. /* We need another r1_bio. It has already been counted
  1010. * in bio->bi_phys_segments
  1011. */
  1012. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1013. r1_bio->master_bio = bio;
  1014. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  1015. r1_bio->state = 0;
  1016. r1_bio->mddev = mddev;
  1017. r1_bio->sector = bio->bi_sector + sectors_handled;
  1018. goto retry_write;
  1019. }
  1020. r1_bio_write_done(r1_bio);
  1021. /* In case raid1d snuck in to freeze_array */
  1022. wake_up(&conf->wait_barrier);
  1023. if (do_sync || !bitmap || !plugged)
  1024. md_wakeup_thread(mddev->thread);
  1025. }
  1026. static void status(struct seq_file *seq, struct mddev *mddev)
  1027. {
  1028. struct r1conf *conf = mddev->private;
  1029. int i;
  1030. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1031. conf->raid_disks - mddev->degraded);
  1032. rcu_read_lock();
  1033. for (i = 0; i < conf->raid_disks; i++) {
  1034. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1035. seq_printf(seq, "%s",
  1036. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  1037. }
  1038. rcu_read_unlock();
  1039. seq_printf(seq, "]");
  1040. }
  1041. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1042. {
  1043. char b[BDEVNAME_SIZE];
  1044. struct r1conf *conf = mddev->private;
  1045. /*
  1046. * If it is not operational, then we have already marked it as dead
  1047. * else if it is the last working disks, ignore the error, let the
  1048. * next level up know.
  1049. * else mark the drive as failed
  1050. */
  1051. if (test_bit(In_sync, &rdev->flags)
  1052. && (conf->raid_disks - mddev->degraded) == 1) {
  1053. /*
  1054. * Don't fail the drive, act as though we were just a
  1055. * normal single drive.
  1056. * However don't try a recovery from this drive as
  1057. * it is very likely to fail.
  1058. */
  1059. conf->recovery_disabled = mddev->recovery_disabled;
  1060. return;
  1061. }
  1062. set_bit(Blocked, &rdev->flags);
  1063. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1064. unsigned long flags;
  1065. spin_lock_irqsave(&conf->device_lock, flags);
  1066. mddev->degraded++;
  1067. set_bit(Faulty, &rdev->flags);
  1068. spin_unlock_irqrestore(&conf->device_lock, flags);
  1069. /*
  1070. * if recovery is running, make sure it aborts.
  1071. */
  1072. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1073. } else
  1074. set_bit(Faulty, &rdev->flags);
  1075. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1076. printk(KERN_ALERT
  1077. "md/raid1:%s: Disk failure on %s, disabling device.\n"
  1078. "md/raid1:%s: Operation continuing on %d devices.\n",
  1079. mdname(mddev), bdevname(rdev->bdev, b),
  1080. mdname(mddev), conf->raid_disks - mddev->degraded);
  1081. }
  1082. static void print_conf(struct r1conf *conf)
  1083. {
  1084. int i;
  1085. printk(KERN_DEBUG "RAID1 conf printout:\n");
  1086. if (!conf) {
  1087. printk(KERN_DEBUG "(!conf)\n");
  1088. return;
  1089. }
  1090. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1091. conf->raid_disks);
  1092. rcu_read_lock();
  1093. for (i = 0; i < conf->raid_disks; i++) {
  1094. char b[BDEVNAME_SIZE];
  1095. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1096. if (rdev)
  1097. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1098. i, !test_bit(In_sync, &rdev->flags),
  1099. !test_bit(Faulty, &rdev->flags),
  1100. bdevname(rdev->bdev,b));
  1101. }
  1102. rcu_read_unlock();
  1103. }
  1104. static void close_sync(struct r1conf *conf)
  1105. {
  1106. wait_barrier(conf);
  1107. allow_barrier(conf);
  1108. mempool_destroy(conf->r1buf_pool);
  1109. conf->r1buf_pool = NULL;
  1110. }
  1111. static int raid1_spare_active(struct mddev *mddev)
  1112. {
  1113. int i;
  1114. struct r1conf *conf = mddev->private;
  1115. int count = 0;
  1116. unsigned long flags;
  1117. /*
  1118. * Find all failed disks within the RAID1 configuration
  1119. * and mark them readable.
  1120. * Called under mddev lock, so rcu protection not needed.
  1121. */
  1122. for (i = 0; i < conf->raid_disks; i++) {
  1123. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1124. if (rdev
  1125. && !test_bit(Faulty, &rdev->flags)
  1126. && !test_and_set_bit(In_sync, &rdev->flags)) {
  1127. count++;
  1128. sysfs_notify_dirent_safe(rdev->sysfs_state);
  1129. }
  1130. }
  1131. spin_lock_irqsave(&conf->device_lock, flags);
  1132. mddev->degraded -= count;
  1133. spin_unlock_irqrestore(&conf->device_lock, flags);
  1134. print_conf(conf);
  1135. return count;
  1136. }
  1137. static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1138. {
  1139. struct r1conf *conf = mddev->private;
  1140. int err = -EEXIST;
  1141. int mirror = 0;
  1142. struct mirror_info *p;
  1143. int first = 0;
  1144. int last = conf->raid_disks - 1;
  1145. if (mddev->recovery_disabled == conf->recovery_disabled)
  1146. return -EBUSY;
  1147. if (rdev->raid_disk >= 0)
  1148. first = last = rdev->raid_disk;
  1149. for (mirror = first; mirror <= last; mirror++)
  1150. if ( !(p=conf->mirrors+mirror)->rdev) {
  1151. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1152. rdev->data_offset << 9);
  1153. /* as we don't honour merge_bvec_fn, we must
  1154. * never risk violating it, so limit
  1155. * ->max_segments to one lying with a single
  1156. * page, as a one page request is never in
  1157. * violation.
  1158. */
  1159. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1160. blk_queue_max_segments(mddev->queue, 1);
  1161. blk_queue_segment_boundary(mddev->queue,
  1162. PAGE_CACHE_SIZE - 1);
  1163. }
  1164. p->head_position = 0;
  1165. rdev->raid_disk = mirror;
  1166. err = 0;
  1167. /* As all devices are equivalent, we don't need a full recovery
  1168. * if this was recently any drive of the array
  1169. */
  1170. if (rdev->saved_raid_disk < 0)
  1171. conf->fullsync = 1;
  1172. rcu_assign_pointer(p->rdev, rdev);
  1173. break;
  1174. }
  1175. md_integrity_add_rdev(rdev, mddev);
  1176. print_conf(conf);
  1177. return err;
  1178. }
  1179. static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
  1180. {
  1181. struct r1conf *conf = mddev->private;
  1182. int err = 0;
  1183. int number = rdev->raid_disk;
  1184. struct mirror_info *p = conf->mirrors+ number;
  1185. if (rdev != p->rdev)
  1186. p = conf->mirrors + conf->raid_disks + number;
  1187. print_conf(conf);
  1188. if (rdev == p->rdev) {
  1189. if (test_bit(In_sync, &rdev->flags) ||
  1190. atomic_read(&rdev->nr_pending)) {
  1191. err = -EBUSY;
  1192. goto abort;
  1193. }
  1194. /* Only remove non-faulty devices if recovery
  1195. * is not possible.
  1196. */
  1197. if (!test_bit(Faulty, &rdev->flags) &&
  1198. mddev->recovery_disabled != conf->recovery_disabled &&
  1199. mddev->degraded < conf->raid_disks) {
  1200. err = -EBUSY;
  1201. goto abort;
  1202. }
  1203. p->rdev = NULL;
  1204. synchronize_rcu();
  1205. if (atomic_read(&rdev->nr_pending)) {
  1206. /* lost the race, try later */
  1207. err = -EBUSY;
  1208. p->rdev = rdev;
  1209. goto abort;
  1210. } else {
  1211. clear_bit(Replacement, &rdev->flags);
  1212. clear_bit(WantReplacement, &rdev->flags);
  1213. }
  1214. err = md_integrity_register(mddev);
  1215. }
  1216. abort:
  1217. print_conf(conf);
  1218. return err;
  1219. }
  1220. static void end_sync_read(struct bio *bio, int error)
  1221. {
  1222. struct r1bio *r1_bio = bio->bi_private;
  1223. update_head_pos(r1_bio->read_disk, r1_bio);
  1224. /*
  1225. * we have read a block, now it needs to be re-written,
  1226. * or re-read if the read failed.
  1227. * We don't do much here, just schedule handling by raid1d
  1228. */
  1229. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1230. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1231. if (atomic_dec_and_test(&r1_bio->remaining))
  1232. reschedule_retry(r1_bio);
  1233. }
  1234. static void end_sync_write(struct bio *bio, int error)
  1235. {
  1236. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1237. struct r1bio *r1_bio = bio->bi_private;
  1238. struct mddev *mddev = r1_bio->mddev;
  1239. struct r1conf *conf = mddev->private;
  1240. int mirror=0;
  1241. sector_t first_bad;
  1242. int bad_sectors;
  1243. mirror = find_bio_disk(r1_bio, bio);
  1244. if (!uptodate) {
  1245. sector_t sync_blocks = 0;
  1246. sector_t s = r1_bio->sector;
  1247. long sectors_to_go = r1_bio->sectors;
  1248. /* make sure these bits doesn't get cleared. */
  1249. do {
  1250. bitmap_end_sync(mddev->bitmap, s,
  1251. &sync_blocks, 1);
  1252. s += sync_blocks;
  1253. sectors_to_go -= sync_blocks;
  1254. } while (sectors_to_go > 0);
  1255. set_bit(WriteErrorSeen,
  1256. &conf->mirrors[mirror].rdev->flags);
  1257. set_bit(R1BIO_WriteError, &r1_bio->state);
  1258. } else if (is_badblock(conf->mirrors[mirror].rdev,
  1259. r1_bio->sector,
  1260. r1_bio->sectors,
  1261. &first_bad, &bad_sectors) &&
  1262. !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
  1263. r1_bio->sector,
  1264. r1_bio->sectors,
  1265. &first_bad, &bad_sectors)
  1266. )
  1267. set_bit(R1BIO_MadeGood, &r1_bio->state);
  1268. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1269. int s = r1_bio->sectors;
  1270. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1271. test_bit(R1BIO_WriteError, &r1_bio->state))
  1272. reschedule_retry(r1_bio);
  1273. else {
  1274. put_buf(r1_bio);
  1275. md_done_sync(mddev, s, uptodate);
  1276. }
  1277. }
  1278. }
  1279. static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1280. int sectors, struct page *page, int rw)
  1281. {
  1282. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  1283. /* success */
  1284. return 1;
  1285. if (rw == WRITE)
  1286. set_bit(WriteErrorSeen, &rdev->flags);
  1287. /* need to record an error - either for the block or the device */
  1288. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1289. md_error(rdev->mddev, rdev);
  1290. return 0;
  1291. }
  1292. static int fix_sync_read_error(struct r1bio *r1_bio)
  1293. {
  1294. /* Try some synchronous reads of other devices to get
  1295. * good data, much like with normal read errors. Only
  1296. * read into the pages we already have so we don't
  1297. * need to re-issue the read request.
  1298. * We don't need to freeze the array, because being in an
  1299. * active sync request, there is no normal IO, and
  1300. * no overlapping syncs.
  1301. * We don't need to check is_badblock() again as we
  1302. * made sure that anything with a bad block in range
  1303. * will have bi_end_io clear.
  1304. */
  1305. struct mddev *mddev = r1_bio->mddev;
  1306. struct r1conf *conf = mddev->private;
  1307. struct bio *bio = r1_bio->bios[r1_bio->read_disk];
  1308. sector_t sect = r1_bio->sector;
  1309. int sectors = r1_bio->sectors;
  1310. int idx = 0;
  1311. while(sectors) {
  1312. int s = sectors;
  1313. int d = r1_bio->read_disk;
  1314. int success = 0;
  1315. struct md_rdev *rdev;
  1316. int start;
  1317. if (s > (PAGE_SIZE>>9))
  1318. s = PAGE_SIZE >> 9;
  1319. do {
  1320. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1321. /* No rcu protection needed here devices
  1322. * can only be removed when no resync is
  1323. * active, and resync is currently active
  1324. */
  1325. rdev = conf->mirrors[d].rdev;
  1326. if (sync_page_io(rdev, sect, s<<9,
  1327. bio->bi_io_vec[idx].bv_page,
  1328. READ, false)) {
  1329. success = 1;
  1330. break;
  1331. }
  1332. }
  1333. d++;
  1334. if (d == conf->raid_disks * 2)
  1335. d = 0;
  1336. } while (!success && d != r1_bio->read_disk);
  1337. if (!success) {
  1338. char b[BDEVNAME_SIZE];
  1339. int abort = 0;
  1340. /* Cannot read from anywhere, this block is lost.
  1341. * Record a bad block on each device. If that doesn't
  1342. * work just disable and interrupt the recovery.
  1343. * Don't fail devices as that won't really help.
  1344. */
  1345. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1346. " for block %llu\n",
  1347. mdname(mddev),
  1348. bdevname(bio->bi_bdev, b),
  1349. (unsigned long long)r1_bio->sector);
  1350. for (d = 0; d < conf->raid_disks * 2; d++) {
  1351. rdev = conf->mirrors[d].rdev;
  1352. if (!rdev || test_bit(Faulty, &rdev->flags))
  1353. continue;
  1354. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1355. abort = 1;
  1356. }
  1357. if (abort) {
  1358. conf->recovery_disabled =
  1359. mddev->recovery_disabled;
  1360. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1361. md_done_sync(mddev, r1_bio->sectors, 0);
  1362. put_buf(r1_bio);
  1363. return 0;
  1364. }
  1365. /* Try next page */
  1366. sectors -= s;
  1367. sect += s;
  1368. idx++;
  1369. continue;
  1370. }
  1371. start = d;
  1372. /* write it back and re-read */
  1373. while (d != r1_bio->read_disk) {
  1374. if (d == 0)
  1375. d = conf->raid_disks * 2;
  1376. d--;
  1377. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1378. continue;
  1379. rdev = conf->mirrors[d].rdev;
  1380. if (r1_sync_page_io(rdev, sect, s,
  1381. bio->bi_io_vec[idx].bv_page,
  1382. WRITE) == 0) {
  1383. r1_bio->bios[d]->bi_end_io = NULL;
  1384. rdev_dec_pending(rdev, mddev);
  1385. }
  1386. }
  1387. d = start;
  1388. while (d != r1_bio->read_disk) {
  1389. if (d == 0)
  1390. d = conf->raid_disks * 2;
  1391. d--;
  1392. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1393. continue;
  1394. rdev = conf->mirrors[d].rdev;
  1395. if (r1_sync_page_io(rdev, sect, s,
  1396. bio->bi_io_vec[idx].bv_page,
  1397. READ) != 0)
  1398. atomic_add(s, &rdev->corrected_errors);
  1399. }
  1400. sectors -= s;
  1401. sect += s;
  1402. idx ++;
  1403. }
  1404. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1405. set_bit(BIO_UPTODATE, &bio->bi_flags);
  1406. return 1;
  1407. }
  1408. static int process_checks(struct r1bio *r1_bio)
  1409. {
  1410. /* We have read all readable devices. If we haven't
  1411. * got the block, then there is no hope left.
  1412. * If we have, then we want to do a comparison
  1413. * and skip the write if everything is the same.
  1414. * If any blocks failed to read, then we need to
  1415. * attempt an over-write
  1416. */
  1417. struct mddev *mddev = r1_bio->mddev;
  1418. struct r1conf *conf = mddev->private;
  1419. int primary;
  1420. int i;
  1421. for (primary = 0; primary < conf->raid_disks * 2; primary++)
  1422. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1423. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1424. r1_bio->bios[primary]->bi_end_io = NULL;
  1425. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1426. break;
  1427. }
  1428. r1_bio->read_disk = primary;
  1429. for (i = 0; i < conf->raid_disks * 2; i++) {
  1430. int j;
  1431. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1432. struct bio *pbio = r1_bio->bios[primary];
  1433. struct bio *sbio = r1_bio->bios[i];
  1434. int size;
  1435. if (r1_bio->bios[i]->bi_end_io != end_sync_read)
  1436. continue;
  1437. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1438. for (j = vcnt; j-- ; ) {
  1439. struct page *p, *s;
  1440. p = pbio->bi_io_vec[j].bv_page;
  1441. s = sbio->bi_io_vec[j].bv_page;
  1442. if (memcmp(page_address(p),
  1443. page_address(s),
  1444. PAGE_SIZE))
  1445. break;
  1446. }
  1447. } else
  1448. j = 0;
  1449. if (j >= 0)
  1450. mddev->resync_mismatches += r1_bio->sectors;
  1451. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1452. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1453. /* No need to write to this device. */
  1454. sbio->bi_end_io = NULL;
  1455. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1456. continue;
  1457. }
  1458. /* fixup the bio for reuse */
  1459. sbio->bi_vcnt = vcnt;
  1460. sbio->bi_size = r1_bio->sectors << 9;
  1461. sbio->bi_idx = 0;
  1462. sbio->bi_phys_segments = 0;
  1463. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1464. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1465. sbio->bi_next = NULL;
  1466. sbio->bi_sector = r1_bio->sector +
  1467. conf->mirrors[i].rdev->data_offset;
  1468. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1469. size = sbio->bi_size;
  1470. for (j = 0; j < vcnt ; j++) {
  1471. struct bio_vec *bi;
  1472. bi = &sbio->bi_io_vec[j];
  1473. bi->bv_offset = 0;
  1474. if (size > PAGE_SIZE)
  1475. bi->bv_len = PAGE_SIZE;
  1476. else
  1477. bi->bv_len = size;
  1478. size -= PAGE_SIZE;
  1479. memcpy(page_address(bi->bv_page),
  1480. page_address(pbio->bi_io_vec[j].bv_page),
  1481. PAGE_SIZE);
  1482. }
  1483. }
  1484. return 0;
  1485. }
  1486. static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
  1487. {
  1488. struct r1conf *conf = mddev->private;
  1489. int i;
  1490. int disks = conf->raid_disks * 2;
  1491. struct bio *bio, *wbio;
  1492. bio = r1_bio->bios[r1_bio->read_disk];
  1493. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  1494. /* ouch - failed to read all of that. */
  1495. if (!fix_sync_read_error(r1_bio))
  1496. return;
  1497. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1498. if (process_checks(r1_bio) < 0)
  1499. return;
  1500. /*
  1501. * schedule writes
  1502. */
  1503. atomic_set(&r1_bio->remaining, 1);
  1504. for (i = 0; i < disks ; i++) {
  1505. wbio = r1_bio->bios[i];
  1506. if (wbio->bi_end_io == NULL ||
  1507. (wbio->bi_end_io == end_sync_read &&
  1508. (i == r1_bio->read_disk ||
  1509. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1510. continue;
  1511. wbio->bi_rw = WRITE;
  1512. wbio->bi_end_io = end_sync_write;
  1513. atomic_inc(&r1_bio->remaining);
  1514. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1515. generic_make_request(wbio);
  1516. }
  1517. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1518. /* if we're here, all write(s) have completed, so clean up */
  1519. md_done_sync(mddev, r1_bio->sectors, 1);
  1520. put_buf(r1_bio);
  1521. }
  1522. }
  1523. /*
  1524. * This is a kernel thread which:
  1525. *
  1526. * 1. Retries failed read operations on working mirrors.
  1527. * 2. Updates the raid superblock when problems encounter.
  1528. * 3. Performs writes following reads for array synchronising.
  1529. */
  1530. static void fix_read_error(struct r1conf *conf, int read_disk,
  1531. sector_t sect, int sectors)
  1532. {
  1533. struct mddev *mddev = conf->mddev;
  1534. while(sectors) {
  1535. int s = sectors;
  1536. int d = read_disk;
  1537. int success = 0;
  1538. int start;
  1539. struct md_rdev *rdev;
  1540. if (s > (PAGE_SIZE>>9))
  1541. s = PAGE_SIZE >> 9;
  1542. do {
  1543. /* Note: no rcu protection needed here
  1544. * as this is synchronous in the raid1d thread
  1545. * which is the thread that might remove
  1546. * a device. If raid1d ever becomes multi-threaded....
  1547. */
  1548. sector_t first_bad;
  1549. int bad_sectors;
  1550. rdev = conf->mirrors[d].rdev;
  1551. if (rdev &&
  1552. test_bit(In_sync, &rdev->flags) &&
  1553. is_badblock(rdev, sect, s,
  1554. &first_bad, &bad_sectors) == 0 &&
  1555. sync_page_io(rdev, sect, s<<9,
  1556. conf->tmppage, READ, false))
  1557. success = 1;
  1558. else {
  1559. d++;
  1560. if (d == conf->raid_disks * 2)
  1561. d = 0;
  1562. }
  1563. } while (!success && d != read_disk);
  1564. if (!success) {
  1565. /* Cannot read from anywhere - mark it bad */
  1566. struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
  1567. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1568. md_error(mddev, rdev);
  1569. break;
  1570. }
  1571. /* write it back and re-read */
  1572. start = d;
  1573. while (d != read_disk) {
  1574. if (d==0)
  1575. d = conf->raid_disks * 2;
  1576. d--;
  1577. rdev = conf->mirrors[d].rdev;
  1578. if (rdev &&
  1579. test_bit(In_sync, &rdev->flags))
  1580. r1_sync_page_io(rdev, sect, s,
  1581. conf->tmppage, WRITE);
  1582. }
  1583. d = start;
  1584. while (d != read_disk) {
  1585. char b[BDEVNAME_SIZE];
  1586. if (d==0)
  1587. d = conf->raid_disks * 2;
  1588. d--;
  1589. rdev = conf->mirrors[d].rdev;
  1590. if (rdev &&
  1591. test_bit(In_sync, &rdev->flags)) {
  1592. if (r1_sync_page_io(rdev, sect, s,
  1593. conf->tmppage, READ)) {
  1594. atomic_add(s, &rdev->corrected_errors);
  1595. printk(KERN_INFO
  1596. "md/raid1:%s: read error corrected "
  1597. "(%d sectors at %llu on %s)\n",
  1598. mdname(mddev), s,
  1599. (unsigned long long)(sect +
  1600. rdev->data_offset),
  1601. bdevname(rdev->bdev, b));
  1602. }
  1603. }
  1604. }
  1605. sectors -= s;
  1606. sect += s;
  1607. }
  1608. }
  1609. static void bi_complete(struct bio *bio, int error)
  1610. {
  1611. complete((struct completion *)bio->bi_private);
  1612. }
  1613. static int submit_bio_wait(int rw, struct bio *bio)
  1614. {
  1615. struct completion event;
  1616. rw |= REQ_SYNC;
  1617. init_completion(&event);
  1618. bio->bi_private = &event;
  1619. bio->bi_end_io = bi_complete;
  1620. submit_bio(rw, bio);
  1621. wait_for_completion(&event);
  1622. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  1623. }
  1624. static int narrow_write_error(struct r1bio *r1_bio, int i)
  1625. {
  1626. struct mddev *mddev = r1_bio->mddev;
  1627. struct r1conf *conf = mddev->private;
  1628. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1629. int vcnt, idx;
  1630. struct bio_vec *vec;
  1631. /* bio has the data to be written to device 'i' where
  1632. * we just recently had a write error.
  1633. * We repeatedly clone the bio and trim down to one block,
  1634. * then try the write. Where the write fails we record
  1635. * a bad block.
  1636. * It is conceivable that the bio doesn't exactly align with
  1637. * blocks. We must handle this somehow.
  1638. *
  1639. * We currently own a reference on the rdev.
  1640. */
  1641. int block_sectors;
  1642. sector_t sector;
  1643. int sectors;
  1644. int sect_to_write = r1_bio->sectors;
  1645. int ok = 1;
  1646. if (rdev->badblocks.shift < 0)
  1647. return 0;
  1648. block_sectors = 1 << rdev->badblocks.shift;
  1649. sector = r1_bio->sector;
  1650. sectors = ((sector + block_sectors)
  1651. & ~(sector_t)(block_sectors - 1))
  1652. - sector;
  1653. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  1654. vcnt = r1_bio->behind_page_count;
  1655. vec = r1_bio->behind_bvecs;
  1656. idx = 0;
  1657. while (vec[idx].bv_page == NULL)
  1658. idx++;
  1659. } else {
  1660. vcnt = r1_bio->master_bio->bi_vcnt;
  1661. vec = r1_bio->master_bio->bi_io_vec;
  1662. idx = r1_bio->master_bio->bi_idx;
  1663. }
  1664. while (sect_to_write) {
  1665. struct bio *wbio;
  1666. if (sectors > sect_to_write)
  1667. sectors = sect_to_write;
  1668. /* Write at 'sector' for 'sectors'*/
  1669. wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
  1670. memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
  1671. wbio->bi_sector = r1_bio->sector;
  1672. wbio->bi_rw = WRITE;
  1673. wbio->bi_vcnt = vcnt;
  1674. wbio->bi_size = r1_bio->sectors << 9;
  1675. wbio->bi_idx = idx;
  1676. md_trim_bio(wbio, sector - r1_bio->sector, sectors);
  1677. wbio->bi_sector += rdev->data_offset;
  1678. wbio->bi_bdev = rdev->bdev;
  1679. if (submit_bio_wait(WRITE, wbio) == 0)
  1680. /* failure! */
  1681. ok = rdev_set_badblocks(rdev, sector,
  1682. sectors, 0)
  1683. && ok;
  1684. bio_put(wbio);
  1685. sect_to_write -= sectors;
  1686. sector += sectors;
  1687. sectors = block_sectors;
  1688. }
  1689. return ok;
  1690. }
  1691. static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1692. {
  1693. int m;
  1694. int s = r1_bio->sectors;
  1695. for (m = 0; m < conf->raid_disks * 2 ; m++) {
  1696. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1697. struct bio *bio = r1_bio->bios[m];
  1698. if (bio->bi_end_io == NULL)
  1699. continue;
  1700. if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1701. test_bit(R1BIO_MadeGood, &r1_bio->state)) {
  1702. rdev_clear_badblocks(rdev, r1_bio->sector, s);
  1703. }
  1704. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1705. test_bit(R1BIO_WriteError, &r1_bio->state)) {
  1706. if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
  1707. md_error(conf->mddev, rdev);
  1708. }
  1709. }
  1710. put_buf(r1_bio);
  1711. md_done_sync(conf->mddev, s, 1);
  1712. }
  1713. static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1714. {
  1715. int m;
  1716. for (m = 0; m < conf->raid_disks * 2 ; m++)
  1717. if (r1_bio->bios[m] == IO_MADE_GOOD) {
  1718. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1719. rdev_clear_badblocks(rdev,
  1720. r1_bio->sector,
  1721. r1_bio->sectors);
  1722. rdev_dec_pending(rdev, conf->mddev);
  1723. } else if (r1_bio->bios[m] != NULL) {
  1724. /* This drive got a write error. We need to
  1725. * narrow down and record precise write
  1726. * errors.
  1727. */
  1728. if (!narrow_write_error(r1_bio, m)) {
  1729. md_error(conf->mddev,
  1730. conf->mirrors[m].rdev);
  1731. /* an I/O failed, we can't clear the bitmap */
  1732. set_bit(R1BIO_Degraded, &r1_bio->state);
  1733. }
  1734. rdev_dec_pending(conf->mirrors[m].rdev,
  1735. conf->mddev);
  1736. }
  1737. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  1738. close_write(r1_bio);
  1739. raid_end_bio_io(r1_bio);
  1740. }
  1741. static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
  1742. {
  1743. int disk;
  1744. int max_sectors;
  1745. struct mddev *mddev = conf->mddev;
  1746. struct bio *bio;
  1747. char b[BDEVNAME_SIZE];
  1748. struct md_rdev *rdev;
  1749. clear_bit(R1BIO_ReadError, &r1_bio->state);
  1750. /* we got a read error. Maybe the drive is bad. Maybe just
  1751. * the block and we can fix it.
  1752. * We freeze all other IO, and try reading the block from
  1753. * other devices. When we find one, we re-write
  1754. * and check it that fixes the read error.
  1755. * This is all done synchronously while the array is
  1756. * frozen
  1757. */
  1758. if (mddev->ro == 0) {
  1759. freeze_array(conf);
  1760. fix_read_error(conf, r1_bio->read_disk,
  1761. r1_bio->sector, r1_bio->sectors);
  1762. unfreeze_array(conf);
  1763. } else
  1764. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1765. bio = r1_bio->bios[r1_bio->read_disk];
  1766. bdevname(bio->bi_bdev, b);
  1767. read_more:
  1768. disk = read_balance(conf, r1_bio, &max_sectors);
  1769. if (disk == -1) {
  1770. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1771. " read error for block %llu\n",
  1772. mdname(mddev), b, (unsigned long long)r1_bio->sector);
  1773. raid_end_bio_io(r1_bio);
  1774. } else {
  1775. const unsigned long do_sync
  1776. = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1777. if (bio) {
  1778. r1_bio->bios[r1_bio->read_disk] =
  1779. mddev->ro ? IO_BLOCKED : NULL;
  1780. bio_put(bio);
  1781. }
  1782. r1_bio->read_disk = disk;
  1783. bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
  1784. md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
  1785. r1_bio->bios[r1_bio->read_disk] = bio;
  1786. rdev = conf->mirrors[disk].rdev;
  1787. printk_ratelimited(KERN_ERR
  1788. "md/raid1:%s: redirecting sector %llu"
  1789. " to other mirror: %s\n",
  1790. mdname(mddev),
  1791. (unsigned long long)r1_bio->sector,
  1792. bdevname(rdev->bdev, b));
  1793. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1794. bio->bi_bdev = rdev->bdev;
  1795. bio->bi_end_io = raid1_end_read_request;
  1796. bio->bi_rw = READ | do_sync;
  1797. bio->bi_private = r1_bio;
  1798. if (max_sectors < r1_bio->sectors) {
  1799. /* Drat - have to split this up more */
  1800. struct bio *mbio = r1_bio->master_bio;
  1801. int sectors_handled = (r1_bio->sector + max_sectors
  1802. - mbio->bi_sector);
  1803. r1_bio->sectors = max_sectors;
  1804. spin_lock_irq(&conf->device_lock);
  1805. if (mbio->bi_phys_segments == 0)
  1806. mbio->bi_phys_segments = 2;
  1807. else
  1808. mbio->bi_phys_segments++;
  1809. spin_unlock_irq(&conf->device_lock);
  1810. generic_make_request(bio);
  1811. bio = NULL;
  1812. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1813. r1_bio->master_bio = mbio;
  1814. r1_bio->sectors = (mbio->bi_size >> 9)
  1815. - sectors_handled;
  1816. r1_bio->state = 0;
  1817. set_bit(R1BIO_ReadError, &r1_bio->state);
  1818. r1_bio->mddev = mddev;
  1819. r1_bio->sector = mbio->bi_sector + sectors_handled;
  1820. goto read_more;
  1821. } else
  1822. generic_make_request(bio);
  1823. }
  1824. }
  1825. static void raid1d(struct mddev *mddev)
  1826. {
  1827. struct r1bio *r1_bio;
  1828. unsigned long flags;
  1829. struct r1conf *conf = mddev->private;
  1830. struct list_head *head = &conf->retry_list;
  1831. struct blk_plug plug;
  1832. md_check_recovery(mddev);
  1833. blk_start_plug(&plug);
  1834. for (;;) {
  1835. if (atomic_read(&mddev->plug_cnt) == 0)
  1836. flush_pending_writes(conf);
  1837. spin_lock_irqsave(&conf->device_lock, flags);
  1838. if (list_empty(head)) {
  1839. spin_unlock_irqrestore(&conf->device_lock, flags);
  1840. break;
  1841. }
  1842. r1_bio = list_entry(head->prev, struct r1bio, retry_list);
  1843. list_del(head->prev);
  1844. conf->nr_queued--;
  1845. spin_unlock_irqrestore(&conf->device_lock, flags);
  1846. mddev = r1_bio->mddev;
  1847. conf = mddev->private;
  1848. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1849. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1850. test_bit(R1BIO_WriteError, &r1_bio->state))
  1851. handle_sync_write_finished(conf, r1_bio);
  1852. else
  1853. sync_request_write(mddev, r1_bio);
  1854. } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1855. test_bit(R1BIO_WriteError, &r1_bio->state))
  1856. handle_write_finished(conf, r1_bio);
  1857. else if (test_bit(R1BIO_ReadError, &r1_bio->state))
  1858. handle_read_error(conf, r1_bio);
  1859. else
  1860. /* just a partial read to be scheduled from separate
  1861. * context
  1862. */
  1863. generic_make_request(r1_bio->bios[r1_bio->read_disk]);
  1864. cond_resched();
  1865. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  1866. md_check_recovery(mddev);
  1867. }
  1868. blk_finish_plug(&plug);
  1869. }
  1870. static int init_resync(struct r1conf *conf)
  1871. {
  1872. int buffs;
  1873. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1874. BUG_ON(conf->r1buf_pool);
  1875. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1876. conf->poolinfo);
  1877. if (!conf->r1buf_pool)
  1878. return -ENOMEM;
  1879. conf->next_resync = 0;
  1880. return 0;
  1881. }
  1882. /*
  1883. * perform a "sync" on one "block"
  1884. *
  1885. * We need to make sure that no normal I/O request - particularly write
  1886. * requests - conflict with active sync requests.
  1887. *
  1888. * This is achieved by tracking pending requests and a 'barrier' concept
  1889. * that can be installed to exclude normal IO requests.
  1890. */
  1891. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1892. {
  1893. struct r1conf *conf = mddev->private;
  1894. struct r1bio *r1_bio;
  1895. struct bio *bio;
  1896. sector_t max_sector, nr_sectors;
  1897. int disk = -1;
  1898. int i;
  1899. int wonly = -1;
  1900. int write_targets = 0, read_targets = 0;
  1901. sector_t sync_blocks;
  1902. int still_degraded = 0;
  1903. int good_sectors = RESYNC_SECTORS;
  1904. int min_bad = 0; /* number of sectors that are bad in all devices */
  1905. if (!conf->r1buf_pool)
  1906. if (init_resync(conf))
  1907. return 0;
  1908. max_sector = mddev->dev_sectors;
  1909. if (sector_nr >= max_sector) {
  1910. /* If we aborted, we need to abort the
  1911. * sync on the 'current' bitmap chunk (there will
  1912. * only be one in raid1 resync.
  1913. * We can find the current addess in mddev->curr_resync
  1914. */
  1915. if (mddev->curr_resync < max_sector) /* aborted */
  1916. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1917. &sync_blocks, 1);
  1918. else /* completed sync */
  1919. conf->fullsync = 0;
  1920. bitmap_close_sync(mddev->bitmap);
  1921. close_sync(conf);
  1922. return 0;
  1923. }
  1924. if (mddev->bitmap == NULL &&
  1925. mddev->recovery_cp == MaxSector &&
  1926. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1927. conf->fullsync == 0) {
  1928. *skipped = 1;
  1929. return max_sector - sector_nr;
  1930. }
  1931. /* before building a request, check if we can skip these blocks..
  1932. * This call the bitmap_start_sync doesn't actually record anything
  1933. */
  1934. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1935. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1936. /* We can skip this block, and probably several more */
  1937. *skipped = 1;
  1938. return sync_blocks;
  1939. }
  1940. /*
  1941. * If there is non-resync activity waiting for a turn,
  1942. * and resync is going fast enough,
  1943. * then let it though before starting on this new sync request.
  1944. */
  1945. if (!go_faster && conf->nr_waiting)
  1946. msleep_interruptible(1000);
  1947. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1948. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1949. raise_barrier(conf);
  1950. conf->next_resync = sector_nr;
  1951. rcu_read_lock();
  1952. /*
  1953. * If we get a correctably read error during resync or recovery,
  1954. * we might want to read from a different device. So we
  1955. * flag all drives that could conceivably be read from for READ,
  1956. * and any others (which will be non-In_sync devices) for WRITE.
  1957. * If a read fails, we try reading from something else for which READ
  1958. * is OK.
  1959. */
  1960. r1_bio->mddev = mddev;
  1961. r1_bio->sector = sector_nr;
  1962. r1_bio->state = 0;
  1963. set_bit(R1BIO_IsSync, &r1_bio->state);
  1964. for (i = 0; i < conf->raid_disks * 2; i++) {
  1965. struct md_rdev *rdev;
  1966. bio = r1_bio->bios[i];
  1967. /* take from bio_init */
  1968. bio->bi_next = NULL;
  1969. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  1970. bio->bi_flags |= 1 << BIO_UPTODATE;
  1971. bio->bi_rw = READ;
  1972. bio->bi_vcnt = 0;
  1973. bio->bi_idx = 0;
  1974. bio->bi_phys_segments = 0;
  1975. bio->bi_size = 0;
  1976. bio->bi_end_io = NULL;
  1977. bio->bi_private = NULL;
  1978. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1979. if (rdev == NULL ||
  1980. test_bit(Faulty, &rdev->flags)) {
  1981. if (i < conf->raid_disks)
  1982. still_degraded = 1;
  1983. } else if (!test_bit(In_sync, &rdev->flags)) {
  1984. bio->bi_rw = WRITE;
  1985. bio->bi_end_io = end_sync_write;
  1986. write_targets ++;
  1987. } else {
  1988. /* may need to read from here */
  1989. sector_t first_bad = MaxSector;
  1990. int bad_sectors;
  1991. if (is_badblock(rdev, sector_nr, good_sectors,
  1992. &first_bad, &bad_sectors)) {
  1993. if (first_bad > sector_nr)
  1994. good_sectors = first_bad - sector_nr;
  1995. else {
  1996. bad_sectors -= (sector_nr - first_bad);
  1997. if (min_bad == 0 ||
  1998. min_bad > bad_sectors)
  1999. min_bad = bad_sectors;
  2000. }
  2001. }
  2002. if (sector_nr < first_bad) {
  2003. if (test_bit(WriteMostly, &rdev->flags)) {
  2004. if (wonly < 0)
  2005. wonly = i;
  2006. } else {
  2007. if (disk < 0)
  2008. disk = i;
  2009. }
  2010. bio->bi_rw = READ;
  2011. bio->bi_end_io = end_sync_read;
  2012. read_targets++;
  2013. }
  2014. }
  2015. if (bio->bi_end_io) {
  2016. atomic_inc(&rdev->nr_pending);
  2017. bio->bi_sector = sector_nr + rdev->data_offset;
  2018. bio->bi_bdev = rdev->bdev;
  2019. bio->bi_private = r1_bio;
  2020. }
  2021. }
  2022. rcu_read_unlock();
  2023. if (disk < 0)
  2024. disk = wonly;
  2025. r1_bio->read_disk = disk;
  2026. if (read_targets == 0 && min_bad > 0) {
  2027. /* These sectors are bad on all InSync devices, so we
  2028. * need to mark them bad on all write targets
  2029. */
  2030. int ok = 1;
  2031. for (i = 0 ; i < conf->raid_disks * 2 ; i++)
  2032. if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
  2033. struct md_rdev *rdev =
  2034. rcu_dereference(conf->mirrors[i].rdev);
  2035. ok = rdev_set_badblocks(rdev, sector_nr,
  2036. min_bad, 0
  2037. ) && ok;
  2038. }
  2039. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2040. *skipped = 1;
  2041. put_buf(r1_bio);
  2042. if (!ok) {
  2043. /* Cannot record the badblocks, so need to
  2044. * abort the resync.
  2045. * If there are multiple read targets, could just
  2046. * fail the really bad ones ???
  2047. */
  2048. conf->recovery_disabled = mddev->recovery_disabled;
  2049. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2050. return 0;
  2051. } else
  2052. return min_bad;
  2053. }
  2054. if (min_bad > 0 && min_bad < good_sectors) {
  2055. /* only resync enough to reach the next bad->good
  2056. * transition */
  2057. good_sectors = min_bad;
  2058. }
  2059. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  2060. /* extra read targets are also write targets */
  2061. write_targets += read_targets-1;
  2062. if (write_targets == 0 || read_targets == 0) {
  2063. /* There is nowhere to write, so all non-sync
  2064. * drives must be failed - so we are finished
  2065. */
  2066. sector_t rv = max_sector - sector_nr;
  2067. *skipped = 1;
  2068. put_buf(r1_bio);
  2069. return rv;
  2070. }
  2071. if (max_sector > mddev->resync_max)
  2072. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2073. if (max_sector > sector_nr + good_sectors)
  2074. max_sector = sector_nr + good_sectors;
  2075. nr_sectors = 0;
  2076. sync_blocks = 0;
  2077. do {
  2078. struct page *page;
  2079. int len = PAGE_SIZE;
  2080. if (sector_nr + (len>>9) > max_sector)
  2081. len = (max_sector - sector_nr) << 9;
  2082. if (len == 0)
  2083. break;
  2084. if (sync_blocks == 0) {
  2085. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2086. &sync_blocks, still_degraded) &&
  2087. !conf->fullsync &&
  2088. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2089. break;
  2090. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  2091. if ((len >> 9) > sync_blocks)
  2092. len = sync_blocks<<9;
  2093. }
  2094. for (i = 0 ; i < conf->raid_disks * 2; i++) {
  2095. bio = r1_bio->bios[i];
  2096. if (bio->bi_end_io) {
  2097. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  2098. if (bio_add_page(bio, page, len, 0) == 0) {
  2099. /* stop here */
  2100. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  2101. while (i > 0) {
  2102. i--;
  2103. bio = r1_bio->bios[i];
  2104. if (bio->bi_end_io==NULL)
  2105. continue;
  2106. /* remove last page from this bio */
  2107. bio->bi_vcnt--;
  2108. bio->bi_size -= len;
  2109. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  2110. }
  2111. goto bio_full;
  2112. }
  2113. }
  2114. }
  2115. nr_sectors += len>>9;
  2116. sector_nr += len>>9;
  2117. sync_blocks -= (len>>9);
  2118. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  2119. bio_full:
  2120. r1_bio->sectors = nr_sectors;
  2121. /* For a user-requested sync, we read all readable devices and do a
  2122. * compare
  2123. */
  2124. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2125. atomic_set(&r1_bio->remaining, read_targets);
  2126. for (i = 0; i < conf->raid_disks * 2; i++) {
  2127. bio = r1_bio->bios[i];
  2128. if (bio->bi_end_io == end_sync_read) {
  2129. md_sync_acct(bio->bi_bdev, nr_sectors);
  2130. generic_make_request(bio);
  2131. }
  2132. }
  2133. } else {
  2134. atomic_set(&r1_bio->remaining, 1);
  2135. bio = r1_bio->bios[r1_bio->read_disk];
  2136. md_sync_acct(bio->bi_bdev, nr_sectors);
  2137. generic_make_request(bio);
  2138. }
  2139. return nr_sectors;
  2140. }
  2141. static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2142. {
  2143. if (sectors)
  2144. return sectors;
  2145. return mddev->dev_sectors;
  2146. }
  2147. static struct r1conf *setup_conf(struct mddev *mddev)
  2148. {
  2149. struct r1conf *conf;
  2150. int i;
  2151. struct mirror_info *disk;
  2152. struct md_rdev *rdev;
  2153. int err = -ENOMEM;
  2154. conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
  2155. if (!conf)
  2156. goto abort;
  2157. conf->mirrors = kzalloc(sizeof(struct mirror_info)
  2158. * mddev->raid_disks * 2,
  2159. GFP_KERNEL);
  2160. if (!conf->mirrors)
  2161. goto abort;
  2162. conf->tmppage = alloc_page(GFP_KERNEL);
  2163. if (!conf->tmppage)
  2164. goto abort;
  2165. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  2166. if (!conf->poolinfo)
  2167. goto abort;
  2168. conf->poolinfo->raid_disks = mddev->raid_disks * 2;
  2169. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2170. r1bio_pool_free,
  2171. conf->poolinfo);
  2172. if (!conf->r1bio_pool)
  2173. goto abort;
  2174. conf->poolinfo->mddev = mddev;
  2175. spin_lock_init(&conf->device_lock);
  2176. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2177. int disk_idx = rdev->raid_disk;
  2178. if (disk_idx >= mddev->raid_disks
  2179. || disk_idx < 0)
  2180. continue;
  2181. disk = conf->mirrors + disk_idx;
  2182. disk->rdev = rdev;
  2183. disk->head_position = 0;
  2184. }
  2185. conf->raid_disks = mddev->raid_disks;
  2186. conf->mddev = mddev;
  2187. INIT_LIST_HEAD(&conf->retry_list);
  2188. spin_lock_init(&conf->resync_lock);
  2189. init_waitqueue_head(&conf->wait_barrier);
  2190. bio_list_init(&conf->pending_bio_list);
  2191. conf->pending_count = 0;
  2192. conf->recovery_disabled = mddev->recovery_disabled - 1;
  2193. conf->last_used = -1;
  2194. for (i = 0; i < conf->raid_disks * 2; i++) {
  2195. disk = conf->mirrors + i;
  2196. if (!disk->rdev ||
  2197. !test_bit(In_sync, &disk->rdev->flags)) {
  2198. disk->head_position = 0;
  2199. if (disk->rdev)
  2200. conf->fullsync = 1;
  2201. } else if (conf->last_used < 0)
  2202. /*
  2203. * The first working device is used as a
  2204. * starting point to read balancing.
  2205. */
  2206. conf->last_used = i;
  2207. }
  2208. err = -EIO;
  2209. if (conf->last_used < 0) {
  2210. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  2211. mdname(mddev));
  2212. goto abort;
  2213. }
  2214. err = -ENOMEM;
  2215. conf->thread = md_register_thread(raid1d, mddev, NULL);
  2216. if (!conf->thread) {
  2217. printk(KERN_ERR
  2218. "md/raid1:%s: couldn't allocate thread\n",
  2219. mdname(mddev));
  2220. goto abort;
  2221. }
  2222. return conf;
  2223. abort:
  2224. if (conf) {
  2225. if (conf->r1bio_pool)
  2226. mempool_destroy(conf->r1bio_pool);
  2227. kfree(conf->mirrors);
  2228. safe_put_page(conf->tmppage);
  2229. kfree(conf->poolinfo);
  2230. kfree(conf);
  2231. }
  2232. return ERR_PTR(err);
  2233. }
  2234. static int run(struct mddev *mddev)
  2235. {
  2236. struct r1conf *conf;
  2237. int i;
  2238. struct md_rdev *rdev;
  2239. if (mddev->level != 1) {
  2240. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  2241. mdname(mddev), mddev->level);
  2242. return -EIO;
  2243. }
  2244. if (mddev->reshape_position != MaxSector) {
  2245. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  2246. mdname(mddev));
  2247. return -EIO;
  2248. }
  2249. /*
  2250. * copy the already verified devices into our private RAID1
  2251. * bookkeeping area. [whatever we allocate in run(),
  2252. * should be freed in stop()]
  2253. */
  2254. if (mddev->private == NULL)
  2255. conf = setup_conf(mddev);
  2256. else
  2257. conf = mddev->private;
  2258. if (IS_ERR(conf))
  2259. return PTR_ERR(conf);
  2260. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2261. if (!mddev->gendisk)
  2262. continue;
  2263. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2264. rdev->data_offset << 9);
  2265. /* as we don't honour merge_bvec_fn, we must never risk
  2266. * violating it, so limit ->max_segments to 1 lying within
  2267. * a single page, as a one page request is never in violation.
  2268. */
  2269. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  2270. blk_queue_max_segments(mddev->queue, 1);
  2271. blk_queue_segment_boundary(mddev->queue,
  2272. PAGE_CACHE_SIZE - 1);
  2273. }
  2274. }
  2275. mddev->degraded = 0;
  2276. for (i=0; i < conf->raid_disks; i++)
  2277. if (conf->mirrors[i].rdev == NULL ||
  2278. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  2279. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  2280. mddev->degraded++;
  2281. if (conf->raid_disks - mddev->degraded == 1)
  2282. mddev->recovery_cp = MaxSector;
  2283. if (mddev->recovery_cp != MaxSector)
  2284. printk(KERN_NOTICE "md/raid1:%s: not clean"
  2285. " -- starting background reconstruction\n",
  2286. mdname(mddev));
  2287. printk(KERN_INFO
  2288. "md/raid1:%s: active with %d out of %d mirrors\n",
  2289. mdname(mddev), mddev->raid_disks - mddev->degraded,
  2290. mddev->raid_disks);
  2291. /*
  2292. * Ok, everything is just fine now
  2293. */
  2294. mddev->thread = conf->thread;
  2295. conf->thread = NULL;
  2296. mddev->private = conf;
  2297. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  2298. if (mddev->queue) {
  2299. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  2300. mddev->queue->backing_dev_info.congested_data = mddev;
  2301. }
  2302. return md_integrity_register(mddev);
  2303. }
  2304. static int stop(struct mddev *mddev)
  2305. {
  2306. struct r1conf *conf = mddev->private;
  2307. struct bitmap *bitmap = mddev->bitmap;
  2308. /* wait for behind writes to complete */
  2309. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  2310. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  2311. mdname(mddev));
  2312. /* need to kick something here to make sure I/O goes? */
  2313. wait_event(bitmap->behind_wait,
  2314. atomic_read(&bitmap->behind_writes) == 0);
  2315. }
  2316. raise_barrier(conf);
  2317. lower_barrier(conf);
  2318. md_unregister_thread(&mddev->thread);
  2319. if (conf->r1bio_pool)
  2320. mempool_destroy(conf->r1bio_pool);
  2321. kfree(conf->mirrors);
  2322. kfree(conf->poolinfo);
  2323. kfree(conf);
  2324. mddev->private = NULL;
  2325. return 0;
  2326. }
  2327. static int raid1_resize(struct mddev *mddev, sector_t sectors)
  2328. {
  2329. /* no resync is happening, and there is enough space
  2330. * on all devices, so we can resize.
  2331. * We need to make sure resync covers any new space.
  2332. * If the array is shrinking we should possibly wait until
  2333. * any io in the removed space completes, but it hardly seems
  2334. * worth it.
  2335. */
  2336. md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
  2337. if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
  2338. return -EINVAL;
  2339. set_capacity(mddev->gendisk, mddev->array_sectors);
  2340. revalidate_disk(mddev->gendisk);
  2341. if (sectors > mddev->dev_sectors &&
  2342. mddev->recovery_cp > mddev->dev_sectors) {
  2343. mddev->recovery_cp = mddev->dev_sectors;
  2344. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2345. }
  2346. mddev->dev_sectors = sectors;
  2347. mddev->resync_max_sectors = sectors;
  2348. return 0;
  2349. }
  2350. static int raid1_reshape(struct mddev *mddev)
  2351. {
  2352. /* We need to:
  2353. * 1/ resize the r1bio_pool
  2354. * 2/ resize conf->mirrors
  2355. *
  2356. * We allocate a new r1bio_pool if we can.
  2357. * Then raise a device barrier and wait until all IO stops.
  2358. * Then resize conf->mirrors and swap in the new r1bio pool.
  2359. *
  2360. * At the same time, we "pack" the devices so that all the missing
  2361. * devices have the higher raid_disk numbers.
  2362. */
  2363. mempool_t *newpool, *oldpool;
  2364. struct pool_info *newpoolinfo;
  2365. struct mirror_info *newmirrors;
  2366. struct r1conf *conf = mddev->private;
  2367. int cnt, raid_disks;
  2368. unsigned long flags;
  2369. int d, d2, err;
  2370. /* Cannot change chunk_size, layout, or level */
  2371. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  2372. mddev->layout != mddev->new_layout ||
  2373. mddev->level != mddev->new_level) {
  2374. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2375. mddev->new_layout = mddev->layout;
  2376. mddev->new_level = mddev->level;
  2377. return -EINVAL;
  2378. }
  2379. err = md_allow_write(mddev);
  2380. if (err)
  2381. return err;
  2382. raid_disks = mddev->raid_disks + mddev->delta_disks;
  2383. if (raid_disks < conf->raid_disks) {
  2384. cnt=0;
  2385. for (d= 0; d < conf->raid_disks; d++)
  2386. if (conf->mirrors[d].rdev)
  2387. cnt++;
  2388. if (cnt > raid_disks)
  2389. return -EBUSY;
  2390. }
  2391. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  2392. if (!newpoolinfo)
  2393. return -ENOMEM;
  2394. newpoolinfo->mddev = mddev;
  2395. newpoolinfo->raid_disks = raid_disks * 2;
  2396. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2397. r1bio_pool_free, newpoolinfo);
  2398. if (!newpool) {
  2399. kfree(newpoolinfo);
  2400. return -ENOMEM;
  2401. }
  2402. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
  2403. GFP_KERNEL);
  2404. if (!newmirrors) {
  2405. kfree(newpoolinfo);
  2406. mempool_destroy(newpool);
  2407. return -ENOMEM;
  2408. }
  2409. raise_barrier(conf);
  2410. /* ok, everything is stopped */
  2411. oldpool = conf->r1bio_pool;
  2412. conf->r1bio_pool = newpool;
  2413. for (d = d2 = 0; d < conf->raid_disks; d++) {
  2414. struct md_rdev *rdev = conf->mirrors[d].rdev;
  2415. if (rdev && rdev->raid_disk != d2) {
  2416. sysfs_unlink_rdev(mddev, rdev);
  2417. rdev->raid_disk = d2;
  2418. sysfs_unlink_rdev(mddev, rdev);
  2419. if (sysfs_link_rdev(mddev, rdev))
  2420. printk(KERN_WARNING
  2421. "md/raid1:%s: cannot register rd%d\n",
  2422. mdname(mddev), rdev->raid_disk);
  2423. }
  2424. if (rdev)
  2425. newmirrors[d2++].rdev = rdev;
  2426. }
  2427. kfree(conf->mirrors);
  2428. conf->mirrors = newmirrors;
  2429. kfree(conf->poolinfo);
  2430. conf->poolinfo = newpoolinfo;
  2431. spin_lock_irqsave(&conf->device_lock, flags);
  2432. mddev->degraded += (raid_disks - conf->raid_disks);
  2433. spin_unlock_irqrestore(&conf->device_lock, flags);
  2434. conf->raid_disks = mddev->raid_disks = raid_disks;
  2435. mddev->delta_disks = 0;
  2436. conf->last_used = 0; /* just make sure it is in-range */
  2437. lower_barrier(conf);
  2438. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2439. md_wakeup_thread(mddev->thread);
  2440. mempool_destroy(oldpool);
  2441. return 0;
  2442. }
  2443. static void raid1_quiesce(struct mddev *mddev, int state)
  2444. {
  2445. struct r1conf *conf = mddev->private;
  2446. switch(state) {
  2447. case 2: /* wake for suspend */
  2448. wake_up(&conf->wait_barrier);
  2449. break;
  2450. case 1:
  2451. raise_barrier(conf);
  2452. break;
  2453. case 0:
  2454. lower_barrier(conf);
  2455. break;
  2456. }
  2457. }
  2458. static void *raid1_takeover(struct mddev *mddev)
  2459. {
  2460. /* raid1 can take over:
  2461. * raid5 with 2 devices, any layout or chunk size
  2462. */
  2463. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2464. struct r1conf *conf;
  2465. mddev->new_level = 1;
  2466. mddev->new_layout = 0;
  2467. mddev->new_chunk_sectors = 0;
  2468. conf = setup_conf(mddev);
  2469. if (!IS_ERR(conf))
  2470. conf->barrier = 1;
  2471. return conf;
  2472. }
  2473. return ERR_PTR(-EINVAL);
  2474. }
  2475. static struct md_personality raid1_personality =
  2476. {
  2477. .name = "raid1",
  2478. .level = 1,
  2479. .owner = THIS_MODULE,
  2480. .make_request = make_request,
  2481. .run = run,
  2482. .stop = stop,
  2483. .status = status,
  2484. .error_handler = error,
  2485. .hot_add_disk = raid1_add_disk,
  2486. .hot_remove_disk= raid1_remove_disk,
  2487. .spare_active = raid1_spare_active,
  2488. .sync_request = sync_request,
  2489. .resize = raid1_resize,
  2490. .size = raid1_size,
  2491. .check_reshape = raid1_reshape,
  2492. .quiesce = raid1_quiesce,
  2493. .takeover = raid1_takeover,
  2494. };
  2495. static int __init raid_init(void)
  2496. {
  2497. return register_md_personality(&raid1_personality);
  2498. }
  2499. static void raid_exit(void)
  2500. {
  2501. unregister_md_personality(&raid1_personality);
  2502. }
  2503. module_init(raid_init);
  2504. module_exit(raid_exit);
  2505. MODULE_LICENSE("GPL");
  2506. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2507. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2508. MODULE_ALIAS("md-raid1");
  2509. MODULE_ALIAS("md-level-1");
  2510. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);