delayed-inode.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 512
  24. #define BTRFS_DELAYED_BACKGROUND 128
  25. #define BTRFS_DELAYED_BATCH 16
  26. static struct kmem_cache *delayed_node_cache;
  27. int __init btrfs_delayed_inode_init(void)
  28. {
  29. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  30. sizeof(struct btrfs_delayed_node),
  31. 0,
  32. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  33. NULL);
  34. if (!delayed_node_cache)
  35. return -ENOMEM;
  36. return 0;
  37. }
  38. void btrfs_delayed_inode_exit(void)
  39. {
  40. if (delayed_node_cache)
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->count = 0;
  51. delayed_node->in_list = 0;
  52. delayed_node->inode_dirty = 0;
  53. delayed_node->ins_root = RB_ROOT;
  54. delayed_node->del_root = RB_ROOT;
  55. mutex_init(&delayed_node->mutex);
  56. delayed_node->index_cnt = 0;
  57. INIT_LIST_HEAD(&delayed_node->n_list);
  58. INIT_LIST_HEAD(&delayed_node->p_list);
  59. delayed_node->bytes_reserved = 0;
  60. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  61. }
  62. static inline int btrfs_is_continuous_delayed_item(
  63. struct btrfs_delayed_item *item1,
  64. struct btrfs_delayed_item *item2)
  65. {
  66. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  67. item1->key.objectid == item2->key.objectid &&
  68. item1->key.type == item2->key.type &&
  69. item1->key.offset + 1 == item2->key.offset)
  70. return 1;
  71. return 0;
  72. }
  73. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  74. struct btrfs_root *root)
  75. {
  76. return root->fs_info->delayed_root;
  77. }
  78. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  79. {
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. struct btrfs_delayed_node *node;
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs);
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. atomic_inc(&node->refs); /* can be accessed */
  94. BUG_ON(btrfs_inode->delayed_node != node);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. btrfs_inode->delayed_node = node;
  99. atomic_inc(&node->refs); /* can be accessed */
  100. atomic_inc(&node->refs); /* cached in the inode */
  101. spin_unlock(&root->inode_lock);
  102. return node;
  103. }
  104. spin_unlock(&root->inode_lock);
  105. return NULL;
  106. }
  107. /* Will return either the node or PTR_ERR(-ENOMEM) */
  108. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  109. struct inode *inode)
  110. {
  111. struct btrfs_delayed_node *node;
  112. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  113. struct btrfs_root *root = btrfs_inode->root;
  114. u64 ino = btrfs_ino(inode);
  115. int ret;
  116. again:
  117. node = btrfs_get_delayed_node(inode);
  118. if (node)
  119. return node;
  120. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  121. if (!node)
  122. return ERR_PTR(-ENOMEM);
  123. btrfs_init_delayed_node(node, root, ino);
  124. atomic_inc(&node->refs); /* cached in the btrfs inode */
  125. atomic_inc(&node->refs); /* can be accessed */
  126. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  127. if (ret) {
  128. kmem_cache_free(delayed_node_cache, node);
  129. return ERR_PTR(ret);
  130. }
  131. spin_lock(&root->inode_lock);
  132. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  133. if (ret == -EEXIST) {
  134. kmem_cache_free(delayed_node_cache, node);
  135. spin_unlock(&root->inode_lock);
  136. radix_tree_preload_end();
  137. goto again;
  138. }
  139. btrfs_inode->delayed_node = node;
  140. spin_unlock(&root->inode_lock);
  141. radix_tree_preload_end();
  142. return node;
  143. }
  144. /*
  145. * Call it when holding delayed_node->mutex
  146. *
  147. * If mod = 1, add this node into the prepared list.
  148. */
  149. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  150. struct btrfs_delayed_node *node,
  151. int mod)
  152. {
  153. spin_lock(&root->lock);
  154. if (node->in_list) {
  155. if (!list_empty(&node->p_list))
  156. list_move_tail(&node->p_list, &root->prepare_list);
  157. else if (mod)
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. } else {
  160. list_add_tail(&node->n_list, &root->node_list);
  161. list_add_tail(&node->p_list, &root->prepare_list);
  162. atomic_inc(&node->refs); /* inserted into list */
  163. root->nodes++;
  164. node->in_list = 1;
  165. }
  166. spin_unlock(&root->lock);
  167. }
  168. /* Call it when holding delayed_node->mutex */
  169. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  170. struct btrfs_delayed_node *node)
  171. {
  172. spin_lock(&root->lock);
  173. if (node->in_list) {
  174. root->nodes--;
  175. atomic_dec(&node->refs); /* not in the list */
  176. list_del_init(&node->n_list);
  177. if (!list_empty(&node->p_list))
  178. list_del_init(&node->p_list);
  179. node->in_list = 0;
  180. }
  181. spin_unlock(&root->lock);
  182. }
  183. struct btrfs_delayed_node *btrfs_first_delayed_node(
  184. struct btrfs_delayed_root *delayed_root)
  185. {
  186. struct list_head *p;
  187. struct btrfs_delayed_node *node = NULL;
  188. spin_lock(&delayed_root->lock);
  189. if (list_empty(&delayed_root->node_list))
  190. goto out;
  191. p = delayed_root->node_list.next;
  192. node = list_entry(p, struct btrfs_delayed_node, n_list);
  193. atomic_inc(&node->refs);
  194. out:
  195. spin_unlock(&delayed_root->lock);
  196. return node;
  197. }
  198. struct btrfs_delayed_node *btrfs_next_delayed_node(
  199. struct btrfs_delayed_node *node)
  200. {
  201. struct btrfs_delayed_root *delayed_root;
  202. struct list_head *p;
  203. struct btrfs_delayed_node *next = NULL;
  204. delayed_root = node->root->fs_info->delayed_root;
  205. spin_lock(&delayed_root->lock);
  206. if (!node->in_list) { /* not in the list */
  207. if (list_empty(&delayed_root->node_list))
  208. goto out;
  209. p = delayed_root->node_list.next;
  210. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  211. goto out;
  212. else
  213. p = node->n_list.next;
  214. next = list_entry(p, struct btrfs_delayed_node, n_list);
  215. atomic_inc(&next->refs);
  216. out:
  217. spin_unlock(&delayed_root->lock);
  218. return next;
  219. }
  220. static void __btrfs_release_delayed_node(
  221. struct btrfs_delayed_node *delayed_node,
  222. int mod)
  223. {
  224. struct btrfs_delayed_root *delayed_root;
  225. if (!delayed_node)
  226. return;
  227. delayed_root = delayed_node->root->fs_info->delayed_root;
  228. mutex_lock(&delayed_node->mutex);
  229. if (delayed_node->count)
  230. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  231. else
  232. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  233. mutex_unlock(&delayed_node->mutex);
  234. if (atomic_dec_and_test(&delayed_node->refs)) {
  235. struct btrfs_root *root = delayed_node->root;
  236. spin_lock(&root->inode_lock);
  237. if (atomic_read(&delayed_node->refs) == 0) {
  238. radix_tree_delete(&root->delayed_nodes_tree,
  239. delayed_node->inode_id);
  240. kmem_cache_free(delayed_node_cache, delayed_node);
  241. }
  242. spin_unlock(&root->inode_lock);
  243. }
  244. }
  245. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  246. {
  247. __btrfs_release_delayed_node(node, 0);
  248. }
  249. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  250. struct btrfs_delayed_root *delayed_root)
  251. {
  252. struct list_head *p;
  253. struct btrfs_delayed_node *node = NULL;
  254. spin_lock(&delayed_root->lock);
  255. if (list_empty(&delayed_root->prepare_list))
  256. goto out;
  257. p = delayed_root->prepare_list.next;
  258. list_del_init(p);
  259. node = list_entry(p, struct btrfs_delayed_node, p_list);
  260. atomic_inc(&node->refs);
  261. out:
  262. spin_unlock(&delayed_root->lock);
  263. return node;
  264. }
  265. static inline void btrfs_release_prepared_delayed_node(
  266. struct btrfs_delayed_node *node)
  267. {
  268. __btrfs_release_delayed_node(node, 1);
  269. }
  270. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  271. {
  272. struct btrfs_delayed_item *item;
  273. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  274. if (item) {
  275. item->data_len = data_len;
  276. item->ins_or_del = 0;
  277. item->bytes_reserved = 0;
  278. item->delayed_node = NULL;
  279. atomic_set(&item->refs, 1);
  280. }
  281. return item;
  282. }
  283. /*
  284. * __btrfs_lookup_delayed_item - look up the delayed item by key
  285. * @delayed_node: pointer to the delayed node
  286. * @key: the key to look up
  287. * @prev: used to store the prev item if the right item isn't found
  288. * @next: used to store the next item if the right item isn't found
  289. *
  290. * Note: if we don't find the right item, we will return the prev item and
  291. * the next item.
  292. */
  293. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  294. struct rb_root *root,
  295. struct btrfs_key *key,
  296. struct btrfs_delayed_item **prev,
  297. struct btrfs_delayed_item **next)
  298. {
  299. struct rb_node *node, *prev_node = NULL;
  300. struct btrfs_delayed_item *delayed_item = NULL;
  301. int ret = 0;
  302. node = root->rb_node;
  303. while (node) {
  304. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  305. rb_node);
  306. prev_node = node;
  307. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  308. if (ret < 0)
  309. node = node->rb_right;
  310. else if (ret > 0)
  311. node = node->rb_left;
  312. else
  313. return delayed_item;
  314. }
  315. if (prev) {
  316. if (!prev_node)
  317. *prev = NULL;
  318. else if (ret < 0)
  319. *prev = delayed_item;
  320. else if ((node = rb_prev(prev_node)) != NULL) {
  321. *prev = rb_entry(node, struct btrfs_delayed_item,
  322. rb_node);
  323. } else
  324. *prev = NULL;
  325. }
  326. if (next) {
  327. if (!prev_node)
  328. *next = NULL;
  329. else if (ret > 0)
  330. *next = delayed_item;
  331. else if ((node = rb_next(prev_node)) != NULL) {
  332. *next = rb_entry(node, struct btrfs_delayed_item,
  333. rb_node);
  334. } else
  335. *next = NULL;
  336. }
  337. return NULL;
  338. }
  339. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  340. struct btrfs_delayed_node *delayed_node,
  341. struct btrfs_key *key)
  342. {
  343. struct btrfs_delayed_item *item;
  344. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  345. NULL, NULL);
  346. return item;
  347. }
  348. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  349. struct btrfs_delayed_node *delayed_node,
  350. struct btrfs_key *key)
  351. {
  352. struct btrfs_delayed_item *item;
  353. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  354. NULL, NULL);
  355. return item;
  356. }
  357. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  358. struct btrfs_delayed_node *delayed_node,
  359. struct btrfs_key *key)
  360. {
  361. struct btrfs_delayed_item *item, *next;
  362. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  363. NULL, &next);
  364. if (!item)
  365. item = next;
  366. return item;
  367. }
  368. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  369. struct btrfs_delayed_node *delayed_node,
  370. struct btrfs_key *key)
  371. {
  372. struct btrfs_delayed_item *item, *next;
  373. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  374. NULL, &next);
  375. if (!item)
  376. item = next;
  377. return item;
  378. }
  379. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  380. struct btrfs_delayed_item *ins,
  381. int action)
  382. {
  383. struct rb_node **p, *node;
  384. struct rb_node *parent_node = NULL;
  385. struct rb_root *root;
  386. struct btrfs_delayed_item *item;
  387. int cmp;
  388. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  389. root = &delayed_node->ins_root;
  390. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  391. root = &delayed_node->del_root;
  392. else
  393. BUG();
  394. p = &root->rb_node;
  395. node = &ins->rb_node;
  396. while (*p) {
  397. parent_node = *p;
  398. item = rb_entry(parent_node, struct btrfs_delayed_item,
  399. rb_node);
  400. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  401. if (cmp < 0)
  402. p = &(*p)->rb_right;
  403. else if (cmp > 0)
  404. p = &(*p)->rb_left;
  405. else
  406. return -EEXIST;
  407. }
  408. rb_link_node(node, parent_node, p);
  409. rb_insert_color(node, root);
  410. ins->delayed_node = delayed_node;
  411. ins->ins_or_del = action;
  412. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  413. action == BTRFS_DELAYED_INSERTION_ITEM &&
  414. ins->key.offset >= delayed_node->index_cnt)
  415. delayed_node->index_cnt = ins->key.offset + 1;
  416. delayed_node->count++;
  417. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  418. return 0;
  419. }
  420. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  421. struct btrfs_delayed_item *item)
  422. {
  423. return __btrfs_add_delayed_item(node, item,
  424. BTRFS_DELAYED_INSERTION_ITEM);
  425. }
  426. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  427. struct btrfs_delayed_item *item)
  428. {
  429. return __btrfs_add_delayed_item(node, item,
  430. BTRFS_DELAYED_DELETION_ITEM);
  431. }
  432. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  433. {
  434. int seq = atomic_inc_return(&delayed_root->items_seq);
  435. if ((atomic_dec_return(&delayed_root->items) <
  436. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  437. waitqueue_active(&delayed_root->wait))
  438. wake_up(&delayed_root->wait);
  439. }
  440. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  441. {
  442. struct rb_root *root;
  443. struct btrfs_delayed_root *delayed_root;
  444. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  445. BUG_ON(!delayed_root);
  446. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  447. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  448. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  449. root = &delayed_item->delayed_node->ins_root;
  450. else
  451. root = &delayed_item->delayed_node->del_root;
  452. rb_erase(&delayed_item->rb_node, root);
  453. delayed_item->delayed_node->count--;
  454. finish_one_item(delayed_root);
  455. }
  456. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  457. {
  458. if (item) {
  459. __btrfs_remove_delayed_item(item);
  460. if (atomic_dec_and_test(&item->refs))
  461. kfree(item);
  462. }
  463. }
  464. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  465. struct btrfs_delayed_node *delayed_node)
  466. {
  467. struct rb_node *p;
  468. struct btrfs_delayed_item *item = NULL;
  469. p = rb_first(&delayed_node->ins_root);
  470. if (p)
  471. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  472. return item;
  473. }
  474. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  475. struct btrfs_delayed_node *delayed_node)
  476. {
  477. struct rb_node *p;
  478. struct btrfs_delayed_item *item = NULL;
  479. p = rb_first(&delayed_node->del_root);
  480. if (p)
  481. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  482. return item;
  483. }
  484. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  485. struct btrfs_delayed_item *item)
  486. {
  487. struct rb_node *p;
  488. struct btrfs_delayed_item *next = NULL;
  489. p = rb_next(&item->rb_node);
  490. if (p)
  491. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  492. return next;
  493. }
  494. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  495. u64 root_id)
  496. {
  497. struct btrfs_key root_key;
  498. if (root->objectid == root_id)
  499. return root;
  500. root_key.objectid = root_id;
  501. root_key.type = BTRFS_ROOT_ITEM_KEY;
  502. root_key.offset = (u64)-1;
  503. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  504. }
  505. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  506. struct btrfs_root *root,
  507. struct btrfs_delayed_item *item)
  508. {
  509. struct btrfs_block_rsv *src_rsv;
  510. struct btrfs_block_rsv *dst_rsv;
  511. u64 num_bytes;
  512. int ret;
  513. if (!trans->bytes_reserved)
  514. return 0;
  515. src_rsv = trans->block_rsv;
  516. dst_rsv = &root->fs_info->delayed_block_rsv;
  517. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  518. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  519. if (!ret) {
  520. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  521. item->key.objectid,
  522. num_bytes, 1);
  523. item->bytes_reserved = num_bytes;
  524. }
  525. return ret;
  526. }
  527. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  528. struct btrfs_delayed_item *item)
  529. {
  530. struct btrfs_block_rsv *rsv;
  531. if (!item->bytes_reserved)
  532. return;
  533. rsv = &root->fs_info->delayed_block_rsv;
  534. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  535. item->key.objectid, item->bytes_reserved,
  536. 0);
  537. btrfs_block_rsv_release(root, rsv,
  538. item->bytes_reserved);
  539. }
  540. static int btrfs_delayed_inode_reserve_metadata(
  541. struct btrfs_trans_handle *trans,
  542. struct btrfs_root *root,
  543. struct inode *inode,
  544. struct btrfs_delayed_node *node)
  545. {
  546. struct btrfs_block_rsv *src_rsv;
  547. struct btrfs_block_rsv *dst_rsv;
  548. u64 num_bytes;
  549. int ret;
  550. bool release = false;
  551. src_rsv = trans->block_rsv;
  552. dst_rsv = &root->fs_info->delayed_block_rsv;
  553. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  554. /*
  555. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  556. * which doesn't reserve space for speed. This is a problem since we
  557. * still need to reserve space for this update, so try to reserve the
  558. * space.
  559. *
  560. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  561. * we're accounted for.
  562. */
  563. if (!src_rsv || (!trans->bytes_reserved &&
  564. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  565. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  566. BTRFS_RESERVE_NO_FLUSH);
  567. /*
  568. * Since we're under a transaction reserve_metadata_bytes could
  569. * try to commit the transaction which will make it return
  570. * EAGAIN to make us stop the transaction we have, so return
  571. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  572. */
  573. if (ret == -EAGAIN)
  574. ret = -ENOSPC;
  575. if (!ret) {
  576. node->bytes_reserved = num_bytes;
  577. trace_btrfs_space_reservation(root->fs_info,
  578. "delayed_inode",
  579. btrfs_ino(inode),
  580. num_bytes, 1);
  581. }
  582. return ret;
  583. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  584. spin_lock(&BTRFS_I(inode)->lock);
  585. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  586. &BTRFS_I(inode)->runtime_flags)) {
  587. spin_unlock(&BTRFS_I(inode)->lock);
  588. release = true;
  589. goto migrate;
  590. }
  591. spin_unlock(&BTRFS_I(inode)->lock);
  592. /* Ok we didn't have space pre-reserved. This shouldn't happen
  593. * too often but it can happen if we do delalloc to an existing
  594. * inode which gets dirtied because of the time update, and then
  595. * isn't touched again until after the transaction commits and
  596. * then we try to write out the data. First try to be nice and
  597. * reserve something strictly for us. If not be a pain and try
  598. * to steal from the delalloc block rsv.
  599. */
  600. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  601. BTRFS_RESERVE_NO_FLUSH);
  602. if (!ret)
  603. goto out;
  604. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  605. if (!ret)
  606. goto out;
  607. /*
  608. * Ok this is a problem, let's just steal from the global rsv
  609. * since this really shouldn't happen that often.
  610. */
  611. WARN_ON(1);
  612. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  613. dst_rsv, num_bytes);
  614. goto out;
  615. }
  616. migrate:
  617. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  618. out:
  619. /*
  620. * Migrate only takes a reservation, it doesn't touch the size of the
  621. * block_rsv. This is to simplify people who don't normally have things
  622. * migrated from their block rsv. If they go to release their
  623. * reservation, that will decrease the size as well, so if migrate
  624. * reduced size we'd end up with a negative size. But for the
  625. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  626. * but we could in fact do this reserve/migrate dance several times
  627. * between the time we did the original reservation and we'd clean it
  628. * up. So to take care of this, release the space for the meta
  629. * reservation here. I think it may be time for a documentation page on
  630. * how block rsvs. work.
  631. */
  632. if (!ret) {
  633. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  634. btrfs_ino(inode), num_bytes, 1);
  635. node->bytes_reserved = num_bytes;
  636. }
  637. if (release) {
  638. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  639. btrfs_ino(inode), num_bytes, 0);
  640. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  641. }
  642. return ret;
  643. }
  644. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  645. struct btrfs_delayed_node *node)
  646. {
  647. struct btrfs_block_rsv *rsv;
  648. if (!node->bytes_reserved)
  649. return;
  650. rsv = &root->fs_info->delayed_block_rsv;
  651. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  652. node->inode_id, node->bytes_reserved, 0);
  653. btrfs_block_rsv_release(root, rsv,
  654. node->bytes_reserved);
  655. node->bytes_reserved = 0;
  656. }
  657. /*
  658. * This helper will insert some continuous items into the same leaf according
  659. * to the free space of the leaf.
  660. */
  661. static int btrfs_batch_insert_items(struct btrfs_root *root,
  662. struct btrfs_path *path,
  663. struct btrfs_delayed_item *item)
  664. {
  665. struct btrfs_delayed_item *curr, *next;
  666. int free_space;
  667. int total_data_size = 0, total_size = 0;
  668. struct extent_buffer *leaf;
  669. char *data_ptr;
  670. struct btrfs_key *keys;
  671. u32 *data_size;
  672. struct list_head head;
  673. int slot;
  674. int nitems;
  675. int i;
  676. int ret = 0;
  677. BUG_ON(!path->nodes[0]);
  678. leaf = path->nodes[0];
  679. free_space = btrfs_leaf_free_space(root, leaf);
  680. INIT_LIST_HEAD(&head);
  681. next = item;
  682. nitems = 0;
  683. /*
  684. * count the number of the continuous items that we can insert in batch
  685. */
  686. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  687. free_space) {
  688. total_data_size += next->data_len;
  689. total_size += next->data_len + sizeof(struct btrfs_item);
  690. list_add_tail(&next->tree_list, &head);
  691. nitems++;
  692. curr = next;
  693. next = __btrfs_next_delayed_item(curr);
  694. if (!next)
  695. break;
  696. if (!btrfs_is_continuous_delayed_item(curr, next))
  697. break;
  698. }
  699. if (!nitems) {
  700. ret = 0;
  701. goto out;
  702. }
  703. /*
  704. * we need allocate some memory space, but it might cause the task
  705. * to sleep, so we set all locked nodes in the path to blocking locks
  706. * first.
  707. */
  708. btrfs_set_path_blocking(path);
  709. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  710. if (!keys) {
  711. ret = -ENOMEM;
  712. goto out;
  713. }
  714. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  715. if (!data_size) {
  716. ret = -ENOMEM;
  717. goto error;
  718. }
  719. /* get keys of all the delayed items */
  720. i = 0;
  721. list_for_each_entry(next, &head, tree_list) {
  722. keys[i] = next->key;
  723. data_size[i] = next->data_len;
  724. i++;
  725. }
  726. /* reset all the locked nodes in the patch to spinning locks. */
  727. btrfs_clear_path_blocking(path, NULL, 0);
  728. /* insert the keys of the items */
  729. setup_items_for_insert(root, path, keys, data_size,
  730. total_data_size, total_size, nitems);
  731. /* insert the dir index items */
  732. slot = path->slots[0];
  733. list_for_each_entry_safe(curr, next, &head, tree_list) {
  734. data_ptr = btrfs_item_ptr(leaf, slot, char);
  735. write_extent_buffer(leaf, &curr->data,
  736. (unsigned long)data_ptr,
  737. curr->data_len);
  738. slot++;
  739. btrfs_delayed_item_release_metadata(root, curr);
  740. list_del(&curr->tree_list);
  741. btrfs_release_delayed_item(curr);
  742. }
  743. error:
  744. kfree(data_size);
  745. kfree(keys);
  746. out:
  747. return ret;
  748. }
  749. /*
  750. * This helper can just do simple insertion that needn't extend item for new
  751. * data, such as directory name index insertion, inode insertion.
  752. */
  753. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  754. struct btrfs_root *root,
  755. struct btrfs_path *path,
  756. struct btrfs_delayed_item *delayed_item)
  757. {
  758. struct extent_buffer *leaf;
  759. char *ptr;
  760. int ret;
  761. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  762. delayed_item->data_len);
  763. if (ret < 0 && ret != -EEXIST)
  764. return ret;
  765. leaf = path->nodes[0];
  766. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  767. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  768. delayed_item->data_len);
  769. btrfs_mark_buffer_dirty(leaf);
  770. btrfs_delayed_item_release_metadata(root, delayed_item);
  771. return 0;
  772. }
  773. /*
  774. * we insert an item first, then if there are some continuous items, we try
  775. * to insert those items into the same leaf.
  776. */
  777. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  778. struct btrfs_path *path,
  779. struct btrfs_root *root,
  780. struct btrfs_delayed_node *node)
  781. {
  782. struct btrfs_delayed_item *curr, *prev;
  783. int ret = 0;
  784. do_again:
  785. mutex_lock(&node->mutex);
  786. curr = __btrfs_first_delayed_insertion_item(node);
  787. if (!curr)
  788. goto insert_end;
  789. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  790. if (ret < 0) {
  791. btrfs_release_path(path);
  792. goto insert_end;
  793. }
  794. prev = curr;
  795. curr = __btrfs_next_delayed_item(prev);
  796. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  797. /* insert the continuous items into the same leaf */
  798. path->slots[0]++;
  799. btrfs_batch_insert_items(root, path, curr);
  800. }
  801. btrfs_release_delayed_item(prev);
  802. btrfs_mark_buffer_dirty(path->nodes[0]);
  803. btrfs_release_path(path);
  804. mutex_unlock(&node->mutex);
  805. goto do_again;
  806. insert_end:
  807. mutex_unlock(&node->mutex);
  808. return ret;
  809. }
  810. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  811. struct btrfs_root *root,
  812. struct btrfs_path *path,
  813. struct btrfs_delayed_item *item)
  814. {
  815. struct btrfs_delayed_item *curr, *next;
  816. struct extent_buffer *leaf;
  817. struct btrfs_key key;
  818. struct list_head head;
  819. int nitems, i, last_item;
  820. int ret = 0;
  821. BUG_ON(!path->nodes[0]);
  822. leaf = path->nodes[0];
  823. i = path->slots[0];
  824. last_item = btrfs_header_nritems(leaf) - 1;
  825. if (i > last_item)
  826. return -ENOENT; /* FIXME: Is errno suitable? */
  827. next = item;
  828. INIT_LIST_HEAD(&head);
  829. btrfs_item_key_to_cpu(leaf, &key, i);
  830. nitems = 0;
  831. /*
  832. * count the number of the dir index items that we can delete in batch
  833. */
  834. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  835. list_add_tail(&next->tree_list, &head);
  836. nitems++;
  837. curr = next;
  838. next = __btrfs_next_delayed_item(curr);
  839. if (!next)
  840. break;
  841. if (!btrfs_is_continuous_delayed_item(curr, next))
  842. break;
  843. i++;
  844. if (i > last_item)
  845. break;
  846. btrfs_item_key_to_cpu(leaf, &key, i);
  847. }
  848. if (!nitems)
  849. return 0;
  850. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  851. if (ret)
  852. goto out;
  853. list_for_each_entry_safe(curr, next, &head, tree_list) {
  854. btrfs_delayed_item_release_metadata(root, curr);
  855. list_del(&curr->tree_list);
  856. btrfs_release_delayed_item(curr);
  857. }
  858. out:
  859. return ret;
  860. }
  861. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  862. struct btrfs_path *path,
  863. struct btrfs_root *root,
  864. struct btrfs_delayed_node *node)
  865. {
  866. struct btrfs_delayed_item *curr, *prev;
  867. int ret = 0;
  868. do_again:
  869. mutex_lock(&node->mutex);
  870. curr = __btrfs_first_delayed_deletion_item(node);
  871. if (!curr)
  872. goto delete_fail;
  873. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  874. if (ret < 0)
  875. goto delete_fail;
  876. else if (ret > 0) {
  877. /*
  878. * can't find the item which the node points to, so this node
  879. * is invalid, just drop it.
  880. */
  881. prev = curr;
  882. curr = __btrfs_next_delayed_item(prev);
  883. btrfs_release_delayed_item(prev);
  884. ret = 0;
  885. btrfs_release_path(path);
  886. if (curr) {
  887. mutex_unlock(&node->mutex);
  888. goto do_again;
  889. } else
  890. goto delete_fail;
  891. }
  892. btrfs_batch_delete_items(trans, root, path, curr);
  893. btrfs_release_path(path);
  894. mutex_unlock(&node->mutex);
  895. goto do_again;
  896. delete_fail:
  897. btrfs_release_path(path);
  898. mutex_unlock(&node->mutex);
  899. return ret;
  900. }
  901. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  902. {
  903. struct btrfs_delayed_root *delayed_root;
  904. if (delayed_node && delayed_node->inode_dirty) {
  905. BUG_ON(!delayed_node->root);
  906. delayed_node->inode_dirty = 0;
  907. delayed_node->count--;
  908. delayed_root = delayed_node->root->fs_info->delayed_root;
  909. finish_one_item(delayed_root);
  910. }
  911. }
  912. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  913. struct btrfs_root *root,
  914. struct btrfs_path *path,
  915. struct btrfs_delayed_node *node)
  916. {
  917. struct btrfs_key key;
  918. struct btrfs_inode_item *inode_item;
  919. struct extent_buffer *leaf;
  920. int ret;
  921. key.objectid = node->inode_id;
  922. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  923. key.offset = 0;
  924. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  925. if (ret > 0) {
  926. btrfs_release_path(path);
  927. return -ENOENT;
  928. } else if (ret < 0) {
  929. return ret;
  930. }
  931. btrfs_unlock_up_safe(path, 1);
  932. leaf = path->nodes[0];
  933. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  934. struct btrfs_inode_item);
  935. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  936. sizeof(struct btrfs_inode_item));
  937. btrfs_mark_buffer_dirty(leaf);
  938. btrfs_release_path(path);
  939. btrfs_delayed_inode_release_metadata(root, node);
  940. btrfs_release_delayed_inode(node);
  941. return 0;
  942. }
  943. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  944. struct btrfs_root *root,
  945. struct btrfs_path *path,
  946. struct btrfs_delayed_node *node)
  947. {
  948. int ret;
  949. mutex_lock(&node->mutex);
  950. if (!node->inode_dirty) {
  951. mutex_unlock(&node->mutex);
  952. return 0;
  953. }
  954. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  955. mutex_unlock(&node->mutex);
  956. return ret;
  957. }
  958. static inline int
  959. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  960. struct btrfs_path *path,
  961. struct btrfs_delayed_node *node)
  962. {
  963. int ret;
  964. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  965. if (ret)
  966. return ret;
  967. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  968. if (ret)
  969. return ret;
  970. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  971. return ret;
  972. }
  973. /*
  974. * Called when committing the transaction.
  975. * Returns 0 on success.
  976. * Returns < 0 on error and returns with an aborted transaction with any
  977. * outstanding delayed items cleaned up.
  978. */
  979. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  980. struct btrfs_root *root, int nr)
  981. {
  982. struct btrfs_delayed_root *delayed_root;
  983. struct btrfs_delayed_node *curr_node, *prev_node;
  984. struct btrfs_path *path;
  985. struct btrfs_block_rsv *block_rsv;
  986. int ret = 0;
  987. bool count = (nr > 0);
  988. if (trans->aborted)
  989. return -EIO;
  990. path = btrfs_alloc_path();
  991. if (!path)
  992. return -ENOMEM;
  993. path->leave_spinning = 1;
  994. block_rsv = trans->block_rsv;
  995. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  996. delayed_root = btrfs_get_delayed_root(root);
  997. curr_node = btrfs_first_delayed_node(delayed_root);
  998. while (curr_node && (!count || (count && nr--))) {
  999. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1000. curr_node);
  1001. if (ret) {
  1002. btrfs_release_delayed_node(curr_node);
  1003. curr_node = NULL;
  1004. btrfs_abort_transaction(trans, root, ret);
  1005. break;
  1006. }
  1007. prev_node = curr_node;
  1008. curr_node = btrfs_next_delayed_node(curr_node);
  1009. btrfs_release_delayed_node(prev_node);
  1010. }
  1011. if (curr_node)
  1012. btrfs_release_delayed_node(curr_node);
  1013. btrfs_free_path(path);
  1014. trans->block_rsv = block_rsv;
  1015. return ret;
  1016. }
  1017. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1018. struct btrfs_root *root)
  1019. {
  1020. return __btrfs_run_delayed_items(trans, root, -1);
  1021. }
  1022. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1023. struct btrfs_root *root, int nr)
  1024. {
  1025. return __btrfs_run_delayed_items(trans, root, nr);
  1026. }
  1027. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1028. struct inode *inode)
  1029. {
  1030. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1031. struct btrfs_path *path;
  1032. struct btrfs_block_rsv *block_rsv;
  1033. int ret;
  1034. if (!delayed_node)
  1035. return 0;
  1036. mutex_lock(&delayed_node->mutex);
  1037. if (!delayed_node->count) {
  1038. mutex_unlock(&delayed_node->mutex);
  1039. btrfs_release_delayed_node(delayed_node);
  1040. return 0;
  1041. }
  1042. mutex_unlock(&delayed_node->mutex);
  1043. path = btrfs_alloc_path();
  1044. if (!path)
  1045. return -ENOMEM;
  1046. path->leave_spinning = 1;
  1047. block_rsv = trans->block_rsv;
  1048. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1049. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1050. btrfs_release_delayed_node(delayed_node);
  1051. btrfs_free_path(path);
  1052. trans->block_rsv = block_rsv;
  1053. return ret;
  1054. }
  1055. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1056. {
  1057. struct btrfs_trans_handle *trans;
  1058. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1059. struct btrfs_path *path;
  1060. struct btrfs_block_rsv *block_rsv;
  1061. int ret;
  1062. if (!delayed_node)
  1063. return 0;
  1064. mutex_lock(&delayed_node->mutex);
  1065. if (!delayed_node->inode_dirty) {
  1066. mutex_unlock(&delayed_node->mutex);
  1067. btrfs_release_delayed_node(delayed_node);
  1068. return 0;
  1069. }
  1070. mutex_unlock(&delayed_node->mutex);
  1071. trans = btrfs_join_transaction(delayed_node->root);
  1072. if (IS_ERR(trans)) {
  1073. ret = PTR_ERR(trans);
  1074. goto out;
  1075. }
  1076. path = btrfs_alloc_path();
  1077. if (!path) {
  1078. ret = -ENOMEM;
  1079. goto trans_out;
  1080. }
  1081. path->leave_spinning = 1;
  1082. block_rsv = trans->block_rsv;
  1083. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1084. mutex_lock(&delayed_node->mutex);
  1085. if (delayed_node->inode_dirty)
  1086. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1087. path, delayed_node);
  1088. else
  1089. ret = 0;
  1090. mutex_unlock(&delayed_node->mutex);
  1091. btrfs_free_path(path);
  1092. trans->block_rsv = block_rsv;
  1093. trans_out:
  1094. btrfs_end_transaction(trans, delayed_node->root);
  1095. btrfs_btree_balance_dirty(delayed_node->root);
  1096. out:
  1097. btrfs_release_delayed_node(delayed_node);
  1098. return ret;
  1099. }
  1100. void btrfs_remove_delayed_node(struct inode *inode)
  1101. {
  1102. struct btrfs_delayed_node *delayed_node;
  1103. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1104. if (!delayed_node)
  1105. return;
  1106. BTRFS_I(inode)->delayed_node = NULL;
  1107. btrfs_release_delayed_node(delayed_node);
  1108. }
  1109. struct btrfs_async_delayed_work {
  1110. struct btrfs_delayed_root *delayed_root;
  1111. int nr;
  1112. struct btrfs_work work;
  1113. };
  1114. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1115. {
  1116. struct btrfs_async_delayed_work *async_work;
  1117. struct btrfs_delayed_root *delayed_root;
  1118. struct btrfs_trans_handle *trans;
  1119. struct btrfs_path *path;
  1120. struct btrfs_delayed_node *delayed_node = NULL;
  1121. struct btrfs_root *root;
  1122. struct btrfs_block_rsv *block_rsv;
  1123. int total_done = 0;
  1124. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1125. delayed_root = async_work->delayed_root;
  1126. path = btrfs_alloc_path();
  1127. if (!path)
  1128. goto out;
  1129. again:
  1130. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1131. goto free_path;
  1132. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1133. if (!delayed_node)
  1134. goto free_path;
  1135. path->leave_spinning = 1;
  1136. root = delayed_node->root;
  1137. trans = btrfs_join_transaction(root);
  1138. if (IS_ERR(trans))
  1139. goto release_path;
  1140. block_rsv = trans->block_rsv;
  1141. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1142. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1143. /*
  1144. * Maybe new delayed items have been inserted, so we need requeue
  1145. * the work. Besides that, we must dequeue the empty delayed nodes
  1146. * to avoid the race between delayed items balance and the worker.
  1147. * The race like this:
  1148. * Task1 Worker thread
  1149. * count == 0, needn't requeue
  1150. * also needn't insert the
  1151. * delayed node into prepare
  1152. * list again.
  1153. * add lots of delayed items
  1154. * queue the delayed node
  1155. * already in the list,
  1156. * and not in the prepare
  1157. * list, it means the delayed
  1158. * node is being dealt with
  1159. * by the worker.
  1160. * do delayed items balance
  1161. * the delayed node is being
  1162. * dealt with by the worker
  1163. * now, just wait.
  1164. * the worker goto idle.
  1165. * Task1 will sleep until the transaction is commited.
  1166. */
  1167. mutex_lock(&delayed_node->mutex);
  1168. btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
  1169. mutex_unlock(&delayed_node->mutex);
  1170. trans->block_rsv = block_rsv;
  1171. btrfs_end_transaction_dmeta(trans, root);
  1172. btrfs_btree_balance_dirty_nodelay(root);
  1173. release_path:
  1174. btrfs_release_path(path);
  1175. total_done++;
  1176. btrfs_release_prepared_delayed_node(delayed_node);
  1177. if (async_work->nr == 0 || total_done < async_work->nr)
  1178. goto again;
  1179. free_path:
  1180. btrfs_free_path(path);
  1181. out:
  1182. wake_up(&delayed_root->wait);
  1183. kfree(async_work);
  1184. }
  1185. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1186. struct btrfs_root *root, int nr)
  1187. {
  1188. struct btrfs_async_delayed_work *async_work;
  1189. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1190. return 0;
  1191. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1192. if (!async_work)
  1193. return -ENOMEM;
  1194. async_work->delayed_root = delayed_root;
  1195. async_work->work.func = btrfs_async_run_delayed_root;
  1196. async_work->work.flags = 0;
  1197. async_work->nr = nr;
  1198. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
  1199. return 0;
  1200. }
  1201. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1202. {
  1203. struct btrfs_delayed_root *delayed_root;
  1204. delayed_root = btrfs_get_delayed_root(root);
  1205. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1206. }
  1207. static int refs_newer(struct btrfs_delayed_root *delayed_root,
  1208. int seq, int count)
  1209. {
  1210. int val = atomic_read(&delayed_root->items_seq);
  1211. if (val < seq || val >= seq + count)
  1212. return 1;
  1213. return 0;
  1214. }
  1215. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1216. {
  1217. struct btrfs_delayed_root *delayed_root;
  1218. int seq;
  1219. delayed_root = btrfs_get_delayed_root(root);
  1220. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1221. return;
  1222. seq = atomic_read(&delayed_root->items_seq);
  1223. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1224. int ret;
  1225. DEFINE_WAIT(__wait);
  1226. ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1227. if (ret)
  1228. return;
  1229. while (1) {
  1230. prepare_to_wait(&delayed_root->wait, &__wait,
  1231. TASK_INTERRUPTIBLE);
  1232. if (refs_newer(delayed_root, seq,
  1233. BTRFS_DELAYED_BATCH) ||
  1234. atomic_read(&delayed_root->items) <
  1235. BTRFS_DELAYED_BACKGROUND) {
  1236. break;
  1237. }
  1238. if (!signal_pending(current))
  1239. schedule();
  1240. else
  1241. break;
  1242. }
  1243. finish_wait(&delayed_root->wait, &__wait);
  1244. }
  1245. btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
  1246. }
  1247. /* Will return 0 or -ENOMEM */
  1248. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1249. struct btrfs_root *root, const char *name,
  1250. int name_len, struct inode *dir,
  1251. struct btrfs_disk_key *disk_key, u8 type,
  1252. u64 index)
  1253. {
  1254. struct btrfs_delayed_node *delayed_node;
  1255. struct btrfs_delayed_item *delayed_item;
  1256. struct btrfs_dir_item *dir_item;
  1257. int ret;
  1258. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1259. if (IS_ERR(delayed_node))
  1260. return PTR_ERR(delayed_node);
  1261. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1262. if (!delayed_item) {
  1263. ret = -ENOMEM;
  1264. goto release_node;
  1265. }
  1266. delayed_item->key.objectid = btrfs_ino(dir);
  1267. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1268. delayed_item->key.offset = index;
  1269. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1270. dir_item->location = *disk_key;
  1271. dir_item->transid = cpu_to_le64(trans->transid);
  1272. dir_item->data_len = 0;
  1273. dir_item->name_len = cpu_to_le16(name_len);
  1274. dir_item->type = type;
  1275. memcpy((char *)(dir_item + 1), name, name_len);
  1276. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1277. /*
  1278. * we have reserved enough space when we start a new transaction,
  1279. * so reserving metadata failure is impossible
  1280. */
  1281. BUG_ON(ret);
  1282. mutex_lock(&delayed_node->mutex);
  1283. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1284. if (unlikely(ret)) {
  1285. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1286. "the insertion tree of the delayed node"
  1287. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1288. name,
  1289. (unsigned long long)delayed_node->root->objectid,
  1290. (unsigned long long)delayed_node->inode_id,
  1291. ret);
  1292. BUG();
  1293. }
  1294. mutex_unlock(&delayed_node->mutex);
  1295. release_node:
  1296. btrfs_release_delayed_node(delayed_node);
  1297. return ret;
  1298. }
  1299. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1300. struct btrfs_delayed_node *node,
  1301. struct btrfs_key *key)
  1302. {
  1303. struct btrfs_delayed_item *item;
  1304. mutex_lock(&node->mutex);
  1305. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1306. if (!item) {
  1307. mutex_unlock(&node->mutex);
  1308. return 1;
  1309. }
  1310. btrfs_delayed_item_release_metadata(root, item);
  1311. btrfs_release_delayed_item(item);
  1312. mutex_unlock(&node->mutex);
  1313. return 0;
  1314. }
  1315. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1316. struct btrfs_root *root, struct inode *dir,
  1317. u64 index)
  1318. {
  1319. struct btrfs_delayed_node *node;
  1320. struct btrfs_delayed_item *item;
  1321. struct btrfs_key item_key;
  1322. int ret;
  1323. node = btrfs_get_or_create_delayed_node(dir);
  1324. if (IS_ERR(node))
  1325. return PTR_ERR(node);
  1326. item_key.objectid = btrfs_ino(dir);
  1327. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1328. item_key.offset = index;
  1329. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1330. if (!ret)
  1331. goto end;
  1332. item = btrfs_alloc_delayed_item(0);
  1333. if (!item) {
  1334. ret = -ENOMEM;
  1335. goto end;
  1336. }
  1337. item->key = item_key;
  1338. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1339. /*
  1340. * we have reserved enough space when we start a new transaction,
  1341. * so reserving metadata failure is impossible.
  1342. */
  1343. BUG_ON(ret);
  1344. mutex_lock(&node->mutex);
  1345. ret = __btrfs_add_delayed_deletion_item(node, item);
  1346. if (unlikely(ret)) {
  1347. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1348. "into the deletion tree of the delayed node"
  1349. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1350. (unsigned long long)index,
  1351. (unsigned long long)node->root->objectid,
  1352. (unsigned long long)node->inode_id,
  1353. ret);
  1354. BUG();
  1355. }
  1356. mutex_unlock(&node->mutex);
  1357. end:
  1358. btrfs_release_delayed_node(node);
  1359. return ret;
  1360. }
  1361. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1362. {
  1363. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1364. if (!delayed_node)
  1365. return -ENOENT;
  1366. /*
  1367. * Since we have held i_mutex of this directory, it is impossible that
  1368. * a new directory index is added into the delayed node and index_cnt
  1369. * is updated now. So we needn't lock the delayed node.
  1370. */
  1371. if (!delayed_node->index_cnt) {
  1372. btrfs_release_delayed_node(delayed_node);
  1373. return -EINVAL;
  1374. }
  1375. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1376. btrfs_release_delayed_node(delayed_node);
  1377. return 0;
  1378. }
  1379. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1380. struct list_head *del_list)
  1381. {
  1382. struct btrfs_delayed_node *delayed_node;
  1383. struct btrfs_delayed_item *item;
  1384. delayed_node = btrfs_get_delayed_node(inode);
  1385. if (!delayed_node)
  1386. return;
  1387. mutex_lock(&delayed_node->mutex);
  1388. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1389. while (item) {
  1390. atomic_inc(&item->refs);
  1391. list_add_tail(&item->readdir_list, ins_list);
  1392. item = __btrfs_next_delayed_item(item);
  1393. }
  1394. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1395. while (item) {
  1396. atomic_inc(&item->refs);
  1397. list_add_tail(&item->readdir_list, del_list);
  1398. item = __btrfs_next_delayed_item(item);
  1399. }
  1400. mutex_unlock(&delayed_node->mutex);
  1401. /*
  1402. * This delayed node is still cached in the btrfs inode, so refs
  1403. * must be > 1 now, and we needn't check it is going to be freed
  1404. * or not.
  1405. *
  1406. * Besides that, this function is used to read dir, we do not
  1407. * insert/delete delayed items in this period. So we also needn't
  1408. * requeue or dequeue this delayed node.
  1409. */
  1410. atomic_dec(&delayed_node->refs);
  1411. }
  1412. void btrfs_put_delayed_items(struct list_head *ins_list,
  1413. struct list_head *del_list)
  1414. {
  1415. struct btrfs_delayed_item *curr, *next;
  1416. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1417. list_del(&curr->readdir_list);
  1418. if (atomic_dec_and_test(&curr->refs))
  1419. kfree(curr);
  1420. }
  1421. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1422. list_del(&curr->readdir_list);
  1423. if (atomic_dec_and_test(&curr->refs))
  1424. kfree(curr);
  1425. }
  1426. }
  1427. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1428. u64 index)
  1429. {
  1430. struct btrfs_delayed_item *curr, *next;
  1431. int ret;
  1432. if (list_empty(del_list))
  1433. return 0;
  1434. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1435. if (curr->key.offset > index)
  1436. break;
  1437. list_del(&curr->readdir_list);
  1438. ret = (curr->key.offset == index);
  1439. if (atomic_dec_and_test(&curr->refs))
  1440. kfree(curr);
  1441. if (ret)
  1442. return 1;
  1443. else
  1444. continue;
  1445. }
  1446. return 0;
  1447. }
  1448. /*
  1449. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1450. *
  1451. */
  1452. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1453. filldir_t filldir,
  1454. struct list_head *ins_list)
  1455. {
  1456. struct btrfs_dir_item *di;
  1457. struct btrfs_delayed_item *curr, *next;
  1458. struct btrfs_key location;
  1459. char *name;
  1460. int name_len;
  1461. int over = 0;
  1462. unsigned char d_type;
  1463. if (list_empty(ins_list))
  1464. return 0;
  1465. /*
  1466. * Changing the data of the delayed item is impossible. So
  1467. * we needn't lock them. And we have held i_mutex of the
  1468. * directory, nobody can delete any directory indexes now.
  1469. */
  1470. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1471. list_del(&curr->readdir_list);
  1472. if (curr->key.offset < filp->f_pos) {
  1473. if (atomic_dec_and_test(&curr->refs))
  1474. kfree(curr);
  1475. continue;
  1476. }
  1477. filp->f_pos = curr->key.offset;
  1478. di = (struct btrfs_dir_item *)curr->data;
  1479. name = (char *)(di + 1);
  1480. name_len = le16_to_cpu(di->name_len);
  1481. d_type = btrfs_filetype_table[di->type];
  1482. btrfs_disk_key_to_cpu(&location, &di->location);
  1483. over = filldir(dirent, name, name_len, curr->key.offset,
  1484. location.objectid, d_type);
  1485. if (atomic_dec_and_test(&curr->refs))
  1486. kfree(curr);
  1487. if (over)
  1488. return 1;
  1489. }
  1490. return 0;
  1491. }
  1492. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1493. generation, 64);
  1494. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1495. sequence, 64);
  1496. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1497. transid, 64);
  1498. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1499. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1500. nbytes, 64);
  1501. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1502. block_group, 64);
  1503. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1504. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1505. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1506. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1507. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1508. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1509. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1510. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1511. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1512. struct btrfs_inode_item *inode_item,
  1513. struct inode *inode)
  1514. {
  1515. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1516. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1517. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1518. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1519. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1520. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1521. btrfs_set_stack_inode_generation(inode_item,
  1522. BTRFS_I(inode)->generation);
  1523. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1524. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1525. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1526. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1527. btrfs_set_stack_inode_block_group(inode_item, 0);
  1528. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1529. inode->i_atime.tv_sec);
  1530. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1531. inode->i_atime.tv_nsec);
  1532. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1533. inode->i_mtime.tv_sec);
  1534. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1535. inode->i_mtime.tv_nsec);
  1536. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1537. inode->i_ctime.tv_sec);
  1538. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1539. inode->i_ctime.tv_nsec);
  1540. }
  1541. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1542. {
  1543. struct btrfs_delayed_node *delayed_node;
  1544. struct btrfs_inode_item *inode_item;
  1545. struct btrfs_timespec *tspec;
  1546. delayed_node = btrfs_get_delayed_node(inode);
  1547. if (!delayed_node)
  1548. return -ENOENT;
  1549. mutex_lock(&delayed_node->mutex);
  1550. if (!delayed_node->inode_dirty) {
  1551. mutex_unlock(&delayed_node->mutex);
  1552. btrfs_release_delayed_node(delayed_node);
  1553. return -ENOENT;
  1554. }
  1555. inode_item = &delayed_node->inode_item;
  1556. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1557. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1558. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1559. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1560. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1561. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1562. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1563. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1564. inode->i_rdev = 0;
  1565. *rdev = btrfs_stack_inode_rdev(inode_item);
  1566. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1567. tspec = btrfs_inode_atime(inode_item);
  1568. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1569. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1570. tspec = btrfs_inode_mtime(inode_item);
  1571. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1572. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1573. tspec = btrfs_inode_ctime(inode_item);
  1574. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1575. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1576. inode->i_generation = BTRFS_I(inode)->generation;
  1577. BTRFS_I(inode)->index_cnt = (u64)-1;
  1578. mutex_unlock(&delayed_node->mutex);
  1579. btrfs_release_delayed_node(delayed_node);
  1580. return 0;
  1581. }
  1582. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1583. struct btrfs_root *root, struct inode *inode)
  1584. {
  1585. struct btrfs_delayed_node *delayed_node;
  1586. int ret = 0;
  1587. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1588. if (IS_ERR(delayed_node))
  1589. return PTR_ERR(delayed_node);
  1590. mutex_lock(&delayed_node->mutex);
  1591. if (delayed_node->inode_dirty) {
  1592. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1593. goto release_node;
  1594. }
  1595. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1596. delayed_node);
  1597. if (ret)
  1598. goto release_node;
  1599. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1600. delayed_node->inode_dirty = 1;
  1601. delayed_node->count++;
  1602. atomic_inc(&root->fs_info->delayed_root->items);
  1603. release_node:
  1604. mutex_unlock(&delayed_node->mutex);
  1605. btrfs_release_delayed_node(delayed_node);
  1606. return ret;
  1607. }
  1608. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1609. {
  1610. struct btrfs_root *root = delayed_node->root;
  1611. struct btrfs_delayed_item *curr_item, *prev_item;
  1612. mutex_lock(&delayed_node->mutex);
  1613. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1614. while (curr_item) {
  1615. btrfs_delayed_item_release_metadata(root, curr_item);
  1616. prev_item = curr_item;
  1617. curr_item = __btrfs_next_delayed_item(prev_item);
  1618. btrfs_release_delayed_item(prev_item);
  1619. }
  1620. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1621. while (curr_item) {
  1622. btrfs_delayed_item_release_metadata(root, curr_item);
  1623. prev_item = curr_item;
  1624. curr_item = __btrfs_next_delayed_item(prev_item);
  1625. btrfs_release_delayed_item(prev_item);
  1626. }
  1627. if (delayed_node->inode_dirty) {
  1628. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1629. btrfs_release_delayed_inode(delayed_node);
  1630. }
  1631. mutex_unlock(&delayed_node->mutex);
  1632. }
  1633. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1634. {
  1635. struct btrfs_delayed_node *delayed_node;
  1636. delayed_node = btrfs_get_delayed_node(inode);
  1637. if (!delayed_node)
  1638. return;
  1639. __btrfs_kill_delayed_node(delayed_node);
  1640. btrfs_release_delayed_node(delayed_node);
  1641. }
  1642. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1643. {
  1644. u64 inode_id = 0;
  1645. struct btrfs_delayed_node *delayed_nodes[8];
  1646. int i, n;
  1647. while (1) {
  1648. spin_lock(&root->inode_lock);
  1649. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1650. (void **)delayed_nodes, inode_id,
  1651. ARRAY_SIZE(delayed_nodes));
  1652. if (!n) {
  1653. spin_unlock(&root->inode_lock);
  1654. break;
  1655. }
  1656. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1657. for (i = 0; i < n; i++)
  1658. atomic_inc(&delayed_nodes[i]->refs);
  1659. spin_unlock(&root->inode_lock);
  1660. for (i = 0; i < n; i++) {
  1661. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1662. btrfs_release_delayed_node(delayed_nodes[i]);
  1663. }
  1664. }
  1665. }
  1666. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1667. {
  1668. struct btrfs_delayed_root *delayed_root;
  1669. struct btrfs_delayed_node *curr_node, *prev_node;
  1670. delayed_root = btrfs_get_delayed_root(root);
  1671. curr_node = btrfs_first_delayed_node(delayed_root);
  1672. while (curr_node) {
  1673. __btrfs_kill_delayed_node(curr_node);
  1674. prev_node = curr_node;
  1675. curr_node = btrfs_next_delayed_node(curr_node);
  1676. btrfs_release_delayed_node(prev_node);
  1677. }
  1678. }