loop.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/module.h>
  53. #include <linux/moduleparam.h>
  54. #include <linux/sched.h>
  55. #include <linux/fs.h>
  56. #include <linux/file.h>
  57. #include <linux/stat.h>
  58. #include <linux/errno.h>
  59. #include <linux/major.h>
  60. #include <linux/wait.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/blkpg.h>
  63. #include <linux/init.h>
  64. #include <linux/smp_lock.h>
  65. #include <linux/swap.h>
  66. #include <linux/slab.h>
  67. #include <linux/loop.h>
  68. #include <linux/compat.h>
  69. #include <linux/suspend.h>
  70. #include <linux/freezer.h>
  71. #include <linux/writeback.h>
  72. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  73. #include <linux/completion.h>
  74. #include <linux/highmem.h>
  75. #include <linux/gfp.h>
  76. #include <linux/kthread.h>
  77. #include <linux/splice.h>
  78. #include <asm/uaccess.h>
  79. static LIST_HEAD(loop_devices);
  80. static DEFINE_MUTEX(loop_devices_mutex);
  81. /*
  82. * Transfer functions
  83. */
  84. static int transfer_none(struct loop_device *lo, int cmd,
  85. struct page *raw_page, unsigned raw_off,
  86. struct page *loop_page, unsigned loop_off,
  87. int size, sector_t real_block)
  88. {
  89. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  90. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  91. if (cmd == READ)
  92. memcpy(loop_buf, raw_buf, size);
  93. else
  94. memcpy(raw_buf, loop_buf, size);
  95. kunmap_atomic(raw_buf, KM_USER0);
  96. kunmap_atomic(loop_buf, KM_USER1);
  97. cond_resched();
  98. return 0;
  99. }
  100. static int transfer_xor(struct loop_device *lo, int cmd,
  101. struct page *raw_page, unsigned raw_off,
  102. struct page *loop_page, unsigned loop_off,
  103. int size, sector_t real_block)
  104. {
  105. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  106. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  107. char *in, *out, *key;
  108. int i, keysize;
  109. if (cmd == READ) {
  110. in = raw_buf;
  111. out = loop_buf;
  112. } else {
  113. in = loop_buf;
  114. out = raw_buf;
  115. }
  116. key = lo->lo_encrypt_key;
  117. keysize = lo->lo_encrypt_key_size;
  118. for (i = 0; i < size; i++)
  119. *out++ = *in++ ^ key[(i & 511) % keysize];
  120. kunmap_atomic(raw_buf, KM_USER0);
  121. kunmap_atomic(loop_buf, KM_USER1);
  122. cond_resched();
  123. return 0;
  124. }
  125. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  126. {
  127. if (unlikely(info->lo_encrypt_key_size <= 0))
  128. return -EINVAL;
  129. return 0;
  130. }
  131. static struct loop_func_table none_funcs = {
  132. .number = LO_CRYPT_NONE,
  133. .transfer = transfer_none,
  134. };
  135. static struct loop_func_table xor_funcs = {
  136. .number = LO_CRYPT_XOR,
  137. .transfer = transfer_xor,
  138. .init = xor_init
  139. };
  140. /* xfer_funcs[0] is special - its release function is never called */
  141. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  142. &none_funcs,
  143. &xor_funcs
  144. };
  145. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  146. {
  147. loff_t size, offset, loopsize;
  148. /* Compute loopsize in bytes */
  149. size = i_size_read(file->f_mapping->host);
  150. offset = lo->lo_offset;
  151. loopsize = size - offset;
  152. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  153. loopsize = lo->lo_sizelimit;
  154. /*
  155. * Unfortunately, if we want to do I/O on the device,
  156. * the number of 512-byte sectors has to fit into a sector_t.
  157. */
  158. return loopsize >> 9;
  159. }
  160. static int
  161. figure_loop_size(struct loop_device *lo)
  162. {
  163. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  164. sector_t x = (sector_t)size;
  165. if (unlikely((loff_t)x != size))
  166. return -EFBIG;
  167. set_capacity(lo->lo_disk, x);
  168. return 0;
  169. }
  170. static inline int
  171. lo_do_transfer(struct loop_device *lo, int cmd,
  172. struct page *rpage, unsigned roffs,
  173. struct page *lpage, unsigned loffs,
  174. int size, sector_t rblock)
  175. {
  176. if (unlikely(!lo->transfer))
  177. return 0;
  178. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  179. }
  180. /**
  181. * do_lo_send_aops - helper for writing data to a loop device
  182. *
  183. * This is the fast version for backing filesystems which implement the address
  184. * space operations write_begin and write_end.
  185. */
  186. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  187. int bsize, loff_t pos, struct page *unused)
  188. {
  189. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  190. struct address_space *mapping = file->f_mapping;
  191. pgoff_t index;
  192. unsigned offset, bv_offs;
  193. int len, ret;
  194. mutex_lock(&mapping->host->i_mutex);
  195. index = pos >> PAGE_CACHE_SHIFT;
  196. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  197. bv_offs = bvec->bv_offset;
  198. len = bvec->bv_len;
  199. while (len > 0) {
  200. sector_t IV;
  201. unsigned size, copied;
  202. int transfer_result;
  203. struct page *page;
  204. void *fsdata;
  205. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  206. size = PAGE_CACHE_SIZE - offset;
  207. if (size > len)
  208. size = len;
  209. ret = pagecache_write_begin(file, mapping, pos, size, 0,
  210. &page, &fsdata);
  211. if (ret)
  212. goto fail;
  213. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  214. bvec->bv_page, bv_offs, size, IV);
  215. copied = size;
  216. if (unlikely(transfer_result))
  217. copied = 0;
  218. ret = pagecache_write_end(file, mapping, pos, size, copied,
  219. page, fsdata);
  220. if (ret < 0)
  221. goto fail;
  222. if (ret < copied)
  223. copied = ret;
  224. if (unlikely(transfer_result))
  225. goto fail;
  226. bv_offs += copied;
  227. len -= copied;
  228. offset = 0;
  229. index++;
  230. pos += copied;
  231. }
  232. ret = 0;
  233. out:
  234. mutex_unlock(&mapping->host->i_mutex);
  235. return ret;
  236. fail:
  237. ret = -1;
  238. goto out;
  239. }
  240. /**
  241. * __do_lo_send_write - helper for writing data to a loop device
  242. *
  243. * This helper just factors out common code between do_lo_send_direct_write()
  244. * and do_lo_send_write().
  245. */
  246. static int __do_lo_send_write(struct file *file,
  247. u8 *buf, const int len, loff_t pos)
  248. {
  249. ssize_t bw;
  250. mm_segment_t old_fs = get_fs();
  251. set_fs(get_ds());
  252. bw = file->f_op->write(file, buf, len, &pos);
  253. set_fs(old_fs);
  254. if (likely(bw == len))
  255. return 0;
  256. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  257. (unsigned long long)pos, len);
  258. if (bw >= 0)
  259. bw = -EIO;
  260. return bw;
  261. }
  262. /**
  263. * do_lo_send_direct_write - helper for writing data to a loop device
  264. *
  265. * This is the fast, non-transforming version for backing filesystems which do
  266. * not implement the address space operations write_begin and write_end.
  267. * It uses the write file operation which should be present on all writeable
  268. * filesystems.
  269. */
  270. static int do_lo_send_direct_write(struct loop_device *lo,
  271. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  272. {
  273. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  274. kmap(bvec->bv_page) + bvec->bv_offset,
  275. bvec->bv_len, pos);
  276. kunmap(bvec->bv_page);
  277. cond_resched();
  278. return bw;
  279. }
  280. /**
  281. * do_lo_send_write - helper for writing data to a loop device
  282. *
  283. * This is the slow, transforming version for filesystems which do not
  284. * implement the address space operations write_begin and write_end. It
  285. * uses the write file operation which should be present on all writeable
  286. * filesystems.
  287. *
  288. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  289. * transforming case because we need to double buffer the data as we cannot do
  290. * the transformations in place as we do not have direct access to the
  291. * destination pages of the backing file.
  292. */
  293. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  294. int bsize, loff_t pos, struct page *page)
  295. {
  296. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  297. bvec->bv_offset, bvec->bv_len, pos >> 9);
  298. if (likely(!ret))
  299. return __do_lo_send_write(lo->lo_backing_file,
  300. page_address(page), bvec->bv_len,
  301. pos);
  302. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  303. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  304. if (ret > 0)
  305. ret = -EIO;
  306. return ret;
  307. }
  308. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  309. loff_t pos)
  310. {
  311. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  312. struct page *page);
  313. struct bio_vec *bvec;
  314. struct page *page = NULL;
  315. int i, ret = 0;
  316. do_lo_send = do_lo_send_aops;
  317. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  318. do_lo_send = do_lo_send_direct_write;
  319. if (lo->transfer != transfer_none) {
  320. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  321. if (unlikely(!page))
  322. goto fail;
  323. kmap(page);
  324. do_lo_send = do_lo_send_write;
  325. }
  326. }
  327. bio_for_each_segment(bvec, bio, i) {
  328. ret = do_lo_send(lo, bvec, bsize, pos, page);
  329. if (ret < 0)
  330. break;
  331. pos += bvec->bv_len;
  332. }
  333. if (page) {
  334. kunmap(page);
  335. __free_page(page);
  336. }
  337. out:
  338. return ret;
  339. fail:
  340. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  341. ret = -ENOMEM;
  342. goto out;
  343. }
  344. struct lo_read_data {
  345. struct loop_device *lo;
  346. struct page *page;
  347. unsigned offset;
  348. int bsize;
  349. };
  350. static int
  351. lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
  352. struct splice_desc *sd)
  353. {
  354. struct lo_read_data *p = sd->u.data;
  355. struct loop_device *lo = p->lo;
  356. struct page *page = buf->page;
  357. sector_t IV;
  358. size_t size;
  359. int ret;
  360. ret = buf->ops->confirm(pipe, buf);
  361. if (unlikely(ret))
  362. return ret;
  363. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
  364. (buf->offset >> 9);
  365. size = sd->len;
  366. if (size > p->bsize)
  367. size = p->bsize;
  368. if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
  369. printk(KERN_ERR "loop: transfer error block %ld\n",
  370. page->index);
  371. size = -EINVAL;
  372. }
  373. flush_dcache_page(p->page);
  374. if (size > 0)
  375. p->offset += size;
  376. return size;
  377. }
  378. static int
  379. lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
  380. {
  381. return __splice_from_pipe(pipe, sd, lo_splice_actor);
  382. }
  383. static int
  384. do_lo_receive(struct loop_device *lo,
  385. struct bio_vec *bvec, int bsize, loff_t pos)
  386. {
  387. struct lo_read_data cookie;
  388. struct splice_desc sd;
  389. struct file *file;
  390. long retval;
  391. cookie.lo = lo;
  392. cookie.page = bvec->bv_page;
  393. cookie.offset = bvec->bv_offset;
  394. cookie.bsize = bsize;
  395. sd.len = 0;
  396. sd.total_len = bvec->bv_len;
  397. sd.flags = 0;
  398. sd.pos = pos;
  399. sd.u.data = &cookie;
  400. file = lo->lo_backing_file;
  401. retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
  402. if (retval < 0)
  403. return retval;
  404. return 0;
  405. }
  406. static int
  407. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  408. {
  409. struct bio_vec *bvec;
  410. int i, ret = 0;
  411. bio_for_each_segment(bvec, bio, i) {
  412. ret = do_lo_receive(lo, bvec, bsize, pos);
  413. if (ret < 0)
  414. break;
  415. pos += bvec->bv_len;
  416. }
  417. return ret;
  418. }
  419. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  420. {
  421. loff_t pos;
  422. int ret;
  423. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  424. if (bio_rw(bio) == WRITE)
  425. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  426. else
  427. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  428. return ret;
  429. }
  430. /*
  431. * Add bio to back of pending list
  432. */
  433. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  434. {
  435. if (lo->lo_biotail) {
  436. lo->lo_biotail->bi_next = bio;
  437. lo->lo_biotail = bio;
  438. } else
  439. lo->lo_bio = lo->lo_biotail = bio;
  440. }
  441. /*
  442. * Grab first pending buffer
  443. */
  444. static struct bio *loop_get_bio(struct loop_device *lo)
  445. {
  446. struct bio *bio;
  447. if ((bio = lo->lo_bio)) {
  448. if (bio == lo->lo_biotail)
  449. lo->lo_biotail = NULL;
  450. lo->lo_bio = bio->bi_next;
  451. bio->bi_next = NULL;
  452. }
  453. return bio;
  454. }
  455. static int loop_make_request(struct request_queue *q, struct bio *old_bio)
  456. {
  457. struct loop_device *lo = q->queuedata;
  458. int rw = bio_rw(old_bio);
  459. if (rw == READA)
  460. rw = READ;
  461. BUG_ON(!lo || (rw != READ && rw != WRITE));
  462. spin_lock_irq(&lo->lo_lock);
  463. if (lo->lo_state != Lo_bound)
  464. goto out;
  465. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  466. goto out;
  467. loop_add_bio(lo, old_bio);
  468. wake_up(&lo->lo_event);
  469. spin_unlock_irq(&lo->lo_lock);
  470. return 0;
  471. out:
  472. spin_unlock_irq(&lo->lo_lock);
  473. bio_io_error(old_bio);
  474. return 0;
  475. }
  476. /*
  477. * kick off io on the underlying address space
  478. */
  479. static void loop_unplug(struct request_queue *q)
  480. {
  481. struct loop_device *lo = q->queuedata;
  482. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  483. blk_run_address_space(lo->lo_backing_file->f_mapping);
  484. }
  485. struct switch_request {
  486. struct file *file;
  487. struct completion wait;
  488. };
  489. static void do_loop_switch(struct loop_device *, struct switch_request *);
  490. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  491. {
  492. if (unlikely(!bio->bi_bdev)) {
  493. do_loop_switch(lo, bio->bi_private);
  494. bio_put(bio);
  495. } else {
  496. int ret = do_bio_filebacked(lo, bio);
  497. bio_endio(bio, ret);
  498. }
  499. }
  500. /*
  501. * worker thread that handles reads/writes to file backed loop devices,
  502. * to avoid blocking in our make_request_fn. it also does loop decrypting
  503. * on reads for block backed loop, as that is too heavy to do from
  504. * b_end_io context where irqs may be disabled.
  505. *
  506. * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
  507. * calling kthread_stop(). Therefore once kthread_should_stop() is
  508. * true, make_request will not place any more requests. Therefore
  509. * once kthread_should_stop() is true and lo_bio is NULL, we are
  510. * done with the loop.
  511. */
  512. static int loop_thread(void *data)
  513. {
  514. struct loop_device *lo = data;
  515. struct bio *bio;
  516. set_user_nice(current, -20);
  517. while (!kthread_should_stop() || lo->lo_bio) {
  518. wait_event_interruptible(lo->lo_event,
  519. lo->lo_bio || kthread_should_stop());
  520. if (!lo->lo_bio)
  521. continue;
  522. spin_lock_irq(&lo->lo_lock);
  523. bio = loop_get_bio(lo);
  524. spin_unlock_irq(&lo->lo_lock);
  525. BUG_ON(!bio);
  526. loop_handle_bio(lo, bio);
  527. }
  528. return 0;
  529. }
  530. /*
  531. * loop_switch performs the hard work of switching a backing store.
  532. * First it needs to flush existing IO, it does this by sending a magic
  533. * BIO down the pipe. The completion of this BIO does the actual switch.
  534. */
  535. static int loop_switch(struct loop_device *lo, struct file *file)
  536. {
  537. struct switch_request w;
  538. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  539. if (!bio)
  540. return -ENOMEM;
  541. init_completion(&w.wait);
  542. w.file = file;
  543. bio->bi_private = &w;
  544. bio->bi_bdev = NULL;
  545. loop_make_request(lo->lo_queue, bio);
  546. wait_for_completion(&w.wait);
  547. return 0;
  548. }
  549. /*
  550. * Do the actual switch; called from the BIO completion routine
  551. */
  552. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  553. {
  554. struct file *file = p->file;
  555. struct file *old_file = lo->lo_backing_file;
  556. struct address_space *mapping = file->f_mapping;
  557. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  558. lo->lo_backing_file = file;
  559. lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
  560. mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
  561. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  562. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  563. complete(&p->wait);
  564. }
  565. /*
  566. * loop_change_fd switched the backing store of a loopback device to
  567. * a new file. This is useful for operating system installers to free up
  568. * the original file and in High Availability environments to switch to
  569. * an alternative location for the content in case of server meltdown.
  570. * This can only work if the loop device is used read-only, and if the
  571. * new backing store is the same size and type as the old backing store.
  572. */
  573. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  574. struct block_device *bdev, unsigned int arg)
  575. {
  576. struct file *file, *old_file;
  577. struct inode *inode;
  578. int error;
  579. error = -ENXIO;
  580. if (lo->lo_state != Lo_bound)
  581. goto out;
  582. /* the loop device has to be read-only */
  583. error = -EINVAL;
  584. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  585. goto out;
  586. error = -EBADF;
  587. file = fget(arg);
  588. if (!file)
  589. goto out;
  590. inode = file->f_mapping->host;
  591. old_file = lo->lo_backing_file;
  592. error = -EINVAL;
  593. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  594. goto out_putf;
  595. /* new backing store needs to support loop (eg splice_read) */
  596. if (!inode->i_fop->splice_read)
  597. goto out_putf;
  598. /* size of the new backing store needs to be the same */
  599. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  600. goto out_putf;
  601. /* and ... switch */
  602. error = loop_switch(lo, file);
  603. if (error)
  604. goto out_putf;
  605. fput(old_file);
  606. return 0;
  607. out_putf:
  608. fput(file);
  609. out:
  610. return error;
  611. }
  612. static inline int is_loop_device(struct file *file)
  613. {
  614. struct inode *i = file->f_mapping->host;
  615. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  616. }
  617. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  618. struct block_device *bdev, unsigned int arg)
  619. {
  620. struct file *file, *f;
  621. struct inode *inode;
  622. struct address_space *mapping;
  623. unsigned lo_blocksize;
  624. int lo_flags = 0;
  625. int error;
  626. loff_t size;
  627. /* This is safe, since we have a reference from open(). */
  628. __module_get(THIS_MODULE);
  629. error = -EBADF;
  630. file = fget(arg);
  631. if (!file)
  632. goto out;
  633. error = -EBUSY;
  634. if (lo->lo_state != Lo_unbound)
  635. goto out_putf;
  636. /* Avoid recursion */
  637. f = file;
  638. while (is_loop_device(f)) {
  639. struct loop_device *l;
  640. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  641. goto out_putf;
  642. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  643. if (l->lo_state == Lo_unbound) {
  644. error = -EINVAL;
  645. goto out_putf;
  646. }
  647. f = l->lo_backing_file;
  648. }
  649. mapping = file->f_mapping;
  650. inode = mapping->host;
  651. if (!(file->f_mode & FMODE_WRITE))
  652. lo_flags |= LO_FLAGS_READ_ONLY;
  653. error = -EINVAL;
  654. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  655. const struct address_space_operations *aops = mapping->a_ops;
  656. /*
  657. * If we can't read - sorry. If we only can't write - well,
  658. * it's going to be read-only.
  659. */
  660. if (!file->f_op->splice_read)
  661. goto out_putf;
  662. if (aops->prepare_write || aops->write_begin)
  663. lo_flags |= LO_FLAGS_USE_AOPS;
  664. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  665. lo_flags |= LO_FLAGS_READ_ONLY;
  666. lo_blocksize = S_ISBLK(inode->i_mode) ?
  667. inode->i_bdev->bd_block_size : PAGE_SIZE;
  668. error = 0;
  669. } else {
  670. goto out_putf;
  671. }
  672. size = get_loop_size(lo, file);
  673. if ((loff_t)(sector_t)size != size) {
  674. error = -EFBIG;
  675. goto out_putf;
  676. }
  677. if (!(lo_file->f_mode & FMODE_WRITE))
  678. lo_flags |= LO_FLAGS_READ_ONLY;
  679. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  680. lo->lo_blocksize = lo_blocksize;
  681. lo->lo_device = bdev;
  682. lo->lo_flags = lo_flags;
  683. lo->lo_backing_file = file;
  684. lo->transfer = transfer_none;
  685. lo->ioctl = NULL;
  686. lo->lo_sizelimit = 0;
  687. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  688. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  689. lo->lo_bio = lo->lo_biotail = NULL;
  690. /*
  691. * set queue make_request_fn, and add limits based on lower level
  692. * device
  693. */
  694. blk_queue_make_request(lo->lo_queue, loop_make_request);
  695. lo->lo_queue->queuedata = lo;
  696. lo->lo_queue->unplug_fn = loop_unplug;
  697. set_capacity(lo->lo_disk, size);
  698. bd_set_size(bdev, size << 9);
  699. set_blocksize(bdev, lo_blocksize);
  700. lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
  701. lo->lo_number);
  702. if (IS_ERR(lo->lo_thread)) {
  703. error = PTR_ERR(lo->lo_thread);
  704. goto out_clr;
  705. }
  706. lo->lo_state = Lo_bound;
  707. wake_up_process(lo->lo_thread);
  708. return 0;
  709. out_clr:
  710. lo->lo_thread = NULL;
  711. lo->lo_device = NULL;
  712. lo->lo_backing_file = NULL;
  713. lo->lo_flags = 0;
  714. set_capacity(lo->lo_disk, 0);
  715. invalidate_bdev(bdev);
  716. bd_set_size(bdev, 0);
  717. mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
  718. lo->lo_state = Lo_unbound;
  719. out_putf:
  720. fput(file);
  721. out:
  722. /* This is safe: open() is still holding a reference. */
  723. module_put(THIS_MODULE);
  724. return error;
  725. }
  726. static int
  727. loop_release_xfer(struct loop_device *lo)
  728. {
  729. int err = 0;
  730. struct loop_func_table *xfer = lo->lo_encryption;
  731. if (xfer) {
  732. if (xfer->release)
  733. err = xfer->release(lo);
  734. lo->transfer = NULL;
  735. lo->lo_encryption = NULL;
  736. module_put(xfer->owner);
  737. }
  738. return err;
  739. }
  740. static int
  741. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  742. const struct loop_info64 *i)
  743. {
  744. int err = 0;
  745. if (xfer) {
  746. struct module *owner = xfer->owner;
  747. if (!try_module_get(owner))
  748. return -EINVAL;
  749. if (xfer->init)
  750. err = xfer->init(lo, i);
  751. if (err)
  752. module_put(owner);
  753. else
  754. lo->lo_encryption = xfer;
  755. }
  756. return err;
  757. }
  758. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  759. {
  760. struct file *filp = lo->lo_backing_file;
  761. gfp_t gfp = lo->old_gfp_mask;
  762. if (lo->lo_state != Lo_bound)
  763. return -ENXIO;
  764. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  765. return -EBUSY;
  766. if (filp == NULL)
  767. return -EINVAL;
  768. spin_lock_irq(&lo->lo_lock);
  769. lo->lo_state = Lo_rundown;
  770. spin_unlock_irq(&lo->lo_lock);
  771. kthread_stop(lo->lo_thread);
  772. lo->lo_backing_file = NULL;
  773. loop_release_xfer(lo);
  774. lo->transfer = NULL;
  775. lo->ioctl = NULL;
  776. lo->lo_device = NULL;
  777. lo->lo_encryption = NULL;
  778. lo->lo_offset = 0;
  779. lo->lo_sizelimit = 0;
  780. lo->lo_encrypt_key_size = 0;
  781. lo->lo_flags = 0;
  782. lo->lo_thread = NULL;
  783. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  784. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  785. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  786. invalidate_bdev(bdev);
  787. set_capacity(lo->lo_disk, 0);
  788. bd_set_size(bdev, 0);
  789. mapping_set_gfp_mask(filp->f_mapping, gfp);
  790. lo->lo_state = Lo_unbound;
  791. fput(filp);
  792. /* This is safe: open() is still holding a reference. */
  793. module_put(THIS_MODULE);
  794. return 0;
  795. }
  796. static int
  797. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  798. {
  799. int err;
  800. struct loop_func_table *xfer;
  801. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  802. !capable(CAP_SYS_ADMIN))
  803. return -EPERM;
  804. if (lo->lo_state != Lo_bound)
  805. return -ENXIO;
  806. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  807. return -EINVAL;
  808. err = loop_release_xfer(lo);
  809. if (err)
  810. return err;
  811. if (info->lo_encrypt_type) {
  812. unsigned int type = info->lo_encrypt_type;
  813. if (type >= MAX_LO_CRYPT)
  814. return -EINVAL;
  815. xfer = xfer_funcs[type];
  816. if (xfer == NULL)
  817. return -EINVAL;
  818. } else
  819. xfer = NULL;
  820. err = loop_init_xfer(lo, xfer, info);
  821. if (err)
  822. return err;
  823. if (lo->lo_offset != info->lo_offset ||
  824. lo->lo_sizelimit != info->lo_sizelimit) {
  825. lo->lo_offset = info->lo_offset;
  826. lo->lo_sizelimit = info->lo_sizelimit;
  827. if (figure_loop_size(lo))
  828. return -EFBIG;
  829. }
  830. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  831. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  832. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  833. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  834. if (!xfer)
  835. xfer = &none_funcs;
  836. lo->transfer = xfer->transfer;
  837. lo->ioctl = xfer->ioctl;
  838. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  839. lo->lo_init[0] = info->lo_init[0];
  840. lo->lo_init[1] = info->lo_init[1];
  841. if (info->lo_encrypt_key_size) {
  842. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  843. info->lo_encrypt_key_size);
  844. lo->lo_key_owner = current->uid;
  845. }
  846. return 0;
  847. }
  848. static int
  849. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  850. {
  851. struct file *file = lo->lo_backing_file;
  852. struct kstat stat;
  853. int error;
  854. if (lo->lo_state != Lo_bound)
  855. return -ENXIO;
  856. error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
  857. if (error)
  858. return error;
  859. memset(info, 0, sizeof(*info));
  860. info->lo_number = lo->lo_number;
  861. info->lo_device = huge_encode_dev(stat.dev);
  862. info->lo_inode = stat.ino;
  863. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  864. info->lo_offset = lo->lo_offset;
  865. info->lo_sizelimit = lo->lo_sizelimit;
  866. info->lo_flags = lo->lo_flags;
  867. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  868. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  869. info->lo_encrypt_type =
  870. lo->lo_encryption ? lo->lo_encryption->number : 0;
  871. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  872. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  873. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  874. lo->lo_encrypt_key_size);
  875. }
  876. return 0;
  877. }
  878. static void
  879. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  880. {
  881. memset(info64, 0, sizeof(*info64));
  882. info64->lo_number = info->lo_number;
  883. info64->lo_device = info->lo_device;
  884. info64->lo_inode = info->lo_inode;
  885. info64->lo_rdevice = info->lo_rdevice;
  886. info64->lo_offset = info->lo_offset;
  887. info64->lo_sizelimit = 0;
  888. info64->lo_encrypt_type = info->lo_encrypt_type;
  889. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  890. info64->lo_flags = info->lo_flags;
  891. info64->lo_init[0] = info->lo_init[0];
  892. info64->lo_init[1] = info->lo_init[1];
  893. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  894. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  895. else
  896. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  897. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  898. }
  899. static int
  900. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  901. {
  902. memset(info, 0, sizeof(*info));
  903. info->lo_number = info64->lo_number;
  904. info->lo_device = info64->lo_device;
  905. info->lo_inode = info64->lo_inode;
  906. info->lo_rdevice = info64->lo_rdevice;
  907. info->lo_offset = info64->lo_offset;
  908. info->lo_encrypt_type = info64->lo_encrypt_type;
  909. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  910. info->lo_flags = info64->lo_flags;
  911. info->lo_init[0] = info64->lo_init[0];
  912. info->lo_init[1] = info64->lo_init[1];
  913. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  914. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  915. else
  916. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  917. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  918. /* error in case values were truncated */
  919. if (info->lo_device != info64->lo_device ||
  920. info->lo_rdevice != info64->lo_rdevice ||
  921. info->lo_inode != info64->lo_inode ||
  922. info->lo_offset != info64->lo_offset)
  923. return -EOVERFLOW;
  924. return 0;
  925. }
  926. static int
  927. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  928. {
  929. struct loop_info info;
  930. struct loop_info64 info64;
  931. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  932. return -EFAULT;
  933. loop_info64_from_old(&info, &info64);
  934. return loop_set_status(lo, &info64);
  935. }
  936. static int
  937. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  938. {
  939. struct loop_info64 info64;
  940. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  941. return -EFAULT;
  942. return loop_set_status(lo, &info64);
  943. }
  944. static int
  945. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  946. struct loop_info info;
  947. struct loop_info64 info64;
  948. int err = 0;
  949. if (!arg)
  950. err = -EINVAL;
  951. if (!err)
  952. err = loop_get_status(lo, &info64);
  953. if (!err)
  954. err = loop_info64_to_old(&info64, &info);
  955. if (!err && copy_to_user(arg, &info, sizeof(info)))
  956. err = -EFAULT;
  957. return err;
  958. }
  959. static int
  960. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  961. struct loop_info64 info64;
  962. int err = 0;
  963. if (!arg)
  964. err = -EINVAL;
  965. if (!err)
  966. err = loop_get_status(lo, &info64);
  967. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  968. err = -EFAULT;
  969. return err;
  970. }
  971. static int lo_ioctl(struct inode * inode, struct file * file,
  972. unsigned int cmd, unsigned long arg)
  973. {
  974. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  975. int err;
  976. mutex_lock(&lo->lo_ctl_mutex);
  977. switch (cmd) {
  978. case LOOP_SET_FD:
  979. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  980. break;
  981. case LOOP_CHANGE_FD:
  982. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  983. break;
  984. case LOOP_CLR_FD:
  985. err = loop_clr_fd(lo, inode->i_bdev);
  986. break;
  987. case LOOP_SET_STATUS:
  988. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  989. break;
  990. case LOOP_GET_STATUS:
  991. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  992. break;
  993. case LOOP_SET_STATUS64:
  994. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  995. break;
  996. case LOOP_GET_STATUS64:
  997. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  998. break;
  999. default:
  1000. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1001. }
  1002. mutex_unlock(&lo->lo_ctl_mutex);
  1003. return err;
  1004. }
  1005. #ifdef CONFIG_COMPAT
  1006. struct compat_loop_info {
  1007. compat_int_t lo_number; /* ioctl r/o */
  1008. compat_dev_t lo_device; /* ioctl r/o */
  1009. compat_ulong_t lo_inode; /* ioctl r/o */
  1010. compat_dev_t lo_rdevice; /* ioctl r/o */
  1011. compat_int_t lo_offset;
  1012. compat_int_t lo_encrypt_type;
  1013. compat_int_t lo_encrypt_key_size; /* ioctl w/o */
  1014. compat_int_t lo_flags; /* ioctl r/o */
  1015. char lo_name[LO_NAME_SIZE];
  1016. unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
  1017. compat_ulong_t lo_init[2];
  1018. char reserved[4];
  1019. };
  1020. /*
  1021. * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
  1022. * - noinlined to reduce stack space usage in main part of driver
  1023. */
  1024. static noinline int
  1025. loop_info64_from_compat(const struct compat_loop_info __user *arg,
  1026. struct loop_info64 *info64)
  1027. {
  1028. struct compat_loop_info info;
  1029. if (copy_from_user(&info, arg, sizeof(info)))
  1030. return -EFAULT;
  1031. memset(info64, 0, sizeof(*info64));
  1032. info64->lo_number = info.lo_number;
  1033. info64->lo_device = info.lo_device;
  1034. info64->lo_inode = info.lo_inode;
  1035. info64->lo_rdevice = info.lo_rdevice;
  1036. info64->lo_offset = info.lo_offset;
  1037. info64->lo_sizelimit = 0;
  1038. info64->lo_encrypt_type = info.lo_encrypt_type;
  1039. info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
  1040. info64->lo_flags = info.lo_flags;
  1041. info64->lo_init[0] = info.lo_init[0];
  1042. info64->lo_init[1] = info.lo_init[1];
  1043. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1044. memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
  1045. else
  1046. memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
  1047. memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
  1048. return 0;
  1049. }
  1050. /*
  1051. * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
  1052. * - noinlined to reduce stack space usage in main part of driver
  1053. */
  1054. static noinline int
  1055. loop_info64_to_compat(const struct loop_info64 *info64,
  1056. struct compat_loop_info __user *arg)
  1057. {
  1058. struct compat_loop_info info;
  1059. memset(&info, 0, sizeof(info));
  1060. info.lo_number = info64->lo_number;
  1061. info.lo_device = info64->lo_device;
  1062. info.lo_inode = info64->lo_inode;
  1063. info.lo_rdevice = info64->lo_rdevice;
  1064. info.lo_offset = info64->lo_offset;
  1065. info.lo_encrypt_type = info64->lo_encrypt_type;
  1066. info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
  1067. info.lo_flags = info64->lo_flags;
  1068. info.lo_init[0] = info64->lo_init[0];
  1069. info.lo_init[1] = info64->lo_init[1];
  1070. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1071. memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  1072. else
  1073. memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
  1074. memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  1075. /* error in case values were truncated */
  1076. if (info.lo_device != info64->lo_device ||
  1077. info.lo_rdevice != info64->lo_rdevice ||
  1078. info.lo_inode != info64->lo_inode ||
  1079. info.lo_offset != info64->lo_offset ||
  1080. info.lo_init[0] != info64->lo_init[0] ||
  1081. info.lo_init[1] != info64->lo_init[1])
  1082. return -EOVERFLOW;
  1083. if (copy_to_user(arg, &info, sizeof(info)))
  1084. return -EFAULT;
  1085. return 0;
  1086. }
  1087. static int
  1088. loop_set_status_compat(struct loop_device *lo,
  1089. const struct compat_loop_info __user *arg)
  1090. {
  1091. struct loop_info64 info64;
  1092. int ret;
  1093. ret = loop_info64_from_compat(arg, &info64);
  1094. if (ret < 0)
  1095. return ret;
  1096. return loop_set_status(lo, &info64);
  1097. }
  1098. static int
  1099. loop_get_status_compat(struct loop_device *lo,
  1100. struct compat_loop_info __user *arg)
  1101. {
  1102. struct loop_info64 info64;
  1103. int err = 0;
  1104. if (!arg)
  1105. err = -EINVAL;
  1106. if (!err)
  1107. err = loop_get_status(lo, &info64);
  1108. if (!err)
  1109. err = loop_info64_to_compat(&info64, arg);
  1110. return err;
  1111. }
  1112. static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1113. {
  1114. struct inode *inode = file->f_path.dentry->d_inode;
  1115. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1116. int err;
  1117. lock_kernel();
  1118. switch(cmd) {
  1119. case LOOP_SET_STATUS:
  1120. mutex_lock(&lo->lo_ctl_mutex);
  1121. err = loop_set_status_compat(
  1122. lo, (const struct compat_loop_info __user *) arg);
  1123. mutex_unlock(&lo->lo_ctl_mutex);
  1124. break;
  1125. case LOOP_GET_STATUS:
  1126. mutex_lock(&lo->lo_ctl_mutex);
  1127. err = loop_get_status_compat(
  1128. lo, (struct compat_loop_info __user *) arg);
  1129. mutex_unlock(&lo->lo_ctl_mutex);
  1130. break;
  1131. case LOOP_CLR_FD:
  1132. case LOOP_GET_STATUS64:
  1133. case LOOP_SET_STATUS64:
  1134. arg = (unsigned long) compat_ptr(arg);
  1135. case LOOP_SET_FD:
  1136. case LOOP_CHANGE_FD:
  1137. err = lo_ioctl(inode, file, cmd, arg);
  1138. break;
  1139. default:
  1140. err = -ENOIOCTLCMD;
  1141. break;
  1142. }
  1143. unlock_kernel();
  1144. return err;
  1145. }
  1146. #endif
  1147. static int lo_open(struct inode *inode, struct file *file)
  1148. {
  1149. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1150. mutex_lock(&lo->lo_ctl_mutex);
  1151. lo->lo_refcnt++;
  1152. mutex_unlock(&lo->lo_ctl_mutex);
  1153. return 0;
  1154. }
  1155. static int lo_release(struct inode *inode, struct file *file)
  1156. {
  1157. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1158. mutex_lock(&lo->lo_ctl_mutex);
  1159. --lo->lo_refcnt;
  1160. mutex_unlock(&lo->lo_ctl_mutex);
  1161. return 0;
  1162. }
  1163. static struct block_device_operations lo_fops = {
  1164. .owner = THIS_MODULE,
  1165. .open = lo_open,
  1166. .release = lo_release,
  1167. .ioctl = lo_ioctl,
  1168. #ifdef CONFIG_COMPAT
  1169. .compat_ioctl = lo_compat_ioctl,
  1170. #endif
  1171. };
  1172. /*
  1173. * And now the modules code and kernel interface.
  1174. */
  1175. static int max_loop;
  1176. module_param(max_loop, int, 0);
  1177. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
  1178. MODULE_LICENSE("GPL");
  1179. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1180. int loop_register_transfer(struct loop_func_table *funcs)
  1181. {
  1182. unsigned int n = funcs->number;
  1183. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1184. return -EINVAL;
  1185. xfer_funcs[n] = funcs;
  1186. return 0;
  1187. }
  1188. int loop_unregister_transfer(int number)
  1189. {
  1190. unsigned int n = number;
  1191. struct loop_device *lo;
  1192. struct loop_func_table *xfer;
  1193. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1194. return -EINVAL;
  1195. xfer_funcs[n] = NULL;
  1196. list_for_each_entry(lo, &loop_devices, lo_list) {
  1197. mutex_lock(&lo->lo_ctl_mutex);
  1198. if (lo->lo_encryption == xfer)
  1199. loop_release_xfer(lo);
  1200. mutex_unlock(&lo->lo_ctl_mutex);
  1201. }
  1202. return 0;
  1203. }
  1204. EXPORT_SYMBOL(loop_register_transfer);
  1205. EXPORT_SYMBOL(loop_unregister_transfer);
  1206. static struct loop_device *loop_alloc(int i)
  1207. {
  1208. struct loop_device *lo;
  1209. struct gendisk *disk;
  1210. lo = kzalloc(sizeof(*lo), GFP_KERNEL);
  1211. if (!lo)
  1212. goto out;
  1213. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1214. if (!lo->lo_queue)
  1215. goto out_free_dev;
  1216. disk = lo->lo_disk = alloc_disk(1);
  1217. if (!disk)
  1218. goto out_free_queue;
  1219. mutex_init(&lo->lo_ctl_mutex);
  1220. lo->lo_number = i;
  1221. lo->lo_thread = NULL;
  1222. init_waitqueue_head(&lo->lo_event);
  1223. spin_lock_init(&lo->lo_lock);
  1224. disk->major = LOOP_MAJOR;
  1225. disk->first_minor = i;
  1226. disk->fops = &lo_fops;
  1227. disk->private_data = lo;
  1228. disk->queue = lo->lo_queue;
  1229. sprintf(disk->disk_name, "loop%d", i);
  1230. return lo;
  1231. out_free_queue:
  1232. blk_cleanup_queue(lo->lo_queue);
  1233. out_free_dev:
  1234. kfree(lo);
  1235. out:
  1236. return NULL;
  1237. }
  1238. static void loop_free(struct loop_device *lo)
  1239. {
  1240. blk_cleanup_queue(lo->lo_queue);
  1241. put_disk(lo->lo_disk);
  1242. list_del(&lo->lo_list);
  1243. kfree(lo);
  1244. }
  1245. static struct loop_device *loop_init_one(int i)
  1246. {
  1247. struct loop_device *lo;
  1248. list_for_each_entry(lo, &loop_devices, lo_list) {
  1249. if (lo->lo_number == i)
  1250. return lo;
  1251. }
  1252. lo = loop_alloc(i);
  1253. if (lo) {
  1254. add_disk(lo->lo_disk);
  1255. list_add_tail(&lo->lo_list, &loop_devices);
  1256. }
  1257. return lo;
  1258. }
  1259. static void loop_del_one(struct loop_device *lo)
  1260. {
  1261. del_gendisk(lo->lo_disk);
  1262. loop_free(lo);
  1263. }
  1264. static struct kobject *loop_probe(dev_t dev, int *part, void *data)
  1265. {
  1266. struct loop_device *lo;
  1267. struct kobject *kobj;
  1268. mutex_lock(&loop_devices_mutex);
  1269. lo = loop_init_one(dev & MINORMASK);
  1270. kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
  1271. mutex_unlock(&loop_devices_mutex);
  1272. *part = 0;
  1273. return kobj;
  1274. }
  1275. static int __init loop_init(void)
  1276. {
  1277. int i, nr;
  1278. unsigned long range;
  1279. struct loop_device *lo, *next;
  1280. /*
  1281. * loop module now has a feature to instantiate underlying device
  1282. * structure on-demand, provided that there is an access dev node.
  1283. * However, this will not work well with user space tool that doesn't
  1284. * know about such "feature". In order to not break any existing
  1285. * tool, we do the following:
  1286. *
  1287. * (1) if max_loop is specified, create that many upfront, and this
  1288. * also becomes a hard limit.
  1289. * (2) if max_loop is not specified, create 8 loop device on module
  1290. * load, user can further extend loop device by create dev node
  1291. * themselves and have kernel automatically instantiate actual
  1292. * device on-demand.
  1293. */
  1294. if (max_loop > 1UL << MINORBITS)
  1295. return -EINVAL;
  1296. if (max_loop) {
  1297. nr = max_loop;
  1298. range = max_loop;
  1299. } else {
  1300. nr = 8;
  1301. range = 1UL << MINORBITS;
  1302. }
  1303. if (register_blkdev(LOOP_MAJOR, "loop"))
  1304. return -EIO;
  1305. for (i = 0; i < nr; i++) {
  1306. lo = loop_alloc(i);
  1307. if (!lo)
  1308. goto Enomem;
  1309. list_add_tail(&lo->lo_list, &loop_devices);
  1310. }
  1311. /* point of no return */
  1312. list_for_each_entry(lo, &loop_devices, lo_list)
  1313. add_disk(lo->lo_disk);
  1314. blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
  1315. THIS_MODULE, loop_probe, NULL, NULL);
  1316. printk(KERN_INFO "loop: module loaded\n");
  1317. return 0;
  1318. Enomem:
  1319. printk(KERN_INFO "loop: out of memory\n");
  1320. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1321. loop_free(lo);
  1322. unregister_blkdev(LOOP_MAJOR, "loop");
  1323. return -ENOMEM;
  1324. }
  1325. static void __exit loop_exit(void)
  1326. {
  1327. unsigned long range;
  1328. struct loop_device *lo, *next;
  1329. range = max_loop ? max_loop : 1UL << MINORBITS;
  1330. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1331. loop_del_one(lo);
  1332. blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
  1333. unregister_blkdev(LOOP_MAJOR, "loop");
  1334. }
  1335. module_init(loop_init);
  1336. module_exit(loop_exit);
  1337. #ifndef MODULE
  1338. static int __init max_loop_setup(char *str)
  1339. {
  1340. max_loop = simple_strtol(str, NULL, 0);
  1341. return 1;
  1342. }
  1343. __setup("max_loop=", max_loop_setup);
  1344. #endif