data.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/bio.h>
  19. #include <linux/prefetch.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include <trace/events/f2fs.h>
  24. /*
  25. * Lock ordering for the change of data block address:
  26. * ->data_page
  27. * ->node_page
  28. * update block addresses in the node page
  29. */
  30. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  31. {
  32. struct f2fs_node *rn;
  33. __le32 *addr_array;
  34. struct page *node_page = dn->node_page;
  35. unsigned int ofs_in_node = dn->ofs_in_node;
  36. wait_on_page_writeback(node_page);
  37. rn = (struct f2fs_node *)page_address(node_page);
  38. /* Get physical address of data block */
  39. addr_array = blkaddr_in_node(rn);
  40. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  41. set_page_dirty(node_page);
  42. }
  43. int reserve_new_block(struct dnode_of_data *dn)
  44. {
  45. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  46. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  47. return -EPERM;
  48. if (!inc_valid_block_count(sbi, dn->inode, 1))
  49. return -ENOSPC;
  50. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  51. __set_data_blkaddr(dn, NEW_ADDR);
  52. dn->data_blkaddr = NEW_ADDR;
  53. sync_inode_page(dn);
  54. return 0;
  55. }
  56. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  57. struct buffer_head *bh_result)
  58. {
  59. struct f2fs_inode_info *fi = F2FS_I(inode);
  60. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  61. pgoff_t start_fofs, end_fofs;
  62. block_t start_blkaddr;
  63. read_lock(&fi->ext.ext_lock);
  64. if (fi->ext.len == 0) {
  65. read_unlock(&fi->ext.ext_lock);
  66. return 0;
  67. }
  68. sbi->total_hit_ext++;
  69. start_fofs = fi->ext.fofs;
  70. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  71. start_blkaddr = fi->ext.blk_addr;
  72. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  73. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  74. size_t count;
  75. clear_buffer_new(bh_result);
  76. map_bh(bh_result, inode->i_sb,
  77. start_blkaddr + pgofs - start_fofs);
  78. count = end_fofs - pgofs + 1;
  79. if (count < (UINT_MAX >> blkbits))
  80. bh_result->b_size = (count << blkbits);
  81. else
  82. bh_result->b_size = UINT_MAX;
  83. sbi->read_hit_ext++;
  84. read_unlock(&fi->ext.ext_lock);
  85. return 1;
  86. }
  87. read_unlock(&fi->ext.ext_lock);
  88. return 0;
  89. }
  90. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  91. {
  92. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  93. pgoff_t fofs, start_fofs, end_fofs;
  94. block_t start_blkaddr, end_blkaddr;
  95. BUG_ON(blk_addr == NEW_ADDR);
  96. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  97. /* Update the page address in the parent node */
  98. __set_data_blkaddr(dn, blk_addr);
  99. write_lock(&fi->ext.ext_lock);
  100. start_fofs = fi->ext.fofs;
  101. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  102. start_blkaddr = fi->ext.blk_addr;
  103. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  104. /* Drop and initialize the matched extent */
  105. if (fi->ext.len == 1 && fofs == start_fofs)
  106. fi->ext.len = 0;
  107. /* Initial extent */
  108. if (fi->ext.len == 0) {
  109. if (blk_addr != NULL_ADDR) {
  110. fi->ext.fofs = fofs;
  111. fi->ext.blk_addr = blk_addr;
  112. fi->ext.len = 1;
  113. }
  114. goto end_update;
  115. }
  116. /* Front merge */
  117. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  118. fi->ext.fofs--;
  119. fi->ext.blk_addr--;
  120. fi->ext.len++;
  121. goto end_update;
  122. }
  123. /* Back merge */
  124. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  125. fi->ext.len++;
  126. goto end_update;
  127. }
  128. /* Split the existing extent */
  129. if (fi->ext.len > 1 &&
  130. fofs >= start_fofs && fofs <= end_fofs) {
  131. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  132. fi->ext.len = fofs - start_fofs;
  133. } else {
  134. fi->ext.fofs = fofs + 1;
  135. fi->ext.blk_addr = start_blkaddr +
  136. fofs - start_fofs + 1;
  137. fi->ext.len -= fofs - start_fofs + 1;
  138. }
  139. goto end_update;
  140. }
  141. write_unlock(&fi->ext.ext_lock);
  142. return;
  143. end_update:
  144. write_unlock(&fi->ext.ext_lock);
  145. sync_inode_page(dn);
  146. return;
  147. }
  148. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  149. {
  150. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  151. struct address_space *mapping = inode->i_mapping;
  152. struct dnode_of_data dn;
  153. struct page *page;
  154. int err;
  155. page = find_get_page(mapping, index);
  156. if (page && PageUptodate(page))
  157. return page;
  158. f2fs_put_page(page, 0);
  159. set_new_dnode(&dn, inode, NULL, NULL, 0);
  160. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  161. if (err)
  162. return ERR_PTR(err);
  163. f2fs_put_dnode(&dn);
  164. if (dn.data_blkaddr == NULL_ADDR)
  165. return ERR_PTR(-ENOENT);
  166. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  167. if (dn.data_blkaddr == NEW_ADDR)
  168. return ERR_PTR(-EINVAL);
  169. page = grab_cache_page(mapping, index);
  170. if (!page)
  171. return ERR_PTR(-ENOMEM);
  172. if (PageUptodate(page)) {
  173. unlock_page(page);
  174. return page;
  175. }
  176. err = f2fs_readpage(sbi, page, dn.data_blkaddr,
  177. sync ? READ_SYNC : READA);
  178. if (sync) {
  179. wait_on_page_locked(page);
  180. if (!PageUptodate(page)) {
  181. f2fs_put_page(page, 0);
  182. return ERR_PTR(-EIO);
  183. }
  184. }
  185. return page;
  186. }
  187. /*
  188. * If it tries to access a hole, return an error.
  189. * Because, the callers, functions in dir.c and GC, should be able to know
  190. * whether this page exists or not.
  191. */
  192. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  193. {
  194. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  195. struct address_space *mapping = inode->i_mapping;
  196. struct dnode_of_data dn;
  197. struct page *page;
  198. int err;
  199. set_new_dnode(&dn, inode, NULL, NULL, 0);
  200. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  201. if (err)
  202. return ERR_PTR(err);
  203. f2fs_put_dnode(&dn);
  204. if (dn.data_blkaddr == NULL_ADDR)
  205. return ERR_PTR(-ENOENT);
  206. repeat:
  207. page = grab_cache_page(mapping, index);
  208. if (!page)
  209. return ERR_PTR(-ENOMEM);
  210. if (PageUptodate(page))
  211. return page;
  212. BUG_ON(dn.data_blkaddr == NEW_ADDR);
  213. BUG_ON(dn.data_blkaddr == NULL_ADDR);
  214. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  215. if (err)
  216. return ERR_PTR(err);
  217. lock_page(page);
  218. if (!PageUptodate(page)) {
  219. f2fs_put_page(page, 1);
  220. return ERR_PTR(-EIO);
  221. }
  222. if (page->mapping != mapping) {
  223. f2fs_put_page(page, 1);
  224. goto repeat;
  225. }
  226. return page;
  227. }
  228. /*
  229. * Caller ensures that this data page is never allocated.
  230. * A new zero-filled data page is allocated in the page cache.
  231. *
  232. * Also, caller should grab and release a mutex by calling mutex_lock_op() and
  233. * mutex_unlock_op().
  234. */
  235. struct page *get_new_data_page(struct inode *inode, pgoff_t index,
  236. bool new_i_size)
  237. {
  238. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  239. struct address_space *mapping = inode->i_mapping;
  240. struct page *page;
  241. struct dnode_of_data dn;
  242. int err;
  243. set_new_dnode(&dn, inode, NULL, NULL, 0);
  244. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  245. if (err)
  246. return ERR_PTR(err);
  247. if (dn.data_blkaddr == NULL_ADDR) {
  248. if (reserve_new_block(&dn)) {
  249. f2fs_put_dnode(&dn);
  250. return ERR_PTR(-ENOSPC);
  251. }
  252. }
  253. f2fs_put_dnode(&dn);
  254. repeat:
  255. page = grab_cache_page(mapping, index);
  256. if (!page)
  257. return ERR_PTR(-ENOMEM);
  258. if (PageUptodate(page))
  259. return page;
  260. if (dn.data_blkaddr == NEW_ADDR) {
  261. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  262. SetPageUptodate(page);
  263. } else {
  264. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  265. if (err)
  266. return ERR_PTR(err);
  267. lock_page(page);
  268. if (!PageUptodate(page)) {
  269. f2fs_put_page(page, 1);
  270. return ERR_PTR(-EIO);
  271. }
  272. if (page->mapping != mapping) {
  273. f2fs_put_page(page, 1);
  274. goto repeat;
  275. }
  276. }
  277. if (new_i_size &&
  278. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  279. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  280. mark_inode_dirty_sync(inode);
  281. }
  282. return page;
  283. }
  284. static void read_end_io(struct bio *bio, int err)
  285. {
  286. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  287. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  288. do {
  289. struct page *page = bvec->bv_page;
  290. if (--bvec >= bio->bi_io_vec)
  291. prefetchw(&bvec->bv_page->flags);
  292. if (uptodate) {
  293. SetPageUptodate(page);
  294. } else {
  295. ClearPageUptodate(page);
  296. SetPageError(page);
  297. }
  298. unlock_page(page);
  299. } while (bvec >= bio->bi_io_vec);
  300. kfree(bio->bi_private);
  301. bio_put(bio);
  302. }
  303. /*
  304. * Fill the locked page with data located in the block address.
  305. * Return unlocked page.
  306. */
  307. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  308. block_t blk_addr, int type)
  309. {
  310. struct block_device *bdev = sbi->sb->s_bdev;
  311. struct bio *bio;
  312. trace_f2fs_readpage(page, blk_addr, type);
  313. down_read(&sbi->bio_sem);
  314. /* Allocate a new bio */
  315. bio = f2fs_bio_alloc(bdev, 1);
  316. /* Initialize the bio */
  317. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  318. bio->bi_end_io = read_end_io;
  319. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  320. kfree(bio->bi_private);
  321. bio_put(bio);
  322. up_read(&sbi->bio_sem);
  323. f2fs_put_page(page, 1);
  324. return -EFAULT;
  325. }
  326. submit_bio(type, bio);
  327. up_read(&sbi->bio_sem);
  328. return 0;
  329. }
  330. /*
  331. * This function should be used by the data read flow only where it
  332. * does not check the "create" flag that indicates block allocation.
  333. * The reason for this special functionality is to exploit VFS readahead
  334. * mechanism.
  335. */
  336. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  337. struct buffer_head *bh_result, int create)
  338. {
  339. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  340. unsigned maxblocks = bh_result->b_size >> blkbits;
  341. struct dnode_of_data dn;
  342. pgoff_t pgofs;
  343. int err;
  344. /* Get the page offset from the block offset(iblock) */
  345. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  346. if (check_extent_cache(inode, pgofs, bh_result)) {
  347. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  348. return 0;
  349. }
  350. /* When reading holes, we need its node page */
  351. set_new_dnode(&dn, inode, NULL, NULL, 0);
  352. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  353. if (err) {
  354. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  355. return (err == -ENOENT) ? 0 : err;
  356. }
  357. /* It does not support data allocation */
  358. BUG_ON(create);
  359. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  360. int i;
  361. unsigned int end_offset;
  362. end_offset = IS_INODE(dn.node_page) ?
  363. ADDRS_PER_INODE :
  364. ADDRS_PER_BLOCK;
  365. clear_buffer_new(bh_result);
  366. /* Give more consecutive addresses for the read ahead */
  367. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  368. if (((datablock_addr(dn.node_page,
  369. dn.ofs_in_node + i))
  370. != (dn.data_blkaddr + i)) || maxblocks == i)
  371. break;
  372. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  373. bh_result->b_size = (i << blkbits);
  374. }
  375. f2fs_put_dnode(&dn);
  376. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  377. return 0;
  378. }
  379. static int f2fs_read_data_page(struct file *file, struct page *page)
  380. {
  381. return mpage_readpage(page, get_data_block_ro);
  382. }
  383. static int f2fs_read_data_pages(struct file *file,
  384. struct address_space *mapping,
  385. struct list_head *pages, unsigned nr_pages)
  386. {
  387. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  388. }
  389. int do_write_data_page(struct page *page)
  390. {
  391. struct inode *inode = page->mapping->host;
  392. block_t old_blk_addr, new_blk_addr;
  393. struct dnode_of_data dn;
  394. int err = 0;
  395. set_new_dnode(&dn, inode, NULL, NULL, 0);
  396. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  397. if (err)
  398. return err;
  399. old_blk_addr = dn.data_blkaddr;
  400. /* This page is already truncated */
  401. if (old_blk_addr == NULL_ADDR)
  402. goto out_writepage;
  403. set_page_writeback(page);
  404. /*
  405. * If current allocation needs SSR,
  406. * it had better in-place writes for updated data.
  407. */
  408. if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
  409. need_inplace_update(inode)) {
  410. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  411. old_blk_addr);
  412. } else {
  413. write_data_page(inode, page, &dn,
  414. old_blk_addr, &new_blk_addr);
  415. update_extent_cache(new_blk_addr, &dn);
  416. }
  417. out_writepage:
  418. f2fs_put_dnode(&dn);
  419. return err;
  420. }
  421. static int f2fs_write_data_page(struct page *page,
  422. struct writeback_control *wbc)
  423. {
  424. struct inode *inode = page->mapping->host;
  425. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  426. loff_t i_size = i_size_read(inode);
  427. const pgoff_t end_index = ((unsigned long long) i_size)
  428. >> PAGE_CACHE_SHIFT;
  429. unsigned offset;
  430. bool need_balance_fs = false;
  431. int err = 0;
  432. if (page->index < end_index)
  433. goto write;
  434. /*
  435. * If the offset is out-of-range of file size,
  436. * this page does not have to be written to disk.
  437. */
  438. offset = i_size & (PAGE_CACHE_SIZE - 1);
  439. if ((page->index >= end_index + 1) || !offset) {
  440. if (S_ISDIR(inode->i_mode)) {
  441. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  442. inode_dec_dirty_dents(inode);
  443. }
  444. goto out;
  445. }
  446. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  447. write:
  448. if (sbi->por_doing) {
  449. err = AOP_WRITEPAGE_ACTIVATE;
  450. goto redirty_out;
  451. }
  452. /* Dentry blocks are controlled by checkpoint */
  453. if (S_ISDIR(inode->i_mode)) {
  454. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  455. inode_dec_dirty_dents(inode);
  456. err = do_write_data_page(page);
  457. } else {
  458. int ilock = mutex_lock_op(sbi);
  459. err = do_write_data_page(page);
  460. mutex_unlock_op(sbi, ilock);
  461. need_balance_fs = true;
  462. }
  463. if (err == -ENOENT)
  464. goto out;
  465. else if (err)
  466. goto redirty_out;
  467. if (wbc->for_reclaim)
  468. f2fs_submit_bio(sbi, DATA, true);
  469. clear_cold_data(page);
  470. out:
  471. unlock_page(page);
  472. if (need_balance_fs)
  473. f2fs_balance_fs(sbi);
  474. return 0;
  475. redirty_out:
  476. wbc->pages_skipped++;
  477. set_page_dirty(page);
  478. return err;
  479. }
  480. #define MAX_DESIRED_PAGES_WP 4096
  481. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  482. void *data)
  483. {
  484. struct address_space *mapping = data;
  485. int ret = mapping->a_ops->writepage(page, wbc);
  486. mapping_set_error(mapping, ret);
  487. return ret;
  488. }
  489. static int f2fs_write_data_pages(struct address_space *mapping,
  490. struct writeback_control *wbc)
  491. {
  492. struct inode *inode = mapping->host;
  493. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  494. int ret;
  495. long excess_nrtw = 0, desired_nrtw;
  496. /* deal with chardevs and other special file */
  497. if (!mapping->a_ops->writepage)
  498. return 0;
  499. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  500. desired_nrtw = MAX_DESIRED_PAGES_WP;
  501. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  502. wbc->nr_to_write = desired_nrtw;
  503. }
  504. if (!S_ISDIR(inode->i_mode))
  505. mutex_lock(&sbi->writepages);
  506. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  507. if (!S_ISDIR(inode->i_mode))
  508. mutex_unlock(&sbi->writepages);
  509. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  510. remove_dirty_dir_inode(inode);
  511. wbc->nr_to_write -= excess_nrtw;
  512. return ret;
  513. }
  514. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  515. loff_t pos, unsigned len, unsigned flags,
  516. struct page **pagep, void **fsdata)
  517. {
  518. struct inode *inode = mapping->host;
  519. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  520. struct page *page;
  521. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  522. struct dnode_of_data dn;
  523. int err = 0;
  524. int ilock;
  525. /* for nobh_write_end */
  526. *fsdata = NULL;
  527. f2fs_balance_fs(sbi);
  528. repeat:
  529. page = grab_cache_page_write_begin(mapping, index, flags);
  530. if (!page)
  531. return -ENOMEM;
  532. *pagep = page;
  533. ilock = mutex_lock_op(sbi);
  534. set_new_dnode(&dn, inode, NULL, NULL, 0);
  535. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  536. if (err)
  537. goto err;
  538. if (dn.data_blkaddr == NULL_ADDR)
  539. err = reserve_new_block(&dn);
  540. f2fs_put_dnode(&dn);
  541. if (err)
  542. goto err;
  543. mutex_unlock_op(sbi, ilock);
  544. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  545. return 0;
  546. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  547. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  548. unsigned end = start + len;
  549. /* Reading beyond i_size is simple: memset to zero */
  550. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  551. goto out;
  552. }
  553. if (dn.data_blkaddr == NEW_ADDR) {
  554. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  555. } else {
  556. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  557. if (err)
  558. return err;
  559. lock_page(page);
  560. if (!PageUptodate(page)) {
  561. f2fs_put_page(page, 1);
  562. return -EIO;
  563. }
  564. if (page->mapping != mapping) {
  565. f2fs_put_page(page, 1);
  566. goto repeat;
  567. }
  568. }
  569. out:
  570. SetPageUptodate(page);
  571. clear_cold_data(page);
  572. return 0;
  573. err:
  574. mutex_unlock_op(sbi, ilock);
  575. f2fs_put_page(page, 1);
  576. return err;
  577. }
  578. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  579. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  580. {
  581. struct file *file = iocb->ki_filp;
  582. struct inode *inode = file->f_mapping->host;
  583. if (rw == WRITE)
  584. return 0;
  585. /* Needs synchronization with the cleaner */
  586. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  587. get_data_block_ro);
  588. }
  589. static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
  590. {
  591. struct inode *inode = page->mapping->host;
  592. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  593. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  594. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  595. inode_dec_dirty_dents(inode);
  596. }
  597. ClearPagePrivate(page);
  598. }
  599. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  600. {
  601. ClearPagePrivate(page);
  602. return 1;
  603. }
  604. static int f2fs_set_data_page_dirty(struct page *page)
  605. {
  606. struct address_space *mapping = page->mapping;
  607. struct inode *inode = mapping->host;
  608. SetPageUptodate(page);
  609. if (!PageDirty(page)) {
  610. __set_page_dirty_nobuffers(page);
  611. set_dirty_dir_page(inode, page);
  612. return 1;
  613. }
  614. return 0;
  615. }
  616. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  617. {
  618. return generic_block_bmap(mapping, block, get_data_block_ro);
  619. }
  620. const struct address_space_operations f2fs_dblock_aops = {
  621. .readpage = f2fs_read_data_page,
  622. .readpages = f2fs_read_data_pages,
  623. .writepage = f2fs_write_data_page,
  624. .writepages = f2fs_write_data_pages,
  625. .write_begin = f2fs_write_begin,
  626. .write_end = nobh_write_end,
  627. .set_page_dirty = f2fs_set_data_page_dirty,
  628. .invalidatepage = f2fs_invalidate_data_page,
  629. .releasepage = f2fs_release_data_page,
  630. .direct_IO = f2fs_direct_IO,
  631. .bmap = f2fs_bmap,
  632. };