time.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/errno.h>
  32. #include <linux/smp_lock.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/security.h>
  35. #include <linux/fs.h>
  36. #include <linux/module.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. /*
  40. * The timezone where the local system is located. Used as a default by some
  41. * programs who obtain this value by using gettimeofday.
  42. */
  43. struct timezone sys_tz;
  44. EXPORT_SYMBOL(sys_tz);
  45. #ifdef __ARCH_WANT_SYS_TIME
  46. /*
  47. * sys_time() can be implemented in user-level using
  48. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  49. * why not move it into the appropriate arch directory (for those
  50. * architectures that need it).
  51. */
  52. asmlinkage long sys_time(time_t __user * tloc)
  53. {
  54. time_t i;
  55. struct timeval tv;
  56. do_gettimeofday(&tv);
  57. i = tv.tv_sec;
  58. if (tloc) {
  59. if (put_user(i,tloc))
  60. i = -EFAULT;
  61. }
  62. return i;
  63. }
  64. /*
  65. * sys_stime() can be implemented in user-level using
  66. * sys_settimeofday(). Is this for backwards compatibility? If so,
  67. * why not move it into the appropriate arch directory (for those
  68. * architectures that need it).
  69. */
  70. asmlinkage long sys_stime(time_t __user *tptr)
  71. {
  72. struct timespec tv;
  73. int err;
  74. if (get_user(tv.tv_sec, tptr))
  75. return -EFAULT;
  76. tv.tv_nsec = 0;
  77. err = security_settime(&tv, NULL);
  78. if (err)
  79. return err;
  80. do_settimeofday(&tv);
  81. return 0;
  82. }
  83. #endif /* __ARCH_WANT_SYS_TIME */
  84. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  85. {
  86. if (likely(tv != NULL)) {
  87. struct timeval ktv;
  88. do_gettimeofday(&ktv);
  89. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  90. return -EFAULT;
  91. }
  92. if (unlikely(tz != NULL)) {
  93. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  94. return -EFAULT;
  95. }
  96. return 0;
  97. }
  98. /*
  99. * Adjust the time obtained from the CMOS to be UTC time instead of
  100. * local time.
  101. *
  102. * This is ugly, but preferable to the alternatives. Otherwise we
  103. * would either need to write a program to do it in /etc/rc (and risk
  104. * confusion if the program gets run more than once; it would also be
  105. * hard to make the program warp the clock precisely n hours) or
  106. * compile in the timezone information into the kernel. Bad, bad....
  107. *
  108. * - TYT, 1992-01-01
  109. *
  110. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  111. * as real UNIX machines always do it. This avoids all headaches about
  112. * daylight saving times and warping kernel clocks.
  113. */
  114. static inline void warp_clock(void)
  115. {
  116. write_seqlock_irq(&xtime_lock);
  117. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  118. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  119. time_interpolator_reset();
  120. write_sequnlock_irq(&xtime_lock);
  121. clock_was_set();
  122. }
  123. /*
  124. * In case for some reason the CMOS clock has not already been running
  125. * in UTC, but in some local time: The first time we set the timezone,
  126. * we will warp the clock so that it is ticking UTC time instead of
  127. * local time. Presumably, if someone is setting the timezone then we
  128. * are running in an environment where the programs understand about
  129. * timezones. This should be done at boot time in the /etc/rc script,
  130. * as soon as possible, so that the clock can be set right. Otherwise,
  131. * various programs will get confused when the clock gets warped.
  132. */
  133. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  134. {
  135. static int firsttime = 1;
  136. int error = 0;
  137. if (!timespec_valid(tv))
  138. return -EINVAL;
  139. error = security_settime(tv, tz);
  140. if (error)
  141. return error;
  142. if (tz) {
  143. /* SMP safe, global irq locking makes it work. */
  144. sys_tz = *tz;
  145. if (firsttime) {
  146. firsttime = 0;
  147. if (!tv)
  148. warp_clock();
  149. }
  150. }
  151. if (tv)
  152. {
  153. /* SMP safe, again the code in arch/foo/time.c should
  154. * globally block out interrupts when it runs.
  155. */
  156. return do_settimeofday(tv);
  157. }
  158. return 0;
  159. }
  160. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  161. struct timezone __user *tz)
  162. {
  163. struct timeval user_tv;
  164. struct timespec new_ts;
  165. struct timezone new_tz;
  166. if (tv) {
  167. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  168. return -EFAULT;
  169. new_ts.tv_sec = user_tv.tv_sec;
  170. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  171. }
  172. if (tz) {
  173. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  174. return -EFAULT;
  175. }
  176. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  177. }
  178. long pps_offset; /* pps time offset (us) */
  179. long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
  180. long pps_freq; /* frequency offset (scaled ppm) */
  181. long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
  182. long pps_valid = PPS_VALID; /* pps signal watchdog counter */
  183. int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
  184. long pps_jitcnt; /* jitter limit exceeded */
  185. long pps_calcnt; /* calibration intervals */
  186. long pps_errcnt; /* calibration errors */
  187. long pps_stbcnt; /* stability limit exceeded */
  188. /* hook for a loadable hardpps kernel module */
  189. void (*hardpps_ptr)(struct timeval *);
  190. /* we call this to notify the arch when the clock is being
  191. * controlled. If no such arch routine, do nothing.
  192. */
  193. void __attribute__ ((weak)) notify_arch_cmos_timer(void)
  194. {
  195. return;
  196. }
  197. /* adjtimex mainly allows reading (and writing, if superuser) of
  198. * kernel time-keeping variables. used by xntpd.
  199. */
  200. int do_adjtimex(struct timex *txc)
  201. {
  202. long ltemp, mtemp, save_adjust;
  203. int result;
  204. /* In order to modify anything, you gotta be super-user! */
  205. if (txc->modes && !capable(CAP_SYS_TIME))
  206. return -EPERM;
  207. /* Now we validate the data before disabling interrupts */
  208. if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
  209. /* singleshot must not be used with any other mode bits */
  210. if (txc->modes != ADJ_OFFSET_SINGLESHOT)
  211. return -EINVAL;
  212. if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
  213. /* adjustment Offset limited to +- .512 seconds */
  214. if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
  215. return -EINVAL;
  216. /* if the quartz is off by more than 10% something is VERY wrong ! */
  217. if (txc->modes & ADJ_TICK)
  218. if (txc->tick < 900000/USER_HZ ||
  219. txc->tick > 1100000/USER_HZ)
  220. return -EINVAL;
  221. write_seqlock_irq(&xtime_lock);
  222. result = time_state; /* mostly `TIME_OK' */
  223. /* Save for later - semantics of adjtime is to return old value */
  224. save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
  225. #if 0 /* STA_CLOCKERR is never set yet */
  226. time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
  227. #endif
  228. /* If there are input parameters, then process them */
  229. if (txc->modes)
  230. {
  231. if (txc->modes & ADJ_STATUS) /* only set allowed bits */
  232. time_status = (txc->status & ~STA_RONLY) |
  233. (time_status & STA_RONLY);
  234. if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
  235. if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
  236. result = -EINVAL;
  237. goto leave;
  238. }
  239. time_freq = txc->freq - pps_freq;
  240. }
  241. if (txc->modes & ADJ_MAXERROR) {
  242. if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
  243. result = -EINVAL;
  244. goto leave;
  245. }
  246. time_maxerror = txc->maxerror;
  247. }
  248. if (txc->modes & ADJ_ESTERROR) {
  249. if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
  250. result = -EINVAL;
  251. goto leave;
  252. }
  253. time_esterror = txc->esterror;
  254. }
  255. if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
  256. if (txc->constant < 0) { /* NTP v4 uses values > 6 */
  257. result = -EINVAL;
  258. goto leave;
  259. }
  260. time_constant = txc->constant;
  261. }
  262. if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
  263. if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
  264. /* adjtime() is independent from ntp_adjtime() */
  265. if ((time_next_adjust = txc->offset) == 0)
  266. time_adjust = 0;
  267. }
  268. else if ( time_status & (STA_PLL | STA_PPSTIME) ) {
  269. ltemp = (time_status & (STA_PPSTIME | STA_PPSSIGNAL)) ==
  270. (STA_PPSTIME | STA_PPSSIGNAL) ?
  271. pps_offset : txc->offset;
  272. /*
  273. * Scale the phase adjustment and
  274. * clamp to the operating range.
  275. */
  276. if (ltemp > MAXPHASE)
  277. time_offset = MAXPHASE << SHIFT_UPDATE;
  278. else if (ltemp < -MAXPHASE)
  279. time_offset = -(MAXPHASE << SHIFT_UPDATE);
  280. else
  281. time_offset = ltemp << SHIFT_UPDATE;
  282. /*
  283. * Select whether the frequency is to be controlled
  284. * and in which mode (PLL or FLL). Clamp to the operating
  285. * range. Ugly multiply/divide should be replaced someday.
  286. */
  287. if (time_status & STA_FREQHOLD || time_reftime == 0)
  288. time_reftime = xtime.tv_sec;
  289. mtemp = xtime.tv_sec - time_reftime;
  290. time_reftime = xtime.tv_sec;
  291. if (time_status & STA_FLL) {
  292. if (mtemp >= MINSEC) {
  293. ltemp = (time_offset / mtemp) << (SHIFT_USEC -
  294. SHIFT_UPDATE);
  295. time_freq += shift_right(ltemp, SHIFT_KH);
  296. } else /* calibration interval too short (p. 12) */
  297. result = TIME_ERROR;
  298. } else { /* PLL mode */
  299. if (mtemp < MAXSEC) {
  300. ltemp *= mtemp;
  301. time_freq += shift_right(ltemp,(time_constant +
  302. time_constant +
  303. SHIFT_KF - SHIFT_USEC));
  304. } else /* calibration interval too long (p. 12) */
  305. result = TIME_ERROR;
  306. }
  307. time_freq = min(time_freq, time_tolerance);
  308. time_freq = max(time_freq, -time_tolerance);
  309. } /* STA_PLL || STA_PPSTIME */
  310. } /* txc->modes & ADJ_OFFSET */
  311. if (txc->modes & ADJ_TICK) {
  312. tick_usec = txc->tick;
  313. tick_nsec = TICK_USEC_TO_NSEC(tick_usec);
  314. }
  315. } /* txc->modes */
  316. leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0
  317. || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) != 0
  318. && (time_status & STA_PPSSIGNAL) == 0)
  319. /* p. 24, (b) */
  320. || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
  321. == (STA_PPSTIME|STA_PPSJITTER))
  322. /* p. 24, (c) */
  323. || ((time_status & STA_PPSFREQ) != 0
  324. && (time_status & (STA_PPSWANDER|STA_PPSERROR)) != 0))
  325. /* p. 24, (d) */
  326. result = TIME_ERROR;
  327. if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
  328. txc->offset = save_adjust;
  329. else {
  330. txc->offset = shift_right(time_offset, SHIFT_UPDATE);
  331. }
  332. txc->freq = time_freq + pps_freq;
  333. txc->maxerror = time_maxerror;
  334. txc->esterror = time_esterror;
  335. txc->status = time_status;
  336. txc->constant = time_constant;
  337. txc->precision = time_precision;
  338. txc->tolerance = time_tolerance;
  339. txc->tick = tick_usec;
  340. txc->ppsfreq = pps_freq;
  341. txc->jitter = pps_jitter >> PPS_AVG;
  342. txc->shift = pps_shift;
  343. txc->stabil = pps_stabil;
  344. txc->jitcnt = pps_jitcnt;
  345. txc->calcnt = pps_calcnt;
  346. txc->errcnt = pps_errcnt;
  347. txc->stbcnt = pps_stbcnt;
  348. write_sequnlock_irq(&xtime_lock);
  349. do_gettimeofday(&txc->time);
  350. notify_arch_cmos_timer();
  351. return(result);
  352. }
  353. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  354. {
  355. struct timex txc; /* Local copy of parameter */
  356. int ret;
  357. /* Copy the user data space into the kernel copy
  358. * structure. But bear in mind that the structures
  359. * may change
  360. */
  361. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  362. return -EFAULT;
  363. ret = do_adjtimex(&txc);
  364. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  365. }
  366. inline struct timespec current_kernel_time(void)
  367. {
  368. struct timespec now;
  369. unsigned long seq;
  370. do {
  371. seq = read_seqbegin(&xtime_lock);
  372. now = xtime;
  373. } while (read_seqretry(&xtime_lock, seq));
  374. return now;
  375. }
  376. EXPORT_SYMBOL(current_kernel_time);
  377. /**
  378. * current_fs_time - Return FS time
  379. * @sb: Superblock.
  380. *
  381. * Return the current time truncated to the time granuality supported by
  382. * the fs.
  383. */
  384. struct timespec current_fs_time(struct super_block *sb)
  385. {
  386. struct timespec now = current_kernel_time();
  387. return timespec_trunc(now, sb->s_time_gran);
  388. }
  389. EXPORT_SYMBOL(current_fs_time);
  390. /**
  391. * timespec_trunc - Truncate timespec to a granuality
  392. * @t: Timespec
  393. * @gran: Granuality in ns.
  394. *
  395. * Truncate a timespec to a granuality. gran must be smaller than a second.
  396. * Always rounds down.
  397. *
  398. * This function should be only used for timestamps returned by
  399. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  400. * it doesn't handle the better resolution of the later.
  401. */
  402. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  403. {
  404. /*
  405. * Division is pretty slow so avoid it for common cases.
  406. * Currently current_kernel_time() never returns better than
  407. * jiffies resolution. Exploit that.
  408. */
  409. if (gran <= jiffies_to_usecs(1) * 1000) {
  410. /* nothing */
  411. } else if (gran == 1000000000) {
  412. t.tv_nsec = 0;
  413. } else {
  414. t.tv_nsec -= t.tv_nsec % gran;
  415. }
  416. return t;
  417. }
  418. EXPORT_SYMBOL(timespec_trunc);
  419. #ifdef CONFIG_TIME_INTERPOLATION
  420. void getnstimeofday (struct timespec *tv)
  421. {
  422. unsigned long seq,sec,nsec;
  423. do {
  424. seq = read_seqbegin(&xtime_lock);
  425. sec = xtime.tv_sec;
  426. nsec = xtime.tv_nsec+time_interpolator_get_offset();
  427. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  428. while (unlikely(nsec >= NSEC_PER_SEC)) {
  429. nsec -= NSEC_PER_SEC;
  430. ++sec;
  431. }
  432. tv->tv_sec = sec;
  433. tv->tv_nsec = nsec;
  434. }
  435. EXPORT_SYMBOL_GPL(getnstimeofday);
  436. int do_settimeofday (struct timespec *tv)
  437. {
  438. time_t wtm_sec, sec = tv->tv_sec;
  439. long wtm_nsec, nsec = tv->tv_nsec;
  440. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  441. return -EINVAL;
  442. write_seqlock_irq(&xtime_lock);
  443. {
  444. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  445. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  446. set_normalized_timespec(&xtime, sec, nsec);
  447. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  448. time_adjust = 0; /* stop active adjtime() */
  449. time_status |= STA_UNSYNC;
  450. time_maxerror = NTP_PHASE_LIMIT;
  451. time_esterror = NTP_PHASE_LIMIT;
  452. time_interpolator_reset();
  453. }
  454. write_sequnlock_irq(&xtime_lock);
  455. clock_was_set();
  456. return 0;
  457. }
  458. EXPORT_SYMBOL(do_settimeofday);
  459. void do_gettimeofday (struct timeval *tv)
  460. {
  461. unsigned long seq, nsec, usec, sec, offset;
  462. do {
  463. seq = read_seqbegin(&xtime_lock);
  464. offset = time_interpolator_get_offset();
  465. sec = xtime.tv_sec;
  466. nsec = xtime.tv_nsec;
  467. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  468. usec = (nsec + offset) / 1000;
  469. while (unlikely(usec >= USEC_PER_SEC)) {
  470. usec -= USEC_PER_SEC;
  471. ++sec;
  472. }
  473. tv->tv_sec = sec;
  474. tv->tv_usec = usec;
  475. }
  476. EXPORT_SYMBOL(do_gettimeofday);
  477. #else
  478. /*
  479. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  480. * and therefore only yields usec accuracy
  481. */
  482. void getnstimeofday(struct timespec *tv)
  483. {
  484. struct timeval x;
  485. do_gettimeofday(&x);
  486. tv->tv_sec = x.tv_sec;
  487. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  488. }
  489. EXPORT_SYMBOL_GPL(getnstimeofday);
  490. #endif
  491. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  492. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  493. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  494. *
  495. * [For the Julian calendar (which was used in Russia before 1917,
  496. * Britain & colonies before 1752, anywhere else before 1582,
  497. * and is still in use by some communities) leave out the
  498. * -year/100+year/400 terms, and add 10.]
  499. *
  500. * This algorithm was first published by Gauss (I think).
  501. *
  502. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  503. * machines were long is 32-bit! (However, as time_t is signed, we
  504. * will already get problems at other places on 2038-01-19 03:14:08)
  505. */
  506. unsigned long
  507. mktime(const unsigned int year0, const unsigned int mon0,
  508. const unsigned int day, const unsigned int hour,
  509. const unsigned int min, const unsigned int sec)
  510. {
  511. unsigned int mon = mon0, year = year0;
  512. /* 1..12 -> 11,12,1..10 */
  513. if (0 >= (int) (mon -= 2)) {
  514. mon += 12; /* Puts Feb last since it has leap day */
  515. year -= 1;
  516. }
  517. return ((((unsigned long)
  518. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  519. year*365 - 719499
  520. )*24 + hour /* now have hours */
  521. )*60 + min /* now have minutes */
  522. )*60 + sec; /* finally seconds */
  523. }
  524. EXPORT_SYMBOL(mktime);
  525. /**
  526. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  527. *
  528. * @ts: pointer to timespec variable to be set
  529. * @sec: seconds to set
  530. * @nsec: nanoseconds to set
  531. *
  532. * Set seconds and nanoseconds field of a timespec variable and
  533. * normalize to the timespec storage format
  534. *
  535. * Note: The tv_nsec part is always in the range of
  536. * 0 <= tv_nsec < NSEC_PER_SEC
  537. * For negative values only the tv_sec field is negative !
  538. */
  539. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  540. {
  541. while (nsec >= NSEC_PER_SEC) {
  542. nsec -= NSEC_PER_SEC;
  543. ++sec;
  544. }
  545. while (nsec < 0) {
  546. nsec += NSEC_PER_SEC;
  547. --sec;
  548. }
  549. ts->tv_sec = sec;
  550. ts->tv_nsec = nsec;
  551. }
  552. /**
  553. * ns_to_timespec - Convert nanoseconds to timespec
  554. * @nsec: the nanoseconds value to be converted
  555. *
  556. * Returns the timespec representation of the nsec parameter.
  557. */
  558. inline struct timespec ns_to_timespec(const nsec_t nsec)
  559. {
  560. struct timespec ts;
  561. if (nsec)
  562. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC,
  563. &ts.tv_nsec);
  564. else
  565. ts.tv_sec = ts.tv_nsec = 0;
  566. return ts;
  567. }
  568. /**
  569. * ns_to_timeval - Convert nanoseconds to timeval
  570. * @nsec: the nanoseconds value to be converted
  571. *
  572. * Returns the timeval representation of the nsec parameter.
  573. */
  574. struct timeval ns_to_timeval(const nsec_t nsec)
  575. {
  576. struct timespec ts = ns_to_timespec(nsec);
  577. struct timeval tv;
  578. tv.tv_sec = ts.tv_sec;
  579. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  580. return tv;
  581. }
  582. #if (BITS_PER_LONG < 64)
  583. u64 get_jiffies_64(void)
  584. {
  585. unsigned long seq;
  586. u64 ret;
  587. do {
  588. seq = read_seqbegin(&xtime_lock);
  589. ret = jiffies_64;
  590. } while (read_seqretry(&xtime_lock, seq));
  591. return ret;
  592. }
  593. EXPORT_SYMBOL(get_jiffies_64);
  594. #endif
  595. EXPORT_SYMBOL(jiffies);