kprobes.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456
  1. /*
  2. * Kernel Probes (KProbes)
  3. * arch/ppc64/kernel/kprobes.c
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. * Copyright (C) IBM Corporation, 2002, 2004
  20. *
  21. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22. * Probes initial implementation ( includes contributions from
  23. * Rusty Russell).
  24. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  25. * interface to access function arguments.
  26. * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
  27. * for PPC64
  28. */
  29. #include <linux/config.h>
  30. #include <linux/kprobes.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/preempt.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/kdebug.h>
  35. #include <asm/sstep.h>
  36. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  37. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  38. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  39. {
  40. int ret = 0;
  41. kprobe_opcode_t insn = *p->addr;
  42. if ((unsigned long)p->addr & 0x03) {
  43. printk("Attempt to register kprobe at an unaligned address\n");
  44. ret = -EINVAL;
  45. } else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
  46. printk("Cannot register a kprobe on rfid or mtmsrd\n");
  47. ret = -EINVAL;
  48. }
  49. /* insn must be on a special executable page on ppc64 */
  50. if (!ret) {
  51. p->ainsn.insn = get_insn_slot();
  52. if (!p->ainsn.insn)
  53. ret = -ENOMEM;
  54. }
  55. if (!ret) {
  56. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  57. p->opcode = *p->addr;
  58. }
  59. return ret;
  60. }
  61. void __kprobes arch_arm_kprobe(struct kprobe *p)
  62. {
  63. *p->addr = BREAKPOINT_INSTRUCTION;
  64. flush_icache_range((unsigned long) p->addr,
  65. (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  66. }
  67. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  68. {
  69. *p->addr = p->opcode;
  70. flush_icache_range((unsigned long) p->addr,
  71. (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  72. }
  73. void __kprobes arch_remove_kprobe(struct kprobe *p)
  74. {
  75. down(&kprobe_mutex);
  76. free_insn_slot(p->ainsn.insn);
  77. up(&kprobe_mutex);
  78. }
  79. static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  80. {
  81. kprobe_opcode_t insn = *p->ainsn.insn;
  82. regs->msr |= MSR_SE;
  83. /* single step inline if it is a trap variant */
  84. if (is_trap(insn))
  85. regs->nip = (unsigned long)p->addr;
  86. else
  87. regs->nip = (unsigned long)p->ainsn.insn;
  88. }
  89. static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
  90. {
  91. kcb->prev_kprobe.kp = kprobe_running();
  92. kcb->prev_kprobe.status = kcb->kprobe_status;
  93. kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
  94. }
  95. static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  96. {
  97. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  98. kcb->kprobe_status = kcb->prev_kprobe.status;
  99. kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
  100. }
  101. static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  102. struct kprobe_ctlblk *kcb)
  103. {
  104. __get_cpu_var(current_kprobe) = p;
  105. kcb->kprobe_saved_msr = regs->msr;
  106. }
  107. /* Called with kretprobe_lock held */
  108. void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
  109. struct pt_regs *regs)
  110. {
  111. struct kretprobe_instance *ri;
  112. if ((ri = get_free_rp_inst(rp)) != NULL) {
  113. ri->rp = rp;
  114. ri->task = current;
  115. ri->ret_addr = (kprobe_opcode_t *)regs->link;
  116. /* Replace the return addr with trampoline addr */
  117. regs->link = (unsigned long)kretprobe_trampoline;
  118. add_rp_inst(ri);
  119. } else {
  120. rp->nmissed++;
  121. }
  122. }
  123. static inline int kprobe_handler(struct pt_regs *regs)
  124. {
  125. struct kprobe *p;
  126. int ret = 0;
  127. unsigned int *addr = (unsigned int *)regs->nip;
  128. struct kprobe_ctlblk *kcb;
  129. /*
  130. * We don't want to be preempted for the entire
  131. * duration of kprobe processing
  132. */
  133. preempt_disable();
  134. kcb = get_kprobe_ctlblk();
  135. /* Check we're not actually recursing */
  136. if (kprobe_running()) {
  137. p = get_kprobe(addr);
  138. if (p) {
  139. kprobe_opcode_t insn = *p->ainsn.insn;
  140. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  141. is_trap(insn)) {
  142. regs->msr &= ~MSR_SE;
  143. regs->msr |= kcb->kprobe_saved_msr;
  144. goto no_kprobe;
  145. }
  146. /* We have reentered the kprobe_handler(), since
  147. * another probe was hit while within the handler.
  148. * We here save the original kprobes variables and
  149. * just single step on the instruction of the new probe
  150. * without calling any user handlers.
  151. */
  152. save_previous_kprobe(kcb);
  153. set_current_kprobe(p, regs, kcb);
  154. kcb->kprobe_saved_msr = regs->msr;
  155. kprobes_inc_nmissed_count(p);
  156. prepare_singlestep(p, regs);
  157. kcb->kprobe_status = KPROBE_REENTER;
  158. return 1;
  159. } else {
  160. p = __get_cpu_var(current_kprobe);
  161. if (p->break_handler && p->break_handler(p, regs)) {
  162. goto ss_probe;
  163. }
  164. }
  165. goto no_kprobe;
  166. }
  167. p = get_kprobe(addr);
  168. if (!p) {
  169. if (*addr != BREAKPOINT_INSTRUCTION) {
  170. /*
  171. * PowerPC has multiple variants of the "trap"
  172. * instruction. If the current instruction is a
  173. * trap variant, it could belong to someone else
  174. */
  175. kprobe_opcode_t cur_insn = *addr;
  176. if (is_trap(cur_insn))
  177. goto no_kprobe;
  178. /*
  179. * The breakpoint instruction was removed right
  180. * after we hit it. Another cpu has removed
  181. * either a probepoint or a debugger breakpoint
  182. * at this address. In either case, no further
  183. * handling of this interrupt is appropriate.
  184. */
  185. ret = 1;
  186. }
  187. /* Not one of ours: let kernel handle it */
  188. goto no_kprobe;
  189. }
  190. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  191. set_current_kprobe(p, regs, kcb);
  192. if (p->pre_handler && p->pre_handler(p, regs))
  193. /* handler has already set things up, so skip ss setup */
  194. return 1;
  195. ss_probe:
  196. prepare_singlestep(p, regs);
  197. kcb->kprobe_status = KPROBE_HIT_SS;
  198. return 1;
  199. no_kprobe:
  200. preempt_enable_no_resched();
  201. return ret;
  202. }
  203. /*
  204. * Function return probe trampoline:
  205. * - init_kprobes() establishes a probepoint here
  206. * - When the probed function returns, this probe
  207. * causes the handlers to fire
  208. */
  209. void kretprobe_trampoline_holder(void)
  210. {
  211. asm volatile(".global kretprobe_trampoline\n"
  212. "kretprobe_trampoline:\n"
  213. "nop\n");
  214. }
  215. /*
  216. * Called when the probe at kretprobe trampoline is hit
  217. */
  218. int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
  219. {
  220. struct kretprobe_instance *ri = NULL;
  221. struct hlist_head *head;
  222. struct hlist_node *node, *tmp;
  223. unsigned long flags, orig_ret_address = 0;
  224. unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
  225. spin_lock_irqsave(&kretprobe_lock, flags);
  226. head = kretprobe_inst_table_head(current);
  227. /*
  228. * It is possible to have multiple instances associated with a given
  229. * task either because an multiple functions in the call path
  230. * have a return probe installed on them, and/or more then one return
  231. * return probe was registered for a target function.
  232. *
  233. * We can handle this because:
  234. * - instances are always inserted at the head of the list
  235. * - when multiple return probes are registered for the same
  236. * function, the first instance's ret_addr will point to the
  237. * real return address, and all the rest will point to
  238. * kretprobe_trampoline
  239. */
  240. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  241. if (ri->task != current)
  242. /* another task is sharing our hash bucket */
  243. continue;
  244. if (ri->rp && ri->rp->handler)
  245. ri->rp->handler(ri, regs);
  246. orig_ret_address = (unsigned long)ri->ret_addr;
  247. recycle_rp_inst(ri);
  248. if (orig_ret_address != trampoline_address)
  249. /*
  250. * This is the real return address. Any other
  251. * instances associated with this task are for
  252. * other calls deeper on the call stack
  253. */
  254. break;
  255. }
  256. BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
  257. regs->nip = orig_ret_address;
  258. reset_current_kprobe();
  259. spin_unlock_irqrestore(&kretprobe_lock, flags);
  260. preempt_enable_no_resched();
  261. /*
  262. * By returning a non-zero value, we are telling
  263. * kprobe_handler() that we don't want the post_handler
  264. * to run (and have re-enabled preemption)
  265. */
  266. return 1;
  267. }
  268. /*
  269. * Called after single-stepping. p->addr is the address of the
  270. * instruction whose first byte has been replaced by the "breakpoint"
  271. * instruction. To avoid the SMP problems that can occur when we
  272. * temporarily put back the original opcode to single-step, we
  273. * single-stepped a copy of the instruction. The address of this
  274. * copy is p->ainsn.insn.
  275. */
  276. static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
  277. {
  278. int ret;
  279. unsigned int insn = *p->ainsn.insn;
  280. regs->nip = (unsigned long)p->addr;
  281. ret = emulate_step(regs, insn);
  282. if (ret == 0)
  283. regs->nip = (unsigned long)p->addr + 4;
  284. }
  285. static inline int post_kprobe_handler(struct pt_regs *regs)
  286. {
  287. struct kprobe *cur = kprobe_running();
  288. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  289. if (!cur)
  290. return 0;
  291. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  292. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  293. cur->post_handler(cur, regs, 0);
  294. }
  295. resume_execution(cur, regs);
  296. regs->msr |= kcb->kprobe_saved_msr;
  297. /*Restore back the original saved kprobes variables and continue. */
  298. if (kcb->kprobe_status == KPROBE_REENTER) {
  299. restore_previous_kprobe(kcb);
  300. goto out;
  301. }
  302. reset_current_kprobe();
  303. out:
  304. preempt_enable_no_resched();
  305. /*
  306. * if somebody else is singlestepping across a probe point, msr
  307. * will have SE set, in which case, continue the remaining processing
  308. * of do_debug, as if this is not a probe hit.
  309. */
  310. if (regs->msr & MSR_SE)
  311. return 0;
  312. return 1;
  313. }
  314. static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  315. {
  316. struct kprobe *cur = kprobe_running();
  317. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  318. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  319. return 1;
  320. if (kcb->kprobe_status & KPROBE_HIT_SS) {
  321. resume_execution(cur, regs);
  322. regs->msr &= ~MSR_SE;
  323. regs->msr |= kcb->kprobe_saved_msr;
  324. reset_current_kprobe();
  325. preempt_enable_no_resched();
  326. }
  327. return 0;
  328. }
  329. /*
  330. * Wrapper routine to for handling exceptions.
  331. */
  332. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  333. unsigned long val, void *data)
  334. {
  335. struct die_args *args = (struct die_args *)data;
  336. int ret = NOTIFY_DONE;
  337. switch (val) {
  338. case DIE_BPT:
  339. if (kprobe_handler(args->regs))
  340. ret = NOTIFY_STOP;
  341. break;
  342. case DIE_SSTEP:
  343. if (post_kprobe_handler(args->regs))
  344. ret = NOTIFY_STOP;
  345. break;
  346. case DIE_PAGE_FAULT:
  347. /* kprobe_running() needs smp_processor_id() */
  348. preempt_disable();
  349. if (kprobe_running() &&
  350. kprobe_fault_handler(args->regs, args->trapnr))
  351. ret = NOTIFY_STOP;
  352. preempt_enable();
  353. break;
  354. default:
  355. break;
  356. }
  357. return ret;
  358. }
  359. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  360. {
  361. struct jprobe *jp = container_of(p, struct jprobe, kp);
  362. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  363. memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
  364. /* setup return addr to the jprobe handler routine */
  365. regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
  366. regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
  367. return 1;
  368. }
  369. void __kprobes jprobe_return(void)
  370. {
  371. asm volatile("trap" ::: "memory");
  372. }
  373. void __kprobes jprobe_return_end(void)
  374. {
  375. };
  376. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  377. {
  378. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  379. /*
  380. * FIXME - we should ideally be validating that we got here 'cos
  381. * of the "trap" in jprobe_return() above, before restoring the
  382. * saved regs...
  383. */
  384. memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
  385. preempt_enable_no_resched();
  386. return 1;
  387. }
  388. static struct kprobe trampoline_p = {
  389. .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
  390. .pre_handler = trampoline_probe_handler
  391. };
  392. int __init arch_init_kprobes(void)
  393. {
  394. return register_kprobe(&trampoline_p);
  395. }