crash_dump.c 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. /*
  2. * Routines for doing kexec-based kdump.
  3. *
  4. * Copyright (C) 2005, IBM Corp.
  5. *
  6. * Created by: Michael Ellerman
  7. *
  8. * This source code is licensed under the GNU General Public License,
  9. * Version 2. See the file COPYING for more details.
  10. */
  11. #undef DEBUG
  12. #include <linux/crash_dump.h>
  13. #include <linux/bootmem.h>
  14. #include <asm/kdump.h>
  15. #include <asm/lmb.h>
  16. #include <asm/firmware.h>
  17. #include <asm/uaccess.h>
  18. #ifdef DEBUG
  19. #include <asm/udbg.h>
  20. #define DBG(fmt...) udbg_printf(fmt)
  21. #else
  22. #define DBG(fmt...)
  23. #endif
  24. static void __init create_trampoline(unsigned long addr)
  25. {
  26. /* The maximum range of a single instruction branch, is the current
  27. * instruction's address + (32 MB - 4) bytes. For the trampoline we
  28. * need to branch to current address + 32 MB. So we insert a nop at
  29. * the trampoline address, then the next instruction (+ 4 bytes)
  30. * does a branch to (32 MB - 4). The net effect is that when we
  31. * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
  32. * two instructions it doesn't require any registers.
  33. */
  34. create_instruction(addr, 0x60000000); /* nop */
  35. create_branch(addr + 4, addr + PHYSICAL_START, 0);
  36. }
  37. void __init kdump_setup(void)
  38. {
  39. unsigned long i;
  40. DBG(" -> kdump_setup()\n");
  41. for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
  42. create_trampoline(i);
  43. }
  44. create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
  45. create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
  46. DBG(" <- kdump_setup()\n");
  47. }
  48. static int __init parse_elfcorehdr(char *p)
  49. {
  50. if (p)
  51. elfcorehdr_addr = memparse(p, &p);
  52. return 0;
  53. }
  54. __setup("elfcorehdr=", parse_elfcorehdr);
  55. static int __init parse_savemaxmem(char *p)
  56. {
  57. if (p)
  58. saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
  59. return 0;
  60. }
  61. __setup("savemaxmem=", parse_savemaxmem);
  62. /*
  63. * copy_oldmem_page - copy one page from "oldmem"
  64. * @pfn: page frame number to be copied
  65. * @buf: target memory address for the copy; this can be in kernel address
  66. * space or user address space (see @userbuf)
  67. * @csize: number of bytes to copy
  68. * @offset: offset in bytes into the page (based on pfn) to begin the copy
  69. * @userbuf: if set, @buf is in user address space, use copy_to_user(),
  70. * otherwise @buf is in kernel address space, use memcpy().
  71. *
  72. * Copy a page from "oldmem". For this page, there is no pte mapped
  73. * in the current kernel. We stitch up a pte, similar to kmap_atomic.
  74. */
  75. ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
  76. size_t csize, unsigned long offset, int userbuf)
  77. {
  78. void *vaddr;
  79. if (!csize)
  80. return 0;
  81. vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
  82. if (userbuf) {
  83. if (copy_to_user((char __user *)buf, (vaddr + offset), csize)) {
  84. iounmap(vaddr);
  85. return -EFAULT;
  86. }
  87. } else
  88. memcpy(buf, (vaddr + offset), csize);
  89. iounmap(vaddr);
  90. return csize;
  91. }