book3s_hv.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/fs.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/cpumask.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/page-flags.h>
  31. #include <asm/reg.h>
  32. #include <asm/cputable.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/io.h>
  37. #include <asm/kvm_ppc.h>
  38. #include <asm/kvm_book3s.h>
  39. #include <asm/mmu_context.h>
  40. #include <asm/lppaca.h>
  41. #include <asm/processor.h>
  42. #include <asm/cputhreads.h>
  43. #include <asm/page.h>
  44. #include <linux/gfp.h>
  45. #include <linux/sched.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/highmem.h>
  48. /*
  49. * For now, limit memory to 64GB and require it to be large pages.
  50. * This value is chosen because it makes the ram_pginfo array be
  51. * 64kB in size, which is about as large as we want to be trying
  52. * to allocate with kmalloc.
  53. */
  54. #define MAX_MEM_ORDER 36
  55. #define LARGE_PAGE_ORDER 24 /* 16MB pages */
  56. /* #define EXIT_DEBUG */
  57. /* #define EXIT_DEBUG_SIMPLE */
  58. /* #define EXIT_DEBUG_INT */
  59. void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  60. {
  61. local_paca->kvm_hstate.kvm_vcpu = vcpu;
  62. local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
  63. }
  64. void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
  65. {
  66. }
  67. static void kvmppc_vcpu_blocked(struct kvm_vcpu *vcpu);
  68. static void kvmppc_vcpu_unblocked(struct kvm_vcpu *vcpu);
  69. void kvmppc_vcpu_block(struct kvm_vcpu *vcpu)
  70. {
  71. u64 now;
  72. unsigned long dec_nsec;
  73. now = get_tb();
  74. if (now >= vcpu->arch.dec_expires && !kvmppc_core_pending_dec(vcpu))
  75. kvmppc_core_queue_dec(vcpu);
  76. if (vcpu->arch.pending_exceptions)
  77. return;
  78. if (vcpu->arch.dec_expires != ~(u64)0) {
  79. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC /
  80. tb_ticks_per_sec;
  81. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  82. HRTIMER_MODE_REL);
  83. }
  84. kvmppc_vcpu_blocked(vcpu);
  85. kvm_vcpu_block(vcpu);
  86. vcpu->stat.halt_wakeup++;
  87. if (vcpu->arch.dec_expires != ~(u64)0)
  88. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  89. kvmppc_vcpu_unblocked(vcpu);
  90. }
  91. void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
  92. {
  93. vcpu->arch.shregs.msr = msr;
  94. }
  95. void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
  96. {
  97. vcpu->arch.pvr = pvr;
  98. }
  99. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  100. {
  101. int r;
  102. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  103. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  104. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  105. for (r = 0; r < 16; ++r)
  106. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  107. r, kvmppc_get_gpr(vcpu, r),
  108. r+16, kvmppc_get_gpr(vcpu, r+16));
  109. pr_err("ctr = %.16lx lr = %.16lx\n",
  110. vcpu->arch.ctr, vcpu->arch.lr);
  111. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  112. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  113. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  114. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  115. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  116. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  117. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  118. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  119. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  120. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  121. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  122. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  123. for (r = 0; r < vcpu->arch.slb_max; ++r)
  124. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  125. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  126. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  127. vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
  128. vcpu->arch.last_inst);
  129. }
  130. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  131. {
  132. int r;
  133. struct kvm_vcpu *v, *ret = NULL;
  134. mutex_lock(&kvm->lock);
  135. kvm_for_each_vcpu(r, v, kvm) {
  136. if (v->vcpu_id == id) {
  137. ret = v;
  138. break;
  139. }
  140. }
  141. mutex_unlock(&kvm->lock);
  142. return ret;
  143. }
  144. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  145. {
  146. vpa->shared_proc = 1;
  147. vpa->yield_count = 1;
  148. }
  149. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  150. unsigned long flags,
  151. unsigned long vcpuid, unsigned long vpa)
  152. {
  153. struct kvm *kvm = vcpu->kvm;
  154. unsigned long pg_index, ra, len;
  155. unsigned long pg_offset;
  156. void *va;
  157. struct kvm_vcpu *tvcpu;
  158. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  159. if (!tvcpu)
  160. return H_PARAMETER;
  161. flags >>= 63 - 18;
  162. flags &= 7;
  163. if (flags == 0 || flags == 4)
  164. return H_PARAMETER;
  165. if (flags < 4) {
  166. if (vpa & 0x7f)
  167. return H_PARAMETER;
  168. /* registering new area; convert logical addr to real */
  169. pg_index = vpa >> kvm->arch.ram_porder;
  170. pg_offset = vpa & (kvm->arch.ram_psize - 1);
  171. if (pg_index >= kvm->arch.ram_npages)
  172. return H_PARAMETER;
  173. if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
  174. return H_PARAMETER;
  175. ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
  176. ra |= pg_offset;
  177. va = __va(ra);
  178. if (flags <= 1)
  179. len = *(unsigned short *)(va + 4);
  180. else
  181. len = *(unsigned int *)(va + 4);
  182. if (pg_offset + len > kvm->arch.ram_psize)
  183. return H_PARAMETER;
  184. switch (flags) {
  185. case 1: /* register VPA */
  186. if (len < 640)
  187. return H_PARAMETER;
  188. tvcpu->arch.vpa = va;
  189. init_vpa(vcpu, va);
  190. break;
  191. case 2: /* register DTL */
  192. if (len < 48)
  193. return H_PARAMETER;
  194. if (!tvcpu->arch.vpa)
  195. return H_RESOURCE;
  196. len -= len % 48;
  197. tvcpu->arch.dtl = va;
  198. tvcpu->arch.dtl_end = va + len;
  199. break;
  200. case 3: /* register SLB shadow buffer */
  201. if (len < 8)
  202. return H_PARAMETER;
  203. if (!tvcpu->arch.vpa)
  204. return H_RESOURCE;
  205. tvcpu->arch.slb_shadow = va;
  206. len = (len - 16) / 16;
  207. tvcpu->arch.slb_shadow = va;
  208. break;
  209. }
  210. } else {
  211. switch (flags) {
  212. case 5: /* unregister VPA */
  213. if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
  214. return H_RESOURCE;
  215. tvcpu->arch.vpa = NULL;
  216. break;
  217. case 6: /* unregister DTL */
  218. tvcpu->arch.dtl = NULL;
  219. break;
  220. case 7: /* unregister SLB shadow buffer */
  221. tvcpu->arch.slb_shadow = NULL;
  222. break;
  223. }
  224. }
  225. return H_SUCCESS;
  226. }
  227. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  228. {
  229. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  230. unsigned long target, ret = H_SUCCESS;
  231. struct kvm_vcpu *tvcpu;
  232. switch (req) {
  233. case H_CEDE:
  234. vcpu->arch.shregs.msr |= MSR_EE;
  235. vcpu->arch.ceded = 1;
  236. smp_mb();
  237. if (!vcpu->arch.prodded)
  238. kvmppc_vcpu_block(vcpu);
  239. else
  240. vcpu->arch.prodded = 0;
  241. smp_mb();
  242. vcpu->arch.ceded = 0;
  243. break;
  244. case H_PROD:
  245. target = kvmppc_get_gpr(vcpu, 4);
  246. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  247. if (!tvcpu) {
  248. ret = H_PARAMETER;
  249. break;
  250. }
  251. tvcpu->arch.prodded = 1;
  252. smp_mb();
  253. if (vcpu->arch.ceded) {
  254. if (waitqueue_active(&vcpu->wq)) {
  255. wake_up_interruptible(&vcpu->wq);
  256. vcpu->stat.halt_wakeup++;
  257. }
  258. }
  259. break;
  260. case H_CONFER:
  261. break;
  262. case H_REGISTER_VPA:
  263. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  264. kvmppc_get_gpr(vcpu, 5),
  265. kvmppc_get_gpr(vcpu, 6));
  266. break;
  267. default:
  268. return RESUME_HOST;
  269. }
  270. kvmppc_set_gpr(vcpu, 3, ret);
  271. vcpu->arch.hcall_needed = 0;
  272. return RESUME_GUEST;
  273. }
  274. static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
  275. struct task_struct *tsk)
  276. {
  277. int r = RESUME_HOST;
  278. vcpu->stat.sum_exits++;
  279. run->exit_reason = KVM_EXIT_UNKNOWN;
  280. run->ready_for_interrupt_injection = 1;
  281. switch (vcpu->arch.trap) {
  282. /* We're good on these - the host merely wanted to get our attention */
  283. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  284. vcpu->stat.dec_exits++;
  285. r = RESUME_GUEST;
  286. break;
  287. case BOOK3S_INTERRUPT_EXTERNAL:
  288. vcpu->stat.ext_intr_exits++;
  289. r = RESUME_GUEST;
  290. break;
  291. case BOOK3S_INTERRUPT_PERFMON:
  292. r = RESUME_GUEST;
  293. break;
  294. case BOOK3S_INTERRUPT_PROGRAM:
  295. {
  296. ulong flags;
  297. /*
  298. * Normally program interrupts are delivered directly
  299. * to the guest by the hardware, but we can get here
  300. * as a result of a hypervisor emulation interrupt
  301. * (e40) getting turned into a 700 by BML RTAS.
  302. */
  303. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  304. kvmppc_core_queue_program(vcpu, flags);
  305. r = RESUME_GUEST;
  306. break;
  307. }
  308. case BOOK3S_INTERRUPT_SYSCALL:
  309. {
  310. /* hcall - punt to userspace */
  311. int i;
  312. if (vcpu->arch.shregs.msr & MSR_PR) {
  313. /* sc 1 from userspace - reflect to guest syscall */
  314. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
  315. r = RESUME_GUEST;
  316. break;
  317. }
  318. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  319. for (i = 0; i < 9; ++i)
  320. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  321. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  322. vcpu->arch.hcall_needed = 1;
  323. r = RESUME_HOST;
  324. break;
  325. }
  326. /*
  327. * We get these next two if the guest does a bad real-mode access,
  328. * as we have enabled VRMA (virtualized real mode area) mode in the
  329. * LPCR. We just generate an appropriate DSI/ISI to the guest.
  330. */
  331. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  332. vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
  333. vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
  334. kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
  335. r = RESUME_GUEST;
  336. break;
  337. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  338. kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
  339. 0x08000000);
  340. r = RESUME_GUEST;
  341. break;
  342. /*
  343. * This occurs if the guest executes an illegal instruction.
  344. * We just generate a program interrupt to the guest, since
  345. * we don't emulate any guest instructions at this stage.
  346. */
  347. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  348. kvmppc_core_queue_program(vcpu, 0x80000);
  349. r = RESUME_GUEST;
  350. break;
  351. default:
  352. kvmppc_dump_regs(vcpu);
  353. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  354. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  355. vcpu->arch.shregs.msr);
  356. r = RESUME_HOST;
  357. BUG();
  358. break;
  359. }
  360. if (!(r & RESUME_HOST)) {
  361. /* To avoid clobbering exit_reason, only check for signals if
  362. * we aren't already exiting to userspace for some other
  363. * reason. */
  364. if (signal_pending(tsk)) {
  365. vcpu->stat.signal_exits++;
  366. run->exit_reason = KVM_EXIT_INTR;
  367. r = -EINTR;
  368. } else {
  369. kvmppc_core_deliver_interrupts(vcpu);
  370. }
  371. }
  372. return r;
  373. }
  374. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  375. struct kvm_sregs *sregs)
  376. {
  377. int i;
  378. sregs->pvr = vcpu->arch.pvr;
  379. memset(sregs, 0, sizeof(struct kvm_sregs));
  380. for (i = 0; i < vcpu->arch.slb_max; i++) {
  381. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  382. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  383. }
  384. return 0;
  385. }
  386. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  387. struct kvm_sregs *sregs)
  388. {
  389. int i, j;
  390. kvmppc_set_pvr(vcpu, sregs->pvr);
  391. j = 0;
  392. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  393. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  394. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  395. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  396. ++j;
  397. }
  398. }
  399. vcpu->arch.slb_max = j;
  400. return 0;
  401. }
  402. int kvmppc_core_check_processor_compat(void)
  403. {
  404. if (cpu_has_feature(CPU_FTR_HVMODE))
  405. return 0;
  406. return -EIO;
  407. }
  408. struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
  409. {
  410. struct kvm_vcpu *vcpu;
  411. int err = -EINVAL;
  412. int core;
  413. struct kvmppc_vcore *vcore;
  414. core = id / threads_per_core;
  415. if (core >= KVM_MAX_VCORES)
  416. goto out;
  417. err = -ENOMEM;
  418. vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  419. if (!vcpu)
  420. goto out;
  421. err = kvm_vcpu_init(vcpu, kvm, id);
  422. if (err)
  423. goto free_vcpu;
  424. vcpu->arch.shared = &vcpu->arch.shregs;
  425. vcpu->arch.last_cpu = -1;
  426. vcpu->arch.mmcr[0] = MMCR0_FC;
  427. vcpu->arch.ctrl = CTRL_RUNLATCH;
  428. /* default to host PVR, since we can't spoof it */
  429. vcpu->arch.pvr = mfspr(SPRN_PVR);
  430. kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
  431. kvmppc_mmu_book3s_hv_init(vcpu);
  432. /*
  433. * Some vcpus may start out in stopped state. If we initialize
  434. * them to busy-in-host state they will stop other vcpus in the
  435. * vcore from running. Instead we initialize them to blocked
  436. * state, effectively considering them to be stopped until we
  437. * see the first run ioctl for them.
  438. */
  439. vcpu->arch.state = KVMPPC_VCPU_BLOCKED;
  440. init_waitqueue_head(&vcpu->arch.cpu_run);
  441. mutex_lock(&kvm->lock);
  442. vcore = kvm->arch.vcores[core];
  443. if (!vcore) {
  444. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  445. if (vcore) {
  446. INIT_LIST_HEAD(&vcore->runnable_threads);
  447. spin_lock_init(&vcore->lock);
  448. }
  449. kvm->arch.vcores[core] = vcore;
  450. }
  451. mutex_unlock(&kvm->lock);
  452. if (!vcore)
  453. goto free_vcpu;
  454. spin_lock(&vcore->lock);
  455. ++vcore->num_threads;
  456. ++vcore->n_blocked;
  457. spin_unlock(&vcore->lock);
  458. vcpu->arch.vcore = vcore;
  459. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  460. kvmppc_sanity_check(vcpu);
  461. return vcpu;
  462. free_vcpu:
  463. kfree(vcpu);
  464. out:
  465. return ERR_PTR(err);
  466. }
  467. void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
  468. {
  469. kvm_vcpu_uninit(vcpu);
  470. kfree(vcpu);
  471. }
  472. static void kvmppc_vcpu_blocked(struct kvm_vcpu *vcpu)
  473. {
  474. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  475. spin_lock(&vc->lock);
  476. vcpu->arch.state = KVMPPC_VCPU_BLOCKED;
  477. ++vc->n_blocked;
  478. if (vc->n_runnable > 0 &&
  479. vc->n_runnable + vc->n_blocked == vc->num_threads) {
  480. vcpu = list_first_entry(&vc->runnable_threads, struct kvm_vcpu,
  481. arch.run_list);
  482. wake_up(&vcpu->arch.cpu_run);
  483. }
  484. spin_unlock(&vc->lock);
  485. }
  486. static void kvmppc_vcpu_unblocked(struct kvm_vcpu *vcpu)
  487. {
  488. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  489. spin_lock(&vc->lock);
  490. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  491. --vc->n_blocked;
  492. spin_unlock(&vc->lock);
  493. }
  494. extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
  495. extern void xics_wake_cpu(int cpu);
  496. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  497. struct kvm_vcpu *vcpu)
  498. {
  499. struct kvm_vcpu *v;
  500. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  501. return;
  502. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  503. --vc->n_runnable;
  504. /* decrement the physical thread id of each following vcpu */
  505. v = vcpu;
  506. list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
  507. --v->arch.ptid;
  508. list_del(&vcpu->arch.run_list);
  509. }
  510. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  511. {
  512. int cpu;
  513. struct paca_struct *tpaca;
  514. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  515. cpu = vc->pcpu + vcpu->arch.ptid;
  516. tpaca = &paca[cpu];
  517. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  518. tpaca->kvm_hstate.kvm_vcore = vc;
  519. smp_wmb();
  520. #ifdef CONFIG_PPC_ICP_NATIVE
  521. if (vcpu->arch.ptid) {
  522. tpaca->cpu_start = 0x80;
  523. tpaca->kvm_hstate.in_guest = KVM_GUEST_MODE_GUEST;
  524. wmb();
  525. xics_wake_cpu(cpu);
  526. ++vc->n_woken;
  527. }
  528. #endif
  529. }
  530. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  531. {
  532. int i;
  533. HMT_low();
  534. i = 0;
  535. while (vc->nap_count < vc->n_woken) {
  536. if (++i >= 1000000) {
  537. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  538. vc->nap_count, vc->n_woken);
  539. break;
  540. }
  541. cpu_relax();
  542. }
  543. HMT_medium();
  544. }
  545. /*
  546. * Check that we are on thread 0 and that any other threads in
  547. * this core are off-line.
  548. */
  549. static int on_primary_thread(void)
  550. {
  551. int cpu = smp_processor_id();
  552. int thr = cpu_thread_in_core(cpu);
  553. if (thr)
  554. return 0;
  555. while (++thr < threads_per_core)
  556. if (cpu_online(cpu + thr))
  557. return 0;
  558. return 1;
  559. }
  560. /*
  561. * Run a set of guest threads on a physical core.
  562. * Called with vc->lock held.
  563. */
  564. static int kvmppc_run_core(struct kvmppc_vcore *vc)
  565. {
  566. struct kvm_vcpu *vcpu, *vnext;
  567. long ret;
  568. u64 now;
  569. /* don't start if any threads have a signal pending */
  570. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  571. if (signal_pending(vcpu->arch.run_task))
  572. return 0;
  573. /*
  574. * Make sure we are running on thread 0, and that
  575. * secondary threads are offline.
  576. * XXX we should also block attempts to bring any
  577. * secondary threads online.
  578. */
  579. if (threads_per_core > 1 && !on_primary_thread()) {
  580. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  581. vcpu->arch.ret = -EBUSY;
  582. goto out;
  583. }
  584. vc->n_woken = 0;
  585. vc->nap_count = 0;
  586. vc->entry_exit_count = 0;
  587. vc->vcore_running = 1;
  588. vc->in_guest = 0;
  589. vc->pcpu = smp_processor_id();
  590. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  591. kvmppc_start_thread(vcpu);
  592. vcpu = list_first_entry(&vc->runnable_threads, struct kvm_vcpu,
  593. arch.run_list);
  594. spin_unlock(&vc->lock);
  595. preempt_disable();
  596. kvm_guest_enter();
  597. __kvmppc_vcore_entry(NULL, vcpu);
  598. /* wait for secondary threads to finish writing their state to memory */
  599. spin_lock(&vc->lock);
  600. if (vc->nap_count < vc->n_woken)
  601. kvmppc_wait_for_nap(vc);
  602. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  603. vc->vcore_running = 2;
  604. spin_unlock(&vc->lock);
  605. /* make sure updates to secondary vcpu structs are visible now */
  606. smp_mb();
  607. kvm_guest_exit();
  608. preempt_enable();
  609. kvm_resched(vcpu);
  610. now = get_tb();
  611. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  612. /* cancel pending dec exception if dec is positive */
  613. if (now < vcpu->arch.dec_expires &&
  614. kvmppc_core_pending_dec(vcpu))
  615. kvmppc_core_dequeue_dec(vcpu);
  616. if (!vcpu->arch.trap) {
  617. if (signal_pending(vcpu->arch.run_task)) {
  618. vcpu->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  619. vcpu->arch.ret = -EINTR;
  620. }
  621. continue; /* didn't get to run */
  622. }
  623. ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
  624. vcpu->arch.run_task);
  625. vcpu->arch.ret = ret;
  626. vcpu->arch.trap = 0;
  627. }
  628. spin_lock(&vc->lock);
  629. out:
  630. vc->vcore_running = 0;
  631. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  632. arch.run_list) {
  633. if (vcpu->arch.ret != RESUME_GUEST) {
  634. kvmppc_remove_runnable(vc, vcpu);
  635. wake_up(&vcpu->arch.cpu_run);
  636. }
  637. }
  638. return 1;
  639. }
  640. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  641. {
  642. int ptid;
  643. int wait_state;
  644. struct kvmppc_vcore *vc;
  645. DEFINE_WAIT(wait);
  646. /* No need to go into the guest when all we do is going out */
  647. if (signal_pending(current)) {
  648. kvm_run->exit_reason = KVM_EXIT_INTR;
  649. return -EINTR;
  650. }
  651. /* On PPC970, check that we have an RMA region */
  652. if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
  653. return -EPERM;
  654. kvm_run->exit_reason = 0;
  655. vcpu->arch.ret = RESUME_GUEST;
  656. vcpu->arch.trap = 0;
  657. flush_fp_to_thread(current);
  658. flush_altivec_to_thread(current);
  659. flush_vsx_to_thread(current);
  660. /*
  661. * Synchronize with other threads in this virtual core
  662. */
  663. vc = vcpu->arch.vcore;
  664. spin_lock(&vc->lock);
  665. /* This happens the first time this is called for a vcpu */
  666. if (vcpu->arch.state == KVMPPC_VCPU_BLOCKED)
  667. --vc->n_blocked;
  668. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  669. ptid = vc->n_runnable;
  670. vcpu->arch.run_task = current;
  671. vcpu->arch.kvm_run = kvm_run;
  672. vcpu->arch.ptid = ptid;
  673. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  674. ++vc->n_runnable;
  675. wait_state = TASK_INTERRUPTIBLE;
  676. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  677. if (signal_pending(current)) {
  678. if (!vc->vcore_running) {
  679. kvm_run->exit_reason = KVM_EXIT_INTR;
  680. vcpu->arch.ret = -EINTR;
  681. break;
  682. }
  683. /* have to wait for vcore to stop executing guest */
  684. wait_state = TASK_UNINTERRUPTIBLE;
  685. smp_send_reschedule(vc->pcpu);
  686. }
  687. if (!vc->vcore_running &&
  688. vc->n_runnable + vc->n_blocked == vc->num_threads) {
  689. /* we can run now */
  690. if (kvmppc_run_core(vc))
  691. continue;
  692. }
  693. if (vc->vcore_running == 1 && VCORE_EXIT_COUNT(vc) == 0)
  694. kvmppc_start_thread(vcpu);
  695. /* wait for other threads to come in, or wait for vcore */
  696. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  697. spin_unlock(&vc->lock);
  698. schedule();
  699. finish_wait(&vcpu->arch.cpu_run, &wait);
  700. spin_lock(&vc->lock);
  701. }
  702. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  703. kvmppc_remove_runnable(vc, vcpu);
  704. spin_unlock(&vc->lock);
  705. return vcpu->arch.ret;
  706. }
  707. int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
  708. {
  709. int r;
  710. if (!vcpu->arch.sane) {
  711. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  712. return -EINVAL;
  713. }
  714. do {
  715. r = kvmppc_run_vcpu(run, vcpu);
  716. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  717. !(vcpu->arch.shregs.msr & MSR_PR)) {
  718. r = kvmppc_pseries_do_hcall(vcpu);
  719. kvmppc_core_deliver_interrupts(vcpu);
  720. }
  721. } while (r == RESUME_GUEST);
  722. return r;
  723. }
  724. static long kvmppc_stt_npages(unsigned long window_size)
  725. {
  726. return ALIGN((window_size >> SPAPR_TCE_SHIFT)
  727. * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
  728. }
  729. static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
  730. {
  731. struct kvm *kvm = stt->kvm;
  732. int i;
  733. mutex_lock(&kvm->lock);
  734. list_del(&stt->list);
  735. for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
  736. __free_page(stt->pages[i]);
  737. kfree(stt);
  738. mutex_unlock(&kvm->lock);
  739. kvm_put_kvm(kvm);
  740. }
  741. static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  742. {
  743. struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
  744. struct page *page;
  745. if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
  746. return VM_FAULT_SIGBUS;
  747. page = stt->pages[vmf->pgoff];
  748. get_page(page);
  749. vmf->page = page;
  750. return 0;
  751. }
  752. static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
  753. .fault = kvm_spapr_tce_fault,
  754. };
  755. static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
  756. {
  757. vma->vm_ops = &kvm_spapr_tce_vm_ops;
  758. return 0;
  759. }
  760. static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
  761. {
  762. struct kvmppc_spapr_tce_table *stt = filp->private_data;
  763. release_spapr_tce_table(stt);
  764. return 0;
  765. }
  766. static struct file_operations kvm_spapr_tce_fops = {
  767. .mmap = kvm_spapr_tce_mmap,
  768. .release = kvm_spapr_tce_release,
  769. };
  770. long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
  771. struct kvm_create_spapr_tce *args)
  772. {
  773. struct kvmppc_spapr_tce_table *stt = NULL;
  774. long npages;
  775. int ret = -ENOMEM;
  776. int i;
  777. /* Check this LIOBN hasn't been previously allocated */
  778. list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
  779. if (stt->liobn == args->liobn)
  780. return -EBUSY;
  781. }
  782. npages = kvmppc_stt_npages(args->window_size);
  783. stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
  784. GFP_KERNEL);
  785. if (!stt)
  786. goto fail;
  787. stt->liobn = args->liobn;
  788. stt->window_size = args->window_size;
  789. stt->kvm = kvm;
  790. for (i = 0; i < npages; i++) {
  791. stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
  792. if (!stt->pages[i])
  793. goto fail;
  794. }
  795. kvm_get_kvm(kvm);
  796. mutex_lock(&kvm->lock);
  797. list_add(&stt->list, &kvm->arch.spapr_tce_tables);
  798. mutex_unlock(&kvm->lock);
  799. return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
  800. stt, O_RDWR);
  801. fail:
  802. if (stt) {
  803. for (i = 0; i < npages; i++)
  804. if (stt->pages[i])
  805. __free_page(stt->pages[i]);
  806. kfree(stt);
  807. }
  808. return ret;
  809. }
  810. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  811. Assumes POWER7 or PPC970. */
  812. static inline int lpcr_rmls(unsigned long rma_size)
  813. {
  814. switch (rma_size) {
  815. case 32ul << 20: /* 32 MB */
  816. if (cpu_has_feature(CPU_FTR_ARCH_206))
  817. return 8; /* only supported on POWER7 */
  818. return -1;
  819. case 64ul << 20: /* 64 MB */
  820. return 3;
  821. case 128ul << 20: /* 128 MB */
  822. return 7;
  823. case 256ul << 20: /* 256 MB */
  824. return 4;
  825. case 1ul << 30: /* 1 GB */
  826. return 2;
  827. case 16ul << 30: /* 16 GB */
  828. return 1;
  829. case 256ul << 30: /* 256 GB */
  830. return 0;
  831. default:
  832. return -1;
  833. }
  834. }
  835. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  836. {
  837. struct kvmppc_rma_info *ri = vma->vm_file->private_data;
  838. struct page *page;
  839. if (vmf->pgoff >= ri->npages)
  840. return VM_FAULT_SIGBUS;
  841. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  842. get_page(page);
  843. vmf->page = page;
  844. return 0;
  845. }
  846. static const struct vm_operations_struct kvm_rma_vm_ops = {
  847. .fault = kvm_rma_fault,
  848. };
  849. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  850. {
  851. vma->vm_flags |= VM_RESERVED;
  852. vma->vm_ops = &kvm_rma_vm_ops;
  853. return 0;
  854. }
  855. static int kvm_rma_release(struct inode *inode, struct file *filp)
  856. {
  857. struct kvmppc_rma_info *ri = filp->private_data;
  858. kvm_release_rma(ri);
  859. return 0;
  860. }
  861. static struct file_operations kvm_rma_fops = {
  862. .mmap = kvm_rma_mmap,
  863. .release = kvm_rma_release,
  864. };
  865. long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
  866. {
  867. struct kvmppc_rma_info *ri;
  868. long fd;
  869. ri = kvm_alloc_rma();
  870. if (!ri)
  871. return -ENOMEM;
  872. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
  873. if (fd < 0)
  874. kvm_release_rma(ri);
  875. ret->rma_size = ri->npages << PAGE_SHIFT;
  876. return fd;
  877. }
  878. static struct page *hva_to_page(unsigned long addr)
  879. {
  880. struct page *page[1];
  881. int npages;
  882. might_sleep();
  883. npages = get_user_pages_fast(addr, 1, 1, page);
  884. if (unlikely(npages != 1))
  885. return 0;
  886. return page[0];
  887. }
  888. int kvmppc_core_prepare_memory_region(struct kvm *kvm,
  889. struct kvm_userspace_memory_region *mem)
  890. {
  891. unsigned long psize, porder;
  892. unsigned long i, npages, totalpages;
  893. unsigned long pg_ix;
  894. struct kvmppc_pginfo *pginfo;
  895. unsigned long hva;
  896. struct kvmppc_rma_info *ri = NULL;
  897. struct page *page;
  898. /* For now, only allow 16MB pages */
  899. porder = LARGE_PAGE_ORDER;
  900. psize = 1ul << porder;
  901. if ((mem->memory_size & (psize - 1)) ||
  902. (mem->guest_phys_addr & (psize - 1))) {
  903. pr_err("bad memory_size=%llx @ %llx\n",
  904. mem->memory_size, mem->guest_phys_addr);
  905. return -EINVAL;
  906. }
  907. npages = mem->memory_size >> porder;
  908. totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
  909. /* More memory than we have space to track? */
  910. if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
  911. return -EINVAL;
  912. /* Do we already have an RMA registered? */
  913. if (mem->guest_phys_addr == 0 && kvm->arch.rma)
  914. return -EINVAL;
  915. if (totalpages > kvm->arch.ram_npages)
  916. kvm->arch.ram_npages = totalpages;
  917. /* Is this one of our preallocated RMAs? */
  918. if (mem->guest_phys_addr == 0) {
  919. struct vm_area_struct *vma;
  920. down_read(&current->mm->mmap_sem);
  921. vma = find_vma(current->mm, mem->userspace_addr);
  922. if (vma && vma->vm_file &&
  923. vma->vm_file->f_op == &kvm_rma_fops &&
  924. mem->userspace_addr == vma->vm_start)
  925. ri = vma->vm_file->private_data;
  926. up_read(&current->mm->mmap_sem);
  927. if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
  928. pr_err("CPU requires an RMO\n");
  929. return -EINVAL;
  930. }
  931. }
  932. if (ri) {
  933. unsigned long rma_size;
  934. unsigned long lpcr;
  935. long rmls;
  936. rma_size = ri->npages << PAGE_SHIFT;
  937. if (rma_size > mem->memory_size)
  938. rma_size = mem->memory_size;
  939. rmls = lpcr_rmls(rma_size);
  940. if (rmls < 0) {
  941. pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
  942. return -EINVAL;
  943. }
  944. atomic_inc(&ri->use_count);
  945. kvm->arch.rma = ri;
  946. kvm->arch.n_rma_pages = rma_size >> porder;
  947. /* Update LPCR and RMOR */
  948. lpcr = kvm->arch.lpcr;
  949. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  950. /* PPC970; insert RMLS value (split field) in HID4 */
  951. lpcr &= ~((1ul << HID4_RMLS0_SH) |
  952. (3ul << HID4_RMLS2_SH));
  953. lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
  954. ((rmls & 3) << HID4_RMLS2_SH);
  955. /* RMOR is also in HID4 */
  956. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  957. << HID4_RMOR_SH;
  958. } else {
  959. /* POWER7 */
  960. lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
  961. lpcr |= rmls << LPCR_RMLS_SH;
  962. kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
  963. }
  964. kvm->arch.lpcr = lpcr;
  965. pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
  966. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  967. }
  968. pg_ix = mem->guest_phys_addr >> porder;
  969. pginfo = kvm->arch.ram_pginfo + pg_ix;
  970. for (i = 0; i < npages; ++i, ++pg_ix) {
  971. if (ri && pg_ix < kvm->arch.n_rma_pages) {
  972. pginfo[i].pfn = ri->base_pfn +
  973. (pg_ix << (porder - PAGE_SHIFT));
  974. continue;
  975. }
  976. hva = mem->userspace_addr + (i << porder);
  977. page = hva_to_page(hva);
  978. if (!page) {
  979. pr_err("oops, no pfn for hva %lx\n", hva);
  980. goto err;
  981. }
  982. /* Check it's a 16MB page */
  983. if (!PageHead(page) ||
  984. compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
  985. pr_err("page at %lx isn't 16MB (o=%d)\n",
  986. hva, compound_order(page));
  987. goto err;
  988. }
  989. pginfo[i].pfn = page_to_pfn(page);
  990. }
  991. return 0;
  992. err:
  993. return -EINVAL;
  994. }
  995. void kvmppc_core_commit_memory_region(struct kvm *kvm,
  996. struct kvm_userspace_memory_region *mem)
  997. {
  998. if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
  999. !kvm->arch.rma)
  1000. kvmppc_map_vrma(kvm, mem);
  1001. }
  1002. int kvmppc_core_init_vm(struct kvm *kvm)
  1003. {
  1004. long r;
  1005. unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
  1006. long err = -ENOMEM;
  1007. unsigned long lpcr;
  1008. /* Allocate hashed page table */
  1009. r = kvmppc_alloc_hpt(kvm);
  1010. if (r)
  1011. return r;
  1012. INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
  1013. kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
  1014. GFP_KERNEL);
  1015. if (!kvm->arch.ram_pginfo) {
  1016. pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
  1017. npages * sizeof(struct kvmppc_pginfo));
  1018. goto out_free;
  1019. }
  1020. kvm->arch.ram_npages = 0;
  1021. kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
  1022. kvm->arch.ram_porder = LARGE_PAGE_ORDER;
  1023. kvm->arch.rma = NULL;
  1024. kvm->arch.n_rma_pages = 0;
  1025. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  1026. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1027. /* PPC970; HID4 is effectively the LPCR */
  1028. unsigned long lpid = kvm->arch.lpid;
  1029. kvm->arch.host_lpid = 0;
  1030. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  1031. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  1032. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  1033. ((lpid & 0xf) << HID4_LPID5_SH);
  1034. } else {
  1035. /* POWER7; init LPCR for virtual RMA mode */
  1036. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  1037. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  1038. lpcr &= LPCR_PECE | LPCR_LPES;
  1039. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  1040. LPCR_VPM0 | LPCR_VRMA_L;
  1041. }
  1042. kvm->arch.lpcr = lpcr;
  1043. return 0;
  1044. out_free:
  1045. kvmppc_free_hpt(kvm);
  1046. return err;
  1047. }
  1048. void kvmppc_core_destroy_vm(struct kvm *kvm)
  1049. {
  1050. struct kvmppc_pginfo *pginfo;
  1051. unsigned long i;
  1052. if (kvm->arch.ram_pginfo) {
  1053. pginfo = kvm->arch.ram_pginfo;
  1054. kvm->arch.ram_pginfo = NULL;
  1055. for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
  1056. if (pginfo[i].pfn)
  1057. put_page(pfn_to_page(pginfo[i].pfn));
  1058. kfree(pginfo);
  1059. }
  1060. if (kvm->arch.rma) {
  1061. kvm_release_rma(kvm->arch.rma);
  1062. kvm->arch.rma = NULL;
  1063. }
  1064. kvmppc_free_hpt(kvm);
  1065. WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
  1066. }
  1067. /* These are stubs for now */
  1068. void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
  1069. {
  1070. }
  1071. /* We don't need to emulate any privileged instructions or dcbz */
  1072. int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
  1073. unsigned int inst, int *advance)
  1074. {
  1075. return EMULATE_FAIL;
  1076. }
  1077. int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
  1078. {
  1079. return EMULATE_FAIL;
  1080. }
  1081. int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
  1082. {
  1083. return EMULATE_FAIL;
  1084. }
  1085. static int kvmppc_book3s_hv_init(void)
  1086. {
  1087. int r;
  1088. r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1089. if (r)
  1090. return r;
  1091. r = kvmppc_mmu_hv_init();
  1092. return r;
  1093. }
  1094. static void kvmppc_book3s_hv_exit(void)
  1095. {
  1096. kvm_exit();
  1097. }
  1098. module_init(kvmppc_book3s_hv_init);
  1099. module_exit(kvmppc_book3s_hv_exit);