x86.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #define MAX_IO_MSRS 256
  43. #define CR0_RESERVED_BITS \
  44. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  45. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  46. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  47. #define CR4_RESERVED_BITS \
  48. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  49. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  50. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  51. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  52. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  53. /* EFER defaults:
  54. * - enable syscall per default because its emulated by KVM
  55. * - enable LME and LMA per default on 64 bit KVM
  56. */
  57. #ifdef CONFIG_X86_64
  58. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  59. #else
  60. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  61. #endif
  62. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  63. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  64. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  65. struct kvm_cpuid_entry2 __user *entries);
  66. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  67. u32 function, u32 index);
  68. struct kvm_x86_ops *kvm_x86_ops;
  69. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  70. struct kvm_stats_debugfs_item debugfs_entries[] = {
  71. { "pf_fixed", VCPU_STAT(pf_fixed) },
  72. { "pf_guest", VCPU_STAT(pf_guest) },
  73. { "tlb_flush", VCPU_STAT(tlb_flush) },
  74. { "invlpg", VCPU_STAT(invlpg) },
  75. { "exits", VCPU_STAT(exits) },
  76. { "io_exits", VCPU_STAT(io_exits) },
  77. { "mmio_exits", VCPU_STAT(mmio_exits) },
  78. { "signal_exits", VCPU_STAT(signal_exits) },
  79. { "irq_window", VCPU_STAT(irq_window_exits) },
  80. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  81. { "halt_exits", VCPU_STAT(halt_exits) },
  82. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  83. { "hypercalls", VCPU_STAT(hypercalls) },
  84. { "request_irq", VCPU_STAT(request_irq_exits) },
  85. { "irq_exits", VCPU_STAT(irq_exits) },
  86. { "host_state_reload", VCPU_STAT(host_state_reload) },
  87. { "efer_reload", VCPU_STAT(efer_reload) },
  88. { "fpu_reload", VCPU_STAT(fpu_reload) },
  89. { "insn_emulation", VCPU_STAT(insn_emulation) },
  90. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  91. { "irq_injections", VCPU_STAT(irq_injections) },
  92. { "nmi_injections", VCPU_STAT(nmi_injections) },
  93. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  94. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  95. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  96. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  97. { "mmu_flooded", VM_STAT(mmu_flooded) },
  98. { "mmu_recycled", VM_STAT(mmu_recycled) },
  99. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  100. { "mmu_unsync", VM_STAT(mmu_unsync) },
  101. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  102. { "largepages", VM_STAT(lpages) },
  103. { NULL }
  104. };
  105. unsigned long segment_base(u16 selector)
  106. {
  107. struct descriptor_table gdt;
  108. struct desc_struct *d;
  109. unsigned long table_base;
  110. unsigned long v;
  111. if (selector == 0)
  112. return 0;
  113. asm("sgdt %0" : "=m"(gdt));
  114. table_base = gdt.base;
  115. if (selector & 4) { /* from ldt */
  116. u16 ldt_selector;
  117. asm("sldt %0" : "=g"(ldt_selector));
  118. table_base = segment_base(ldt_selector);
  119. }
  120. d = (struct desc_struct *)(table_base + (selector & ~7));
  121. v = d->base0 | ((unsigned long)d->base1 << 16) |
  122. ((unsigned long)d->base2 << 24);
  123. #ifdef CONFIG_X86_64
  124. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  125. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  126. #endif
  127. return v;
  128. }
  129. EXPORT_SYMBOL_GPL(segment_base);
  130. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  131. {
  132. if (irqchip_in_kernel(vcpu->kvm))
  133. return vcpu->arch.apic_base;
  134. else
  135. return vcpu->arch.apic_base;
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  138. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  139. {
  140. /* TODO: reserve bits check */
  141. if (irqchip_in_kernel(vcpu->kvm))
  142. kvm_lapic_set_base(vcpu, data);
  143. else
  144. vcpu->arch.apic_base = data;
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  147. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  148. {
  149. WARN_ON(vcpu->arch.exception.pending);
  150. vcpu->arch.exception.pending = true;
  151. vcpu->arch.exception.has_error_code = false;
  152. vcpu->arch.exception.nr = nr;
  153. }
  154. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  155. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  156. u32 error_code)
  157. {
  158. ++vcpu->stat.pf_guest;
  159. if (vcpu->arch.exception.pending) {
  160. if (vcpu->arch.exception.nr == PF_VECTOR) {
  161. printk(KERN_DEBUG "kvm: inject_page_fault:"
  162. " double fault 0x%lx\n", addr);
  163. vcpu->arch.exception.nr = DF_VECTOR;
  164. vcpu->arch.exception.error_code = 0;
  165. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  166. /* triple fault -> shutdown */
  167. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  168. }
  169. return;
  170. }
  171. vcpu->arch.cr2 = addr;
  172. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  173. }
  174. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  175. {
  176. vcpu->arch.nmi_pending = 1;
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  179. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  180. {
  181. WARN_ON(vcpu->arch.exception.pending);
  182. vcpu->arch.exception.pending = true;
  183. vcpu->arch.exception.has_error_code = true;
  184. vcpu->arch.exception.nr = nr;
  185. vcpu->arch.exception.error_code = error_code;
  186. }
  187. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  188. static void __queue_exception(struct kvm_vcpu *vcpu)
  189. {
  190. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  191. vcpu->arch.exception.has_error_code,
  192. vcpu->arch.exception.error_code);
  193. }
  194. /*
  195. * Load the pae pdptrs. Return true is they are all valid.
  196. */
  197. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  198. {
  199. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  200. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  201. int i;
  202. int ret;
  203. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  204. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  205. offset * sizeof(u64), sizeof(pdpte));
  206. if (ret < 0) {
  207. ret = 0;
  208. goto out;
  209. }
  210. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  211. if (is_present_pte(pdpte[i]) &&
  212. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  213. ret = 0;
  214. goto out;
  215. }
  216. }
  217. ret = 1;
  218. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  219. out:
  220. return ret;
  221. }
  222. EXPORT_SYMBOL_GPL(load_pdptrs);
  223. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  224. {
  225. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  226. bool changed = true;
  227. int r;
  228. if (is_long_mode(vcpu) || !is_pae(vcpu))
  229. return false;
  230. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  231. if (r < 0)
  232. goto out;
  233. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  234. out:
  235. return changed;
  236. }
  237. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  238. {
  239. if (cr0 & CR0_RESERVED_BITS) {
  240. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  241. cr0, vcpu->arch.cr0);
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  246. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  247. kvm_inject_gp(vcpu, 0);
  248. return;
  249. }
  250. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  251. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  252. "and a clear PE flag\n");
  253. kvm_inject_gp(vcpu, 0);
  254. return;
  255. }
  256. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  257. #ifdef CONFIG_X86_64
  258. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  259. int cs_db, cs_l;
  260. if (!is_pae(vcpu)) {
  261. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  262. "in long mode while PAE is disabled\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  267. if (cs_l) {
  268. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  269. "in long mode while CS.L == 1\n");
  270. kvm_inject_gp(vcpu, 0);
  271. return;
  272. }
  273. } else
  274. #endif
  275. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  277. "reserved bits\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. }
  282. kvm_x86_ops->set_cr0(vcpu, cr0);
  283. vcpu->arch.cr0 = cr0;
  284. kvm_mmu_reset_context(vcpu);
  285. return;
  286. }
  287. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  288. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  289. {
  290. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  291. KVMTRACE_1D(LMSW, vcpu,
  292. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  293. handler);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_lmsw);
  296. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  297. {
  298. unsigned long old_cr4 = vcpu->arch.cr4;
  299. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  300. if (cr4 & CR4_RESERVED_BITS) {
  301. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  302. kvm_inject_gp(vcpu, 0);
  303. return;
  304. }
  305. if (is_long_mode(vcpu)) {
  306. if (!(cr4 & X86_CR4_PAE)) {
  307. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  308. "in long mode\n");
  309. kvm_inject_gp(vcpu, 0);
  310. return;
  311. }
  312. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  313. && ((cr4 ^ old_cr4) & pdptr_bits)
  314. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  315. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  316. kvm_inject_gp(vcpu, 0);
  317. return;
  318. }
  319. if (cr4 & X86_CR4_VMXE) {
  320. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  321. kvm_inject_gp(vcpu, 0);
  322. return;
  323. }
  324. kvm_x86_ops->set_cr4(vcpu, cr4);
  325. vcpu->arch.cr4 = cr4;
  326. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  327. kvm_mmu_reset_context(vcpu);
  328. }
  329. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  330. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  331. {
  332. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  333. kvm_mmu_sync_roots(vcpu);
  334. kvm_mmu_flush_tlb(vcpu);
  335. return;
  336. }
  337. if (is_long_mode(vcpu)) {
  338. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  339. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  340. kvm_inject_gp(vcpu, 0);
  341. return;
  342. }
  343. } else {
  344. if (is_pae(vcpu)) {
  345. if (cr3 & CR3_PAE_RESERVED_BITS) {
  346. printk(KERN_DEBUG
  347. "set_cr3: #GP, reserved bits\n");
  348. kvm_inject_gp(vcpu, 0);
  349. return;
  350. }
  351. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  352. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  353. "reserved bits\n");
  354. kvm_inject_gp(vcpu, 0);
  355. return;
  356. }
  357. }
  358. /*
  359. * We don't check reserved bits in nonpae mode, because
  360. * this isn't enforced, and VMware depends on this.
  361. */
  362. }
  363. /*
  364. * Does the new cr3 value map to physical memory? (Note, we
  365. * catch an invalid cr3 even in real-mode, because it would
  366. * cause trouble later on when we turn on paging anyway.)
  367. *
  368. * A real CPU would silently accept an invalid cr3 and would
  369. * attempt to use it - with largely undefined (and often hard
  370. * to debug) behavior on the guest side.
  371. */
  372. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  373. kvm_inject_gp(vcpu, 0);
  374. else {
  375. vcpu->arch.cr3 = cr3;
  376. vcpu->arch.mmu.new_cr3(vcpu);
  377. }
  378. }
  379. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  380. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  381. {
  382. if (cr8 & CR8_RESERVED_BITS) {
  383. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  384. kvm_inject_gp(vcpu, 0);
  385. return;
  386. }
  387. if (irqchip_in_kernel(vcpu->kvm))
  388. kvm_lapic_set_tpr(vcpu, cr8);
  389. else
  390. vcpu->arch.cr8 = cr8;
  391. }
  392. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  393. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  394. {
  395. if (irqchip_in_kernel(vcpu->kvm))
  396. return kvm_lapic_get_cr8(vcpu);
  397. else
  398. return vcpu->arch.cr8;
  399. }
  400. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  401. static inline u32 bit(int bitno)
  402. {
  403. return 1 << (bitno & 31);
  404. }
  405. /*
  406. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  407. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  408. *
  409. * This list is modified at module load time to reflect the
  410. * capabilities of the host cpu.
  411. */
  412. static u32 msrs_to_save[] = {
  413. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  414. MSR_K6_STAR,
  415. #ifdef CONFIG_X86_64
  416. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  417. #endif
  418. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  419. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  420. };
  421. static unsigned num_msrs_to_save;
  422. static u32 emulated_msrs[] = {
  423. MSR_IA32_MISC_ENABLE,
  424. };
  425. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  426. {
  427. if (efer & efer_reserved_bits) {
  428. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  429. efer);
  430. kvm_inject_gp(vcpu, 0);
  431. return;
  432. }
  433. if (is_paging(vcpu)
  434. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  435. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  436. kvm_inject_gp(vcpu, 0);
  437. return;
  438. }
  439. if (efer & EFER_FFXSR) {
  440. struct kvm_cpuid_entry2 *feat;
  441. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  442. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  443. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  444. kvm_inject_gp(vcpu, 0);
  445. return;
  446. }
  447. }
  448. if (efer & EFER_SVME) {
  449. struct kvm_cpuid_entry2 *feat;
  450. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  451. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  452. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. }
  457. kvm_x86_ops->set_efer(vcpu, efer);
  458. efer &= ~EFER_LMA;
  459. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  460. vcpu->arch.shadow_efer = efer;
  461. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  462. kvm_mmu_reset_context(vcpu);
  463. }
  464. void kvm_enable_efer_bits(u64 mask)
  465. {
  466. efer_reserved_bits &= ~mask;
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  469. /*
  470. * Writes msr value into into the appropriate "register".
  471. * Returns 0 on success, non-0 otherwise.
  472. * Assumes vcpu_load() was already called.
  473. */
  474. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  475. {
  476. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  477. }
  478. /*
  479. * Adapt set_msr() to msr_io()'s calling convention
  480. */
  481. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  482. {
  483. return kvm_set_msr(vcpu, index, *data);
  484. }
  485. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  486. {
  487. static int version;
  488. struct pvclock_wall_clock wc;
  489. struct timespec now, sys, boot;
  490. if (!wall_clock)
  491. return;
  492. version++;
  493. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  494. /*
  495. * The guest calculates current wall clock time by adding
  496. * system time (updated by kvm_write_guest_time below) to the
  497. * wall clock specified here. guest system time equals host
  498. * system time for us, thus we must fill in host boot time here.
  499. */
  500. now = current_kernel_time();
  501. ktime_get_ts(&sys);
  502. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  503. wc.sec = boot.tv_sec;
  504. wc.nsec = boot.tv_nsec;
  505. wc.version = version;
  506. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  507. version++;
  508. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  509. }
  510. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  511. {
  512. uint32_t quotient, remainder;
  513. /* Don't try to replace with do_div(), this one calculates
  514. * "(dividend << 32) / divisor" */
  515. __asm__ ( "divl %4"
  516. : "=a" (quotient), "=d" (remainder)
  517. : "0" (0), "1" (dividend), "r" (divisor) );
  518. return quotient;
  519. }
  520. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  521. {
  522. uint64_t nsecs = 1000000000LL;
  523. int32_t shift = 0;
  524. uint64_t tps64;
  525. uint32_t tps32;
  526. tps64 = tsc_khz * 1000LL;
  527. while (tps64 > nsecs*2) {
  528. tps64 >>= 1;
  529. shift--;
  530. }
  531. tps32 = (uint32_t)tps64;
  532. while (tps32 <= (uint32_t)nsecs) {
  533. tps32 <<= 1;
  534. shift++;
  535. }
  536. hv_clock->tsc_shift = shift;
  537. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  538. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  539. __func__, tsc_khz, hv_clock->tsc_shift,
  540. hv_clock->tsc_to_system_mul);
  541. }
  542. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  543. static void kvm_write_guest_time(struct kvm_vcpu *v)
  544. {
  545. struct timespec ts;
  546. unsigned long flags;
  547. struct kvm_vcpu_arch *vcpu = &v->arch;
  548. void *shared_kaddr;
  549. unsigned long this_tsc_khz;
  550. if ((!vcpu->time_page))
  551. return;
  552. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  553. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  554. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  555. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  556. }
  557. put_cpu_var(cpu_tsc_khz);
  558. /* Keep irq disabled to prevent changes to the clock */
  559. local_irq_save(flags);
  560. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  561. ktime_get_ts(&ts);
  562. local_irq_restore(flags);
  563. /* With all the info we got, fill in the values */
  564. vcpu->hv_clock.system_time = ts.tv_nsec +
  565. (NSEC_PER_SEC * (u64)ts.tv_sec);
  566. /*
  567. * The interface expects us to write an even number signaling that the
  568. * update is finished. Since the guest won't see the intermediate
  569. * state, we just increase by 2 at the end.
  570. */
  571. vcpu->hv_clock.version += 2;
  572. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  573. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  574. sizeof(vcpu->hv_clock));
  575. kunmap_atomic(shared_kaddr, KM_USER0);
  576. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  577. }
  578. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  579. {
  580. struct kvm_vcpu_arch *vcpu = &v->arch;
  581. if (!vcpu->time_page)
  582. return 0;
  583. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  584. return 1;
  585. }
  586. static bool msr_mtrr_valid(unsigned msr)
  587. {
  588. switch (msr) {
  589. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  590. case MSR_MTRRfix64K_00000:
  591. case MSR_MTRRfix16K_80000:
  592. case MSR_MTRRfix16K_A0000:
  593. case MSR_MTRRfix4K_C0000:
  594. case MSR_MTRRfix4K_C8000:
  595. case MSR_MTRRfix4K_D0000:
  596. case MSR_MTRRfix4K_D8000:
  597. case MSR_MTRRfix4K_E0000:
  598. case MSR_MTRRfix4K_E8000:
  599. case MSR_MTRRfix4K_F0000:
  600. case MSR_MTRRfix4K_F8000:
  601. case MSR_MTRRdefType:
  602. case MSR_IA32_CR_PAT:
  603. return true;
  604. case 0x2f8:
  605. return true;
  606. }
  607. return false;
  608. }
  609. static bool valid_pat_type(unsigned t)
  610. {
  611. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  612. }
  613. static bool valid_mtrr_type(unsigned t)
  614. {
  615. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  616. }
  617. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  618. {
  619. int i;
  620. if (!msr_mtrr_valid(msr))
  621. return false;
  622. if (msr == MSR_IA32_CR_PAT) {
  623. for (i = 0; i < 8; i++)
  624. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  625. return false;
  626. return true;
  627. } else if (msr == MSR_MTRRdefType) {
  628. if (data & ~0xcff)
  629. return false;
  630. return valid_mtrr_type(data & 0xff);
  631. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  632. for (i = 0; i < 8 ; i++)
  633. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  634. return false;
  635. return true;
  636. }
  637. /* variable MTRRs */
  638. return valid_mtrr_type(data & 0xff);
  639. }
  640. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  641. {
  642. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  643. if (!mtrr_valid(vcpu, msr, data))
  644. return 1;
  645. if (msr == MSR_MTRRdefType) {
  646. vcpu->arch.mtrr_state.def_type = data;
  647. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  648. } else if (msr == MSR_MTRRfix64K_00000)
  649. p[0] = data;
  650. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  651. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  652. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  653. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  654. else if (msr == MSR_IA32_CR_PAT)
  655. vcpu->arch.pat = data;
  656. else { /* Variable MTRRs */
  657. int idx, is_mtrr_mask;
  658. u64 *pt;
  659. idx = (msr - 0x200) / 2;
  660. is_mtrr_mask = msr - 0x200 - 2 * idx;
  661. if (!is_mtrr_mask)
  662. pt =
  663. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  664. else
  665. pt =
  666. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  667. *pt = data;
  668. }
  669. kvm_mmu_reset_context(vcpu);
  670. return 0;
  671. }
  672. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  673. {
  674. switch (msr) {
  675. case MSR_EFER:
  676. set_efer(vcpu, data);
  677. break;
  678. case MSR_IA32_MC0_STATUS:
  679. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  680. __func__, data);
  681. break;
  682. case MSR_IA32_MCG_STATUS:
  683. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  684. __func__, data);
  685. break;
  686. case MSR_IA32_MCG_CTL:
  687. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  688. __func__, data);
  689. break;
  690. case MSR_IA32_DEBUGCTLMSR:
  691. if (!data) {
  692. /* We support the non-activated case already */
  693. break;
  694. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  695. /* Values other than LBR and BTF are vendor-specific,
  696. thus reserved and should throw a #GP */
  697. return 1;
  698. }
  699. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  700. __func__, data);
  701. break;
  702. case MSR_IA32_UCODE_REV:
  703. case MSR_IA32_UCODE_WRITE:
  704. case MSR_VM_HSAVE_PA:
  705. break;
  706. case 0x200 ... 0x2ff:
  707. return set_msr_mtrr(vcpu, msr, data);
  708. case MSR_IA32_APICBASE:
  709. kvm_set_apic_base(vcpu, data);
  710. break;
  711. case MSR_IA32_MISC_ENABLE:
  712. vcpu->arch.ia32_misc_enable_msr = data;
  713. break;
  714. case MSR_KVM_WALL_CLOCK:
  715. vcpu->kvm->arch.wall_clock = data;
  716. kvm_write_wall_clock(vcpu->kvm, data);
  717. break;
  718. case MSR_KVM_SYSTEM_TIME: {
  719. if (vcpu->arch.time_page) {
  720. kvm_release_page_dirty(vcpu->arch.time_page);
  721. vcpu->arch.time_page = NULL;
  722. }
  723. vcpu->arch.time = data;
  724. /* we verify if the enable bit is set... */
  725. if (!(data & 1))
  726. break;
  727. /* ...but clean it before doing the actual write */
  728. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  729. vcpu->arch.time_page =
  730. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  731. if (is_error_page(vcpu->arch.time_page)) {
  732. kvm_release_page_clean(vcpu->arch.time_page);
  733. vcpu->arch.time_page = NULL;
  734. }
  735. kvm_request_guest_time_update(vcpu);
  736. break;
  737. }
  738. default:
  739. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  740. return 1;
  741. }
  742. return 0;
  743. }
  744. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  745. /*
  746. * Reads an msr value (of 'msr_index') into 'pdata'.
  747. * Returns 0 on success, non-0 otherwise.
  748. * Assumes vcpu_load() was already called.
  749. */
  750. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  751. {
  752. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  753. }
  754. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  755. {
  756. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  757. if (!msr_mtrr_valid(msr))
  758. return 1;
  759. if (msr == MSR_MTRRdefType)
  760. *pdata = vcpu->arch.mtrr_state.def_type +
  761. (vcpu->arch.mtrr_state.enabled << 10);
  762. else if (msr == MSR_MTRRfix64K_00000)
  763. *pdata = p[0];
  764. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  765. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  766. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  767. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  768. else if (msr == MSR_IA32_CR_PAT)
  769. *pdata = vcpu->arch.pat;
  770. else { /* Variable MTRRs */
  771. int idx, is_mtrr_mask;
  772. u64 *pt;
  773. idx = (msr - 0x200) / 2;
  774. is_mtrr_mask = msr - 0x200 - 2 * idx;
  775. if (!is_mtrr_mask)
  776. pt =
  777. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  778. else
  779. pt =
  780. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  781. *pdata = *pt;
  782. }
  783. return 0;
  784. }
  785. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  786. {
  787. u64 data;
  788. switch (msr) {
  789. case 0xc0010010: /* SYSCFG */
  790. case 0xc0010015: /* HWCR */
  791. case MSR_IA32_PLATFORM_ID:
  792. case MSR_IA32_P5_MC_ADDR:
  793. case MSR_IA32_P5_MC_TYPE:
  794. case MSR_IA32_MC0_CTL:
  795. case MSR_IA32_MCG_STATUS:
  796. case MSR_IA32_MCG_CAP:
  797. case MSR_IA32_MCG_CTL:
  798. case MSR_IA32_MC0_MISC:
  799. case MSR_IA32_MC0_MISC+4:
  800. case MSR_IA32_MC0_MISC+8:
  801. case MSR_IA32_MC0_MISC+12:
  802. case MSR_IA32_MC0_MISC+16:
  803. case MSR_IA32_MC0_MISC+20:
  804. case MSR_IA32_UCODE_REV:
  805. case MSR_IA32_EBL_CR_POWERON:
  806. case MSR_IA32_DEBUGCTLMSR:
  807. case MSR_IA32_LASTBRANCHFROMIP:
  808. case MSR_IA32_LASTBRANCHTOIP:
  809. case MSR_IA32_LASTINTFROMIP:
  810. case MSR_IA32_LASTINTTOIP:
  811. case MSR_VM_HSAVE_PA:
  812. case MSR_P6_EVNTSEL0:
  813. case MSR_P6_EVNTSEL1:
  814. case MSR_K7_EVNTSEL0:
  815. data = 0;
  816. break;
  817. case MSR_MTRRcap:
  818. data = 0x500 | KVM_NR_VAR_MTRR;
  819. break;
  820. case 0x200 ... 0x2ff:
  821. return get_msr_mtrr(vcpu, msr, pdata);
  822. case 0xcd: /* fsb frequency */
  823. data = 3;
  824. break;
  825. case MSR_IA32_APICBASE:
  826. data = kvm_get_apic_base(vcpu);
  827. break;
  828. case MSR_IA32_MISC_ENABLE:
  829. data = vcpu->arch.ia32_misc_enable_msr;
  830. break;
  831. case MSR_IA32_PERF_STATUS:
  832. /* TSC increment by tick */
  833. data = 1000ULL;
  834. /* CPU multiplier */
  835. data |= (((uint64_t)4ULL) << 40);
  836. break;
  837. case MSR_EFER:
  838. data = vcpu->arch.shadow_efer;
  839. break;
  840. case MSR_KVM_WALL_CLOCK:
  841. data = vcpu->kvm->arch.wall_clock;
  842. break;
  843. case MSR_KVM_SYSTEM_TIME:
  844. data = vcpu->arch.time;
  845. break;
  846. default:
  847. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  848. return 1;
  849. }
  850. *pdata = data;
  851. return 0;
  852. }
  853. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  854. /*
  855. * Read or write a bunch of msrs. All parameters are kernel addresses.
  856. *
  857. * @return number of msrs set successfully.
  858. */
  859. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  860. struct kvm_msr_entry *entries,
  861. int (*do_msr)(struct kvm_vcpu *vcpu,
  862. unsigned index, u64 *data))
  863. {
  864. int i;
  865. vcpu_load(vcpu);
  866. down_read(&vcpu->kvm->slots_lock);
  867. for (i = 0; i < msrs->nmsrs; ++i)
  868. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  869. break;
  870. up_read(&vcpu->kvm->slots_lock);
  871. vcpu_put(vcpu);
  872. return i;
  873. }
  874. /*
  875. * Read or write a bunch of msrs. Parameters are user addresses.
  876. *
  877. * @return number of msrs set successfully.
  878. */
  879. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  880. int (*do_msr)(struct kvm_vcpu *vcpu,
  881. unsigned index, u64 *data),
  882. int writeback)
  883. {
  884. struct kvm_msrs msrs;
  885. struct kvm_msr_entry *entries;
  886. int r, n;
  887. unsigned size;
  888. r = -EFAULT;
  889. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  890. goto out;
  891. r = -E2BIG;
  892. if (msrs.nmsrs >= MAX_IO_MSRS)
  893. goto out;
  894. r = -ENOMEM;
  895. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  896. entries = vmalloc(size);
  897. if (!entries)
  898. goto out;
  899. r = -EFAULT;
  900. if (copy_from_user(entries, user_msrs->entries, size))
  901. goto out_free;
  902. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  903. if (r < 0)
  904. goto out_free;
  905. r = -EFAULT;
  906. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  907. goto out_free;
  908. r = n;
  909. out_free:
  910. vfree(entries);
  911. out:
  912. return r;
  913. }
  914. int kvm_dev_ioctl_check_extension(long ext)
  915. {
  916. int r;
  917. switch (ext) {
  918. case KVM_CAP_IRQCHIP:
  919. case KVM_CAP_HLT:
  920. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  921. case KVM_CAP_SET_TSS_ADDR:
  922. case KVM_CAP_EXT_CPUID:
  923. case KVM_CAP_CLOCKSOURCE:
  924. case KVM_CAP_PIT:
  925. case KVM_CAP_NOP_IO_DELAY:
  926. case KVM_CAP_MP_STATE:
  927. case KVM_CAP_SYNC_MMU:
  928. case KVM_CAP_REINJECT_CONTROL:
  929. case KVM_CAP_IRQ_INJECT_STATUS:
  930. case KVM_CAP_ASSIGN_DEV_IRQ:
  931. r = 1;
  932. break;
  933. case KVM_CAP_COALESCED_MMIO:
  934. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  935. break;
  936. case KVM_CAP_VAPIC:
  937. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  938. break;
  939. case KVM_CAP_NR_VCPUS:
  940. r = KVM_MAX_VCPUS;
  941. break;
  942. case KVM_CAP_NR_MEMSLOTS:
  943. r = KVM_MEMORY_SLOTS;
  944. break;
  945. case KVM_CAP_PV_MMU:
  946. r = !tdp_enabled;
  947. break;
  948. case KVM_CAP_IOMMU:
  949. r = iommu_found();
  950. break;
  951. default:
  952. r = 0;
  953. break;
  954. }
  955. return r;
  956. }
  957. long kvm_arch_dev_ioctl(struct file *filp,
  958. unsigned int ioctl, unsigned long arg)
  959. {
  960. void __user *argp = (void __user *)arg;
  961. long r;
  962. switch (ioctl) {
  963. case KVM_GET_MSR_INDEX_LIST: {
  964. struct kvm_msr_list __user *user_msr_list = argp;
  965. struct kvm_msr_list msr_list;
  966. unsigned n;
  967. r = -EFAULT;
  968. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  969. goto out;
  970. n = msr_list.nmsrs;
  971. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  972. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  973. goto out;
  974. r = -E2BIG;
  975. if (n < msr_list.nmsrs)
  976. goto out;
  977. r = -EFAULT;
  978. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  979. num_msrs_to_save * sizeof(u32)))
  980. goto out;
  981. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  982. &emulated_msrs,
  983. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  984. goto out;
  985. r = 0;
  986. break;
  987. }
  988. case KVM_GET_SUPPORTED_CPUID: {
  989. struct kvm_cpuid2 __user *cpuid_arg = argp;
  990. struct kvm_cpuid2 cpuid;
  991. r = -EFAULT;
  992. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  993. goto out;
  994. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  995. cpuid_arg->entries);
  996. if (r)
  997. goto out;
  998. r = -EFAULT;
  999. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1000. goto out;
  1001. r = 0;
  1002. break;
  1003. }
  1004. default:
  1005. r = -EINVAL;
  1006. }
  1007. out:
  1008. return r;
  1009. }
  1010. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1011. {
  1012. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1013. kvm_request_guest_time_update(vcpu);
  1014. }
  1015. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1016. {
  1017. kvm_x86_ops->vcpu_put(vcpu);
  1018. kvm_put_guest_fpu(vcpu);
  1019. }
  1020. static int is_efer_nx(void)
  1021. {
  1022. unsigned long long efer = 0;
  1023. rdmsrl_safe(MSR_EFER, &efer);
  1024. return efer & EFER_NX;
  1025. }
  1026. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1027. {
  1028. int i;
  1029. struct kvm_cpuid_entry2 *e, *entry;
  1030. entry = NULL;
  1031. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1032. e = &vcpu->arch.cpuid_entries[i];
  1033. if (e->function == 0x80000001) {
  1034. entry = e;
  1035. break;
  1036. }
  1037. }
  1038. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1039. entry->edx &= ~(1 << 20);
  1040. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1041. }
  1042. }
  1043. /* when an old userspace process fills a new kernel module */
  1044. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1045. struct kvm_cpuid *cpuid,
  1046. struct kvm_cpuid_entry __user *entries)
  1047. {
  1048. int r, i;
  1049. struct kvm_cpuid_entry *cpuid_entries;
  1050. r = -E2BIG;
  1051. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1052. goto out;
  1053. r = -ENOMEM;
  1054. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1055. if (!cpuid_entries)
  1056. goto out;
  1057. r = -EFAULT;
  1058. if (copy_from_user(cpuid_entries, entries,
  1059. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1060. goto out_free;
  1061. for (i = 0; i < cpuid->nent; i++) {
  1062. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1063. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1064. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1065. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1066. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1067. vcpu->arch.cpuid_entries[i].index = 0;
  1068. vcpu->arch.cpuid_entries[i].flags = 0;
  1069. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1070. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1071. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1072. }
  1073. vcpu->arch.cpuid_nent = cpuid->nent;
  1074. cpuid_fix_nx_cap(vcpu);
  1075. r = 0;
  1076. out_free:
  1077. vfree(cpuid_entries);
  1078. out:
  1079. return r;
  1080. }
  1081. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1082. struct kvm_cpuid2 *cpuid,
  1083. struct kvm_cpuid_entry2 __user *entries)
  1084. {
  1085. int r;
  1086. r = -E2BIG;
  1087. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1088. goto out;
  1089. r = -EFAULT;
  1090. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1091. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1092. goto out;
  1093. vcpu->arch.cpuid_nent = cpuid->nent;
  1094. return 0;
  1095. out:
  1096. return r;
  1097. }
  1098. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1099. struct kvm_cpuid2 *cpuid,
  1100. struct kvm_cpuid_entry2 __user *entries)
  1101. {
  1102. int r;
  1103. r = -E2BIG;
  1104. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1105. goto out;
  1106. r = -EFAULT;
  1107. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1108. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1109. goto out;
  1110. return 0;
  1111. out:
  1112. cpuid->nent = vcpu->arch.cpuid_nent;
  1113. return r;
  1114. }
  1115. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1116. u32 index)
  1117. {
  1118. entry->function = function;
  1119. entry->index = index;
  1120. cpuid_count(entry->function, entry->index,
  1121. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1122. entry->flags = 0;
  1123. }
  1124. #define F(x) bit(X86_FEATURE_##x)
  1125. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1126. u32 index, int *nent, int maxnent)
  1127. {
  1128. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1129. #ifdef CONFIG_X86_64
  1130. unsigned f_lm = F(LM);
  1131. #else
  1132. unsigned f_lm = 0;
  1133. #endif
  1134. /* cpuid 1.edx */
  1135. const u32 kvm_supported_word0_x86_features =
  1136. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1137. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1138. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1139. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1140. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1141. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1142. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1143. 0 /* HTT, TM, Reserved, PBE */;
  1144. /* cpuid 0x80000001.edx */
  1145. const u32 kvm_supported_word1_x86_features =
  1146. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1147. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1148. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1149. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1150. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1151. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1152. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1153. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1154. /* cpuid 1.ecx */
  1155. const u32 kvm_supported_word4_x86_features =
  1156. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1157. 0 /* DS-CPL, VMX, SMX, EST */ |
  1158. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1159. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1160. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1161. F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
  1162. 0 /* Reserved, XSAVE, OSXSAVE */;
  1163. /* cpuid 0x80000001.ecx */
  1164. const u32 kvm_supported_word6_x86_features =
  1165. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1166. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1167. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1168. 0 /* SKINIT */ | 0 /* WDT */;
  1169. /* all calls to cpuid_count() should be made on the same cpu */
  1170. get_cpu();
  1171. do_cpuid_1_ent(entry, function, index);
  1172. ++*nent;
  1173. switch (function) {
  1174. case 0:
  1175. entry->eax = min(entry->eax, (u32)0xb);
  1176. break;
  1177. case 1:
  1178. entry->edx &= kvm_supported_word0_x86_features;
  1179. entry->ecx &= kvm_supported_word4_x86_features;
  1180. break;
  1181. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1182. * may return different values. This forces us to get_cpu() before
  1183. * issuing the first command, and also to emulate this annoying behavior
  1184. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1185. case 2: {
  1186. int t, times = entry->eax & 0xff;
  1187. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1188. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1189. for (t = 1; t < times && *nent < maxnent; ++t) {
  1190. do_cpuid_1_ent(&entry[t], function, 0);
  1191. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1192. ++*nent;
  1193. }
  1194. break;
  1195. }
  1196. /* function 4 and 0xb have additional index. */
  1197. case 4: {
  1198. int i, cache_type;
  1199. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1200. /* read more entries until cache_type is zero */
  1201. for (i = 1; *nent < maxnent; ++i) {
  1202. cache_type = entry[i - 1].eax & 0x1f;
  1203. if (!cache_type)
  1204. break;
  1205. do_cpuid_1_ent(&entry[i], function, i);
  1206. entry[i].flags |=
  1207. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1208. ++*nent;
  1209. }
  1210. break;
  1211. }
  1212. case 0xb: {
  1213. int i, level_type;
  1214. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1215. /* read more entries until level_type is zero */
  1216. for (i = 1; *nent < maxnent; ++i) {
  1217. level_type = entry[i - 1].ecx & 0xff00;
  1218. if (!level_type)
  1219. break;
  1220. do_cpuid_1_ent(&entry[i], function, i);
  1221. entry[i].flags |=
  1222. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1223. ++*nent;
  1224. }
  1225. break;
  1226. }
  1227. case 0x80000000:
  1228. entry->eax = min(entry->eax, 0x8000001a);
  1229. break;
  1230. case 0x80000001:
  1231. entry->edx &= kvm_supported_word1_x86_features;
  1232. entry->ecx &= kvm_supported_word6_x86_features;
  1233. break;
  1234. }
  1235. put_cpu();
  1236. }
  1237. #undef F
  1238. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1239. struct kvm_cpuid_entry2 __user *entries)
  1240. {
  1241. struct kvm_cpuid_entry2 *cpuid_entries;
  1242. int limit, nent = 0, r = -E2BIG;
  1243. u32 func;
  1244. if (cpuid->nent < 1)
  1245. goto out;
  1246. r = -ENOMEM;
  1247. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1248. if (!cpuid_entries)
  1249. goto out;
  1250. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1251. limit = cpuid_entries[0].eax;
  1252. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1253. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1254. &nent, cpuid->nent);
  1255. r = -E2BIG;
  1256. if (nent >= cpuid->nent)
  1257. goto out_free;
  1258. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1259. limit = cpuid_entries[nent - 1].eax;
  1260. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1261. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1262. &nent, cpuid->nent);
  1263. r = -EFAULT;
  1264. if (copy_to_user(entries, cpuid_entries,
  1265. nent * sizeof(struct kvm_cpuid_entry2)))
  1266. goto out_free;
  1267. cpuid->nent = nent;
  1268. r = 0;
  1269. out_free:
  1270. vfree(cpuid_entries);
  1271. out:
  1272. return r;
  1273. }
  1274. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1275. struct kvm_lapic_state *s)
  1276. {
  1277. vcpu_load(vcpu);
  1278. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1279. vcpu_put(vcpu);
  1280. return 0;
  1281. }
  1282. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1283. struct kvm_lapic_state *s)
  1284. {
  1285. vcpu_load(vcpu);
  1286. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1287. kvm_apic_post_state_restore(vcpu);
  1288. vcpu_put(vcpu);
  1289. return 0;
  1290. }
  1291. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1292. struct kvm_interrupt *irq)
  1293. {
  1294. if (irq->irq < 0 || irq->irq >= 256)
  1295. return -EINVAL;
  1296. if (irqchip_in_kernel(vcpu->kvm))
  1297. return -ENXIO;
  1298. vcpu_load(vcpu);
  1299. kvm_queue_interrupt(vcpu, irq->irq, false);
  1300. vcpu_put(vcpu);
  1301. return 0;
  1302. }
  1303. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1304. {
  1305. vcpu_load(vcpu);
  1306. kvm_inject_nmi(vcpu);
  1307. vcpu_put(vcpu);
  1308. return 0;
  1309. }
  1310. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1311. struct kvm_tpr_access_ctl *tac)
  1312. {
  1313. if (tac->flags)
  1314. return -EINVAL;
  1315. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1316. return 0;
  1317. }
  1318. long kvm_arch_vcpu_ioctl(struct file *filp,
  1319. unsigned int ioctl, unsigned long arg)
  1320. {
  1321. struct kvm_vcpu *vcpu = filp->private_data;
  1322. void __user *argp = (void __user *)arg;
  1323. int r;
  1324. struct kvm_lapic_state *lapic = NULL;
  1325. switch (ioctl) {
  1326. case KVM_GET_LAPIC: {
  1327. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1328. r = -ENOMEM;
  1329. if (!lapic)
  1330. goto out;
  1331. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1332. if (r)
  1333. goto out;
  1334. r = -EFAULT;
  1335. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1336. goto out;
  1337. r = 0;
  1338. break;
  1339. }
  1340. case KVM_SET_LAPIC: {
  1341. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1342. r = -ENOMEM;
  1343. if (!lapic)
  1344. goto out;
  1345. r = -EFAULT;
  1346. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1347. goto out;
  1348. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1349. if (r)
  1350. goto out;
  1351. r = 0;
  1352. break;
  1353. }
  1354. case KVM_INTERRUPT: {
  1355. struct kvm_interrupt irq;
  1356. r = -EFAULT;
  1357. if (copy_from_user(&irq, argp, sizeof irq))
  1358. goto out;
  1359. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1360. if (r)
  1361. goto out;
  1362. r = 0;
  1363. break;
  1364. }
  1365. case KVM_NMI: {
  1366. r = kvm_vcpu_ioctl_nmi(vcpu);
  1367. if (r)
  1368. goto out;
  1369. r = 0;
  1370. break;
  1371. }
  1372. case KVM_SET_CPUID: {
  1373. struct kvm_cpuid __user *cpuid_arg = argp;
  1374. struct kvm_cpuid cpuid;
  1375. r = -EFAULT;
  1376. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1377. goto out;
  1378. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1379. if (r)
  1380. goto out;
  1381. break;
  1382. }
  1383. case KVM_SET_CPUID2: {
  1384. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1385. struct kvm_cpuid2 cpuid;
  1386. r = -EFAULT;
  1387. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1388. goto out;
  1389. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1390. cpuid_arg->entries);
  1391. if (r)
  1392. goto out;
  1393. break;
  1394. }
  1395. case KVM_GET_CPUID2: {
  1396. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1397. struct kvm_cpuid2 cpuid;
  1398. r = -EFAULT;
  1399. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1400. goto out;
  1401. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1402. cpuid_arg->entries);
  1403. if (r)
  1404. goto out;
  1405. r = -EFAULT;
  1406. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1407. goto out;
  1408. r = 0;
  1409. break;
  1410. }
  1411. case KVM_GET_MSRS:
  1412. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1413. break;
  1414. case KVM_SET_MSRS:
  1415. r = msr_io(vcpu, argp, do_set_msr, 0);
  1416. break;
  1417. case KVM_TPR_ACCESS_REPORTING: {
  1418. struct kvm_tpr_access_ctl tac;
  1419. r = -EFAULT;
  1420. if (copy_from_user(&tac, argp, sizeof tac))
  1421. goto out;
  1422. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1423. if (r)
  1424. goto out;
  1425. r = -EFAULT;
  1426. if (copy_to_user(argp, &tac, sizeof tac))
  1427. goto out;
  1428. r = 0;
  1429. break;
  1430. };
  1431. case KVM_SET_VAPIC_ADDR: {
  1432. struct kvm_vapic_addr va;
  1433. r = -EINVAL;
  1434. if (!irqchip_in_kernel(vcpu->kvm))
  1435. goto out;
  1436. r = -EFAULT;
  1437. if (copy_from_user(&va, argp, sizeof va))
  1438. goto out;
  1439. r = 0;
  1440. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1441. break;
  1442. }
  1443. default:
  1444. r = -EINVAL;
  1445. }
  1446. out:
  1447. kfree(lapic);
  1448. return r;
  1449. }
  1450. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1451. {
  1452. int ret;
  1453. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1454. return -1;
  1455. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1456. return ret;
  1457. }
  1458. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1459. u32 kvm_nr_mmu_pages)
  1460. {
  1461. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1462. return -EINVAL;
  1463. down_write(&kvm->slots_lock);
  1464. spin_lock(&kvm->mmu_lock);
  1465. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1466. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1467. spin_unlock(&kvm->mmu_lock);
  1468. up_write(&kvm->slots_lock);
  1469. return 0;
  1470. }
  1471. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1472. {
  1473. return kvm->arch.n_alloc_mmu_pages;
  1474. }
  1475. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1476. {
  1477. int i;
  1478. struct kvm_mem_alias *alias;
  1479. for (i = 0; i < kvm->arch.naliases; ++i) {
  1480. alias = &kvm->arch.aliases[i];
  1481. if (gfn >= alias->base_gfn
  1482. && gfn < alias->base_gfn + alias->npages)
  1483. return alias->target_gfn + gfn - alias->base_gfn;
  1484. }
  1485. return gfn;
  1486. }
  1487. /*
  1488. * Set a new alias region. Aliases map a portion of physical memory into
  1489. * another portion. This is useful for memory windows, for example the PC
  1490. * VGA region.
  1491. */
  1492. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1493. struct kvm_memory_alias *alias)
  1494. {
  1495. int r, n;
  1496. struct kvm_mem_alias *p;
  1497. r = -EINVAL;
  1498. /* General sanity checks */
  1499. if (alias->memory_size & (PAGE_SIZE - 1))
  1500. goto out;
  1501. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1502. goto out;
  1503. if (alias->slot >= KVM_ALIAS_SLOTS)
  1504. goto out;
  1505. if (alias->guest_phys_addr + alias->memory_size
  1506. < alias->guest_phys_addr)
  1507. goto out;
  1508. if (alias->target_phys_addr + alias->memory_size
  1509. < alias->target_phys_addr)
  1510. goto out;
  1511. down_write(&kvm->slots_lock);
  1512. spin_lock(&kvm->mmu_lock);
  1513. p = &kvm->arch.aliases[alias->slot];
  1514. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1515. p->npages = alias->memory_size >> PAGE_SHIFT;
  1516. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1517. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1518. if (kvm->arch.aliases[n - 1].npages)
  1519. break;
  1520. kvm->arch.naliases = n;
  1521. spin_unlock(&kvm->mmu_lock);
  1522. kvm_mmu_zap_all(kvm);
  1523. up_write(&kvm->slots_lock);
  1524. return 0;
  1525. out:
  1526. return r;
  1527. }
  1528. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1529. {
  1530. int r;
  1531. r = 0;
  1532. switch (chip->chip_id) {
  1533. case KVM_IRQCHIP_PIC_MASTER:
  1534. memcpy(&chip->chip.pic,
  1535. &pic_irqchip(kvm)->pics[0],
  1536. sizeof(struct kvm_pic_state));
  1537. break;
  1538. case KVM_IRQCHIP_PIC_SLAVE:
  1539. memcpy(&chip->chip.pic,
  1540. &pic_irqchip(kvm)->pics[1],
  1541. sizeof(struct kvm_pic_state));
  1542. break;
  1543. case KVM_IRQCHIP_IOAPIC:
  1544. memcpy(&chip->chip.ioapic,
  1545. ioapic_irqchip(kvm),
  1546. sizeof(struct kvm_ioapic_state));
  1547. break;
  1548. default:
  1549. r = -EINVAL;
  1550. break;
  1551. }
  1552. return r;
  1553. }
  1554. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1555. {
  1556. int r;
  1557. r = 0;
  1558. switch (chip->chip_id) {
  1559. case KVM_IRQCHIP_PIC_MASTER:
  1560. memcpy(&pic_irqchip(kvm)->pics[0],
  1561. &chip->chip.pic,
  1562. sizeof(struct kvm_pic_state));
  1563. break;
  1564. case KVM_IRQCHIP_PIC_SLAVE:
  1565. memcpy(&pic_irqchip(kvm)->pics[1],
  1566. &chip->chip.pic,
  1567. sizeof(struct kvm_pic_state));
  1568. break;
  1569. case KVM_IRQCHIP_IOAPIC:
  1570. memcpy(ioapic_irqchip(kvm),
  1571. &chip->chip.ioapic,
  1572. sizeof(struct kvm_ioapic_state));
  1573. break;
  1574. default:
  1575. r = -EINVAL;
  1576. break;
  1577. }
  1578. kvm_pic_update_irq(pic_irqchip(kvm));
  1579. return r;
  1580. }
  1581. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1582. {
  1583. int r = 0;
  1584. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1585. return r;
  1586. }
  1587. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1588. {
  1589. int r = 0;
  1590. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1591. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1592. return r;
  1593. }
  1594. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1595. struct kvm_reinject_control *control)
  1596. {
  1597. if (!kvm->arch.vpit)
  1598. return -ENXIO;
  1599. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1600. return 0;
  1601. }
  1602. /*
  1603. * Get (and clear) the dirty memory log for a memory slot.
  1604. */
  1605. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1606. struct kvm_dirty_log *log)
  1607. {
  1608. int r;
  1609. int n;
  1610. struct kvm_memory_slot *memslot;
  1611. int is_dirty = 0;
  1612. down_write(&kvm->slots_lock);
  1613. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1614. if (r)
  1615. goto out;
  1616. /* If nothing is dirty, don't bother messing with page tables. */
  1617. if (is_dirty) {
  1618. spin_lock(&kvm->mmu_lock);
  1619. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1620. spin_unlock(&kvm->mmu_lock);
  1621. kvm_flush_remote_tlbs(kvm);
  1622. memslot = &kvm->memslots[log->slot];
  1623. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1624. memset(memslot->dirty_bitmap, 0, n);
  1625. }
  1626. r = 0;
  1627. out:
  1628. up_write(&kvm->slots_lock);
  1629. return r;
  1630. }
  1631. long kvm_arch_vm_ioctl(struct file *filp,
  1632. unsigned int ioctl, unsigned long arg)
  1633. {
  1634. struct kvm *kvm = filp->private_data;
  1635. void __user *argp = (void __user *)arg;
  1636. int r = -EINVAL;
  1637. /*
  1638. * This union makes it completely explicit to gcc-3.x
  1639. * that these two variables' stack usage should be
  1640. * combined, not added together.
  1641. */
  1642. union {
  1643. struct kvm_pit_state ps;
  1644. struct kvm_memory_alias alias;
  1645. } u;
  1646. switch (ioctl) {
  1647. case KVM_SET_TSS_ADDR:
  1648. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1649. if (r < 0)
  1650. goto out;
  1651. break;
  1652. case KVM_SET_MEMORY_REGION: {
  1653. struct kvm_memory_region kvm_mem;
  1654. struct kvm_userspace_memory_region kvm_userspace_mem;
  1655. r = -EFAULT;
  1656. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1657. goto out;
  1658. kvm_userspace_mem.slot = kvm_mem.slot;
  1659. kvm_userspace_mem.flags = kvm_mem.flags;
  1660. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1661. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1662. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1663. if (r)
  1664. goto out;
  1665. break;
  1666. }
  1667. case KVM_SET_NR_MMU_PAGES:
  1668. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1669. if (r)
  1670. goto out;
  1671. break;
  1672. case KVM_GET_NR_MMU_PAGES:
  1673. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1674. break;
  1675. case KVM_SET_MEMORY_ALIAS:
  1676. r = -EFAULT;
  1677. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1678. goto out;
  1679. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1680. if (r)
  1681. goto out;
  1682. break;
  1683. case KVM_CREATE_IRQCHIP:
  1684. r = -ENOMEM;
  1685. kvm->arch.vpic = kvm_create_pic(kvm);
  1686. if (kvm->arch.vpic) {
  1687. r = kvm_ioapic_init(kvm);
  1688. if (r) {
  1689. kfree(kvm->arch.vpic);
  1690. kvm->arch.vpic = NULL;
  1691. goto out;
  1692. }
  1693. } else
  1694. goto out;
  1695. r = kvm_setup_default_irq_routing(kvm);
  1696. if (r) {
  1697. kfree(kvm->arch.vpic);
  1698. kfree(kvm->arch.vioapic);
  1699. goto out;
  1700. }
  1701. break;
  1702. case KVM_CREATE_PIT:
  1703. mutex_lock(&kvm->lock);
  1704. r = -EEXIST;
  1705. if (kvm->arch.vpit)
  1706. goto create_pit_unlock;
  1707. r = -ENOMEM;
  1708. kvm->arch.vpit = kvm_create_pit(kvm);
  1709. if (kvm->arch.vpit)
  1710. r = 0;
  1711. create_pit_unlock:
  1712. mutex_unlock(&kvm->lock);
  1713. break;
  1714. case KVM_IRQ_LINE_STATUS:
  1715. case KVM_IRQ_LINE: {
  1716. struct kvm_irq_level irq_event;
  1717. r = -EFAULT;
  1718. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1719. goto out;
  1720. if (irqchip_in_kernel(kvm)) {
  1721. __s32 status;
  1722. mutex_lock(&kvm->lock);
  1723. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1724. irq_event.irq, irq_event.level);
  1725. mutex_unlock(&kvm->lock);
  1726. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1727. irq_event.status = status;
  1728. if (copy_to_user(argp, &irq_event,
  1729. sizeof irq_event))
  1730. goto out;
  1731. }
  1732. r = 0;
  1733. }
  1734. break;
  1735. }
  1736. case KVM_GET_IRQCHIP: {
  1737. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1738. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1739. r = -ENOMEM;
  1740. if (!chip)
  1741. goto out;
  1742. r = -EFAULT;
  1743. if (copy_from_user(chip, argp, sizeof *chip))
  1744. goto get_irqchip_out;
  1745. r = -ENXIO;
  1746. if (!irqchip_in_kernel(kvm))
  1747. goto get_irqchip_out;
  1748. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1749. if (r)
  1750. goto get_irqchip_out;
  1751. r = -EFAULT;
  1752. if (copy_to_user(argp, chip, sizeof *chip))
  1753. goto get_irqchip_out;
  1754. r = 0;
  1755. get_irqchip_out:
  1756. kfree(chip);
  1757. if (r)
  1758. goto out;
  1759. break;
  1760. }
  1761. case KVM_SET_IRQCHIP: {
  1762. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1763. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1764. r = -ENOMEM;
  1765. if (!chip)
  1766. goto out;
  1767. r = -EFAULT;
  1768. if (copy_from_user(chip, argp, sizeof *chip))
  1769. goto set_irqchip_out;
  1770. r = -ENXIO;
  1771. if (!irqchip_in_kernel(kvm))
  1772. goto set_irqchip_out;
  1773. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1774. if (r)
  1775. goto set_irqchip_out;
  1776. r = 0;
  1777. set_irqchip_out:
  1778. kfree(chip);
  1779. if (r)
  1780. goto out;
  1781. break;
  1782. }
  1783. case KVM_GET_PIT: {
  1784. r = -EFAULT;
  1785. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1786. goto out;
  1787. r = -ENXIO;
  1788. if (!kvm->arch.vpit)
  1789. goto out;
  1790. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1791. if (r)
  1792. goto out;
  1793. r = -EFAULT;
  1794. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1795. goto out;
  1796. r = 0;
  1797. break;
  1798. }
  1799. case KVM_SET_PIT: {
  1800. r = -EFAULT;
  1801. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1802. goto out;
  1803. r = -ENXIO;
  1804. if (!kvm->arch.vpit)
  1805. goto out;
  1806. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1807. if (r)
  1808. goto out;
  1809. r = 0;
  1810. break;
  1811. }
  1812. case KVM_REINJECT_CONTROL: {
  1813. struct kvm_reinject_control control;
  1814. r = -EFAULT;
  1815. if (copy_from_user(&control, argp, sizeof(control)))
  1816. goto out;
  1817. r = kvm_vm_ioctl_reinject(kvm, &control);
  1818. if (r)
  1819. goto out;
  1820. r = 0;
  1821. break;
  1822. }
  1823. default:
  1824. ;
  1825. }
  1826. out:
  1827. return r;
  1828. }
  1829. static void kvm_init_msr_list(void)
  1830. {
  1831. u32 dummy[2];
  1832. unsigned i, j;
  1833. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1834. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1835. continue;
  1836. if (j < i)
  1837. msrs_to_save[j] = msrs_to_save[i];
  1838. j++;
  1839. }
  1840. num_msrs_to_save = j;
  1841. }
  1842. /*
  1843. * Only apic need an MMIO device hook, so shortcut now..
  1844. */
  1845. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1846. gpa_t addr, int len,
  1847. int is_write)
  1848. {
  1849. struct kvm_io_device *dev;
  1850. if (vcpu->arch.apic) {
  1851. dev = &vcpu->arch.apic->dev;
  1852. if (dev->in_range(dev, addr, len, is_write))
  1853. return dev;
  1854. }
  1855. return NULL;
  1856. }
  1857. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1858. gpa_t addr, int len,
  1859. int is_write)
  1860. {
  1861. struct kvm_io_device *dev;
  1862. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1863. if (dev == NULL)
  1864. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1865. is_write);
  1866. return dev;
  1867. }
  1868. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1869. struct kvm_vcpu *vcpu)
  1870. {
  1871. void *data = val;
  1872. int r = X86EMUL_CONTINUE;
  1873. while (bytes) {
  1874. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1875. unsigned offset = addr & (PAGE_SIZE-1);
  1876. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  1877. int ret;
  1878. if (gpa == UNMAPPED_GVA) {
  1879. r = X86EMUL_PROPAGATE_FAULT;
  1880. goto out;
  1881. }
  1882. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  1883. if (ret < 0) {
  1884. r = X86EMUL_UNHANDLEABLE;
  1885. goto out;
  1886. }
  1887. bytes -= toread;
  1888. data += toread;
  1889. addr += toread;
  1890. }
  1891. out:
  1892. return r;
  1893. }
  1894. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1895. struct kvm_vcpu *vcpu)
  1896. {
  1897. void *data = val;
  1898. int r = X86EMUL_CONTINUE;
  1899. while (bytes) {
  1900. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1901. unsigned offset = addr & (PAGE_SIZE-1);
  1902. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  1903. int ret;
  1904. if (gpa == UNMAPPED_GVA) {
  1905. r = X86EMUL_PROPAGATE_FAULT;
  1906. goto out;
  1907. }
  1908. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  1909. if (ret < 0) {
  1910. r = X86EMUL_UNHANDLEABLE;
  1911. goto out;
  1912. }
  1913. bytes -= towrite;
  1914. data += towrite;
  1915. addr += towrite;
  1916. }
  1917. out:
  1918. return r;
  1919. }
  1920. static int emulator_read_emulated(unsigned long addr,
  1921. void *val,
  1922. unsigned int bytes,
  1923. struct kvm_vcpu *vcpu)
  1924. {
  1925. struct kvm_io_device *mmio_dev;
  1926. gpa_t gpa;
  1927. if (vcpu->mmio_read_completed) {
  1928. memcpy(val, vcpu->mmio_data, bytes);
  1929. vcpu->mmio_read_completed = 0;
  1930. return X86EMUL_CONTINUE;
  1931. }
  1932. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1933. /* For APIC access vmexit */
  1934. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1935. goto mmio;
  1936. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  1937. == X86EMUL_CONTINUE)
  1938. return X86EMUL_CONTINUE;
  1939. if (gpa == UNMAPPED_GVA)
  1940. return X86EMUL_PROPAGATE_FAULT;
  1941. mmio:
  1942. /*
  1943. * Is this MMIO handled locally?
  1944. */
  1945. mutex_lock(&vcpu->kvm->lock);
  1946. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1947. if (mmio_dev) {
  1948. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1949. mutex_unlock(&vcpu->kvm->lock);
  1950. return X86EMUL_CONTINUE;
  1951. }
  1952. mutex_unlock(&vcpu->kvm->lock);
  1953. vcpu->mmio_needed = 1;
  1954. vcpu->mmio_phys_addr = gpa;
  1955. vcpu->mmio_size = bytes;
  1956. vcpu->mmio_is_write = 0;
  1957. return X86EMUL_UNHANDLEABLE;
  1958. }
  1959. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1960. const void *val, int bytes)
  1961. {
  1962. int ret;
  1963. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1964. if (ret < 0)
  1965. return 0;
  1966. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1967. return 1;
  1968. }
  1969. static int emulator_write_emulated_onepage(unsigned long addr,
  1970. const void *val,
  1971. unsigned int bytes,
  1972. struct kvm_vcpu *vcpu)
  1973. {
  1974. struct kvm_io_device *mmio_dev;
  1975. gpa_t gpa;
  1976. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1977. if (gpa == UNMAPPED_GVA) {
  1978. kvm_inject_page_fault(vcpu, addr, 2);
  1979. return X86EMUL_PROPAGATE_FAULT;
  1980. }
  1981. /* For APIC access vmexit */
  1982. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1983. goto mmio;
  1984. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1985. return X86EMUL_CONTINUE;
  1986. mmio:
  1987. /*
  1988. * Is this MMIO handled locally?
  1989. */
  1990. mutex_lock(&vcpu->kvm->lock);
  1991. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1992. if (mmio_dev) {
  1993. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1994. mutex_unlock(&vcpu->kvm->lock);
  1995. return X86EMUL_CONTINUE;
  1996. }
  1997. mutex_unlock(&vcpu->kvm->lock);
  1998. vcpu->mmio_needed = 1;
  1999. vcpu->mmio_phys_addr = gpa;
  2000. vcpu->mmio_size = bytes;
  2001. vcpu->mmio_is_write = 1;
  2002. memcpy(vcpu->mmio_data, val, bytes);
  2003. return X86EMUL_CONTINUE;
  2004. }
  2005. int emulator_write_emulated(unsigned long addr,
  2006. const void *val,
  2007. unsigned int bytes,
  2008. struct kvm_vcpu *vcpu)
  2009. {
  2010. /* Crossing a page boundary? */
  2011. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2012. int rc, now;
  2013. now = -addr & ~PAGE_MASK;
  2014. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2015. if (rc != X86EMUL_CONTINUE)
  2016. return rc;
  2017. addr += now;
  2018. val += now;
  2019. bytes -= now;
  2020. }
  2021. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2022. }
  2023. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2024. static int emulator_cmpxchg_emulated(unsigned long addr,
  2025. const void *old,
  2026. const void *new,
  2027. unsigned int bytes,
  2028. struct kvm_vcpu *vcpu)
  2029. {
  2030. static int reported;
  2031. if (!reported) {
  2032. reported = 1;
  2033. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2034. }
  2035. #ifndef CONFIG_X86_64
  2036. /* guests cmpxchg8b have to be emulated atomically */
  2037. if (bytes == 8) {
  2038. gpa_t gpa;
  2039. struct page *page;
  2040. char *kaddr;
  2041. u64 val;
  2042. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2043. if (gpa == UNMAPPED_GVA ||
  2044. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2045. goto emul_write;
  2046. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2047. goto emul_write;
  2048. val = *(u64 *)new;
  2049. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2050. kaddr = kmap_atomic(page, KM_USER0);
  2051. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2052. kunmap_atomic(kaddr, KM_USER0);
  2053. kvm_release_page_dirty(page);
  2054. }
  2055. emul_write:
  2056. #endif
  2057. return emulator_write_emulated(addr, new, bytes, vcpu);
  2058. }
  2059. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2060. {
  2061. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2062. }
  2063. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2064. {
  2065. kvm_mmu_invlpg(vcpu, address);
  2066. return X86EMUL_CONTINUE;
  2067. }
  2068. int emulate_clts(struct kvm_vcpu *vcpu)
  2069. {
  2070. KVMTRACE_0D(CLTS, vcpu, handler);
  2071. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2072. return X86EMUL_CONTINUE;
  2073. }
  2074. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2075. {
  2076. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2077. switch (dr) {
  2078. case 0 ... 3:
  2079. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2080. return X86EMUL_CONTINUE;
  2081. default:
  2082. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2083. return X86EMUL_UNHANDLEABLE;
  2084. }
  2085. }
  2086. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2087. {
  2088. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2089. int exception;
  2090. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2091. if (exception) {
  2092. /* FIXME: better handling */
  2093. return X86EMUL_UNHANDLEABLE;
  2094. }
  2095. return X86EMUL_CONTINUE;
  2096. }
  2097. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2098. {
  2099. u8 opcodes[4];
  2100. unsigned long rip = kvm_rip_read(vcpu);
  2101. unsigned long rip_linear;
  2102. if (!printk_ratelimit())
  2103. return;
  2104. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2105. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2106. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2107. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2108. }
  2109. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2110. static struct x86_emulate_ops emulate_ops = {
  2111. .read_std = kvm_read_guest_virt,
  2112. .read_emulated = emulator_read_emulated,
  2113. .write_emulated = emulator_write_emulated,
  2114. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2115. };
  2116. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2117. {
  2118. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2119. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2120. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2121. vcpu->arch.regs_dirty = ~0;
  2122. }
  2123. int emulate_instruction(struct kvm_vcpu *vcpu,
  2124. struct kvm_run *run,
  2125. unsigned long cr2,
  2126. u16 error_code,
  2127. int emulation_type)
  2128. {
  2129. int r, shadow_mask;
  2130. struct decode_cache *c;
  2131. kvm_clear_exception_queue(vcpu);
  2132. vcpu->arch.mmio_fault_cr2 = cr2;
  2133. /*
  2134. * TODO: fix x86_emulate.c to use guest_read/write_register
  2135. * instead of direct ->regs accesses, can save hundred cycles
  2136. * on Intel for instructions that don't read/change RSP, for
  2137. * for example.
  2138. */
  2139. cache_all_regs(vcpu);
  2140. vcpu->mmio_is_write = 0;
  2141. vcpu->arch.pio.string = 0;
  2142. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2143. int cs_db, cs_l;
  2144. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2145. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2146. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2147. vcpu->arch.emulate_ctxt.mode =
  2148. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2149. ? X86EMUL_MODE_REAL : cs_l
  2150. ? X86EMUL_MODE_PROT64 : cs_db
  2151. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2152. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2153. /* Reject the instructions other than VMCALL/VMMCALL when
  2154. * try to emulate invalid opcode */
  2155. c = &vcpu->arch.emulate_ctxt.decode;
  2156. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2157. (!(c->twobyte && c->b == 0x01 &&
  2158. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2159. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2160. return EMULATE_FAIL;
  2161. ++vcpu->stat.insn_emulation;
  2162. if (r) {
  2163. ++vcpu->stat.insn_emulation_fail;
  2164. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2165. return EMULATE_DONE;
  2166. return EMULATE_FAIL;
  2167. }
  2168. }
  2169. if (emulation_type & EMULTYPE_SKIP) {
  2170. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2171. return EMULATE_DONE;
  2172. }
  2173. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2174. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2175. if (r == 0)
  2176. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2177. if (vcpu->arch.pio.string)
  2178. return EMULATE_DO_MMIO;
  2179. if ((r || vcpu->mmio_is_write) && run) {
  2180. run->exit_reason = KVM_EXIT_MMIO;
  2181. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2182. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2183. run->mmio.len = vcpu->mmio_size;
  2184. run->mmio.is_write = vcpu->mmio_is_write;
  2185. }
  2186. if (r) {
  2187. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2188. return EMULATE_DONE;
  2189. if (!vcpu->mmio_needed) {
  2190. kvm_report_emulation_failure(vcpu, "mmio");
  2191. return EMULATE_FAIL;
  2192. }
  2193. return EMULATE_DO_MMIO;
  2194. }
  2195. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2196. if (vcpu->mmio_is_write) {
  2197. vcpu->mmio_needed = 0;
  2198. return EMULATE_DO_MMIO;
  2199. }
  2200. return EMULATE_DONE;
  2201. }
  2202. EXPORT_SYMBOL_GPL(emulate_instruction);
  2203. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2204. {
  2205. void *p = vcpu->arch.pio_data;
  2206. gva_t q = vcpu->arch.pio.guest_gva;
  2207. unsigned bytes;
  2208. int ret;
  2209. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2210. if (vcpu->arch.pio.in)
  2211. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2212. else
  2213. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2214. return ret;
  2215. }
  2216. int complete_pio(struct kvm_vcpu *vcpu)
  2217. {
  2218. struct kvm_pio_request *io = &vcpu->arch.pio;
  2219. long delta;
  2220. int r;
  2221. unsigned long val;
  2222. if (!io->string) {
  2223. if (io->in) {
  2224. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2225. memcpy(&val, vcpu->arch.pio_data, io->size);
  2226. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2227. }
  2228. } else {
  2229. if (io->in) {
  2230. r = pio_copy_data(vcpu);
  2231. if (r)
  2232. return r;
  2233. }
  2234. delta = 1;
  2235. if (io->rep) {
  2236. delta *= io->cur_count;
  2237. /*
  2238. * The size of the register should really depend on
  2239. * current address size.
  2240. */
  2241. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2242. val -= delta;
  2243. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2244. }
  2245. if (io->down)
  2246. delta = -delta;
  2247. delta *= io->size;
  2248. if (io->in) {
  2249. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2250. val += delta;
  2251. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2252. } else {
  2253. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2254. val += delta;
  2255. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2256. }
  2257. }
  2258. io->count -= io->cur_count;
  2259. io->cur_count = 0;
  2260. return 0;
  2261. }
  2262. static void kernel_pio(struct kvm_io_device *pio_dev,
  2263. struct kvm_vcpu *vcpu,
  2264. void *pd)
  2265. {
  2266. /* TODO: String I/O for in kernel device */
  2267. mutex_lock(&vcpu->kvm->lock);
  2268. if (vcpu->arch.pio.in)
  2269. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2270. vcpu->arch.pio.size,
  2271. pd);
  2272. else
  2273. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2274. vcpu->arch.pio.size,
  2275. pd);
  2276. mutex_unlock(&vcpu->kvm->lock);
  2277. }
  2278. static void pio_string_write(struct kvm_io_device *pio_dev,
  2279. struct kvm_vcpu *vcpu)
  2280. {
  2281. struct kvm_pio_request *io = &vcpu->arch.pio;
  2282. void *pd = vcpu->arch.pio_data;
  2283. int i;
  2284. mutex_lock(&vcpu->kvm->lock);
  2285. for (i = 0; i < io->cur_count; i++) {
  2286. kvm_iodevice_write(pio_dev, io->port,
  2287. io->size,
  2288. pd);
  2289. pd += io->size;
  2290. }
  2291. mutex_unlock(&vcpu->kvm->lock);
  2292. }
  2293. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2294. gpa_t addr, int len,
  2295. int is_write)
  2296. {
  2297. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2298. }
  2299. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2300. int size, unsigned port)
  2301. {
  2302. struct kvm_io_device *pio_dev;
  2303. unsigned long val;
  2304. vcpu->run->exit_reason = KVM_EXIT_IO;
  2305. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2306. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2307. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2308. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2309. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2310. vcpu->arch.pio.in = in;
  2311. vcpu->arch.pio.string = 0;
  2312. vcpu->arch.pio.down = 0;
  2313. vcpu->arch.pio.rep = 0;
  2314. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2315. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2316. handler);
  2317. else
  2318. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2319. handler);
  2320. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2321. memcpy(vcpu->arch.pio_data, &val, 4);
  2322. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2323. if (pio_dev) {
  2324. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2325. complete_pio(vcpu);
  2326. return 1;
  2327. }
  2328. return 0;
  2329. }
  2330. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2331. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2332. int size, unsigned long count, int down,
  2333. gva_t address, int rep, unsigned port)
  2334. {
  2335. unsigned now, in_page;
  2336. int ret = 0;
  2337. struct kvm_io_device *pio_dev;
  2338. vcpu->run->exit_reason = KVM_EXIT_IO;
  2339. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2340. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2341. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2342. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2343. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2344. vcpu->arch.pio.in = in;
  2345. vcpu->arch.pio.string = 1;
  2346. vcpu->arch.pio.down = down;
  2347. vcpu->arch.pio.rep = rep;
  2348. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2349. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2350. handler);
  2351. else
  2352. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2353. handler);
  2354. if (!count) {
  2355. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2356. return 1;
  2357. }
  2358. if (!down)
  2359. in_page = PAGE_SIZE - offset_in_page(address);
  2360. else
  2361. in_page = offset_in_page(address) + size;
  2362. now = min(count, (unsigned long)in_page / size);
  2363. if (!now)
  2364. now = 1;
  2365. if (down) {
  2366. /*
  2367. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2368. */
  2369. pr_unimpl(vcpu, "guest string pio down\n");
  2370. kvm_inject_gp(vcpu, 0);
  2371. return 1;
  2372. }
  2373. vcpu->run->io.count = now;
  2374. vcpu->arch.pio.cur_count = now;
  2375. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2376. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2377. vcpu->arch.pio.guest_gva = address;
  2378. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2379. vcpu->arch.pio.cur_count,
  2380. !vcpu->arch.pio.in);
  2381. if (!vcpu->arch.pio.in) {
  2382. /* string PIO write */
  2383. ret = pio_copy_data(vcpu);
  2384. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2385. kvm_inject_gp(vcpu, 0);
  2386. return 1;
  2387. }
  2388. if (ret == 0 && pio_dev) {
  2389. pio_string_write(pio_dev, vcpu);
  2390. complete_pio(vcpu);
  2391. if (vcpu->arch.pio.count == 0)
  2392. ret = 1;
  2393. }
  2394. } else if (pio_dev)
  2395. pr_unimpl(vcpu, "no string pio read support yet, "
  2396. "port %x size %d count %ld\n",
  2397. port, size, count);
  2398. return ret;
  2399. }
  2400. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2401. static void bounce_off(void *info)
  2402. {
  2403. /* nothing */
  2404. }
  2405. static unsigned int ref_freq;
  2406. static unsigned long tsc_khz_ref;
  2407. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2408. void *data)
  2409. {
  2410. struct cpufreq_freqs *freq = data;
  2411. struct kvm *kvm;
  2412. struct kvm_vcpu *vcpu;
  2413. int i, send_ipi = 0;
  2414. if (!ref_freq)
  2415. ref_freq = freq->old;
  2416. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2417. return 0;
  2418. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2419. return 0;
  2420. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2421. spin_lock(&kvm_lock);
  2422. list_for_each_entry(kvm, &vm_list, vm_list) {
  2423. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2424. vcpu = kvm->vcpus[i];
  2425. if (!vcpu)
  2426. continue;
  2427. if (vcpu->cpu != freq->cpu)
  2428. continue;
  2429. if (!kvm_request_guest_time_update(vcpu))
  2430. continue;
  2431. if (vcpu->cpu != smp_processor_id())
  2432. send_ipi++;
  2433. }
  2434. }
  2435. spin_unlock(&kvm_lock);
  2436. if (freq->old < freq->new && send_ipi) {
  2437. /*
  2438. * We upscale the frequency. Must make the guest
  2439. * doesn't see old kvmclock values while running with
  2440. * the new frequency, otherwise we risk the guest sees
  2441. * time go backwards.
  2442. *
  2443. * In case we update the frequency for another cpu
  2444. * (which might be in guest context) send an interrupt
  2445. * to kick the cpu out of guest context. Next time
  2446. * guest context is entered kvmclock will be updated,
  2447. * so the guest will not see stale values.
  2448. */
  2449. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2450. }
  2451. return 0;
  2452. }
  2453. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2454. .notifier_call = kvmclock_cpufreq_notifier
  2455. };
  2456. int kvm_arch_init(void *opaque)
  2457. {
  2458. int r, cpu;
  2459. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2460. if (kvm_x86_ops) {
  2461. printk(KERN_ERR "kvm: already loaded the other module\n");
  2462. r = -EEXIST;
  2463. goto out;
  2464. }
  2465. if (!ops->cpu_has_kvm_support()) {
  2466. printk(KERN_ERR "kvm: no hardware support\n");
  2467. r = -EOPNOTSUPP;
  2468. goto out;
  2469. }
  2470. if (ops->disabled_by_bios()) {
  2471. printk(KERN_ERR "kvm: disabled by bios\n");
  2472. r = -EOPNOTSUPP;
  2473. goto out;
  2474. }
  2475. r = kvm_mmu_module_init();
  2476. if (r)
  2477. goto out;
  2478. kvm_init_msr_list();
  2479. kvm_x86_ops = ops;
  2480. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2481. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2482. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2483. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2484. for_each_possible_cpu(cpu)
  2485. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2486. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2487. tsc_khz_ref = tsc_khz;
  2488. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2489. CPUFREQ_TRANSITION_NOTIFIER);
  2490. }
  2491. return 0;
  2492. out:
  2493. return r;
  2494. }
  2495. void kvm_arch_exit(void)
  2496. {
  2497. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2498. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2499. CPUFREQ_TRANSITION_NOTIFIER);
  2500. kvm_x86_ops = NULL;
  2501. kvm_mmu_module_exit();
  2502. }
  2503. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2504. {
  2505. ++vcpu->stat.halt_exits;
  2506. KVMTRACE_0D(HLT, vcpu, handler);
  2507. if (irqchip_in_kernel(vcpu->kvm)) {
  2508. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2509. return 1;
  2510. } else {
  2511. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2512. return 0;
  2513. }
  2514. }
  2515. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2516. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2517. unsigned long a1)
  2518. {
  2519. if (is_long_mode(vcpu))
  2520. return a0;
  2521. else
  2522. return a0 | ((gpa_t)a1 << 32);
  2523. }
  2524. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2525. {
  2526. unsigned long nr, a0, a1, a2, a3, ret;
  2527. int r = 1;
  2528. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2529. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2530. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2531. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2532. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2533. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2534. if (!is_long_mode(vcpu)) {
  2535. nr &= 0xFFFFFFFF;
  2536. a0 &= 0xFFFFFFFF;
  2537. a1 &= 0xFFFFFFFF;
  2538. a2 &= 0xFFFFFFFF;
  2539. a3 &= 0xFFFFFFFF;
  2540. }
  2541. switch (nr) {
  2542. case KVM_HC_VAPIC_POLL_IRQ:
  2543. ret = 0;
  2544. break;
  2545. case KVM_HC_MMU_OP:
  2546. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2547. break;
  2548. default:
  2549. ret = -KVM_ENOSYS;
  2550. break;
  2551. }
  2552. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2553. ++vcpu->stat.hypercalls;
  2554. return r;
  2555. }
  2556. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2557. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2558. {
  2559. char instruction[3];
  2560. int ret = 0;
  2561. unsigned long rip = kvm_rip_read(vcpu);
  2562. /*
  2563. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2564. * to ensure that the updated hypercall appears atomically across all
  2565. * VCPUs.
  2566. */
  2567. kvm_mmu_zap_all(vcpu->kvm);
  2568. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2569. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2570. != X86EMUL_CONTINUE)
  2571. ret = -EFAULT;
  2572. return ret;
  2573. }
  2574. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2575. {
  2576. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2577. }
  2578. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2579. {
  2580. struct descriptor_table dt = { limit, base };
  2581. kvm_x86_ops->set_gdt(vcpu, &dt);
  2582. }
  2583. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2584. {
  2585. struct descriptor_table dt = { limit, base };
  2586. kvm_x86_ops->set_idt(vcpu, &dt);
  2587. }
  2588. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2589. unsigned long *rflags)
  2590. {
  2591. kvm_lmsw(vcpu, msw);
  2592. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2593. }
  2594. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2595. {
  2596. unsigned long value;
  2597. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2598. switch (cr) {
  2599. case 0:
  2600. value = vcpu->arch.cr0;
  2601. break;
  2602. case 2:
  2603. value = vcpu->arch.cr2;
  2604. break;
  2605. case 3:
  2606. value = vcpu->arch.cr3;
  2607. break;
  2608. case 4:
  2609. value = vcpu->arch.cr4;
  2610. break;
  2611. case 8:
  2612. value = kvm_get_cr8(vcpu);
  2613. break;
  2614. default:
  2615. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2616. return 0;
  2617. }
  2618. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2619. (u32)((u64)value >> 32), handler);
  2620. return value;
  2621. }
  2622. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2623. unsigned long *rflags)
  2624. {
  2625. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2626. (u32)((u64)val >> 32), handler);
  2627. switch (cr) {
  2628. case 0:
  2629. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2630. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2631. break;
  2632. case 2:
  2633. vcpu->arch.cr2 = val;
  2634. break;
  2635. case 3:
  2636. kvm_set_cr3(vcpu, val);
  2637. break;
  2638. case 4:
  2639. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2640. break;
  2641. case 8:
  2642. kvm_set_cr8(vcpu, val & 0xfUL);
  2643. break;
  2644. default:
  2645. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2646. }
  2647. }
  2648. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2649. {
  2650. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2651. int j, nent = vcpu->arch.cpuid_nent;
  2652. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2653. /* when no next entry is found, the current entry[i] is reselected */
  2654. for (j = i + 1; ; j = (j + 1) % nent) {
  2655. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2656. if (ej->function == e->function) {
  2657. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2658. return j;
  2659. }
  2660. }
  2661. return 0; /* silence gcc, even though control never reaches here */
  2662. }
  2663. /* find an entry with matching function, matching index (if needed), and that
  2664. * should be read next (if it's stateful) */
  2665. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2666. u32 function, u32 index)
  2667. {
  2668. if (e->function != function)
  2669. return 0;
  2670. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2671. return 0;
  2672. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2673. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2674. return 0;
  2675. return 1;
  2676. }
  2677. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2678. u32 function, u32 index)
  2679. {
  2680. int i;
  2681. struct kvm_cpuid_entry2 *best = NULL;
  2682. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2683. struct kvm_cpuid_entry2 *e;
  2684. e = &vcpu->arch.cpuid_entries[i];
  2685. if (is_matching_cpuid_entry(e, function, index)) {
  2686. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2687. move_to_next_stateful_cpuid_entry(vcpu, i);
  2688. best = e;
  2689. break;
  2690. }
  2691. /*
  2692. * Both basic or both extended?
  2693. */
  2694. if (((e->function ^ function) & 0x80000000) == 0)
  2695. if (!best || e->function > best->function)
  2696. best = e;
  2697. }
  2698. return best;
  2699. }
  2700. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2701. {
  2702. struct kvm_cpuid_entry2 *best;
  2703. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2704. if (best)
  2705. return best->eax & 0xff;
  2706. return 36;
  2707. }
  2708. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2709. {
  2710. u32 function, index;
  2711. struct kvm_cpuid_entry2 *best;
  2712. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2713. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2714. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2715. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2716. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2717. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2718. best = kvm_find_cpuid_entry(vcpu, function, index);
  2719. if (best) {
  2720. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2721. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2722. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2723. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2724. }
  2725. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2726. KVMTRACE_5D(CPUID, vcpu, function,
  2727. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2728. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2729. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2730. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2731. }
  2732. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2733. /*
  2734. * Check if userspace requested an interrupt window, and that the
  2735. * interrupt window is open.
  2736. *
  2737. * No need to exit to userspace if we already have an interrupt queued.
  2738. */
  2739. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2740. struct kvm_run *kvm_run)
  2741. {
  2742. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2743. kvm_run->request_interrupt_window &&
  2744. kvm_arch_interrupt_allowed(vcpu));
  2745. }
  2746. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2747. struct kvm_run *kvm_run)
  2748. {
  2749. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2750. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2751. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2752. if (irqchip_in_kernel(vcpu->kvm))
  2753. kvm_run->ready_for_interrupt_injection = 1;
  2754. else
  2755. kvm_run->ready_for_interrupt_injection =
  2756. kvm_arch_interrupt_allowed(vcpu) &&
  2757. !kvm_cpu_has_interrupt(vcpu) &&
  2758. !kvm_event_needs_reinjection(vcpu);
  2759. }
  2760. static void vapic_enter(struct kvm_vcpu *vcpu)
  2761. {
  2762. struct kvm_lapic *apic = vcpu->arch.apic;
  2763. struct page *page;
  2764. if (!apic || !apic->vapic_addr)
  2765. return;
  2766. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2767. vcpu->arch.apic->vapic_page = page;
  2768. }
  2769. static void vapic_exit(struct kvm_vcpu *vcpu)
  2770. {
  2771. struct kvm_lapic *apic = vcpu->arch.apic;
  2772. if (!apic || !apic->vapic_addr)
  2773. return;
  2774. down_read(&vcpu->kvm->slots_lock);
  2775. kvm_release_page_dirty(apic->vapic_page);
  2776. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2777. up_read(&vcpu->kvm->slots_lock);
  2778. }
  2779. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2780. {
  2781. int max_irr, tpr;
  2782. if (!kvm_x86_ops->update_cr8_intercept)
  2783. return;
  2784. if (!vcpu->arch.apic->vapic_addr)
  2785. max_irr = kvm_lapic_find_highest_irr(vcpu);
  2786. else
  2787. max_irr = -1;
  2788. if (max_irr != -1)
  2789. max_irr >>= 4;
  2790. tpr = kvm_lapic_get_cr8(vcpu);
  2791. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  2792. }
  2793. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2794. {
  2795. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2796. kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
  2797. /* try to reinject previous events if any */
  2798. if (vcpu->arch.nmi_injected) {
  2799. kvm_x86_ops->set_nmi(vcpu);
  2800. return;
  2801. }
  2802. if (vcpu->arch.interrupt.pending) {
  2803. kvm_x86_ops->set_irq(vcpu);
  2804. return;
  2805. }
  2806. /* try to inject new event if pending */
  2807. if (vcpu->arch.nmi_pending) {
  2808. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  2809. vcpu->arch.nmi_pending = false;
  2810. vcpu->arch.nmi_injected = true;
  2811. kvm_x86_ops->set_nmi(vcpu);
  2812. }
  2813. } else if (kvm_cpu_has_interrupt(vcpu)) {
  2814. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  2815. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  2816. false);
  2817. kvm_x86_ops->set_irq(vcpu);
  2818. }
  2819. }
  2820. }
  2821. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2822. {
  2823. int r;
  2824. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  2825. kvm_run->request_interrupt_window;
  2826. if (vcpu->requests)
  2827. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2828. kvm_mmu_unload(vcpu);
  2829. r = kvm_mmu_reload(vcpu);
  2830. if (unlikely(r))
  2831. goto out;
  2832. if (vcpu->requests) {
  2833. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2834. __kvm_migrate_timers(vcpu);
  2835. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  2836. kvm_write_guest_time(vcpu);
  2837. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2838. kvm_mmu_sync_roots(vcpu);
  2839. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2840. kvm_x86_ops->tlb_flush(vcpu);
  2841. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2842. &vcpu->requests)) {
  2843. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2844. r = 0;
  2845. goto out;
  2846. }
  2847. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2848. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2849. r = 0;
  2850. goto out;
  2851. }
  2852. }
  2853. preempt_disable();
  2854. kvm_x86_ops->prepare_guest_switch(vcpu);
  2855. kvm_load_guest_fpu(vcpu);
  2856. local_irq_disable();
  2857. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  2858. smp_mb__after_clear_bit();
  2859. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2860. local_irq_enable();
  2861. preempt_enable();
  2862. r = 1;
  2863. goto out;
  2864. }
  2865. if (vcpu->arch.exception.pending)
  2866. __queue_exception(vcpu);
  2867. else
  2868. inject_pending_irq(vcpu, kvm_run);
  2869. /* enable NMI/IRQ window open exits if needed */
  2870. if (vcpu->arch.nmi_pending)
  2871. kvm_x86_ops->enable_nmi_window(vcpu);
  2872. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  2873. kvm_x86_ops->enable_irq_window(vcpu);
  2874. if (kvm_lapic_enabled(vcpu)) {
  2875. update_cr8_intercept(vcpu);
  2876. kvm_lapic_sync_to_vapic(vcpu);
  2877. }
  2878. up_read(&vcpu->kvm->slots_lock);
  2879. kvm_guest_enter();
  2880. get_debugreg(vcpu->arch.host_dr6, 6);
  2881. get_debugreg(vcpu->arch.host_dr7, 7);
  2882. if (unlikely(vcpu->arch.switch_db_regs)) {
  2883. get_debugreg(vcpu->arch.host_db[0], 0);
  2884. get_debugreg(vcpu->arch.host_db[1], 1);
  2885. get_debugreg(vcpu->arch.host_db[2], 2);
  2886. get_debugreg(vcpu->arch.host_db[3], 3);
  2887. set_debugreg(0, 7);
  2888. set_debugreg(vcpu->arch.eff_db[0], 0);
  2889. set_debugreg(vcpu->arch.eff_db[1], 1);
  2890. set_debugreg(vcpu->arch.eff_db[2], 2);
  2891. set_debugreg(vcpu->arch.eff_db[3], 3);
  2892. }
  2893. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2894. kvm_x86_ops->run(vcpu, kvm_run);
  2895. if (unlikely(vcpu->arch.switch_db_regs)) {
  2896. set_debugreg(0, 7);
  2897. set_debugreg(vcpu->arch.host_db[0], 0);
  2898. set_debugreg(vcpu->arch.host_db[1], 1);
  2899. set_debugreg(vcpu->arch.host_db[2], 2);
  2900. set_debugreg(vcpu->arch.host_db[3], 3);
  2901. }
  2902. set_debugreg(vcpu->arch.host_dr6, 6);
  2903. set_debugreg(vcpu->arch.host_dr7, 7);
  2904. set_bit(KVM_REQ_KICK, &vcpu->requests);
  2905. local_irq_enable();
  2906. ++vcpu->stat.exits;
  2907. /*
  2908. * We must have an instruction between local_irq_enable() and
  2909. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2910. * the interrupt shadow. The stat.exits increment will do nicely.
  2911. * But we need to prevent reordering, hence this barrier():
  2912. */
  2913. barrier();
  2914. kvm_guest_exit();
  2915. preempt_enable();
  2916. down_read(&vcpu->kvm->slots_lock);
  2917. /*
  2918. * Profile KVM exit RIPs:
  2919. */
  2920. if (unlikely(prof_on == KVM_PROFILING)) {
  2921. unsigned long rip = kvm_rip_read(vcpu);
  2922. profile_hit(KVM_PROFILING, (void *)rip);
  2923. }
  2924. kvm_lapic_sync_from_vapic(vcpu);
  2925. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2926. out:
  2927. return r;
  2928. }
  2929. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2930. {
  2931. int r;
  2932. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2933. pr_debug("vcpu %d received sipi with vector # %x\n",
  2934. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2935. kvm_lapic_reset(vcpu);
  2936. r = kvm_arch_vcpu_reset(vcpu);
  2937. if (r)
  2938. return r;
  2939. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2940. }
  2941. down_read(&vcpu->kvm->slots_lock);
  2942. vapic_enter(vcpu);
  2943. r = 1;
  2944. while (r > 0) {
  2945. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2946. r = vcpu_enter_guest(vcpu, kvm_run);
  2947. else {
  2948. up_read(&vcpu->kvm->slots_lock);
  2949. kvm_vcpu_block(vcpu);
  2950. down_read(&vcpu->kvm->slots_lock);
  2951. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2952. {
  2953. switch(vcpu->arch.mp_state) {
  2954. case KVM_MP_STATE_HALTED:
  2955. vcpu->arch.mp_state =
  2956. KVM_MP_STATE_RUNNABLE;
  2957. case KVM_MP_STATE_RUNNABLE:
  2958. break;
  2959. case KVM_MP_STATE_SIPI_RECEIVED:
  2960. default:
  2961. r = -EINTR;
  2962. break;
  2963. }
  2964. }
  2965. }
  2966. if (r <= 0)
  2967. break;
  2968. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2969. if (kvm_cpu_has_pending_timer(vcpu))
  2970. kvm_inject_pending_timer_irqs(vcpu);
  2971. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2972. r = -EINTR;
  2973. kvm_run->exit_reason = KVM_EXIT_INTR;
  2974. ++vcpu->stat.request_irq_exits;
  2975. }
  2976. if (signal_pending(current)) {
  2977. r = -EINTR;
  2978. kvm_run->exit_reason = KVM_EXIT_INTR;
  2979. ++vcpu->stat.signal_exits;
  2980. }
  2981. if (need_resched()) {
  2982. up_read(&vcpu->kvm->slots_lock);
  2983. kvm_resched(vcpu);
  2984. down_read(&vcpu->kvm->slots_lock);
  2985. }
  2986. }
  2987. up_read(&vcpu->kvm->slots_lock);
  2988. post_kvm_run_save(vcpu, kvm_run);
  2989. vapic_exit(vcpu);
  2990. return r;
  2991. }
  2992. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2993. {
  2994. int r;
  2995. sigset_t sigsaved;
  2996. vcpu_load(vcpu);
  2997. if (vcpu->sigset_active)
  2998. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2999. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3000. kvm_vcpu_block(vcpu);
  3001. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3002. r = -EAGAIN;
  3003. goto out;
  3004. }
  3005. /* re-sync apic's tpr */
  3006. if (!irqchip_in_kernel(vcpu->kvm))
  3007. kvm_set_cr8(vcpu, kvm_run->cr8);
  3008. if (vcpu->arch.pio.cur_count) {
  3009. r = complete_pio(vcpu);
  3010. if (r)
  3011. goto out;
  3012. }
  3013. #if CONFIG_HAS_IOMEM
  3014. if (vcpu->mmio_needed) {
  3015. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3016. vcpu->mmio_read_completed = 1;
  3017. vcpu->mmio_needed = 0;
  3018. down_read(&vcpu->kvm->slots_lock);
  3019. r = emulate_instruction(vcpu, kvm_run,
  3020. vcpu->arch.mmio_fault_cr2, 0,
  3021. EMULTYPE_NO_DECODE);
  3022. up_read(&vcpu->kvm->slots_lock);
  3023. if (r == EMULATE_DO_MMIO) {
  3024. /*
  3025. * Read-modify-write. Back to userspace.
  3026. */
  3027. r = 0;
  3028. goto out;
  3029. }
  3030. }
  3031. #endif
  3032. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3033. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3034. kvm_run->hypercall.ret);
  3035. r = __vcpu_run(vcpu, kvm_run);
  3036. out:
  3037. if (vcpu->sigset_active)
  3038. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3039. vcpu_put(vcpu);
  3040. return r;
  3041. }
  3042. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3043. {
  3044. vcpu_load(vcpu);
  3045. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3046. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3047. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3048. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3049. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3050. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3051. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3052. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3053. #ifdef CONFIG_X86_64
  3054. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3055. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3056. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3057. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3058. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3059. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3060. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3061. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3062. #endif
  3063. regs->rip = kvm_rip_read(vcpu);
  3064. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3065. /*
  3066. * Don't leak debug flags in case they were set for guest debugging
  3067. */
  3068. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3069. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3070. vcpu_put(vcpu);
  3071. return 0;
  3072. }
  3073. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3074. {
  3075. vcpu_load(vcpu);
  3076. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3077. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3078. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3079. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3080. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3081. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3082. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3083. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3084. #ifdef CONFIG_X86_64
  3085. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3086. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3087. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3088. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3089. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3090. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3091. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3092. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3093. #endif
  3094. kvm_rip_write(vcpu, regs->rip);
  3095. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3096. vcpu->arch.exception.pending = false;
  3097. vcpu_put(vcpu);
  3098. return 0;
  3099. }
  3100. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3101. struct kvm_segment *var, int seg)
  3102. {
  3103. kvm_x86_ops->get_segment(vcpu, var, seg);
  3104. }
  3105. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3106. {
  3107. struct kvm_segment cs;
  3108. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3109. *db = cs.db;
  3110. *l = cs.l;
  3111. }
  3112. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3113. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3114. struct kvm_sregs *sregs)
  3115. {
  3116. struct descriptor_table dt;
  3117. vcpu_load(vcpu);
  3118. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3119. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3120. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3121. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3122. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3123. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3124. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3125. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3126. kvm_x86_ops->get_idt(vcpu, &dt);
  3127. sregs->idt.limit = dt.limit;
  3128. sregs->idt.base = dt.base;
  3129. kvm_x86_ops->get_gdt(vcpu, &dt);
  3130. sregs->gdt.limit = dt.limit;
  3131. sregs->gdt.base = dt.base;
  3132. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3133. sregs->cr0 = vcpu->arch.cr0;
  3134. sregs->cr2 = vcpu->arch.cr2;
  3135. sregs->cr3 = vcpu->arch.cr3;
  3136. sregs->cr4 = vcpu->arch.cr4;
  3137. sregs->cr8 = kvm_get_cr8(vcpu);
  3138. sregs->efer = vcpu->arch.shadow_efer;
  3139. sregs->apic_base = kvm_get_apic_base(vcpu);
  3140. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3141. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3142. set_bit(vcpu->arch.interrupt.nr,
  3143. (unsigned long *)sregs->interrupt_bitmap);
  3144. vcpu_put(vcpu);
  3145. return 0;
  3146. }
  3147. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3148. struct kvm_mp_state *mp_state)
  3149. {
  3150. vcpu_load(vcpu);
  3151. mp_state->mp_state = vcpu->arch.mp_state;
  3152. vcpu_put(vcpu);
  3153. return 0;
  3154. }
  3155. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3156. struct kvm_mp_state *mp_state)
  3157. {
  3158. vcpu_load(vcpu);
  3159. vcpu->arch.mp_state = mp_state->mp_state;
  3160. vcpu_put(vcpu);
  3161. return 0;
  3162. }
  3163. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3164. struct kvm_segment *var, int seg)
  3165. {
  3166. kvm_x86_ops->set_segment(vcpu, var, seg);
  3167. }
  3168. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3169. struct kvm_segment *kvm_desct)
  3170. {
  3171. kvm_desct->base = seg_desc->base0;
  3172. kvm_desct->base |= seg_desc->base1 << 16;
  3173. kvm_desct->base |= seg_desc->base2 << 24;
  3174. kvm_desct->limit = seg_desc->limit0;
  3175. kvm_desct->limit |= seg_desc->limit << 16;
  3176. if (seg_desc->g) {
  3177. kvm_desct->limit <<= 12;
  3178. kvm_desct->limit |= 0xfff;
  3179. }
  3180. kvm_desct->selector = selector;
  3181. kvm_desct->type = seg_desc->type;
  3182. kvm_desct->present = seg_desc->p;
  3183. kvm_desct->dpl = seg_desc->dpl;
  3184. kvm_desct->db = seg_desc->d;
  3185. kvm_desct->s = seg_desc->s;
  3186. kvm_desct->l = seg_desc->l;
  3187. kvm_desct->g = seg_desc->g;
  3188. kvm_desct->avl = seg_desc->avl;
  3189. if (!selector)
  3190. kvm_desct->unusable = 1;
  3191. else
  3192. kvm_desct->unusable = 0;
  3193. kvm_desct->padding = 0;
  3194. }
  3195. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3196. u16 selector,
  3197. struct descriptor_table *dtable)
  3198. {
  3199. if (selector & 1 << 2) {
  3200. struct kvm_segment kvm_seg;
  3201. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3202. if (kvm_seg.unusable)
  3203. dtable->limit = 0;
  3204. else
  3205. dtable->limit = kvm_seg.limit;
  3206. dtable->base = kvm_seg.base;
  3207. }
  3208. else
  3209. kvm_x86_ops->get_gdt(vcpu, dtable);
  3210. }
  3211. /* allowed just for 8 bytes segments */
  3212. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3213. struct desc_struct *seg_desc)
  3214. {
  3215. gpa_t gpa;
  3216. struct descriptor_table dtable;
  3217. u16 index = selector >> 3;
  3218. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3219. if (dtable.limit < index * 8 + 7) {
  3220. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3221. return 1;
  3222. }
  3223. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3224. gpa += index * 8;
  3225. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3226. }
  3227. /* allowed just for 8 bytes segments */
  3228. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3229. struct desc_struct *seg_desc)
  3230. {
  3231. gpa_t gpa;
  3232. struct descriptor_table dtable;
  3233. u16 index = selector >> 3;
  3234. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3235. if (dtable.limit < index * 8 + 7)
  3236. return 1;
  3237. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3238. gpa += index * 8;
  3239. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3240. }
  3241. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3242. struct desc_struct *seg_desc)
  3243. {
  3244. u32 base_addr;
  3245. base_addr = seg_desc->base0;
  3246. base_addr |= (seg_desc->base1 << 16);
  3247. base_addr |= (seg_desc->base2 << 24);
  3248. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3249. }
  3250. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3251. {
  3252. struct kvm_segment kvm_seg;
  3253. kvm_get_segment(vcpu, &kvm_seg, seg);
  3254. return kvm_seg.selector;
  3255. }
  3256. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3257. u16 selector,
  3258. struct kvm_segment *kvm_seg)
  3259. {
  3260. struct desc_struct seg_desc;
  3261. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3262. return 1;
  3263. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3264. return 0;
  3265. }
  3266. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3267. {
  3268. struct kvm_segment segvar = {
  3269. .base = selector << 4,
  3270. .limit = 0xffff,
  3271. .selector = selector,
  3272. .type = 3,
  3273. .present = 1,
  3274. .dpl = 3,
  3275. .db = 0,
  3276. .s = 1,
  3277. .l = 0,
  3278. .g = 0,
  3279. .avl = 0,
  3280. .unusable = 0,
  3281. };
  3282. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3283. return 0;
  3284. }
  3285. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3286. int type_bits, int seg)
  3287. {
  3288. struct kvm_segment kvm_seg;
  3289. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3290. return kvm_load_realmode_segment(vcpu, selector, seg);
  3291. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3292. return 1;
  3293. kvm_seg.type |= type_bits;
  3294. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3295. seg != VCPU_SREG_LDTR)
  3296. if (!kvm_seg.s)
  3297. kvm_seg.unusable = 1;
  3298. kvm_set_segment(vcpu, &kvm_seg, seg);
  3299. return 0;
  3300. }
  3301. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3302. struct tss_segment_32 *tss)
  3303. {
  3304. tss->cr3 = vcpu->arch.cr3;
  3305. tss->eip = kvm_rip_read(vcpu);
  3306. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3307. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3308. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3309. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3310. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3311. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3312. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3313. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3314. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3315. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3316. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3317. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3318. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3319. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3320. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3321. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3322. }
  3323. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3324. struct tss_segment_32 *tss)
  3325. {
  3326. kvm_set_cr3(vcpu, tss->cr3);
  3327. kvm_rip_write(vcpu, tss->eip);
  3328. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3329. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3330. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3331. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3332. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3333. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3334. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3335. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3336. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3337. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3338. return 1;
  3339. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3340. return 1;
  3341. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3342. return 1;
  3343. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3344. return 1;
  3345. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3346. return 1;
  3347. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3348. return 1;
  3349. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3350. return 1;
  3351. return 0;
  3352. }
  3353. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3354. struct tss_segment_16 *tss)
  3355. {
  3356. tss->ip = kvm_rip_read(vcpu);
  3357. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3358. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3359. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3360. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3361. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3362. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3363. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3364. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3365. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3366. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3367. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3368. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3369. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3370. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3371. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3372. }
  3373. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3374. struct tss_segment_16 *tss)
  3375. {
  3376. kvm_rip_write(vcpu, tss->ip);
  3377. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3378. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3379. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3380. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3381. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3382. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3383. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3384. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3385. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3386. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3387. return 1;
  3388. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3389. return 1;
  3390. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3391. return 1;
  3392. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3393. return 1;
  3394. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3395. return 1;
  3396. return 0;
  3397. }
  3398. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3399. u16 old_tss_sel, u32 old_tss_base,
  3400. struct desc_struct *nseg_desc)
  3401. {
  3402. struct tss_segment_16 tss_segment_16;
  3403. int ret = 0;
  3404. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3405. sizeof tss_segment_16))
  3406. goto out;
  3407. save_state_to_tss16(vcpu, &tss_segment_16);
  3408. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3409. sizeof tss_segment_16))
  3410. goto out;
  3411. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3412. &tss_segment_16, sizeof tss_segment_16))
  3413. goto out;
  3414. if (old_tss_sel != 0xffff) {
  3415. tss_segment_16.prev_task_link = old_tss_sel;
  3416. if (kvm_write_guest(vcpu->kvm,
  3417. get_tss_base_addr(vcpu, nseg_desc),
  3418. &tss_segment_16.prev_task_link,
  3419. sizeof tss_segment_16.prev_task_link))
  3420. goto out;
  3421. }
  3422. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3423. goto out;
  3424. ret = 1;
  3425. out:
  3426. return ret;
  3427. }
  3428. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3429. u16 old_tss_sel, u32 old_tss_base,
  3430. struct desc_struct *nseg_desc)
  3431. {
  3432. struct tss_segment_32 tss_segment_32;
  3433. int ret = 0;
  3434. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3435. sizeof tss_segment_32))
  3436. goto out;
  3437. save_state_to_tss32(vcpu, &tss_segment_32);
  3438. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3439. sizeof tss_segment_32))
  3440. goto out;
  3441. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3442. &tss_segment_32, sizeof tss_segment_32))
  3443. goto out;
  3444. if (old_tss_sel != 0xffff) {
  3445. tss_segment_32.prev_task_link = old_tss_sel;
  3446. if (kvm_write_guest(vcpu->kvm,
  3447. get_tss_base_addr(vcpu, nseg_desc),
  3448. &tss_segment_32.prev_task_link,
  3449. sizeof tss_segment_32.prev_task_link))
  3450. goto out;
  3451. }
  3452. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3453. goto out;
  3454. ret = 1;
  3455. out:
  3456. return ret;
  3457. }
  3458. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3459. {
  3460. struct kvm_segment tr_seg;
  3461. struct desc_struct cseg_desc;
  3462. struct desc_struct nseg_desc;
  3463. int ret = 0;
  3464. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3465. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3466. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3467. /* FIXME: Handle errors. Failure to read either TSS or their
  3468. * descriptors should generate a pagefault.
  3469. */
  3470. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3471. goto out;
  3472. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3473. goto out;
  3474. if (reason != TASK_SWITCH_IRET) {
  3475. int cpl;
  3476. cpl = kvm_x86_ops->get_cpl(vcpu);
  3477. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3478. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3479. return 1;
  3480. }
  3481. }
  3482. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3483. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3484. return 1;
  3485. }
  3486. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3487. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3488. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3489. }
  3490. if (reason == TASK_SWITCH_IRET) {
  3491. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3492. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3493. }
  3494. /* set back link to prev task only if NT bit is set in eflags
  3495. note that old_tss_sel is not used afetr this point */
  3496. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3497. old_tss_sel = 0xffff;
  3498. /* set back link to prev task only if NT bit is set in eflags
  3499. note that old_tss_sel is not used afetr this point */
  3500. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3501. old_tss_sel = 0xffff;
  3502. if (nseg_desc.type & 8)
  3503. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3504. old_tss_base, &nseg_desc);
  3505. else
  3506. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3507. old_tss_base, &nseg_desc);
  3508. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3509. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3510. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3511. }
  3512. if (reason != TASK_SWITCH_IRET) {
  3513. nseg_desc.type |= (1 << 1);
  3514. save_guest_segment_descriptor(vcpu, tss_selector,
  3515. &nseg_desc);
  3516. }
  3517. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3518. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3519. tr_seg.type = 11;
  3520. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3521. out:
  3522. return ret;
  3523. }
  3524. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3525. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3526. struct kvm_sregs *sregs)
  3527. {
  3528. int mmu_reset_needed = 0;
  3529. int pending_vec, max_bits;
  3530. struct descriptor_table dt;
  3531. vcpu_load(vcpu);
  3532. dt.limit = sregs->idt.limit;
  3533. dt.base = sregs->idt.base;
  3534. kvm_x86_ops->set_idt(vcpu, &dt);
  3535. dt.limit = sregs->gdt.limit;
  3536. dt.base = sregs->gdt.base;
  3537. kvm_x86_ops->set_gdt(vcpu, &dt);
  3538. vcpu->arch.cr2 = sregs->cr2;
  3539. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3540. down_read(&vcpu->kvm->slots_lock);
  3541. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3542. vcpu->arch.cr3 = sregs->cr3;
  3543. else
  3544. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3545. up_read(&vcpu->kvm->slots_lock);
  3546. kvm_set_cr8(vcpu, sregs->cr8);
  3547. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3548. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3549. kvm_set_apic_base(vcpu, sregs->apic_base);
  3550. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3551. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3552. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3553. vcpu->arch.cr0 = sregs->cr0;
  3554. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3555. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3556. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3557. load_pdptrs(vcpu, vcpu->arch.cr3);
  3558. if (mmu_reset_needed)
  3559. kvm_mmu_reset_context(vcpu);
  3560. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3561. pending_vec = find_first_bit(
  3562. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3563. if (pending_vec < max_bits) {
  3564. kvm_queue_interrupt(vcpu, pending_vec, false);
  3565. pr_debug("Set back pending irq %d\n", pending_vec);
  3566. if (irqchip_in_kernel(vcpu->kvm))
  3567. kvm_pic_clear_isr_ack(vcpu->kvm);
  3568. }
  3569. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3570. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3571. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3572. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3573. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3574. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3575. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3576. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3577. /* Older userspace won't unhalt the vcpu on reset. */
  3578. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3579. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3580. !(vcpu->arch.cr0 & X86_CR0_PE))
  3581. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3582. vcpu_put(vcpu);
  3583. return 0;
  3584. }
  3585. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3586. struct kvm_guest_debug *dbg)
  3587. {
  3588. int i, r;
  3589. vcpu_load(vcpu);
  3590. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3591. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3592. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3593. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3594. vcpu->arch.switch_db_regs =
  3595. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3596. } else {
  3597. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3598. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3599. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3600. }
  3601. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3602. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3603. kvm_queue_exception(vcpu, DB_VECTOR);
  3604. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3605. kvm_queue_exception(vcpu, BP_VECTOR);
  3606. vcpu_put(vcpu);
  3607. return r;
  3608. }
  3609. /*
  3610. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3611. * we have asm/x86/processor.h
  3612. */
  3613. struct fxsave {
  3614. u16 cwd;
  3615. u16 swd;
  3616. u16 twd;
  3617. u16 fop;
  3618. u64 rip;
  3619. u64 rdp;
  3620. u32 mxcsr;
  3621. u32 mxcsr_mask;
  3622. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3623. #ifdef CONFIG_X86_64
  3624. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3625. #else
  3626. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3627. #endif
  3628. };
  3629. /*
  3630. * Translate a guest virtual address to a guest physical address.
  3631. */
  3632. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3633. struct kvm_translation *tr)
  3634. {
  3635. unsigned long vaddr = tr->linear_address;
  3636. gpa_t gpa;
  3637. vcpu_load(vcpu);
  3638. down_read(&vcpu->kvm->slots_lock);
  3639. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3640. up_read(&vcpu->kvm->slots_lock);
  3641. tr->physical_address = gpa;
  3642. tr->valid = gpa != UNMAPPED_GVA;
  3643. tr->writeable = 1;
  3644. tr->usermode = 0;
  3645. vcpu_put(vcpu);
  3646. return 0;
  3647. }
  3648. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3649. {
  3650. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3651. vcpu_load(vcpu);
  3652. memcpy(fpu->fpr, fxsave->st_space, 128);
  3653. fpu->fcw = fxsave->cwd;
  3654. fpu->fsw = fxsave->swd;
  3655. fpu->ftwx = fxsave->twd;
  3656. fpu->last_opcode = fxsave->fop;
  3657. fpu->last_ip = fxsave->rip;
  3658. fpu->last_dp = fxsave->rdp;
  3659. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3660. vcpu_put(vcpu);
  3661. return 0;
  3662. }
  3663. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3664. {
  3665. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3666. vcpu_load(vcpu);
  3667. memcpy(fxsave->st_space, fpu->fpr, 128);
  3668. fxsave->cwd = fpu->fcw;
  3669. fxsave->swd = fpu->fsw;
  3670. fxsave->twd = fpu->ftwx;
  3671. fxsave->fop = fpu->last_opcode;
  3672. fxsave->rip = fpu->last_ip;
  3673. fxsave->rdp = fpu->last_dp;
  3674. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3675. vcpu_put(vcpu);
  3676. return 0;
  3677. }
  3678. void fx_init(struct kvm_vcpu *vcpu)
  3679. {
  3680. unsigned after_mxcsr_mask;
  3681. /*
  3682. * Touch the fpu the first time in non atomic context as if
  3683. * this is the first fpu instruction the exception handler
  3684. * will fire before the instruction returns and it'll have to
  3685. * allocate ram with GFP_KERNEL.
  3686. */
  3687. if (!used_math())
  3688. kvm_fx_save(&vcpu->arch.host_fx_image);
  3689. /* Initialize guest FPU by resetting ours and saving into guest's */
  3690. preempt_disable();
  3691. kvm_fx_save(&vcpu->arch.host_fx_image);
  3692. kvm_fx_finit();
  3693. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3694. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3695. preempt_enable();
  3696. vcpu->arch.cr0 |= X86_CR0_ET;
  3697. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3698. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3699. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3700. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3701. }
  3702. EXPORT_SYMBOL_GPL(fx_init);
  3703. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3704. {
  3705. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3706. return;
  3707. vcpu->guest_fpu_loaded = 1;
  3708. kvm_fx_save(&vcpu->arch.host_fx_image);
  3709. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3710. }
  3711. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3712. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3713. {
  3714. if (!vcpu->guest_fpu_loaded)
  3715. return;
  3716. vcpu->guest_fpu_loaded = 0;
  3717. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3718. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3719. ++vcpu->stat.fpu_reload;
  3720. }
  3721. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3722. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3723. {
  3724. if (vcpu->arch.time_page) {
  3725. kvm_release_page_dirty(vcpu->arch.time_page);
  3726. vcpu->arch.time_page = NULL;
  3727. }
  3728. kvm_x86_ops->vcpu_free(vcpu);
  3729. }
  3730. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3731. unsigned int id)
  3732. {
  3733. return kvm_x86_ops->vcpu_create(kvm, id);
  3734. }
  3735. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3736. {
  3737. int r;
  3738. /* We do fxsave: this must be aligned. */
  3739. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3740. vcpu->arch.mtrr_state.have_fixed = 1;
  3741. vcpu_load(vcpu);
  3742. r = kvm_arch_vcpu_reset(vcpu);
  3743. if (r == 0)
  3744. r = kvm_mmu_setup(vcpu);
  3745. vcpu_put(vcpu);
  3746. if (r < 0)
  3747. goto free_vcpu;
  3748. return 0;
  3749. free_vcpu:
  3750. kvm_x86_ops->vcpu_free(vcpu);
  3751. return r;
  3752. }
  3753. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3754. {
  3755. vcpu_load(vcpu);
  3756. kvm_mmu_unload(vcpu);
  3757. vcpu_put(vcpu);
  3758. kvm_x86_ops->vcpu_free(vcpu);
  3759. }
  3760. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3761. {
  3762. vcpu->arch.nmi_pending = false;
  3763. vcpu->arch.nmi_injected = false;
  3764. vcpu->arch.switch_db_regs = 0;
  3765. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3766. vcpu->arch.dr6 = DR6_FIXED_1;
  3767. vcpu->arch.dr7 = DR7_FIXED_1;
  3768. return kvm_x86_ops->vcpu_reset(vcpu);
  3769. }
  3770. void kvm_arch_hardware_enable(void *garbage)
  3771. {
  3772. kvm_x86_ops->hardware_enable(garbage);
  3773. }
  3774. void kvm_arch_hardware_disable(void *garbage)
  3775. {
  3776. kvm_x86_ops->hardware_disable(garbage);
  3777. }
  3778. int kvm_arch_hardware_setup(void)
  3779. {
  3780. return kvm_x86_ops->hardware_setup();
  3781. }
  3782. void kvm_arch_hardware_unsetup(void)
  3783. {
  3784. kvm_x86_ops->hardware_unsetup();
  3785. }
  3786. void kvm_arch_check_processor_compat(void *rtn)
  3787. {
  3788. kvm_x86_ops->check_processor_compatibility(rtn);
  3789. }
  3790. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3791. {
  3792. struct page *page;
  3793. struct kvm *kvm;
  3794. int r;
  3795. BUG_ON(vcpu->kvm == NULL);
  3796. kvm = vcpu->kvm;
  3797. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3798. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3799. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3800. else
  3801. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3802. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3803. if (!page) {
  3804. r = -ENOMEM;
  3805. goto fail;
  3806. }
  3807. vcpu->arch.pio_data = page_address(page);
  3808. r = kvm_mmu_create(vcpu);
  3809. if (r < 0)
  3810. goto fail_free_pio_data;
  3811. if (irqchip_in_kernel(kvm)) {
  3812. r = kvm_create_lapic(vcpu);
  3813. if (r < 0)
  3814. goto fail_mmu_destroy;
  3815. }
  3816. return 0;
  3817. fail_mmu_destroy:
  3818. kvm_mmu_destroy(vcpu);
  3819. fail_free_pio_data:
  3820. free_page((unsigned long)vcpu->arch.pio_data);
  3821. fail:
  3822. return r;
  3823. }
  3824. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3825. {
  3826. kvm_free_lapic(vcpu);
  3827. down_read(&vcpu->kvm->slots_lock);
  3828. kvm_mmu_destroy(vcpu);
  3829. up_read(&vcpu->kvm->slots_lock);
  3830. free_page((unsigned long)vcpu->arch.pio_data);
  3831. }
  3832. struct kvm *kvm_arch_create_vm(void)
  3833. {
  3834. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3835. if (!kvm)
  3836. return ERR_PTR(-ENOMEM);
  3837. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3838. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3839. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3840. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3841. rdtscll(kvm->arch.vm_init_tsc);
  3842. return kvm;
  3843. }
  3844. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3845. {
  3846. vcpu_load(vcpu);
  3847. kvm_mmu_unload(vcpu);
  3848. vcpu_put(vcpu);
  3849. }
  3850. static void kvm_free_vcpus(struct kvm *kvm)
  3851. {
  3852. unsigned int i;
  3853. /*
  3854. * Unpin any mmu pages first.
  3855. */
  3856. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3857. if (kvm->vcpus[i])
  3858. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3859. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3860. if (kvm->vcpus[i]) {
  3861. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3862. kvm->vcpus[i] = NULL;
  3863. }
  3864. }
  3865. }
  3866. void kvm_arch_sync_events(struct kvm *kvm)
  3867. {
  3868. kvm_free_all_assigned_devices(kvm);
  3869. }
  3870. void kvm_arch_destroy_vm(struct kvm *kvm)
  3871. {
  3872. kvm_iommu_unmap_guest(kvm);
  3873. kvm_free_pit(kvm);
  3874. kfree(kvm->arch.vpic);
  3875. kfree(kvm->arch.vioapic);
  3876. kvm_free_vcpus(kvm);
  3877. kvm_free_physmem(kvm);
  3878. if (kvm->arch.apic_access_page)
  3879. put_page(kvm->arch.apic_access_page);
  3880. if (kvm->arch.ept_identity_pagetable)
  3881. put_page(kvm->arch.ept_identity_pagetable);
  3882. kfree(kvm);
  3883. }
  3884. int kvm_arch_set_memory_region(struct kvm *kvm,
  3885. struct kvm_userspace_memory_region *mem,
  3886. struct kvm_memory_slot old,
  3887. int user_alloc)
  3888. {
  3889. int npages = mem->memory_size >> PAGE_SHIFT;
  3890. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3891. /*To keep backward compatibility with older userspace,
  3892. *x86 needs to hanlde !user_alloc case.
  3893. */
  3894. if (!user_alloc) {
  3895. if (npages && !old.rmap) {
  3896. unsigned long userspace_addr;
  3897. down_write(&current->mm->mmap_sem);
  3898. userspace_addr = do_mmap(NULL, 0,
  3899. npages * PAGE_SIZE,
  3900. PROT_READ | PROT_WRITE,
  3901. MAP_PRIVATE | MAP_ANONYMOUS,
  3902. 0);
  3903. up_write(&current->mm->mmap_sem);
  3904. if (IS_ERR((void *)userspace_addr))
  3905. return PTR_ERR((void *)userspace_addr);
  3906. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3907. spin_lock(&kvm->mmu_lock);
  3908. memslot->userspace_addr = userspace_addr;
  3909. spin_unlock(&kvm->mmu_lock);
  3910. } else {
  3911. if (!old.user_alloc && old.rmap) {
  3912. int ret;
  3913. down_write(&current->mm->mmap_sem);
  3914. ret = do_munmap(current->mm, old.userspace_addr,
  3915. old.npages * PAGE_SIZE);
  3916. up_write(&current->mm->mmap_sem);
  3917. if (ret < 0)
  3918. printk(KERN_WARNING
  3919. "kvm_vm_ioctl_set_memory_region: "
  3920. "failed to munmap memory\n");
  3921. }
  3922. }
  3923. }
  3924. spin_lock(&kvm->mmu_lock);
  3925. if (!kvm->arch.n_requested_mmu_pages) {
  3926. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3927. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3928. }
  3929. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3930. spin_unlock(&kvm->mmu_lock);
  3931. kvm_flush_remote_tlbs(kvm);
  3932. return 0;
  3933. }
  3934. void kvm_arch_flush_shadow(struct kvm *kvm)
  3935. {
  3936. kvm_mmu_zap_all(kvm);
  3937. kvm_reload_remote_mmus(kvm);
  3938. }
  3939. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3940. {
  3941. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3942. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3943. || vcpu->arch.nmi_pending;
  3944. }
  3945. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3946. {
  3947. int me;
  3948. int cpu = vcpu->cpu;
  3949. if (waitqueue_active(&vcpu->wq)) {
  3950. wake_up_interruptible(&vcpu->wq);
  3951. ++vcpu->stat.halt_wakeup;
  3952. }
  3953. me = get_cpu();
  3954. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  3955. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  3956. smp_send_reschedule(cpu);
  3957. put_cpu();
  3958. }
  3959. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  3960. {
  3961. return kvm_x86_ops->interrupt_allowed(vcpu);
  3962. }