bnx2.c 200 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define PFX DRV_MODULE_NAME ": "
  57. #define DRV_MODULE_VERSION "2.0.1"
  58. #define DRV_MODULE_RELDATE "May 6, 2009"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. static int disable_msi = 0;
  77. module_param(disable_msi, int, 0);
  78. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  79. typedef enum {
  80. BCM5706 = 0,
  81. NC370T,
  82. NC370I,
  83. BCM5706S,
  84. NC370F,
  85. BCM5708,
  86. BCM5708S,
  87. BCM5709,
  88. BCM5709S,
  89. BCM5716,
  90. BCM5716S,
  91. } board_t;
  92. /* indexed by board_t, above */
  93. static struct {
  94. char *name;
  95. } board_info[] __devinitdata = {
  96. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  97. { "HP NC370T Multifunction Gigabit Server Adapter" },
  98. { "HP NC370i Multifunction Gigabit Server Adapter" },
  99. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  100. { "HP NC370F Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  107. };
  108. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  110. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  118. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  127. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  131. { 0, }
  132. };
  133. static struct flash_spec flash_table[] =
  134. {
  135. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  136. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  137. /* Slow EEPROM */
  138. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  139. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  140. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  141. "EEPROM - slow"},
  142. /* Expansion entry 0001 */
  143. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  144. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  145. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 0001"},
  147. /* Saifun SA25F010 (non-buffered flash) */
  148. /* strap, cfg1, & write1 need updates */
  149. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  150. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  151. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  152. "Non-buffered flash (128kB)"},
  153. /* Saifun SA25F020 (non-buffered flash) */
  154. /* strap, cfg1, & write1 need updates */
  155. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  156. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  157. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  158. "Non-buffered flash (256kB)"},
  159. /* Expansion entry 0100 */
  160. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  161. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  162. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  163. "Entry 0100"},
  164. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  165. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  166. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  167. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  168. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  169. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  170. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  171. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  172. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  173. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  174. /* Saifun SA25F005 (non-buffered flash) */
  175. /* strap, cfg1, & write1 need updates */
  176. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  177. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  178. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  179. "Non-buffered flash (64kB)"},
  180. /* Fast EEPROM */
  181. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  182. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  183. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  184. "EEPROM - fast"},
  185. /* Expansion entry 1001 */
  186. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1001"},
  190. /* Expansion entry 1010 */
  191. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  192. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  193. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1010"},
  195. /* ATMEL AT45DB011B (buffered flash) */
  196. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  199. "Buffered flash (128kB)"},
  200. /* Expansion entry 1100 */
  201. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  202. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  203. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  204. "Entry 1100"},
  205. /* Expansion entry 1101 */
  206. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  207. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  208. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  209. "Entry 1101"},
  210. /* Ateml Expansion entry 1110 */
  211. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  212. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  213. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  214. "Entry 1110 (Atmel)"},
  215. /* ATMEL AT45DB021B (buffered flash) */
  216. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  217. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  218. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  219. "Buffered flash (256kB)"},
  220. };
  221. static struct flash_spec flash_5709 = {
  222. .flags = BNX2_NV_BUFFERED,
  223. .page_bits = BCM5709_FLASH_PAGE_BITS,
  224. .page_size = BCM5709_FLASH_PAGE_SIZE,
  225. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  226. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  227. .name = "5709 Buffered flash (256kB)",
  228. };
  229. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  230. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  231. {
  232. u32 diff;
  233. smp_mb();
  234. /* The ring uses 256 indices for 255 entries, one of them
  235. * needs to be skipped.
  236. */
  237. diff = txr->tx_prod - txr->tx_cons;
  238. if (unlikely(diff >= TX_DESC_CNT)) {
  239. diff &= 0xffff;
  240. if (diff == TX_DESC_CNT)
  241. diff = MAX_TX_DESC_CNT;
  242. }
  243. return (bp->tx_ring_size - diff);
  244. }
  245. static u32
  246. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  247. {
  248. u32 val;
  249. spin_lock_bh(&bp->indirect_lock);
  250. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  251. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  252. spin_unlock_bh(&bp->indirect_lock);
  253. return val;
  254. }
  255. static void
  256. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  257. {
  258. spin_lock_bh(&bp->indirect_lock);
  259. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  260. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  261. spin_unlock_bh(&bp->indirect_lock);
  262. }
  263. static void
  264. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  265. {
  266. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  267. }
  268. static u32
  269. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  270. {
  271. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  272. }
  273. static void
  274. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  275. {
  276. offset += cid_addr;
  277. spin_lock_bh(&bp->indirect_lock);
  278. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  279. int i;
  280. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  281. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  282. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  283. for (i = 0; i < 5; i++) {
  284. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  285. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  286. break;
  287. udelay(5);
  288. }
  289. } else {
  290. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  291. REG_WR(bp, BNX2_CTX_DATA, val);
  292. }
  293. spin_unlock_bh(&bp->indirect_lock);
  294. }
  295. #ifdef BCM_CNIC
  296. static int
  297. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  298. {
  299. struct bnx2 *bp = netdev_priv(dev);
  300. struct drv_ctl_io *io = &info->data.io;
  301. switch (info->cmd) {
  302. case DRV_CTL_IO_WR_CMD:
  303. bnx2_reg_wr_ind(bp, io->offset, io->data);
  304. break;
  305. case DRV_CTL_IO_RD_CMD:
  306. io->data = bnx2_reg_rd_ind(bp, io->offset);
  307. break;
  308. case DRV_CTL_CTX_WR_CMD:
  309. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  310. break;
  311. default:
  312. return -EINVAL;
  313. }
  314. return 0;
  315. }
  316. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  317. {
  318. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  319. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  320. int sb_id;
  321. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  322. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  323. bnapi->cnic_present = 0;
  324. sb_id = bp->irq_nvecs;
  325. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  326. } else {
  327. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  328. bnapi->cnic_tag = bnapi->last_status_idx;
  329. bnapi->cnic_present = 1;
  330. sb_id = 0;
  331. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  332. }
  333. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  334. cp->irq_arr[0].status_blk = (void *)
  335. ((unsigned long) bnapi->status_blk.msi +
  336. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  337. cp->irq_arr[0].status_blk_num = sb_id;
  338. cp->num_irq = 1;
  339. }
  340. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  341. void *data)
  342. {
  343. struct bnx2 *bp = netdev_priv(dev);
  344. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  345. if (ops == NULL)
  346. return -EINVAL;
  347. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  348. return -EBUSY;
  349. bp->cnic_data = data;
  350. rcu_assign_pointer(bp->cnic_ops, ops);
  351. cp->num_irq = 0;
  352. cp->drv_state = CNIC_DRV_STATE_REGD;
  353. bnx2_setup_cnic_irq_info(bp);
  354. return 0;
  355. }
  356. static int bnx2_unregister_cnic(struct net_device *dev)
  357. {
  358. struct bnx2 *bp = netdev_priv(dev);
  359. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  360. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  361. mutex_lock(&bp->cnic_lock);
  362. cp->drv_state = 0;
  363. bnapi->cnic_present = 0;
  364. rcu_assign_pointer(bp->cnic_ops, NULL);
  365. mutex_unlock(&bp->cnic_lock);
  366. synchronize_rcu();
  367. return 0;
  368. }
  369. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  370. {
  371. struct bnx2 *bp = netdev_priv(dev);
  372. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  373. cp->drv_owner = THIS_MODULE;
  374. cp->chip_id = bp->chip_id;
  375. cp->pdev = bp->pdev;
  376. cp->io_base = bp->regview;
  377. cp->drv_ctl = bnx2_drv_ctl;
  378. cp->drv_register_cnic = bnx2_register_cnic;
  379. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  380. return cp;
  381. }
  382. EXPORT_SYMBOL(bnx2_cnic_probe);
  383. static void
  384. bnx2_cnic_stop(struct bnx2 *bp)
  385. {
  386. struct cnic_ops *c_ops;
  387. struct cnic_ctl_info info;
  388. mutex_lock(&bp->cnic_lock);
  389. c_ops = bp->cnic_ops;
  390. if (c_ops) {
  391. info.cmd = CNIC_CTL_STOP_CMD;
  392. c_ops->cnic_ctl(bp->cnic_data, &info);
  393. }
  394. mutex_unlock(&bp->cnic_lock);
  395. }
  396. static void
  397. bnx2_cnic_start(struct bnx2 *bp)
  398. {
  399. struct cnic_ops *c_ops;
  400. struct cnic_ctl_info info;
  401. mutex_lock(&bp->cnic_lock);
  402. c_ops = bp->cnic_ops;
  403. if (c_ops) {
  404. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  405. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  406. bnapi->cnic_tag = bnapi->last_status_idx;
  407. }
  408. info.cmd = CNIC_CTL_START_CMD;
  409. c_ops->cnic_ctl(bp->cnic_data, &info);
  410. }
  411. mutex_unlock(&bp->cnic_lock);
  412. }
  413. #else
  414. static void
  415. bnx2_cnic_stop(struct bnx2 *bp)
  416. {
  417. }
  418. static void
  419. bnx2_cnic_start(struct bnx2 *bp)
  420. {
  421. }
  422. #endif
  423. static int
  424. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  425. {
  426. u32 val1;
  427. int i, ret;
  428. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  429. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  430. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  431. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  432. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  433. udelay(40);
  434. }
  435. val1 = (bp->phy_addr << 21) | (reg << 16) |
  436. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  437. BNX2_EMAC_MDIO_COMM_START_BUSY;
  438. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  439. for (i = 0; i < 50; i++) {
  440. udelay(10);
  441. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  442. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  443. udelay(5);
  444. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  445. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  446. break;
  447. }
  448. }
  449. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  450. *val = 0x0;
  451. ret = -EBUSY;
  452. }
  453. else {
  454. *val = val1;
  455. ret = 0;
  456. }
  457. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  458. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  459. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  460. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  461. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  462. udelay(40);
  463. }
  464. return ret;
  465. }
  466. static int
  467. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  468. {
  469. u32 val1;
  470. int i, ret;
  471. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  472. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  473. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  474. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  475. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  476. udelay(40);
  477. }
  478. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  479. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  480. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  481. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  482. for (i = 0; i < 50; i++) {
  483. udelay(10);
  484. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  485. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  486. udelay(5);
  487. break;
  488. }
  489. }
  490. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  491. ret = -EBUSY;
  492. else
  493. ret = 0;
  494. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  495. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  496. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  497. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  498. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  499. udelay(40);
  500. }
  501. return ret;
  502. }
  503. static void
  504. bnx2_disable_int(struct bnx2 *bp)
  505. {
  506. int i;
  507. struct bnx2_napi *bnapi;
  508. for (i = 0; i < bp->irq_nvecs; i++) {
  509. bnapi = &bp->bnx2_napi[i];
  510. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  511. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  512. }
  513. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  514. }
  515. static void
  516. bnx2_enable_int(struct bnx2 *bp)
  517. {
  518. int i;
  519. struct bnx2_napi *bnapi;
  520. for (i = 0; i < bp->irq_nvecs; i++) {
  521. bnapi = &bp->bnx2_napi[i];
  522. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  523. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  524. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  525. bnapi->last_status_idx);
  526. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  527. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  528. bnapi->last_status_idx);
  529. }
  530. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  531. }
  532. static void
  533. bnx2_disable_int_sync(struct bnx2 *bp)
  534. {
  535. int i;
  536. atomic_inc(&bp->intr_sem);
  537. bnx2_disable_int(bp);
  538. for (i = 0; i < bp->irq_nvecs; i++)
  539. synchronize_irq(bp->irq_tbl[i].vector);
  540. }
  541. static void
  542. bnx2_napi_disable(struct bnx2 *bp)
  543. {
  544. int i;
  545. for (i = 0; i < bp->irq_nvecs; i++)
  546. napi_disable(&bp->bnx2_napi[i].napi);
  547. }
  548. static void
  549. bnx2_napi_enable(struct bnx2 *bp)
  550. {
  551. int i;
  552. for (i = 0; i < bp->irq_nvecs; i++)
  553. napi_enable(&bp->bnx2_napi[i].napi);
  554. }
  555. static void
  556. bnx2_netif_stop(struct bnx2 *bp)
  557. {
  558. bnx2_cnic_stop(bp);
  559. bnx2_disable_int_sync(bp);
  560. if (netif_running(bp->dev)) {
  561. bnx2_napi_disable(bp);
  562. netif_tx_disable(bp->dev);
  563. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  564. }
  565. }
  566. static void
  567. bnx2_netif_start(struct bnx2 *bp)
  568. {
  569. if (atomic_dec_and_test(&bp->intr_sem)) {
  570. if (netif_running(bp->dev)) {
  571. netif_tx_wake_all_queues(bp->dev);
  572. bnx2_napi_enable(bp);
  573. bnx2_enable_int(bp);
  574. bnx2_cnic_start(bp);
  575. }
  576. }
  577. }
  578. static void
  579. bnx2_free_tx_mem(struct bnx2 *bp)
  580. {
  581. int i;
  582. for (i = 0; i < bp->num_tx_rings; i++) {
  583. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  584. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  585. if (txr->tx_desc_ring) {
  586. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  587. txr->tx_desc_ring,
  588. txr->tx_desc_mapping);
  589. txr->tx_desc_ring = NULL;
  590. }
  591. kfree(txr->tx_buf_ring);
  592. txr->tx_buf_ring = NULL;
  593. }
  594. }
  595. static void
  596. bnx2_free_rx_mem(struct bnx2 *bp)
  597. {
  598. int i;
  599. for (i = 0; i < bp->num_rx_rings; i++) {
  600. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  601. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  602. int j;
  603. for (j = 0; j < bp->rx_max_ring; j++) {
  604. if (rxr->rx_desc_ring[j])
  605. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  606. rxr->rx_desc_ring[j],
  607. rxr->rx_desc_mapping[j]);
  608. rxr->rx_desc_ring[j] = NULL;
  609. }
  610. vfree(rxr->rx_buf_ring);
  611. rxr->rx_buf_ring = NULL;
  612. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  613. if (rxr->rx_pg_desc_ring[j])
  614. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  615. rxr->rx_pg_desc_ring[j],
  616. rxr->rx_pg_desc_mapping[j]);
  617. rxr->rx_pg_desc_ring[j] = NULL;
  618. }
  619. vfree(rxr->rx_pg_ring);
  620. rxr->rx_pg_ring = NULL;
  621. }
  622. }
  623. static int
  624. bnx2_alloc_tx_mem(struct bnx2 *bp)
  625. {
  626. int i;
  627. for (i = 0; i < bp->num_tx_rings; i++) {
  628. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  629. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  630. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  631. if (txr->tx_buf_ring == NULL)
  632. return -ENOMEM;
  633. txr->tx_desc_ring =
  634. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  635. &txr->tx_desc_mapping);
  636. if (txr->tx_desc_ring == NULL)
  637. return -ENOMEM;
  638. }
  639. return 0;
  640. }
  641. static int
  642. bnx2_alloc_rx_mem(struct bnx2 *bp)
  643. {
  644. int i;
  645. for (i = 0; i < bp->num_rx_rings; i++) {
  646. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  647. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  648. int j;
  649. rxr->rx_buf_ring =
  650. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  651. if (rxr->rx_buf_ring == NULL)
  652. return -ENOMEM;
  653. memset(rxr->rx_buf_ring, 0,
  654. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  655. for (j = 0; j < bp->rx_max_ring; j++) {
  656. rxr->rx_desc_ring[j] =
  657. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  658. &rxr->rx_desc_mapping[j]);
  659. if (rxr->rx_desc_ring[j] == NULL)
  660. return -ENOMEM;
  661. }
  662. if (bp->rx_pg_ring_size) {
  663. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  664. bp->rx_max_pg_ring);
  665. if (rxr->rx_pg_ring == NULL)
  666. return -ENOMEM;
  667. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  668. bp->rx_max_pg_ring);
  669. }
  670. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  671. rxr->rx_pg_desc_ring[j] =
  672. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  673. &rxr->rx_pg_desc_mapping[j]);
  674. if (rxr->rx_pg_desc_ring[j] == NULL)
  675. return -ENOMEM;
  676. }
  677. }
  678. return 0;
  679. }
  680. static void
  681. bnx2_free_mem(struct bnx2 *bp)
  682. {
  683. int i;
  684. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  685. bnx2_free_tx_mem(bp);
  686. bnx2_free_rx_mem(bp);
  687. for (i = 0; i < bp->ctx_pages; i++) {
  688. if (bp->ctx_blk[i]) {
  689. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  690. bp->ctx_blk[i],
  691. bp->ctx_blk_mapping[i]);
  692. bp->ctx_blk[i] = NULL;
  693. }
  694. }
  695. if (bnapi->status_blk.msi) {
  696. pci_free_consistent(bp->pdev, bp->status_stats_size,
  697. bnapi->status_blk.msi,
  698. bp->status_blk_mapping);
  699. bnapi->status_blk.msi = NULL;
  700. bp->stats_blk = NULL;
  701. }
  702. }
  703. static int
  704. bnx2_alloc_mem(struct bnx2 *bp)
  705. {
  706. int i, status_blk_size, err;
  707. struct bnx2_napi *bnapi;
  708. void *status_blk;
  709. /* Combine status and statistics blocks into one allocation. */
  710. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  711. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  712. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  713. BNX2_SBLK_MSIX_ALIGN_SIZE);
  714. bp->status_stats_size = status_blk_size +
  715. sizeof(struct statistics_block);
  716. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  717. &bp->status_blk_mapping);
  718. if (status_blk == NULL)
  719. goto alloc_mem_err;
  720. memset(status_blk, 0, bp->status_stats_size);
  721. bnapi = &bp->bnx2_napi[0];
  722. bnapi->status_blk.msi = status_blk;
  723. bnapi->hw_tx_cons_ptr =
  724. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  725. bnapi->hw_rx_cons_ptr =
  726. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  727. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  728. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  729. struct status_block_msix *sblk;
  730. bnapi = &bp->bnx2_napi[i];
  731. sblk = (void *) (status_blk +
  732. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  733. bnapi->status_blk.msix = sblk;
  734. bnapi->hw_tx_cons_ptr =
  735. &sblk->status_tx_quick_consumer_index;
  736. bnapi->hw_rx_cons_ptr =
  737. &sblk->status_rx_quick_consumer_index;
  738. bnapi->int_num = i << 24;
  739. }
  740. }
  741. bp->stats_blk = status_blk + status_blk_size;
  742. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  743. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  744. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  745. if (bp->ctx_pages == 0)
  746. bp->ctx_pages = 1;
  747. for (i = 0; i < bp->ctx_pages; i++) {
  748. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  749. BCM_PAGE_SIZE,
  750. &bp->ctx_blk_mapping[i]);
  751. if (bp->ctx_blk[i] == NULL)
  752. goto alloc_mem_err;
  753. }
  754. }
  755. err = bnx2_alloc_rx_mem(bp);
  756. if (err)
  757. goto alloc_mem_err;
  758. err = bnx2_alloc_tx_mem(bp);
  759. if (err)
  760. goto alloc_mem_err;
  761. return 0;
  762. alloc_mem_err:
  763. bnx2_free_mem(bp);
  764. return -ENOMEM;
  765. }
  766. static void
  767. bnx2_report_fw_link(struct bnx2 *bp)
  768. {
  769. u32 fw_link_status = 0;
  770. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  771. return;
  772. if (bp->link_up) {
  773. u32 bmsr;
  774. switch (bp->line_speed) {
  775. case SPEED_10:
  776. if (bp->duplex == DUPLEX_HALF)
  777. fw_link_status = BNX2_LINK_STATUS_10HALF;
  778. else
  779. fw_link_status = BNX2_LINK_STATUS_10FULL;
  780. break;
  781. case SPEED_100:
  782. if (bp->duplex == DUPLEX_HALF)
  783. fw_link_status = BNX2_LINK_STATUS_100HALF;
  784. else
  785. fw_link_status = BNX2_LINK_STATUS_100FULL;
  786. break;
  787. case SPEED_1000:
  788. if (bp->duplex == DUPLEX_HALF)
  789. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  790. else
  791. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  792. break;
  793. case SPEED_2500:
  794. if (bp->duplex == DUPLEX_HALF)
  795. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  796. else
  797. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  798. break;
  799. }
  800. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  801. if (bp->autoneg) {
  802. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  803. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  804. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  805. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  806. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  807. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  808. else
  809. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  810. }
  811. }
  812. else
  813. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  814. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  815. }
  816. static char *
  817. bnx2_xceiver_str(struct bnx2 *bp)
  818. {
  819. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  820. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  821. "Copper"));
  822. }
  823. static void
  824. bnx2_report_link(struct bnx2 *bp)
  825. {
  826. if (bp->link_up) {
  827. netif_carrier_on(bp->dev);
  828. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  829. bnx2_xceiver_str(bp));
  830. printk("%d Mbps ", bp->line_speed);
  831. if (bp->duplex == DUPLEX_FULL)
  832. printk("full duplex");
  833. else
  834. printk("half duplex");
  835. if (bp->flow_ctrl) {
  836. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  837. printk(", receive ");
  838. if (bp->flow_ctrl & FLOW_CTRL_TX)
  839. printk("& transmit ");
  840. }
  841. else {
  842. printk(", transmit ");
  843. }
  844. printk("flow control ON");
  845. }
  846. printk("\n");
  847. }
  848. else {
  849. netif_carrier_off(bp->dev);
  850. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  851. bnx2_xceiver_str(bp));
  852. }
  853. bnx2_report_fw_link(bp);
  854. }
  855. static void
  856. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  857. {
  858. u32 local_adv, remote_adv;
  859. bp->flow_ctrl = 0;
  860. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  861. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  862. if (bp->duplex == DUPLEX_FULL) {
  863. bp->flow_ctrl = bp->req_flow_ctrl;
  864. }
  865. return;
  866. }
  867. if (bp->duplex != DUPLEX_FULL) {
  868. return;
  869. }
  870. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  871. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  872. u32 val;
  873. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  874. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  875. bp->flow_ctrl |= FLOW_CTRL_TX;
  876. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  877. bp->flow_ctrl |= FLOW_CTRL_RX;
  878. return;
  879. }
  880. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  881. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  882. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  883. u32 new_local_adv = 0;
  884. u32 new_remote_adv = 0;
  885. if (local_adv & ADVERTISE_1000XPAUSE)
  886. new_local_adv |= ADVERTISE_PAUSE_CAP;
  887. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  888. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  889. if (remote_adv & ADVERTISE_1000XPAUSE)
  890. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  891. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  892. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  893. local_adv = new_local_adv;
  894. remote_adv = new_remote_adv;
  895. }
  896. /* See Table 28B-3 of 802.3ab-1999 spec. */
  897. if (local_adv & ADVERTISE_PAUSE_CAP) {
  898. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  899. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  900. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  901. }
  902. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  903. bp->flow_ctrl = FLOW_CTRL_RX;
  904. }
  905. }
  906. else {
  907. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  908. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  909. }
  910. }
  911. }
  912. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  913. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  914. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  915. bp->flow_ctrl = FLOW_CTRL_TX;
  916. }
  917. }
  918. }
  919. static int
  920. bnx2_5709s_linkup(struct bnx2 *bp)
  921. {
  922. u32 val, speed;
  923. bp->link_up = 1;
  924. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  925. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  926. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  927. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  928. bp->line_speed = bp->req_line_speed;
  929. bp->duplex = bp->req_duplex;
  930. return 0;
  931. }
  932. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  933. switch (speed) {
  934. case MII_BNX2_GP_TOP_AN_SPEED_10:
  935. bp->line_speed = SPEED_10;
  936. break;
  937. case MII_BNX2_GP_TOP_AN_SPEED_100:
  938. bp->line_speed = SPEED_100;
  939. break;
  940. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  941. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  942. bp->line_speed = SPEED_1000;
  943. break;
  944. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  945. bp->line_speed = SPEED_2500;
  946. break;
  947. }
  948. if (val & MII_BNX2_GP_TOP_AN_FD)
  949. bp->duplex = DUPLEX_FULL;
  950. else
  951. bp->duplex = DUPLEX_HALF;
  952. return 0;
  953. }
  954. static int
  955. bnx2_5708s_linkup(struct bnx2 *bp)
  956. {
  957. u32 val;
  958. bp->link_up = 1;
  959. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  960. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  961. case BCM5708S_1000X_STAT1_SPEED_10:
  962. bp->line_speed = SPEED_10;
  963. break;
  964. case BCM5708S_1000X_STAT1_SPEED_100:
  965. bp->line_speed = SPEED_100;
  966. break;
  967. case BCM5708S_1000X_STAT1_SPEED_1G:
  968. bp->line_speed = SPEED_1000;
  969. break;
  970. case BCM5708S_1000X_STAT1_SPEED_2G5:
  971. bp->line_speed = SPEED_2500;
  972. break;
  973. }
  974. if (val & BCM5708S_1000X_STAT1_FD)
  975. bp->duplex = DUPLEX_FULL;
  976. else
  977. bp->duplex = DUPLEX_HALF;
  978. return 0;
  979. }
  980. static int
  981. bnx2_5706s_linkup(struct bnx2 *bp)
  982. {
  983. u32 bmcr, local_adv, remote_adv, common;
  984. bp->link_up = 1;
  985. bp->line_speed = SPEED_1000;
  986. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  987. if (bmcr & BMCR_FULLDPLX) {
  988. bp->duplex = DUPLEX_FULL;
  989. }
  990. else {
  991. bp->duplex = DUPLEX_HALF;
  992. }
  993. if (!(bmcr & BMCR_ANENABLE)) {
  994. return 0;
  995. }
  996. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  997. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  998. common = local_adv & remote_adv;
  999. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1000. if (common & ADVERTISE_1000XFULL) {
  1001. bp->duplex = DUPLEX_FULL;
  1002. }
  1003. else {
  1004. bp->duplex = DUPLEX_HALF;
  1005. }
  1006. }
  1007. return 0;
  1008. }
  1009. static int
  1010. bnx2_copper_linkup(struct bnx2 *bp)
  1011. {
  1012. u32 bmcr;
  1013. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1014. if (bmcr & BMCR_ANENABLE) {
  1015. u32 local_adv, remote_adv, common;
  1016. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1017. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1018. common = local_adv & (remote_adv >> 2);
  1019. if (common & ADVERTISE_1000FULL) {
  1020. bp->line_speed = SPEED_1000;
  1021. bp->duplex = DUPLEX_FULL;
  1022. }
  1023. else if (common & ADVERTISE_1000HALF) {
  1024. bp->line_speed = SPEED_1000;
  1025. bp->duplex = DUPLEX_HALF;
  1026. }
  1027. else {
  1028. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1029. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1030. common = local_adv & remote_adv;
  1031. if (common & ADVERTISE_100FULL) {
  1032. bp->line_speed = SPEED_100;
  1033. bp->duplex = DUPLEX_FULL;
  1034. }
  1035. else if (common & ADVERTISE_100HALF) {
  1036. bp->line_speed = SPEED_100;
  1037. bp->duplex = DUPLEX_HALF;
  1038. }
  1039. else if (common & ADVERTISE_10FULL) {
  1040. bp->line_speed = SPEED_10;
  1041. bp->duplex = DUPLEX_FULL;
  1042. }
  1043. else if (common & ADVERTISE_10HALF) {
  1044. bp->line_speed = SPEED_10;
  1045. bp->duplex = DUPLEX_HALF;
  1046. }
  1047. else {
  1048. bp->line_speed = 0;
  1049. bp->link_up = 0;
  1050. }
  1051. }
  1052. }
  1053. else {
  1054. if (bmcr & BMCR_SPEED100) {
  1055. bp->line_speed = SPEED_100;
  1056. }
  1057. else {
  1058. bp->line_speed = SPEED_10;
  1059. }
  1060. if (bmcr & BMCR_FULLDPLX) {
  1061. bp->duplex = DUPLEX_FULL;
  1062. }
  1063. else {
  1064. bp->duplex = DUPLEX_HALF;
  1065. }
  1066. }
  1067. return 0;
  1068. }
  1069. static void
  1070. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1071. {
  1072. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1073. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1074. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1075. val |= 0x02 << 8;
  1076. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1077. u32 lo_water, hi_water;
  1078. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1079. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1080. else
  1081. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1082. if (lo_water >= bp->rx_ring_size)
  1083. lo_water = 0;
  1084. hi_water = bp->rx_ring_size / 4;
  1085. if (hi_water <= lo_water)
  1086. lo_water = 0;
  1087. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1088. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1089. if (hi_water > 0xf)
  1090. hi_water = 0xf;
  1091. else if (hi_water == 0)
  1092. lo_water = 0;
  1093. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1094. }
  1095. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1096. }
  1097. static void
  1098. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1099. {
  1100. int i;
  1101. u32 cid;
  1102. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1103. if (i == 1)
  1104. cid = RX_RSS_CID;
  1105. bnx2_init_rx_context(bp, cid);
  1106. }
  1107. }
  1108. static void
  1109. bnx2_set_mac_link(struct bnx2 *bp)
  1110. {
  1111. u32 val;
  1112. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1113. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1114. (bp->duplex == DUPLEX_HALF)) {
  1115. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1116. }
  1117. /* Configure the EMAC mode register. */
  1118. val = REG_RD(bp, BNX2_EMAC_MODE);
  1119. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1120. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1121. BNX2_EMAC_MODE_25G_MODE);
  1122. if (bp->link_up) {
  1123. switch (bp->line_speed) {
  1124. case SPEED_10:
  1125. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1126. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1127. break;
  1128. }
  1129. /* fall through */
  1130. case SPEED_100:
  1131. val |= BNX2_EMAC_MODE_PORT_MII;
  1132. break;
  1133. case SPEED_2500:
  1134. val |= BNX2_EMAC_MODE_25G_MODE;
  1135. /* fall through */
  1136. case SPEED_1000:
  1137. val |= BNX2_EMAC_MODE_PORT_GMII;
  1138. break;
  1139. }
  1140. }
  1141. else {
  1142. val |= BNX2_EMAC_MODE_PORT_GMII;
  1143. }
  1144. /* Set the MAC to operate in the appropriate duplex mode. */
  1145. if (bp->duplex == DUPLEX_HALF)
  1146. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1147. REG_WR(bp, BNX2_EMAC_MODE, val);
  1148. /* Enable/disable rx PAUSE. */
  1149. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1150. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1151. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1152. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1153. /* Enable/disable tx PAUSE. */
  1154. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1155. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1156. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1157. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1158. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1159. /* Acknowledge the interrupt. */
  1160. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1161. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1162. bnx2_init_all_rx_contexts(bp);
  1163. }
  1164. static void
  1165. bnx2_enable_bmsr1(struct bnx2 *bp)
  1166. {
  1167. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1168. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1169. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1170. MII_BNX2_BLK_ADDR_GP_STATUS);
  1171. }
  1172. static void
  1173. bnx2_disable_bmsr1(struct bnx2 *bp)
  1174. {
  1175. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1176. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1177. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1178. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1179. }
  1180. static int
  1181. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1182. {
  1183. u32 up1;
  1184. int ret = 1;
  1185. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1186. return 0;
  1187. if (bp->autoneg & AUTONEG_SPEED)
  1188. bp->advertising |= ADVERTISED_2500baseX_Full;
  1189. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1190. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1191. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1192. if (!(up1 & BCM5708S_UP1_2G5)) {
  1193. up1 |= BCM5708S_UP1_2G5;
  1194. bnx2_write_phy(bp, bp->mii_up1, up1);
  1195. ret = 0;
  1196. }
  1197. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1198. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1199. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1200. return ret;
  1201. }
  1202. static int
  1203. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1204. {
  1205. u32 up1;
  1206. int ret = 0;
  1207. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1208. return 0;
  1209. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1210. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1211. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1212. if (up1 & BCM5708S_UP1_2G5) {
  1213. up1 &= ~BCM5708S_UP1_2G5;
  1214. bnx2_write_phy(bp, bp->mii_up1, up1);
  1215. ret = 1;
  1216. }
  1217. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1218. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1219. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1220. return ret;
  1221. }
  1222. static void
  1223. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1224. {
  1225. u32 bmcr;
  1226. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1227. return;
  1228. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1229. u32 val;
  1230. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1231. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1232. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1233. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1234. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1235. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1236. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1237. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1238. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1239. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1240. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1241. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1242. }
  1243. if (bp->autoneg & AUTONEG_SPEED) {
  1244. bmcr &= ~BMCR_ANENABLE;
  1245. if (bp->req_duplex == DUPLEX_FULL)
  1246. bmcr |= BMCR_FULLDPLX;
  1247. }
  1248. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1249. }
  1250. static void
  1251. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1252. {
  1253. u32 bmcr;
  1254. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1255. return;
  1256. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1257. u32 val;
  1258. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1259. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1260. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1261. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1262. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1263. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1264. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1265. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1266. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1267. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1268. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1269. }
  1270. if (bp->autoneg & AUTONEG_SPEED)
  1271. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1272. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1273. }
  1274. static void
  1275. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1276. {
  1277. u32 val;
  1278. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1279. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1280. if (start)
  1281. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1282. else
  1283. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1284. }
  1285. static int
  1286. bnx2_set_link(struct bnx2 *bp)
  1287. {
  1288. u32 bmsr;
  1289. u8 link_up;
  1290. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1291. bp->link_up = 1;
  1292. return 0;
  1293. }
  1294. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1295. return 0;
  1296. link_up = bp->link_up;
  1297. bnx2_enable_bmsr1(bp);
  1298. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1299. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1300. bnx2_disable_bmsr1(bp);
  1301. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1302. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1303. u32 val, an_dbg;
  1304. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1305. bnx2_5706s_force_link_dn(bp, 0);
  1306. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1307. }
  1308. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1309. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1310. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1311. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1312. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1313. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1314. bmsr |= BMSR_LSTATUS;
  1315. else
  1316. bmsr &= ~BMSR_LSTATUS;
  1317. }
  1318. if (bmsr & BMSR_LSTATUS) {
  1319. bp->link_up = 1;
  1320. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1321. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1322. bnx2_5706s_linkup(bp);
  1323. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1324. bnx2_5708s_linkup(bp);
  1325. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1326. bnx2_5709s_linkup(bp);
  1327. }
  1328. else {
  1329. bnx2_copper_linkup(bp);
  1330. }
  1331. bnx2_resolve_flow_ctrl(bp);
  1332. }
  1333. else {
  1334. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1335. (bp->autoneg & AUTONEG_SPEED))
  1336. bnx2_disable_forced_2g5(bp);
  1337. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1338. u32 bmcr;
  1339. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1340. bmcr |= BMCR_ANENABLE;
  1341. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1342. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1343. }
  1344. bp->link_up = 0;
  1345. }
  1346. if (bp->link_up != link_up) {
  1347. bnx2_report_link(bp);
  1348. }
  1349. bnx2_set_mac_link(bp);
  1350. return 0;
  1351. }
  1352. static int
  1353. bnx2_reset_phy(struct bnx2 *bp)
  1354. {
  1355. int i;
  1356. u32 reg;
  1357. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1358. #define PHY_RESET_MAX_WAIT 100
  1359. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1360. udelay(10);
  1361. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1362. if (!(reg & BMCR_RESET)) {
  1363. udelay(20);
  1364. break;
  1365. }
  1366. }
  1367. if (i == PHY_RESET_MAX_WAIT) {
  1368. return -EBUSY;
  1369. }
  1370. return 0;
  1371. }
  1372. static u32
  1373. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1374. {
  1375. u32 adv = 0;
  1376. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1377. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1378. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1379. adv = ADVERTISE_1000XPAUSE;
  1380. }
  1381. else {
  1382. adv = ADVERTISE_PAUSE_CAP;
  1383. }
  1384. }
  1385. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1386. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1387. adv = ADVERTISE_1000XPSE_ASYM;
  1388. }
  1389. else {
  1390. adv = ADVERTISE_PAUSE_ASYM;
  1391. }
  1392. }
  1393. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1394. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1395. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1396. }
  1397. else {
  1398. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1399. }
  1400. }
  1401. return adv;
  1402. }
  1403. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1404. static int
  1405. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1406. __releases(&bp->phy_lock)
  1407. __acquires(&bp->phy_lock)
  1408. {
  1409. u32 speed_arg = 0, pause_adv;
  1410. pause_adv = bnx2_phy_get_pause_adv(bp);
  1411. if (bp->autoneg & AUTONEG_SPEED) {
  1412. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1413. if (bp->advertising & ADVERTISED_10baseT_Half)
  1414. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1415. if (bp->advertising & ADVERTISED_10baseT_Full)
  1416. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1417. if (bp->advertising & ADVERTISED_100baseT_Half)
  1418. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1419. if (bp->advertising & ADVERTISED_100baseT_Full)
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1421. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1423. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1425. } else {
  1426. if (bp->req_line_speed == SPEED_2500)
  1427. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1428. else if (bp->req_line_speed == SPEED_1000)
  1429. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1430. else if (bp->req_line_speed == SPEED_100) {
  1431. if (bp->req_duplex == DUPLEX_FULL)
  1432. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1433. else
  1434. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1435. } else if (bp->req_line_speed == SPEED_10) {
  1436. if (bp->req_duplex == DUPLEX_FULL)
  1437. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1438. else
  1439. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1440. }
  1441. }
  1442. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1443. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1444. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1445. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1446. if (port == PORT_TP)
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1448. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1449. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1450. spin_unlock_bh(&bp->phy_lock);
  1451. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1452. spin_lock_bh(&bp->phy_lock);
  1453. return 0;
  1454. }
  1455. static int
  1456. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1457. __releases(&bp->phy_lock)
  1458. __acquires(&bp->phy_lock)
  1459. {
  1460. u32 adv, bmcr;
  1461. u32 new_adv = 0;
  1462. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1463. return (bnx2_setup_remote_phy(bp, port));
  1464. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1465. u32 new_bmcr;
  1466. int force_link_down = 0;
  1467. if (bp->req_line_speed == SPEED_2500) {
  1468. if (!bnx2_test_and_enable_2g5(bp))
  1469. force_link_down = 1;
  1470. } else if (bp->req_line_speed == SPEED_1000) {
  1471. if (bnx2_test_and_disable_2g5(bp))
  1472. force_link_down = 1;
  1473. }
  1474. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1475. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1476. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1477. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1478. new_bmcr |= BMCR_SPEED1000;
  1479. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1480. if (bp->req_line_speed == SPEED_2500)
  1481. bnx2_enable_forced_2g5(bp);
  1482. else if (bp->req_line_speed == SPEED_1000) {
  1483. bnx2_disable_forced_2g5(bp);
  1484. new_bmcr &= ~0x2000;
  1485. }
  1486. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1487. if (bp->req_line_speed == SPEED_2500)
  1488. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1489. else
  1490. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1491. }
  1492. if (bp->req_duplex == DUPLEX_FULL) {
  1493. adv |= ADVERTISE_1000XFULL;
  1494. new_bmcr |= BMCR_FULLDPLX;
  1495. }
  1496. else {
  1497. adv |= ADVERTISE_1000XHALF;
  1498. new_bmcr &= ~BMCR_FULLDPLX;
  1499. }
  1500. if ((new_bmcr != bmcr) || (force_link_down)) {
  1501. /* Force a link down visible on the other side */
  1502. if (bp->link_up) {
  1503. bnx2_write_phy(bp, bp->mii_adv, adv &
  1504. ~(ADVERTISE_1000XFULL |
  1505. ADVERTISE_1000XHALF));
  1506. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1507. BMCR_ANRESTART | BMCR_ANENABLE);
  1508. bp->link_up = 0;
  1509. netif_carrier_off(bp->dev);
  1510. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1511. bnx2_report_link(bp);
  1512. }
  1513. bnx2_write_phy(bp, bp->mii_adv, adv);
  1514. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1515. } else {
  1516. bnx2_resolve_flow_ctrl(bp);
  1517. bnx2_set_mac_link(bp);
  1518. }
  1519. return 0;
  1520. }
  1521. bnx2_test_and_enable_2g5(bp);
  1522. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1523. new_adv |= ADVERTISE_1000XFULL;
  1524. new_adv |= bnx2_phy_get_pause_adv(bp);
  1525. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1526. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1527. bp->serdes_an_pending = 0;
  1528. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1529. /* Force a link down visible on the other side */
  1530. if (bp->link_up) {
  1531. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1532. spin_unlock_bh(&bp->phy_lock);
  1533. msleep(20);
  1534. spin_lock_bh(&bp->phy_lock);
  1535. }
  1536. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1537. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1538. BMCR_ANENABLE);
  1539. /* Speed up link-up time when the link partner
  1540. * does not autonegotiate which is very common
  1541. * in blade servers. Some blade servers use
  1542. * IPMI for kerboard input and it's important
  1543. * to minimize link disruptions. Autoneg. involves
  1544. * exchanging base pages plus 3 next pages and
  1545. * normally completes in about 120 msec.
  1546. */
  1547. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1548. bp->serdes_an_pending = 1;
  1549. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1550. } else {
  1551. bnx2_resolve_flow_ctrl(bp);
  1552. bnx2_set_mac_link(bp);
  1553. }
  1554. return 0;
  1555. }
  1556. #define ETHTOOL_ALL_FIBRE_SPEED \
  1557. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1558. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1559. (ADVERTISED_1000baseT_Full)
  1560. #define ETHTOOL_ALL_COPPER_SPEED \
  1561. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1562. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1563. ADVERTISED_1000baseT_Full)
  1564. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1565. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1566. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1567. static void
  1568. bnx2_set_default_remote_link(struct bnx2 *bp)
  1569. {
  1570. u32 link;
  1571. if (bp->phy_port == PORT_TP)
  1572. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1573. else
  1574. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1575. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1576. bp->req_line_speed = 0;
  1577. bp->autoneg |= AUTONEG_SPEED;
  1578. bp->advertising = ADVERTISED_Autoneg;
  1579. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1580. bp->advertising |= ADVERTISED_10baseT_Half;
  1581. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1582. bp->advertising |= ADVERTISED_10baseT_Full;
  1583. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1584. bp->advertising |= ADVERTISED_100baseT_Half;
  1585. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1586. bp->advertising |= ADVERTISED_100baseT_Full;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1588. bp->advertising |= ADVERTISED_1000baseT_Full;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1590. bp->advertising |= ADVERTISED_2500baseX_Full;
  1591. } else {
  1592. bp->autoneg = 0;
  1593. bp->advertising = 0;
  1594. bp->req_duplex = DUPLEX_FULL;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1596. bp->req_line_speed = SPEED_10;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1598. bp->req_duplex = DUPLEX_HALF;
  1599. }
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1601. bp->req_line_speed = SPEED_100;
  1602. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1603. bp->req_duplex = DUPLEX_HALF;
  1604. }
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1606. bp->req_line_speed = SPEED_1000;
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1608. bp->req_line_speed = SPEED_2500;
  1609. }
  1610. }
  1611. static void
  1612. bnx2_set_default_link(struct bnx2 *bp)
  1613. {
  1614. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1615. bnx2_set_default_remote_link(bp);
  1616. return;
  1617. }
  1618. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1619. bp->req_line_speed = 0;
  1620. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1621. u32 reg;
  1622. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1623. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1624. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1625. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1626. bp->autoneg = 0;
  1627. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1628. bp->req_duplex = DUPLEX_FULL;
  1629. }
  1630. } else
  1631. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1632. }
  1633. static void
  1634. bnx2_send_heart_beat(struct bnx2 *bp)
  1635. {
  1636. u32 msg;
  1637. u32 addr;
  1638. spin_lock(&bp->indirect_lock);
  1639. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1640. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1641. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1642. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1643. spin_unlock(&bp->indirect_lock);
  1644. }
  1645. static void
  1646. bnx2_remote_phy_event(struct bnx2 *bp)
  1647. {
  1648. u32 msg;
  1649. u8 link_up = bp->link_up;
  1650. u8 old_port;
  1651. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1652. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1653. bnx2_send_heart_beat(bp);
  1654. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1655. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1656. bp->link_up = 0;
  1657. else {
  1658. u32 speed;
  1659. bp->link_up = 1;
  1660. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1661. bp->duplex = DUPLEX_FULL;
  1662. switch (speed) {
  1663. case BNX2_LINK_STATUS_10HALF:
  1664. bp->duplex = DUPLEX_HALF;
  1665. case BNX2_LINK_STATUS_10FULL:
  1666. bp->line_speed = SPEED_10;
  1667. break;
  1668. case BNX2_LINK_STATUS_100HALF:
  1669. bp->duplex = DUPLEX_HALF;
  1670. case BNX2_LINK_STATUS_100BASE_T4:
  1671. case BNX2_LINK_STATUS_100FULL:
  1672. bp->line_speed = SPEED_100;
  1673. break;
  1674. case BNX2_LINK_STATUS_1000HALF:
  1675. bp->duplex = DUPLEX_HALF;
  1676. case BNX2_LINK_STATUS_1000FULL:
  1677. bp->line_speed = SPEED_1000;
  1678. break;
  1679. case BNX2_LINK_STATUS_2500HALF:
  1680. bp->duplex = DUPLEX_HALF;
  1681. case BNX2_LINK_STATUS_2500FULL:
  1682. bp->line_speed = SPEED_2500;
  1683. break;
  1684. default:
  1685. bp->line_speed = 0;
  1686. break;
  1687. }
  1688. bp->flow_ctrl = 0;
  1689. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1690. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1691. if (bp->duplex == DUPLEX_FULL)
  1692. bp->flow_ctrl = bp->req_flow_ctrl;
  1693. } else {
  1694. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1695. bp->flow_ctrl |= FLOW_CTRL_TX;
  1696. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1697. bp->flow_ctrl |= FLOW_CTRL_RX;
  1698. }
  1699. old_port = bp->phy_port;
  1700. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1701. bp->phy_port = PORT_FIBRE;
  1702. else
  1703. bp->phy_port = PORT_TP;
  1704. if (old_port != bp->phy_port)
  1705. bnx2_set_default_link(bp);
  1706. }
  1707. if (bp->link_up != link_up)
  1708. bnx2_report_link(bp);
  1709. bnx2_set_mac_link(bp);
  1710. }
  1711. static int
  1712. bnx2_set_remote_link(struct bnx2 *bp)
  1713. {
  1714. u32 evt_code;
  1715. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1716. switch (evt_code) {
  1717. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1718. bnx2_remote_phy_event(bp);
  1719. break;
  1720. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1721. default:
  1722. bnx2_send_heart_beat(bp);
  1723. break;
  1724. }
  1725. return 0;
  1726. }
  1727. static int
  1728. bnx2_setup_copper_phy(struct bnx2 *bp)
  1729. __releases(&bp->phy_lock)
  1730. __acquires(&bp->phy_lock)
  1731. {
  1732. u32 bmcr;
  1733. u32 new_bmcr;
  1734. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1735. if (bp->autoneg & AUTONEG_SPEED) {
  1736. u32 adv_reg, adv1000_reg;
  1737. u32 new_adv_reg = 0;
  1738. u32 new_adv1000_reg = 0;
  1739. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1740. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1741. ADVERTISE_PAUSE_ASYM);
  1742. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1743. adv1000_reg &= PHY_ALL_1000_SPEED;
  1744. if (bp->advertising & ADVERTISED_10baseT_Half)
  1745. new_adv_reg |= ADVERTISE_10HALF;
  1746. if (bp->advertising & ADVERTISED_10baseT_Full)
  1747. new_adv_reg |= ADVERTISE_10FULL;
  1748. if (bp->advertising & ADVERTISED_100baseT_Half)
  1749. new_adv_reg |= ADVERTISE_100HALF;
  1750. if (bp->advertising & ADVERTISED_100baseT_Full)
  1751. new_adv_reg |= ADVERTISE_100FULL;
  1752. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1753. new_adv1000_reg |= ADVERTISE_1000FULL;
  1754. new_adv_reg |= ADVERTISE_CSMA;
  1755. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1756. if ((adv1000_reg != new_adv1000_reg) ||
  1757. (adv_reg != new_adv_reg) ||
  1758. ((bmcr & BMCR_ANENABLE) == 0)) {
  1759. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1760. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1761. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1762. BMCR_ANENABLE);
  1763. }
  1764. else if (bp->link_up) {
  1765. /* Flow ctrl may have changed from auto to forced */
  1766. /* or vice-versa. */
  1767. bnx2_resolve_flow_ctrl(bp);
  1768. bnx2_set_mac_link(bp);
  1769. }
  1770. return 0;
  1771. }
  1772. new_bmcr = 0;
  1773. if (bp->req_line_speed == SPEED_100) {
  1774. new_bmcr |= BMCR_SPEED100;
  1775. }
  1776. if (bp->req_duplex == DUPLEX_FULL) {
  1777. new_bmcr |= BMCR_FULLDPLX;
  1778. }
  1779. if (new_bmcr != bmcr) {
  1780. u32 bmsr;
  1781. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1782. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1783. if (bmsr & BMSR_LSTATUS) {
  1784. /* Force link down */
  1785. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1786. spin_unlock_bh(&bp->phy_lock);
  1787. msleep(50);
  1788. spin_lock_bh(&bp->phy_lock);
  1789. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1790. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1791. }
  1792. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1793. /* Normally, the new speed is setup after the link has
  1794. * gone down and up again. In some cases, link will not go
  1795. * down so we need to set up the new speed here.
  1796. */
  1797. if (bmsr & BMSR_LSTATUS) {
  1798. bp->line_speed = bp->req_line_speed;
  1799. bp->duplex = bp->req_duplex;
  1800. bnx2_resolve_flow_ctrl(bp);
  1801. bnx2_set_mac_link(bp);
  1802. }
  1803. } else {
  1804. bnx2_resolve_flow_ctrl(bp);
  1805. bnx2_set_mac_link(bp);
  1806. }
  1807. return 0;
  1808. }
  1809. static int
  1810. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1811. __releases(&bp->phy_lock)
  1812. __acquires(&bp->phy_lock)
  1813. {
  1814. if (bp->loopback == MAC_LOOPBACK)
  1815. return 0;
  1816. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1817. return (bnx2_setup_serdes_phy(bp, port));
  1818. }
  1819. else {
  1820. return (bnx2_setup_copper_phy(bp));
  1821. }
  1822. }
  1823. static int
  1824. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1825. {
  1826. u32 val;
  1827. bp->mii_bmcr = MII_BMCR + 0x10;
  1828. bp->mii_bmsr = MII_BMSR + 0x10;
  1829. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1830. bp->mii_adv = MII_ADVERTISE + 0x10;
  1831. bp->mii_lpa = MII_LPA + 0x10;
  1832. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1833. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1834. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1835. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1836. if (reset_phy)
  1837. bnx2_reset_phy(bp);
  1838. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1839. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1840. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1841. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1842. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1843. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1844. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1845. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1846. val |= BCM5708S_UP1_2G5;
  1847. else
  1848. val &= ~BCM5708S_UP1_2G5;
  1849. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1850. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1851. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1852. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1853. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1854. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1855. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1856. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1857. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1858. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1859. return 0;
  1860. }
  1861. static int
  1862. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1863. {
  1864. u32 val;
  1865. if (reset_phy)
  1866. bnx2_reset_phy(bp);
  1867. bp->mii_up1 = BCM5708S_UP1;
  1868. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1869. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1870. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1871. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1872. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1873. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1874. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1875. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1876. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1877. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1878. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1879. val |= BCM5708S_UP1_2G5;
  1880. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1881. }
  1882. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1883. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1884. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1885. /* increase tx signal amplitude */
  1886. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1887. BCM5708S_BLK_ADDR_TX_MISC);
  1888. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1889. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1890. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1891. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1892. }
  1893. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1894. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1895. if (val) {
  1896. u32 is_backplane;
  1897. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1898. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1899. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1900. BCM5708S_BLK_ADDR_TX_MISC);
  1901. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1902. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1903. BCM5708S_BLK_ADDR_DIG);
  1904. }
  1905. }
  1906. return 0;
  1907. }
  1908. static int
  1909. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1910. {
  1911. if (reset_phy)
  1912. bnx2_reset_phy(bp);
  1913. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1914. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1915. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1916. if (bp->dev->mtu > 1500) {
  1917. u32 val;
  1918. /* Set extended packet length bit */
  1919. bnx2_write_phy(bp, 0x18, 0x7);
  1920. bnx2_read_phy(bp, 0x18, &val);
  1921. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1922. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1923. bnx2_read_phy(bp, 0x1c, &val);
  1924. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1925. }
  1926. else {
  1927. u32 val;
  1928. bnx2_write_phy(bp, 0x18, 0x7);
  1929. bnx2_read_phy(bp, 0x18, &val);
  1930. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1931. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1932. bnx2_read_phy(bp, 0x1c, &val);
  1933. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1934. }
  1935. return 0;
  1936. }
  1937. static int
  1938. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1939. {
  1940. u32 val;
  1941. if (reset_phy)
  1942. bnx2_reset_phy(bp);
  1943. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1944. bnx2_write_phy(bp, 0x18, 0x0c00);
  1945. bnx2_write_phy(bp, 0x17, 0x000a);
  1946. bnx2_write_phy(bp, 0x15, 0x310b);
  1947. bnx2_write_phy(bp, 0x17, 0x201f);
  1948. bnx2_write_phy(bp, 0x15, 0x9506);
  1949. bnx2_write_phy(bp, 0x17, 0x401f);
  1950. bnx2_write_phy(bp, 0x15, 0x14e2);
  1951. bnx2_write_phy(bp, 0x18, 0x0400);
  1952. }
  1953. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1954. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1955. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1956. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1957. val &= ~(1 << 8);
  1958. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1959. }
  1960. if (bp->dev->mtu > 1500) {
  1961. /* Set extended packet length bit */
  1962. bnx2_write_phy(bp, 0x18, 0x7);
  1963. bnx2_read_phy(bp, 0x18, &val);
  1964. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1965. bnx2_read_phy(bp, 0x10, &val);
  1966. bnx2_write_phy(bp, 0x10, val | 0x1);
  1967. }
  1968. else {
  1969. bnx2_write_phy(bp, 0x18, 0x7);
  1970. bnx2_read_phy(bp, 0x18, &val);
  1971. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1972. bnx2_read_phy(bp, 0x10, &val);
  1973. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1974. }
  1975. /* ethernet@wirespeed */
  1976. bnx2_write_phy(bp, 0x18, 0x7007);
  1977. bnx2_read_phy(bp, 0x18, &val);
  1978. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1979. return 0;
  1980. }
  1981. static int
  1982. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1983. __releases(&bp->phy_lock)
  1984. __acquires(&bp->phy_lock)
  1985. {
  1986. u32 val;
  1987. int rc = 0;
  1988. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1989. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1990. bp->mii_bmcr = MII_BMCR;
  1991. bp->mii_bmsr = MII_BMSR;
  1992. bp->mii_bmsr1 = MII_BMSR;
  1993. bp->mii_adv = MII_ADVERTISE;
  1994. bp->mii_lpa = MII_LPA;
  1995. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1996. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1997. goto setup_phy;
  1998. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1999. bp->phy_id = val << 16;
  2000. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2001. bp->phy_id |= val & 0xffff;
  2002. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2003. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2004. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2005. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2006. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2007. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2008. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2009. }
  2010. else {
  2011. rc = bnx2_init_copper_phy(bp, reset_phy);
  2012. }
  2013. setup_phy:
  2014. if (!rc)
  2015. rc = bnx2_setup_phy(bp, bp->phy_port);
  2016. return rc;
  2017. }
  2018. static int
  2019. bnx2_set_mac_loopback(struct bnx2 *bp)
  2020. {
  2021. u32 mac_mode;
  2022. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2023. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2024. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2025. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2026. bp->link_up = 1;
  2027. return 0;
  2028. }
  2029. static int bnx2_test_link(struct bnx2 *);
  2030. static int
  2031. bnx2_set_phy_loopback(struct bnx2 *bp)
  2032. {
  2033. u32 mac_mode;
  2034. int rc, i;
  2035. spin_lock_bh(&bp->phy_lock);
  2036. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2037. BMCR_SPEED1000);
  2038. spin_unlock_bh(&bp->phy_lock);
  2039. if (rc)
  2040. return rc;
  2041. for (i = 0; i < 10; i++) {
  2042. if (bnx2_test_link(bp) == 0)
  2043. break;
  2044. msleep(100);
  2045. }
  2046. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2047. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2048. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2049. BNX2_EMAC_MODE_25G_MODE);
  2050. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2051. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2052. bp->link_up = 1;
  2053. return 0;
  2054. }
  2055. static int
  2056. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2057. {
  2058. int i;
  2059. u32 val;
  2060. bp->fw_wr_seq++;
  2061. msg_data |= bp->fw_wr_seq;
  2062. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2063. if (!ack)
  2064. return 0;
  2065. /* wait for an acknowledgement. */
  2066. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2067. msleep(10);
  2068. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2069. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2070. break;
  2071. }
  2072. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2073. return 0;
  2074. /* If we timed out, inform the firmware that this is the case. */
  2075. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2076. if (!silent)
  2077. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2078. "%x\n", msg_data);
  2079. msg_data &= ~BNX2_DRV_MSG_CODE;
  2080. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2081. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2082. return -EBUSY;
  2083. }
  2084. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2085. return -EIO;
  2086. return 0;
  2087. }
  2088. static int
  2089. bnx2_init_5709_context(struct bnx2 *bp)
  2090. {
  2091. int i, ret = 0;
  2092. u32 val;
  2093. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2094. val |= (BCM_PAGE_BITS - 8) << 16;
  2095. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2096. for (i = 0; i < 10; i++) {
  2097. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2098. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2099. break;
  2100. udelay(2);
  2101. }
  2102. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2103. return -EBUSY;
  2104. for (i = 0; i < bp->ctx_pages; i++) {
  2105. int j;
  2106. if (bp->ctx_blk[i])
  2107. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2108. else
  2109. return -ENOMEM;
  2110. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2111. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2112. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2113. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2114. (u64) bp->ctx_blk_mapping[i] >> 32);
  2115. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2116. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2117. for (j = 0; j < 10; j++) {
  2118. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2119. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2120. break;
  2121. udelay(5);
  2122. }
  2123. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2124. ret = -EBUSY;
  2125. break;
  2126. }
  2127. }
  2128. return ret;
  2129. }
  2130. static void
  2131. bnx2_init_context(struct bnx2 *bp)
  2132. {
  2133. u32 vcid;
  2134. vcid = 96;
  2135. while (vcid) {
  2136. u32 vcid_addr, pcid_addr, offset;
  2137. int i;
  2138. vcid--;
  2139. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2140. u32 new_vcid;
  2141. vcid_addr = GET_PCID_ADDR(vcid);
  2142. if (vcid & 0x8) {
  2143. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2144. }
  2145. else {
  2146. new_vcid = vcid;
  2147. }
  2148. pcid_addr = GET_PCID_ADDR(new_vcid);
  2149. }
  2150. else {
  2151. vcid_addr = GET_CID_ADDR(vcid);
  2152. pcid_addr = vcid_addr;
  2153. }
  2154. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2155. vcid_addr += (i << PHY_CTX_SHIFT);
  2156. pcid_addr += (i << PHY_CTX_SHIFT);
  2157. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2158. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2159. /* Zero out the context. */
  2160. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2161. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2162. }
  2163. }
  2164. }
  2165. static int
  2166. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2167. {
  2168. u16 *good_mbuf;
  2169. u32 good_mbuf_cnt;
  2170. u32 val;
  2171. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2172. if (good_mbuf == NULL) {
  2173. printk(KERN_ERR PFX "Failed to allocate memory in "
  2174. "bnx2_alloc_bad_rbuf\n");
  2175. return -ENOMEM;
  2176. }
  2177. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2178. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2179. good_mbuf_cnt = 0;
  2180. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2181. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2182. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2183. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2184. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2185. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2186. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2187. /* The addresses with Bit 9 set are bad memory blocks. */
  2188. if (!(val & (1 << 9))) {
  2189. good_mbuf[good_mbuf_cnt] = (u16) val;
  2190. good_mbuf_cnt++;
  2191. }
  2192. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2193. }
  2194. /* Free the good ones back to the mbuf pool thus discarding
  2195. * all the bad ones. */
  2196. while (good_mbuf_cnt) {
  2197. good_mbuf_cnt--;
  2198. val = good_mbuf[good_mbuf_cnt];
  2199. val = (val << 9) | val | 1;
  2200. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2201. }
  2202. kfree(good_mbuf);
  2203. return 0;
  2204. }
  2205. static void
  2206. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2207. {
  2208. u32 val;
  2209. val = (mac_addr[0] << 8) | mac_addr[1];
  2210. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2211. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2212. (mac_addr[4] << 8) | mac_addr[5];
  2213. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2214. }
  2215. static inline int
  2216. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2217. {
  2218. dma_addr_t mapping;
  2219. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2220. struct rx_bd *rxbd =
  2221. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2222. struct page *page = alloc_page(GFP_ATOMIC);
  2223. if (!page)
  2224. return -ENOMEM;
  2225. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2226. PCI_DMA_FROMDEVICE);
  2227. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2228. __free_page(page);
  2229. return -EIO;
  2230. }
  2231. rx_pg->page = page;
  2232. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2233. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2234. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2235. return 0;
  2236. }
  2237. static void
  2238. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2239. {
  2240. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2241. struct page *page = rx_pg->page;
  2242. if (!page)
  2243. return;
  2244. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2245. PCI_DMA_FROMDEVICE);
  2246. __free_page(page);
  2247. rx_pg->page = NULL;
  2248. }
  2249. static inline int
  2250. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2251. {
  2252. struct sk_buff *skb;
  2253. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2254. dma_addr_t mapping;
  2255. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2256. unsigned long align;
  2257. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2258. if (skb == NULL) {
  2259. return -ENOMEM;
  2260. }
  2261. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2262. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2263. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2264. PCI_DMA_FROMDEVICE);
  2265. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2266. dev_kfree_skb(skb);
  2267. return -EIO;
  2268. }
  2269. rx_buf->skb = skb;
  2270. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2271. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2272. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2273. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2274. return 0;
  2275. }
  2276. static int
  2277. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2278. {
  2279. struct status_block *sblk = bnapi->status_blk.msi;
  2280. u32 new_link_state, old_link_state;
  2281. int is_set = 1;
  2282. new_link_state = sblk->status_attn_bits & event;
  2283. old_link_state = sblk->status_attn_bits_ack & event;
  2284. if (new_link_state != old_link_state) {
  2285. if (new_link_state)
  2286. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2287. else
  2288. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2289. } else
  2290. is_set = 0;
  2291. return is_set;
  2292. }
  2293. static void
  2294. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2295. {
  2296. spin_lock(&bp->phy_lock);
  2297. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2298. bnx2_set_link(bp);
  2299. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2300. bnx2_set_remote_link(bp);
  2301. spin_unlock(&bp->phy_lock);
  2302. }
  2303. static inline u16
  2304. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2305. {
  2306. u16 cons;
  2307. /* Tell compiler that status block fields can change. */
  2308. barrier();
  2309. cons = *bnapi->hw_tx_cons_ptr;
  2310. barrier();
  2311. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2312. cons++;
  2313. return cons;
  2314. }
  2315. static int
  2316. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2317. {
  2318. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2319. u16 hw_cons, sw_cons, sw_ring_cons;
  2320. int tx_pkt = 0, index;
  2321. struct netdev_queue *txq;
  2322. index = (bnapi - bp->bnx2_napi);
  2323. txq = netdev_get_tx_queue(bp->dev, index);
  2324. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2325. sw_cons = txr->tx_cons;
  2326. while (sw_cons != hw_cons) {
  2327. struct sw_tx_bd *tx_buf;
  2328. struct sk_buff *skb;
  2329. int i, last;
  2330. sw_ring_cons = TX_RING_IDX(sw_cons);
  2331. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2332. skb = tx_buf->skb;
  2333. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2334. prefetch(&skb->end);
  2335. /* partial BD completions possible with TSO packets */
  2336. if (tx_buf->is_gso) {
  2337. u16 last_idx, last_ring_idx;
  2338. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2339. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2340. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2341. last_idx++;
  2342. }
  2343. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2344. break;
  2345. }
  2346. }
  2347. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  2348. tx_buf->skb = NULL;
  2349. last = tx_buf->nr_frags;
  2350. for (i = 0; i < last; i++) {
  2351. sw_cons = NEXT_TX_BD(sw_cons);
  2352. }
  2353. sw_cons = NEXT_TX_BD(sw_cons);
  2354. dev_kfree_skb(skb);
  2355. tx_pkt++;
  2356. if (tx_pkt == budget)
  2357. break;
  2358. if (hw_cons == sw_cons)
  2359. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2360. }
  2361. txr->hw_tx_cons = hw_cons;
  2362. txr->tx_cons = sw_cons;
  2363. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2364. * before checking for netif_tx_queue_stopped(). Without the
  2365. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2366. * will miss it and cause the queue to be stopped forever.
  2367. */
  2368. smp_mb();
  2369. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2370. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2371. __netif_tx_lock(txq, smp_processor_id());
  2372. if ((netif_tx_queue_stopped(txq)) &&
  2373. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2374. netif_tx_wake_queue(txq);
  2375. __netif_tx_unlock(txq);
  2376. }
  2377. return tx_pkt;
  2378. }
  2379. static void
  2380. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2381. struct sk_buff *skb, int count)
  2382. {
  2383. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2384. struct rx_bd *cons_bd, *prod_bd;
  2385. int i;
  2386. u16 hw_prod, prod;
  2387. u16 cons = rxr->rx_pg_cons;
  2388. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2389. /* The caller was unable to allocate a new page to replace the
  2390. * last one in the frags array, so we need to recycle that page
  2391. * and then free the skb.
  2392. */
  2393. if (skb) {
  2394. struct page *page;
  2395. struct skb_shared_info *shinfo;
  2396. shinfo = skb_shinfo(skb);
  2397. shinfo->nr_frags--;
  2398. page = shinfo->frags[shinfo->nr_frags].page;
  2399. shinfo->frags[shinfo->nr_frags].page = NULL;
  2400. cons_rx_pg->page = page;
  2401. dev_kfree_skb(skb);
  2402. }
  2403. hw_prod = rxr->rx_pg_prod;
  2404. for (i = 0; i < count; i++) {
  2405. prod = RX_PG_RING_IDX(hw_prod);
  2406. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2407. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2408. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2409. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2410. if (prod != cons) {
  2411. prod_rx_pg->page = cons_rx_pg->page;
  2412. cons_rx_pg->page = NULL;
  2413. pci_unmap_addr_set(prod_rx_pg, mapping,
  2414. pci_unmap_addr(cons_rx_pg, mapping));
  2415. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2416. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2417. }
  2418. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2419. hw_prod = NEXT_RX_BD(hw_prod);
  2420. }
  2421. rxr->rx_pg_prod = hw_prod;
  2422. rxr->rx_pg_cons = cons;
  2423. }
  2424. static inline void
  2425. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2426. struct sk_buff *skb, u16 cons, u16 prod)
  2427. {
  2428. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2429. struct rx_bd *cons_bd, *prod_bd;
  2430. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2431. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2432. pci_dma_sync_single_for_device(bp->pdev,
  2433. pci_unmap_addr(cons_rx_buf, mapping),
  2434. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2435. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2436. prod_rx_buf->skb = skb;
  2437. if (cons == prod)
  2438. return;
  2439. pci_unmap_addr_set(prod_rx_buf, mapping,
  2440. pci_unmap_addr(cons_rx_buf, mapping));
  2441. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2442. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2443. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2444. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2445. }
  2446. static int
  2447. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2448. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2449. u32 ring_idx)
  2450. {
  2451. int err;
  2452. u16 prod = ring_idx & 0xffff;
  2453. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2454. if (unlikely(err)) {
  2455. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2456. if (hdr_len) {
  2457. unsigned int raw_len = len + 4;
  2458. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2459. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2460. }
  2461. return err;
  2462. }
  2463. skb_reserve(skb, BNX2_RX_OFFSET);
  2464. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2465. PCI_DMA_FROMDEVICE);
  2466. if (hdr_len == 0) {
  2467. skb_put(skb, len);
  2468. return 0;
  2469. } else {
  2470. unsigned int i, frag_len, frag_size, pages;
  2471. struct sw_pg *rx_pg;
  2472. u16 pg_cons = rxr->rx_pg_cons;
  2473. u16 pg_prod = rxr->rx_pg_prod;
  2474. frag_size = len + 4 - hdr_len;
  2475. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2476. skb_put(skb, hdr_len);
  2477. for (i = 0; i < pages; i++) {
  2478. dma_addr_t mapping_old;
  2479. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2480. if (unlikely(frag_len <= 4)) {
  2481. unsigned int tail = 4 - frag_len;
  2482. rxr->rx_pg_cons = pg_cons;
  2483. rxr->rx_pg_prod = pg_prod;
  2484. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2485. pages - i);
  2486. skb->len -= tail;
  2487. if (i == 0) {
  2488. skb->tail -= tail;
  2489. } else {
  2490. skb_frag_t *frag =
  2491. &skb_shinfo(skb)->frags[i - 1];
  2492. frag->size -= tail;
  2493. skb->data_len -= tail;
  2494. skb->truesize -= tail;
  2495. }
  2496. return 0;
  2497. }
  2498. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2499. /* Don't unmap yet. If we're unable to allocate a new
  2500. * page, we need to recycle the page and the DMA addr.
  2501. */
  2502. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2503. if (i == pages - 1)
  2504. frag_len -= 4;
  2505. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2506. rx_pg->page = NULL;
  2507. err = bnx2_alloc_rx_page(bp, rxr,
  2508. RX_PG_RING_IDX(pg_prod));
  2509. if (unlikely(err)) {
  2510. rxr->rx_pg_cons = pg_cons;
  2511. rxr->rx_pg_prod = pg_prod;
  2512. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2513. pages - i);
  2514. return err;
  2515. }
  2516. pci_unmap_page(bp->pdev, mapping_old,
  2517. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2518. frag_size -= frag_len;
  2519. skb->data_len += frag_len;
  2520. skb->truesize += frag_len;
  2521. skb->len += frag_len;
  2522. pg_prod = NEXT_RX_BD(pg_prod);
  2523. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2524. }
  2525. rxr->rx_pg_prod = pg_prod;
  2526. rxr->rx_pg_cons = pg_cons;
  2527. }
  2528. return 0;
  2529. }
  2530. static inline u16
  2531. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2532. {
  2533. u16 cons;
  2534. /* Tell compiler that status block fields can change. */
  2535. barrier();
  2536. cons = *bnapi->hw_rx_cons_ptr;
  2537. barrier();
  2538. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2539. cons++;
  2540. return cons;
  2541. }
  2542. static int
  2543. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2544. {
  2545. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2546. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2547. struct l2_fhdr *rx_hdr;
  2548. int rx_pkt = 0, pg_ring_used = 0;
  2549. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2550. sw_cons = rxr->rx_cons;
  2551. sw_prod = rxr->rx_prod;
  2552. /* Memory barrier necessary as speculative reads of the rx
  2553. * buffer can be ahead of the index in the status block
  2554. */
  2555. rmb();
  2556. while (sw_cons != hw_cons) {
  2557. unsigned int len, hdr_len;
  2558. u32 status;
  2559. struct sw_bd *rx_buf;
  2560. struct sk_buff *skb;
  2561. dma_addr_t dma_addr;
  2562. u16 vtag = 0;
  2563. int hw_vlan __maybe_unused = 0;
  2564. sw_ring_cons = RX_RING_IDX(sw_cons);
  2565. sw_ring_prod = RX_RING_IDX(sw_prod);
  2566. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2567. skb = rx_buf->skb;
  2568. rx_buf->skb = NULL;
  2569. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2570. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2571. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2572. PCI_DMA_FROMDEVICE);
  2573. rx_hdr = (struct l2_fhdr *) skb->data;
  2574. len = rx_hdr->l2_fhdr_pkt_len;
  2575. status = rx_hdr->l2_fhdr_status;
  2576. hdr_len = 0;
  2577. if (status & L2_FHDR_STATUS_SPLIT) {
  2578. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2579. pg_ring_used = 1;
  2580. } else if (len > bp->rx_jumbo_thresh) {
  2581. hdr_len = bp->rx_jumbo_thresh;
  2582. pg_ring_used = 1;
  2583. }
  2584. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2585. L2_FHDR_ERRORS_PHY_DECODE |
  2586. L2_FHDR_ERRORS_ALIGNMENT |
  2587. L2_FHDR_ERRORS_TOO_SHORT |
  2588. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2589. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2590. sw_ring_prod);
  2591. if (pg_ring_used) {
  2592. int pages;
  2593. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2594. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2595. }
  2596. goto next_rx;
  2597. }
  2598. len -= 4;
  2599. if (len <= bp->rx_copy_thresh) {
  2600. struct sk_buff *new_skb;
  2601. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2602. if (new_skb == NULL) {
  2603. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2604. sw_ring_prod);
  2605. goto next_rx;
  2606. }
  2607. /* aligned copy */
  2608. skb_copy_from_linear_data_offset(skb,
  2609. BNX2_RX_OFFSET - 6,
  2610. new_skb->data, len + 6);
  2611. skb_reserve(new_skb, 6);
  2612. skb_put(new_skb, len);
  2613. bnx2_reuse_rx_skb(bp, rxr, skb,
  2614. sw_ring_cons, sw_ring_prod);
  2615. skb = new_skb;
  2616. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2617. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2618. goto next_rx;
  2619. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2620. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2621. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2622. #ifdef BCM_VLAN
  2623. if (bp->vlgrp)
  2624. hw_vlan = 1;
  2625. else
  2626. #endif
  2627. {
  2628. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2629. __skb_push(skb, 4);
  2630. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2631. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2632. ve->h_vlan_TCI = htons(vtag);
  2633. len += 4;
  2634. }
  2635. }
  2636. skb->protocol = eth_type_trans(skb, bp->dev);
  2637. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2638. (ntohs(skb->protocol) != 0x8100)) {
  2639. dev_kfree_skb(skb);
  2640. goto next_rx;
  2641. }
  2642. skb->ip_summed = CHECKSUM_NONE;
  2643. if (bp->rx_csum &&
  2644. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2645. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2646. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2647. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2648. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2649. }
  2650. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2651. #ifdef BCM_VLAN
  2652. if (hw_vlan)
  2653. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2654. else
  2655. #endif
  2656. netif_receive_skb(skb);
  2657. rx_pkt++;
  2658. next_rx:
  2659. sw_cons = NEXT_RX_BD(sw_cons);
  2660. sw_prod = NEXT_RX_BD(sw_prod);
  2661. if ((rx_pkt == budget))
  2662. break;
  2663. /* Refresh hw_cons to see if there is new work */
  2664. if (sw_cons == hw_cons) {
  2665. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2666. rmb();
  2667. }
  2668. }
  2669. rxr->rx_cons = sw_cons;
  2670. rxr->rx_prod = sw_prod;
  2671. if (pg_ring_used)
  2672. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2673. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2674. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2675. mmiowb();
  2676. return rx_pkt;
  2677. }
  2678. /* MSI ISR - The only difference between this and the INTx ISR
  2679. * is that the MSI interrupt is always serviced.
  2680. */
  2681. static irqreturn_t
  2682. bnx2_msi(int irq, void *dev_instance)
  2683. {
  2684. struct bnx2_napi *bnapi = dev_instance;
  2685. struct bnx2 *bp = bnapi->bp;
  2686. prefetch(bnapi->status_blk.msi);
  2687. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2688. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2689. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2690. /* Return here if interrupt is disabled. */
  2691. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2692. return IRQ_HANDLED;
  2693. napi_schedule(&bnapi->napi);
  2694. return IRQ_HANDLED;
  2695. }
  2696. static irqreturn_t
  2697. bnx2_msi_1shot(int irq, void *dev_instance)
  2698. {
  2699. struct bnx2_napi *bnapi = dev_instance;
  2700. struct bnx2 *bp = bnapi->bp;
  2701. prefetch(bnapi->status_blk.msi);
  2702. /* Return here if interrupt is disabled. */
  2703. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2704. return IRQ_HANDLED;
  2705. napi_schedule(&bnapi->napi);
  2706. return IRQ_HANDLED;
  2707. }
  2708. static irqreturn_t
  2709. bnx2_interrupt(int irq, void *dev_instance)
  2710. {
  2711. struct bnx2_napi *bnapi = dev_instance;
  2712. struct bnx2 *bp = bnapi->bp;
  2713. struct status_block *sblk = bnapi->status_blk.msi;
  2714. /* When using INTx, it is possible for the interrupt to arrive
  2715. * at the CPU before the status block posted prior to the
  2716. * interrupt. Reading a register will flush the status block.
  2717. * When using MSI, the MSI message will always complete after
  2718. * the status block write.
  2719. */
  2720. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2721. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2722. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2723. return IRQ_NONE;
  2724. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2725. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2726. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2727. /* Read back to deassert IRQ immediately to avoid too many
  2728. * spurious interrupts.
  2729. */
  2730. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2731. /* Return here if interrupt is shared and is disabled. */
  2732. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2733. return IRQ_HANDLED;
  2734. if (napi_schedule_prep(&bnapi->napi)) {
  2735. bnapi->last_status_idx = sblk->status_idx;
  2736. __napi_schedule(&bnapi->napi);
  2737. }
  2738. return IRQ_HANDLED;
  2739. }
  2740. static inline int
  2741. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2742. {
  2743. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2744. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2745. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2746. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2747. return 1;
  2748. return 0;
  2749. }
  2750. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2751. STATUS_ATTN_BITS_TIMER_ABORT)
  2752. static inline int
  2753. bnx2_has_work(struct bnx2_napi *bnapi)
  2754. {
  2755. struct status_block *sblk = bnapi->status_blk.msi;
  2756. if (bnx2_has_fast_work(bnapi))
  2757. return 1;
  2758. #ifdef BCM_CNIC
  2759. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2760. return 1;
  2761. #endif
  2762. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2763. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2764. return 1;
  2765. return 0;
  2766. }
  2767. static void
  2768. bnx2_chk_missed_msi(struct bnx2 *bp)
  2769. {
  2770. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2771. u32 msi_ctrl;
  2772. if (bnx2_has_work(bnapi)) {
  2773. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2774. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2775. return;
  2776. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2777. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2778. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2779. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2780. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2781. }
  2782. }
  2783. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2784. }
  2785. #ifdef BCM_CNIC
  2786. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2787. {
  2788. struct cnic_ops *c_ops;
  2789. if (!bnapi->cnic_present)
  2790. return;
  2791. rcu_read_lock();
  2792. c_ops = rcu_dereference(bp->cnic_ops);
  2793. if (c_ops)
  2794. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2795. bnapi->status_blk.msi);
  2796. rcu_read_unlock();
  2797. }
  2798. #endif
  2799. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2800. {
  2801. struct status_block *sblk = bnapi->status_blk.msi;
  2802. u32 status_attn_bits = sblk->status_attn_bits;
  2803. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2804. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2805. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2806. bnx2_phy_int(bp, bnapi);
  2807. /* This is needed to take care of transient status
  2808. * during link changes.
  2809. */
  2810. REG_WR(bp, BNX2_HC_COMMAND,
  2811. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2812. REG_RD(bp, BNX2_HC_COMMAND);
  2813. }
  2814. }
  2815. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2816. int work_done, int budget)
  2817. {
  2818. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2819. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2820. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2821. bnx2_tx_int(bp, bnapi, 0);
  2822. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2823. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2824. return work_done;
  2825. }
  2826. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2827. {
  2828. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2829. struct bnx2 *bp = bnapi->bp;
  2830. int work_done = 0;
  2831. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2832. while (1) {
  2833. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2834. if (unlikely(work_done >= budget))
  2835. break;
  2836. bnapi->last_status_idx = sblk->status_idx;
  2837. /* status idx must be read before checking for more work. */
  2838. rmb();
  2839. if (likely(!bnx2_has_fast_work(bnapi))) {
  2840. napi_complete(napi);
  2841. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2842. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2843. bnapi->last_status_idx);
  2844. break;
  2845. }
  2846. }
  2847. return work_done;
  2848. }
  2849. static int bnx2_poll(struct napi_struct *napi, int budget)
  2850. {
  2851. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2852. struct bnx2 *bp = bnapi->bp;
  2853. int work_done = 0;
  2854. struct status_block *sblk = bnapi->status_blk.msi;
  2855. while (1) {
  2856. bnx2_poll_link(bp, bnapi);
  2857. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2858. #ifdef BCM_CNIC
  2859. bnx2_poll_cnic(bp, bnapi);
  2860. #endif
  2861. /* bnapi->last_status_idx is used below to tell the hw how
  2862. * much work has been processed, so we must read it before
  2863. * checking for more work.
  2864. */
  2865. bnapi->last_status_idx = sblk->status_idx;
  2866. if (unlikely(work_done >= budget))
  2867. break;
  2868. rmb();
  2869. if (likely(!bnx2_has_work(bnapi))) {
  2870. napi_complete(napi);
  2871. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2872. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2873. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2874. bnapi->last_status_idx);
  2875. break;
  2876. }
  2877. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2878. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2879. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2880. bnapi->last_status_idx);
  2881. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2882. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2883. bnapi->last_status_idx);
  2884. break;
  2885. }
  2886. }
  2887. return work_done;
  2888. }
  2889. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2890. * from set_multicast.
  2891. */
  2892. static void
  2893. bnx2_set_rx_mode(struct net_device *dev)
  2894. {
  2895. struct bnx2 *bp = netdev_priv(dev);
  2896. u32 rx_mode, sort_mode;
  2897. struct netdev_hw_addr *ha;
  2898. int i;
  2899. if (!netif_running(dev))
  2900. return;
  2901. spin_lock_bh(&bp->phy_lock);
  2902. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2903. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2904. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2905. #ifdef BCM_VLAN
  2906. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2907. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2908. #else
  2909. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2910. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2911. #endif
  2912. if (dev->flags & IFF_PROMISC) {
  2913. /* Promiscuous mode. */
  2914. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2915. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2916. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2917. }
  2918. else if (dev->flags & IFF_ALLMULTI) {
  2919. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2920. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2921. 0xffffffff);
  2922. }
  2923. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2924. }
  2925. else {
  2926. /* Accept one or more multicast(s). */
  2927. struct dev_mc_list *mclist;
  2928. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2929. u32 regidx;
  2930. u32 bit;
  2931. u32 crc;
  2932. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2933. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2934. i++, mclist = mclist->next) {
  2935. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2936. bit = crc & 0xff;
  2937. regidx = (bit & 0xe0) >> 5;
  2938. bit &= 0x1f;
  2939. mc_filter[regidx] |= (1 << bit);
  2940. }
  2941. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2942. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2943. mc_filter[i]);
  2944. }
  2945. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2946. }
  2947. if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
  2948. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2949. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2950. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2951. } else if (!(dev->flags & IFF_PROMISC)) {
  2952. /* Add all entries into to the match filter list */
  2953. i = 0;
  2954. list_for_each_entry(ha, &dev->uc.list, list) {
  2955. bnx2_set_mac_addr(bp, ha->addr,
  2956. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2957. sort_mode |= (1 <<
  2958. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2959. i++;
  2960. }
  2961. }
  2962. if (rx_mode != bp->rx_mode) {
  2963. bp->rx_mode = rx_mode;
  2964. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2965. }
  2966. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2967. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2968. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2969. spin_unlock_bh(&bp->phy_lock);
  2970. }
  2971. static int __devinit
  2972. check_fw_section(const struct firmware *fw,
  2973. const struct bnx2_fw_file_section *section,
  2974. u32 alignment, bool non_empty)
  2975. {
  2976. u32 offset = be32_to_cpu(section->offset);
  2977. u32 len = be32_to_cpu(section->len);
  2978. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2979. return -EINVAL;
  2980. if ((non_empty && len == 0) || len > fw->size - offset ||
  2981. len & (alignment - 1))
  2982. return -EINVAL;
  2983. return 0;
  2984. }
  2985. static int __devinit
  2986. check_mips_fw_entry(const struct firmware *fw,
  2987. const struct bnx2_mips_fw_file_entry *entry)
  2988. {
  2989. if (check_fw_section(fw, &entry->text, 4, true) ||
  2990. check_fw_section(fw, &entry->data, 4, false) ||
  2991. check_fw_section(fw, &entry->rodata, 4, false))
  2992. return -EINVAL;
  2993. return 0;
  2994. }
  2995. static int __devinit
  2996. bnx2_request_firmware(struct bnx2 *bp)
  2997. {
  2998. const char *mips_fw_file, *rv2p_fw_file;
  2999. const struct bnx2_mips_fw_file *mips_fw;
  3000. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3001. int rc;
  3002. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3003. mips_fw_file = FW_MIPS_FILE_09;
  3004. rv2p_fw_file = FW_RV2P_FILE_09;
  3005. } else {
  3006. mips_fw_file = FW_MIPS_FILE_06;
  3007. rv2p_fw_file = FW_RV2P_FILE_06;
  3008. }
  3009. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3010. if (rc) {
  3011. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3012. mips_fw_file);
  3013. return rc;
  3014. }
  3015. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3016. if (rc) {
  3017. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3018. rv2p_fw_file);
  3019. return rc;
  3020. }
  3021. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3022. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3023. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3024. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3025. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3026. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3027. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3028. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3029. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3030. mips_fw_file);
  3031. return -EINVAL;
  3032. }
  3033. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3034. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3035. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3036. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3037. rv2p_fw_file);
  3038. return -EINVAL;
  3039. }
  3040. return 0;
  3041. }
  3042. static u32
  3043. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3044. {
  3045. switch (idx) {
  3046. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3047. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3048. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3049. break;
  3050. }
  3051. return rv2p_code;
  3052. }
  3053. static int
  3054. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3055. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3056. {
  3057. u32 rv2p_code_len, file_offset;
  3058. __be32 *rv2p_code;
  3059. int i;
  3060. u32 val, cmd, addr;
  3061. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3062. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3063. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3064. if (rv2p_proc == RV2P_PROC1) {
  3065. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3066. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3067. } else {
  3068. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3069. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3070. }
  3071. for (i = 0; i < rv2p_code_len; i += 8) {
  3072. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3073. rv2p_code++;
  3074. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3075. rv2p_code++;
  3076. val = (i / 8) | cmd;
  3077. REG_WR(bp, addr, val);
  3078. }
  3079. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3080. for (i = 0; i < 8; i++) {
  3081. u32 loc, code;
  3082. loc = be32_to_cpu(fw_entry->fixup[i]);
  3083. if (loc && ((loc * 4) < rv2p_code_len)) {
  3084. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3085. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3086. code = be32_to_cpu(*(rv2p_code + loc));
  3087. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3088. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3089. val = (loc / 2) | cmd;
  3090. REG_WR(bp, addr, val);
  3091. }
  3092. }
  3093. /* Reset the processor, un-stall is done later. */
  3094. if (rv2p_proc == RV2P_PROC1) {
  3095. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3096. }
  3097. else {
  3098. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3099. }
  3100. return 0;
  3101. }
  3102. static int
  3103. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3104. const struct bnx2_mips_fw_file_entry *fw_entry)
  3105. {
  3106. u32 addr, len, file_offset;
  3107. __be32 *data;
  3108. u32 offset;
  3109. u32 val;
  3110. /* Halt the CPU. */
  3111. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3112. val |= cpu_reg->mode_value_halt;
  3113. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3114. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3115. /* Load the Text area. */
  3116. addr = be32_to_cpu(fw_entry->text.addr);
  3117. len = be32_to_cpu(fw_entry->text.len);
  3118. file_offset = be32_to_cpu(fw_entry->text.offset);
  3119. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3120. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3121. if (len) {
  3122. int j;
  3123. for (j = 0; j < (len / 4); j++, offset += 4)
  3124. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3125. }
  3126. /* Load the Data area. */
  3127. addr = be32_to_cpu(fw_entry->data.addr);
  3128. len = be32_to_cpu(fw_entry->data.len);
  3129. file_offset = be32_to_cpu(fw_entry->data.offset);
  3130. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3131. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3132. if (len) {
  3133. int j;
  3134. for (j = 0; j < (len / 4); j++, offset += 4)
  3135. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3136. }
  3137. /* Load the Read-Only area. */
  3138. addr = be32_to_cpu(fw_entry->rodata.addr);
  3139. len = be32_to_cpu(fw_entry->rodata.len);
  3140. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3141. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3142. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3143. if (len) {
  3144. int j;
  3145. for (j = 0; j < (len / 4); j++, offset += 4)
  3146. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3147. }
  3148. /* Clear the pre-fetch instruction. */
  3149. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3150. val = be32_to_cpu(fw_entry->start_addr);
  3151. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3152. /* Start the CPU. */
  3153. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3154. val &= ~cpu_reg->mode_value_halt;
  3155. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3156. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3157. return 0;
  3158. }
  3159. static int
  3160. bnx2_init_cpus(struct bnx2 *bp)
  3161. {
  3162. const struct bnx2_mips_fw_file *mips_fw =
  3163. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3164. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3165. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3166. int rc;
  3167. /* Initialize the RV2P processor. */
  3168. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3169. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3170. /* Initialize the RX Processor. */
  3171. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3172. if (rc)
  3173. goto init_cpu_err;
  3174. /* Initialize the TX Processor. */
  3175. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3176. if (rc)
  3177. goto init_cpu_err;
  3178. /* Initialize the TX Patch-up Processor. */
  3179. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3180. if (rc)
  3181. goto init_cpu_err;
  3182. /* Initialize the Completion Processor. */
  3183. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3184. if (rc)
  3185. goto init_cpu_err;
  3186. /* Initialize the Command Processor. */
  3187. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3188. init_cpu_err:
  3189. return rc;
  3190. }
  3191. static int
  3192. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3193. {
  3194. u16 pmcsr;
  3195. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3196. switch (state) {
  3197. case PCI_D0: {
  3198. u32 val;
  3199. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3200. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3201. PCI_PM_CTRL_PME_STATUS);
  3202. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3203. /* delay required during transition out of D3hot */
  3204. msleep(20);
  3205. val = REG_RD(bp, BNX2_EMAC_MODE);
  3206. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3207. val &= ~BNX2_EMAC_MODE_MPKT;
  3208. REG_WR(bp, BNX2_EMAC_MODE, val);
  3209. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3210. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3211. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3212. break;
  3213. }
  3214. case PCI_D3hot: {
  3215. int i;
  3216. u32 val, wol_msg;
  3217. if (bp->wol) {
  3218. u32 advertising;
  3219. u8 autoneg;
  3220. autoneg = bp->autoneg;
  3221. advertising = bp->advertising;
  3222. if (bp->phy_port == PORT_TP) {
  3223. bp->autoneg = AUTONEG_SPEED;
  3224. bp->advertising = ADVERTISED_10baseT_Half |
  3225. ADVERTISED_10baseT_Full |
  3226. ADVERTISED_100baseT_Half |
  3227. ADVERTISED_100baseT_Full |
  3228. ADVERTISED_Autoneg;
  3229. }
  3230. spin_lock_bh(&bp->phy_lock);
  3231. bnx2_setup_phy(bp, bp->phy_port);
  3232. spin_unlock_bh(&bp->phy_lock);
  3233. bp->autoneg = autoneg;
  3234. bp->advertising = advertising;
  3235. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3236. val = REG_RD(bp, BNX2_EMAC_MODE);
  3237. /* Enable port mode. */
  3238. val &= ~BNX2_EMAC_MODE_PORT;
  3239. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3240. BNX2_EMAC_MODE_ACPI_RCVD |
  3241. BNX2_EMAC_MODE_MPKT;
  3242. if (bp->phy_port == PORT_TP)
  3243. val |= BNX2_EMAC_MODE_PORT_MII;
  3244. else {
  3245. val |= BNX2_EMAC_MODE_PORT_GMII;
  3246. if (bp->line_speed == SPEED_2500)
  3247. val |= BNX2_EMAC_MODE_25G_MODE;
  3248. }
  3249. REG_WR(bp, BNX2_EMAC_MODE, val);
  3250. /* receive all multicast */
  3251. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3252. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3253. 0xffffffff);
  3254. }
  3255. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3256. BNX2_EMAC_RX_MODE_SORT_MODE);
  3257. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3258. BNX2_RPM_SORT_USER0_MC_EN;
  3259. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3260. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3261. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3262. BNX2_RPM_SORT_USER0_ENA);
  3263. /* Need to enable EMAC and RPM for WOL. */
  3264. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3265. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3266. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3267. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3268. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3269. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3270. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3271. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3272. }
  3273. else {
  3274. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3275. }
  3276. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3277. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3278. 1, 0);
  3279. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3280. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3281. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3282. if (bp->wol)
  3283. pmcsr |= 3;
  3284. }
  3285. else {
  3286. pmcsr |= 3;
  3287. }
  3288. if (bp->wol) {
  3289. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3290. }
  3291. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3292. pmcsr);
  3293. /* No more memory access after this point until
  3294. * device is brought back to D0.
  3295. */
  3296. udelay(50);
  3297. break;
  3298. }
  3299. default:
  3300. return -EINVAL;
  3301. }
  3302. return 0;
  3303. }
  3304. static int
  3305. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3306. {
  3307. u32 val;
  3308. int j;
  3309. /* Request access to the flash interface. */
  3310. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3311. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3312. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3313. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3314. break;
  3315. udelay(5);
  3316. }
  3317. if (j >= NVRAM_TIMEOUT_COUNT)
  3318. return -EBUSY;
  3319. return 0;
  3320. }
  3321. static int
  3322. bnx2_release_nvram_lock(struct bnx2 *bp)
  3323. {
  3324. int j;
  3325. u32 val;
  3326. /* Relinquish nvram interface. */
  3327. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3328. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3329. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3330. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3331. break;
  3332. udelay(5);
  3333. }
  3334. if (j >= NVRAM_TIMEOUT_COUNT)
  3335. return -EBUSY;
  3336. return 0;
  3337. }
  3338. static int
  3339. bnx2_enable_nvram_write(struct bnx2 *bp)
  3340. {
  3341. u32 val;
  3342. val = REG_RD(bp, BNX2_MISC_CFG);
  3343. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3344. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3345. int j;
  3346. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3347. REG_WR(bp, BNX2_NVM_COMMAND,
  3348. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3349. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3350. udelay(5);
  3351. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3352. if (val & BNX2_NVM_COMMAND_DONE)
  3353. break;
  3354. }
  3355. if (j >= NVRAM_TIMEOUT_COUNT)
  3356. return -EBUSY;
  3357. }
  3358. return 0;
  3359. }
  3360. static void
  3361. bnx2_disable_nvram_write(struct bnx2 *bp)
  3362. {
  3363. u32 val;
  3364. val = REG_RD(bp, BNX2_MISC_CFG);
  3365. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3366. }
  3367. static void
  3368. bnx2_enable_nvram_access(struct bnx2 *bp)
  3369. {
  3370. u32 val;
  3371. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3372. /* Enable both bits, even on read. */
  3373. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3374. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3375. }
  3376. static void
  3377. bnx2_disable_nvram_access(struct bnx2 *bp)
  3378. {
  3379. u32 val;
  3380. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3381. /* Disable both bits, even after read. */
  3382. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3383. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3384. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3385. }
  3386. static int
  3387. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3388. {
  3389. u32 cmd;
  3390. int j;
  3391. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3392. /* Buffered flash, no erase needed */
  3393. return 0;
  3394. /* Build an erase command */
  3395. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3396. BNX2_NVM_COMMAND_DOIT;
  3397. /* Need to clear DONE bit separately. */
  3398. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3399. /* Address of the NVRAM to read from. */
  3400. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3401. /* Issue an erase command. */
  3402. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3403. /* Wait for completion. */
  3404. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3405. u32 val;
  3406. udelay(5);
  3407. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3408. if (val & BNX2_NVM_COMMAND_DONE)
  3409. break;
  3410. }
  3411. if (j >= NVRAM_TIMEOUT_COUNT)
  3412. return -EBUSY;
  3413. return 0;
  3414. }
  3415. static int
  3416. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3417. {
  3418. u32 cmd;
  3419. int j;
  3420. /* Build the command word. */
  3421. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3422. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3423. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3424. offset = ((offset / bp->flash_info->page_size) <<
  3425. bp->flash_info->page_bits) +
  3426. (offset % bp->flash_info->page_size);
  3427. }
  3428. /* Need to clear DONE bit separately. */
  3429. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3430. /* Address of the NVRAM to read from. */
  3431. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3432. /* Issue a read command. */
  3433. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3434. /* Wait for completion. */
  3435. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3436. u32 val;
  3437. udelay(5);
  3438. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3439. if (val & BNX2_NVM_COMMAND_DONE) {
  3440. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3441. memcpy(ret_val, &v, 4);
  3442. break;
  3443. }
  3444. }
  3445. if (j >= NVRAM_TIMEOUT_COUNT)
  3446. return -EBUSY;
  3447. return 0;
  3448. }
  3449. static int
  3450. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3451. {
  3452. u32 cmd;
  3453. __be32 val32;
  3454. int j;
  3455. /* Build the command word. */
  3456. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3457. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3458. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3459. offset = ((offset / bp->flash_info->page_size) <<
  3460. bp->flash_info->page_bits) +
  3461. (offset % bp->flash_info->page_size);
  3462. }
  3463. /* Need to clear DONE bit separately. */
  3464. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3465. memcpy(&val32, val, 4);
  3466. /* Write the data. */
  3467. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3468. /* Address of the NVRAM to write to. */
  3469. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3470. /* Issue the write command. */
  3471. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3472. /* Wait for completion. */
  3473. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3474. udelay(5);
  3475. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3476. break;
  3477. }
  3478. if (j >= NVRAM_TIMEOUT_COUNT)
  3479. return -EBUSY;
  3480. return 0;
  3481. }
  3482. static int
  3483. bnx2_init_nvram(struct bnx2 *bp)
  3484. {
  3485. u32 val;
  3486. int j, entry_count, rc = 0;
  3487. struct flash_spec *flash;
  3488. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3489. bp->flash_info = &flash_5709;
  3490. goto get_flash_size;
  3491. }
  3492. /* Determine the selected interface. */
  3493. val = REG_RD(bp, BNX2_NVM_CFG1);
  3494. entry_count = ARRAY_SIZE(flash_table);
  3495. if (val & 0x40000000) {
  3496. /* Flash interface has been reconfigured */
  3497. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3498. j++, flash++) {
  3499. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3500. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3501. bp->flash_info = flash;
  3502. break;
  3503. }
  3504. }
  3505. }
  3506. else {
  3507. u32 mask;
  3508. /* Not yet been reconfigured */
  3509. if (val & (1 << 23))
  3510. mask = FLASH_BACKUP_STRAP_MASK;
  3511. else
  3512. mask = FLASH_STRAP_MASK;
  3513. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3514. j++, flash++) {
  3515. if ((val & mask) == (flash->strapping & mask)) {
  3516. bp->flash_info = flash;
  3517. /* Request access to the flash interface. */
  3518. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3519. return rc;
  3520. /* Enable access to flash interface */
  3521. bnx2_enable_nvram_access(bp);
  3522. /* Reconfigure the flash interface */
  3523. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3524. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3525. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3526. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3527. /* Disable access to flash interface */
  3528. bnx2_disable_nvram_access(bp);
  3529. bnx2_release_nvram_lock(bp);
  3530. break;
  3531. }
  3532. }
  3533. } /* if (val & 0x40000000) */
  3534. if (j == entry_count) {
  3535. bp->flash_info = NULL;
  3536. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3537. return -ENODEV;
  3538. }
  3539. get_flash_size:
  3540. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3541. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3542. if (val)
  3543. bp->flash_size = val;
  3544. else
  3545. bp->flash_size = bp->flash_info->total_size;
  3546. return rc;
  3547. }
  3548. static int
  3549. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3550. int buf_size)
  3551. {
  3552. int rc = 0;
  3553. u32 cmd_flags, offset32, len32, extra;
  3554. if (buf_size == 0)
  3555. return 0;
  3556. /* Request access to the flash interface. */
  3557. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3558. return rc;
  3559. /* Enable access to flash interface */
  3560. bnx2_enable_nvram_access(bp);
  3561. len32 = buf_size;
  3562. offset32 = offset;
  3563. extra = 0;
  3564. cmd_flags = 0;
  3565. if (offset32 & 3) {
  3566. u8 buf[4];
  3567. u32 pre_len;
  3568. offset32 &= ~3;
  3569. pre_len = 4 - (offset & 3);
  3570. if (pre_len >= len32) {
  3571. pre_len = len32;
  3572. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3573. BNX2_NVM_COMMAND_LAST;
  3574. }
  3575. else {
  3576. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3577. }
  3578. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3579. if (rc)
  3580. return rc;
  3581. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3582. offset32 += 4;
  3583. ret_buf += pre_len;
  3584. len32 -= pre_len;
  3585. }
  3586. if (len32 & 3) {
  3587. extra = 4 - (len32 & 3);
  3588. len32 = (len32 + 4) & ~3;
  3589. }
  3590. if (len32 == 4) {
  3591. u8 buf[4];
  3592. if (cmd_flags)
  3593. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3594. else
  3595. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3596. BNX2_NVM_COMMAND_LAST;
  3597. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3598. memcpy(ret_buf, buf, 4 - extra);
  3599. }
  3600. else if (len32 > 0) {
  3601. u8 buf[4];
  3602. /* Read the first word. */
  3603. if (cmd_flags)
  3604. cmd_flags = 0;
  3605. else
  3606. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3607. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3608. /* Advance to the next dword. */
  3609. offset32 += 4;
  3610. ret_buf += 4;
  3611. len32 -= 4;
  3612. while (len32 > 4 && rc == 0) {
  3613. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3614. /* Advance to the next dword. */
  3615. offset32 += 4;
  3616. ret_buf += 4;
  3617. len32 -= 4;
  3618. }
  3619. if (rc)
  3620. return rc;
  3621. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3622. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3623. memcpy(ret_buf, buf, 4 - extra);
  3624. }
  3625. /* Disable access to flash interface */
  3626. bnx2_disable_nvram_access(bp);
  3627. bnx2_release_nvram_lock(bp);
  3628. return rc;
  3629. }
  3630. static int
  3631. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3632. int buf_size)
  3633. {
  3634. u32 written, offset32, len32;
  3635. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3636. int rc = 0;
  3637. int align_start, align_end;
  3638. buf = data_buf;
  3639. offset32 = offset;
  3640. len32 = buf_size;
  3641. align_start = align_end = 0;
  3642. if ((align_start = (offset32 & 3))) {
  3643. offset32 &= ~3;
  3644. len32 += align_start;
  3645. if (len32 < 4)
  3646. len32 = 4;
  3647. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3648. return rc;
  3649. }
  3650. if (len32 & 3) {
  3651. align_end = 4 - (len32 & 3);
  3652. len32 += align_end;
  3653. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3654. return rc;
  3655. }
  3656. if (align_start || align_end) {
  3657. align_buf = kmalloc(len32, GFP_KERNEL);
  3658. if (align_buf == NULL)
  3659. return -ENOMEM;
  3660. if (align_start) {
  3661. memcpy(align_buf, start, 4);
  3662. }
  3663. if (align_end) {
  3664. memcpy(align_buf + len32 - 4, end, 4);
  3665. }
  3666. memcpy(align_buf + align_start, data_buf, buf_size);
  3667. buf = align_buf;
  3668. }
  3669. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3670. flash_buffer = kmalloc(264, GFP_KERNEL);
  3671. if (flash_buffer == NULL) {
  3672. rc = -ENOMEM;
  3673. goto nvram_write_end;
  3674. }
  3675. }
  3676. written = 0;
  3677. while ((written < len32) && (rc == 0)) {
  3678. u32 page_start, page_end, data_start, data_end;
  3679. u32 addr, cmd_flags;
  3680. int i;
  3681. /* Find the page_start addr */
  3682. page_start = offset32 + written;
  3683. page_start -= (page_start % bp->flash_info->page_size);
  3684. /* Find the page_end addr */
  3685. page_end = page_start + bp->flash_info->page_size;
  3686. /* Find the data_start addr */
  3687. data_start = (written == 0) ? offset32 : page_start;
  3688. /* Find the data_end addr */
  3689. data_end = (page_end > offset32 + len32) ?
  3690. (offset32 + len32) : page_end;
  3691. /* Request access to the flash interface. */
  3692. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3693. goto nvram_write_end;
  3694. /* Enable access to flash interface */
  3695. bnx2_enable_nvram_access(bp);
  3696. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3697. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3698. int j;
  3699. /* Read the whole page into the buffer
  3700. * (non-buffer flash only) */
  3701. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3702. if (j == (bp->flash_info->page_size - 4)) {
  3703. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3704. }
  3705. rc = bnx2_nvram_read_dword(bp,
  3706. page_start + j,
  3707. &flash_buffer[j],
  3708. cmd_flags);
  3709. if (rc)
  3710. goto nvram_write_end;
  3711. cmd_flags = 0;
  3712. }
  3713. }
  3714. /* Enable writes to flash interface (unlock write-protect) */
  3715. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3716. goto nvram_write_end;
  3717. /* Loop to write back the buffer data from page_start to
  3718. * data_start */
  3719. i = 0;
  3720. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3721. /* Erase the page */
  3722. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3723. goto nvram_write_end;
  3724. /* Re-enable the write again for the actual write */
  3725. bnx2_enable_nvram_write(bp);
  3726. for (addr = page_start; addr < data_start;
  3727. addr += 4, i += 4) {
  3728. rc = bnx2_nvram_write_dword(bp, addr,
  3729. &flash_buffer[i], cmd_flags);
  3730. if (rc != 0)
  3731. goto nvram_write_end;
  3732. cmd_flags = 0;
  3733. }
  3734. }
  3735. /* Loop to write the new data from data_start to data_end */
  3736. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3737. if ((addr == page_end - 4) ||
  3738. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3739. (addr == data_end - 4))) {
  3740. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3741. }
  3742. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3743. cmd_flags);
  3744. if (rc != 0)
  3745. goto nvram_write_end;
  3746. cmd_flags = 0;
  3747. buf += 4;
  3748. }
  3749. /* Loop to write back the buffer data from data_end
  3750. * to page_end */
  3751. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3752. for (addr = data_end; addr < page_end;
  3753. addr += 4, i += 4) {
  3754. if (addr == page_end-4) {
  3755. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3756. }
  3757. rc = bnx2_nvram_write_dword(bp, addr,
  3758. &flash_buffer[i], cmd_flags);
  3759. if (rc != 0)
  3760. goto nvram_write_end;
  3761. cmd_flags = 0;
  3762. }
  3763. }
  3764. /* Disable writes to flash interface (lock write-protect) */
  3765. bnx2_disable_nvram_write(bp);
  3766. /* Disable access to flash interface */
  3767. bnx2_disable_nvram_access(bp);
  3768. bnx2_release_nvram_lock(bp);
  3769. /* Increment written */
  3770. written += data_end - data_start;
  3771. }
  3772. nvram_write_end:
  3773. kfree(flash_buffer);
  3774. kfree(align_buf);
  3775. return rc;
  3776. }
  3777. static void
  3778. bnx2_init_fw_cap(struct bnx2 *bp)
  3779. {
  3780. u32 val, sig = 0;
  3781. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3782. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3783. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3784. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3785. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3786. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3787. return;
  3788. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3789. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3790. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3791. }
  3792. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3793. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3794. u32 link;
  3795. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3796. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3797. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3798. bp->phy_port = PORT_FIBRE;
  3799. else
  3800. bp->phy_port = PORT_TP;
  3801. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3802. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3803. }
  3804. if (netif_running(bp->dev) && sig)
  3805. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3806. }
  3807. static void
  3808. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3809. {
  3810. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3811. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3812. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3813. }
  3814. static int
  3815. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3816. {
  3817. u32 val;
  3818. int i, rc = 0;
  3819. u8 old_port;
  3820. /* Wait for the current PCI transaction to complete before
  3821. * issuing a reset. */
  3822. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3823. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3824. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3825. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3826. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3827. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3828. udelay(5);
  3829. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3830. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3831. /* Deposit a driver reset signature so the firmware knows that
  3832. * this is a soft reset. */
  3833. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3834. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3835. /* Do a dummy read to force the chip to complete all current transaction
  3836. * before we issue a reset. */
  3837. val = REG_RD(bp, BNX2_MISC_ID);
  3838. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3839. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3840. REG_RD(bp, BNX2_MISC_COMMAND);
  3841. udelay(5);
  3842. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3843. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3844. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3845. } else {
  3846. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3847. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3848. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3849. /* Chip reset. */
  3850. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3851. /* Reading back any register after chip reset will hang the
  3852. * bus on 5706 A0 and A1. The msleep below provides plenty
  3853. * of margin for write posting.
  3854. */
  3855. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3856. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3857. msleep(20);
  3858. /* Reset takes approximate 30 usec */
  3859. for (i = 0; i < 10; i++) {
  3860. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3861. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3862. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3863. break;
  3864. udelay(10);
  3865. }
  3866. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3867. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3868. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3869. return -EBUSY;
  3870. }
  3871. }
  3872. /* Make sure byte swapping is properly configured. */
  3873. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3874. if (val != 0x01020304) {
  3875. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3876. return -ENODEV;
  3877. }
  3878. /* Wait for the firmware to finish its initialization. */
  3879. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3880. if (rc)
  3881. return rc;
  3882. spin_lock_bh(&bp->phy_lock);
  3883. old_port = bp->phy_port;
  3884. bnx2_init_fw_cap(bp);
  3885. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3886. old_port != bp->phy_port)
  3887. bnx2_set_default_remote_link(bp);
  3888. spin_unlock_bh(&bp->phy_lock);
  3889. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3890. /* Adjust the voltage regular to two steps lower. The default
  3891. * of this register is 0x0000000e. */
  3892. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3893. /* Remove bad rbuf memory from the free pool. */
  3894. rc = bnx2_alloc_bad_rbuf(bp);
  3895. }
  3896. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3897. bnx2_setup_msix_tbl(bp);
  3898. return rc;
  3899. }
  3900. static int
  3901. bnx2_init_chip(struct bnx2 *bp)
  3902. {
  3903. u32 val, mtu;
  3904. int rc, i;
  3905. /* Make sure the interrupt is not active. */
  3906. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3907. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3908. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3909. #ifdef __BIG_ENDIAN
  3910. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3911. #endif
  3912. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3913. DMA_READ_CHANS << 12 |
  3914. DMA_WRITE_CHANS << 16;
  3915. val |= (0x2 << 20) | (1 << 11);
  3916. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3917. val |= (1 << 23);
  3918. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3919. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3920. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3921. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3922. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3923. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3924. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3925. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3926. }
  3927. if (bp->flags & BNX2_FLAG_PCIX) {
  3928. u16 val16;
  3929. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3930. &val16);
  3931. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3932. val16 & ~PCI_X_CMD_ERO);
  3933. }
  3934. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3935. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3936. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3937. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3938. /* Initialize context mapping and zero out the quick contexts. The
  3939. * context block must have already been enabled. */
  3940. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3941. rc = bnx2_init_5709_context(bp);
  3942. if (rc)
  3943. return rc;
  3944. } else
  3945. bnx2_init_context(bp);
  3946. if ((rc = bnx2_init_cpus(bp)) != 0)
  3947. return rc;
  3948. bnx2_init_nvram(bp);
  3949. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3950. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3951. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3952. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3953. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3954. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3955. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3956. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3957. }
  3958. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3959. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3960. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3961. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3962. val = (BCM_PAGE_BITS - 8) << 24;
  3963. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3964. /* Configure page size. */
  3965. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3966. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3967. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3968. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3969. val = bp->mac_addr[0] +
  3970. (bp->mac_addr[1] << 8) +
  3971. (bp->mac_addr[2] << 16) +
  3972. bp->mac_addr[3] +
  3973. (bp->mac_addr[4] << 8) +
  3974. (bp->mac_addr[5] << 16);
  3975. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3976. /* Program the MTU. Also include 4 bytes for CRC32. */
  3977. mtu = bp->dev->mtu;
  3978. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3979. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3980. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3981. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3982. if (mtu < 1500)
  3983. mtu = 1500;
  3984. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3985. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3986. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3987. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  3988. bp->bnx2_napi[i].last_status_idx = 0;
  3989. bp->idle_chk_status_idx = 0xffff;
  3990. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3991. /* Set up how to generate a link change interrupt. */
  3992. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3993. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3994. (u64) bp->status_blk_mapping & 0xffffffff);
  3995. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3996. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3997. (u64) bp->stats_blk_mapping & 0xffffffff);
  3998. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3999. (u64) bp->stats_blk_mapping >> 32);
  4000. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4001. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4002. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4003. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4004. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4005. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4006. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4007. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4008. REG_WR(bp, BNX2_HC_COM_TICKS,
  4009. (bp->com_ticks_int << 16) | bp->com_ticks);
  4010. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4011. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4012. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  4013. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4014. else
  4015. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4016. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4017. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4018. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4019. else {
  4020. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4021. BNX2_HC_CONFIG_COLLECT_STATS;
  4022. }
  4023. if (bp->irq_nvecs > 1) {
  4024. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4025. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4026. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4027. }
  4028. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4029. val |= BNX2_HC_CONFIG_ONE_SHOT;
  4030. REG_WR(bp, BNX2_HC_CONFIG, val);
  4031. for (i = 1; i < bp->irq_nvecs; i++) {
  4032. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4033. BNX2_HC_SB_CONFIG_1;
  4034. REG_WR(bp, base,
  4035. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4036. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4037. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4038. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4039. (bp->tx_quick_cons_trip_int << 16) |
  4040. bp->tx_quick_cons_trip);
  4041. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4042. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4043. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4044. (bp->rx_quick_cons_trip_int << 16) |
  4045. bp->rx_quick_cons_trip);
  4046. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4047. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4048. }
  4049. /* Clear internal stats counters. */
  4050. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4051. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4052. /* Initialize the receive filter. */
  4053. bnx2_set_rx_mode(bp->dev);
  4054. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4055. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4056. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4057. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4058. }
  4059. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4060. 1, 0);
  4061. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4062. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4063. udelay(20);
  4064. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4065. return rc;
  4066. }
  4067. static void
  4068. bnx2_clear_ring_states(struct bnx2 *bp)
  4069. {
  4070. struct bnx2_napi *bnapi;
  4071. struct bnx2_tx_ring_info *txr;
  4072. struct bnx2_rx_ring_info *rxr;
  4073. int i;
  4074. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4075. bnapi = &bp->bnx2_napi[i];
  4076. txr = &bnapi->tx_ring;
  4077. rxr = &bnapi->rx_ring;
  4078. txr->tx_cons = 0;
  4079. txr->hw_tx_cons = 0;
  4080. rxr->rx_prod_bseq = 0;
  4081. rxr->rx_prod = 0;
  4082. rxr->rx_cons = 0;
  4083. rxr->rx_pg_prod = 0;
  4084. rxr->rx_pg_cons = 0;
  4085. }
  4086. }
  4087. static void
  4088. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4089. {
  4090. u32 val, offset0, offset1, offset2, offset3;
  4091. u32 cid_addr = GET_CID_ADDR(cid);
  4092. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4093. offset0 = BNX2_L2CTX_TYPE_XI;
  4094. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4095. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4096. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4097. } else {
  4098. offset0 = BNX2_L2CTX_TYPE;
  4099. offset1 = BNX2_L2CTX_CMD_TYPE;
  4100. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4101. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4102. }
  4103. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4104. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4105. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4106. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4107. val = (u64) txr->tx_desc_mapping >> 32;
  4108. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4109. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4110. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4111. }
  4112. static void
  4113. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4114. {
  4115. struct tx_bd *txbd;
  4116. u32 cid = TX_CID;
  4117. struct bnx2_napi *bnapi;
  4118. struct bnx2_tx_ring_info *txr;
  4119. bnapi = &bp->bnx2_napi[ring_num];
  4120. txr = &bnapi->tx_ring;
  4121. if (ring_num == 0)
  4122. cid = TX_CID;
  4123. else
  4124. cid = TX_TSS_CID + ring_num - 1;
  4125. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4126. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4127. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4128. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4129. txr->tx_prod = 0;
  4130. txr->tx_prod_bseq = 0;
  4131. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4132. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4133. bnx2_init_tx_context(bp, cid, txr);
  4134. }
  4135. static void
  4136. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4137. int num_rings)
  4138. {
  4139. int i;
  4140. struct rx_bd *rxbd;
  4141. for (i = 0; i < num_rings; i++) {
  4142. int j;
  4143. rxbd = &rx_ring[i][0];
  4144. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4145. rxbd->rx_bd_len = buf_size;
  4146. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4147. }
  4148. if (i == (num_rings - 1))
  4149. j = 0;
  4150. else
  4151. j = i + 1;
  4152. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4153. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4154. }
  4155. }
  4156. static void
  4157. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4158. {
  4159. int i;
  4160. u16 prod, ring_prod;
  4161. u32 cid, rx_cid_addr, val;
  4162. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4163. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4164. if (ring_num == 0)
  4165. cid = RX_CID;
  4166. else
  4167. cid = RX_RSS_CID + ring_num - 1;
  4168. rx_cid_addr = GET_CID_ADDR(cid);
  4169. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4170. bp->rx_buf_use_size, bp->rx_max_ring);
  4171. bnx2_init_rx_context(bp, cid);
  4172. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4173. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4174. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4175. }
  4176. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4177. if (bp->rx_pg_ring_size) {
  4178. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4179. rxr->rx_pg_desc_mapping,
  4180. PAGE_SIZE, bp->rx_max_pg_ring);
  4181. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4182. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4183. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4184. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4185. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4186. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4187. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4188. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4189. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4190. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4191. }
  4192. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4193. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4194. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4195. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4196. ring_prod = prod = rxr->rx_pg_prod;
  4197. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4198. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
  4199. break;
  4200. prod = NEXT_RX_BD(prod);
  4201. ring_prod = RX_PG_RING_IDX(prod);
  4202. }
  4203. rxr->rx_pg_prod = prod;
  4204. ring_prod = prod = rxr->rx_prod;
  4205. for (i = 0; i < bp->rx_ring_size; i++) {
  4206. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
  4207. break;
  4208. prod = NEXT_RX_BD(prod);
  4209. ring_prod = RX_RING_IDX(prod);
  4210. }
  4211. rxr->rx_prod = prod;
  4212. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4213. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4214. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4215. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4216. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4217. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4218. }
  4219. static void
  4220. bnx2_init_all_rings(struct bnx2 *bp)
  4221. {
  4222. int i;
  4223. u32 val;
  4224. bnx2_clear_ring_states(bp);
  4225. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4226. for (i = 0; i < bp->num_tx_rings; i++)
  4227. bnx2_init_tx_ring(bp, i);
  4228. if (bp->num_tx_rings > 1)
  4229. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4230. (TX_TSS_CID << 7));
  4231. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4232. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4233. for (i = 0; i < bp->num_rx_rings; i++)
  4234. bnx2_init_rx_ring(bp, i);
  4235. if (bp->num_rx_rings > 1) {
  4236. u32 tbl_32;
  4237. u8 *tbl = (u8 *) &tbl_32;
  4238. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4239. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4240. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4241. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4242. if ((i % 4) == 3)
  4243. bnx2_reg_wr_ind(bp,
  4244. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4245. cpu_to_be32(tbl_32));
  4246. }
  4247. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4248. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4249. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4250. }
  4251. }
  4252. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4253. {
  4254. u32 max, num_rings = 1;
  4255. while (ring_size > MAX_RX_DESC_CNT) {
  4256. ring_size -= MAX_RX_DESC_CNT;
  4257. num_rings++;
  4258. }
  4259. /* round to next power of 2 */
  4260. max = max_size;
  4261. while ((max & num_rings) == 0)
  4262. max >>= 1;
  4263. if (num_rings != max)
  4264. max <<= 1;
  4265. return max;
  4266. }
  4267. static void
  4268. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4269. {
  4270. u32 rx_size, rx_space, jumbo_size;
  4271. /* 8 for CRC and VLAN */
  4272. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4273. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4274. sizeof(struct skb_shared_info);
  4275. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4276. bp->rx_pg_ring_size = 0;
  4277. bp->rx_max_pg_ring = 0;
  4278. bp->rx_max_pg_ring_idx = 0;
  4279. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4280. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4281. jumbo_size = size * pages;
  4282. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4283. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4284. bp->rx_pg_ring_size = jumbo_size;
  4285. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4286. MAX_RX_PG_RINGS);
  4287. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4288. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4289. bp->rx_copy_thresh = 0;
  4290. }
  4291. bp->rx_buf_use_size = rx_size;
  4292. /* hw alignment */
  4293. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4294. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4295. bp->rx_ring_size = size;
  4296. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4297. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4298. }
  4299. static void
  4300. bnx2_free_tx_skbs(struct bnx2 *bp)
  4301. {
  4302. int i;
  4303. for (i = 0; i < bp->num_tx_rings; i++) {
  4304. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4305. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4306. int j;
  4307. if (txr->tx_buf_ring == NULL)
  4308. continue;
  4309. for (j = 0; j < TX_DESC_CNT; ) {
  4310. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4311. struct sk_buff *skb = tx_buf->skb;
  4312. if (skb == NULL) {
  4313. j++;
  4314. continue;
  4315. }
  4316. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4317. tx_buf->skb = NULL;
  4318. j += skb_shinfo(skb)->nr_frags + 1;
  4319. dev_kfree_skb(skb);
  4320. }
  4321. }
  4322. }
  4323. static void
  4324. bnx2_free_rx_skbs(struct bnx2 *bp)
  4325. {
  4326. int i;
  4327. for (i = 0; i < bp->num_rx_rings; i++) {
  4328. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4329. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4330. int j;
  4331. if (rxr->rx_buf_ring == NULL)
  4332. return;
  4333. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4334. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4335. struct sk_buff *skb = rx_buf->skb;
  4336. if (skb == NULL)
  4337. continue;
  4338. pci_unmap_single(bp->pdev,
  4339. pci_unmap_addr(rx_buf, mapping),
  4340. bp->rx_buf_use_size,
  4341. PCI_DMA_FROMDEVICE);
  4342. rx_buf->skb = NULL;
  4343. dev_kfree_skb(skb);
  4344. }
  4345. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4346. bnx2_free_rx_page(bp, rxr, j);
  4347. }
  4348. }
  4349. static void
  4350. bnx2_free_skbs(struct bnx2 *bp)
  4351. {
  4352. bnx2_free_tx_skbs(bp);
  4353. bnx2_free_rx_skbs(bp);
  4354. }
  4355. static int
  4356. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4357. {
  4358. int rc;
  4359. rc = bnx2_reset_chip(bp, reset_code);
  4360. bnx2_free_skbs(bp);
  4361. if (rc)
  4362. return rc;
  4363. if ((rc = bnx2_init_chip(bp)) != 0)
  4364. return rc;
  4365. bnx2_init_all_rings(bp);
  4366. return 0;
  4367. }
  4368. static int
  4369. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4370. {
  4371. int rc;
  4372. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4373. return rc;
  4374. spin_lock_bh(&bp->phy_lock);
  4375. bnx2_init_phy(bp, reset_phy);
  4376. bnx2_set_link(bp);
  4377. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4378. bnx2_remote_phy_event(bp);
  4379. spin_unlock_bh(&bp->phy_lock);
  4380. return 0;
  4381. }
  4382. static int
  4383. bnx2_shutdown_chip(struct bnx2 *bp)
  4384. {
  4385. u32 reset_code;
  4386. if (bp->flags & BNX2_FLAG_NO_WOL)
  4387. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4388. else if (bp->wol)
  4389. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4390. else
  4391. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4392. return bnx2_reset_chip(bp, reset_code);
  4393. }
  4394. static int
  4395. bnx2_test_registers(struct bnx2 *bp)
  4396. {
  4397. int ret;
  4398. int i, is_5709;
  4399. static const struct {
  4400. u16 offset;
  4401. u16 flags;
  4402. #define BNX2_FL_NOT_5709 1
  4403. u32 rw_mask;
  4404. u32 ro_mask;
  4405. } reg_tbl[] = {
  4406. { 0x006c, 0, 0x00000000, 0x0000003f },
  4407. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4408. { 0x0094, 0, 0x00000000, 0x00000000 },
  4409. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4410. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4411. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4412. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4413. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4414. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4415. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4416. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4417. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4418. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4419. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4420. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4421. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4422. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4423. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4424. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4425. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4426. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4427. { 0x1000, 0, 0x00000000, 0x00000001 },
  4428. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4429. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4430. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4431. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4432. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4433. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4434. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4435. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4436. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4437. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4438. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4439. { 0x1800, 0, 0x00000000, 0x00000001 },
  4440. { 0x1804, 0, 0x00000000, 0x00000003 },
  4441. { 0x2800, 0, 0x00000000, 0x00000001 },
  4442. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4443. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4444. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4445. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4446. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4447. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4448. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4449. { 0x2840, 0, 0x00000000, 0xffffffff },
  4450. { 0x2844, 0, 0x00000000, 0xffffffff },
  4451. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4452. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4453. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4454. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4455. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4456. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4457. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4458. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4459. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4460. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4461. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4462. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4463. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4464. { 0x5004, 0, 0x00000000, 0x0000007f },
  4465. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4466. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4467. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4468. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4469. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4470. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4471. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4472. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4473. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4474. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4475. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4476. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4477. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4478. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4479. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4480. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4481. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4482. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4483. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4484. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4485. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4486. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4487. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4488. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4489. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4490. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4491. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4492. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4493. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4494. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4495. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4496. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4497. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4498. { 0xffff, 0, 0x00000000, 0x00000000 },
  4499. };
  4500. ret = 0;
  4501. is_5709 = 0;
  4502. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4503. is_5709 = 1;
  4504. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4505. u32 offset, rw_mask, ro_mask, save_val, val;
  4506. u16 flags = reg_tbl[i].flags;
  4507. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4508. continue;
  4509. offset = (u32) reg_tbl[i].offset;
  4510. rw_mask = reg_tbl[i].rw_mask;
  4511. ro_mask = reg_tbl[i].ro_mask;
  4512. save_val = readl(bp->regview + offset);
  4513. writel(0, bp->regview + offset);
  4514. val = readl(bp->regview + offset);
  4515. if ((val & rw_mask) != 0) {
  4516. goto reg_test_err;
  4517. }
  4518. if ((val & ro_mask) != (save_val & ro_mask)) {
  4519. goto reg_test_err;
  4520. }
  4521. writel(0xffffffff, bp->regview + offset);
  4522. val = readl(bp->regview + offset);
  4523. if ((val & rw_mask) != rw_mask) {
  4524. goto reg_test_err;
  4525. }
  4526. if ((val & ro_mask) != (save_val & ro_mask)) {
  4527. goto reg_test_err;
  4528. }
  4529. writel(save_val, bp->regview + offset);
  4530. continue;
  4531. reg_test_err:
  4532. writel(save_val, bp->regview + offset);
  4533. ret = -ENODEV;
  4534. break;
  4535. }
  4536. return ret;
  4537. }
  4538. static int
  4539. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4540. {
  4541. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4542. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4543. int i;
  4544. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4545. u32 offset;
  4546. for (offset = 0; offset < size; offset += 4) {
  4547. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4548. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4549. test_pattern[i]) {
  4550. return -ENODEV;
  4551. }
  4552. }
  4553. }
  4554. return 0;
  4555. }
  4556. static int
  4557. bnx2_test_memory(struct bnx2 *bp)
  4558. {
  4559. int ret = 0;
  4560. int i;
  4561. static struct mem_entry {
  4562. u32 offset;
  4563. u32 len;
  4564. } mem_tbl_5706[] = {
  4565. { 0x60000, 0x4000 },
  4566. { 0xa0000, 0x3000 },
  4567. { 0xe0000, 0x4000 },
  4568. { 0x120000, 0x4000 },
  4569. { 0x1a0000, 0x4000 },
  4570. { 0x160000, 0x4000 },
  4571. { 0xffffffff, 0 },
  4572. },
  4573. mem_tbl_5709[] = {
  4574. { 0x60000, 0x4000 },
  4575. { 0xa0000, 0x3000 },
  4576. { 0xe0000, 0x4000 },
  4577. { 0x120000, 0x4000 },
  4578. { 0x1a0000, 0x4000 },
  4579. { 0xffffffff, 0 },
  4580. };
  4581. struct mem_entry *mem_tbl;
  4582. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4583. mem_tbl = mem_tbl_5709;
  4584. else
  4585. mem_tbl = mem_tbl_5706;
  4586. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4587. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4588. mem_tbl[i].len)) != 0) {
  4589. return ret;
  4590. }
  4591. }
  4592. return ret;
  4593. }
  4594. #define BNX2_MAC_LOOPBACK 0
  4595. #define BNX2_PHY_LOOPBACK 1
  4596. static int
  4597. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4598. {
  4599. unsigned int pkt_size, num_pkts, i;
  4600. struct sk_buff *skb, *rx_skb;
  4601. unsigned char *packet;
  4602. u16 rx_start_idx, rx_idx;
  4603. dma_addr_t map;
  4604. struct tx_bd *txbd;
  4605. struct sw_bd *rx_buf;
  4606. struct l2_fhdr *rx_hdr;
  4607. int ret = -ENODEV;
  4608. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4609. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4610. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4611. tx_napi = bnapi;
  4612. txr = &tx_napi->tx_ring;
  4613. rxr = &bnapi->rx_ring;
  4614. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4615. bp->loopback = MAC_LOOPBACK;
  4616. bnx2_set_mac_loopback(bp);
  4617. }
  4618. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4619. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4620. return 0;
  4621. bp->loopback = PHY_LOOPBACK;
  4622. bnx2_set_phy_loopback(bp);
  4623. }
  4624. else
  4625. return -EINVAL;
  4626. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4627. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4628. if (!skb)
  4629. return -ENOMEM;
  4630. packet = skb_put(skb, pkt_size);
  4631. memcpy(packet, bp->dev->dev_addr, 6);
  4632. memset(packet + 6, 0x0, 8);
  4633. for (i = 14; i < pkt_size; i++)
  4634. packet[i] = (unsigned char) (i & 0xff);
  4635. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  4636. dev_kfree_skb(skb);
  4637. return -EIO;
  4638. }
  4639. map = skb_shinfo(skb)->dma_head;
  4640. REG_WR(bp, BNX2_HC_COMMAND,
  4641. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4642. REG_RD(bp, BNX2_HC_COMMAND);
  4643. udelay(5);
  4644. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4645. num_pkts = 0;
  4646. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4647. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4648. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4649. txbd->tx_bd_mss_nbytes = pkt_size;
  4650. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4651. num_pkts++;
  4652. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4653. txr->tx_prod_bseq += pkt_size;
  4654. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4655. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4656. udelay(100);
  4657. REG_WR(bp, BNX2_HC_COMMAND,
  4658. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4659. REG_RD(bp, BNX2_HC_COMMAND);
  4660. udelay(5);
  4661. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4662. dev_kfree_skb(skb);
  4663. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4664. goto loopback_test_done;
  4665. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4666. if (rx_idx != rx_start_idx + num_pkts) {
  4667. goto loopback_test_done;
  4668. }
  4669. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4670. rx_skb = rx_buf->skb;
  4671. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4672. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4673. pci_dma_sync_single_for_cpu(bp->pdev,
  4674. pci_unmap_addr(rx_buf, mapping),
  4675. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4676. if (rx_hdr->l2_fhdr_status &
  4677. (L2_FHDR_ERRORS_BAD_CRC |
  4678. L2_FHDR_ERRORS_PHY_DECODE |
  4679. L2_FHDR_ERRORS_ALIGNMENT |
  4680. L2_FHDR_ERRORS_TOO_SHORT |
  4681. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4682. goto loopback_test_done;
  4683. }
  4684. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4685. goto loopback_test_done;
  4686. }
  4687. for (i = 14; i < pkt_size; i++) {
  4688. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4689. goto loopback_test_done;
  4690. }
  4691. }
  4692. ret = 0;
  4693. loopback_test_done:
  4694. bp->loopback = 0;
  4695. return ret;
  4696. }
  4697. #define BNX2_MAC_LOOPBACK_FAILED 1
  4698. #define BNX2_PHY_LOOPBACK_FAILED 2
  4699. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4700. BNX2_PHY_LOOPBACK_FAILED)
  4701. static int
  4702. bnx2_test_loopback(struct bnx2 *bp)
  4703. {
  4704. int rc = 0;
  4705. if (!netif_running(bp->dev))
  4706. return BNX2_LOOPBACK_FAILED;
  4707. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4708. spin_lock_bh(&bp->phy_lock);
  4709. bnx2_init_phy(bp, 1);
  4710. spin_unlock_bh(&bp->phy_lock);
  4711. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4712. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4713. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4714. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4715. return rc;
  4716. }
  4717. #define NVRAM_SIZE 0x200
  4718. #define CRC32_RESIDUAL 0xdebb20e3
  4719. static int
  4720. bnx2_test_nvram(struct bnx2 *bp)
  4721. {
  4722. __be32 buf[NVRAM_SIZE / 4];
  4723. u8 *data = (u8 *) buf;
  4724. int rc = 0;
  4725. u32 magic, csum;
  4726. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4727. goto test_nvram_done;
  4728. magic = be32_to_cpu(buf[0]);
  4729. if (magic != 0x669955aa) {
  4730. rc = -ENODEV;
  4731. goto test_nvram_done;
  4732. }
  4733. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4734. goto test_nvram_done;
  4735. csum = ether_crc_le(0x100, data);
  4736. if (csum != CRC32_RESIDUAL) {
  4737. rc = -ENODEV;
  4738. goto test_nvram_done;
  4739. }
  4740. csum = ether_crc_le(0x100, data + 0x100);
  4741. if (csum != CRC32_RESIDUAL) {
  4742. rc = -ENODEV;
  4743. }
  4744. test_nvram_done:
  4745. return rc;
  4746. }
  4747. static int
  4748. bnx2_test_link(struct bnx2 *bp)
  4749. {
  4750. u32 bmsr;
  4751. if (!netif_running(bp->dev))
  4752. return -ENODEV;
  4753. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4754. if (bp->link_up)
  4755. return 0;
  4756. return -ENODEV;
  4757. }
  4758. spin_lock_bh(&bp->phy_lock);
  4759. bnx2_enable_bmsr1(bp);
  4760. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4761. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4762. bnx2_disable_bmsr1(bp);
  4763. spin_unlock_bh(&bp->phy_lock);
  4764. if (bmsr & BMSR_LSTATUS) {
  4765. return 0;
  4766. }
  4767. return -ENODEV;
  4768. }
  4769. static int
  4770. bnx2_test_intr(struct bnx2 *bp)
  4771. {
  4772. int i;
  4773. u16 status_idx;
  4774. if (!netif_running(bp->dev))
  4775. return -ENODEV;
  4776. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4777. /* This register is not touched during run-time. */
  4778. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4779. REG_RD(bp, BNX2_HC_COMMAND);
  4780. for (i = 0; i < 10; i++) {
  4781. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4782. status_idx) {
  4783. break;
  4784. }
  4785. msleep_interruptible(10);
  4786. }
  4787. if (i < 10)
  4788. return 0;
  4789. return -ENODEV;
  4790. }
  4791. /* Determining link for parallel detection. */
  4792. static int
  4793. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4794. {
  4795. u32 mode_ctl, an_dbg, exp;
  4796. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4797. return 0;
  4798. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4799. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4800. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4801. return 0;
  4802. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4803. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4804. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4805. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4806. return 0;
  4807. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4808. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4809. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4810. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4811. return 0;
  4812. return 1;
  4813. }
  4814. static void
  4815. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4816. {
  4817. int check_link = 1;
  4818. spin_lock(&bp->phy_lock);
  4819. if (bp->serdes_an_pending) {
  4820. bp->serdes_an_pending--;
  4821. check_link = 0;
  4822. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4823. u32 bmcr;
  4824. bp->current_interval = BNX2_TIMER_INTERVAL;
  4825. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4826. if (bmcr & BMCR_ANENABLE) {
  4827. if (bnx2_5706_serdes_has_link(bp)) {
  4828. bmcr &= ~BMCR_ANENABLE;
  4829. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4830. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4831. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4832. }
  4833. }
  4834. }
  4835. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4836. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4837. u32 phy2;
  4838. bnx2_write_phy(bp, 0x17, 0x0f01);
  4839. bnx2_read_phy(bp, 0x15, &phy2);
  4840. if (phy2 & 0x20) {
  4841. u32 bmcr;
  4842. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4843. bmcr |= BMCR_ANENABLE;
  4844. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4845. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4846. }
  4847. } else
  4848. bp->current_interval = BNX2_TIMER_INTERVAL;
  4849. if (check_link) {
  4850. u32 val;
  4851. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4852. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4853. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4854. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4855. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4856. bnx2_5706s_force_link_dn(bp, 1);
  4857. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4858. } else
  4859. bnx2_set_link(bp);
  4860. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4861. bnx2_set_link(bp);
  4862. }
  4863. spin_unlock(&bp->phy_lock);
  4864. }
  4865. static void
  4866. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4867. {
  4868. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4869. return;
  4870. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4871. bp->serdes_an_pending = 0;
  4872. return;
  4873. }
  4874. spin_lock(&bp->phy_lock);
  4875. if (bp->serdes_an_pending)
  4876. bp->serdes_an_pending--;
  4877. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4878. u32 bmcr;
  4879. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4880. if (bmcr & BMCR_ANENABLE) {
  4881. bnx2_enable_forced_2g5(bp);
  4882. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4883. } else {
  4884. bnx2_disable_forced_2g5(bp);
  4885. bp->serdes_an_pending = 2;
  4886. bp->current_interval = BNX2_TIMER_INTERVAL;
  4887. }
  4888. } else
  4889. bp->current_interval = BNX2_TIMER_INTERVAL;
  4890. spin_unlock(&bp->phy_lock);
  4891. }
  4892. static void
  4893. bnx2_timer(unsigned long data)
  4894. {
  4895. struct bnx2 *bp = (struct bnx2 *) data;
  4896. if (!netif_running(bp->dev))
  4897. return;
  4898. if (atomic_read(&bp->intr_sem) != 0)
  4899. goto bnx2_restart_timer;
  4900. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4901. BNX2_FLAG_USING_MSI)
  4902. bnx2_chk_missed_msi(bp);
  4903. bnx2_send_heart_beat(bp);
  4904. bp->stats_blk->stat_FwRxDrop =
  4905. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4906. /* workaround occasional corrupted counters */
  4907. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4908. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4909. BNX2_HC_COMMAND_STATS_NOW);
  4910. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4911. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4912. bnx2_5706_serdes_timer(bp);
  4913. else
  4914. bnx2_5708_serdes_timer(bp);
  4915. }
  4916. bnx2_restart_timer:
  4917. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4918. }
  4919. static int
  4920. bnx2_request_irq(struct bnx2 *bp)
  4921. {
  4922. unsigned long flags;
  4923. struct bnx2_irq *irq;
  4924. int rc = 0, i;
  4925. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4926. flags = 0;
  4927. else
  4928. flags = IRQF_SHARED;
  4929. for (i = 0; i < bp->irq_nvecs; i++) {
  4930. irq = &bp->irq_tbl[i];
  4931. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4932. &bp->bnx2_napi[i]);
  4933. if (rc)
  4934. break;
  4935. irq->requested = 1;
  4936. }
  4937. return rc;
  4938. }
  4939. static void
  4940. bnx2_free_irq(struct bnx2 *bp)
  4941. {
  4942. struct bnx2_irq *irq;
  4943. int i;
  4944. for (i = 0; i < bp->irq_nvecs; i++) {
  4945. irq = &bp->irq_tbl[i];
  4946. if (irq->requested)
  4947. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4948. irq->requested = 0;
  4949. }
  4950. if (bp->flags & BNX2_FLAG_USING_MSI)
  4951. pci_disable_msi(bp->pdev);
  4952. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4953. pci_disable_msix(bp->pdev);
  4954. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4955. }
  4956. static void
  4957. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4958. {
  4959. int i, rc;
  4960. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4961. struct net_device *dev = bp->dev;
  4962. const int len = sizeof(bp->irq_tbl[0].name);
  4963. bnx2_setup_msix_tbl(bp);
  4964. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4965. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4966. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4967. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4968. msix_ent[i].entry = i;
  4969. msix_ent[i].vector = 0;
  4970. }
  4971. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4972. if (rc != 0)
  4973. return;
  4974. bp->irq_nvecs = msix_vecs;
  4975. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4976. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4977. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4978. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  4979. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  4980. }
  4981. }
  4982. static void
  4983. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4984. {
  4985. int cpus = num_online_cpus();
  4986. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  4987. bp->irq_tbl[0].handler = bnx2_interrupt;
  4988. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  4989. bp->irq_nvecs = 1;
  4990. bp->irq_tbl[0].vector = bp->pdev->irq;
  4991. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  4992. bnx2_enable_msix(bp, msix_vecs);
  4993. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  4994. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  4995. if (pci_enable_msi(bp->pdev) == 0) {
  4996. bp->flags |= BNX2_FLAG_USING_MSI;
  4997. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4998. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  4999. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5000. } else
  5001. bp->irq_tbl[0].handler = bnx2_msi;
  5002. bp->irq_tbl[0].vector = bp->pdev->irq;
  5003. }
  5004. }
  5005. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5006. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5007. bp->num_rx_rings = bp->irq_nvecs;
  5008. }
  5009. /* Called with rtnl_lock */
  5010. static int
  5011. bnx2_open(struct net_device *dev)
  5012. {
  5013. struct bnx2 *bp = netdev_priv(dev);
  5014. int rc;
  5015. netif_carrier_off(dev);
  5016. bnx2_set_power_state(bp, PCI_D0);
  5017. bnx2_disable_int(bp);
  5018. bnx2_setup_int_mode(bp, disable_msi);
  5019. bnx2_napi_enable(bp);
  5020. rc = bnx2_alloc_mem(bp);
  5021. if (rc)
  5022. goto open_err;
  5023. rc = bnx2_request_irq(bp);
  5024. if (rc)
  5025. goto open_err;
  5026. rc = bnx2_init_nic(bp, 1);
  5027. if (rc)
  5028. goto open_err;
  5029. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5030. atomic_set(&bp->intr_sem, 0);
  5031. bnx2_enable_int(bp);
  5032. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5033. /* Test MSI to make sure it is working
  5034. * If MSI test fails, go back to INTx mode
  5035. */
  5036. if (bnx2_test_intr(bp) != 0) {
  5037. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5038. " using MSI, switching to INTx mode. Please"
  5039. " report this failure to the PCI maintainer"
  5040. " and include system chipset information.\n",
  5041. bp->dev->name);
  5042. bnx2_disable_int(bp);
  5043. bnx2_free_irq(bp);
  5044. bnx2_setup_int_mode(bp, 1);
  5045. rc = bnx2_init_nic(bp, 0);
  5046. if (!rc)
  5047. rc = bnx2_request_irq(bp);
  5048. if (rc) {
  5049. del_timer_sync(&bp->timer);
  5050. goto open_err;
  5051. }
  5052. bnx2_enable_int(bp);
  5053. }
  5054. }
  5055. if (bp->flags & BNX2_FLAG_USING_MSI)
  5056. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5057. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5058. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5059. netif_tx_start_all_queues(dev);
  5060. return 0;
  5061. open_err:
  5062. bnx2_napi_disable(bp);
  5063. bnx2_free_skbs(bp);
  5064. bnx2_free_irq(bp);
  5065. bnx2_free_mem(bp);
  5066. return rc;
  5067. }
  5068. static void
  5069. bnx2_reset_task(struct work_struct *work)
  5070. {
  5071. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5072. if (!netif_running(bp->dev))
  5073. return;
  5074. bnx2_netif_stop(bp);
  5075. bnx2_init_nic(bp, 1);
  5076. atomic_set(&bp->intr_sem, 1);
  5077. bnx2_netif_start(bp);
  5078. }
  5079. static void
  5080. bnx2_tx_timeout(struct net_device *dev)
  5081. {
  5082. struct bnx2 *bp = netdev_priv(dev);
  5083. /* This allows the netif to be shutdown gracefully before resetting */
  5084. schedule_work(&bp->reset_task);
  5085. }
  5086. #ifdef BCM_VLAN
  5087. /* Called with rtnl_lock */
  5088. static void
  5089. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5090. {
  5091. struct bnx2 *bp = netdev_priv(dev);
  5092. bnx2_netif_stop(bp);
  5093. bp->vlgrp = vlgrp;
  5094. bnx2_set_rx_mode(dev);
  5095. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5096. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5097. bnx2_netif_start(bp);
  5098. }
  5099. #endif
  5100. /* Called with netif_tx_lock.
  5101. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5102. * netif_wake_queue().
  5103. */
  5104. static int
  5105. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5106. {
  5107. struct bnx2 *bp = netdev_priv(dev);
  5108. dma_addr_t mapping;
  5109. struct tx_bd *txbd;
  5110. struct sw_tx_bd *tx_buf;
  5111. u32 len, vlan_tag_flags, last_frag, mss;
  5112. u16 prod, ring_prod;
  5113. int i;
  5114. struct bnx2_napi *bnapi;
  5115. struct bnx2_tx_ring_info *txr;
  5116. struct netdev_queue *txq;
  5117. struct skb_shared_info *sp;
  5118. /* Determine which tx ring we will be placed on */
  5119. i = skb_get_queue_mapping(skb);
  5120. bnapi = &bp->bnx2_napi[i];
  5121. txr = &bnapi->tx_ring;
  5122. txq = netdev_get_tx_queue(dev, i);
  5123. if (unlikely(bnx2_tx_avail(bp, txr) <
  5124. (skb_shinfo(skb)->nr_frags + 1))) {
  5125. netif_tx_stop_queue(txq);
  5126. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5127. dev->name);
  5128. return NETDEV_TX_BUSY;
  5129. }
  5130. len = skb_headlen(skb);
  5131. prod = txr->tx_prod;
  5132. ring_prod = TX_RING_IDX(prod);
  5133. vlan_tag_flags = 0;
  5134. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5135. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5136. }
  5137. #ifdef BCM_VLAN
  5138. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5139. vlan_tag_flags |=
  5140. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5141. }
  5142. #endif
  5143. if ((mss = skb_shinfo(skb)->gso_size)) {
  5144. u32 tcp_opt_len;
  5145. struct iphdr *iph;
  5146. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5147. tcp_opt_len = tcp_optlen(skb);
  5148. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5149. u32 tcp_off = skb_transport_offset(skb) -
  5150. sizeof(struct ipv6hdr) - ETH_HLEN;
  5151. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5152. TX_BD_FLAGS_SW_FLAGS;
  5153. if (likely(tcp_off == 0))
  5154. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5155. else {
  5156. tcp_off >>= 3;
  5157. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5158. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5159. ((tcp_off & 0x10) <<
  5160. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5161. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5162. }
  5163. } else {
  5164. iph = ip_hdr(skb);
  5165. if (tcp_opt_len || (iph->ihl > 5)) {
  5166. vlan_tag_flags |= ((iph->ihl - 5) +
  5167. (tcp_opt_len >> 2)) << 8;
  5168. }
  5169. }
  5170. } else
  5171. mss = 0;
  5172. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  5173. dev_kfree_skb(skb);
  5174. return NETDEV_TX_OK;
  5175. }
  5176. sp = skb_shinfo(skb);
  5177. mapping = sp->dma_head;
  5178. tx_buf = &txr->tx_buf_ring[ring_prod];
  5179. tx_buf->skb = skb;
  5180. txbd = &txr->tx_desc_ring[ring_prod];
  5181. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5182. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5183. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5184. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5185. last_frag = skb_shinfo(skb)->nr_frags;
  5186. tx_buf->nr_frags = last_frag;
  5187. tx_buf->is_gso = skb_is_gso(skb);
  5188. for (i = 0; i < last_frag; i++) {
  5189. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5190. prod = NEXT_TX_BD(prod);
  5191. ring_prod = TX_RING_IDX(prod);
  5192. txbd = &txr->tx_desc_ring[ring_prod];
  5193. len = frag->size;
  5194. mapping = sp->dma_maps[i];
  5195. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5196. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5197. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5198. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5199. }
  5200. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5201. prod = NEXT_TX_BD(prod);
  5202. txr->tx_prod_bseq += skb->len;
  5203. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5204. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5205. mmiowb();
  5206. txr->tx_prod = prod;
  5207. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5208. netif_tx_stop_queue(txq);
  5209. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5210. netif_tx_wake_queue(txq);
  5211. }
  5212. return NETDEV_TX_OK;
  5213. }
  5214. /* Called with rtnl_lock */
  5215. static int
  5216. bnx2_close(struct net_device *dev)
  5217. {
  5218. struct bnx2 *bp = netdev_priv(dev);
  5219. cancel_work_sync(&bp->reset_task);
  5220. bnx2_disable_int_sync(bp);
  5221. bnx2_napi_disable(bp);
  5222. del_timer_sync(&bp->timer);
  5223. bnx2_shutdown_chip(bp);
  5224. bnx2_free_irq(bp);
  5225. bnx2_free_skbs(bp);
  5226. bnx2_free_mem(bp);
  5227. bp->link_up = 0;
  5228. netif_carrier_off(bp->dev);
  5229. bnx2_set_power_state(bp, PCI_D3hot);
  5230. return 0;
  5231. }
  5232. #define GET_NET_STATS64(ctr) \
  5233. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5234. (unsigned long) (ctr##_lo)
  5235. #define GET_NET_STATS32(ctr) \
  5236. (ctr##_lo)
  5237. #if (BITS_PER_LONG == 64)
  5238. #define GET_NET_STATS GET_NET_STATS64
  5239. #else
  5240. #define GET_NET_STATS GET_NET_STATS32
  5241. #endif
  5242. static struct net_device_stats *
  5243. bnx2_get_stats(struct net_device *dev)
  5244. {
  5245. struct bnx2 *bp = netdev_priv(dev);
  5246. struct statistics_block *stats_blk = bp->stats_blk;
  5247. struct net_device_stats *net_stats = &dev->stats;
  5248. if (bp->stats_blk == NULL) {
  5249. return net_stats;
  5250. }
  5251. net_stats->rx_packets =
  5252. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5253. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5254. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5255. net_stats->tx_packets =
  5256. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5257. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5258. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5259. net_stats->rx_bytes =
  5260. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5261. net_stats->tx_bytes =
  5262. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5263. net_stats->multicast =
  5264. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5265. net_stats->collisions =
  5266. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5267. net_stats->rx_length_errors =
  5268. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5269. stats_blk->stat_EtherStatsOverrsizePkts);
  5270. net_stats->rx_over_errors =
  5271. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  5272. net_stats->rx_frame_errors =
  5273. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5274. net_stats->rx_crc_errors =
  5275. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5276. net_stats->rx_errors = net_stats->rx_length_errors +
  5277. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5278. net_stats->rx_crc_errors;
  5279. net_stats->tx_aborted_errors =
  5280. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5281. stats_blk->stat_Dot3StatsLateCollisions);
  5282. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5283. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5284. net_stats->tx_carrier_errors = 0;
  5285. else {
  5286. net_stats->tx_carrier_errors =
  5287. (unsigned long)
  5288. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5289. }
  5290. net_stats->tx_errors =
  5291. (unsigned long)
  5292. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5293. +
  5294. net_stats->tx_aborted_errors +
  5295. net_stats->tx_carrier_errors;
  5296. net_stats->rx_missed_errors =
  5297. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  5298. stats_blk->stat_FwRxDrop);
  5299. return net_stats;
  5300. }
  5301. /* All ethtool functions called with rtnl_lock */
  5302. static int
  5303. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5304. {
  5305. struct bnx2 *bp = netdev_priv(dev);
  5306. int support_serdes = 0, support_copper = 0;
  5307. cmd->supported = SUPPORTED_Autoneg;
  5308. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5309. support_serdes = 1;
  5310. support_copper = 1;
  5311. } else if (bp->phy_port == PORT_FIBRE)
  5312. support_serdes = 1;
  5313. else
  5314. support_copper = 1;
  5315. if (support_serdes) {
  5316. cmd->supported |= SUPPORTED_1000baseT_Full |
  5317. SUPPORTED_FIBRE;
  5318. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5319. cmd->supported |= SUPPORTED_2500baseX_Full;
  5320. }
  5321. if (support_copper) {
  5322. cmd->supported |= SUPPORTED_10baseT_Half |
  5323. SUPPORTED_10baseT_Full |
  5324. SUPPORTED_100baseT_Half |
  5325. SUPPORTED_100baseT_Full |
  5326. SUPPORTED_1000baseT_Full |
  5327. SUPPORTED_TP;
  5328. }
  5329. spin_lock_bh(&bp->phy_lock);
  5330. cmd->port = bp->phy_port;
  5331. cmd->advertising = bp->advertising;
  5332. if (bp->autoneg & AUTONEG_SPEED) {
  5333. cmd->autoneg = AUTONEG_ENABLE;
  5334. }
  5335. else {
  5336. cmd->autoneg = AUTONEG_DISABLE;
  5337. }
  5338. if (netif_carrier_ok(dev)) {
  5339. cmd->speed = bp->line_speed;
  5340. cmd->duplex = bp->duplex;
  5341. }
  5342. else {
  5343. cmd->speed = -1;
  5344. cmd->duplex = -1;
  5345. }
  5346. spin_unlock_bh(&bp->phy_lock);
  5347. cmd->transceiver = XCVR_INTERNAL;
  5348. cmd->phy_address = bp->phy_addr;
  5349. return 0;
  5350. }
  5351. static int
  5352. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5353. {
  5354. struct bnx2 *bp = netdev_priv(dev);
  5355. u8 autoneg = bp->autoneg;
  5356. u8 req_duplex = bp->req_duplex;
  5357. u16 req_line_speed = bp->req_line_speed;
  5358. u32 advertising = bp->advertising;
  5359. int err = -EINVAL;
  5360. spin_lock_bh(&bp->phy_lock);
  5361. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5362. goto err_out_unlock;
  5363. if (cmd->port != bp->phy_port &&
  5364. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5365. goto err_out_unlock;
  5366. /* If device is down, we can store the settings only if the user
  5367. * is setting the currently active port.
  5368. */
  5369. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5370. goto err_out_unlock;
  5371. if (cmd->autoneg == AUTONEG_ENABLE) {
  5372. autoneg |= AUTONEG_SPEED;
  5373. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5374. /* allow advertising 1 speed */
  5375. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5376. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5377. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5378. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5379. if (cmd->port == PORT_FIBRE)
  5380. goto err_out_unlock;
  5381. advertising = cmd->advertising;
  5382. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5383. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5384. (cmd->port == PORT_TP))
  5385. goto err_out_unlock;
  5386. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5387. advertising = cmd->advertising;
  5388. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5389. goto err_out_unlock;
  5390. else {
  5391. if (cmd->port == PORT_FIBRE)
  5392. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5393. else
  5394. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5395. }
  5396. advertising |= ADVERTISED_Autoneg;
  5397. }
  5398. else {
  5399. if (cmd->port == PORT_FIBRE) {
  5400. if ((cmd->speed != SPEED_1000 &&
  5401. cmd->speed != SPEED_2500) ||
  5402. (cmd->duplex != DUPLEX_FULL))
  5403. goto err_out_unlock;
  5404. if (cmd->speed == SPEED_2500 &&
  5405. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5406. goto err_out_unlock;
  5407. }
  5408. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5409. goto err_out_unlock;
  5410. autoneg &= ~AUTONEG_SPEED;
  5411. req_line_speed = cmd->speed;
  5412. req_duplex = cmd->duplex;
  5413. advertising = 0;
  5414. }
  5415. bp->autoneg = autoneg;
  5416. bp->advertising = advertising;
  5417. bp->req_line_speed = req_line_speed;
  5418. bp->req_duplex = req_duplex;
  5419. err = 0;
  5420. /* If device is down, the new settings will be picked up when it is
  5421. * brought up.
  5422. */
  5423. if (netif_running(dev))
  5424. err = bnx2_setup_phy(bp, cmd->port);
  5425. err_out_unlock:
  5426. spin_unlock_bh(&bp->phy_lock);
  5427. return err;
  5428. }
  5429. static void
  5430. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5431. {
  5432. struct bnx2 *bp = netdev_priv(dev);
  5433. strcpy(info->driver, DRV_MODULE_NAME);
  5434. strcpy(info->version, DRV_MODULE_VERSION);
  5435. strcpy(info->bus_info, pci_name(bp->pdev));
  5436. strcpy(info->fw_version, bp->fw_version);
  5437. }
  5438. #define BNX2_REGDUMP_LEN (32 * 1024)
  5439. static int
  5440. bnx2_get_regs_len(struct net_device *dev)
  5441. {
  5442. return BNX2_REGDUMP_LEN;
  5443. }
  5444. static void
  5445. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5446. {
  5447. u32 *p = _p, i, offset;
  5448. u8 *orig_p = _p;
  5449. struct bnx2 *bp = netdev_priv(dev);
  5450. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5451. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5452. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5453. 0x1040, 0x1048, 0x1080, 0x10a4,
  5454. 0x1400, 0x1490, 0x1498, 0x14f0,
  5455. 0x1500, 0x155c, 0x1580, 0x15dc,
  5456. 0x1600, 0x1658, 0x1680, 0x16d8,
  5457. 0x1800, 0x1820, 0x1840, 0x1854,
  5458. 0x1880, 0x1894, 0x1900, 0x1984,
  5459. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5460. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5461. 0x2000, 0x2030, 0x23c0, 0x2400,
  5462. 0x2800, 0x2820, 0x2830, 0x2850,
  5463. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5464. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5465. 0x4080, 0x4090, 0x43c0, 0x4458,
  5466. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5467. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5468. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5469. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5470. 0x6800, 0x6848, 0x684c, 0x6860,
  5471. 0x6888, 0x6910, 0x8000 };
  5472. regs->version = 0;
  5473. memset(p, 0, BNX2_REGDUMP_LEN);
  5474. if (!netif_running(bp->dev))
  5475. return;
  5476. i = 0;
  5477. offset = reg_boundaries[0];
  5478. p += offset;
  5479. while (offset < BNX2_REGDUMP_LEN) {
  5480. *p++ = REG_RD(bp, offset);
  5481. offset += 4;
  5482. if (offset == reg_boundaries[i + 1]) {
  5483. offset = reg_boundaries[i + 2];
  5484. p = (u32 *) (orig_p + offset);
  5485. i += 2;
  5486. }
  5487. }
  5488. }
  5489. static void
  5490. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5491. {
  5492. struct bnx2 *bp = netdev_priv(dev);
  5493. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5494. wol->supported = 0;
  5495. wol->wolopts = 0;
  5496. }
  5497. else {
  5498. wol->supported = WAKE_MAGIC;
  5499. if (bp->wol)
  5500. wol->wolopts = WAKE_MAGIC;
  5501. else
  5502. wol->wolopts = 0;
  5503. }
  5504. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5505. }
  5506. static int
  5507. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5508. {
  5509. struct bnx2 *bp = netdev_priv(dev);
  5510. if (wol->wolopts & ~WAKE_MAGIC)
  5511. return -EINVAL;
  5512. if (wol->wolopts & WAKE_MAGIC) {
  5513. if (bp->flags & BNX2_FLAG_NO_WOL)
  5514. return -EINVAL;
  5515. bp->wol = 1;
  5516. }
  5517. else {
  5518. bp->wol = 0;
  5519. }
  5520. return 0;
  5521. }
  5522. static int
  5523. bnx2_nway_reset(struct net_device *dev)
  5524. {
  5525. struct bnx2 *bp = netdev_priv(dev);
  5526. u32 bmcr;
  5527. if (!netif_running(dev))
  5528. return -EAGAIN;
  5529. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5530. return -EINVAL;
  5531. }
  5532. spin_lock_bh(&bp->phy_lock);
  5533. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5534. int rc;
  5535. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5536. spin_unlock_bh(&bp->phy_lock);
  5537. return rc;
  5538. }
  5539. /* Force a link down visible on the other side */
  5540. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5541. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5542. spin_unlock_bh(&bp->phy_lock);
  5543. msleep(20);
  5544. spin_lock_bh(&bp->phy_lock);
  5545. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5546. bp->serdes_an_pending = 1;
  5547. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5548. }
  5549. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5550. bmcr &= ~BMCR_LOOPBACK;
  5551. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5552. spin_unlock_bh(&bp->phy_lock);
  5553. return 0;
  5554. }
  5555. static u32
  5556. bnx2_get_link(struct net_device *dev)
  5557. {
  5558. struct bnx2 *bp = netdev_priv(dev);
  5559. return bp->link_up;
  5560. }
  5561. static int
  5562. bnx2_get_eeprom_len(struct net_device *dev)
  5563. {
  5564. struct bnx2 *bp = netdev_priv(dev);
  5565. if (bp->flash_info == NULL)
  5566. return 0;
  5567. return (int) bp->flash_size;
  5568. }
  5569. static int
  5570. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5571. u8 *eebuf)
  5572. {
  5573. struct bnx2 *bp = netdev_priv(dev);
  5574. int rc;
  5575. if (!netif_running(dev))
  5576. return -EAGAIN;
  5577. /* parameters already validated in ethtool_get_eeprom */
  5578. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5579. return rc;
  5580. }
  5581. static int
  5582. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5583. u8 *eebuf)
  5584. {
  5585. struct bnx2 *bp = netdev_priv(dev);
  5586. int rc;
  5587. if (!netif_running(dev))
  5588. return -EAGAIN;
  5589. /* parameters already validated in ethtool_set_eeprom */
  5590. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5591. return rc;
  5592. }
  5593. static int
  5594. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5595. {
  5596. struct bnx2 *bp = netdev_priv(dev);
  5597. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5598. coal->rx_coalesce_usecs = bp->rx_ticks;
  5599. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5600. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5601. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5602. coal->tx_coalesce_usecs = bp->tx_ticks;
  5603. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5604. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5605. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5606. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5607. return 0;
  5608. }
  5609. static int
  5610. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5611. {
  5612. struct bnx2 *bp = netdev_priv(dev);
  5613. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5614. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5615. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5616. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5617. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5618. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5619. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5620. if (bp->rx_quick_cons_trip_int > 0xff)
  5621. bp->rx_quick_cons_trip_int = 0xff;
  5622. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5623. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5624. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5625. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5626. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5627. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5628. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5629. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5630. 0xff;
  5631. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5632. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  5633. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5634. bp->stats_ticks = USEC_PER_SEC;
  5635. }
  5636. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5637. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5638. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5639. if (netif_running(bp->dev)) {
  5640. bnx2_netif_stop(bp);
  5641. bnx2_init_nic(bp, 0);
  5642. bnx2_netif_start(bp);
  5643. }
  5644. return 0;
  5645. }
  5646. static void
  5647. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5648. {
  5649. struct bnx2 *bp = netdev_priv(dev);
  5650. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5651. ering->rx_mini_max_pending = 0;
  5652. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5653. ering->rx_pending = bp->rx_ring_size;
  5654. ering->rx_mini_pending = 0;
  5655. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5656. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5657. ering->tx_pending = bp->tx_ring_size;
  5658. }
  5659. static int
  5660. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5661. {
  5662. if (netif_running(bp->dev)) {
  5663. bnx2_netif_stop(bp);
  5664. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5665. bnx2_free_skbs(bp);
  5666. bnx2_free_mem(bp);
  5667. }
  5668. bnx2_set_rx_ring_size(bp, rx);
  5669. bp->tx_ring_size = tx;
  5670. if (netif_running(bp->dev)) {
  5671. int rc;
  5672. rc = bnx2_alloc_mem(bp);
  5673. if (rc)
  5674. return rc;
  5675. bnx2_init_nic(bp, 0);
  5676. bnx2_netif_start(bp);
  5677. }
  5678. return 0;
  5679. }
  5680. static int
  5681. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5682. {
  5683. struct bnx2 *bp = netdev_priv(dev);
  5684. int rc;
  5685. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5686. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5687. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5688. return -EINVAL;
  5689. }
  5690. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5691. return rc;
  5692. }
  5693. static void
  5694. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5695. {
  5696. struct bnx2 *bp = netdev_priv(dev);
  5697. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5698. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5699. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5700. }
  5701. static int
  5702. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5703. {
  5704. struct bnx2 *bp = netdev_priv(dev);
  5705. bp->req_flow_ctrl = 0;
  5706. if (epause->rx_pause)
  5707. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5708. if (epause->tx_pause)
  5709. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5710. if (epause->autoneg) {
  5711. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5712. }
  5713. else {
  5714. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5715. }
  5716. if (netif_running(dev)) {
  5717. spin_lock_bh(&bp->phy_lock);
  5718. bnx2_setup_phy(bp, bp->phy_port);
  5719. spin_unlock_bh(&bp->phy_lock);
  5720. }
  5721. return 0;
  5722. }
  5723. static u32
  5724. bnx2_get_rx_csum(struct net_device *dev)
  5725. {
  5726. struct bnx2 *bp = netdev_priv(dev);
  5727. return bp->rx_csum;
  5728. }
  5729. static int
  5730. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5731. {
  5732. struct bnx2 *bp = netdev_priv(dev);
  5733. bp->rx_csum = data;
  5734. return 0;
  5735. }
  5736. static int
  5737. bnx2_set_tso(struct net_device *dev, u32 data)
  5738. {
  5739. struct bnx2 *bp = netdev_priv(dev);
  5740. if (data) {
  5741. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5742. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5743. dev->features |= NETIF_F_TSO6;
  5744. } else
  5745. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5746. NETIF_F_TSO_ECN);
  5747. return 0;
  5748. }
  5749. #define BNX2_NUM_STATS 46
  5750. static struct {
  5751. char string[ETH_GSTRING_LEN];
  5752. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  5753. { "rx_bytes" },
  5754. { "rx_error_bytes" },
  5755. { "tx_bytes" },
  5756. { "tx_error_bytes" },
  5757. { "rx_ucast_packets" },
  5758. { "rx_mcast_packets" },
  5759. { "rx_bcast_packets" },
  5760. { "tx_ucast_packets" },
  5761. { "tx_mcast_packets" },
  5762. { "tx_bcast_packets" },
  5763. { "tx_mac_errors" },
  5764. { "tx_carrier_errors" },
  5765. { "rx_crc_errors" },
  5766. { "rx_align_errors" },
  5767. { "tx_single_collisions" },
  5768. { "tx_multi_collisions" },
  5769. { "tx_deferred" },
  5770. { "tx_excess_collisions" },
  5771. { "tx_late_collisions" },
  5772. { "tx_total_collisions" },
  5773. { "rx_fragments" },
  5774. { "rx_jabbers" },
  5775. { "rx_undersize_packets" },
  5776. { "rx_oversize_packets" },
  5777. { "rx_64_byte_packets" },
  5778. { "rx_65_to_127_byte_packets" },
  5779. { "rx_128_to_255_byte_packets" },
  5780. { "rx_256_to_511_byte_packets" },
  5781. { "rx_512_to_1023_byte_packets" },
  5782. { "rx_1024_to_1522_byte_packets" },
  5783. { "rx_1523_to_9022_byte_packets" },
  5784. { "tx_64_byte_packets" },
  5785. { "tx_65_to_127_byte_packets" },
  5786. { "tx_128_to_255_byte_packets" },
  5787. { "tx_256_to_511_byte_packets" },
  5788. { "tx_512_to_1023_byte_packets" },
  5789. { "tx_1024_to_1522_byte_packets" },
  5790. { "tx_1523_to_9022_byte_packets" },
  5791. { "rx_xon_frames" },
  5792. { "rx_xoff_frames" },
  5793. { "tx_xon_frames" },
  5794. { "tx_xoff_frames" },
  5795. { "rx_mac_ctrl_frames" },
  5796. { "rx_filtered_packets" },
  5797. { "rx_discards" },
  5798. { "rx_fw_discards" },
  5799. };
  5800. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5801. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5802. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5803. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5804. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5805. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5806. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5807. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5808. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5809. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5810. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5811. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5812. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5813. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5814. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5815. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5816. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5817. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5818. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5819. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5820. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5821. STATS_OFFSET32(stat_EtherStatsCollisions),
  5822. STATS_OFFSET32(stat_EtherStatsFragments),
  5823. STATS_OFFSET32(stat_EtherStatsJabbers),
  5824. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5825. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5826. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5827. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5828. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5829. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5830. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5831. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5832. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5833. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5834. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5835. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5836. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5837. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5838. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5839. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5840. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5841. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5842. STATS_OFFSET32(stat_OutXonSent),
  5843. STATS_OFFSET32(stat_OutXoffSent),
  5844. STATS_OFFSET32(stat_MacControlFramesReceived),
  5845. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5846. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5847. STATS_OFFSET32(stat_FwRxDrop),
  5848. };
  5849. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5850. * skipped because of errata.
  5851. */
  5852. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5853. 8,0,8,8,8,8,8,8,8,8,
  5854. 4,0,4,4,4,4,4,4,4,4,
  5855. 4,4,4,4,4,4,4,4,4,4,
  5856. 4,4,4,4,4,4,4,4,4,4,
  5857. 4,4,4,4,4,4,
  5858. };
  5859. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5860. 8,0,8,8,8,8,8,8,8,8,
  5861. 4,4,4,4,4,4,4,4,4,4,
  5862. 4,4,4,4,4,4,4,4,4,4,
  5863. 4,4,4,4,4,4,4,4,4,4,
  5864. 4,4,4,4,4,4,
  5865. };
  5866. #define BNX2_NUM_TESTS 6
  5867. static struct {
  5868. char string[ETH_GSTRING_LEN];
  5869. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5870. { "register_test (offline)" },
  5871. { "memory_test (offline)" },
  5872. { "loopback_test (offline)" },
  5873. { "nvram_test (online)" },
  5874. { "interrupt_test (online)" },
  5875. { "link_test (online)" },
  5876. };
  5877. static int
  5878. bnx2_get_sset_count(struct net_device *dev, int sset)
  5879. {
  5880. switch (sset) {
  5881. case ETH_SS_TEST:
  5882. return BNX2_NUM_TESTS;
  5883. case ETH_SS_STATS:
  5884. return BNX2_NUM_STATS;
  5885. default:
  5886. return -EOPNOTSUPP;
  5887. }
  5888. }
  5889. static void
  5890. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5891. {
  5892. struct bnx2 *bp = netdev_priv(dev);
  5893. bnx2_set_power_state(bp, PCI_D0);
  5894. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5895. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5896. int i;
  5897. bnx2_netif_stop(bp);
  5898. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5899. bnx2_free_skbs(bp);
  5900. if (bnx2_test_registers(bp) != 0) {
  5901. buf[0] = 1;
  5902. etest->flags |= ETH_TEST_FL_FAILED;
  5903. }
  5904. if (bnx2_test_memory(bp) != 0) {
  5905. buf[1] = 1;
  5906. etest->flags |= ETH_TEST_FL_FAILED;
  5907. }
  5908. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5909. etest->flags |= ETH_TEST_FL_FAILED;
  5910. if (!netif_running(bp->dev))
  5911. bnx2_shutdown_chip(bp);
  5912. else {
  5913. bnx2_init_nic(bp, 1);
  5914. bnx2_netif_start(bp);
  5915. }
  5916. /* wait for link up */
  5917. for (i = 0; i < 7; i++) {
  5918. if (bp->link_up)
  5919. break;
  5920. msleep_interruptible(1000);
  5921. }
  5922. }
  5923. if (bnx2_test_nvram(bp) != 0) {
  5924. buf[3] = 1;
  5925. etest->flags |= ETH_TEST_FL_FAILED;
  5926. }
  5927. if (bnx2_test_intr(bp) != 0) {
  5928. buf[4] = 1;
  5929. etest->flags |= ETH_TEST_FL_FAILED;
  5930. }
  5931. if (bnx2_test_link(bp) != 0) {
  5932. buf[5] = 1;
  5933. etest->flags |= ETH_TEST_FL_FAILED;
  5934. }
  5935. if (!netif_running(bp->dev))
  5936. bnx2_set_power_state(bp, PCI_D3hot);
  5937. }
  5938. static void
  5939. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5940. {
  5941. switch (stringset) {
  5942. case ETH_SS_STATS:
  5943. memcpy(buf, bnx2_stats_str_arr,
  5944. sizeof(bnx2_stats_str_arr));
  5945. break;
  5946. case ETH_SS_TEST:
  5947. memcpy(buf, bnx2_tests_str_arr,
  5948. sizeof(bnx2_tests_str_arr));
  5949. break;
  5950. }
  5951. }
  5952. static void
  5953. bnx2_get_ethtool_stats(struct net_device *dev,
  5954. struct ethtool_stats *stats, u64 *buf)
  5955. {
  5956. struct bnx2 *bp = netdev_priv(dev);
  5957. int i;
  5958. u32 *hw_stats = (u32 *) bp->stats_blk;
  5959. u8 *stats_len_arr = NULL;
  5960. if (hw_stats == NULL) {
  5961. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5962. return;
  5963. }
  5964. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5965. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5966. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5967. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5968. stats_len_arr = bnx2_5706_stats_len_arr;
  5969. else
  5970. stats_len_arr = bnx2_5708_stats_len_arr;
  5971. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5972. if (stats_len_arr[i] == 0) {
  5973. /* skip this counter */
  5974. buf[i] = 0;
  5975. continue;
  5976. }
  5977. if (stats_len_arr[i] == 4) {
  5978. /* 4-byte counter */
  5979. buf[i] = (u64)
  5980. *(hw_stats + bnx2_stats_offset_arr[i]);
  5981. continue;
  5982. }
  5983. /* 8-byte counter */
  5984. buf[i] = (((u64) *(hw_stats +
  5985. bnx2_stats_offset_arr[i])) << 32) +
  5986. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  5987. }
  5988. }
  5989. static int
  5990. bnx2_phys_id(struct net_device *dev, u32 data)
  5991. {
  5992. struct bnx2 *bp = netdev_priv(dev);
  5993. int i;
  5994. u32 save;
  5995. bnx2_set_power_state(bp, PCI_D0);
  5996. if (data == 0)
  5997. data = 2;
  5998. save = REG_RD(bp, BNX2_MISC_CFG);
  5999. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6000. for (i = 0; i < (data * 2); i++) {
  6001. if ((i % 2) == 0) {
  6002. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6003. }
  6004. else {
  6005. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6006. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6007. BNX2_EMAC_LED_100MB_OVERRIDE |
  6008. BNX2_EMAC_LED_10MB_OVERRIDE |
  6009. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6010. BNX2_EMAC_LED_TRAFFIC);
  6011. }
  6012. msleep_interruptible(500);
  6013. if (signal_pending(current))
  6014. break;
  6015. }
  6016. REG_WR(bp, BNX2_EMAC_LED, 0);
  6017. REG_WR(bp, BNX2_MISC_CFG, save);
  6018. if (!netif_running(dev))
  6019. bnx2_set_power_state(bp, PCI_D3hot);
  6020. return 0;
  6021. }
  6022. static int
  6023. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6024. {
  6025. struct bnx2 *bp = netdev_priv(dev);
  6026. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6027. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6028. else
  6029. return (ethtool_op_set_tx_csum(dev, data));
  6030. }
  6031. static const struct ethtool_ops bnx2_ethtool_ops = {
  6032. .get_settings = bnx2_get_settings,
  6033. .set_settings = bnx2_set_settings,
  6034. .get_drvinfo = bnx2_get_drvinfo,
  6035. .get_regs_len = bnx2_get_regs_len,
  6036. .get_regs = bnx2_get_regs,
  6037. .get_wol = bnx2_get_wol,
  6038. .set_wol = bnx2_set_wol,
  6039. .nway_reset = bnx2_nway_reset,
  6040. .get_link = bnx2_get_link,
  6041. .get_eeprom_len = bnx2_get_eeprom_len,
  6042. .get_eeprom = bnx2_get_eeprom,
  6043. .set_eeprom = bnx2_set_eeprom,
  6044. .get_coalesce = bnx2_get_coalesce,
  6045. .set_coalesce = bnx2_set_coalesce,
  6046. .get_ringparam = bnx2_get_ringparam,
  6047. .set_ringparam = bnx2_set_ringparam,
  6048. .get_pauseparam = bnx2_get_pauseparam,
  6049. .set_pauseparam = bnx2_set_pauseparam,
  6050. .get_rx_csum = bnx2_get_rx_csum,
  6051. .set_rx_csum = bnx2_set_rx_csum,
  6052. .set_tx_csum = bnx2_set_tx_csum,
  6053. .set_sg = ethtool_op_set_sg,
  6054. .set_tso = bnx2_set_tso,
  6055. .self_test = bnx2_self_test,
  6056. .get_strings = bnx2_get_strings,
  6057. .phys_id = bnx2_phys_id,
  6058. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6059. .get_sset_count = bnx2_get_sset_count,
  6060. };
  6061. /* Called with rtnl_lock */
  6062. static int
  6063. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6064. {
  6065. struct mii_ioctl_data *data = if_mii(ifr);
  6066. struct bnx2 *bp = netdev_priv(dev);
  6067. int err;
  6068. switch(cmd) {
  6069. case SIOCGMIIPHY:
  6070. data->phy_id = bp->phy_addr;
  6071. /* fallthru */
  6072. case SIOCGMIIREG: {
  6073. u32 mii_regval;
  6074. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6075. return -EOPNOTSUPP;
  6076. if (!netif_running(dev))
  6077. return -EAGAIN;
  6078. spin_lock_bh(&bp->phy_lock);
  6079. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6080. spin_unlock_bh(&bp->phy_lock);
  6081. data->val_out = mii_regval;
  6082. return err;
  6083. }
  6084. case SIOCSMIIREG:
  6085. if (!capable(CAP_NET_ADMIN))
  6086. return -EPERM;
  6087. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6088. return -EOPNOTSUPP;
  6089. if (!netif_running(dev))
  6090. return -EAGAIN;
  6091. spin_lock_bh(&bp->phy_lock);
  6092. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6093. spin_unlock_bh(&bp->phy_lock);
  6094. return err;
  6095. default:
  6096. /* do nothing */
  6097. break;
  6098. }
  6099. return -EOPNOTSUPP;
  6100. }
  6101. /* Called with rtnl_lock */
  6102. static int
  6103. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6104. {
  6105. struct sockaddr *addr = p;
  6106. struct bnx2 *bp = netdev_priv(dev);
  6107. if (!is_valid_ether_addr(addr->sa_data))
  6108. return -EINVAL;
  6109. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6110. if (netif_running(dev))
  6111. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6112. return 0;
  6113. }
  6114. /* Called with rtnl_lock */
  6115. static int
  6116. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6117. {
  6118. struct bnx2 *bp = netdev_priv(dev);
  6119. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6120. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6121. return -EINVAL;
  6122. dev->mtu = new_mtu;
  6123. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6124. }
  6125. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6126. static void
  6127. poll_bnx2(struct net_device *dev)
  6128. {
  6129. struct bnx2 *bp = netdev_priv(dev);
  6130. int i;
  6131. for (i = 0; i < bp->irq_nvecs; i++) {
  6132. disable_irq(bp->irq_tbl[i].vector);
  6133. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6134. enable_irq(bp->irq_tbl[i].vector);
  6135. }
  6136. }
  6137. #endif
  6138. static void __devinit
  6139. bnx2_get_5709_media(struct bnx2 *bp)
  6140. {
  6141. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6142. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6143. u32 strap;
  6144. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6145. return;
  6146. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6147. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6148. return;
  6149. }
  6150. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6151. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6152. else
  6153. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6154. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6155. switch (strap) {
  6156. case 0x4:
  6157. case 0x5:
  6158. case 0x6:
  6159. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6160. return;
  6161. }
  6162. } else {
  6163. switch (strap) {
  6164. case 0x1:
  6165. case 0x2:
  6166. case 0x4:
  6167. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6168. return;
  6169. }
  6170. }
  6171. }
  6172. static void __devinit
  6173. bnx2_get_pci_speed(struct bnx2 *bp)
  6174. {
  6175. u32 reg;
  6176. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6177. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6178. u32 clkreg;
  6179. bp->flags |= BNX2_FLAG_PCIX;
  6180. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6181. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6182. switch (clkreg) {
  6183. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6184. bp->bus_speed_mhz = 133;
  6185. break;
  6186. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6187. bp->bus_speed_mhz = 100;
  6188. break;
  6189. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6190. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6191. bp->bus_speed_mhz = 66;
  6192. break;
  6193. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6194. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6195. bp->bus_speed_mhz = 50;
  6196. break;
  6197. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6198. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6199. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6200. bp->bus_speed_mhz = 33;
  6201. break;
  6202. }
  6203. }
  6204. else {
  6205. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6206. bp->bus_speed_mhz = 66;
  6207. else
  6208. bp->bus_speed_mhz = 33;
  6209. }
  6210. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6211. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6212. }
  6213. static int __devinit
  6214. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6215. {
  6216. struct bnx2 *bp;
  6217. unsigned long mem_len;
  6218. int rc, i, j;
  6219. u32 reg;
  6220. u64 dma_mask, persist_dma_mask;
  6221. SET_NETDEV_DEV(dev, &pdev->dev);
  6222. bp = netdev_priv(dev);
  6223. bp->flags = 0;
  6224. bp->phy_flags = 0;
  6225. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6226. rc = pci_enable_device(pdev);
  6227. if (rc) {
  6228. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6229. goto err_out;
  6230. }
  6231. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6232. dev_err(&pdev->dev,
  6233. "Cannot find PCI device base address, aborting.\n");
  6234. rc = -ENODEV;
  6235. goto err_out_disable;
  6236. }
  6237. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6238. if (rc) {
  6239. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6240. goto err_out_disable;
  6241. }
  6242. pci_set_master(pdev);
  6243. pci_save_state(pdev);
  6244. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6245. if (bp->pm_cap == 0) {
  6246. dev_err(&pdev->dev,
  6247. "Cannot find power management capability, aborting.\n");
  6248. rc = -EIO;
  6249. goto err_out_release;
  6250. }
  6251. bp->dev = dev;
  6252. bp->pdev = pdev;
  6253. spin_lock_init(&bp->phy_lock);
  6254. spin_lock_init(&bp->indirect_lock);
  6255. #ifdef BCM_CNIC
  6256. mutex_init(&bp->cnic_lock);
  6257. #endif
  6258. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6259. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6260. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6261. dev->mem_end = dev->mem_start + mem_len;
  6262. dev->irq = pdev->irq;
  6263. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6264. if (!bp->regview) {
  6265. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6266. rc = -ENOMEM;
  6267. goto err_out_release;
  6268. }
  6269. /* Configure byte swap and enable write to the reg_window registers.
  6270. * Rely on CPU to do target byte swapping on big endian systems
  6271. * The chip's target access swapping will not swap all accesses
  6272. */
  6273. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6274. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6275. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6276. bnx2_set_power_state(bp, PCI_D0);
  6277. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6278. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6279. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6280. dev_err(&pdev->dev,
  6281. "Cannot find PCIE capability, aborting.\n");
  6282. rc = -EIO;
  6283. goto err_out_unmap;
  6284. }
  6285. bp->flags |= BNX2_FLAG_PCIE;
  6286. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6287. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6288. } else {
  6289. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6290. if (bp->pcix_cap == 0) {
  6291. dev_err(&pdev->dev,
  6292. "Cannot find PCIX capability, aborting.\n");
  6293. rc = -EIO;
  6294. goto err_out_unmap;
  6295. }
  6296. }
  6297. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6298. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6299. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6300. }
  6301. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6302. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6303. bp->flags |= BNX2_FLAG_MSI_CAP;
  6304. }
  6305. /* 5708 cannot support DMA addresses > 40-bit. */
  6306. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6307. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6308. else
  6309. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6310. /* Configure DMA attributes. */
  6311. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6312. dev->features |= NETIF_F_HIGHDMA;
  6313. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6314. if (rc) {
  6315. dev_err(&pdev->dev,
  6316. "pci_set_consistent_dma_mask failed, aborting.\n");
  6317. goto err_out_unmap;
  6318. }
  6319. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6320. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6321. goto err_out_unmap;
  6322. }
  6323. if (!(bp->flags & BNX2_FLAG_PCIE))
  6324. bnx2_get_pci_speed(bp);
  6325. /* 5706A0 may falsely detect SERR and PERR. */
  6326. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6327. reg = REG_RD(bp, PCI_COMMAND);
  6328. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6329. REG_WR(bp, PCI_COMMAND, reg);
  6330. }
  6331. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6332. !(bp->flags & BNX2_FLAG_PCIX)) {
  6333. dev_err(&pdev->dev,
  6334. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6335. goto err_out_unmap;
  6336. }
  6337. bnx2_init_nvram(bp);
  6338. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6339. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6340. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6341. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6342. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6343. } else
  6344. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6345. /* Get the permanent MAC address. First we need to make sure the
  6346. * firmware is actually running.
  6347. */
  6348. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6349. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6350. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6351. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6352. rc = -ENODEV;
  6353. goto err_out_unmap;
  6354. }
  6355. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6356. for (i = 0, j = 0; i < 3; i++) {
  6357. u8 num, k, skip0;
  6358. num = (u8) (reg >> (24 - (i * 8)));
  6359. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6360. if (num >= k || !skip0 || k == 1) {
  6361. bp->fw_version[j++] = (num / k) + '0';
  6362. skip0 = 0;
  6363. }
  6364. }
  6365. if (i != 2)
  6366. bp->fw_version[j++] = '.';
  6367. }
  6368. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6369. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6370. bp->wol = 1;
  6371. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6372. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6373. for (i = 0; i < 30; i++) {
  6374. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6375. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6376. break;
  6377. msleep(10);
  6378. }
  6379. }
  6380. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6381. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6382. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6383. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6384. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6385. bp->fw_version[j++] = ' ';
  6386. for (i = 0; i < 3; i++) {
  6387. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6388. reg = swab32(reg);
  6389. memcpy(&bp->fw_version[j], &reg, 4);
  6390. j += 4;
  6391. }
  6392. }
  6393. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6394. bp->mac_addr[0] = (u8) (reg >> 8);
  6395. bp->mac_addr[1] = (u8) reg;
  6396. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6397. bp->mac_addr[2] = (u8) (reg >> 24);
  6398. bp->mac_addr[3] = (u8) (reg >> 16);
  6399. bp->mac_addr[4] = (u8) (reg >> 8);
  6400. bp->mac_addr[5] = (u8) reg;
  6401. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6402. bnx2_set_rx_ring_size(bp, 255);
  6403. bp->rx_csum = 1;
  6404. bp->tx_quick_cons_trip_int = 20;
  6405. bp->tx_quick_cons_trip = 20;
  6406. bp->tx_ticks_int = 80;
  6407. bp->tx_ticks = 80;
  6408. bp->rx_quick_cons_trip_int = 6;
  6409. bp->rx_quick_cons_trip = 6;
  6410. bp->rx_ticks_int = 18;
  6411. bp->rx_ticks = 18;
  6412. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6413. bp->current_interval = BNX2_TIMER_INTERVAL;
  6414. bp->phy_addr = 1;
  6415. /* Disable WOL support if we are running on a SERDES chip. */
  6416. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6417. bnx2_get_5709_media(bp);
  6418. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6419. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6420. bp->phy_port = PORT_TP;
  6421. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6422. bp->phy_port = PORT_FIBRE;
  6423. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6424. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6425. bp->flags |= BNX2_FLAG_NO_WOL;
  6426. bp->wol = 0;
  6427. }
  6428. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6429. /* Don't do parallel detect on this board because of
  6430. * some board problems. The link will not go down
  6431. * if we do parallel detect.
  6432. */
  6433. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6434. pdev->subsystem_device == 0x310c)
  6435. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6436. } else {
  6437. bp->phy_addr = 2;
  6438. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6439. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6440. }
  6441. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6442. CHIP_NUM(bp) == CHIP_NUM_5708)
  6443. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6444. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6445. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6446. CHIP_REV(bp) == CHIP_REV_Bx))
  6447. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6448. bnx2_init_fw_cap(bp);
  6449. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6450. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6451. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6452. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6453. bp->flags |= BNX2_FLAG_NO_WOL;
  6454. bp->wol = 0;
  6455. }
  6456. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6457. bp->tx_quick_cons_trip_int =
  6458. bp->tx_quick_cons_trip;
  6459. bp->tx_ticks_int = bp->tx_ticks;
  6460. bp->rx_quick_cons_trip_int =
  6461. bp->rx_quick_cons_trip;
  6462. bp->rx_ticks_int = bp->rx_ticks;
  6463. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6464. bp->com_ticks_int = bp->com_ticks;
  6465. bp->cmd_ticks_int = bp->cmd_ticks;
  6466. }
  6467. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6468. *
  6469. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6470. * with byte enables disabled on the unused 32-bit word. This is legal
  6471. * but causes problems on the AMD 8132 which will eventually stop
  6472. * responding after a while.
  6473. *
  6474. * AMD believes this incompatibility is unique to the 5706, and
  6475. * prefers to locally disable MSI rather than globally disabling it.
  6476. */
  6477. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6478. struct pci_dev *amd_8132 = NULL;
  6479. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6480. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6481. amd_8132))) {
  6482. if (amd_8132->revision >= 0x10 &&
  6483. amd_8132->revision <= 0x13) {
  6484. disable_msi = 1;
  6485. pci_dev_put(amd_8132);
  6486. break;
  6487. }
  6488. }
  6489. }
  6490. bnx2_set_default_link(bp);
  6491. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6492. init_timer(&bp->timer);
  6493. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6494. bp->timer.data = (unsigned long) bp;
  6495. bp->timer.function = bnx2_timer;
  6496. return 0;
  6497. err_out_unmap:
  6498. if (bp->regview) {
  6499. iounmap(bp->regview);
  6500. bp->regview = NULL;
  6501. }
  6502. err_out_release:
  6503. pci_release_regions(pdev);
  6504. err_out_disable:
  6505. pci_disable_device(pdev);
  6506. pci_set_drvdata(pdev, NULL);
  6507. err_out:
  6508. return rc;
  6509. }
  6510. static char * __devinit
  6511. bnx2_bus_string(struct bnx2 *bp, char *str)
  6512. {
  6513. char *s = str;
  6514. if (bp->flags & BNX2_FLAG_PCIE) {
  6515. s += sprintf(s, "PCI Express");
  6516. } else {
  6517. s += sprintf(s, "PCI");
  6518. if (bp->flags & BNX2_FLAG_PCIX)
  6519. s += sprintf(s, "-X");
  6520. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6521. s += sprintf(s, " 32-bit");
  6522. else
  6523. s += sprintf(s, " 64-bit");
  6524. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6525. }
  6526. return str;
  6527. }
  6528. static void __devinit
  6529. bnx2_init_napi(struct bnx2 *bp)
  6530. {
  6531. int i;
  6532. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6533. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6534. int (*poll)(struct napi_struct *, int);
  6535. if (i == 0)
  6536. poll = bnx2_poll;
  6537. else
  6538. poll = bnx2_poll_msix;
  6539. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6540. bnapi->bp = bp;
  6541. }
  6542. }
  6543. static const struct net_device_ops bnx2_netdev_ops = {
  6544. .ndo_open = bnx2_open,
  6545. .ndo_start_xmit = bnx2_start_xmit,
  6546. .ndo_stop = bnx2_close,
  6547. .ndo_get_stats = bnx2_get_stats,
  6548. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6549. .ndo_do_ioctl = bnx2_ioctl,
  6550. .ndo_validate_addr = eth_validate_addr,
  6551. .ndo_set_mac_address = bnx2_change_mac_addr,
  6552. .ndo_change_mtu = bnx2_change_mtu,
  6553. .ndo_tx_timeout = bnx2_tx_timeout,
  6554. #ifdef BCM_VLAN
  6555. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6556. #endif
  6557. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6558. .ndo_poll_controller = poll_bnx2,
  6559. #endif
  6560. };
  6561. static int __devinit
  6562. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6563. {
  6564. static int version_printed = 0;
  6565. struct net_device *dev = NULL;
  6566. struct bnx2 *bp;
  6567. int rc;
  6568. char str[40];
  6569. if (version_printed++ == 0)
  6570. printk(KERN_INFO "%s", version);
  6571. /* dev zeroed in init_etherdev */
  6572. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6573. if (!dev)
  6574. return -ENOMEM;
  6575. rc = bnx2_init_board(pdev, dev);
  6576. if (rc < 0) {
  6577. free_netdev(dev);
  6578. return rc;
  6579. }
  6580. dev->netdev_ops = &bnx2_netdev_ops;
  6581. dev->watchdog_timeo = TX_TIMEOUT;
  6582. dev->ethtool_ops = &bnx2_ethtool_ops;
  6583. bp = netdev_priv(dev);
  6584. bnx2_init_napi(bp);
  6585. pci_set_drvdata(pdev, dev);
  6586. rc = bnx2_request_firmware(bp);
  6587. if (rc)
  6588. goto error;
  6589. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6590. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6591. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6592. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6593. dev->features |= NETIF_F_IPV6_CSUM;
  6594. #ifdef BCM_VLAN
  6595. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6596. #endif
  6597. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6598. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6599. dev->features |= NETIF_F_TSO6;
  6600. if ((rc = register_netdev(dev))) {
  6601. dev_err(&pdev->dev, "Cannot register net device\n");
  6602. goto error;
  6603. }
  6604. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6605. "IRQ %d, node addr %pM\n",
  6606. dev->name,
  6607. board_info[ent->driver_data].name,
  6608. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6609. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6610. bnx2_bus_string(bp, str),
  6611. dev->base_addr,
  6612. bp->pdev->irq, dev->dev_addr);
  6613. return 0;
  6614. error:
  6615. if (bp->mips_firmware)
  6616. release_firmware(bp->mips_firmware);
  6617. if (bp->rv2p_firmware)
  6618. release_firmware(bp->rv2p_firmware);
  6619. if (bp->regview)
  6620. iounmap(bp->regview);
  6621. pci_release_regions(pdev);
  6622. pci_disable_device(pdev);
  6623. pci_set_drvdata(pdev, NULL);
  6624. free_netdev(dev);
  6625. return rc;
  6626. }
  6627. static void __devexit
  6628. bnx2_remove_one(struct pci_dev *pdev)
  6629. {
  6630. struct net_device *dev = pci_get_drvdata(pdev);
  6631. struct bnx2 *bp = netdev_priv(dev);
  6632. flush_scheduled_work();
  6633. unregister_netdev(dev);
  6634. if (bp->mips_firmware)
  6635. release_firmware(bp->mips_firmware);
  6636. if (bp->rv2p_firmware)
  6637. release_firmware(bp->rv2p_firmware);
  6638. if (bp->regview)
  6639. iounmap(bp->regview);
  6640. free_netdev(dev);
  6641. pci_release_regions(pdev);
  6642. pci_disable_device(pdev);
  6643. pci_set_drvdata(pdev, NULL);
  6644. }
  6645. static int
  6646. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6647. {
  6648. struct net_device *dev = pci_get_drvdata(pdev);
  6649. struct bnx2 *bp = netdev_priv(dev);
  6650. /* PCI register 4 needs to be saved whether netif_running() or not.
  6651. * MSI address and data need to be saved if using MSI and
  6652. * netif_running().
  6653. */
  6654. pci_save_state(pdev);
  6655. if (!netif_running(dev))
  6656. return 0;
  6657. flush_scheduled_work();
  6658. bnx2_netif_stop(bp);
  6659. netif_device_detach(dev);
  6660. del_timer_sync(&bp->timer);
  6661. bnx2_shutdown_chip(bp);
  6662. bnx2_free_skbs(bp);
  6663. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6664. return 0;
  6665. }
  6666. static int
  6667. bnx2_resume(struct pci_dev *pdev)
  6668. {
  6669. struct net_device *dev = pci_get_drvdata(pdev);
  6670. struct bnx2 *bp = netdev_priv(dev);
  6671. pci_restore_state(pdev);
  6672. if (!netif_running(dev))
  6673. return 0;
  6674. bnx2_set_power_state(bp, PCI_D0);
  6675. netif_device_attach(dev);
  6676. bnx2_init_nic(bp, 1);
  6677. bnx2_netif_start(bp);
  6678. return 0;
  6679. }
  6680. /**
  6681. * bnx2_io_error_detected - called when PCI error is detected
  6682. * @pdev: Pointer to PCI device
  6683. * @state: The current pci connection state
  6684. *
  6685. * This function is called after a PCI bus error affecting
  6686. * this device has been detected.
  6687. */
  6688. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6689. pci_channel_state_t state)
  6690. {
  6691. struct net_device *dev = pci_get_drvdata(pdev);
  6692. struct bnx2 *bp = netdev_priv(dev);
  6693. rtnl_lock();
  6694. netif_device_detach(dev);
  6695. if (netif_running(dev)) {
  6696. bnx2_netif_stop(bp);
  6697. del_timer_sync(&bp->timer);
  6698. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6699. }
  6700. pci_disable_device(pdev);
  6701. rtnl_unlock();
  6702. /* Request a slot slot reset. */
  6703. return PCI_ERS_RESULT_NEED_RESET;
  6704. }
  6705. /**
  6706. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6707. * @pdev: Pointer to PCI device
  6708. *
  6709. * Restart the card from scratch, as if from a cold-boot.
  6710. */
  6711. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6712. {
  6713. struct net_device *dev = pci_get_drvdata(pdev);
  6714. struct bnx2 *bp = netdev_priv(dev);
  6715. rtnl_lock();
  6716. if (pci_enable_device(pdev)) {
  6717. dev_err(&pdev->dev,
  6718. "Cannot re-enable PCI device after reset.\n");
  6719. rtnl_unlock();
  6720. return PCI_ERS_RESULT_DISCONNECT;
  6721. }
  6722. pci_set_master(pdev);
  6723. pci_restore_state(pdev);
  6724. if (netif_running(dev)) {
  6725. bnx2_set_power_state(bp, PCI_D0);
  6726. bnx2_init_nic(bp, 1);
  6727. }
  6728. rtnl_unlock();
  6729. return PCI_ERS_RESULT_RECOVERED;
  6730. }
  6731. /**
  6732. * bnx2_io_resume - called when traffic can start flowing again.
  6733. * @pdev: Pointer to PCI device
  6734. *
  6735. * This callback is called when the error recovery driver tells us that
  6736. * its OK to resume normal operation.
  6737. */
  6738. static void bnx2_io_resume(struct pci_dev *pdev)
  6739. {
  6740. struct net_device *dev = pci_get_drvdata(pdev);
  6741. struct bnx2 *bp = netdev_priv(dev);
  6742. rtnl_lock();
  6743. if (netif_running(dev))
  6744. bnx2_netif_start(bp);
  6745. netif_device_attach(dev);
  6746. rtnl_unlock();
  6747. }
  6748. static struct pci_error_handlers bnx2_err_handler = {
  6749. .error_detected = bnx2_io_error_detected,
  6750. .slot_reset = bnx2_io_slot_reset,
  6751. .resume = bnx2_io_resume,
  6752. };
  6753. static struct pci_driver bnx2_pci_driver = {
  6754. .name = DRV_MODULE_NAME,
  6755. .id_table = bnx2_pci_tbl,
  6756. .probe = bnx2_init_one,
  6757. .remove = __devexit_p(bnx2_remove_one),
  6758. .suspend = bnx2_suspend,
  6759. .resume = bnx2_resume,
  6760. .err_handler = &bnx2_err_handler,
  6761. };
  6762. static int __init bnx2_init(void)
  6763. {
  6764. return pci_register_driver(&bnx2_pci_driver);
  6765. }
  6766. static void __exit bnx2_cleanup(void)
  6767. {
  6768. pci_unregister_driver(&bnx2_pci_driver);
  6769. }
  6770. module_init(bnx2_init);
  6771. module_exit(bnx2_cleanup);