process.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <linux/user-return-notifier.h>
  13. #include <linux/dmi.h>
  14. #include <linux/utsname.h>
  15. #include <trace/events/power.h>
  16. #include <linux/hw_breakpoint.h>
  17. #include <asm/cpu.h>
  18. #include <asm/system.h>
  19. #include <asm/apic.h>
  20. #include <asm/syscalls.h>
  21. #include <asm/idle.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/i387.h>
  24. #include <asm/debugreg.h>
  25. struct kmem_cache *task_xstate_cachep;
  26. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  27. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  28. {
  29. int ret;
  30. *dst = *src;
  31. if (fpu_allocated(&src->thread.fpu)) {
  32. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  33. ret = fpu_alloc(&dst->thread.fpu);
  34. if (ret)
  35. return ret;
  36. fpu_copy(&dst->thread.fpu, &src->thread.fpu);
  37. }
  38. return 0;
  39. }
  40. void free_thread_xstate(struct task_struct *tsk)
  41. {
  42. fpu_free(&tsk->thread.fpu);
  43. }
  44. void free_thread_info(struct thread_info *ti)
  45. {
  46. free_thread_xstate(ti->task);
  47. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  48. }
  49. void arch_task_cache_init(void)
  50. {
  51. task_xstate_cachep =
  52. kmem_cache_create("task_xstate", xstate_size,
  53. __alignof__(union thread_xstate),
  54. SLAB_PANIC | SLAB_NOTRACK, NULL);
  55. }
  56. /*
  57. * Free current thread data structures etc..
  58. */
  59. void exit_thread(void)
  60. {
  61. struct task_struct *me = current;
  62. struct thread_struct *t = &me->thread;
  63. unsigned long *bp = t->io_bitmap_ptr;
  64. if (bp) {
  65. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  66. t->io_bitmap_ptr = NULL;
  67. clear_thread_flag(TIF_IO_BITMAP);
  68. /*
  69. * Careful, clear this in the TSS too:
  70. */
  71. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  72. t->io_bitmap_max = 0;
  73. put_cpu();
  74. kfree(bp);
  75. }
  76. }
  77. void show_regs(struct pt_regs *regs)
  78. {
  79. show_registers(regs);
  80. show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
  81. }
  82. void show_regs_common(void)
  83. {
  84. const char *vendor, *product, *board;
  85. vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  86. if (!vendor)
  87. vendor = "";
  88. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  89. if (!product)
  90. product = "";
  91. /* Board Name is optional */
  92. board = dmi_get_system_info(DMI_BOARD_NAME);
  93. printk(KERN_CONT "\n");
  94. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
  95. current->pid, current->comm, print_tainted(),
  96. init_utsname()->release,
  97. (int)strcspn(init_utsname()->version, " "),
  98. init_utsname()->version);
  99. printk(KERN_CONT " %s %s", vendor, product);
  100. if (board)
  101. printk(KERN_CONT "/%s", board);
  102. printk(KERN_CONT "\n");
  103. }
  104. void flush_thread(void)
  105. {
  106. struct task_struct *tsk = current;
  107. flush_ptrace_hw_breakpoint(tsk);
  108. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  109. /*
  110. * Forget coprocessor state..
  111. */
  112. tsk->fpu_counter = 0;
  113. clear_fpu(tsk);
  114. clear_used_math();
  115. }
  116. static void hard_disable_TSC(void)
  117. {
  118. write_cr4(read_cr4() | X86_CR4_TSD);
  119. }
  120. void disable_TSC(void)
  121. {
  122. preempt_disable();
  123. if (!test_and_set_thread_flag(TIF_NOTSC))
  124. /*
  125. * Must flip the CPU state synchronously with
  126. * TIF_NOTSC in the current running context.
  127. */
  128. hard_disable_TSC();
  129. preempt_enable();
  130. }
  131. static void hard_enable_TSC(void)
  132. {
  133. write_cr4(read_cr4() & ~X86_CR4_TSD);
  134. }
  135. static void enable_TSC(void)
  136. {
  137. preempt_disable();
  138. if (test_and_clear_thread_flag(TIF_NOTSC))
  139. /*
  140. * Must flip the CPU state synchronously with
  141. * TIF_NOTSC in the current running context.
  142. */
  143. hard_enable_TSC();
  144. preempt_enable();
  145. }
  146. int get_tsc_mode(unsigned long adr)
  147. {
  148. unsigned int val;
  149. if (test_thread_flag(TIF_NOTSC))
  150. val = PR_TSC_SIGSEGV;
  151. else
  152. val = PR_TSC_ENABLE;
  153. return put_user(val, (unsigned int __user *)adr);
  154. }
  155. int set_tsc_mode(unsigned int val)
  156. {
  157. if (val == PR_TSC_SIGSEGV)
  158. disable_TSC();
  159. else if (val == PR_TSC_ENABLE)
  160. enable_TSC();
  161. else
  162. return -EINVAL;
  163. return 0;
  164. }
  165. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  166. struct tss_struct *tss)
  167. {
  168. struct thread_struct *prev, *next;
  169. prev = &prev_p->thread;
  170. next = &next_p->thread;
  171. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  172. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  173. unsigned long debugctl = get_debugctlmsr();
  174. debugctl &= ~DEBUGCTLMSR_BTF;
  175. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  176. debugctl |= DEBUGCTLMSR_BTF;
  177. update_debugctlmsr(debugctl);
  178. }
  179. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  180. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  181. /* prev and next are different */
  182. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  183. hard_disable_TSC();
  184. else
  185. hard_enable_TSC();
  186. }
  187. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  188. /*
  189. * Copy the relevant range of the IO bitmap.
  190. * Normally this is 128 bytes or less:
  191. */
  192. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  193. max(prev->io_bitmap_max, next->io_bitmap_max));
  194. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  195. /*
  196. * Clear any possible leftover bits:
  197. */
  198. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  199. }
  200. propagate_user_return_notify(prev_p, next_p);
  201. }
  202. int sys_fork(struct pt_regs *regs)
  203. {
  204. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  205. }
  206. /*
  207. * This is trivial, and on the face of it looks like it
  208. * could equally well be done in user mode.
  209. *
  210. * Not so, for quite unobvious reasons - register pressure.
  211. * In user mode vfork() cannot have a stack frame, and if
  212. * done by calling the "clone()" system call directly, you
  213. * do not have enough call-clobbered registers to hold all
  214. * the information you need.
  215. */
  216. int sys_vfork(struct pt_regs *regs)
  217. {
  218. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  219. NULL, NULL);
  220. }
  221. long
  222. sys_clone(unsigned long clone_flags, unsigned long newsp,
  223. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  224. {
  225. if (!newsp)
  226. newsp = regs->sp;
  227. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  228. }
  229. /*
  230. * This gets run with %si containing the
  231. * function to call, and %di containing
  232. * the "args".
  233. */
  234. extern void kernel_thread_helper(void);
  235. /*
  236. * Create a kernel thread
  237. */
  238. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  239. {
  240. struct pt_regs regs;
  241. memset(&regs, 0, sizeof(regs));
  242. regs.si = (unsigned long) fn;
  243. regs.di = (unsigned long) arg;
  244. #ifdef CONFIG_X86_32
  245. regs.ds = __USER_DS;
  246. regs.es = __USER_DS;
  247. regs.fs = __KERNEL_PERCPU;
  248. regs.gs = __KERNEL_STACK_CANARY;
  249. #else
  250. regs.ss = __KERNEL_DS;
  251. #endif
  252. regs.orig_ax = -1;
  253. regs.ip = (unsigned long) kernel_thread_helper;
  254. regs.cs = __KERNEL_CS | get_kernel_rpl();
  255. regs.flags = X86_EFLAGS_IF | 0x2;
  256. /* Ok, create the new process.. */
  257. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  258. }
  259. EXPORT_SYMBOL(kernel_thread);
  260. /*
  261. * sys_execve() executes a new program.
  262. */
  263. long sys_execve(const char __user *name,
  264. const char __user *const __user *argv,
  265. const char __user *const __user *envp, struct pt_regs *regs)
  266. {
  267. long error;
  268. char *filename;
  269. filename = getname(name);
  270. error = PTR_ERR(filename);
  271. if (IS_ERR(filename))
  272. return error;
  273. error = do_execve(filename, argv, envp, regs);
  274. #ifdef CONFIG_X86_32
  275. if (error == 0) {
  276. /* Make sure we don't return using sysenter.. */
  277. set_thread_flag(TIF_IRET);
  278. }
  279. #endif
  280. putname(filename);
  281. return error;
  282. }
  283. /*
  284. * Idle related variables and functions
  285. */
  286. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  287. EXPORT_SYMBOL(boot_option_idle_override);
  288. /*
  289. * Powermanagement idle function, if any..
  290. */
  291. void (*pm_idle)(void);
  292. #if defined(CONFIG_APM_MODULE) && defined(CONFIG_APM_CPU_IDLE)
  293. EXPORT_SYMBOL(pm_idle);
  294. #endif
  295. #ifdef CONFIG_X86_32
  296. /*
  297. * This halt magic was a workaround for ancient floppy DMA
  298. * wreckage. It should be safe to remove.
  299. */
  300. static int hlt_counter;
  301. void disable_hlt(void)
  302. {
  303. hlt_counter++;
  304. }
  305. EXPORT_SYMBOL(disable_hlt);
  306. void enable_hlt(void)
  307. {
  308. hlt_counter--;
  309. }
  310. EXPORT_SYMBOL(enable_hlt);
  311. static inline int hlt_use_halt(void)
  312. {
  313. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  314. }
  315. #else
  316. static inline int hlt_use_halt(void)
  317. {
  318. return 1;
  319. }
  320. #endif
  321. /*
  322. * We use this if we don't have any better
  323. * idle routine..
  324. */
  325. void default_idle(void)
  326. {
  327. if (hlt_use_halt()) {
  328. trace_power_start(POWER_CSTATE, 1, smp_processor_id());
  329. trace_cpu_idle(1, smp_processor_id());
  330. current_thread_info()->status &= ~TS_POLLING;
  331. /*
  332. * TS_POLLING-cleared state must be visible before we
  333. * test NEED_RESCHED:
  334. */
  335. smp_mb();
  336. if (!need_resched())
  337. safe_halt(); /* enables interrupts racelessly */
  338. else
  339. local_irq_enable();
  340. current_thread_info()->status |= TS_POLLING;
  341. trace_power_end(smp_processor_id());
  342. trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
  343. } else {
  344. local_irq_enable();
  345. /* loop is done by the caller */
  346. cpu_relax();
  347. }
  348. }
  349. #if defined(CONFIG_APM_MODULE) && defined(CONFIG_APM_CPU_IDLE)
  350. EXPORT_SYMBOL(default_idle);
  351. #endif
  352. void stop_this_cpu(void *dummy)
  353. {
  354. local_irq_disable();
  355. /*
  356. * Remove this CPU:
  357. */
  358. set_cpu_online(smp_processor_id(), false);
  359. disable_local_APIC();
  360. for (;;) {
  361. if (hlt_works(smp_processor_id()))
  362. halt();
  363. }
  364. }
  365. static void do_nothing(void *unused)
  366. {
  367. }
  368. /*
  369. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  370. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  371. * handler on SMP systems.
  372. *
  373. * Caller must have changed pm_idle to the new value before the call. Old
  374. * pm_idle value will not be used by any CPU after the return of this function.
  375. */
  376. void cpu_idle_wait(void)
  377. {
  378. smp_mb();
  379. /* kick all the CPUs so that they exit out of pm_idle */
  380. smp_call_function(do_nothing, NULL, 1);
  381. }
  382. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  383. /*
  384. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  385. * which can obviate IPI to trigger checking of need_resched.
  386. * We execute MONITOR against need_resched and enter optimized wait state
  387. * through MWAIT. Whenever someone changes need_resched, we would be woken
  388. * up from MWAIT (without an IPI).
  389. *
  390. * New with Core Duo processors, MWAIT can take some hints based on CPU
  391. * capability.
  392. */
  393. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  394. {
  395. if (!need_resched()) {
  396. if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
  397. clflush((void *)&current_thread_info()->flags);
  398. __monitor((void *)&current_thread_info()->flags, 0, 0);
  399. smp_mb();
  400. if (!need_resched())
  401. __mwait(ax, cx);
  402. }
  403. }
  404. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  405. static void mwait_idle(void)
  406. {
  407. if (!need_resched()) {
  408. trace_power_start(POWER_CSTATE, 1, smp_processor_id());
  409. trace_cpu_idle(1, smp_processor_id());
  410. if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
  411. clflush((void *)&current_thread_info()->flags);
  412. __monitor((void *)&current_thread_info()->flags, 0, 0);
  413. smp_mb();
  414. if (!need_resched())
  415. __sti_mwait(0, 0);
  416. else
  417. local_irq_enable();
  418. trace_power_end(smp_processor_id());
  419. trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
  420. } else
  421. local_irq_enable();
  422. }
  423. /*
  424. * On SMP it's slightly faster (but much more power-consuming!)
  425. * to poll the ->work.need_resched flag instead of waiting for the
  426. * cross-CPU IPI to arrive. Use this option with caution.
  427. */
  428. static void poll_idle(void)
  429. {
  430. trace_power_start(POWER_CSTATE, 0, smp_processor_id());
  431. trace_cpu_idle(0, smp_processor_id());
  432. local_irq_enable();
  433. while (!need_resched())
  434. cpu_relax();
  435. trace_power_end(smp_processor_id());
  436. trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
  437. }
  438. /*
  439. * mwait selection logic:
  440. *
  441. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  442. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  443. * then depend on a clock divisor and current Pstate of the core. If
  444. * all cores of a processor are in halt state (C1) the processor can
  445. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  446. * happen.
  447. *
  448. * idle=mwait overrides this decision and forces the usage of mwait.
  449. */
  450. #define MWAIT_INFO 0x05
  451. #define MWAIT_ECX_EXTENDED_INFO 0x01
  452. #define MWAIT_EDX_C1 0xf0
  453. int mwait_usable(const struct cpuinfo_x86 *c)
  454. {
  455. u32 eax, ebx, ecx, edx;
  456. if (boot_option_idle_override == IDLE_FORCE_MWAIT)
  457. return 1;
  458. if (c->cpuid_level < MWAIT_INFO)
  459. return 0;
  460. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  461. /* Check, whether EDX has extended info about MWAIT */
  462. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  463. return 1;
  464. /*
  465. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  466. * C1 supports MWAIT
  467. */
  468. return (edx & MWAIT_EDX_C1);
  469. }
  470. bool amd_e400_c1e_detected;
  471. EXPORT_SYMBOL(amd_e400_c1e_detected);
  472. static cpumask_var_t amd_e400_c1e_mask;
  473. void amd_e400_remove_cpu(int cpu)
  474. {
  475. if (amd_e400_c1e_mask != NULL)
  476. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  477. }
  478. /*
  479. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  480. * pending message MSR. If we detect C1E, then we handle it the same
  481. * way as C3 power states (local apic timer and TSC stop)
  482. */
  483. static void amd_e400_idle(void)
  484. {
  485. if (need_resched())
  486. return;
  487. if (!amd_e400_c1e_detected) {
  488. u32 lo, hi;
  489. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  490. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  491. amd_e400_c1e_detected = true;
  492. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  493. mark_tsc_unstable("TSC halt in AMD C1E");
  494. printk(KERN_INFO "System has AMD C1E enabled\n");
  495. }
  496. }
  497. if (amd_e400_c1e_detected) {
  498. int cpu = smp_processor_id();
  499. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  500. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  501. /*
  502. * Force broadcast so ACPI can not interfere.
  503. */
  504. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  505. &cpu);
  506. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  507. cpu);
  508. }
  509. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  510. default_idle();
  511. /*
  512. * The switch back from broadcast mode needs to be
  513. * called with interrupts disabled.
  514. */
  515. local_irq_disable();
  516. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  517. local_irq_enable();
  518. } else
  519. default_idle();
  520. }
  521. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  522. {
  523. #ifdef CONFIG_SMP
  524. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  525. printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
  526. " performance may degrade.\n");
  527. }
  528. #endif
  529. if (pm_idle)
  530. return;
  531. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  532. /*
  533. * One CPU supports mwait => All CPUs supports mwait
  534. */
  535. printk(KERN_INFO "using mwait in idle threads.\n");
  536. pm_idle = mwait_idle;
  537. } else if (cpu_has_amd_erratum(amd_erratum_400)) {
  538. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  539. printk(KERN_INFO "using AMD E400 aware idle routine\n");
  540. pm_idle = amd_e400_idle;
  541. } else
  542. pm_idle = default_idle;
  543. }
  544. void __init init_amd_e400_c1e_mask(void)
  545. {
  546. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  547. if (pm_idle == amd_e400_idle)
  548. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  549. }
  550. static int __init idle_setup(char *str)
  551. {
  552. if (!str)
  553. return -EINVAL;
  554. if (!strcmp(str, "poll")) {
  555. printk("using polling idle threads.\n");
  556. pm_idle = poll_idle;
  557. boot_option_idle_override = IDLE_POLL;
  558. } else if (!strcmp(str, "mwait")) {
  559. boot_option_idle_override = IDLE_FORCE_MWAIT;
  560. WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
  561. } else if (!strcmp(str, "halt")) {
  562. /*
  563. * When the boot option of idle=halt is added, halt is
  564. * forced to be used for CPU idle. In such case CPU C2/C3
  565. * won't be used again.
  566. * To continue to load the CPU idle driver, don't touch
  567. * the boot_option_idle_override.
  568. */
  569. pm_idle = default_idle;
  570. boot_option_idle_override = IDLE_HALT;
  571. } else if (!strcmp(str, "nomwait")) {
  572. /*
  573. * If the boot option of "idle=nomwait" is added,
  574. * it means that mwait will be disabled for CPU C2/C3
  575. * states. In such case it won't touch the variable
  576. * of boot_option_idle_override.
  577. */
  578. boot_option_idle_override = IDLE_NOMWAIT;
  579. } else
  580. return -1;
  581. return 0;
  582. }
  583. early_param("idle", idle_setup);
  584. unsigned long arch_align_stack(unsigned long sp)
  585. {
  586. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  587. sp -= get_random_int() % 8192;
  588. return sp & ~0xf;
  589. }
  590. unsigned long arch_randomize_brk(struct mm_struct *mm)
  591. {
  592. unsigned long range_end = mm->brk + 0x02000000;
  593. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  594. }