common.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #ifdef CONFIG_X86_LOCAL_APIC
  24. #include <asm/mpspec.h>
  25. #include <asm/apic.h>
  26. #include <mach_apic.h>
  27. #include <asm/genapic.h>
  28. #endif
  29. #include <asm/pda.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #include <asm/desc.h>
  33. #include <asm/atomic.h>
  34. #include <asm/proto.h>
  35. #include <asm/sections.h>
  36. #include <asm/setup.h>
  37. #include "cpu.h"
  38. static struct cpu_dev *this_cpu __cpuinitdata;
  39. #ifdef CONFIG_X86_64
  40. /* We need valid kernel segments for data and code in long mode too
  41. * IRET will check the segment types kkeil 2000/10/28
  42. * Also sysret mandates a special GDT layout
  43. */
  44. /* The TLS descriptors are currently at a different place compared to i386.
  45. Hopefully nobody expects them at a fixed place (Wine?) */
  46. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  47. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  48. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  49. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  50. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  51. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  52. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  53. } };
  54. #else
  55. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  56. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  57. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  58. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  59. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  60. /*
  61. * Segments used for calling PnP BIOS have byte granularity.
  62. * They code segments and data segments have fixed 64k limits,
  63. * the transfer segment sizes are set at run time.
  64. */
  65. /* 32-bit code */
  66. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  67. /* 16-bit code */
  68. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  69. /* 16-bit data */
  70. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  71. /* 16-bit data */
  72. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  73. /* 16-bit data */
  74. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  75. /*
  76. * The APM segments have byte granularity and their bases
  77. * are set at run time. All have 64k limits.
  78. */
  79. /* 32-bit code */
  80. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  81. /* 16-bit code */
  82. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  83. /* data */
  84. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  85. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  86. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  87. } };
  88. #endif
  89. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  90. #ifdef CONFIG_X86_32
  91. static int cachesize_override __cpuinitdata = -1;
  92. static int disable_x86_serial_nr __cpuinitdata = 1;
  93. static int __init cachesize_setup(char *str)
  94. {
  95. get_option(&str, &cachesize_override);
  96. return 1;
  97. }
  98. __setup("cachesize=", cachesize_setup);
  99. static int __init x86_fxsr_setup(char *s)
  100. {
  101. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  102. setup_clear_cpu_cap(X86_FEATURE_XMM);
  103. return 1;
  104. }
  105. __setup("nofxsr", x86_fxsr_setup);
  106. static int __init x86_sep_setup(char *s)
  107. {
  108. setup_clear_cpu_cap(X86_FEATURE_SEP);
  109. return 1;
  110. }
  111. __setup("nosep", x86_sep_setup);
  112. /* Standard macro to see if a specific flag is changeable */
  113. static inline int flag_is_changeable_p(u32 flag)
  114. {
  115. u32 f1, f2;
  116. asm("pushfl\n\t"
  117. "pushfl\n\t"
  118. "popl %0\n\t"
  119. "movl %0,%1\n\t"
  120. "xorl %2,%0\n\t"
  121. "pushl %0\n\t"
  122. "popfl\n\t"
  123. "pushfl\n\t"
  124. "popl %0\n\t"
  125. "popfl\n\t"
  126. : "=&r" (f1), "=&r" (f2)
  127. : "ir" (flag));
  128. return ((f1^f2) & flag) != 0;
  129. }
  130. /* Probe for the CPUID instruction */
  131. static int __cpuinit have_cpuid_p(void)
  132. {
  133. return flag_is_changeable_p(X86_EFLAGS_ID);
  134. }
  135. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  136. {
  137. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  138. /* Disable processor serial number */
  139. unsigned long lo, hi;
  140. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  141. lo |= 0x200000;
  142. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  143. printk(KERN_NOTICE "CPU serial number disabled.\n");
  144. clear_cpu_cap(c, X86_FEATURE_PN);
  145. /* Disabling the serial number may affect the cpuid level */
  146. c->cpuid_level = cpuid_eax(0);
  147. }
  148. }
  149. static int __init x86_serial_nr_setup(char *s)
  150. {
  151. disable_x86_serial_nr = 0;
  152. return 1;
  153. }
  154. __setup("serialnumber", x86_serial_nr_setup);
  155. #else
  156. static inline int flag_is_changeable_p(u32 flag)
  157. {
  158. return 1;
  159. }
  160. /* Probe for the CPUID instruction */
  161. static inline int have_cpuid_p(void)
  162. {
  163. return 1;
  164. }
  165. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  166. {
  167. }
  168. #endif
  169. /*
  170. * Naming convention should be: <Name> [(<Codename>)]
  171. * This table only is used unless init_<vendor>() below doesn't set it;
  172. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  173. *
  174. */
  175. /* Look up CPU names by table lookup. */
  176. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  177. {
  178. struct cpu_model_info *info;
  179. if (c->x86_model >= 16)
  180. return NULL; /* Range check */
  181. if (!this_cpu)
  182. return NULL;
  183. info = this_cpu->c_models;
  184. while (info && info->family) {
  185. if (info->family == c->x86)
  186. return info->model_names[c->x86_model];
  187. info++;
  188. }
  189. return NULL; /* Not found */
  190. }
  191. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  192. /* Current gdt points %fs at the "master" per-cpu area: after this,
  193. * it's on the real one. */
  194. void switch_to_new_gdt(void)
  195. {
  196. struct desc_ptr gdt_descr;
  197. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  198. gdt_descr.size = GDT_SIZE - 1;
  199. load_gdt(&gdt_descr);
  200. #ifdef CONFIG_X86_32
  201. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  202. #endif
  203. }
  204. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  205. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  206. {
  207. #ifdef CONFIG_X86_64
  208. display_cacheinfo(c);
  209. #else
  210. /* Not much we can do here... */
  211. /* Check if at least it has cpuid */
  212. if (c->cpuid_level == -1) {
  213. /* No cpuid. It must be an ancient CPU */
  214. if (c->x86 == 4)
  215. strcpy(c->x86_model_id, "486");
  216. else if (c->x86 == 3)
  217. strcpy(c->x86_model_id, "386");
  218. }
  219. #endif
  220. }
  221. static struct cpu_dev __cpuinitdata default_cpu = {
  222. .c_init = default_init,
  223. .c_vendor = "Unknown",
  224. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  225. };
  226. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  227. {
  228. unsigned int *v;
  229. char *p, *q;
  230. if (c->extended_cpuid_level < 0x80000004)
  231. return;
  232. v = (unsigned int *) c->x86_model_id;
  233. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  234. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  235. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  236. c->x86_model_id[48] = 0;
  237. /* Intel chips right-justify this string for some dumb reason;
  238. undo that brain damage */
  239. p = q = &c->x86_model_id[0];
  240. while (*p == ' ')
  241. p++;
  242. if (p != q) {
  243. while (*p)
  244. *q++ = *p++;
  245. while (q <= &c->x86_model_id[48])
  246. *q++ = '\0'; /* Zero-pad the rest */
  247. }
  248. }
  249. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  250. {
  251. unsigned int n, dummy, ebx, ecx, edx, l2size;
  252. n = c->extended_cpuid_level;
  253. if (n >= 0x80000005) {
  254. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  255. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  256. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  257. c->x86_cache_size = (ecx>>24) + (edx>>24);
  258. #ifdef CONFIG_X86_64
  259. /* On K8 L1 TLB is inclusive, so don't count it */
  260. c->x86_tlbsize = 0;
  261. #endif
  262. }
  263. if (n < 0x80000006) /* Some chips just has a large L1. */
  264. return;
  265. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  266. l2size = ecx >> 16;
  267. #ifdef CONFIG_X86_64
  268. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  269. #else
  270. /* do processor-specific cache resizing */
  271. if (this_cpu->c_size_cache)
  272. l2size = this_cpu->c_size_cache(c, l2size);
  273. /* Allow user to override all this if necessary. */
  274. if (cachesize_override != -1)
  275. l2size = cachesize_override;
  276. if (l2size == 0)
  277. return; /* Again, no L2 cache is possible */
  278. #endif
  279. c->x86_cache_size = l2size;
  280. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  281. l2size, ecx & 0xFF);
  282. }
  283. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  284. {
  285. #ifdef CONFIG_X86_HT
  286. u32 eax, ebx, ecx, edx;
  287. int index_msb, core_bits;
  288. if (!cpu_has(c, X86_FEATURE_HT))
  289. return;
  290. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  291. goto out;
  292. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  293. return;
  294. cpuid(1, &eax, &ebx, &ecx, &edx);
  295. smp_num_siblings = (ebx & 0xff0000) >> 16;
  296. if (smp_num_siblings == 1) {
  297. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  298. } else if (smp_num_siblings > 1) {
  299. if (smp_num_siblings > NR_CPUS) {
  300. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  301. smp_num_siblings);
  302. smp_num_siblings = 1;
  303. return;
  304. }
  305. index_msb = get_count_order(smp_num_siblings);
  306. #ifdef CONFIG_X86_64
  307. c->phys_proc_id = phys_pkg_id(index_msb);
  308. #else
  309. c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
  310. #endif
  311. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  312. index_msb = get_count_order(smp_num_siblings);
  313. core_bits = get_count_order(c->x86_max_cores);
  314. #ifdef CONFIG_X86_64
  315. c->cpu_core_id = phys_pkg_id(index_msb) &
  316. ((1 << core_bits) - 1);
  317. #else
  318. c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
  319. ((1 << core_bits) - 1);
  320. #endif
  321. }
  322. out:
  323. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  324. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  325. c->phys_proc_id);
  326. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  327. c->cpu_core_id);
  328. }
  329. #endif
  330. }
  331. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  332. {
  333. char *v = c->x86_vendor_id;
  334. int i;
  335. static int printed;
  336. for (i = 0; i < X86_VENDOR_NUM; i++) {
  337. if (!cpu_devs[i])
  338. break;
  339. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  340. (cpu_devs[i]->c_ident[1] &&
  341. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  342. this_cpu = cpu_devs[i];
  343. c->x86_vendor = this_cpu->c_x86_vendor;
  344. return;
  345. }
  346. }
  347. if (!printed) {
  348. printed++;
  349. printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
  350. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  351. }
  352. c->x86_vendor = X86_VENDOR_UNKNOWN;
  353. this_cpu = &default_cpu;
  354. }
  355. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  356. {
  357. /* Get vendor name */
  358. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  359. (unsigned int *)&c->x86_vendor_id[0],
  360. (unsigned int *)&c->x86_vendor_id[8],
  361. (unsigned int *)&c->x86_vendor_id[4]);
  362. c->x86 = 4;
  363. /* Intel-defined flags: level 0x00000001 */
  364. if (c->cpuid_level >= 0x00000001) {
  365. u32 junk, tfms, cap0, misc;
  366. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  367. c->x86 = (tfms >> 8) & 0xf;
  368. c->x86_model = (tfms >> 4) & 0xf;
  369. c->x86_mask = tfms & 0xf;
  370. if (c->x86 == 0xf)
  371. c->x86 += (tfms >> 20) & 0xff;
  372. if (c->x86 >= 0x6)
  373. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  374. if (cap0 & (1<<19)) {
  375. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  376. c->x86_cache_alignment = c->x86_clflush_size;
  377. }
  378. }
  379. }
  380. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  381. {
  382. u32 tfms, xlvl;
  383. u32 ebx;
  384. /* Intel-defined flags: level 0x00000001 */
  385. if (c->cpuid_level >= 0x00000001) {
  386. u32 capability, excap;
  387. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  388. c->x86_capability[0] = capability;
  389. c->x86_capability[4] = excap;
  390. }
  391. /* AMD-defined flags: level 0x80000001 */
  392. xlvl = cpuid_eax(0x80000000);
  393. c->extended_cpuid_level = xlvl;
  394. if ((xlvl & 0xffff0000) == 0x80000000) {
  395. if (xlvl >= 0x80000001) {
  396. c->x86_capability[1] = cpuid_edx(0x80000001);
  397. c->x86_capability[6] = cpuid_ecx(0x80000001);
  398. }
  399. }
  400. #ifdef CONFIG_X86_64
  401. /* Transmeta-defined flags: level 0x80860001 */
  402. xlvl = cpuid_eax(0x80860000);
  403. if ((xlvl & 0xffff0000) == 0x80860000) {
  404. /* Don't set x86_cpuid_level here for now to not confuse. */
  405. if (xlvl >= 0x80860001)
  406. c->x86_capability[2] = cpuid_edx(0x80860001);
  407. }
  408. if (c->extended_cpuid_level >= 0x80000008) {
  409. u32 eax = cpuid_eax(0x80000008);
  410. c->x86_virt_bits = (eax >> 8) & 0xff;
  411. c->x86_phys_bits = eax & 0xff;
  412. }
  413. #endif
  414. if (c->extended_cpuid_level >= 0x80000007)
  415. c->x86_power = cpuid_edx(0x80000007);
  416. }
  417. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  418. {
  419. #ifdef CONFIG_X86_32
  420. int i;
  421. /*
  422. * First of all, decide if this is a 486 or higher
  423. * It's a 486 if we can modify the AC flag
  424. */
  425. if (flag_is_changeable_p(X86_EFLAGS_AC))
  426. c->x86 = 4;
  427. else
  428. c->x86 = 3;
  429. for (i = 0; i < X86_VENDOR_NUM; i++)
  430. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  431. c->x86_vendor_id[0] = 0;
  432. cpu_devs[i]->c_identify(c);
  433. if (c->x86_vendor_id[0]) {
  434. get_cpu_vendor(c);
  435. break;
  436. }
  437. }
  438. #endif
  439. }
  440. /*
  441. * Do minimum CPU detection early.
  442. * Fields really needed: vendor, cpuid_level, family, model, mask,
  443. * cache alignment.
  444. * The others are not touched to avoid unwanted side effects.
  445. *
  446. * WARNING: this function is only called on the BP. Don't add code here
  447. * that is supposed to run on all CPUs.
  448. */
  449. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  450. {
  451. #ifdef CONFIG_X86_64
  452. c->x86_clflush_size = 64;
  453. #else
  454. c->x86_clflush_size = 32;
  455. #endif
  456. c->x86_cache_alignment = c->x86_clflush_size;
  457. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  458. c->extended_cpuid_level = 0;
  459. if (!have_cpuid_p())
  460. identify_cpu_without_cpuid(c);
  461. /* cyrix could have cpuid enabled via c_identify()*/
  462. if (!have_cpuid())
  463. return;
  464. cpu_detect(c);
  465. get_cpu_vendor(c);
  466. get_cpu_cap(c);
  467. if (this_cpu->c_early_init)
  468. this_cpu->c_early_init(c);
  469. validate_pat_support(c);
  470. }
  471. void __init early_cpu_init(void)
  472. {
  473. struct cpu_dev **cdev;
  474. int count = 0;
  475. printk("KERNEL supported cpus:\n");
  476. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  477. struct cpu_dev *cpudev = *cdev;
  478. unsigned int j;
  479. if (count >= X86_VENDOR_NUM)
  480. break;
  481. cpu_devs[count] = cpudev;
  482. count++;
  483. for (j = 0; j < 2; j++) {
  484. if (!cpudev->c_ident[j])
  485. continue;
  486. printk(" %s %s\n", cpudev->c_vendor,
  487. cpudev->c_ident[j]);
  488. }
  489. }
  490. early_identify_cpu(&boot_cpu_data);
  491. }
  492. /*
  493. * The NOPL instruction is supposed to exist on all CPUs with
  494. * family >= 6, unfortunately, that's not true in practice because
  495. * of early VIA chips and (more importantly) broken virtualizers that
  496. * are not easy to detect. Hence, probe for it based on first
  497. * principles.
  498. *
  499. * Note: no 64-bit chip is known to lack these, but put the code here
  500. * for consistency with 32 bits, and to make it utterly trivial to
  501. * diagnose the problem should it ever surface.
  502. */
  503. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  504. {
  505. const u32 nopl_signature = 0x888c53b1; /* Random number */
  506. u32 has_nopl = nopl_signature;
  507. clear_cpu_cap(c, X86_FEATURE_NOPL);
  508. if (c->x86 >= 6) {
  509. asm volatile("\n"
  510. "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
  511. "2:\n"
  512. " .section .fixup,\"ax\"\n"
  513. "3: xor %0,%0\n"
  514. " jmp 2b\n"
  515. " .previous\n"
  516. _ASM_EXTABLE(1b,3b)
  517. : "+a" (has_nopl));
  518. if (has_nopl == nopl_signature)
  519. set_cpu_cap(c, X86_FEATURE_NOPL);
  520. }
  521. }
  522. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  523. {
  524. c->extended_cpuid_level = 0;
  525. if (!have_cpuid_p())
  526. identify_cpu_without_cpuid(c);
  527. /* cyrix could have cpuid enabled via c_identify()*/
  528. if (!have_cpuid())
  529. return;
  530. cpu_detect(c);
  531. get_cpu_vendor(c);
  532. get_cpu_cap(c);
  533. if (c->cpuid_level >= 0x00000001) {
  534. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  535. #ifdef CONFIG_X86_32
  536. # ifdef CONFIG_X86_HT
  537. c->apicid = phys_pkg_id(c->initial_apicid, 0);
  538. # else
  539. c->apicid = c->initial_apicid;
  540. # endif
  541. #endif
  542. #ifdef CONFIG_X86_HT
  543. c->phys_proc_id = c->initial_apicid;
  544. #endif
  545. }
  546. get_model_name(c); /* Default name */
  547. init_scattered_cpuid_features(c);
  548. detect_nopl(c);
  549. }
  550. /*
  551. * This does the hard work of actually picking apart the CPU stuff...
  552. */
  553. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  554. {
  555. int i;
  556. c->loops_per_jiffy = loops_per_jiffy;
  557. c->x86_cache_size = -1;
  558. c->x86_vendor = X86_VENDOR_UNKNOWN;
  559. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  560. c->x86_vendor_id[0] = '\0'; /* Unset */
  561. c->x86_model_id[0] = '\0'; /* Unset */
  562. c->x86_max_cores = 1;
  563. c->x86_coreid_bits = 0;
  564. #ifdef CONFIG_X86_64
  565. c->x86_clflush_size = 64;
  566. #else
  567. c->cpuid_level = -1; /* CPUID not detected */
  568. c->x86_clflush_size = 32;
  569. #endif
  570. c->x86_cache_alignment = c->x86_clflush_size;
  571. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  572. generic_identify(c);
  573. if (this_cpu->c_identify)
  574. this_cpu->c_identify(c);
  575. #ifdef CONFIG_X86_64
  576. c->apicid = phys_pkg_id(0);
  577. #endif
  578. /*
  579. * Vendor-specific initialization. In this section we
  580. * canonicalize the feature flags, meaning if there are
  581. * features a certain CPU supports which CPUID doesn't
  582. * tell us, CPUID claiming incorrect flags, or other bugs,
  583. * we handle them here.
  584. *
  585. * At the end of this section, c->x86_capability better
  586. * indicate the features this CPU genuinely supports!
  587. */
  588. if (this_cpu->c_init)
  589. this_cpu->c_init(c);
  590. /* Disable the PN if appropriate */
  591. squash_the_stupid_serial_number(c);
  592. /*
  593. * The vendor-specific functions might have changed features. Now
  594. * we do "generic changes."
  595. */
  596. /* If the model name is still unset, do table lookup. */
  597. if (!c->x86_model_id[0]) {
  598. char *p;
  599. p = table_lookup_model(c);
  600. if (p)
  601. strcpy(c->x86_model_id, p);
  602. else
  603. /* Last resort... */
  604. sprintf(c->x86_model_id, "%02x/%02x",
  605. c->x86, c->x86_model);
  606. }
  607. #ifdef CONFIG_X86_64
  608. detect_ht(c);
  609. #endif
  610. /*
  611. * On SMP, boot_cpu_data holds the common feature set between
  612. * all CPUs; so make sure that we indicate which features are
  613. * common between the CPUs. The first time this routine gets
  614. * executed, c == &boot_cpu_data.
  615. */
  616. if (c != &boot_cpu_data) {
  617. /* AND the already accumulated flags with these */
  618. for (i = 0; i < NCAPINTS; i++)
  619. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  620. }
  621. /* Clear all flags overriden by options */
  622. for (i = 0; i < NCAPINTS; i++)
  623. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  624. #ifdef CONFIG_X86_MCE
  625. /* Init Machine Check Exception if available. */
  626. mcheck_init(c);
  627. #endif
  628. select_idle_routine(c);
  629. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  630. numa_add_cpu(smp_processor_id());
  631. #endif
  632. }
  633. void __init identify_boot_cpu(void)
  634. {
  635. identify_cpu(&boot_cpu_data);
  636. #ifdef CONFIG_X86_32
  637. sysenter_setup();
  638. enable_sep_cpu();
  639. #endif
  640. }
  641. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  642. {
  643. BUG_ON(c == &boot_cpu_data);
  644. identify_cpu(c);
  645. #ifdef CONFIG_X86_32
  646. enable_sep_cpu();
  647. #endif
  648. mtrr_ap_init();
  649. }
  650. struct msr_range {
  651. unsigned min;
  652. unsigned max;
  653. };
  654. static struct msr_range msr_range_array[] __cpuinitdata = {
  655. { 0x00000000, 0x00000418},
  656. { 0xc0000000, 0xc000040b},
  657. { 0xc0010000, 0xc0010142},
  658. { 0xc0011000, 0xc001103b},
  659. };
  660. static void __cpuinit print_cpu_msr(void)
  661. {
  662. unsigned index;
  663. u64 val;
  664. int i;
  665. unsigned index_min, index_max;
  666. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  667. index_min = msr_range_array[i].min;
  668. index_max = msr_range_array[i].max;
  669. for (index = index_min; index < index_max; index++) {
  670. if (rdmsrl_amd_safe(index, &val))
  671. continue;
  672. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  673. }
  674. }
  675. }
  676. static int show_msr __cpuinitdata;
  677. static __init int setup_show_msr(char *arg)
  678. {
  679. int num;
  680. get_option(&arg, &num);
  681. if (num > 0)
  682. show_msr = num;
  683. return 1;
  684. }
  685. __setup("show_msr=", setup_show_msr);
  686. static __init int setup_noclflush(char *arg)
  687. {
  688. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  689. return 1;
  690. }
  691. __setup("noclflush", setup_noclflush);
  692. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  693. {
  694. char *vendor = NULL;
  695. if (c->x86_vendor < X86_VENDOR_NUM)
  696. vendor = this_cpu->c_vendor;
  697. else if (c->cpuid_level >= 0)
  698. vendor = c->x86_vendor_id;
  699. if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
  700. printk(KERN_CONT "%s ", vendor);
  701. if (c->x86_model_id[0])
  702. printk(KERN_CONT "%s", c->x86_model_id);
  703. else
  704. printk(KERN_CONT "%d86", c->x86);
  705. if (c->x86_mask || c->cpuid_level >= 0)
  706. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  707. else
  708. printk(KERN_CONT "\n");
  709. #ifdef CONFIG_SMP
  710. if (c->cpu_index < show_msr)
  711. print_cpu_msr();
  712. #else
  713. if (show_msr)
  714. print_cpu_msr();
  715. #endif
  716. }
  717. static __init int setup_disablecpuid(char *arg)
  718. {
  719. int bit;
  720. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  721. setup_clear_cpu_cap(bit);
  722. else
  723. return 0;
  724. return 1;
  725. }
  726. __setup("clearcpuid=", setup_disablecpuid);
  727. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  728. #ifdef CONFIG_X86_64
  729. struct x8664_pda **_cpu_pda __read_mostly;
  730. EXPORT_SYMBOL(_cpu_pda);
  731. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  732. char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
  733. void __cpuinit pda_init(int cpu)
  734. {
  735. struct x8664_pda *pda = cpu_pda(cpu);
  736. /* Setup up data that may be needed in __get_free_pages early */
  737. loadsegment(fs, 0);
  738. loadsegment(gs, 0);
  739. /* Memory clobbers used to order PDA accessed */
  740. mb();
  741. wrmsrl(MSR_GS_BASE, pda);
  742. mb();
  743. pda->cpunumber = cpu;
  744. pda->irqcount = -1;
  745. pda->kernelstack = (unsigned long)stack_thread_info() -
  746. PDA_STACKOFFSET + THREAD_SIZE;
  747. pda->active_mm = &init_mm;
  748. pda->mmu_state = 0;
  749. if (cpu == 0) {
  750. /* others are initialized in smpboot.c */
  751. pda->pcurrent = &init_task;
  752. pda->irqstackptr = boot_cpu_stack;
  753. pda->irqstackptr += IRQSTACKSIZE - 64;
  754. } else {
  755. if (!pda->irqstackptr) {
  756. pda->irqstackptr = (char *)
  757. __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
  758. if (!pda->irqstackptr)
  759. panic("cannot allocate irqstack for cpu %d",
  760. cpu);
  761. pda->irqstackptr += IRQSTACKSIZE - 64;
  762. }
  763. if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
  764. pda->nodenumber = cpu_to_node(cpu);
  765. }
  766. }
  767. char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
  768. DEBUG_STKSZ] __page_aligned_bss;
  769. extern asmlinkage void ignore_sysret(void);
  770. /* May not be marked __init: used by software suspend */
  771. void syscall_init(void)
  772. {
  773. /*
  774. * LSTAR and STAR live in a bit strange symbiosis.
  775. * They both write to the same internal register. STAR allows to
  776. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  777. */
  778. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  779. wrmsrl(MSR_LSTAR, system_call);
  780. wrmsrl(MSR_CSTAR, ignore_sysret);
  781. #ifdef CONFIG_IA32_EMULATION
  782. syscall32_cpu_init();
  783. #endif
  784. /* Flags to clear on syscall */
  785. wrmsrl(MSR_SYSCALL_MASK,
  786. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  787. }
  788. unsigned long kernel_eflags;
  789. /*
  790. * Copies of the original ist values from the tss are only accessed during
  791. * debugging, no special alignment required.
  792. */
  793. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  794. #else
  795. /* Make sure %fs is initialized properly in idle threads */
  796. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  797. {
  798. memset(regs, 0, sizeof(struct pt_regs));
  799. regs->fs = __KERNEL_PERCPU;
  800. return regs;
  801. }
  802. #endif
  803. /*
  804. * cpu_init() initializes state that is per-CPU. Some data is already
  805. * initialized (naturally) in the bootstrap process, such as the GDT
  806. * and IDT. We reload them nevertheless, this function acts as a
  807. * 'CPU state barrier', nothing should get across.
  808. * A lot of state is already set up in PDA init for 64 bit
  809. */
  810. #ifdef CONFIG_X86_64
  811. void __cpuinit cpu_init(void)
  812. {
  813. int cpu = stack_smp_processor_id();
  814. struct tss_struct *t = &per_cpu(init_tss, cpu);
  815. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  816. unsigned long v;
  817. char *estacks = NULL;
  818. struct task_struct *me;
  819. int i;
  820. /* CPU 0 is initialised in head64.c */
  821. if (cpu != 0)
  822. pda_init(cpu);
  823. else
  824. estacks = boot_exception_stacks;
  825. me = current;
  826. if (cpu_test_and_set(cpu, cpu_initialized))
  827. panic("CPU#%d already initialized!\n", cpu);
  828. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  829. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  830. /*
  831. * Initialize the per-CPU GDT with the boot GDT,
  832. * and set up the GDT descriptor:
  833. */
  834. switch_to_new_gdt();
  835. load_idt((const struct desc_ptr *)&idt_descr);
  836. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  837. syscall_init();
  838. wrmsrl(MSR_FS_BASE, 0);
  839. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  840. barrier();
  841. check_efer();
  842. if (cpu != 0 && x2apic)
  843. enable_x2apic();
  844. /*
  845. * set up and load the per-CPU TSS
  846. */
  847. if (!orig_ist->ist[0]) {
  848. static const unsigned int order[N_EXCEPTION_STACKS] = {
  849. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
  850. [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
  851. };
  852. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  853. if (cpu) {
  854. estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
  855. if (!estacks)
  856. panic("Cannot allocate exception "
  857. "stack %ld %d\n", v, cpu);
  858. }
  859. estacks += PAGE_SIZE << order[v];
  860. orig_ist->ist[v] = t->x86_tss.ist[v] =
  861. (unsigned long)estacks;
  862. }
  863. }
  864. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  865. /*
  866. * <= is required because the CPU will access up to
  867. * 8 bits beyond the end of the IO permission bitmap.
  868. */
  869. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  870. t->io_bitmap[i] = ~0UL;
  871. atomic_inc(&init_mm.mm_count);
  872. me->active_mm = &init_mm;
  873. if (me->mm)
  874. BUG();
  875. enter_lazy_tlb(&init_mm, me);
  876. load_sp0(t, &current->thread);
  877. set_tss_desc(cpu, t);
  878. load_TR_desc();
  879. load_LDT(&init_mm.context);
  880. #ifdef CONFIG_KGDB
  881. /*
  882. * If the kgdb is connected no debug regs should be altered. This
  883. * is only applicable when KGDB and a KGDB I/O module are built
  884. * into the kernel and you are using early debugging with
  885. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  886. */
  887. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  888. arch_kgdb_ops.correct_hw_break();
  889. else {
  890. #endif
  891. /*
  892. * Clear all 6 debug registers:
  893. */
  894. set_debugreg(0UL, 0);
  895. set_debugreg(0UL, 1);
  896. set_debugreg(0UL, 2);
  897. set_debugreg(0UL, 3);
  898. set_debugreg(0UL, 6);
  899. set_debugreg(0UL, 7);
  900. #ifdef CONFIG_KGDB
  901. /* If the kgdb is connected no debug regs should be altered. */
  902. }
  903. #endif
  904. fpu_init();
  905. raw_local_save_flags(kernel_eflags);
  906. if (is_uv_system())
  907. uv_cpu_init();
  908. }
  909. #else
  910. void __cpuinit cpu_init(void)
  911. {
  912. int cpu = smp_processor_id();
  913. struct task_struct *curr = current;
  914. struct tss_struct *t = &per_cpu(init_tss, cpu);
  915. struct thread_struct *thread = &curr->thread;
  916. if (cpu_test_and_set(cpu, cpu_initialized)) {
  917. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  918. for (;;) local_irq_enable();
  919. }
  920. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  921. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  922. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  923. load_idt(&idt_descr);
  924. switch_to_new_gdt();
  925. /*
  926. * Set up and load the per-CPU TSS and LDT
  927. */
  928. atomic_inc(&init_mm.mm_count);
  929. curr->active_mm = &init_mm;
  930. if (curr->mm)
  931. BUG();
  932. enter_lazy_tlb(&init_mm, curr);
  933. load_sp0(t, thread);
  934. set_tss_desc(cpu, t);
  935. load_TR_desc();
  936. load_LDT(&init_mm.context);
  937. #ifdef CONFIG_DOUBLEFAULT
  938. /* Set up doublefault TSS pointer in the GDT */
  939. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  940. #endif
  941. /* Clear %gs. */
  942. asm volatile ("mov %0, %%gs" : : "r" (0));
  943. /* Clear all 6 debug registers: */
  944. set_debugreg(0, 0);
  945. set_debugreg(0, 1);
  946. set_debugreg(0, 2);
  947. set_debugreg(0, 3);
  948. set_debugreg(0, 6);
  949. set_debugreg(0, 7);
  950. /*
  951. * Force FPU initialization:
  952. */
  953. if (cpu_has_xsave)
  954. current_thread_info()->status = TS_XSAVE;
  955. else
  956. current_thread_info()->status = 0;
  957. clear_used_math();
  958. mxcsr_feature_mask_init();
  959. /*
  960. * Boot processor to setup the FP and extended state context info.
  961. */
  962. if (!smp_processor_id())
  963. init_thread_xstate();
  964. xsave_init();
  965. }
  966. #ifdef CONFIG_HOTPLUG_CPU
  967. void __cpuinit cpu_uninit(void)
  968. {
  969. int cpu = raw_smp_processor_id();
  970. cpu_clear(cpu, cpu_initialized);
  971. /* lazy TLB state */
  972. per_cpu(cpu_tlbstate, cpu).state = 0;
  973. per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
  974. }
  975. #endif
  976. #endif