sched.c 223 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define NICE_0_LOAD SCHED_LOAD_SCALE
  97. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  98. /*
  99. * These are the 'tuning knobs' of the scheduler:
  100. *
  101. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. /*
  106. * single value that denotes runtime == period, ie unlimited time.
  107. */
  108. #define RUNTIME_INF ((u64)~0ULL)
  109. #ifdef CONFIG_SMP
  110. /*
  111. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  112. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  113. */
  114. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  115. {
  116. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  117. }
  118. /*
  119. * Each time a sched group cpu_power is changed,
  120. * we must compute its reciprocal value
  121. */
  122. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  123. {
  124. sg->__cpu_power += val;
  125. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  126. }
  127. #endif
  128. static inline int rt_policy(int policy)
  129. {
  130. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  131. return 1;
  132. return 0;
  133. }
  134. static inline int task_has_rt_policy(struct task_struct *p)
  135. {
  136. return rt_policy(p->policy);
  137. }
  138. /*
  139. * This is the priority-queue data structure of the RT scheduling class:
  140. */
  141. struct rt_prio_array {
  142. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  143. struct list_head queue[MAX_RT_PRIO];
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0 or 1 can cause arithmetics problems.
  270. * A weight of a cfs_rq is the sum of weights of which entities
  271. * are queued on this cfs_rq, so a weight of a entity should not be
  272. * too large, so as the shares value of a task group.
  273. * (The default weight is 1024 - so there's no practical
  274. * limitation from this.)
  275. */
  276. #define MIN_SHARES 2
  277. #define MAX_SHARES (1UL << 18)
  278. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  279. #endif
  280. /* Default task group.
  281. * Every task in system belong to this group at bootup.
  282. */
  283. struct task_group init_task_group;
  284. /* return group to which a task belongs */
  285. static inline struct task_group *task_group(struct task_struct *p)
  286. {
  287. struct task_group *tg;
  288. #ifdef CONFIG_USER_SCHED
  289. tg = p->user->tg;
  290. #elif defined(CONFIG_CGROUP_SCHED)
  291. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  292. struct task_group, css);
  293. #else
  294. tg = &init_task_group;
  295. #endif
  296. return tg;
  297. }
  298. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  299. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  300. {
  301. #ifdef CONFIG_FAIR_GROUP_SCHED
  302. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  303. p->se.parent = task_group(p)->se[cpu];
  304. #endif
  305. #ifdef CONFIG_RT_GROUP_SCHED
  306. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  307. p->rt.parent = task_group(p)->rt_se[cpu];
  308. #endif
  309. }
  310. #else
  311. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  312. static inline struct task_group *task_group(struct task_struct *p)
  313. {
  314. return NULL;
  315. }
  316. #endif /* CONFIG_GROUP_SCHED */
  317. /* CFS-related fields in a runqueue */
  318. struct cfs_rq {
  319. struct load_weight load;
  320. unsigned long nr_running;
  321. u64 exec_clock;
  322. u64 min_vruntime;
  323. u64 pair_start;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. /*
  348. * the part of load.weight contributed by tasks
  349. */
  350. unsigned long task_weight;
  351. /*
  352. * h_load = weight * f(tg)
  353. *
  354. * Where f(tg) is the recursive weight fraction assigned to
  355. * this group.
  356. */
  357. unsigned long h_load;
  358. /*
  359. * this cpu's part of tg->shares
  360. */
  361. unsigned long shares;
  362. /*
  363. * load.weight at the time we set shares
  364. */
  365. unsigned long rq_weight;
  366. #endif
  367. #endif
  368. };
  369. /* Real-Time classes' related field in a runqueue: */
  370. struct rt_rq {
  371. struct rt_prio_array active;
  372. unsigned long rt_nr_running;
  373. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  374. int highest_prio; /* highest queued rt task prio */
  375. #endif
  376. #ifdef CONFIG_SMP
  377. unsigned long rt_nr_migratory;
  378. int overloaded;
  379. #endif
  380. int rt_throttled;
  381. u64 rt_time;
  382. u64 rt_runtime;
  383. /* Nests inside the rq lock: */
  384. spinlock_t rt_runtime_lock;
  385. #ifdef CONFIG_RT_GROUP_SCHED
  386. unsigned long rt_nr_boosted;
  387. struct rq *rq;
  388. struct list_head leaf_rt_rq_list;
  389. struct task_group *tg;
  390. struct sched_rt_entity *rt_se;
  391. #endif
  392. };
  393. #ifdef CONFIG_SMP
  394. /*
  395. * We add the notion of a root-domain which will be used to define per-domain
  396. * variables. Each exclusive cpuset essentially defines an island domain by
  397. * fully partitioning the member cpus from any other cpuset. Whenever a new
  398. * exclusive cpuset is created, we also create and attach a new root-domain
  399. * object.
  400. *
  401. */
  402. struct root_domain {
  403. atomic_t refcount;
  404. cpumask_t span;
  405. cpumask_t online;
  406. /*
  407. * The "RT overload" flag: it gets set if a CPU has more than
  408. * one runnable RT task.
  409. */
  410. cpumask_t rto_mask;
  411. atomic_t rto_count;
  412. #ifdef CONFIG_SMP
  413. struct cpupri cpupri;
  414. #endif
  415. };
  416. /*
  417. * By default the system creates a single root-domain with all cpus as
  418. * members (mimicking the global state we have today).
  419. */
  420. static struct root_domain def_root_domain;
  421. #endif
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned long nr_running;
  437. #define CPU_LOAD_IDX_MAX 5
  438. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  439. unsigned char idle_at_tick;
  440. #ifdef CONFIG_NO_HZ
  441. unsigned long last_tick_seen;
  442. unsigned char in_nohz_recently;
  443. #endif
  444. /* capture load from *all* tasks on this cpu: */
  445. struct load_weight load;
  446. unsigned long nr_load_updates;
  447. u64 nr_switches;
  448. struct cfs_rq cfs;
  449. struct rt_rq rt;
  450. #ifdef CONFIG_FAIR_GROUP_SCHED
  451. /* list of leaf cfs_rq on this cpu: */
  452. struct list_head leaf_cfs_rq_list;
  453. #endif
  454. #ifdef CONFIG_RT_GROUP_SCHED
  455. struct list_head leaf_rt_rq_list;
  456. #endif
  457. /*
  458. * This is part of a global counter where only the total sum
  459. * over all CPUs matters. A task can increase this counter on
  460. * one CPU and if it got migrated afterwards it may decrease
  461. * it on another CPU. Always updated under the runqueue lock:
  462. */
  463. unsigned long nr_uninterruptible;
  464. struct task_struct *curr, *idle;
  465. unsigned long next_balance;
  466. struct mm_struct *prev_mm;
  467. u64 clock;
  468. atomic_t nr_iowait;
  469. #ifdef CONFIG_SMP
  470. struct root_domain *rd;
  471. struct sched_domain *sd;
  472. /* For active balancing */
  473. int active_balance;
  474. int push_cpu;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. int online;
  478. unsigned long avg_load_per_task;
  479. struct task_struct *migration_thread;
  480. struct list_head migration_queue;
  481. #endif
  482. #ifdef CONFIG_SCHED_HRTICK
  483. #ifdef CONFIG_SMP
  484. int hrtick_csd_pending;
  485. struct call_single_data hrtick_csd;
  486. #endif
  487. struct hrtimer hrtick_timer;
  488. #endif
  489. #ifdef CONFIG_SCHEDSTATS
  490. /* latency stats */
  491. struct sched_info rq_sched_info;
  492. /* sys_sched_yield() stats */
  493. unsigned int yld_exp_empty;
  494. unsigned int yld_act_empty;
  495. unsigned int yld_both_empty;
  496. unsigned int yld_count;
  497. /* schedule() stats */
  498. unsigned int sched_switch;
  499. unsigned int sched_count;
  500. unsigned int sched_goidle;
  501. /* try_to_wake_up() stats */
  502. unsigned int ttwu_count;
  503. unsigned int ttwu_local;
  504. /* BKL stats */
  505. unsigned int bkl_count;
  506. #endif
  507. };
  508. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  509. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  510. {
  511. rq->curr->sched_class->check_preempt_curr(rq, p);
  512. }
  513. static inline int cpu_of(struct rq *rq)
  514. {
  515. #ifdef CONFIG_SMP
  516. return rq->cpu;
  517. #else
  518. return 0;
  519. #endif
  520. }
  521. /*
  522. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  523. * See detach_destroy_domains: synchronize_sched for details.
  524. *
  525. * The domain tree of any CPU may only be accessed from within
  526. * preempt-disabled sections.
  527. */
  528. #define for_each_domain(cpu, __sd) \
  529. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  530. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  531. #define this_rq() (&__get_cpu_var(runqueues))
  532. #define task_rq(p) cpu_rq(task_cpu(p))
  533. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  534. static inline void update_rq_clock(struct rq *rq)
  535. {
  536. rq->clock = sched_clock_cpu(cpu_of(rq));
  537. }
  538. /*
  539. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  540. */
  541. #ifdef CONFIG_SCHED_DEBUG
  542. # define const_debug __read_mostly
  543. #else
  544. # define const_debug static const
  545. #endif
  546. /**
  547. * runqueue_is_locked
  548. *
  549. * Returns true if the current cpu runqueue is locked.
  550. * This interface allows printk to be called with the runqueue lock
  551. * held and know whether or not it is OK to wake up the klogd.
  552. */
  553. int runqueue_is_locked(void)
  554. {
  555. int cpu = get_cpu();
  556. struct rq *rq = cpu_rq(cpu);
  557. int ret;
  558. ret = spin_is_locked(&rq->lock);
  559. put_cpu();
  560. return ret;
  561. }
  562. /*
  563. * Debugging: various feature bits
  564. */
  565. #define SCHED_FEAT(name, enabled) \
  566. __SCHED_FEAT_##name ,
  567. enum {
  568. #include "sched_features.h"
  569. };
  570. #undef SCHED_FEAT
  571. #define SCHED_FEAT(name, enabled) \
  572. (1UL << __SCHED_FEAT_##name) * enabled |
  573. const_debug unsigned int sysctl_sched_features =
  574. #include "sched_features.h"
  575. 0;
  576. #undef SCHED_FEAT
  577. #ifdef CONFIG_SCHED_DEBUG
  578. #define SCHED_FEAT(name, enabled) \
  579. #name ,
  580. static __read_mostly char *sched_feat_names[] = {
  581. #include "sched_features.h"
  582. NULL
  583. };
  584. #undef SCHED_FEAT
  585. static int sched_feat_open(struct inode *inode, struct file *filp)
  586. {
  587. filp->private_data = inode->i_private;
  588. return 0;
  589. }
  590. static ssize_t
  591. sched_feat_read(struct file *filp, char __user *ubuf,
  592. size_t cnt, loff_t *ppos)
  593. {
  594. char *buf;
  595. int r = 0;
  596. int len = 0;
  597. int i;
  598. for (i = 0; sched_feat_names[i]; i++) {
  599. len += strlen(sched_feat_names[i]);
  600. len += 4;
  601. }
  602. buf = kmalloc(len + 2, GFP_KERNEL);
  603. if (!buf)
  604. return -ENOMEM;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (sysctl_sched_features & (1UL << i))
  607. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  608. else
  609. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  610. }
  611. r += sprintf(buf + r, "\n");
  612. WARN_ON(r >= len + 2);
  613. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  614. kfree(buf);
  615. return r;
  616. }
  617. static ssize_t
  618. sched_feat_write(struct file *filp, const char __user *ubuf,
  619. size_t cnt, loff_t *ppos)
  620. {
  621. char buf[64];
  622. char *cmp = buf;
  623. int neg = 0;
  624. int i;
  625. if (cnt > 63)
  626. cnt = 63;
  627. if (copy_from_user(&buf, ubuf, cnt))
  628. return -EFAULT;
  629. buf[cnt] = 0;
  630. if (strncmp(buf, "NO_", 3) == 0) {
  631. neg = 1;
  632. cmp += 3;
  633. }
  634. for (i = 0; sched_feat_names[i]; i++) {
  635. int len = strlen(sched_feat_names[i]);
  636. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  637. if (neg)
  638. sysctl_sched_features &= ~(1UL << i);
  639. else
  640. sysctl_sched_features |= (1UL << i);
  641. break;
  642. }
  643. }
  644. if (!sched_feat_names[i])
  645. return -EINVAL;
  646. filp->f_pos += cnt;
  647. return cnt;
  648. }
  649. static struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .read = sched_feat_read,
  652. .write = sched_feat_write,
  653. };
  654. static __init int sched_init_debug(void)
  655. {
  656. debugfs_create_file("sched_features", 0644, NULL, NULL,
  657. &sched_feat_fops);
  658. return 0;
  659. }
  660. late_initcall(sched_init_debug);
  661. #endif
  662. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  663. /*
  664. * Number of tasks to iterate in a single balance run.
  665. * Limited because this is done with IRQs disabled.
  666. */
  667. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  668. /*
  669. * ratelimit for updating the group shares.
  670. * default: 0.25ms
  671. */
  672. unsigned int sysctl_sched_shares_ratelimit = 250000;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. return task_current(rq, p);
  708. }
  709. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  710. {
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_DEBUG_SPINLOCK
  715. /* this is a valid case when another task releases the spinlock */
  716. rq->lock.owner = current;
  717. #endif
  718. /*
  719. * If we are tracking spinlock dependencies then we have to
  720. * fix up the runqueue lock - which gets 'carried over' from
  721. * prev into current:
  722. */
  723. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  724. spin_unlock_irq(&rq->lock);
  725. }
  726. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  727. static inline int task_running(struct rq *rq, struct task_struct *p)
  728. {
  729. #ifdef CONFIG_SMP
  730. return p->oncpu;
  731. #else
  732. return task_current(rq, p);
  733. #endif
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * We can optimise this out completely for !SMP, because the
  740. * SMP rebalancing from interrupt is the only thing that cares
  741. * here.
  742. */
  743. next->oncpu = 1;
  744. #endif
  745. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. spin_unlock_irq(&rq->lock);
  747. #else
  748. spin_unlock(&rq->lock);
  749. #endif
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * After ->oncpu is cleared, the task can be moved to a different CPU.
  756. * We must ensure this doesn't happen until the switch is completely
  757. * finished.
  758. */
  759. smp_wmb();
  760. prev->oncpu = 0;
  761. #endif
  762. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. local_irq_enable();
  764. #endif
  765. }
  766. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. /*
  768. * __task_rq_lock - lock the runqueue a given task resides on.
  769. * Must be called interrupts disabled.
  770. */
  771. static inline struct rq *__task_rq_lock(struct task_struct *p)
  772. __acquires(rq->lock)
  773. {
  774. for (;;) {
  775. struct rq *rq = task_rq(p);
  776. spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. spin_unlock(&rq->lock);
  780. }
  781. }
  782. /*
  783. * task_rq_lock - lock the runqueue a given task resides on and disable
  784. * interrupts. Note the ordering: we can safely lookup the task_rq without
  785. * explicitly disabling preemption.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(rq->lock)
  789. {
  790. struct rq *rq;
  791. for (;;) {
  792. local_irq_save(*flags);
  793. rq = task_rq(p);
  794. spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. spin_unlock_irqrestore(&rq->lock, *flags);
  798. }
  799. }
  800. static void __task_rq_unlock(struct rq *rq)
  801. __releases(rq->lock)
  802. {
  803. spin_unlock(&rq->lock);
  804. }
  805. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  806. __releases(rq->lock)
  807. {
  808. spin_unlock_irqrestore(&rq->lock, *flags);
  809. }
  810. /*
  811. * this_rq_lock - lock this runqueue and disable interrupts.
  812. */
  813. static struct rq *this_rq_lock(void)
  814. __acquires(rq->lock)
  815. {
  816. struct rq *rq;
  817. local_irq_disable();
  818. rq = this_rq();
  819. spin_lock(&rq->lock);
  820. return rq;
  821. }
  822. #ifdef CONFIG_SCHED_HRTICK
  823. /*
  824. * Use HR-timers to deliver accurate preemption points.
  825. *
  826. * Its all a bit involved since we cannot program an hrt while holding the
  827. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  828. * reschedule event.
  829. *
  830. * When we get rescheduled we reprogram the hrtick_timer outside of the
  831. * rq->lock.
  832. */
  833. /*
  834. * Use hrtick when:
  835. * - enabled by features
  836. * - hrtimer is actually high res
  837. */
  838. static inline int hrtick_enabled(struct rq *rq)
  839. {
  840. if (!sched_feat(HRTICK))
  841. return 0;
  842. if (!cpu_active(cpu_of(rq)))
  843. return 0;
  844. return hrtimer_is_hres_active(&rq->hrtick_timer);
  845. }
  846. static void hrtick_clear(struct rq *rq)
  847. {
  848. if (hrtimer_active(&rq->hrtick_timer))
  849. hrtimer_cancel(&rq->hrtick_timer);
  850. }
  851. /*
  852. * High-resolution timer tick.
  853. * Runs from hardirq context with interrupts disabled.
  854. */
  855. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  856. {
  857. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  858. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  859. spin_lock(&rq->lock);
  860. update_rq_clock(rq);
  861. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  862. spin_unlock(&rq->lock);
  863. return HRTIMER_NORESTART;
  864. }
  865. #ifdef CONFIG_SMP
  866. /*
  867. * called from hardirq (IPI) context
  868. */
  869. static void __hrtick_start(void *arg)
  870. {
  871. struct rq *rq = arg;
  872. spin_lock(&rq->lock);
  873. hrtimer_restart(&rq->hrtick_timer);
  874. rq->hrtick_csd_pending = 0;
  875. spin_unlock(&rq->lock);
  876. }
  877. /*
  878. * Called to set the hrtick timer state.
  879. *
  880. * called with rq->lock held and irqs disabled
  881. */
  882. static void hrtick_start(struct rq *rq, u64 delay)
  883. {
  884. struct hrtimer *timer = &rq->hrtick_timer;
  885. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  886. timer->expires = time;
  887. if (rq == this_rq()) {
  888. hrtimer_restart(timer);
  889. } else if (!rq->hrtick_csd_pending) {
  890. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  891. rq->hrtick_csd_pending = 1;
  892. }
  893. }
  894. static int
  895. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  896. {
  897. int cpu = (int)(long)hcpu;
  898. switch (action) {
  899. case CPU_UP_CANCELED:
  900. case CPU_UP_CANCELED_FROZEN:
  901. case CPU_DOWN_PREPARE:
  902. case CPU_DOWN_PREPARE_FROZEN:
  903. case CPU_DEAD:
  904. case CPU_DEAD_FROZEN:
  905. hrtick_clear(cpu_rq(cpu));
  906. return NOTIFY_OK;
  907. }
  908. return NOTIFY_DONE;
  909. }
  910. static void init_hrtick(void)
  911. {
  912. hotcpu_notifier(hotplug_hrtick, 0);
  913. }
  914. #else
  915. /*
  916. * Called to set the hrtick timer state.
  917. *
  918. * called with rq->lock held and irqs disabled
  919. */
  920. static void hrtick_start(struct rq *rq, u64 delay)
  921. {
  922. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  923. }
  924. static void init_hrtick(void)
  925. {
  926. }
  927. #endif /* CONFIG_SMP */
  928. static void init_rq_hrtick(struct rq *rq)
  929. {
  930. #ifdef CONFIG_SMP
  931. rq->hrtick_csd_pending = 0;
  932. rq->hrtick_csd.flags = 0;
  933. rq->hrtick_csd.func = __hrtick_start;
  934. rq->hrtick_csd.info = rq;
  935. #endif
  936. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  937. rq->hrtick_timer.function = hrtick;
  938. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  939. }
  940. #else
  941. static inline void hrtick_clear(struct rq *rq)
  942. {
  943. }
  944. static inline void init_rq_hrtick(struct rq *rq)
  945. {
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif
  951. /*
  952. * resched_task - mark a task 'to be rescheduled now'.
  953. *
  954. * On UP this means the setting of the need_resched flag, on SMP it
  955. * might also involve a cross-CPU call to trigger the scheduler on
  956. * the target CPU.
  957. */
  958. #ifdef CONFIG_SMP
  959. #ifndef tsk_is_polling
  960. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  961. #endif
  962. static void resched_task(struct task_struct *p)
  963. {
  964. int cpu;
  965. assert_spin_locked(&task_rq(p)->lock);
  966. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  967. return;
  968. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  969. cpu = task_cpu(p);
  970. if (cpu == smp_processor_id())
  971. return;
  972. /* NEED_RESCHED must be visible before we test polling */
  973. smp_mb();
  974. if (!tsk_is_polling(p))
  975. smp_send_reschedule(cpu);
  976. }
  977. static void resched_cpu(int cpu)
  978. {
  979. struct rq *rq = cpu_rq(cpu);
  980. unsigned long flags;
  981. if (!spin_trylock_irqsave(&rq->lock, flags))
  982. return;
  983. resched_task(cpu_curr(cpu));
  984. spin_unlock_irqrestore(&rq->lock, flags);
  985. }
  986. #ifdef CONFIG_NO_HZ
  987. /*
  988. * When add_timer_on() enqueues a timer into the timer wheel of an
  989. * idle CPU then this timer might expire before the next timer event
  990. * which is scheduled to wake up that CPU. In case of a completely
  991. * idle system the next event might even be infinite time into the
  992. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  993. * leaves the inner idle loop so the newly added timer is taken into
  994. * account when the CPU goes back to idle and evaluates the timer
  995. * wheel for the next timer event.
  996. */
  997. void wake_up_idle_cpu(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. if (cpu == smp_processor_id())
  1001. return;
  1002. /*
  1003. * This is safe, as this function is called with the timer
  1004. * wheel base lock of (cpu) held. When the CPU is on the way
  1005. * to idle and has not yet set rq->curr to idle then it will
  1006. * be serialized on the timer wheel base lock and take the new
  1007. * timer into account automatically.
  1008. */
  1009. if (rq->curr != rq->idle)
  1010. return;
  1011. /*
  1012. * We can set TIF_RESCHED on the idle task of the other CPU
  1013. * lockless. The worst case is that the other CPU runs the
  1014. * idle task through an additional NOOP schedule()
  1015. */
  1016. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1017. /* NEED_RESCHED must be visible before we test polling */
  1018. smp_mb();
  1019. if (!tsk_is_polling(rq->idle))
  1020. smp_send_reschedule(cpu);
  1021. }
  1022. #endif /* CONFIG_NO_HZ */
  1023. #else /* !CONFIG_SMP */
  1024. static void resched_task(struct task_struct *p)
  1025. {
  1026. assert_spin_locked(&task_rq(p)->lock);
  1027. set_tsk_need_resched(p);
  1028. }
  1029. #endif /* CONFIG_SMP */
  1030. #if BITS_PER_LONG == 32
  1031. # define WMULT_CONST (~0UL)
  1032. #else
  1033. # define WMULT_CONST (1UL << 32)
  1034. #endif
  1035. #define WMULT_SHIFT 32
  1036. /*
  1037. * Shift right and round:
  1038. */
  1039. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1040. /*
  1041. * delta *= weight / lw
  1042. */
  1043. static unsigned long
  1044. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1045. struct load_weight *lw)
  1046. {
  1047. u64 tmp;
  1048. if (!lw->inv_weight) {
  1049. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1050. lw->inv_weight = 1;
  1051. else
  1052. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1053. / (lw->weight+1);
  1054. }
  1055. tmp = (u64)delta_exec * weight;
  1056. /*
  1057. * Check whether we'd overflow the 64-bit multiplication:
  1058. */
  1059. if (unlikely(tmp > WMULT_CONST))
  1060. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1061. WMULT_SHIFT/2);
  1062. else
  1063. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1064. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1065. }
  1066. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1067. {
  1068. lw->weight += inc;
  1069. lw->inv_weight = 0;
  1070. }
  1071. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1072. {
  1073. lw->weight -= dec;
  1074. lw->inv_weight = 0;
  1075. }
  1076. /*
  1077. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1078. * of tasks with abnormal "nice" values across CPUs the contribution that
  1079. * each task makes to its run queue's load is weighted according to its
  1080. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1081. * scaled version of the new time slice allocation that they receive on time
  1082. * slice expiry etc.
  1083. */
  1084. #define WEIGHT_IDLEPRIO 2
  1085. #define WMULT_IDLEPRIO (1 << 31)
  1086. /*
  1087. * Nice levels are multiplicative, with a gentle 10% change for every
  1088. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1089. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1090. * that remained on nice 0.
  1091. *
  1092. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1093. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1094. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1095. * If a task goes up by ~10% and another task goes down by ~10% then
  1096. * the relative distance between them is ~25%.)
  1097. */
  1098. static const int prio_to_weight[40] = {
  1099. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1100. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1101. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1102. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1103. /* 0 */ 1024, 820, 655, 526, 423,
  1104. /* 5 */ 335, 272, 215, 172, 137,
  1105. /* 10 */ 110, 87, 70, 56, 45,
  1106. /* 15 */ 36, 29, 23, 18, 15,
  1107. };
  1108. /*
  1109. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1110. *
  1111. * In cases where the weight does not change often, we can use the
  1112. * precalculated inverse to speed up arithmetics by turning divisions
  1113. * into multiplications:
  1114. */
  1115. static const u32 prio_to_wmult[40] = {
  1116. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1117. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1118. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1119. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1120. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1121. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1122. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1123. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1124. };
  1125. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1126. /*
  1127. * runqueue iterator, to support SMP load-balancing between different
  1128. * scheduling classes, without having to expose their internal data
  1129. * structures to the load-balancing proper:
  1130. */
  1131. struct rq_iterator {
  1132. void *arg;
  1133. struct task_struct *(*start)(void *);
  1134. struct task_struct *(*next)(void *);
  1135. };
  1136. #ifdef CONFIG_SMP
  1137. static unsigned long
  1138. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1139. unsigned long max_load_move, struct sched_domain *sd,
  1140. enum cpu_idle_type idle, int *all_pinned,
  1141. int *this_best_prio, struct rq_iterator *iterator);
  1142. static int
  1143. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1144. struct sched_domain *sd, enum cpu_idle_type idle,
  1145. struct rq_iterator *iterator);
  1146. #endif
  1147. #ifdef CONFIG_CGROUP_CPUACCT
  1148. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1149. #else
  1150. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1151. #endif
  1152. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1153. {
  1154. update_load_add(&rq->load, load);
  1155. }
  1156. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1157. {
  1158. update_load_sub(&rq->load, load);
  1159. }
  1160. #ifdef CONFIG_SMP
  1161. static unsigned long source_load(int cpu, int type);
  1162. static unsigned long target_load(int cpu, int type);
  1163. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1164. static unsigned long cpu_avg_load_per_task(int cpu)
  1165. {
  1166. struct rq *rq = cpu_rq(cpu);
  1167. if (rq->nr_running)
  1168. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1169. return rq->avg_load_per_task;
  1170. }
  1171. #ifdef CONFIG_FAIR_GROUP_SCHED
  1172. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1173. /*
  1174. * Iterate the full tree, calling @down when first entering a node and @up when
  1175. * leaving it for the final time.
  1176. */
  1177. static void
  1178. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1179. {
  1180. struct task_group *parent, *child;
  1181. rcu_read_lock();
  1182. parent = &root_task_group;
  1183. down:
  1184. (*down)(parent, cpu, sd);
  1185. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1186. parent = child;
  1187. goto down;
  1188. up:
  1189. continue;
  1190. }
  1191. (*up)(parent, cpu, sd);
  1192. child = parent;
  1193. parent = parent->parent;
  1194. if (parent)
  1195. goto up;
  1196. rcu_read_unlock();
  1197. }
  1198. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1199. /*
  1200. * Calculate and set the cpu's group shares.
  1201. */
  1202. static void
  1203. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1204. unsigned long sd_shares, unsigned long sd_rq_weight)
  1205. {
  1206. int boost = 0;
  1207. unsigned long shares;
  1208. unsigned long rq_weight;
  1209. if (!tg->se[cpu])
  1210. return;
  1211. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1212. /*
  1213. * If there are currently no tasks on the cpu pretend there is one of
  1214. * average load so that when a new task gets to run here it will not
  1215. * get delayed by group starvation.
  1216. */
  1217. if (!rq_weight) {
  1218. boost = 1;
  1219. rq_weight = NICE_0_LOAD;
  1220. }
  1221. if (unlikely(rq_weight > sd_rq_weight))
  1222. rq_weight = sd_rq_weight;
  1223. /*
  1224. * \Sum shares * rq_weight
  1225. * shares = -----------------------
  1226. * \Sum rq_weight
  1227. *
  1228. */
  1229. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1230. /*
  1231. * record the actual number of shares, not the boosted amount.
  1232. */
  1233. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1234. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1235. if (shares < MIN_SHARES)
  1236. shares = MIN_SHARES;
  1237. else if (shares > MAX_SHARES)
  1238. shares = MAX_SHARES;
  1239. __set_se_shares(tg->se[cpu], shares);
  1240. }
  1241. /*
  1242. * Re-compute the task group their per cpu shares over the given domain.
  1243. * This needs to be done in a bottom-up fashion because the rq weight of a
  1244. * parent group depends on the shares of its child groups.
  1245. */
  1246. static void
  1247. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1248. {
  1249. unsigned long rq_weight = 0;
  1250. unsigned long shares = 0;
  1251. int i;
  1252. for_each_cpu_mask(i, sd->span) {
  1253. rq_weight += tg->cfs_rq[i]->load.weight;
  1254. shares += tg->cfs_rq[i]->shares;
  1255. }
  1256. if ((!shares && rq_weight) || shares > tg->shares)
  1257. shares = tg->shares;
  1258. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1259. shares = tg->shares;
  1260. if (!rq_weight)
  1261. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1262. for_each_cpu_mask(i, sd->span) {
  1263. struct rq *rq = cpu_rq(i);
  1264. unsigned long flags;
  1265. spin_lock_irqsave(&rq->lock, flags);
  1266. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1267. spin_unlock_irqrestore(&rq->lock, flags);
  1268. }
  1269. }
  1270. /*
  1271. * Compute the cpu's hierarchical load factor for each task group.
  1272. * This needs to be done in a top-down fashion because the load of a child
  1273. * group is a fraction of its parents load.
  1274. */
  1275. static void
  1276. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1277. {
  1278. unsigned long load;
  1279. if (!tg->parent) {
  1280. load = cpu_rq(cpu)->load.weight;
  1281. } else {
  1282. load = tg->parent->cfs_rq[cpu]->h_load;
  1283. load *= tg->cfs_rq[cpu]->shares;
  1284. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1285. }
  1286. tg->cfs_rq[cpu]->h_load = load;
  1287. }
  1288. static void
  1289. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1290. {
  1291. }
  1292. static void update_shares(struct sched_domain *sd)
  1293. {
  1294. u64 now = cpu_clock(raw_smp_processor_id());
  1295. s64 elapsed = now - sd->last_update;
  1296. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1297. sd->last_update = now;
  1298. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1299. }
  1300. }
  1301. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1302. {
  1303. spin_unlock(&rq->lock);
  1304. update_shares(sd);
  1305. spin_lock(&rq->lock);
  1306. }
  1307. static void update_h_load(int cpu)
  1308. {
  1309. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1310. }
  1311. #else
  1312. static inline void update_shares(struct sched_domain *sd)
  1313. {
  1314. }
  1315. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1316. {
  1317. }
  1318. #endif
  1319. #endif
  1320. #ifdef CONFIG_FAIR_GROUP_SCHED
  1321. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1322. {
  1323. #ifdef CONFIG_SMP
  1324. cfs_rq->shares = shares;
  1325. #endif
  1326. }
  1327. #endif
  1328. #include "sched_stats.h"
  1329. #include "sched_idletask.c"
  1330. #include "sched_fair.c"
  1331. #include "sched_rt.c"
  1332. #ifdef CONFIG_SCHED_DEBUG
  1333. # include "sched_debug.c"
  1334. #endif
  1335. #define sched_class_highest (&rt_sched_class)
  1336. #define for_each_class(class) \
  1337. for (class = sched_class_highest; class; class = class->next)
  1338. static void inc_nr_running(struct rq *rq)
  1339. {
  1340. rq->nr_running++;
  1341. }
  1342. static void dec_nr_running(struct rq *rq)
  1343. {
  1344. rq->nr_running--;
  1345. }
  1346. static void set_load_weight(struct task_struct *p)
  1347. {
  1348. if (task_has_rt_policy(p)) {
  1349. p->se.load.weight = prio_to_weight[0] * 2;
  1350. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1351. return;
  1352. }
  1353. /*
  1354. * SCHED_IDLE tasks get minimal weight:
  1355. */
  1356. if (p->policy == SCHED_IDLE) {
  1357. p->se.load.weight = WEIGHT_IDLEPRIO;
  1358. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1359. return;
  1360. }
  1361. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1362. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1363. }
  1364. static void update_avg(u64 *avg, u64 sample)
  1365. {
  1366. s64 diff = sample - *avg;
  1367. *avg += diff >> 3;
  1368. }
  1369. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1370. {
  1371. sched_info_queued(p);
  1372. p->sched_class->enqueue_task(rq, p, wakeup);
  1373. p->se.on_rq = 1;
  1374. }
  1375. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1376. {
  1377. if (sleep && p->se.last_wakeup) {
  1378. update_avg(&p->se.avg_overlap,
  1379. p->se.sum_exec_runtime - p->se.last_wakeup);
  1380. p->se.last_wakeup = 0;
  1381. }
  1382. sched_info_dequeued(p);
  1383. p->sched_class->dequeue_task(rq, p, sleep);
  1384. p->se.on_rq = 0;
  1385. }
  1386. /*
  1387. * __normal_prio - return the priority that is based on the static prio
  1388. */
  1389. static inline int __normal_prio(struct task_struct *p)
  1390. {
  1391. return p->static_prio;
  1392. }
  1393. /*
  1394. * Calculate the expected normal priority: i.e. priority
  1395. * without taking RT-inheritance into account. Might be
  1396. * boosted by interactivity modifiers. Changes upon fork,
  1397. * setprio syscalls, and whenever the interactivity
  1398. * estimator recalculates.
  1399. */
  1400. static inline int normal_prio(struct task_struct *p)
  1401. {
  1402. int prio;
  1403. if (task_has_rt_policy(p))
  1404. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1405. else
  1406. prio = __normal_prio(p);
  1407. return prio;
  1408. }
  1409. /*
  1410. * Calculate the current priority, i.e. the priority
  1411. * taken into account by the scheduler. This value might
  1412. * be boosted by RT tasks, or might be boosted by
  1413. * interactivity modifiers. Will be RT if the task got
  1414. * RT-boosted. If not then it returns p->normal_prio.
  1415. */
  1416. static int effective_prio(struct task_struct *p)
  1417. {
  1418. p->normal_prio = normal_prio(p);
  1419. /*
  1420. * If we are RT tasks or we were boosted to RT priority,
  1421. * keep the priority unchanged. Otherwise, update priority
  1422. * to the normal priority:
  1423. */
  1424. if (!rt_prio(p->prio))
  1425. return p->normal_prio;
  1426. return p->prio;
  1427. }
  1428. /*
  1429. * activate_task - move a task to the runqueue.
  1430. */
  1431. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1432. {
  1433. if (task_contributes_to_load(p))
  1434. rq->nr_uninterruptible--;
  1435. enqueue_task(rq, p, wakeup);
  1436. inc_nr_running(rq);
  1437. }
  1438. /*
  1439. * deactivate_task - remove a task from the runqueue.
  1440. */
  1441. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1442. {
  1443. if (task_contributes_to_load(p))
  1444. rq->nr_uninterruptible++;
  1445. dequeue_task(rq, p, sleep);
  1446. dec_nr_running(rq);
  1447. }
  1448. /**
  1449. * task_curr - is this task currently executing on a CPU?
  1450. * @p: the task in question.
  1451. */
  1452. inline int task_curr(const struct task_struct *p)
  1453. {
  1454. return cpu_curr(task_cpu(p)) == p;
  1455. }
  1456. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1457. {
  1458. set_task_rq(p, cpu);
  1459. #ifdef CONFIG_SMP
  1460. /*
  1461. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1462. * successfuly executed on another CPU. We must ensure that updates of
  1463. * per-task data have been completed by this moment.
  1464. */
  1465. smp_wmb();
  1466. task_thread_info(p)->cpu = cpu;
  1467. #endif
  1468. }
  1469. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1470. const struct sched_class *prev_class,
  1471. int oldprio, int running)
  1472. {
  1473. if (prev_class != p->sched_class) {
  1474. if (prev_class->switched_from)
  1475. prev_class->switched_from(rq, p, running);
  1476. p->sched_class->switched_to(rq, p, running);
  1477. } else
  1478. p->sched_class->prio_changed(rq, p, oldprio, running);
  1479. }
  1480. #ifdef CONFIG_SMP
  1481. /* Used instead of source_load when we know the type == 0 */
  1482. static unsigned long weighted_cpuload(const int cpu)
  1483. {
  1484. return cpu_rq(cpu)->load.weight;
  1485. }
  1486. /*
  1487. * Is this task likely cache-hot:
  1488. */
  1489. static int
  1490. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1491. {
  1492. s64 delta;
  1493. /*
  1494. * Buddy candidates are cache hot:
  1495. */
  1496. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1497. return 1;
  1498. if (p->sched_class != &fair_sched_class)
  1499. return 0;
  1500. if (sysctl_sched_migration_cost == -1)
  1501. return 1;
  1502. if (sysctl_sched_migration_cost == 0)
  1503. return 0;
  1504. delta = now - p->se.exec_start;
  1505. return delta < (s64)sysctl_sched_migration_cost;
  1506. }
  1507. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1508. {
  1509. int old_cpu = task_cpu(p);
  1510. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1511. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1512. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1513. u64 clock_offset;
  1514. clock_offset = old_rq->clock - new_rq->clock;
  1515. #ifdef CONFIG_SCHEDSTATS
  1516. if (p->se.wait_start)
  1517. p->se.wait_start -= clock_offset;
  1518. if (p->se.sleep_start)
  1519. p->se.sleep_start -= clock_offset;
  1520. if (p->se.block_start)
  1521. p->se.block_start -= clock_offset;
  1522. if (old_cpu != new_cpu) {
  1523. schedstat_inc(p, se.nr_migrations);
  1524. if (task_hot(p, old_rq->clock, NULL))
  1525. schedstat_inc(p, se.nr_forced2_migrations);
  1526. }
  1527. #endif
  1528. p->se.vruntime -= old_cfsrq->min_vruntime -
  1529. new_cfsrq->min_vruntime;
  1530. __set_task_cpu(p, new_cpu);
  1531. }
  1532. struct migration_req {
  1533. struct list_head list;
  1534. struct task_struct *task;
  1535. int dest_cpu;
  1536. struct completion done;
  1537. };
  1538. /*
  1539. * The task's runqueue lock must be held.
  1540. * Returns true if you have to wait for migration thread.
  1541. */
  1542. static int
  1543. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1544. {
  1545. struct rq *rq = task_rq(p);
  1546. /*
  1547. * If the task is not on a runqueue (and not running), then
  1548. * it is sufficient to simply update the task's cpu field.
  1549. */
  1550. if (!p->se.on_rq && !task_running(rq, p)) {
  1551. set_task_cpu(p, dest_cpu);
  1552. return 0;
  1553. }
  1554. init_completion(&req->done);
  1555. req->task = p;
  1556. req->dest_cpu = dest_cpu;
  1557. list_add(&req->list, &rq->migration_queue);
  1558. return 1;
  1559. }
  1560. /*
  1561. * wait_task_inactive - wait for a thread to unschedule.
  1562. *
  1563. * If @match_state is nonzero, it's the @p->state value just checked and
  1564. * not expected to change. If it changes, i.e. @p might have woken up,
  1565. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1566. * we return a positive number (its total switch count). If a second call
  1567. * a short while later returns the same number, the caller can be sure that
  1568. * @p has remained unscheduled the whole time.
  1569. *
  1570. * The caller must ensure that the task *will* unschedule sometime soon,
  1571. * else this function might spin for a *long* time. This function can't
  1572. * be called with interrupts off, or it may introduce deadlock with
  1573. * smp_call_function() if an IPI is sent by the same process we are
  1574. * waiting to become inactive.
  1575. */
  1576. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1577. {
  1578. unsigned long flags;
  1579. int running, on_rq;
  1580. unsigned long ncsw;
  1581. struct rq *rq;
  1582. for (;;) {
  1583. /*
  1584. * We do the initial early heuristics without holding
  1585. * any task-queue locks at all. We'll only try to get
  1586. * the runqueue lock when things look like they will
  1587. * work out!
  1588. */
  1589. rq = task_rq(p);
  1590. /*
  1591. * If the task is actively running on another CPU
  1592. * still, just relax and busy-wait without holding
  1593. * any locks.
  1594. *
  1595. * NOTE! Since we don't hold any locks, it's not
  1596. * even sure that "rq" stays as the right runqueue!
  1597. * But we don't care, since "task_running()" will
  1598. * return false if the runqueue has changed and p
  1599. * is actually now running somewhere else!
  1600. */
  1601. while (task_running(rq, p)) {
  1602. if (match_state && unlikely(p->state != match_state))
  1603. return 0;
  1604. cpu_relax();
  1605. }
  1606. /*
  1607. * Ok, time to look more closely! We need the rq
  1608. * lock now, to be *sure*. If we're wrong, we'll
  1609. * just go back and repeat.
  1610. */
  1611. rq = task_rq_lock(p, &flags);
  1612. running = task_running(rq, p);
  1613. on_rq = p->se.on_rq;
  1614. ncsw = 0;
  1615. if (!match_state || p->state == match_state)
  1616. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1617. task_rq_unlock(rq, &flags);
  1618. /*
  1619. * If it changed from the expected state, bail out now.
  1620. */
  1621. if (unlikely(!ncsw))
  1622. break;
  1623. /*
  1624. * Was it really running after all now that we
  1625. * checked with the proper locks actually held?
  1626. *
  1627. * Oops. Go back and try again..
  1628. */
  1629. if (unlikely(running)) {
  1630. cpu_relax();
  1631. continue;
  1632. }
  1633. /*
  1634. * It's not enough that it's not actively running,
  1635. * it must be off the runqueue _entirely_, and not
  1636. * preempted!
  1637. *
  1638. * So if it wa still runnable (but just not actively
  1639. * running right now), it's preempted, and we should
  1640. * yield - it could be a while.
  1641. */
  1642. if (unlikely(on_rq)) {
  1643. schedule_timeout_uninterruptible(1);
  1644. continue;
  1645. }
  1646. /*
  1647. * Ahh, all good. It wasn't running, and it wasn't
  1648. * runnable, which means that it will never become
  1649. * running in the future either. We're all done!
  1650. */
  1651. break;
  1652. }
  1653. return ncsw;
  1654. }
  1655. /***
  1656. * kick_process - kick a running thread to enter/exit the kernel
  1657. * @p: the to-be-kicked thread
  1658. *
  1659. * Cause a process which is running on another CPU to enter
  1660. * kernel-mode, without any delay. (to get signals handled.)
  1661. *
  1662. * NOTE: this function doesnt have to take the runqueue lock,
  1663. * because all it wants to ensure is that the remote task enters
  1664. * the kernel. If the IPI races and the task has been migrated
  1665. * to another CPU then no harm is done and the purpose has been
  1666. * achieved as well.
  1667. */
  1668. void kick_process(struct task_struct *p)
  1669. {
  1670. int cpu;
  1671. preempt_disable();
  1672. cpu = task_cpu(p);
  1673. if ((cpu != smp_processor_id()) && task_curr(p))
  1674. smp_send_reschedule(cpu);
  1675. preempt_enable();
  1676. }
  1677. /*
  1678. * Return a low guess at the load of a migration-source cpu weighted
  1679. * according to the scheduling class and "nice" value.
  1680. *
  1681. * We want to under-estimate the load of migration sources, to
  1682. * balance conservatively.
  1683. */
  1684. static unsigned long source_load(int cpu, int type)
  1685. {
  1686. struct rq *rq = cpu_rq(cpu);
  1687. unsigned long total = weighted_cpuload(cpu);
  1688. if (type == 0 || !sched_feat(LB_BIAS))
  1689. return total;
  1690. return min(rq->cpu_load[type-1], total);
  1691. }
  1692. /*
  1693. * Return a high guess at the load of a migration-target cpu weighted
  1694. * according to the scheduling class and "nice" value.
  1695. */
  1696. static unsigned long target_load(int cpu, int type)
  1697. {
  1698. struct rq *rq = cpu_rq(cpu);
  1699. unsigned long total = weighted_cpuload(cpu);
  1700. if (type == 0 || !sched_feat(LB_BIAS))
  1701. return total;
  1702. return max(rq->cpu_load[type-1], total);
  1703. }
  1704. /*
  1705. * find_idlest_group finds and returns the least busy CPU group within the
  1706. * domain.
  1707. */
  1708. static struct sched_group *
  1709. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1710. {
  1711. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1712. unsigned long min_load = ULONG_MAX, this_load = 0;
  1713. int load_idx = sd->forkexec_idx;
  1714. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1715. do {
  1716. unsigned long load, avg_load;
  1717. int local_group;
  1718. int i;
  1719. /* Skip over this group if it has no CPUs allowed */
  1720. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1721. continue;
  1722. local_group = cpu_isset(this_cpu, group->cpumask);
  1723. /* Tally up the load of all CPUs in the group */
  1724. avg_load = 0;
  1725. for_each_cpu_mask_nr(i, group->cpumask) {
  1726. /* Bias balancing toward cpus of our domain */
  1727. if (local_group)
  1728. load = source_load(i, load_idx);
  1729. else
  1730. load = target_load(i, load_idx);
  1731. avg_load += load;
  1732. }
  1733. /* Adjust by relative CPU power of the group */
  1734. avg_load = sg_div_cpu_power(group,
  1735. avg_load * SCHED_LOAD_SCALE);
  1736. if (local_group) {
  1737. this_load = avg_load;
  1738. this = group;
  1739. } else if (avg_load < min_load) {
  1740. min_load = avg_load;
  1741. idlest = group;
  1742. }
  1743. } while (group = group->next, group != sd->groups);
  1744. if (!idlest || 100*this_load < imbalance*min_load)
  1745. return NULL;
  1746. return idlest;
  1747. }
  1748. /*
  1749. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1750. */
  1751. static int
  1752. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1753. cpumask_t *tmp)
  1754. {
  1755. unsigned long load, min_load = ULONG_MAX;
  1756. int idlest = -1;
  1757. int i;
  1758. /* Traverse only the allowed CPUs */
  1759. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1760. for_each_cpu_mask_nr(i, *tmp) {
  1761. load = weighted_cpuload(i);
  1762. if (load < min_load || (load == min_load && i == this_cpu)) {
  1763. min_load = load;
  1764. idlest = i;
  1765. }
  1766. }
  1767. return idlest;
  1768. }
  1769. /*
  1770. * sched_balance_self: balance the current task (running on cpu) in domains
  1771. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1772. * SD_BALANCE_EXEC.
  1773. *
  1774. * Balance, ie. select the least loaded group.
  1775. *
  1776. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1777. *
  1778. * preempt must be disabled.
  1779. */
  1780. static int sched_balance_self(int cpu, int flag)
  1781. {
  1782. struct task_struct *t = current;
  1783. struct sched_domain *tmp, *sd = NULL;
  1784. for_each_domain(cpu, tmp) {
  1785. /*
  1786. * If power savings logic is enabled for a domain, stop there.
  1787. */
  1788. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1789. break;
  1790. if (tmp->flags & flag)
  1791. sd = tmp;
  1792. }
  1793. if (sd)
  1794. update_shares(sd);
  1795. while (sd) {
  1796. cpumask_t span, tmpmask;
  1797. struct sched_group *group;
  1798. int new_cpu, weight;
  1799. if (!(sd->flags & flag)) {
  1800. sd = sd->child;
  1801. continue;
  1802. }
  1803. span = sd->span;
  1804. group = find_idlest_group(sd, t, cpu);
  1805. if (!group) {
  1806. sd = sd->child;
  1807. continue;
  1808. }
  1809. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1810. if (new_cpu == -1 || new_cpu == cpu) {
  1811. /* Now try balancing at a lower domain level of cpu */
  1812. sd = sd->child;
  1813. continue;
  1814. }
  1815. /* Now try balancing at a lower domain level of new_cpu */
  1816. cpu = new_cpu;
  1817. sd = NULL;
  1818. weight = cpus_weight(span);
  1819. for_each_domain(cpu, tmp) {
  1820. if (weight <= cpus_weight(tmp->span))
  1821. break;
  1822. if (tmp->flags & flag)
  1823. sd = tmp;
  1824. }
  1825. /* while loop will break here if sd == NULL */
  1826. }
  1827. return cpu;
  1828. }
  1829. #endif /* CONFIG_SMP */
  1830. /***
  1831. * try_to_wake_up - wake up a thread
  1832. * @p: the to-be-woken-up thread
  1833. * @state: the mask of task states that can be woken
  1834. * @sync: do a synchronous wakeup?
  1835. *
  1836. * Put it on the run-queue if it's not already there. The "current"
  1837. * thread is always on the run-queue (except when the actual
  1838. * re-schedule is in progress), and as such you're allowed to do
  1839. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1840. * runnable without the overhead of this.
  1841. *
  1842. * returns failure only if the task is already active.
  1843. */
  1844. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1845. {
  1846. int cpu, orig_cpu, this_cpu, success = 0;
  1847. unsigned long flags;
  1848. long old_state;
  1849. struct rq *rq;
  1850. if (!sched_feat(SYNC_WAKEUPS))
  1851. sync = 0;
  1852. #ifdef CONFIG_SMP
  1853. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1854. struct sched_domain *sd;
  1855. this_cpu = raw_smp_processor_id();
  1856. cpu = task_cpu(p);
  1857. for_each_domain(this_cpu, sd) {
  1858. if (cpu_isset(cpu, sd->span)) {
  1859. update_shares(sd);
  1860. break;
  1861. }
  1862. }
  1863. }
  1864. #endif
  1865. smp_wmb();
  1866. rq = task_rq_lock(p, &flags);
  1867. old_state = p->state;
  1868. if (!(old_state & state))
  1869. goto out;
  1870. if (p->se.on_rq)
  1871. goto out_running;
  1872. cpu = task_cpu(p);
  1873. orig_cpu = cpu;
  1874. this_cpu = smp_processor_id();
  1875. #ifdef CONFIG_SMP
  1876. if (unlikely(task_running(rq, p)))
  1877. goto out_activate;
  1878. cpu = p->sched_class->select_task_rq(p, sync);
  1879. if (cpu != orig_cpu) {
  1880. set_task_cpu(p, cpu);
  1881. task_rq_unlock(rq, &flags);
  1882. /* might preempt at this point */
  1883. rq = task_rq_lock(p, &flags);
  1884. old_state = p->state;
  1885. if (!(old_state & state))
  1886. goto out;
  1887. if (p->se.on_rq)
  1888. goto out_running;
  1889. this_cpu = smp_processor_id();
  1890. cpu = task_cpu(p);
  1891. }
  1892. #ifdef CONFIG_SCHEDSTATS
  1893. schedstat_inc(rq, ttwu_count);
  1894. if (cpu == this_cpu)
  1895. schedstat_inc(rq, ttwu_local);
  1896. else {
  1897. struct sched_domain *sd;
  1898. for_each_domain(this_cpu, sd) {
  1899. if (cpu_isset(cpu, sd->span)) {
  1900. schedstat_inc(sd, ttwu_wake_remote);
  1901. break;
  1902. }
  1903. }
  1904. }
  1905. #endif /* CONFIG_SCHEDSTATS */
  1906. out_activate:
  1907. #endif /* CONFIG_SMP */
  1908. schedstat_inc(p, se.nr_wakeups);
  1909. if (sync)
  1910. schedstat_inc(p, se.nr_wakeups_sync);
  1911. if (orig_cpu != cpu)
  1912. schedstat_inc(p, se.nr_wakeups_migrate);
  1913. if (cpu == this_cpu)
  1914. schedstat_inc(p, se.nr_wakeups_local);
  1915. else
  1916. schedstat_inc(p, se.nr_wakeups_remote);
  1917. update_rq_clock(rq);
  1918. activate_task(rq, p, 1);
  1919. success = 1;
  1920. out_running:
  1921. trace_mark(kernel_sched_wakeup,
  1922. "pid %d state %ld ## rq %p task %p rq->curr %p",
  1923. p->pid, p->state, rq, p, rq->curr);
  1924. check_preempt_curr(rq, p);
  1925. p->state = TASK_RUNNING;
  1926. #ifdef CONFIG_SMP
  1927. if (p->sched_class->task_wake_up)
  1928. p->sched_class->task_wake_up(rq, p);
  1929. #endif
  1930. out:
  1931. current->se.last_wakeup = current->se.sum_exec_runtime;
  1932. task_rq_unlock(rq, &flags);
  1933. return success;
  1934. }
  1935. int wake_up_process(struct task_struct *p)
  1936. {
  1937. return try_to_wake_up(p, TASK_ALL, 0);
  1938. }
  1939. EXPORT_SYMBOL(wake_up_process);
  1940. int wake_up_state(struct task_struct *p, unsigned int state)
  1941. {
  1942. return try_to_wake_up(p, state, 0);
  1943. }
  1944. /*
  1945. * Perform scheduler related setup for a newly forked process p.
  1946. * p is forked by current.
  1947. *
  1948. * __sched_fork() is basic setup used by init_idle() too:
  1949. */
  1950. static void __sched_fork(struct task_struct *p)
  1951. {
  1952. p->se.exec_start = 0;
  1953. p->se.sum_exec_runtime = 0;
  1954. p->se.prev_sum_exec_runtime = 0;
  1955. p->se.last_wakeup = 0;
  1956. p->se.avg_overlap = 0;
  1957. #ifdef CONFIG_SCHEDSTATS
  1958. p->se.wait_start = 0;
  1959. p->se.sum_sleep_runtime = 0;
  1960. p->se.sleep_start = 0;
  1961. p->se.block_start = 0;
  1962. p->se.sleep_max = 0;
  1963. p->se.block_max = 0;
  1964. p->se.exec_max = 0;
  1965. p->se.slice_max = 0;
  1966. p->se.wait_max = 0;
  1967. #endif
  1968. INIT_LIST_HEAD(&p->rt.run_list);
  1969. p->se.on_rq = 0;
  1970. INIT_LIST_HEAD(&p->se.group_node);
  1971. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1972. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1973. #endif
  1974. /*
  1975. * We mark the process as running here, but have not actually
  1976. * inserted it onto the runqueue yet. This guarantees that
  1977. * nobody will actually run it, and a signal or other external
  1978. * event cannot wake it up and insert it on the runqueue either.
  1979. */
  1980. p->state = TASK_RUNNING;
  1981. }
  1982. /*
  1983. * fork()/clone()-time setup:
  1984. */
  1985. void sched_fork(struct task_struct *p, int clone_flags)
  1986. {
  1987. int cpu = get_cpu();
  1988. __sched_fork(p);
  1989. #ifdef CONFIG_SMP
  1990. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1991. #endif
  1992. set_task_cpu(p, cpu);
  1993. /*
  1994. * Make sure we do not leak PI boosting priority to the child:
  1995. */
  1996. p->prio = current->normal_prio;
  1997. if (!rt_prio(p->prio))
  1998. p->sched_class = &fair_sched_class;
  1999. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2000. if (likely(sched_info_on()))
  2001. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2002. #endif
  2003. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2004. p->oncpu = 0;
  2005. #endif
  2006. #ifdef CONFIG_PREEMPT
  2007. /* Want to start with kernel preemption disabled. */
  2008. task_thread_info(p)->preempt_count = 1;
  2009. #endif
  2010. put_cpu();
  2011. }
  2012. /*
  2013. * wake_up_new_task - wake up a newly created task for the first time.
  2014. *
  2015. * This function will do some initial scheduler statistics housekeeping
  2016. * that must be done for every newly created context, then puts the task
  2017. * on the runqueue and wakes it.
  2018. */
  2019. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2020. {
  2021. unsigned long flags;
  2022. struct rq *rq;
  2023. rq = task_rq_lock(p, &flags);
  2024. BUG_ON(p->state != TASK_RUNNING);
  2025. update_rq_clock(rq);
  2026. p->prio = effective_prio(p);
  2027. if (!p->sched_class->task_new || !current->se.on_rq) {
  2028. activate_task(rq, p, 0);
  2029. } else {
  2030. /*
  2031. * Let the scheduling class do new task startup
  2032. * management (if any):
  2033. */
  2034. p->sched_class->task_new(rq, p);
  2035. inc_nr_running(rq);
  2036. }
  2037. trace_mark(kernel_sched_wakeup_new,
  2038. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2039. p->pid, p->state, rq, p, rq->curr);
  2040. check_preempt_curr(rq, p);
  2041. #ifdef CONFIG_SMP
  2042. if (p->sched_class->task_wake_up)
  2043. p->sched_class->task_wake_up(rq, p);
  2044. #endif
  2045. task_rq_unlock(rq, &flags);
  2046. }
  2047. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2048. /**
  2049. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2050. * @notifier: notifier struct to register
  2051. */
  2052. void preempt_notifier_register(struct preempt_notifier *notifier)
  2053. {
  2054. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2055. }
  2056. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2057. /**
  2058. * preempt_notifier_unregister - no longer interested in preemption notifications
  2059. * @notifier: notifier struct to unregister
  2060. *
  2061. * This is safe to call from within a preemption notifier.
  2062. */
  2063. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2064. {
  2065. hlist_del(&notifier->link);
  2066. }
  2067. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2068. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2069. {
  2070. struct preempt_notifier *notifier;
  2071. struct hlist_node *node;
  2072. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2073. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2074. }
  2075. static void
  2076. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2077. struct task_struct *next)
  2078. {
  2079. struct preempt_notifier *notifier;
  2080. struct hlist_node *node;
  2081. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2082. notifier->ops->sched_out(notifier, next);
  2083. }
  2084. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2085. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2086. {
  2087. }
  2088. static void
  2089. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2090. struct task_struct *next)
  2091. {
  2092. }
  2093. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2094. /**
  2095. * prepare_task_switch - prepare to switch tasks
  2096. * @rq: the runqueue preparing to switch
  2097. * @prev: the current task that is being switched out
  2098. * @next: the task we are going to switch to.
  2099. *
  2100. * This is called with the rq lock held and interrupts off. It must
  2101. * be paired with a subsequent finish_task_switch after the context
  2102. * switch.
  2103. *
  2104. * prepare_task_switch sets up locking and calls architecture specific
  2105. * hooks.
  2106. */
  2107. static inline void
  2108. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2109. struct task_struct *next)
  2110. {
  2111. fire_sched_out_preempt_notifiers(prev, next);
  2112. prepare_lock_switch(rq, next);
  2113. prepare_arch_switch(next);
  2114. }
  2115. /**
  2116. * finish_task_switch - clean up after a task-switch
  2117. * @rq: runqueue associated with task-switch
  2118. * @prev: the thread we just switched away from.
  2119. *
  2120. * finish_task_switch must be called after the context switch, paired
  2121. * with a prepare_task_switch call before the context switch.
  2122. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2123. * and do any other architecture-specific cleanup actions.
  2124. *
  2125. * Note that we may have delayed dropping an mm in context_switch(). If
  2126. * so, we finish that here outside of the runqueue lock. (Doing it
  2127. * with the lock held can cause deadlocks; see schedule() for
  2128. * details.)
  2129. */
  2130. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2131. __releases(rq->lock)
  2132. {
  2133. struct mm_struct *mm = rq->prev_mm;
  2134. long prev_state;
  2135. rq->prev_mm = NULL;
  2136. /*
  2137. * A task struct has one reference for the use as "current".
  2138. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2139. * schedule one last time. The schedule call will never return, and
  2140. * the scheduled task must drop that reference.
  2141. * The test for TASK_DEAD must occur while the runqueue locks are
  2142. * still held, otherwise prev could be scheduled on another cpu, die
  2143. * there before we look at prev->state, and then the reference would
  2144. * be dropped twice.
  2145. * Manfred Spraul <manfred@colorfullife.com>
  2146. */
  2147. prev_state = prev->state;
  2148. finish_arch_switch(prev);
  2149. finish_lock_switch(rq, prev);
  2150. #ifdef CONFIG_SMP
  2151. if (current->sched_class->post_schedule)
  2152. current->sched_class->post_schedule(rq);
  2153. #endif
  2154. fire_sched_in_preempt_notifiers(current);
  2155. if (mm)
  2156. mmdrop(mm);
  2157. if (unlikely(prev_state == TASK_DEAD)) {
  2158. /*
  2159. * Remove function-return probe instances associated with this
  2160. * task and put them back on the free list.
  2161. */
  2162. kprobe_flush_task(prev);
  2163. put_task_struct(prev);
  2164. }
  2165. }
  2166. /**
  2167. * schedule_tail - first thing a freshly forked thread must call.
  2168. * @prev: the thread we just switched away from.
  2169. */
  2170. asmlinkage void schedule_tail(struct task_struct *prev)
  2171. __releases(rq->lock)
  2172. {
  2173. struct rq *rq = this_rq();
  2174. finish_task_switch(rq, prev);
  2175. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2176. /* In this case, finish_task_switch does not reenable preemption */
  2177. preempt_enable();
  2178. #endif
  2179. if (current->set_child_tid)
  2180. put_user(task_pid_vnr(current), current->set_child_tid);
  2181. }
  2182. /*
  2183. * context_switch - switch to the new MM and the new
  2184. * thread's register state.
  2185. */
  2186. static inline void
  2187. context_switch(struct rq *rq, struct task_struct *prev,
  2188. struct task_struct *next)
  2189. {
  2190. struct mm_struct *mm, *oldmm;
  2191. prepare_task_switch(rq, prev, next);
  2192. trace_mark(kernel_sched_schedule,
  2193. "prev_pid %d next_pid %d prev_state %ld "
  2194. "## rq %p prev %p next %p",
  2195. prev->pid, next->pid, prev->state,
  2196. rq, prev, next);
  2197. mm = next->mm;
  2198. oldmm = prev->active_mm;
  2199. /*
  2200. * For paravirt, this is coupled with an exit in switch_to to
  2201. * combine the page table reload and the switch backend into
  2202. * one hypercall.
  2203. */
  2204. arch_enter_lazy_cpu_mode();
  2205. if (unlikely(!mm)) {
  2206. next->active_mm = oldmm;
  2207. atomic_inc(&oldmm->mm_count);
  2208. enter_lazy_tlb(oldmm, next);
  2209. } else
  2210. switch_mm(oldmm, mm, next);
  2211. if (unlikely(!prev->mm)) {
  2212. prev->active_mm = NULL;
  2213. rq->prev_mm = oldmm;
  2214. }
  2215. /*
  2216. * Since the runqueue lock will be released by the next
  2217. * task (which is an invalid locking op but in the case
  2218. * of the scheduler it's an obvious special-case), so we
  2219. * do an early lockdep release here:
  2220. */
  2221. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2222. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2223. #endif
  2224. /* Here we just switch the register state and the stack. */
  2225. switch_to(prev, next, prev);
  2226. barrier();
  2227. /*
  2228. * this_rq must be evaluated again because prev may have moved
  2229. * CPUs since it called schedule(), thus the 'rq' on its stack
  2230. * frame will be invalid.
  2231. */
  2232. finish_task_switch(this_rq(), prev);
  2233. }
  2234. /*
  2235. * nr_running, nr_uninterruptible and nr_context_switches:
  2236. *
  2237. * externally visible scheduler statistics: current number of runnable
  2238. * threads, current number of uninterruptible-sleeping threads, total
  2239. * number of context switches performed since bootup.
  2240. */
  2241. unsigned long nr_running(void)
  2242. {
  2243. unsigned long i, sum = 0;
  2244. for_each_online_cpu(i)
  2245. sum += cpu_rq(i)->nr_running;
  2246. return sum;
  2247. }
  2248. unsigned long nr_uninterruptible(void)
  2249. {
  2250. unsigned long i, sum = 0;
  2251. for_each_possible_cpu(i)
  2252. sum += cpu_rq(i)->nr_uninterruptible;
  2253. /*
  2254. * Since we read the counters lockless, it might be slightly
  2255. * inaccurate. Do not allow it to go below zero though:
  2256. */
  2257. if (unlikely((long)sum < 0))
  2258. sum = 0;
  2259. return sum;
  2260. }
  2261. unsigned long long nr_context_switches(void)
  2262. {
  2263. int i;
  2264. unsigned long long sum = 0;
  2265. for_each_possible_cpu(i)
  2266. sum += cpu_rq(i)->nr_switches;
  2267. return sum;
  2268. }
  2269. unsigned long nr_iowait(void)
  2270. {
  2271. unsigned long i, sum = 0;
  2272. for_each_possible_cpu(i)
  2273. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2274. return sum;
  2275. }
  2276. unsigned long nr_active(void)
  2277. {
  2278. unsigned long i, running = 0, uninterruptible = 0;
  2279. for_each_online_cpu(i) {
  2280. running += cpu_rq(i)->nr_running;
  2281. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2282. }
  2283. if (unlikely((long)uninterruptible < 0))
  2284. uninterruptible = 0;
  2285. return running + uninterruptible;
  2286. }
  2287. /*
  2288. * Update rq->cpu_load[] statistics. This function is usually called every
  2289. * scheduler tick (TICK_NSEC).
  2290. */
  2291. static void update_cpu_load(struct rq *this_rq)
  2292. {
  2293. unsigned long this_load = this_rq->load.weight;
  2294. int i, scale;
  2295. this_rq->nr_load_updates++;
  2296. /* Update our load: */
  2297. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2298. unsigned long old_load, new_load;
  2299. /* scale is effectively 1 << i now, and >> i divides by scale */
  2300. old_load = this_rq->cpu_load[i];
  2301. new_load = this_load;
  2302. /*
  2303. * Round up the averaging division if load is increasing. This
  2304. * prevents us from getting stuck on 9 if the load is 10, for
  2305. * example.
  2306. */
  2307. if (new_load > old_load)
  2308. new_load += scale-1;
  2309. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2310. }
  2311. }
  2312. #ifdef CONFIG_SMP
  2313. /*
  2314. * double_rq_lock - safely lock two runqueues
  2315. *
  2316. * Note this does not disable interrupts like task_rq_lock,
  2317. * you need to do so manually before calling.
  2318. */
  2319. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2320. __acquires(rq1->lock)
  2321. __acquires(rq2->lock)
  2322. {
  2323. BUG_ON(!irqs_disabled());
  2324. if (rq1 == rq2) {
  2325. spin_lock(&rq1->lock);
  2326. __acquire(rq2->lock); /* Fake it out ;) */
  2327. } else {
  2328. if (rq1 < rq2) {
  2329. spin_lock(&rq1->lock);
  2330. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2331. } else {
  2332. spin_lock(&rq2->lock);
  2333. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2334. }
  2335. }
  2336. update_rq_clock(rq1);
  2337. update_rq_clock(rq2);
  2338. }
  2339. /*
  2340. * double_rq_unlock - safely unlock two runqueues
  2341. *
  2342. * Note this does not restore interrupts like task_rq_unlock,
  2343. * you need to do so manually after calling.
  2344. */
  2345. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2346. __releases(rq1->lock)
  2347. __releases(rq2->lock)
  2348. {
  2349. spin_unlock(&rq1->lock);
  2350. if (rq1 != rq2)
  2351. spin_unlock(&rq2->lock);
  2352. else
  2353. __release(rq2->lock);
  2354. }
  2355. /*
  2356. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2357. */
  2358. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2359. __releases(this_rq->lock)
  2360. __acquires(busiest->lock)
  2361. __acquires(this_rq->lock)
  2362. {
  2363. int ret = 0;
  2364. if (unlikely(!irqs_disabled())) {
  2365. /* printk() doesn't work good under rq->lock */
  2366. spin_unlock(&this_rq->lock);
  2367. BUG_ON(1);
  2368. }
  2369. if (unlikely(!spin_trylock(&busiest->lock))) {
  2370. if (busiest < this_rq) {
  2371. spin_unlock(&this_rq->lock);
  2372. spin_lock(&busiest->lock);
  2373. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2374. ret = 1;
  2375. } else
  2376. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2377. }
  2378. return ret;
  2379. }
  2380. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2381. __releases(busiest->lock)
  2382. {
  2383. spin_unlock(&busiest->lock);
  2384. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2385. }
  2386. /*
  2387. * If dest_cpu is allowed for this process, migrate the task to it.
  2388. * This is accomplished by forcing the cpu_allowed mask to only
  2389. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2390. * the cpu_allowed mask is restored.
  2391. */
  2392. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2393. {
  2394. struct migration_req req;
  2395. unsigned long flags;
  2396. struct rq *rq;
  2397. rq = task_rq_lock(p, &flags);
  2398. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2399. || unlikely(!cpu_active(dest_cpu)))
  2400. goto out;
  2401. /* force the process onto the specified CPU */
  2402. if (migrate_task(p, dest_cpu, &req)) {
  2403. /* Need to wait for migration thread (might exit: take ref). */
  2404. struct task_struct *mt = rq->migration_thread;
  2405. get_task_struct(mt);
  2406. task_rq_unlock(rq, &flags);
  2407. wake_up_process(mt);
  2408. put_task_struct(mt);
  2409. wait_for_completion(&req.done);
  2410. return;
  2411. }
  2412. out:
  2413. task_rq_unlock(rq, &flags);
  2414. }
  2415. /*
  2416. * sched_exec - execve() is a valuable balancing opportunity, because at
  2417. * this point the task has the smallest effective memory and cache footprint.
  2418. */
  2419. void sched_exec(void)
  2420. {
  2421. int new_cpu, this_cpu = get_cpu();
  2422. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2423. put_cpu();
  2424. if (new_cpu != this_cpu)
  2425. sched_migrate_task(current, new_cpu);
  2426. }
  2427. /*
  2428. * pull_task - move a task from a remote runqueue to the local runqueue.
  2429. * Both runqueues must be locked.
  2430. */
  2431. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2432. struct rq *this_rq, int this_cpu)
  2433. {
  2434. deactivate_task(src_rq, p, 0);
  2435. set_task_cpu(p, this_cpu);
  2436. activate_task(this_rq, p, 0);
  2437. /*
  2438. * Note that idle threads have a prio of MAX_PRIO, for this test
  2439. * to be always true for them.
  2440. */
  2441. check_preempt_curr(this_rq, p);
  2442. }
  2443. /*
  2444. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2445. */
  2446. static
  2447. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2448. struct sched_domain *sd, enum cpu_idle_type idle,
  2449. int *all_pinned)
  2450. {
  2451. /*
  2452. * We do not migrate tasks that are:
  2453. * 1) running (obviously), or
  2454. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2455. * 3) are cache-hot on their current CPU.
  2456. */
  2457. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2458. schedstat_inc(p, se.nr_failed_migrations_affine);
  2459. return 0;
  2460. }
  2461. *all_pinned = 0;
  2462. if (task_running(rq, p)) {
  2463. schedstat_inc(p, se.nr_failed_migrations_running);
  2464. return 0;
  2465. }
  2466. /*
  2467. * Aggressive migration if:
  2468. * 1) task is cache cold, or
  2469. * 2) too many balance attempts have failed.
  2470. */
  2471. if (!task_hot(p, rq->clock, sd) ||
  2472. sd->nr_balance_failed > sd->cache_nice_tries) {
  2473. #ifdef CONFIG_SCHEDSTATS
  2474. if (task_hot(p, rq->clock, sd)) {
  2475. schedstat_inc(sd, lb_hot_gained[idle]);
  2476. schedstat_inc(p, se.nr_forced_migrations);
  2477. }
  2478. #endif
  2479. return 1;
  2480. }
  2481. if (task_hot(p, rq->clock, sd)) {
  2482. schedstat_inc(p, se.nr_failed_migrations_hot);
  2483. return 0;
  2484. }
  2485. return 1;
  2486. }
  2487. static unsigned long
  2488. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2489. unsigned long max_load_move, struct sched_domain *sd,
  2490. enum cpu_idle_type idle, int *all_pinned,
  2491. int *this_best_prio, struct rq_iterator *iterator)
  2492. {
  2493. int loops = 0, pulled = 0, pinned = 0;
  2494. struct task_struct *p;
  2495. long rem_load_move = max_load_move;
  2496. if (max_load_move == 0)
  2497. goto out;
  2498. pinned = 1;
  2499. /*
  2500. * Start the load-balancing iterator:
  2501. */
  2502. p = iterator->start(iterator->arg);
  2503. next:
  2504. if (!p || loops++ > sysctl_sched_nr_migrate)
  2505. goto out;
  2506. if ((p->se.load.weight >> 1) > rem_load_move ||
  2507. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2508. p = iterator->next(iterator->arg);
  2509. goto next;
  2510. }
  2511. pull_task(busiest, p, this_rq, this_cpu);
  2512. pulled++;
  2513. rem_load_move -= p->se.load.weight;
  2514. /*
  2515. * We only want to steal up to the prescribed amount of weighted load.
  2516. */
  2517. if (rem_load_move > 0) {
  2518. if (p->prio < *this_best_prio)
  2519. *this_best_prio = p->prio;
  2520. p = iterator->next(iterator->arg);
  2521. goto next;
  2522. }
  2523. out:
  2524. /*
  2525. * Right now, this is one of only two places pull_task() is called,
  2526. * so we can safely collect pull_task() stats here rather than
  2527. * inside pull_task().
  2528. */
  2529. schedstat_add(sd, lb_gained[idle], pulled);
  2530. if (all_pinned)
  2531. *all_pinned = pinned;
  2532. return max_load_move - rem_load_move;
  2533. }
  2534. /*
  2535. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2536. * this_rq, as part of a balancing operation within domain "sd".
  2537. * Returns 1 if successful and 0 otherwise.
  2538. *
  2539. * Called with both runqueues locked.
  2540. */
  2541. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2542. unsigned long max_load_move,
  2543. struct sched_domain *sd, enum cpu_idle_type idle,
  2544. int *all_pinned)
  2545. {
  2546. const struct sched_class *class = sched_class_highest;
  2547. unsigned long total_load_moved = 0;
  2548. int this_best_prio = this_rq->curr->prio;
  2549. do {
  2550. total_load_moved +=
  2551. class->load_balance(this_rq, this_cpu, busiest,
  2552. max_load_move - total_load_moved,
  2553. sd, idle, all_pinned, &this_best_prio);
  2554. class = class->next;
  2555. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2556. break;
  2557. } while (class && max_load_move > total_load_moved);
  2558. return total_load_moved > 0;
  2559. }
  2560. static int
  2561. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2562. struct sched_domain *sd, enum cpu_idle_type idle,
  2563. struct rq_iterator *iterator)
  2564. {
  2565. struct task_struct *p = iterator->start(iterator->arg);
  2566. int pinned = 0;
  2567. while (p) {
  2568. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2569. pull_task(busiest, p, this_rq, this_cpu);
  2570. /*
  2571. * Right now, this is only the second place pull_task()
  2572. * is called, so we can safely collect pull_task()
  2573. * stats here rather than inside pull_task().
  2574. */
  2575. schedstat_inc(sd, lb_gained[idle]);
  2576. return 1;
  2577. }
  2578. p = iterator->next(iterator->arg);
  2579. }
  2580. return 0;
  2581. }
  2582. /*
  2583. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2584. * part of active balancing operations within "domain".
  2585. * Returns 1 if successful and 0 otherwise.
  2586. *
  2587. * Called with both runqueues locked.
  2588. */
  2589. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2590. struct sched_domain *sd, enum cpu_idle_type idle)
  2591. {
  2592. const struct sched_class *class;
  2593. for (class = sched_class_highest; class; class = class->next)
  2594. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2595. return 1;
  2596. return 0;
  2597. }
  2598. /*
  2599. * find_busiest_group finds and returns the busiest CPU group within the
  2600. * domain. It calculates and returns the amount of weighted load which
  2601. * should be moved to restore balance via the imbalance parameter.
  2602. */
  2603. static struct sched_group *
  2604. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2605. unsigned long *imbalance, enum cpu_idle_type idle,
  2606. int *sd_idle, const cpumask_t *cpus, int *balance)
  2607. {
  2608. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2609. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2610. unsigned long max_pull;
  2611. unsigned long busiest_load_per_task, busiest_nr_running;
  2612. unsigned long this_load_per_task, this_nr_running;
  2613. int load_idx, group_imb = 0;
  2614. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2615. int power_savings_balance = 1;
  2616. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2617. unsigned long min_nr_running = ULONG_MAX;
  2618. struct sched_group *group_min = NULL, *group_leader = NULL;
  2619. #endif
  2620. max_load = this_load = total_load = total_pwr = 0;
  2621. busiest_load_per_task = busiest_nr_running = 0;
  2622. this_load_per_task = this_nr_running = 0;
  2623. if (idle == CPU_NOT_IDLE)
  2624. load_idx = sd->busy_idx;
  2625. else if (idle == CPU_NEWLY_IDLE)
  2626. load_idx = sd->newidle_idx;
  2627. else
  2628. load_idx = sd->idle_idx;
  2629. do {
  2630. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2631. int local_group;
  2632. int i;
  2633. int __group_imb = 0;
  2634. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2635. unsigned long sum_nr_running, sum_weighted_load;
  2636. unsigned long sum_avg_load_per_task;
  2637. unsigned long avg_load_per_task;
  2638. local_group = cpu_isset(this_cpu, group->cpumask);
  2639. if (local_group)
  2640. balance_cpu = first_cpu(group->cpumask);
  2641. /* Tally up the load of all CPUs in the group */
  2642. sum_weighted_load = sum_nr_running = avg_load = 0;
  2643. sum_avg_load_per_task = avg_load_per_task = 0;
  2644. max_cpu_load = 0;
  2645. min_cpu_load = ~0UL;
  2646. for_each_cpu_mask_nr(i, group->cpumask) {
  2647. struct rq *rq;
  2648. if (!cpu_isset(i, *cpus))
  2649. continue;
  2650. rq = cpu_rq(i);
  2651. if (*sd_idle && rq->nr_running)
  2652. *sd_idle = 0;
  2653. /* Bias balancing toward cpus of our domain */
  2654. if (local_group) {
  2655. if (idle_cpu(i) && !first_idle_cpu) {
  2656. first_idle_cpu = 1;
  2657. balance_cpu = i;
  2658. }
  2659. load = target_load(i, load_idx);
  2660. } else {
  2661. load = source_load(i, load_idx);
  2662. if (load > max_cpu_load)
  2663. max_cpu_load = load;
  2664. if (min_cpu_load > load)
  2665. min_cpu_load = load;
  2666. }
  2667. avg_load += load;
  2668. sum_nr_running += rq->nr_running;
  2669. sum_weighted_load += weighted_cpuload(i);
  2670. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2671. }
  2672. /*
  2673. * First idle cpu or the first cpu(busiest) in this sched group
  2674. * is eligible for doing load balancing at this and above
  2675. * domains. In the newly idle case, we will allow all the cpu's
  2676. * to do the newly idle load balance.
  2677. */
  2678. if (idle != CPU_NEWLY_IDLE && local_group &&
  2679. balance_cpu != this_cpu && balance) {
  2680. *balance = 0;
  2681. goto ret;
  2682. }
  2683. total_load += avg_load;
  2684. total_pwr += group->__cpu_power;
  2685. /* Adjust by relative CPU power of the group */
  2686. avg_load = sg_div_cpu_power(group,
  2687. avg_load * SCHED_LOAD_SCALE);
  2688. /*
  2689. * Consider the group unbalanced when the imbalance is larger
  2690. * than the average weight of two tasks.
  2691. *
  2692. * APZ: with cgroup the avg task weight can vary wildly and
  2693. * might not be a suitable number - should we keep a
  2694. * normalized nr_running number somewhere that negates
  2695. * the hierarchy?
  2696. */
  2697. avg_load_per_task = sg_div_cpu_power(group,
  2698. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2699. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2700. __group_imb = 1;
  2701. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2702. if (local_group) {
  2703. this_load = avg_load;
  2704. this = group;
  2705. this_nr_running = sum_nr_running;
  2706. this_load_per_task = sum_weighted_load;
  2707. } else if (avg_load > max_load &&
  2708. (sum_nr_running > group_capacity || __group_imb)) {
  2709. max_load = avg_load;
  2710. busiest = group;
  2711. busiest_nr_running = sum_nr_running;
  2712. busiest_load_per_task = sum_weighted_load;
  2713. group_imb = __group_imb;
  2714. }
  2715. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2716. /*
  2717. * Busy processors will not participate in power savings
  2718. * balance.
  2719. */
  2720. if (idle == CPU_NOT_IDLE ||
  2721. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2722. goto group_next;
  2723. /*
  2724. * If the local group is idle or completely loaded
  2725. * no need to do power savings balance at this domain
  2726. */
  2727. if (local_group && (this_nr_running >= group_capacity ||
  2728. !this_nr_running))
  2729. power_savings_balance = 0;
  2730. /*
  2731. * If a group is already running at full capacity or idle,
  2732. * don't include that group in power savings calculations
  2733. */
  2734. if (!power_savings_balance || sum_nr_running >= group_capacity
  2735. || !sum_nr_running)
  2736. goto group_next;
  2737. /*
  2738. * Calculate the group which has the least non-idle load.
  2739. * This is the group from where we need to pick up the load
  2740. * for saving power
  2741. */
  2742. if ((sum_nr_running < min_nr_running) ||
  2743. (sum_nr_running == min_nr_running &&
  2744. first_cpu(group->cpumask) <
  2745. first_cpu(group_min->cpumask))) {
  2746. group_min = group;
  2747. min_nr_running = sum_nr_running;
  2748. min_load_per_task = sum_weighted_load /
  2749. sum_nr_running;
  2750. }
  2751. /*
  2752. * Calculate the group which is almost near its
  2753. * capacity but still has some space to pick up some load
  2754. * from other group and save more power
  2755. */
  2756. if (sum_nr_running <= group_capacity - 1) {
  2757. if (sum_nr_running > leader_nr_running ||
  2758. (sum_nr_running == leader_nr_running &&
  2759. first_cpu(group->cpumask) >
  2760. first_cpu(group_leader->cpumask))) {
  2761. group_leader = group;
  2762. leader_nr_running = sum_nr_running;
  2763. }
  2764. }
  2765. group_next:
  2766. #endif
  2767. group = group->next;
  2768. } while (group != sd->groups);
  2769. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2770. goto out_balanced;
  2771. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2772. if (this_load >= avg_load ||
  2773. 100*max_load <= sd->imbalance_pct*this_load)
  2774. goto out_balanced;
  2775. busiest_load_per_task /= busiest_nr_running;
  2776. if (group_imb)
  2777. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2778. /*
  2779. * We're trying to get all the cpus to the average_load, so we don't
  2780. * want to push ourselves above the average load, nor do we wish to
  2781. * reduce the max loaded cpu below the average load, as either of these
  2782. * actions would just result in more rebalancing later, and ping-pong
  2783. * tasks around. Thus we look for the minimum possible imbalance.
  2784. * Negative imbalances (*we* are more loaded than anyone else) will
  2785. * be counted as no imbalance for these purposes -- we can't fix that
  2786. * by pulling tasks to us. Be careful of negative numbers as they'll
  2787. * appear as very large values with unsigned longs.
  2788. */
  2789. if (max_load <= busiest_load_per_task)
  2790. goto out_balanced;
  2791. /*
  2792. * In the presence of smp nice balancing, certain scenarios can have
  2793. * max load less than avg load(as we skip the groups at or below
  2794. * its cpu_power, while calculating max_load..)
  2795. */
  2796. if (max_load < avg_load) {
  2797. *imbalance = 0;
  2798. goto small_imbalance;
  2799. }
  2800. /* Don't want to pull so many tasks that a group would go idle */
  2801. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2802. /* How much load to actually move to equalise the imbalance */
  2803. *imbalance = min(max_pull * busiest->__cpu_power,
  2804. (avg_load - this_load) * this->__cpu_power)
  2805. / SCHED_LOAD_SCALE;
  2806. /*
  2807. * if *imbalance is less than the average load per runnable task
  2808. * there is no gaurantee that any tasks will be moved so we'll have
  2809. * a think about bumping its value to force at least one task to be
  2810. * moved
  2811. */
  2812. if (*imbalance < busiest_load_per_task) {
  2813. unsigned long tmp, pwr_now, pwr_move;
  2814. unsigned int imbn;
  2815. small_imbalance:
  2816. pwr_move = pwr_now = 0;
  2817. imbn = 2;
  2818. if (this_nr_running) {
  2819. this_load_per_task /= this_nr_running;
  2820. if (busiest_load_per_task > this_load_per_task)
  2821. imbn = 1;
  2822. } else
  2823. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2824. if (max_load - this_load + 2*busiest_load_per_task >=
  2825. busiest_load_per_task * imbn) {
  2826. *imbalance = busiest_load_per_task;
  2827. return busiest;
  2828. }
  2829. /*
  2830. * OK, we don't have enough imbalance to justify moving tasks,
  2831. * however we may be able to increase total CPU power used by
  2832. * moving them.
  2833. */
  2834. pwr_now += busiest->__cpu_power *
  2835. min(busiest_load_per_task, max_load);
  2836. pwr_now += this->__cpu_power *
  2837. min(this_load_per_task, this_load);
  2838. pwr_now /= SCHED_LOAD_SCALE;
  2839. /* Amount of load we'd subtract */
  2840. tmp = sg_div_cpu_power(busiest,
  2841. busiest_load_per_task * SCHED_LOAD_SCALE);
  2842. if (max_load > tmp)
  2843. pwr_move += busiest->__cpu_power *
  2844. min(busiest_load_per_task, max_load - tmp);
  2845. /* Amount of load we'd add */
  2846. if (max_load * busiest->__cpu_power <
  2847. busiest_load_per_task * SCHED_LOAD_SCALE)
  2848. tmp = sg_div_cpu_power(this,
  2849. max_load * busiest->__cpu_power);
  2850. else
  2851. tmp = sg_div_cpu_power(this,
  2852. busiest_load_per_task * SCHED_LOAD_SCALE);
  2853. pwr_move += this->__cpu_power *
  2854. min(this_load_per_task, this_load + tmp);
  2855. pwr_move /= SCHED_LOAD_SCALE;
  2856. /* Move if we gain throughput */
  2857. if (pwr_move > pwr_now)
  2858. *imbalance = busiest_load_per_task;
  2859. }
  2860. return busiest;
  2861. out_balanced:
  2862. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2863. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2864. goto ret;
  2865. if (this == group_leader && group_leader != group_min) {
  2866. *imbalance = min_load_per_task;
  2867. return group_min;
  2868. }
  2869. #endif
  2870. ret:
  2871. *imbalance = 0;
  2872. return NULL;
  2873. }
  2874. /*
  2875. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2876. */
  2877. static struct rq *
  2878. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2879. unsigned long imbalance, const cpumask_t *cpus)
  2880. {
  2881. struct rq *busiest = NULL, *rq;
  2882. unsigned long max_load = 0;
  2883. int i;
  2884. for_each_cpu_mask_nr(i, group->cpumask) {
  2885. unsigned long wl;
  2886. if (!cpu_isset(i, *cpus))
  2887. continue;
  2888. rq = cpu_rq(i);
  2889. wl = weighted_cpuload(i);
  2890. if (rq->nr_running == 1 && wl > imbalance)
  2891. continue;
  2892. if (wl > max_load) {
  2893. max_load = wl;
  2894. busiest = rq;
  2895. }
  2896. }
  2897. return busiest;
  2898. }
  2899. /*
  2900. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2901. * so long as it is large enough.
  2902. */
  2903. #define MAX_PINNED_INTERVAL 512
  2904. /*
  2905. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2906. * tasks if there is an imbalance.
  2907. */
  2908. static int load_balance(int this_cpu, struct rq *this_rq,
  2909. struct sched_domain *sd, enum cpu_idle_type idle,
  2910. int *balance, cpumask_t *cpus)
  2911. {
  2912. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2913. struct sched_group *group;
  2914. unsigned long imbalance;
  2915. struct rq *busiest;
  2916. unsigned long flags;
  2917. cpus_setall(*cpus);
  2918. /*
  2919. * When power savings policy is enabled for the parent domain, idle
  2920. * sibling can pick up load irrespective of busy siblings. In this case,
  2921. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2922. * portraying it as CPU_NOT_IDLE.
  2923. */
  2924. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2925. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2926. sd_idle = 1;
  2927. schedstat_inc(sd, lb_count[idle]);
  2928. redo:
  2929. update_shares(sd);
  2930. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2931. cpus, balance);
  2932. if (*balance == 0)
  2933. goto out_balanced;
  2934. if (!group) {
  2935. schedstat_inc(sd, lb_nobusyg[idle]);
  2936. goto out_balanced;
  2937. }
  2938. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2939. if (!busiest) {
  2940. schedstat_inc(sd, lb_nobusyq[idle]);
  2941. goto out_balanced;
  2942. }
  2943. BUG_ON(busiest == this_rq);
  2944. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2945. ld_moved = 0;
  2946. if (busiest->nr_running > 1) {
  2947. /*
  2948. * Attempt to move tasks. If find_busiest_group has found
  2949. * an imbalance but busiest->nr_running <= 1, the group is
  2950. * still unbalanced. ld_moved simply stays zero, so it is
  2951. * correctly treated as an imbalance.
  2952. */
  2953. local_irq_save(flags);
  2954. double_rq_lock(this_rq, busiest);
  2955. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2956. imbalance, sd, idle, &all_pinned);
  2957. double_rq_unlock(this_rq, busiest);
  2958. local_irq_restore(flags);
  2959. /*
  2960. * some other cpu did the load balance for us.
  2961. */
  2962. if (ld_moved && this_cpu != smp_processor_id())
  2963. resched_cpu(this_cpu);
  2964. /* All tasks on this runqueue were pinned by CPU affinity */
  2965. if (unlikely(all_pinned)) {
  2966. cpu_clear(cpu_of(busiest), *cpus);
  2967. if (!cpus_empty(*cpus))
  2968. goto redo;
  2969. goto out_balanced;
  2970. }
  2971. }
  2972. if (!ld_moved) {
  2973. schedstat_inc(sd, lb_failed[idle]);
  2974. sd->nr_balance_failed++;
  2975. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2976. spin_lock_irqsave(&busiest->lock, flags);
  2977. /* don't kick the migration_thread, if the curr
  2978. * task on busiest cpu can't be moved to this_cpu
  2979. */
  2980. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2981. spin_unlock_irqrestore(&busiest->lock, flags);
  2982. all_pinned = 1;
  2983. goto out_one_pinned;
  2984. }
  2985. if (!busiest->active_balance) {
  2986. busiest->active_balance = 1;
  2987. busiest->push_cpu = this_cpu;
  2988. active_balance = 1;
  2989. }
  2990. spin_unlock_irqrestore(&busiest->lock, flags);
  2991. if (active_balance)
  2992. wake_up_process(busiest->migration_thread);
  2993. /*
  2994. * We've kicked active balancing, reset the failure
  2995. * counter.
  2996. */
  2997. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2998. }
  2999. } else
  3000. sd->nr_balance_failed = 0;
  3001. if (likely(!active_balance)) {
  3002. /* We were unbalanced, so reset the balancing interval */
  3003. sd->balance_interval = sd->min_interval;
  3004. } else {
  3005. /*
  3006. * If we've begun active balancing, start to back off. This
  3007. * case may not be covered by the all_pinned logic if there
  3008. * is only 1 task on the busy runqueue (because we don't call
  3009. * move_tasks).
  3010. */
  3011. if (sd->balance_interval < sd->max_interval)
  3012. sd->balance_interval *= 2;
  3013. }
  3014. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3015. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3016. ld_moved = -1;
  3017. goto out;
  3018. out_balanced:
  3019. schedstat_inc(sd, lb_balanced[idle]);
  3020. sd->nr_balance_failed = 0;
  3021. out_one_pinned:
  3022. /* tune up the balancing interval */
  3023. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3024. (sd->balance_interval < sd->max_interval))
  3025. sd->balance_interval *= 2;
  3026. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3027. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3028. ld_moved = -1;
  3029. else
  3030. ld_moved = 0;
  3031. out:
  3032. if (ld_moved)
  3033. update_shares(sd);
  3034. return ld_moved;
  3035. }
  3036. /*
  3037. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3038. * tasks if there is an imbalance.
  3039. *
  3040. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3041. * this_rq is locked.
  3042. */
  3043. static int
  3044. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3045. cpumask_t *cpus)
  3046. {
  3047. struct sched_group *group;
  3048. struct rq *busiest = NULL;
  3049. unsigned long imbalance;
  3050. int ld_moved = 0;
  3051. int sd_idle = 0;
  3052. int all_pinned = 0;
  3053. cpus_setall(*cpus);
  3054. /*
  3055. * When power savings policy is enabled for the parent domain, idle
  3056. * sibling can pick up load irrespective of busy siblings. In this case,
  3057. * let the state of idle sibling percolate up as IDLE, instead of
  3058. * portraying it as CPU_NOT_IDLE.
  3059. */
  3060. if (sd->flags & SD_SHARE_CPUPOWER &&
  3061. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3062. sd_idle = 1;
  3063. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3064. redo:
  3065. update_shares_locked(this_rq, sd);
  3066. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3067. &sd_idle, cpus, NULL);
  3068. if (!group) {
  3069. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3070. goto out_balanced;
  3071. }
  3072. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3073. if (!busiest) {
  3074. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3075. goto out_balanced;
  3076. }
  3077. BUG_ON(busiest == this_rq);
  3078. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3079. ld_moved = 0;
  3080. if (busiest->nr_running > 1) {
  3081. /* Attempt to move tasks */
  3082. double_lock_balance(this_rq, busiest);
  3083. /* this_rq->clock is already updated */
  3084. update_rq_clock(busiest);
  3085. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3086. imbalance, sd, CPU_NEWLY_IDLE,
  3087. &all_pinned);
  3088. double_unlock_balance(this_rq, busiest);
  3089. if (unlikely(all_pinned)) {
  3090. cpu_clear(cpu_of(busiest), *cpus);
  3091. if (!cpus_empty(*cpus))
  3092. goto redo;
  3093. }
  3094. }
  3095. if (!ld_moved) {
  3096. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3097. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3098. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3099. return -1;
  3100. } else
  3101. sd->nr_balance_failed = 0;
  3102. update_shares_locked(this_rq, sd);
  3103. return ld_moved;
  3104. out_balanced:
  3105. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3106. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3107. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3108. return -1;
  3109. sd->nr_balance_failed = 0;
  3110. return 0;
  3111. }
  3112. /*
  3113. * idle_balance is called by schedule() if this_cpu is about to become
  3114. * idle. Attempts to pull tasks from other CPUs.
  3115. */
  3116. static void idle_balance(int this_cpu, struct rq *this_rq)
  3117. {
  3118. struct sched_domain *sd;
  3119. int pulled_task = -1;
  3120. unsigned long next_balance = jiffies + HZ;
  3121. cpumask_t tmpmask;
  3122. for_each_domain(this_cpu, sd) {
  3123. unsigned long interval;
  3124. if (!(sd->flags & SD_LOAD_BALANCE))
  3125. continue;
  3126. if (sd->flags & SD_BALANCE_NEWIDLE)
  3127. /* If we've pulled tasks over stop searching: */
  3128. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3129. sd, &tmpmask);
  3130. interval = msecs_to_jiffies(sd->balance_interval);
  3131. if (time_after(next_balance, sd->last_balance + interval))
  3132. next_balance = sd->last_balance + interval;
  3133. if (pulled_task)
  3134. break;
  3135. }
  3136. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3137. /*
  3138. * We are going idle. next_balance may be set based on
  3139. * a busy processor. So reset next_balance.
  3140. */
  3141. this_rq->next_balance = next_balance;
  3142. }
  3143. }
  3144. /*
  3145. * active_load_balance is run by migration threads. It pushes running tasks
  3146. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3147. * running on each physical CPU where possible, and avoids physical /
  3148. * logical imbalances.
  3149. *
  3150. * Called with busiest_rq locked.
  3151. */
  3152. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3153. {
  3154. int target_cpu = busiest_rq->push_cpu;
  3155. struct sched_domain *sd;
  3156. struct rq *target_rq;
  3157. /* Is there any task to move? */
  3158. if (busiest_rq->nr_running <= 1)
  3159. return;
  3160. target_rq = cpu_rq(target_cpu);
  3161. /*
  3162. * This condition is "impossible", if it occurs
  3163. * we need to fix it. Originally reported by
  3164. * Bjorn Helgaas on a 128-cpu setup.
  3165. */
  3166. BUG_ON(busiest_rq == target_rq);
  3167. /* move a task from busiest_rq to target_rq */
  3168. double_lock_balance(busiest_rq, target_rq);
  3169. update_rq_clock(busiest_rq);
  3170. update_rq_clock(target_rq);
  3171. /* Search for an sd spanning us and the target CPU. */
  3172. for_each_domain(target_cpu, sd) {
  3173. if ((sd->flags & SD_LOAD_BALANCE) &&
  3174. cpu_isset(busiest_cpu, sd->span))
  3175. break;
  3176. }
  3177. if (likely(sd)) {
  3178. schedstat_inc(sd, alb_count);
  3179. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3180. sd, CPU_IDLE))
  3181. schedstat_inc(sd, alb_pushed);
  3182. else
  3183. schedstat_inc(sd, alb_failed);
  3184. }
  3185. double_unlock_balance(busiest_rq, target_rq);
  3186. }
  3187. #ifdef CONFIG_NO_HZ
  3188. static struct {
  3189. atomic_t load_balancer;
  3190. cpumask_t cpu_mask;
  3191. } nohz ____cacheline_aligned = {
  3192. .load_balancer = ATOMIC_INIT(-1),
  3193. .cpu_mask = CPU_MASK_NONE,
  3194. };
  3195. /*
  3196. * This routine will try to nominate the ilb (idle load balancing)
  3197. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3198. * load balancing on behalf of all those cpus. If all the cpus in the system
  3199. * go into this tickless mode, then there will be no ilb owner (as there is
  3200. * no need for one) and all the cpus will sleep till the next wakeup event
  3201. * arrives...
  3202. *
  3203. * For the ilb owner, tick is not stopped. And this tick will be used
  3204. * for idle load balancing. ilb owner will still be part of
  3205. * nohz.cpu_mask..
  3206. *
  3207. * While stopping the tick, this cpu will become the ilb owner if there
  3208. * is no other owner. And will be the owner till that cpu becomes busy
  3209. * or if all cpus in the system stop their ticks at which point
  3210. * there is no need for ilb owner.
  3211. *
  3212. * When the ilb owner becomes busy, it nominates another owner, during the
  3213. * next busy scheduler_tick()
  3214. */
  3215. int select_nohz_load_balancer(int stop_tick)
  3216. {
  3217. int cpu = smp_processor_id();
  3218. if (stop_tick) {
  3219. cpu_set(cpu, nohz.cpu_mask);
  3220. cpu_rq(cpu)->in_nohz_recently = 1;
  3221. /*
  3222. * If we are going offline and still the leader, give up!
  3223. */
  3224. if (!cpu_active(cpu) &&
  3225. atomic_read(&nohz.load_balancer) == cpu) {
  3226. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3227. BUG();
  3228. return 0;
  3229. }
  3230. /* time for ilb owner also to sleep */
  3231. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3232. if (atomic_read(&nohz.load_balancer) == cpu)
  3233. atomic_set(&nohz.load_balancer, -1);
  3234. return 0;
  3235. }
  3236. if (atomic_read(&nohz.load_balancer) == -1) {
  3237. /* make me the ilb owner */
  3238. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3239. return 1;
  3240. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3241. return 1;
  3242. } else {
  3243. if (!cpu_isset(cpu, nohz.cpu_mask))
  3244. return 0;
  3245. cpu_clear(cpu, nohz.cpu_mask);
  3246. if (atomic_read(&nohz.load_balancer) == cpu)
  3247. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3248. BUG();
  3249. }
  3250. return 0;
  3251. }
  3252. #endif
  3253. static DEFINE_SPINLOCK(balancing);
  3254. /*
  3255. * It checks each scheduling domain to see if it is due to be balanced,
  3256. * and initiates a balancing operation if so.
  3257. *
  3258. * Balancing parameters are set up in arch_init_sched_domains.
  3259. */
  3260. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3261. {
  3262. int balance = 1;
  3263. struct rq *rq = cpu_rq(cpu);
  3264. unsigned long interval;
  3265. struct sched_domain *sd;
  3266. /* Earliest time when we have to do rebalance again */
  3267. unsigned long next_balance = jiffies + 60*HZ;
  3268. int update_next_balance = 0;
  3269. int need_serialize;
  3270. cpumask_t tmp;
  3271. for_each_domain(cpu, sd) {
  3272. if (!(sd->flags & SD_LOAD_BALANCE))
  3273. continue;
  3274. interval = sd->balance_interval;
  3275. if (idle != CPU_IDLE)
  3276. interval *= sd->busy_factor;
  3277. /* scale ms to jiffies */
  3278. interval = msecs_to_jiffies(interval);
  3279. if (unlikely(!interval))
  3280. interval = 1;
  3281. if (interval > HZ*NR_CPUS/10)
  3282. interval = HZ*NR_CPUS/10;
  3283. need_serialize = sd->flags & SD_SERIALIZE;
  3284. if (need_serialize) {
  3285. if (!spin_trylock(&balancing))
  3286. goto out;
  3287. }
  3288. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3289. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3290. /*
  3291. * We've pulled tasks over so either we're no
  3292. * longer idle, or one of our SMT siblings is
  3293. * not idle.
  3294. */
  3295. idle = CPU_NOT_IDLE;
  3296. }
  3297. sd->last_balance = jiffies;
  3298. }
  3299. if (need_serialize)
  3300. spin_unlock(&balancing);
  3301. out:
  3302. if (time_after(next_balance, sd->last_balance + interval)) {
  3303. next_balance = sd->last_balance + interval;
  3304. update_next_balance = 1;
  3305. }
  3306. /*
  3307. * Stop the load balance at this level. There is another
  3308. * CPU in our sched group which is doing load balancing more
  3309. * actively.
  3310. */
  3311. if (!balance)
  3312. break;
  3313. }
  3314. /*
  3315. * next_balance will be updated only when there is a need.
  3316. * When the cpu is attached to null domain for ex, it will not be
  3317. * updated.
  3318. */
  3319. if (likely(update_next_balance))
  3320. rq->next_balance = next_balance;
  3321. }
  3322. /*
  3323. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3324. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3325. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3326. */
  3327. static void run_rebalance_domains(struct softirq_action *h)
  3328. {
  3329. int this_cpu = smp_processor_id();
  3330. struct rq *this_rq = cpu_rq(this_cpu);
  3331. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3332. CPU_IDLE : CPU_NOT_IDLE;
  3333. rebalance_domains(this_cpu, idle);
  3334. #ifdef CONFIG_NO_HZ
  3335. /*
  3336. * If this cpu is the owner for idle load balancing, then do the
  3337. * balancing on behalf of the other idle cpus whose ticks are
  3338. * stopped.
  3339. */
  3340. if (this_rq->idle_at_tick &&
  3341. atomic_read(&nohz.load_balancer) == this_cpu) {
  3342. cpumask_t cpus = nohz.cpu_mask;
  3343. struct rq *rq;
  3344. int balance_cpu;
  3345. cpu_clear(this_cpu, cpus);
  3346. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3347. /*
  3348. * If this cpu gets work to do, stop the load balancing
  3349. * work being done for other cpus. Next load
  3350. * balancing owner will pick it up.
  3351. */
  3352. if (need_resched())
  3353. break;
  3354. rebalance_domains(balance_cpu, CPU_IDLE);
  3355. rq = cpu_rq(balance_cpu);
  3356. if (time_after(this_rq->next_balance, rq->next_balance))
  3357. this_rq->next_balance = rq->next_balance;
  3358. }
  3359. }
  3360. #endif
  3361. }
  3362. /*
  3363. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3364. *
  3365. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3366. * idle load balancing owner or decide to stop the periodic load balancing,
  3367. * if the whole system is idle.
  3368. */
  3369. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3370. {
  3371. #ifdef CONFIG_NO_HZ
  3372. /*
  3373. * If we were in the nohz mode recently and busy at the current
  3374. * scheduler tick, then check if we need to nominate new idle
  3375. * load balancer.
  3376. */
  3377. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3378. rq->in_nohz_recently = 0;
  3379. if (atomic_read(&nohz.load_balancer) == cpu) {
  3380. cpu_clear(cpu, nohz.cpu_mask);
  3381. atomic_set(&nohz.load_balancer, -1);
  3382. }
  3383. if (atomic_read(&nohz.load_balancer) == -1) {
  3384. /*
  3385. * simple selection for now: Nominate the
  3386. * first cpu in the nohz list to be the next
  3387. * ilb owner.
  3388. *
  3389. * TBD: Traverse the sched domains and nominate
  3390. * the nearest cpu in the nohz.cpu_mask.
  3391. */
  3392. int ilb = first_cpu(nohz.cpu_mask);
  3393. if (ilb < nr_cpu_ids)
  3394. resched_cpu(ilb);
  3395. }
  3396. }
  3397. /*
  3398. * If this cpu is idle and doing idle load balancing for all the
  3399. * cpus with ticks stopped, is it time for that to stop?
  3400. */
  3401. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3402. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3403. resched_cpu(cpu);
  3404. return;
  3405. }
  3406. /*
  3407. * If this cpu is idle and the idle load balancing is done by
  3408. * someone else, then no need raise the SCHED_SOFTIRQ
  3409. */
  3410. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3411. cpu_isset(cpu, nohz.cpu_mask))
  3412. return;
  3413. #endif
  3414. if (time_after_eq(jiffies, rq->next_balance))
  3415. raise_softirq(SCHED_SOFTIRQ);
  3416. }
  3417. #else /* CONFIG_SMP */
  3418. /*
  3419. * on UP we do not need to balance between CPUs:
  3420. */
  3421. static inline void idle_balance(int cpu, struct rq *rq)
  3422. {
  3423. }
  3424. #endif
  3425. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3426. EXPORT_PER_CPU_SYMBOL(kstat);
  3427. /*
  3428. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3429. * that have not yet been banked in case the task is currently running.
  3430. */
  3431. unsigned long long task_sched_runtime(struct task_struct *p)
  3432. {
  3433. unsigned long flags;
  3434. u64 ns, delta_exec;
  3435. struct rq *rq;
  3436. rq = task_rq_lock(p, &flags);
  3437. ns = p->se.sum_exec_runtime;
  3438. if (task_current(rq, p)) {
  3439. update_rq_clock(rq);
  3440. delta_exec = rq->clock - p->se.exec_start;
  3441. if ((s64)delta_exec > 0)
  3442. ns += delta_exec;
  3443. }
  3444. task_rq_unlock(rq, &flags);
  3445. return ns;
  3446. }
  3447. /*
  3448. * Account user cpu time to a process.
  3449. * @p: the process that the cpu time gets accounted to
  3450. * @cputime: the cpu time spent in user space since the last update
  3451. */
  3452. void account_user_time(struct task_struct *p, cputime_t cputime)
  3453. {
  3454. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3455. cputime64_t tmp;
  3456. p->utime = cputime_add(p->utime, cputime);
  3457. /* Add user time to cpustat. */
  3458. tmp = cputime_to_cputime64(cputime);
  3459. if (TASK_NICE(p) > 0)
  3460. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3461. else
  3462. cpustat->user = cputime64_add(cpustat->user, tmp);
  3463. /* Account for user time used */
  3464. acct_update_integrals(p);
  3465. }
  3466. /*
  3467. * Account guest cpu time to a process.
  3468. * @p: the process that the cpu time gets accounted to
  3469. * @cputime: the cpu time spent in virtual machine since the last update
  3470. */
  3471. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3472. {
  3473. cputime64_t tmp;
  3474. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3475. tmp = cputime_to_cputime64(cputime);
  3476. p->utime = cputime_add(p->utime, cputime);
  3477. p->gtime = cputime_add(p->gtime, cputime);
  3478. cpustat->user = cputime64_add(cpustat->user, tmp);
  3479. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3480. }
  3481. /*
  3482. * Account scaled user cpu time to a process.
  3483. * @p: the process that the cpu time gets accounted to
  3484. * @cputime: the cpu time spent in user space since the last update
  3485. */
  3486. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3487. {
  3488. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3489. }
  3490. /*
  3491. * Account system cpu time to a process.
  3492. * @p: the process that the cpu time gets accounted to
  3493. * @hardirq_offset: the offset to subtract from hardirq_count()
  3494. * @cputime: the cpu time spent in kernel space since the last update
  3495. */
  3496. void account_system_time(struct task_struct *p, int hardirq_offset,
  3497. cputime_t cputime)
  3498. {
  3499. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3500. struct rq *rq = this_rq();
  3501. cputime64_t tmp;
  3502. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3503. account_guest_time(p, cputime);
  3504. return;
  3505. }
  3506. p->stime = cputime_add(p->stime, cputime);
  3507. /* Add system time to cpustat. */
  3508. tmp = cputime_to_cputime64(cputime);
  3509. if (hardirq_count() - hardirq_offset)
  3510. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3511. else if (softirq_count())
  3512. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3513. else if (p != rq->idle)
  3514. cpustat->system = cputime64_add(cpustat->system, tmp);
  3515. else if (atomic_read(&rq->nr_iowait) > 0)
  3516. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3517. else
  3518. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3519. /* Account for system time used */
  3520. acct_update_integrals(p);
  3521. }
  3522. /*
  3523. * Account scaled system cpu time to a process.
  3524. * @p: the process that the cpu time gets accounted to
  3525. * @hardirq_offset: the offset to subtract from hardirq_count()
  3526. * @cputime: the cpu time spent in kernel space since the last update
  3527. */
  3528. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3529. {
  3530. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3531. }
  3532. /*
  3533. * Account for involuntary wait time.
  3534. * @p: the process from which the cpu time has been stolen
  3535. * @steal: the cpu time spent in involuntary wait
  3536. */
  3537. void account_steal_time(struct task_struct *p, cputime_t steal)
  3538. {
  3539. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3540. cputime64_t tmp = cputime_to_cputime64(steal);
  3541. struct rq *rq = this_rq();
  3542. if (p == rq->idle) {
  3543. p->stime = cputime_add(p->stime, steal);
  3544. if (atomic_read(&rq->nr_iowait) > 0)
  3545. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3546. else
  3547. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3548. } else
  3549. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3550. }
  3551. /*
  3552. * This function gets called by the timer code, with HZ frequency.
  3553. * We call it with interrupts disabled.
  3554. *
  3555. * It also gets called by the fork code, when changing the parent's
  3556. * timeslices.
  3557. */
  3558. void scheduler_tick(void)
  3559. {
  3560. int cpu = smp_processor_id();
  3561. struct rq *rq = cpu_rq(cpu);
  3562. struct task_struct *curr = rq->curr;
  3563. sched_clock_tick();
  3564. spin_lock(&rq->lock);
  3565. update_rq_clock(rq);
  3566. update_cpu_load(rq);
  3567. curr->sched_class->task_tick(rq, curr, 0);
  3568. spin_unlock(&rq->lock);
  3569. #ifdef CONFIG_SMP
  3570. rq->idle_at_tick = idle_cpu(cpu);
  3571. trigger_load_balance(rq, cpu);
  3572. #endif
  3573. }
  3574. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3575. defined(CONFIG_PREEMPT_TRACER))
  3576. static inline unsigned long get_parent_ip(unsigned long addr)
  3577. {
  3578. if (in_lock_functions(addr)) {
  3579. addr = CALLER_ADDR2;
  3580. if (in_lock_functions(addr))
  3581. addr = CALLER_ADDR3;
  3582. }
  3583. return addr;
  3584. }
  3585. void __kprobes add_preempt_count(int val)
  3586. {
  3587. #ifdef CONFIG_DEBUG_PREEMPT
  3588. /*
  3589. * Underflow?
  3590. */
  3591. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3592. return;
  3593. #endif
  3594. preempt_count() += val;
  3595. #ifdef CONFIG_DEBUG_PREEMPT
  3596. /*
  3597. * Spinlock count overflowing soon?
  3598. */
  3599. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3600. PREEMPT_MASK - 10);
  3601. #endif
  3602. if (preempt_count() == val)
  3603. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3604. }
  3605. EXPORT_SYMBOL(add_preempt_count);
  3606. void __kprobes sub_preempt_count(int val)
  3607. {
  3608. #ifdef CONFIG_DEBUG_PREEMPT
  3609. /*
  3610. * Underflow?
  3611. */
  3612. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3613. return;
  3614. /*
  3615. * Is the spinlock portion underflowing?
  3616. */
  3617. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3618. !(preempt_count() & PREEMPT_MASK)))
  3619. return;
  3620. #endif
  3621. if (preempt_count() == val)
  3622. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3623. preempt_count() -= val;
  3624. }
  3625. EXPORT_SYMBOL(sub_preempt_count);
  3626. #endif
  3627. /*
  3628. * Print scheduling while atomic bug:
  3629. */
  3630. static noinline void __schedule_bug(struct task_struct *prev)
  3631. {
  3632. struct pt_regs *regs = get_irq_regs();
  3633. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3634. prev->comm, prev->pid, preempt_count());
  3635. debug_show_held_locks(prev);
  3636. print_modules();
  3637. if (irqs_disabled())
  3638. print_irqtrace_events(prev);
  3639. if (regs)
  3640. show_regs(regs);
  3641. else
  3642. dump_stack();
  3643. }
  3644. /*
  3645. * Various schedule()-time debugging checks and statistics:
  3646. */
  3647. static inline void schedule_debug(struct task_struct *prev)
  3648. {
  3649. /*
  3650. * Test if we are atomic. Since do_exit() needs to call into
  3651. * schedule() atomically, we ignore that path for now.
  3652. * Otherwise, whine if we are scheduling when we should not be.
  3653. */
  3654. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3655. __schedule_bug(prev);
  3656. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3657. schedstat_inc(this_rq(), sched_count);
  3658. #ifdef CONFIG_SCHEDSTATS
  3659. if (unlikely(prev->lock_depth >= 0)) {
  3660. schedstat_inc(this_rq(), bkl_count);
  3661. schedstat_inc(prev, sched_info.bkl_count);
  3662. }
  3663. #endif
  3664. }
  3665. /*
  3666. * Pick up the highest-prio task:
  3667. */
  3668. static inline struct task_struct *
  3669. pick_next_task(struct rq *rq, struct task_struct *prev)
  3670. {
  3671. const struct sched_class *class;
  3672. struct task_struct *p;
  3673. /*
  3674. * Optimization: we know that if all tasks are in
  3675. * the fair class we can call that function directly:
  3676. */
  3677. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3678. p = fair_sched_class.pick_next_task(rq);
  3679. if (likely(p))
  3680. return p;
  3681. }
  3682. class = sched_class_highest;
  3683. for ( ; ; ) {
  3684. p = class->pick_next_task(rq);
  3685. if (p)
  3686. return p;
  3687. /*
  3688. * Will never be NULL as the idle class always
  3689. * returns a non-NULL p:
  3690. */
  3691. class = class->next;
  3692. }
  3693. }
  3694. /*
  3695. * schedule() is the main scheduler function.
  3696. */
  3697. asmlinkage void __sched schedule(void)
  3698. {
  3699. struct task_struct *prev, *next;
  3700. unsigned long *switch_count;
  3701. struct rq *rq;
  3702. int cpu;
  3703. need_resched:
  3704. preempt_disable();
  3705. cpu = smp_processor_id();
  3706. rq = cpu_rq(cpu);
  3707. rcu_qsctr_inc(cpu);
  3708. prev = rq->curr;
  3709. switch_count = &prev->nivcsw;
  3710. release_kernel_lock(prev);
  3711. need_resched_nonpreemptible:
  3712. schedule_debug(prev);
  3713. if (sched_feat(HRTICK))
  3714. hrtick_clear(rq);
  3715. /*
  3716. * Do the rq-clock update outside the rq lock:
  3717. */
  3718. local_irq_disable();
  3719. update_rq_clock(rq);
  3720. spin_lock(&rq->lock);
  3721. clear_tsk_need_resched(prev);
  3722. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3723. if (unlikely(signal_pending_state(prev->state, prev)))
  3724. prev->state = TASK_RUNNING;
  3725. else
  3726. deactivate_task(rq, prev, 1);
  3727. switch_count = &prev->nvcsw;
  3728. }
  3729. #ifdef CONFIG_SMP
  3730. if (prev->sched_class->pre_schedule)
  3731. prev->sched_class->pre_schedule(rq, prev);
  3732. #endif
  3733. if (unlikely(!rq->nr_running))
  3734. idle_balance(cpu, rq);
  3735. prev->sched_class->put_prev_task(rq, prev);
  3736. next = pick_next_task(rq, prev);
  3737. if (likely(prev != next)) {
  3738. sched_info_switch(prev, next);
  3739. rq->nr_switches++;
  3740. rq->curr = next;
  3741. ++*switch_count;
  3742. context_switch(rq, prev, next); /* unlocks the rq */
  3743. /*
  3744. * the context switch might have flipped the stack from under
  3745. * us, hence refresh the local variables.
  3746. */
  3747. cpu = smp_processor_id();
  3748. rq = cpu_rq(cpu);
  3749. } else
  3750. spin_unlock_irq(&rq->lock);
  3751. if (unlikely(reacquire_kernel_lock(current) < 0))
  3752. goto need_resched_nonpreemptible;
  3753. preempt_enable_no_resched();
  3754. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3755. goto need_resched;
  3756. }
  3757. EXPORT_SYMBOL(schedule);
  3758. #ifdef CONFIG_PREEMPT
  3759. /*
  3760. * this is the entry point to schedule() from in-kernel preemption
  3761. * off of preempt_enable. Kernel preemptions off return from interrupt
  3762. * occur there and call schedule directly.
  3763. */
  3764. asmlinkage void __sched preempt_schedule(void)
  3765. {
  3766. struct thread_info *ti = current_thread_info();
  3767. /*
  3768. * If there is a non-zero preempt_count or interrupts are disabled,
  3769. * we do not want to preempt the current task. Just return..
  3770. */
  3771. if (likely(ti->preempt_count || irqs_disabled()))
  3772. return;
  3773. do {
  3774. add_preempt_count(PREEMPT_ACTIVE);
  3775. schedule();
  3776. sub_preempt_count(PREEMPT_ACTIVE);
  3777. /*
  3778. * Check again in case we missed a preemption opportunity
  3779. * between schedule and now.
  3780. */
  3781. barrier();
  3782. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3783. }
  3784. EXPORT_SYMBOL(preempt_schedule);
  3785. /*
  3786. * this is the entry point to schedule() from kernel preemption
  3787. * off of irq context.
  3788. * Note, that this is called and return with irqs disabled. This will
  3789. * protect us against recursive calling from irq.
  3790. */
  3791. asmlinkage void __sched preempt_schedule_irq(void)
  3792. {
  3793. struct thread_info *ti = current_thread_info();
  3794. /* Catch callers which need to be fixed */
  3795. BUG_ON(ti->preempt_count || !irqs_disabled());
  3796. do {
  3797. add_preempt_count(PREEMPT_ACTIVE);
  3798. local_irq_enable();
  3799. schedule();
  3800. local_irq_disable();
  3801. sub_preempt_count(PREEMPT_ACTIVE);
  3802. /*
  3803. * Check again in case we missed a preemption opportunity
  3804. * between schedule and now.
  3805. */
  3806. barrier();
  3807. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3808. }
  3809. #endif /* CONFIG_PREEMPT */
  3810. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3811. void *key)
  3812. {
  3813. return try_to_wake_up(curr->private, mode, sync);
  3814. }
  3815. EXPORT_SYMBOL(default_wake_function);
  3816. /*
  3817. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3818. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3819. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3820. *
  3821. * There are circumstances in which we can try to wake a task which has already
  3822. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3823. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3824. */
  3825. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3826. int nr_exclusive, int sync, void *key)
  3827. {
  3828. wait_queue_t *curr, *next;
  3829. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3830. unsigned flags = curr->flags;
  3831. if (curr->func(curr, mode, sync, key) &&
  3832. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3833. break;
  3834. }
  3835. }
  3836. /**
  3837. * __wake_up - wake up threads blocked on a waitqueue.
  3838. * @q: the waitqueue
  3839. * @mode: which threads
  3840. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3841. * @key: is directly passed to the wakeup function
  3842. */
  3843. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3844. int nr_exclusive, void *key)
  3845. {
  3846. unsigned long flags;
  3847. spin_lock_irqsave(&q->lock, flags);
  3848. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3849. spin_unlock_irqrestore(&q->lock, flags);
  3850. }
  3851. EXPORT_SYMBOL(__wake_up);
  3852. /*
  3853. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3854. */
  3855. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3856. {
  3857. __wake_up_common(q, mode, 1, 0, NULL);
  3858. }
  3859. /**
  3860. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3861. * @q: the waitqueue
  3862. * @mode: which threads
  3863. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3864. *
  3865. * The sync wakeup differs that the waker knows that it will schedule
  3866. * away soon, so while the target thread will be woken up, it will not
  3867. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3868. * with each other. This can prevent needless bouncing between CPUs.
  3869. *
  3870. * On UP it can prevent extra preemption.
  3871. */
  3872. void
  3873. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3874. {
  3875. unsigned long flags;
  3876. int sync = 1;
  3877. if (unlikely(!q))
  3878. return;
  3879. if (unlikely(!nr_exclusive))
  3880. sync = 0;
  3881. spin_lock_irqsave(&q->lock, flags);
  3882. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3883. spin_unlock_irqrestore(&q->lock, flags);
  3884. }
  3885. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3886. /**
  3887. * complete: - signals a single thread waiting on this completion
  3888. * @x: holds the state of this particular completion
  3889. *
  3890. * This will wake up a single thread waiting on this completion. Threads will be
  3891. * awakened in the same order in which they were queued.
  3892. *
  3893. * See also complete_all(), wait_for_completion() and related routines.
  3894. */
  3895. void complete(struct completion *x)
  3896. {
  3897. unsigned long flags;
  3898. spin_lock_irqsave(&x->wait.lock, flags);
  3899. x->done++;
  3900. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3901. spin_unlock_irqrestore(&x->wait.lock, flags);
  3902. }
  3903. EXPORT_SYMBOL(complete);
  3904. /**
  3905. * complete_all: - signals all threads waiting on this completion
  3906. * @x: holds the state of this particular completion
  3907. *
  3908. * This will wake up all threads waiting on this particular completion event.
  3909. */
  3910. void complete_all(struct completion *x)
  3911. {
  3912. unsigned long flags;
  3913. spin_lock_irqsave(&x->wait.lock, flags);
  3914. x->done += UINT_MAX/2;
  3915. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3916. spin_unlock_irqrestore(&x->wait.lock, flags);
  3917. }
  3918. EXPORT_SYMBOL(complete_all);
  3919. static inline long __sched
  3920. do_wait_for_common(struct completion *x, long timeout, int state)
  3921. {
  3922. if (!x->done) {
  3923. DECLARE_WAITQUEUE(wait, current);
  3924. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3925. __add_wait_queue_tail(&x->wait, &wait);
  3926. do {
  3927. if (signal_pending_state(state, current)) {
  3928. timeout = -ERESTARTSYS;
  3929. break;
  3930. }
  3931. __set_current_state(state);
  3932. spin_unlock_irq(&x->wait.lock);
  3933. timeout = schedule_timeout(timeout);
  3934. spin_lock_irq(&x->wait.lock);
  3935. } while (!x->done && timeout);
  3936. __remove_wait_queue(&x->wait, &wait);
  3937. if (!x->done)
  3938. return timeout;
  3939. }
  3940. x->done--;
  3941. return timeout ?: 1;
  3942. }
  3943. static long __sched
  3944. wait_for_common(struct completion *x, long timeout, int state)
  3945. {
  3946. might_sleep();
  3947. spin_lock_irq(&x->wait.lock);
  3948. timeout = do_wait_for_common(x, timeout, state);
  3949. spin_unlock_irq(&x->wait.lock);
  3950. return timeout;
  3951. }
  3952. /**
  3953. * wait_for_completion: - waits for completion of a task
  3954. * @x: holds the state of this particular completion
  3955. *
  3956. * This waits to be signaled for completion of a specific task. It is NOT
  3957. * interruptible and there is no timeout.
  3958. *
  3959. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3960. * and interrupt capability. Also see complete().
  3961. */
  3962. void __sched wait_for_completion(struct completion *x)
  3963. {
  3964. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3965. }
  3966. EXPORT_SYMBOL(wait_for_completion);
  3967. /**
  3968. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3969. * @x: holds the state of this particular completion
  3970. * @timeout: timeout value in jiffies
  3971. *
  3972. * This waits for either a completion of a specific task to be signaled or for a
  3973. * specified timeout to expire. The timeout is in jiffies. It is not
  3974. * interruptible.
  3975. */
  3976. unsigned long __sched
  3977. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3978. {
  3979. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3980. }
  3981. EXPORT_SYMBOL(wait_for_completion_timeout);
  3982. /**
  3983. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3984. * @x: holds the state of this particular completion
  3985. *
  3986. * This waits for completion of a specific task to be signaled. It is
  3987. * interruptible.
  3988. */
  3989. int __sched wait_for_completion_interruptible(struct completion *x)
  3990. {
  3991. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3992. if (t == -ERESTARTSYS)
  3993. return t;
  3994. return 0;
  3995. }
  3996. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3997. /**
  3998. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3999. * @x: holds the state of this particular completion
  4000. * @timeout: timeout value in jiffies
  4001. *
  4002. * This waits for either a completion of a specific task to be signaled or for a
  4003. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4004. */
  4005. unsigned long __sched
  4006. wait_for_completion_interruptible_timeout(struct completion *x,
  4007. unsigned long timeout)
  4008. {
  4009. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4010. }
  4011. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4012. /**
  4013. * wait_for_completion_killable: - waits for completion of a task (killable)
  4014. * @x: holds the state of this particular completion
  4015. *
  4016. * This waits to be signaled for completion of a specific task. It can be
  4017. * interrupted by a kill signal.
  4018. */
  4019. int __sched wait_for_completion_killable(struct completion *x)
  4020. {
  4021. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4022. if (t == -ERESTARTSYS)
  4023. return t;
  4024. return 0;
  4025. }
  4026. EXPORT_SYMBOL(wait_for_completion_killable);
  4027. /**
  4028. * try_wait_for_completion - try to decrement a completion without blocking
  4029. * @x: completion structure
  4030. *
  4031. * Returns: 0 if a decrement cannot be done without blocking
  4032. * 1 if a decrement succeeded.
  4033. *
  4034. * If a completion is being used as a counting completion,
  4035. * attempt to decrement the counter without blocking. This
  4036. * enables us to avoid waiting if the resource the completion
  4037. * is protecting is not available.
  4038. */
  4039. bool try_wait_for_completion(struct completion *x)
  4040. {
  4041. int ret = 1;
  4042. spin_lock_irq(&x->wait.lock);
  4043. if (!x->done)
  4044. ret = 0;
  4045. else
  4046. x->done--;
  4047. spin_unlock_irq(&x->wait.lock);
  4048. return ret;
  4049. }
  4050. EXPORT_SYMBOL(try_wait_for_completion);
  4051. /**
  4052. * completion_done - Test to see if a completion has any waiters
  4053. * @x: completion structure
  4054. *
  4055. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4056. * 1 if there are no waiters.
  4057. *
  4058. */
  4059. bool completion_done(struct completion *x)
  4060. {
  4061. int ret = 1;
  4062. spin_lock_irq(&x->wait.lock);
  4063. if (!x->done)
  4064. ret = 0;
  4065. spin_unlock_irq(&x->wait.lock);
  4066. return ret;
  4067. }
  4068. EXPORT_SYMBOL(completion_done);
  4069. static long __sched
  4070. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4071. {
  4072. unsigned long flags;
  4073. wait_queue_t wait;
  4074. init_waitqueue_entry(&wait, current);
  4075. __set_current_state(state);
  4076. spin_lock_irqsave(&q->lock, flags);
  4077. __add_wait_queue(q, &wait);
  4078. spin_unlock(&q->lock);
  4079. timeout = schedule_timeout(timeout);
  4080. spin_lock_irq(&q->lock);
  4081. __remove_wait_queue(q, &wait);
  4082. spin_unlock_irqrestore(&q->lock, flags);
  4083. return timeout;
  4084. }
  4085. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4086. {
  4087. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4088. }
  4089. EXPORT_SYMBOL(interruptible_sleep_on);
  4090. long __sched
  4091. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4092. {
  4093. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4094. }
  4095. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4096. void __sched sleep_on(wait_queue_head_t *q)
  4097. {
  4098. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4099. }
  4100. EXPORT_SYMBOL(sleep_on);
  4101. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4102. {
  4103. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4104. }
  4105. EXPORT_SYMBOL(sleep_on_timeout);
  4106. #ifdef CONFIG_RT_MUTEXES
  4107. /*
  4108. * rt_mutex_setprio - set the current priority of a task
  4109. * @p: task
  4110. * @prio: prio value (kernel-internal form)
  4111. *
  4112. * This function changes the 'effective' priority of a task. It does
  4113. * not touch ->normal_prio like __setscheduler().
  4114. *
  4115. * Used by the rt_mutex code to implement priority inheritance logic.
  4116. */
  4117. void rt_mutex_setprio(struct task_struct *p, int prio)
  4118. {
  4119. unsigned long flags;
  4120. int oldprio, on_rq, running;
  4121. struct rq *rq;
  4122. const struct sched_class *prev_class = p->sched_class;
  4123. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4124. rq = task_rq_lock(p, &flags);
  4125. update_rq_clock(rq);
  4126. oldprio = p->prio;
  4127. on_rq = p->se.on_rq;
  4128. running = task_current(rq, p);
  4129. if (on_rq)
  4130. dequeue_task(rq, p, 0);
  4131. if (running)
  4132. p->sched_class->put_prev_task(rq, p);
  4133. if (rt_prio(prio))
  4134. p->sched_class = &rt_sched_class;
  4135. else
  4136. p->sched_class = &fair_sched_class;
  4137. p->prio = prio;
  4138. if (running)
  4139. p->sched_class->set_curr_task(rq);
  4140. if (on_rq) {
  4141. enqueue_task(rq, p, 0);
  4142. check_class_changed(rq, p, prev_class, oldprio, running);
  4143. }
  4144. task_rq_unlock(rq, &flags);
  4145. }
  4146. #endif
  4147. void set_user_nice(struct task_struct *p, long nice)
  4148. {
  4149. int old_prio, delta, on_rq;
  4150. unsigned long flags;
  4151. struct rq *rq;
  4152. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4153. return;
  4154. /*
  4155. * We have to be careful, if called from sys_setpriority(),
  4156. * the task might be in the middle of scheduling on another CPU.
  4157. */
  4158. rq = task_rq_lock(p, &flags);
  4159. update_rq_clock(rq);
  4160. /*
  4161. * The RT priorities are set via sched_setscheduler(), but we still
  4162. * allow the 'normal' nice value to be set - but as expected
  4163. * it wont have any effect on scheduling until the task is
  4164. * SCHED_FIFO/SCHED_RR:
  4165. */
  4166. if (task_has_rt_policy(p)) {
  4167. p->static_prio = NICE_TO_PRIO(nice);
  4168. goto out_unlock;
  4169. }
  4170. on_rq = p->se.on_rq;
  4171. if (on_rq)
  4172. dequeue_task(rq, p, 0);
  4173. p->static_prio = NICE_TO_PRIO(nice);
  4174. set_load_weight(p);
  4175. old_prio = p->prio;
  4176. p->prio = effective_prio(p);
  4177. delta = p->prio - old_prio;
  4178. if (on_rq) {
  4179. enqueue_task(rq, p, 0);
  4180. /*
  4181. * If the task increased its priority or is running and
  4182. * lowered its priority, then reschedule its CPU:
  4183. */
  4184. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4185. resched_task(rq->curr);
  4186. }
  4187. out_unlock:
  4188. task_rq_unlock(rq, &flags);
  4189. }
  4190. EXPORT_SYMBOL(set_user_nice);
  4191. /*
  4192. * can_nice - check if a task can reduce its nice value
  4193. * @p: task
  4194. * @nice: nice value
  4195. */
  4196. int can_nice(const struct task_struct *p, const int nice)
  4197. {
  4198. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4199. int nice_rlim = 20 - nice;
  4200. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4201. capable(CAP_SYS_NICE));
  4202. }
  4203. #ifdef __ARCH_WANT_SYS_NICE
  4204. /*
  4205. * sys_nice - change the priority of the current process.
  4206. * @increment: priority increment
  4207. *
  4208. * sys_setpriority is a more generic, but much slower function that
  4209. * does similar things.
  4210. */
  4211. asmlinkage long sys_nice(int increment)
  4212. {
  4213. long nice, retval;
  4214. /*
  4215. * Setpriority might change our priority at the same moment.
  4216. * We don't have to worry. Conceptually one call occurs first
  4217. * and we have a single winner.
  4218. */
  4219. if (increment < -40)
  4220. increment = -40;
  4221. if (increment > 40)
  4222. increment = 40;
  4223. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4224. if (nice < -20)
  4225. nice = -20;
  4226. if (nice > 19)
  4227. nice = 19;
  4228. if (increment < 0 && !can_nice(current, nice))
  4229. return -EPERM;
  4230. retval = security_task_setnice(current, nice);
  4231. if (retval)
  4232. return retval;
  4233. set_user_nice(current, nice);
  4234. return 0;
  4235. }
  4236. #endif
  4237. /**
  4238. * task_prio - return the priority value of a given task.
  4239. * @p: the task in question.
  4240. *
  4241. * This is the priority value as seen by users in /proc.
  4242. * RT tasks are offset by -200. Normal tasks are centered
  4243. * around 0, value goes from -16 to +15.
  4244. */
  4245. int task_prio(const struct task_struct *p)
  4246. {
  4247. return p->prio - MAX_RT_PRIO;
  4248. }
  4249. /**
  4250. * task_nice - return the nice value of a given task.
  4251. * @p: the task in question.
  4252. */
  4253. int task_nice(const struct task_struct *p)
  4254. {
  4255. return TASK_NICE(p);
  4256. }
  4257. EXPORT_SYMBOL(task_nice);
  4258. /**
  4259. * idle_cpu - is a given cpu idle currently?
  4260. * @cpu: the processor in question.
  4261. */
  4262. int idle_cpu(int cpu)
  4263. {
  4264. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4265. }
  4266. /**
  4267. * idle_task - return the idle task for a given cpu.
  4268. * @cpu: the processor in question.
  4269. */
  4270. struct task_struct *idle_task(int cpu)
  4271. {
  4272. return cpu_rq(cpu)->idle;
  4273. }
  4274. /**
  4275. * find_process_by_pid - find a process with a matching PID value.
  4276. * @pid: the pid in question.
  4277. */
  4278. static struct task_struct *find_process_by_pid(pid_t pid)
  4279. {
  4280. return pid ? find_task_by_vpid(pid) : current;
  4281. }
  4282. /* Actually do priority change: must hold rq lock. */
  4283. static void
  4284. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4285. {
  4286. BUG_ON(p->se.on_rq);
  4287. p->policy = policy;
  4288. switch (p->policy) {
  4289. case SCHED_NORMAL:
  4290. case SCHED_BATCH:
  4291. case SCHED_IDLE:
  4292. p->sched_class = &fair_sched_class;
  4293. break;
  4294. case SCHED_FIFO:
  4295. case SCHED_RR:
  4296. p->sched_class = &rt_sched_class;
  4297. break;
  4298. }
  4299. p->rt_priority = prio;
  4300. p->normal_prio = normal_prio(p);
  4301. /* we are holding p->pi_lock already */
  4302. p->prio = rt_mutex_getprio(p);
  4303. set_load_weight(p);
  4304. }
  4305. static int __sched_setscheduler(struct task_struct *p, int policy,
  4306. struct sched_param *param, bool user)
  4307. {
  4308. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4309. unsigned long flags;
  4310. const struct sched_class *prev_class = p->sched_class;
  4311. struct rq *rq;
  4312. /* may grab non-irq protected spin_locks */
  4313. BUG_ON(in_interrupt());
  4314. recheck:
  4315. /* double check policy once rq lock held */
  4316. if (policy < 0)
  4317. policy = oldpolicy = p->policy;
  4318. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4319. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4320. policy != SCHED_IDLE)
  4321. return -EINVAL;
  4322. /*
  4323. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4324. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4325. * SCHED_BATCH and SCHED_IDLE is 0.
  4326. */
  4327. if (param->sched_priority < 0 ||
  4328. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4329. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4330. return -EINVAL;
  4331. if (rt_policy(policy) != (param->sched_priority != 0))
  4332. return -EINVAL;
  4333. /*
  4334. * Allow unprivileged RT tasks to decrease priority:
  4335. */
  4336. if (user && !capable(CAP_SYS_NICE)) {
  4337. if (rt_policy(policy)) {
  4338. unsigned long rlim_rtprio;
  4339. if (!lock_task_sighand(p, &flags))
  4340. return -ESRCH;
  4341. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4342. unlock_task_sighand(p, &flags);
  4343. /* can't set/change the rt policy */
  4344. if (policy != p->policy && !rlim_rtprio)
  4345. return -EPERM;
  4346. /* can't increase priority */
  4347. if (param->sched_priority > p->rt_priority &&
  4348. param->sched_priority > rlim_rtprio)
  4349. return -EPERM;
  4350. }
  4351. /*
  4352. * Like positive nice levels, dont allow tasks to
  4353. * move out of SCHED_IDLE either:
  4354. */
  4355. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4356. return -EPERM;
  4357. /* can't change other user's priorities */
  4358. if ((current->euid != p->euid) &&
  4359. (current->euid != p->uid))
  4360. return -EPERM;
  4361. }
  4362. if (user) {
  4363. #ifdef CONFIG_RT_GROUP_SCHED
  4364. /*
  4365. * Do not allow realtime tasks into groups that have no runtime
  4366. * assigned.
  4367. */
  4368. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4369. return -EPERM;
  4370. #endif
  4371. retval = security_task_setscheduler(p, policy, param);
  4372. if (retval)
  4373. return retval;
  4374. }
  4375. /*
  4376. * make sure no PI-waiters arrive (or leave) while we are
  4377. * changing the priority of the task:
  4378. */
  4379. spin_lock_irqsave(&p->pi_lock, flags);
  4380. /*
  4381. * To be able to change p->policy safely, the apropriate
  4382. * runqueue lock must be held.
  4383. */
  4384. rq = __task_rq_lock(p);
  4385. /* recheck policy now with rq lock held */
  4386. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4387. policy = oldpolicy = -1;
  4388. __task_rq_unlock(rq);
  4389. spin_unlock_irqrestore(&p->pi_lock, flags);
  4390. goto recheck;
  4391. }
  4392. update_rq_clock(rq);
  4393. on_rq = p->se.on_rq;
  4394. running = task_current(rq, p);
  4395. if (on_rq)
  4396. deactivate_task(rq, p, 0);
  4397. if (running)
  4398. p->sched_class->put_prev_task(rq, p);
  4399. oldprio = p->prio;
  4400. __setscheduler(rq, p, policy, param->sched_priority);
  4401. if (running)
  4402. p->sched_class->set_curr_task(rq);
  4403. if (on_rq) {
  4404. activate_task(rq, p, 0);
  4405. check_class_changed(rq, p, prev_class, oldprio, running);
  4406. }
  4407. __task_rq_unlock(rq);
  4408. spin_unlock_irqrestore(&p->pi_lock, flags);
  4409. rt_mutex_adjust_pi(p);
  4410. return 0;
  4411. }
  4412. /**
  4413. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4414. * @p: the task in question.
  4415. * @policy: new policy.
  4416. * @param: structure containing the new RT priority.
  4417. *
  4418. * NOTE that the task may be already dead.
  4419. */
  4420. int sched_setscheduler(struct task_struct *p, int policy,
  4421. struct sched_param *param)
  4422. {
  4423. return __sched_setscheduler(p, policy, param, true);
  4424. }
  4425. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4426. /**
  4427. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4428. * @p: the task in question.
  4429. * @policy: new policy.
  4430. * @param: structure containing the new RT priority.
  4431. *
  4432. * Just like sched_setscheduler, only don't bother checking if the
  4433. * current context has permission. For example, this is needed in
  4434. * stop_machine(): we create temporary high priority worker threads,
  4435. * but our caller might not have that capability.
  4436. */
  4437. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4438. struct sched_param *param)
  4439. {
  4440. return __sched_setscheduler(p, policy, param, false);
  4441. }
  4442. static int
  4443. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4444. {
  4445. struct sched_param lparam;
  4446. struct task_struct *p;
  4447. int retval;
  4448. if (!param || pid < 0)
  4449. return -EINVAL;
  4450. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4451. return -EFAULT;
  4452. rcu_read_lock();
  4453. retval = -ESRCH;
  4454. p = find_process_by_pid(pid);
  4455. if (p != NULL)
  4456. retval = sched_setscheduler(p, policy, &lparam);
  4457. rcu_read_unlock();
  4458. return retval;
  4459. }
  4460. /**
  4461. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4462. * @pid: the pid in question.
  4463. * @policy: new policy.
  4464. * @param: structure containing the new RT priority.
  4465. */
  4466. asmlinkage long
  4467. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4468. {
  4469. /* negative values for policy are not valid */
  4470. if (policy < 0)
  4471. return -EINVAL;
  4472. return do_sched_setscheduler(pid, policy, param);
  4473. }
  4474. /**
  4475. * sys_sched_setparam - set/change the RT priority of a thread
  4476. * @pid: the pid in question.
  4477. * @param: structure containing the new RT priority.
  4478. */
  4479. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4480. {
  4481. return do_sched_setscheduler(pid, -1, param);
  4482. }
  4483. /**
  4484. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4485. * @pid: the pid in question.
  4486. */
  4487. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4488. {
  4489. struct task_struct *p;
  4490. int retval;
  4491. if (pid < 0)
  4492. return -EINVAL;
  4493. retval = -ESRCH;
  4494. read_lock(&tasklist_lock);
  4495. p = find_process_by_pid(pid);
  4496. if (p) {
  4497. retval = security_task_getscheduler(p);
  4498. if (!retval)
  4499. retval = p->policy;
  4500. }
  4501. read_unlock(&tasklist_lock);
  4502. return retval;
  4503. }
  4504. /**
  4505. * sys_sched_getscheduler - get the RT priority of a thread
  4506. * @pid: the pid in question.
  4507. * @param: structure containing the RT priority.
  4508. */
  4509. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4510. {
  4511. struct sched_param lp;
  4512. struct task_struct *p;
  4513. int retval;
  4514. if (!param || pid < 0)
  4515. return -EINVAL;
  4516. read_lock(&tasklist_lock);
  4517. p = find_process_by_pid(pid);
  4518. retval = -ESRCH;
  4519. if (!p)
  4520. goto out_unlock;
  4521. retval = security_task_getscheduler(p);
  4522. if (retval)
  4523. goto out_unlock;
  4524. lp.sched_priority = p->rt_priority;
  4525. read_unlock(&tasklist_lock);
  4526. /*
  4527. * This one might sleep, we cannot do it with a spinlock held ...
  4528. */
  4529. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4530. return retval;
  4531. out_unlock:
  4532. read_unlock(&tasklist_lock);
  4533. return retval;
  4534. }
  4535. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4536. {
  4537. cpumask_t cpus_allowed;
  4538. cpumask_t new_mask = *in_mask;
  4539. struct task_struct *p;
  4540. int retval;
  4541. get_online_cpus();
  4542. read_lock(&tasklist_lock);
  4543. p = find_process_by_pid(pid);
  4544. if (!p) {
  4545. read_unlock(&tasklist_lock);
  4546. put_online_cpus();
  4547. return -ESRCH;
  4548. }
  4549. /*
  4550. * It is not safe to call set_cpus_allowed with the
  4551. * tasklist_lock held. We will bump the task_struct's
  4552. * usage count and then drop tasklist_lock.
  4553. */
  4554. get_task_struct(p);
  4555. read_unlock(&tasklist_lock);
  4556. retval = -EPERM;
  4557. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4558. !capable(CAP_SYS_NICE))
  4559. goto out_unlock;
  4560. retval = security_task_setscheduler(p, 0, NULL);
  4561. if (retval)
  4562. goto out_unlock;
  4563. cpuset_cpus_allowed(p, &cpus_allowed);
  4564. cpus_and(new_mask, new_mask, cpus_allowed);
  4565. again:
  4566. retval = set_cpus_allowed_ptr(p, &new_mask);
  4567. if (!retval) {
  4568. cpuset_cpus_allowed(p, &cpus_allowed);
  4569. if (!cpus_subset(new_mask, cpus_allowed)) {
  4570. /*
  4571. * We must have raced with a concurrent cpuset
  4572. * update. Just reset the cpus_allowed to the
  4573. * cpuset's cpus_allowed
  4574. */
  4575. new_mask = cpus_allowed;
  4576. goto again;
  4577. }
  4578. }
  4579. out_unlock:
  4580. put_task_struct(p);
  4581. put_online_cpus();
  4582. return retval;
  4583. }
  4584. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4585. cpumask_t *new_mask)
  4586. {
  4587. if (len < sizeof(cpumask_t)) {
  4588. memset(new_mask, 0, sizeof(cpumask_t));
  4589. } else if (len > sizeof(cpumask_t)) {
  4590. len = sizeof(cpumask_t);
  4591. }
  4592. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4593. }
  4594. /**
  4595. * sys_sched_setaffinity - set the cpu affinity of a process
  4596. * @pid: pid of the process
  4597. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4598. * @user_mask_ptr: user-space pointer to the new cpu mask
  4599. */
  4600. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4601. unsigned long __user *user_mask_ptr)
  4602. {
  4603. cpumask_t new_mask;
  4604. int retval;
  4605. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4606. if (retval)
  4607. return retval;
  4608. return sched_setaffinity(pid, &new_mask);
  4609. }
  4610. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4611. {
  4612. struct task_struct *p;
  4613. int retval;
  4614. get_online_cpus();
  4615. read_lock(&tasklist_lock);
  4616. retval = -ESRCH;
  4617. p = find_process_by_pid(pid);
  4618. if (!p)
  4619. goto out_unlock;
  4620. retval = security_task_getscheduler(p);
  4621. if (retval)
  4622. goto out_unlock;
  4623. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4624. out_unlock:
  4625. read_unlock(&tasklist_lock);
  4626. put_online_cpus();
  4627. return retval;
  4628. }
  4629. /**
  4630. * sys_sched_getaffinity - get the cpu affinity of a process
  4631. * @pid: pid of the process
  4632. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4633. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4634. */
  4635. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4636. unsigned long __user *user_mask_ptr)
  4637. {
  4638. int ret;
  4639. cpumask_t mask;
  4640. if (len < sizeof(cpumask_t))
  4641. return -EINVAL;
  4642. ret = sched_getaffinity(pid, &mask);
  4643. if (ret < 0)
  4644. return ret;
  4645. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4646. return -EFAULT;
  4647. return sizeof(cpumask_t);
  4648. }
  4649. /**
  4650. * sys_sched_yield - yield the current processor to other threads.
  4651. *
  4652. * This function yields the current CPU to other tasks. If there are no
  4653. * other threads running on this CPU then this function will return.
  4654. */
  4655. asmlinkage long sys_sched_yield(void)
  4656. {
  4657. struct rq *rq = this_rq_lock();
  4658. schedstat_inc(rq, yld_count);
  4659. current->sched_class->yield_task(rq);
  4660. /*
  4661. * Since we are going to call schedule() anyway, there's
  4662. * no need to preempt or enable interrupts:
  4663. */
  4664. __release(rq->lock);
  4665. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4666. _raw_spin_unlock(&rq->lock);
  4667. preempt_enable_no_resched();
  4668. schedule();
  4669. return 0;
  4670. }
  4671. static void __cond_resched(void)
  4672. {
  4673. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4674. __might_sleep(__FILE__, __LINE__);
  4675. #endif
  4676. /*
  4677. * The BKS might be reacquired before we have dropped
  4678. * PREEMPT_ACTIVE, which could trigger a second
  4679. * cond_resched() call.
  4680. */
  4681. do {
  4682. add_preempt_count(PREEMPT_ACTIVE);
  4683. schedule();
  4684. sub_preempt_count(PREEMPT_ACTIVE);
  4685. } while (need_resched());
  4686. }
  4687. int __sched _cond_resched(void)
  4688. {
  4689. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4690. system_state == SYSTEM_RUNNING) {
  4691. __cond_resched();
  4692. return 1;
  4693. }
  4694. return 0;
  4695. }
  4696. EXPORT_SYMBOL(_cond_resched);
  4697. /*
  4698. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4699. * call schedule, and on return reacquire the lock.
  4700. *
  4701. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4702. * operations here to prevent schedule() from being called twice (once via
  4703. * spin_unlock(), once by hand).
  4704. */
  4705. int cond_resched_lock(spinlock_t *lock)
  4706. {
  4707. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4708. int ret = 0;
  4709. if (spin_needbreak(lock) || resched) {
  4710. spin_unlock(lock);
  4711. if (resched && need_resched())
  4712. __cond_resched();
  4713. else
  4714. cpu_relax();
  4715. ret = 1;
  4716. spin_lock(lock);
  4717. }
  4718. return ret;
  4719. }
  4720. EXPORT_SYMBOL(cond_resched_lock);
  4721. int __sched cond_resched_softirq(void)
  4722. {
  4723. BUG_ON(!in_softirq());
  4724. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4725. local_bh_enable();
  4726. __cond_resched();
  4727. local_bh_disable();
  4728. return 1;
  4729. }
  4730. return 0;
  4731. }
  4732. EXPORT_SYMBOL(cond_resched_softirq);
  4733. /**
  4734. * yield - yield the current processor to other threads.
  4735. *
  4736. * This is a shortcut for kernel-space yielding - it marks the
  4737. * thread runnable and calls sys_sched_yield().
  4738. */
  4739. void __sched yield(void)
  4740. {
  4741. set_current_state(TASK_RUNNING);
  4742. sys_sched_yield();
  4743. }
  4744. EXPORT_SYMBOL(yield);
  4745. /*
  4746. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4747. * that process accounting knows that this is a task in IO wait state.
  4748. *
  4749. * But don't do that if it is a deliberate, throttling IO wait (this task
  4750. * has set its backing_dev_info: the queue against which it should throttle)
  4751. */
  4752. void __sched io_schedule(void)
  4753. {
  4754. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4755. delayacct_blkio_start();
  4756. atomic_inc(&rq->nr_iowait);
  4757. schedule();
  4758. atomic_dec(&rq->nr_iowait);
  4759. delayacct_blkio_end();
  4760. }
  4761. EXPORT_SYMBOL(io_schedule);
  4762. long __sched io_schedule_timeout(long timeout)
  4763. {
  4764. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4765. long ret;
  4766. delayacct_blkio_start();
  4767. atomic_inc(&rq->nr_iowait);
  4768. ret = schedule_timeout(timeout);
  4769. atomic_dec(&rq->nr_iowait);
  4770. delayacct_blkio_end();
  4771. return ret;
  4772. }
  4773. /**
  4774. * sys_sched_get_priority_max - return maximum RT priority.
  4775. * @policy: scheduling class.
  4776. *
  4777. * this syscall returns the maximum rt_priority that can be used
  4778. * by a given scheduling class.
  4779. */
  4780. asmlinkage long sys_sched_get_priority_max(int policy)
  4781. {
  4782. int ret = -EINVAL;
  4783. switch (policy) {
  4784. case SCHED_FIFO:
  4785. case SCHED_RR:
  4786. ret = MAX_USER_RT_PRIO-1;
  4787. break;
  4788. case SCHED_NORMAL:
  4789. case SCHED_BATCH:
  4790. case SCHED_IDLE:
  4791. ret = 0;
  4792. break;
  4793. }
  4794. return ret;
  4795. }
  4796. /**
  4797. * sys_sched_get_priority_min - return minimum RT priority.
  4798. * @policy: scheduling class.
  4799. *
  4800. * this syscall returns the minimum rt_priority that can be used
  4801. * by a given scheduling class.
  4802. */
  4803. asmlinkage long sys_sched_get_priority_min(int policy)
  4804. {
  4805. int ret = -EINVAL;
  4806. switch (policy) {
  4807. case SCHED_FIFO:
  4808. case SCHED_RR:
  4809. ret = 1;
  4810. break;
  4811. case SCHED_NORMAL:
  4812. case SCHED_BATCH:
  4813. case SCHED_IDLE:
  4814. ret = 0;
  4815. }
  4816. return ret;
  4817. }
  4818. /**
  4819. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4820. * @pid: pid of the process.
  4821. * @interval: userspace pointer to the timeslice value.
  4822. *
  4823. * this syscall writes the default timeslice value of a given process
  4824. * into the user-space timespec buffer. A value of '0' means infinity.
  4825. */
  4826. asmlinkage
  4827. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4828. {
  4829. struct task_struct *p;
  4830. unsigned int time_slice;
  4831. int retval;
  4832. struct timespec t;
  4833. if (pid < 0)
  4834. return -EINVAL;
  4835. retval = -ESRCH;
  4836. read_lock(&tasklist_lock);
  4837. p = find_process_by_pid(pid);
  4838. if (!p)
  4839. goto out_unlock;
  4840. retval = security_task_getscheduler(p);
  4841. if (retval)
  4842. goto out_unlock;
  4843. /*
  4844. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4845. * tasks that are on an otherwise idle runqueue:
  4846. */
  4847. time_slice = 0;
  4848. if (p->policy == SCHED_RR) {
  4849. time_slice = DEF_TIMESLICE;
  4850. } else if (p->policy != SCHED_FIFO) {
  4851. struct sched_entity *se = &p->se;
  4852. unsigned long flags;
  4853. struct rq *rq;
  4854. rq = task_rq_lock(p, &flags);
  4855. if (rq->cfs.load.weight)
  4856. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4857. task_rq_unlock(rq, &flags);
  4858. }
  4859. read_unlock(&tasklist_lock);
  4860. jiffies_to_timespec(time_slice, &t);
  4861. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4862. return retval;
  4863. out_unlock:
  4864. read_unlock(&tasklist_lock);
  4865. return retval;
  4866. }
  4867. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4868. void sched_show_task(struct task_struct *p)
  4869. {
  4870. unsigned long free = 0;
  4871. unsigned state;
  4872. state = p->state ? __ffs(p->state) + 1 : 0;
  4873. printk(KERN_INFO "%-13.13s %c", p->comm,
  4874. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4875. #if BITS_PER_LONG == 32
  4876. if (state == TASK_RUNNING)
  4877. printk(KERN_CONT " running ");
  4878. else
  4879. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4880. #else
  4881. if (state == TASK_RUNNING)
  4882. printk(KERN_CONT " running task ");
  4883. else
  4884. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4885. #endif
  4886. #ifdef CONFIG_DEBUG_STACK_USAGE
  4887. {
  4888. unsigned long *n = end_of_stack(p);
  4889. while (!*n)
  4890. n++;
  4891. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4892. }
  4893. #endif
  4894. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4895. task_pid_nr(p), task_pid_nr(p->real_parent));
  4896. show_stack(p, NULL);
  4897. }
  4898. void show_state_filter(unsigned long state_filter)
  4899. {
  4900. struct task_struct *g, *p;
  4901. #if BITS_PER_LONG == 32
  4902. printk(KERN_INFO
  4903. " task PC stack pid father\n");
  4904. #else
  4905. printk(KERN_INFO
  4906. " task PC stack pid father\n");
  4907. #endif
  4908. read_lock(&tasklist_lock);
  4909. do_each_thread(g, p) {
  4910. /*
  4911. * reset the NMI-timeout, listing all files on a slow
  4912. * console might take alot of time:
  4913. */
  4914. touch_nmi_watchdog();
  4915. if (!state_filter || (p->state & state_filter))
  4916. sched_show_task(p);
  4917. } while_each_thread(g, p);
  4918. touch_all_softlockup_watchdogs();
  4919. #ifdef CONFIG_SCHED_DEBUG
  4920. sysrq_sched_debug_show();
  4921. #endif
  4922. read_unlock(&tasklist_lock);
  4923. /*
  4924. * Only show locks if all tasks are dumped:
  4925. */
  4926. if (state_filter == -1)
  4927. debug_show_all_locks();
  4928. }
  4929. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4930. {
  4931. idle->sched_class = &idle_sched_class;
  4932. }
  4933. /**
  4934. * init_idle - set up an idle thread for a given CPU
  4935. * @idle: task in question
  4936. * @cpu: cpu the idle task belongs to
  4937. *
  4938. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4939. * flag, to make booting more robust.
  4940. */
  4941. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4942. {
  4943. struct rq *rq = cpu_rq(cpu);
  4944. unsigned long flags;
  4945. __sched_fork(idle);
  4946. idle->se.exec_start = sched_clock();
  4947. idle->prio = idle->normal_prio = MAX_PRIO;
  4948. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4949. __set_task_cpu(idle, cpu);
  4950. spin_lock_irqsave(&rq->lock, flags);
  4951. rq->curr = rq->idle = idle;
  4952. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4953. idle->oncpu = 1;
  4954. #endif
  4955. spin_unlock_irqrestore(&rq->lock, flags);
  4956. /* Set the preempt count _outside_ the spinlocks! */
  4957. #if defined(CONFIG_PREEMPT)
  4958. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4959. #else
  4960. task_thread_info(idle)->preempt_count = 0;
  4961. #endif
  4962. /*
  4963. * The idle tasks have their own, simple scheduling class:
  4964. */
  4965. idle->sched_class = &idle_sched_class;
  4966. }
  4967. /*
  4968. * In a system that switches off the HZ timer nohz_cpu_mask
  4969. * indicates which cpus entered this state. This is used
  4970. * in the rcu update to wait only for active cpus. For system
  4971. * which do not switch off the HZ timer nohz_cpu_mask should
  4972. * always be CPU_MASK_NONE.
  4973. */
  4974. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4975. /*
  4976. * Increase the granularity value when there are more CPUs,
  4977. * because with more CPUs the 'effective latency' as visible
  4978. * to users decreases. But the relationship is not linear,
  4979. * so pick a second-best guess by going with the log2 of the
  4980. * number of CPUs.
  4981. *
  4982. * This idea comes from the SD scheduler of Con Kolivas:
  4983. */
  4984. static inline void sched_init_granularity(void)
  4985. {
  4986. unsigned int factor = 1 + ilog2(num_online_cpus());
  4987. const unsigned long limit = 200000000;
  4988. sysctl_sched_min_granularity *= factor;
  4989. if (sysctl_sched_min_granularity > limit)
  4990. sysctl_sched_min_granularity = limit;
  4991. sysctl_sched_latency *= factor;
  4992. if (sysctl_sched_latency > limit)
  4993. sysctl_sched_latency = limit;
  4994. sysctl_sched_wakeup_granularity *= factor;
  4995. sysctl_sched_shares_ratelimit *= factor;
  4996. }
  4997. #ifdef CONFIG_SMP
  4998. /*
  4999. * This is how migration works:
  5000. *
  5001. * 1) we queue a struct migration_req structure in the source CPU's
  5002. * runqueue and wake up that CPU's migration thread.
  5003. * 2) we down() the locked semaphore => thread blocks.
  5004. * 3) migration thread wakes up (implicitly it forces the migrated
  5005. * thread off the CPU)
  5006. * 4) it gets the migration request and checks whether the migrated
  5007. * task is still in the wrong runqueue.
  5008. * 5) if it's in the wrong runqueue then the migration thread removes
  5009. * it and puts it into the right queue.
  5010. * 6) migration thread up()s the semaphore.
  5011. * 7) we wake up and the migration is done.
  5012. */
  5013. /*
  5014. * Change a given task's CPU affinity. Migrate the thread to a
  5015. * proper CPU and schedule it away if the CPU it's executing on
  5016. * is removed from the allowed bitmask.
  5017. *
  5018. * NOTE: the caller must have a valid reference to the task, the
  5019. * task must not exit() & deallocate itself prematurely. The
  5020. * call is not atomic; no spinlocks may be held.
  5021. */
  5022. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5023. {
  5024. struct migration_req req;
  5025. unsigned long flags;
  5026. struct rq *rq;
  5027. int ret = 0;
  5028. rq = task_rq_lock(p, &flags);
  5029. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5030. ret = -EINVAL;
  5031. goto out;
  5032. }
  5033. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5034. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5035. ret = -EINVAL;
  5036. goto out;
  5037. }
  5038. if (p->sched_class->set_cpus_allowed)
  5039. p->sched_class->set_cpus_allowed(p, new_mask);
  5040. else {
  5041. p->cpus_allowed = *new_mask;
  5042. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5043. }
  5044. /* Can the task run on the task's current CPU? If so, we're done */
  5045. if (cpu_isset(task_cpu(p), *new_mask))
  5046. goto out;
  5047. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5048. /* Need help from migration thread: drop lock and wait. */
  5049. task_rq_unlock(rq, &flags);
  5050. wake_up_process(rq->migration_thread);
  5051. wait_for_completion(&req.done);
  5052. tlb_migrate_finish(p->mm);
  5053. return 0;
  5054. }
  5055. out:
  5056. task_rq_unlock(rq, &flags);
  5057. return ret;
  5058. }
  5059. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5060. /*
  5061. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5062. * this because either it can't run here any more (set_cpus_allowed()
  5063. * away from this CPU, or CPU going down), or because we're
  5064. * attempting to rebalance this task on exec (sched_exec).
  5065. *
  5066. * So we race with normal scheduler movements, but that's OK, as long
  5067. * as the task is no longer on this CPU.
  5068. *
  5069. * Returns non-zero if task was successfully migrated.
  5070. */
  5071. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5072. {
  5073. struct rq *rq_dest, *rq_src;
  5074. int ret = 0, on_rq;
  5075. if (unlikely(!cpu_active(dest_cpu)))
  5076. return ret;
  5077. rq_src = cpu_rq(src_cpu);
  5078. rq_dest = cpu_rq(dest_cpu);
  5079. double_rq_lock(rq_src, rq_dest);
  5080. /* Already moved. */
  5081. if (task_cpu(p) != src_cpu)
  5082. goto done;
  5083. /* Affinity changed (again). */
  5084. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5085. goto fail;
  5086. on_rq = p->se.on_rq;
  5087. if (on_rq)
  5088. deactivate_task(rq_src, p, 0);
  5089. set_task_cpu(p, dest_cpu);
  5090. if (on_rq) {
  5091. activate_task(rq_dest, p, 0);
  5092. check_preempt_curr(rq_dest, p);
  5093. }
  5094. done:
  5095. ret = 1;
  5096. fail:
  5097. double_rq_unlock(rq_src, rq_dest);
  5098. return ret;
  5099. }
  5100. /*
  5101. * migration_thread - this is a highprio system thread that performs
  5102. * thread migration by bumping thread off CPU then 'pushing' onto
  5103. * another runqueue.
  5104. */
  5105. static int migration_thread(void *data)
  5106. {
  5107. int cpu = (long)data;
  5108. struct rq *rq;
  5109. rq = cpu_rq(cpu);
  5110. BUG_ON(rq->migration_thread != current);
  5111. set_current_state(TASK_INTERRUPTIBLE);
  5112. while (!kthread_should_stop()) {
  5113. struct migration_req *req;
  5114. struct list_head *head;
  5115. spin_lock_irq(&rq->lock);
  5116. if (cpu_is_offline(cpu)) {
  5117. spin_unlock_irq(&rq->lock);
  5118. goto wait_to_die;
  5119. }
  5120. if (rq->active_balance) {
  5121. active_load_balance(rq, cpu);
  5122. rq->active_balance = 0;
  5123. }
  5124. head = &rq->migration_queue;
  5125. if (list_empty(head)) {
  5126. spin_unlock_irq(&rq->lock);
  5127. schedule();
  5128. set_current_state(TASK_INTERRUPTIBLE);
  5129. continue;
  5130. }
  5131. req = list_entry(head->next, struct migration_req, list);
  5132. list_del_init(head->next);
  5133. spin_unlock(&rq->lock);
  5134. __migrate_task(req->task, cpu, req->dest_cpu);
  5135. local_irq_enable();
  5136. complete(&req->done);
  5137. }
  5138. __set_current_state(TASK_RUNNING);
  5139. return 0;
  5140. wait_to_die:
  5141. /* Wait for kthread_stop */
  5142. set_current_state(TASK_INTERRUPTIBLE);
  5143. while (!kthread_should_stop()) {
  5144. schedule();
  5145. set_current_state(TASK_INTERRUPTIBLE);
  5146. }
  5147. __set_current_state(TASK_RUNNING);
  5148. return 0;
  5149. }
  5150. #ifdef CONFIG_HOTPLUG_CPU
  5151. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5152. {
  5153. int ret;
  5154. local_irq_disable();
  5155. ret = __migrate_task(p, src_cpu, dest_cpu);
  5156. local_irq_enable();
  5157. return ret;
  5158. }
  5159. /*
  5160. * Figure out where task on dead CPU should go, use force if necessary.
  5161. * NOTE: interrupts should be disabled by the caller
  5162. */
  5163. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5164. {
  5165. unsigned long flags;
  5166. cpumask_t mask;
  5167. struct rq *rq;
  5168. int dest_cpu;
  5169. do {
  5170. /* On same node? */
  5171. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5172. cpus_and(mask, mask, p->cpus_allowed);
  5173. dest_cpu = any_online_cpu(mask);
  5174. /* On any allowed CPU? */
  5175. if (dest_cpu >= nr_cpu_ids)
  5176. dest_cpu = any_online_cpu(p->cpus_allowed);
  5177. /* No more Mr. Nice Guy. */
  5178. if (dest_cpu >= nr_cpu_ids) {
  5179. cpumask_t cpus_allowed;
  5180. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5181. /*
  5182. * Try to stay on the same cpuset, where the
  5183. * current cpuset may be a subset of all cpus.
  5184. * The cpuset_cpus_allowed_locked() variant of
  5185. * cpuset_cpus_allowed() will not block. It must be
  5186. * called within calls to cpuset_lock/cpuset_unlock.
  5187. */
  5188. rq = task_rq_lock(p, &flags);
  5189. p->cpus_allowed = cpus_allowed;
  5190. dest_cpu = any_online_cpu(p->cpus_allowed);
  5191. task_rq_unlock(rq, &flags);
  5192. /*
  5193. * Don't tell them about moving exiting tasks or
  5194. * kernel threads (both mm NULL), since they never
  5195. * leave kernel.
  5196. */
  5197. if (p->mm && printk_ratelimit()) {
  5198. printk(KERN_INFO "process %d (%s) no "
  5199. "longer affine to cpu%d\n",
  5200. task_pid_nr(p), p->comm, dead_cpu);
  5201. }
  5202. }
  5203. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5204. }
  5205. /*
  5206. * While a dead CPU has no uninterruptible tasks queued at this point,
  5207. * it might still have a nonzero ->nr_uninterruptible counter, because
  5208. * for performance reasons the counter is not stricly tracking tasks to
  5209. * their home CPUs. So we just add the counter to another CPU's counter,
  5210. * to keep the global sum constant after CPU-down:
  5211. */
  5212. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5213. {
  5214. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5215. unsigned long flags;
  5216. local_irq_save(flags);
  5217. double_rq_lock(rq_src, rq_dest);
  5218. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5219. rq_src->nr_uninterruptible = 0;
  5220. double_rq_unlock(rq_src, rq_dest);
  5221. local_irq_restore(flags);
  5222. }
  5223. /* Run through task list and migrate tasks from the dead cpu. */
  5224. static void migrate_live_tasks(int src_cpu)
  5225. {
  5226. struct task_struct *p, *t;
  5227. read_lock(&tasklist_lock);
  5228. do_each_thread(t, p) {
  5229. if (p == current)
  5230. continue;
  5231. if (task_cpu(p) == src_cpu)
  5232. move_task_off_dead_cpu(src_cpu, p);
  5233. } while_each_thread(t, p);
  5234. read_unlock(&tasklist_lock);
  5235. }
  5236. /*
  5237. * Schedules idle task to be the next runnable task on current CPU.
  5238. * It does so by boosting its priority to highest possible.
  5239. * Used by CPU offline code.
  5240. */
  5241. void sched_idle_next(void)
  5242. {
  5243. int this_cpu = smp_processor_id();
  5244. struct rq *rq = cpu_rq(this_cpu);
  5245. struct task_struct *p = rq->idle;
  5246. unsigned long flags;
  5247. /* cpu has to be offline */
  5248. BUG_ON(cpu_online(this_cpu));
  5249. /*
  5250. * Strictly not necessary since rest of the CPUs are stopped by now
  5251. * and interrupts disabled on the current cpu.
  5252. */
  5253. spin_lock_irqsave(&rq->lock, flags);
  5254. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5255. update_rq_clock(rq);
  5256. activate_task(rq, p, 0);
  5257. spin_unlock_irqrestore(&rq->lock, flags);
  5258. }
  5259. /*
  5260. * Ensures that the idle task is using init_mm right before its cpu goes
  5261. * offline.
  5262. */
  5263. void idle_task_exit(void)
  5264. {
  5265. struct mm_struct *mm = current->active_mm;
  5266. BUG_ON(cpu_online(smp_processor_id()));
  5267. if (mm != &init_mm)
  5268. switch_mm(mm, &init_mm, current);
  5269. mmdrop(mm);
  5270. }
  5271. /* called under rq->lock with disabled interrupts */
  5272. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5273. {
  5274. struct rq *rq = cpu_rq(dead_cpu);
  5275. /* Must be exiting, otherwise would be on tasklist. */
  5276. BUG_ON(!p->exit_state);
  5277. /* Cannot have done final schedule yet: would have vanished. */
  5278. BUG_ON(p->state == TASK_DEAD);
  5279. get_task_struct(p);
  5280. /*
  5281. * Drop lock around migration; if someone else moves it,
  5282. * that's OK. No task can be added to this CPU, so iteration is
  5283. * fine.
  5284. */
  5285. spin_unlock_irq(&rq->lock);
  5286. move_task_off_dead_cpu(dead_cpu, p);
  5287. spin_lock_irq(&rq->lock);
  5288. put_task_struct(p);
  5289. }
  5290. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5291. static void migrate_dead_tasks(unsigned int dead_cpu)
  5292. {
  5293. struct rq *rq = cpu_rq(dead_cpu);
  5294. struct task_struct *next;
  5295. for ( ; ; ) {
  5296. if (!rq->nr_running)
  5297. break;
  5298. update_rq_clock(rq);
  5299. next = pick_next_task(rq, rq->curr);
  5300. if (!next)
  5301. break;
  5302. next->sched_class->put_prev_task(rq, next);
  5303. migrate_dead(dead_cpu, next);
  5304. }
  5305. }
  5306. #endif /* CONFIG_HOTPLUG_CPU */
  5307. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5308. static struct ctl_table sd_ctl_dir[] = {
  5309. {
  5310. .procname = "sched_domain",
  5311. .mode = 0555,
  5312. },
  5313. {0, },
  5314. };
  5315. static struct ctl_table sd_ctl_root[] = {
  5316. {
  5317. .ctl_name = CTL_KERN,
  5318. .procname = "kernel",
  5319. .mode = 0555,
  5320. .child = sd_ctl_dir,
  5321. },
  5322. {0, },
  5323. };
  5324. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5325. {
  5326. struct ctl_table *entry =
  5327. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5328. return entry;
  5329. }
  5330. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5331. {
  5332. struct ctl_table *entry;
  5333. /*
  5334. * In the intermediate directories, both the child directory and
  5335. * procname are dynamically allocated and could fail but the mode
  5336. * will always be set. In the lowest directory the names are
  5337. * static strings and all have proc handlers.
  5338. */
  5339. for (entry = *tablep; entry->mode; entry++) {
  5340. if (entry->child)
  5341. sd_free_ctl_entry(&entry->child);
  5342. if (entry->proc_handler == NULL)
  5343. kfree(entry->procname);
  5344. }
  5345. kfree(*tablep);
  5346. *tablep = NULL;
  5347. }
  5348. static void
  5349. set_table_entry(struct ctl_table *entry,
  5350. const char *procname, void *data, int maxlen,
  5351. mode_t mode, proc_handler *proc_handler)
  5352. {
  5353. entry->procname = procname;
  5354. entry->data = data;
  5355. entry->maxlen = maxlen;
  5356. entry->mode = mode;
  5357. entry->proc_handler = proc_handler;
  5358. }
  5359. static struct ctl_table *
  5360. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5361. {
  5362. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5363. if (table == NULL)
  5364. return NULL;
  5365. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5366. sizeof(long), 0644, proc_doulongvec_minmax);
  5367. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5368. sizeof(long), 0644, proc_doulongvec_minmax);
  5369. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5370. sizeof(int), 0644, proc_dointvec_minmax);
  5371. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5372. sizeof(int), 0644, proc_dointvec_minmax);
  5373. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5374. sizeof(int), 0644, proc_dointvec_minmax);
  5375. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5376. sizeof(int), 0644, proc_dointvec_minmax);
  5377. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5378. sizeof(int), 0644, proc_dointvec_minmax);
  5379. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5380. sizeof(int), 0644, proc_dointvec_minmax);
  5381. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5382. sizeof(int), 0644, proc_dointvec_minmax);
  5383. set_table_entry(&table[9], "cache_nice_tries",
  5384. &sd->cache_nice_tries,
  5385. sizeof(int), 0644, proc_dointvec_minmax);
  5386. set_table_entry(&table[10], "flags", &sd->flags,
  5387. sizeof(int), 0644, proc_dointvec_minmax);
  5388. /* &table[11] is terminator */
  5389. return table;
  5390. }
  5391. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5392. {
  5393. struct ctl_table *entry, *table;
  5394. struct sched_domain *sd;
  5395. int domain_num = 0, i;
  5396. char buf[32];
  5397. for_each_domain(cpu, sd)
  5398. domain_num++;
  5399. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5400. if (table == NULL)
  5401. return NULL;
  5402. i = 0;
  5403. for_each_domain(cpu, sd) {
  5404. snprintf(buf, 32, "domain%d", i);
  5405. entry->procname = kstrdup(buf, GFP_KERNEL);
  5406. entry->mode = 0555;
  5407. entry->child = sd_alloc_ctl_domain_table(sd);
  5408. entry++;
  5409. i++;
  5410. }
  5411. return table;
  5412. }
  5413. static struct ctl_table_header *sd_sysctl_header;
  5414. static void register_sched_domain_sysctl(void)
  5415. {
  5416. int i, cpu_num = num_online_cpus();
  5417. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5418. char buf[32];
  5419. WARN_ON(sd_ctl_dir[0].child);
  5420. sd_ctl_dir[0].child = entry;
  5421. if (entry == NULL)
  5422. return;
  5423. for_each_online_cpu(i) {
  5424. snprintf(buf, 32, "cpu%d", i);
  5425. entry->procname = kstrdup(buf, GFP_KERNEL);
  5426. entry->mode = 0555;
  5427. entry->child = sd_alloc_ctl_cpu_table(i);
  5428. entry++;
  5429. }
  5430. WARN_ON(sd_sysctl_header);
  5431. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5432. }
  5433. /* may be called multiple times per register */
  5434. static void unregister_sched_domain_sysctl(void)
  5435. {
  5436. if (sd_sysctl_header)
  5437. unregister_sysctl_table(sd_sysctl_header);
  5438. sd_sysctl_header = NULL;
  5439. if (sd_ctl_dir[0].child)
  5440. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5441. }
  5442. #else
  5443. static void register_sched_domain_sysctl(void)
  5444. {
  5445. }
  5446. static void unregister_sched_domain_sysctl(void)
  5447. {
  5448. }
  5449. #endif
  5450. static void set_rq_online(struct rq *rq)
  5451. {
  5452. if (!rq->online) {
  5453. const struct sched_class *class;
  5454. cpu_set(rq->cpu, rq->rd->online);
  5455. rq->online = 1;
  5456. for_each_class(class) {
  5457. if (class->rq_online)
  5458. class->rq_online(rq);
  5459. }
  5460. }
  5461. }
  5462. static void set_rq_offline(struct rq *rq)
  5463. {
  5464. if (rq->online) {
  5465. const struct sched_class *class;
  5466. for_each_class(class) {
  5467. if (class->rq_offline)
  5468. class->rq_offline(rq);
  5469. }
  5470. cpu_clear(rq->cpu, rq->rd->online);
  5471. rq->online = 0;
  5472. }
  5473. }
  5474. /*
  5475. * migration_call - callback that gets triggered when a CPU is added.
  5476. * Here we can start up the necessary migration thread for the new CPU.
  5477. */
  5478. static int __cpuinit
  5479. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5480. {
  5481. struct task_struct *p;
  5482. int cpu = (long)hcpu;
  5483. unsigned long flags;
  5484. struct rq *rq;
  5485. switch (action) {
  5486. case CPU_UP_PREPARE:
  5487. case CPU_UP_PREPARE_FROZEN:
  5488. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5489. if (IS_ERR(p))
  5490. return NOTIFY_BAD;
  5491. kthread_bind(p, cpu);
  5492. /* Must be high prio: stop_machine expects to yield to it. */
  5493. rq = task_rq_lock(p, &flags);
  5494. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5495. task_rq_unlock(rq, &flags);
  5496. cpu_rq(cpu)->migration_thread = p;
  5497. break;
  5498. case CPU_ONLINE:
  5499. case CPU_ONLINE_FROZEN:
  5500. /* Strictly unnecessary, as first user will wake it. */
  5501. wake_up_process(cpu_rq(cpu)->migration_thread);
  5502. /* Update our root-domain */
  5503. rq = cpu_rq(cpu);
  5504. spin_lock_irqsave(&rq->lock, flags);
  5505. if (rq->rd) {
  5506. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5507. set_rq_online(rq);
  5508. }
  5509. spin_unlock_irqrestore(&rq->lock, flags);
  5510. break;
  5511. #ifdef CONFIG_HOTPLUG_CPU
  5512. case CPU_UP_CANCELED:
  5513. case CPU_UP_CANCELED_FROZEN:
  5514. if (!cpu_rq(cpu)->migration_thread)
  5515. break;
  5516. /* Unbind it from offline cpu so it can run. Fall thru. */
  5517. kthread_bind(cpu_rq(cpu)->migration_thread,
  5518. any_online_cpu(cpu_online_map));
  5519. kthread_stop(cpu_rq(cpu)->migration_thread);
  5520. cpu_rq(cpu)->migration_thread = NULL;
  5521. break;
  5522. case CPU_DEAD:
  5523. case CPU_DEAD_FROZEN:
  5524. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5525. migrate_live_tasks(cpu);
  5526. rq = cpu_rq(cpu);
  5527. kthread_stop(rq->migration_thread);
  5528. rq->migration_thread = NULL;
  5529. /* Idle task back to normal (off runqueue, low prio) */
  5530. spin_lock_irq(&rq->lock);
  5531. update_rq_clock(rq);
  5532. deactivate_task(rq, rq->idle, 0);
  5533. rq->idle->static_prio = MAX_PRIO;
  5534. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5535. rq->idle->sched_class = &idle_sched_class;
  5536. migrate_dead_tasks(cpu);
  5537. spin_unlock_irq(&rq->lock);
  5538. cpuset_unlock();
  5539. migrate_nr_uninterruptible(rq);
  5540. BUG_ON(rq->nr_running != 0);
  5541. /*
  5542. * No need to migrate the tasks: it was best-effort if
  5543. * they didn't take sched_hotcpu_mutex. Just wake up
  5544. * the requestors.
  5545. */
  5546. spin_lock_irq(&rq->lock);
  5547. while (!list_empty(&rq->migration_queue)) {
  5548. struct migration_req *req;
  5549. req = list_entry(rq->migration_queue.next,
  5550. struct migration_req, list);
  5551. list_del_init(&req->list);
  5552. complete(&req->done);
  5553. }
  5554. spin_unlock_irq(&rq->lock);
  5555. break;
  5556. case CPU_DYING:
  5557. case CPU_DYING_FROZEN:
  5558. /* Update our root-domain */
  5559. rq = cpu_rq(cpu);
  5560. spin_lock_irqsave(&rq->lock, flags);
  5561. if (rq->rd) {
  5562. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5563. set_rq_offline(rq);
  5564. }
  5565. spin_unlock_irqrestore(&rq->lock, flags);
  5566. break;
  5567. #endif
  5568. }
  5569. return NOTIFY_OK;
  5570. }
  5571. /* Register at highest priority so that task migration (migrate_all_tasks)
  5572. * happens before everything else.
  5573. */
  5574. static struct notifier_block __cpuinitdata migration_notifier = {
  5575. .notifier_call = migration_call,
  5576. .priority = 10
  5577. };
  5578. static int __init migration_init(void)
  5579. {
  5580. void *cpu = (void *)(long)smp_processor_id();
  5581. int err;
  5582. /* Start one for the boot CPU: */
  5583. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5584. BUG_ON(err == NOTIFY_BAD);
  5585. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5586. register_cpu_notifier(&migration_notifier);
  5587. return err;
  5588. }
  5589. early_initcall(migration_init);
  5590. #endif
  5591. #ifdef CONFIG_SMP
  5592. #ifdef CONFIG_SCHED_DEBUG
  5593. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5594. {
  5595. switch (lvl) {
  5596. case SD_LV_NONE:
  5597. return "NONE";
  5598. case SD_LV_SIBLING:
  5599. return "SIBLING";
  5600. case SD_LV_MC:
  5601. return "MC";
  5602. case SD_LV_CPU:
  5603. return "CPU";
  5604. case SD_LV_NODE:
  5605. return "NODE";
  5606. case SD_LV_ALLNODES:
  5607. return "ALLNODES";
  5608. case SD_LV_MAX:
  5609. return "MAX";
  5610. }
  5611. return "MAX";
  5612. }
  5613. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5614. cpumask_t *groupmask)
  5615. {
  5616. struct sched_group *group = sd->groups;
  5617. char str[256];
  5618. cpulist_scnprintf(str, sizeof(str), sd->span);
  5619. cpus_clear(*groupmask);
  5620. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5621. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5622. printk("does not load-balance\n");
  5623. if (sd->parent)
  5624. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5625. " has parent");
  5626. return -1;
  5627. }
  5628. printk(KERN_CONT "span %s level %s\n",
  5629. str, sd_level_to_string(sd->level));
  5630. if (!cpu_isset(cpu, sd->span)) {
  5631. printk(KERN_ERR "ERROR: domain->span does not contain "
  5632. "CPU%d\n", cpu);
  5633. }
  5634. if (!cpu_isset(cpu, group->cpumask)) {
  5635. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5636. " CPU%d\n", cpu);
  5637. }
  5638. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5639. do {
  5640. if (!group) {
  5641. printk("\n");
  5642. printk(KERN_ERR "ERROR: group is NULL\n");
  5643. break;
  5644. }
  5645. if (!group->__cpu_power) {
  5646. printk(KERN_CONT "\n");
  5647. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5648. "set\n");
  5649. break;
  5650. }
  5651. if (!cpus_weight(group->cpumask)) {
  5652. printk(KERN_CONT "\n");
  5653. printk(KERN_ERR "ERROR: empty group\n");
  5654. break;
  5655. }
  5656. if (cpus_intersects(*groupmask, group->cpumask)) {
  5657. printk(KERN_CONT "\n");
  5658. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5659. break;
  5660. }
  5661. cpus_or(*groupmask, *groupmask, group->cpumask);
  5662. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5663. printk(KERN_CONT " %s", str);
  5664. group = group->next;
  5665. } while (group != sd->groups);
  5666. printk(KERN_CONT "\n");
  5667. if (!cpus_equal(sd->span, *groupmask))
  5668. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5669. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5670. printk(KERN_ERR "ERROR: parent span is not a superset "
  5671. "of domain->span\n");
  5672. return 0;
  5673. }
  5674. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5675. {
  5676. cpumask_t *groupmask;
  5677. int level = 0;
  5678. if (!sd) {
  5679. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5680. return;
  5681. }
  5682. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5683. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5684. if (!groupmask) {
  5685. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5686. return;
  5687. }
  5688. for (;;) {
  5689. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5690. break;
  5691. level++;
  5692. sd = sd->parent;
  5693. if (!sd)
  5694. break;
  5695. }
  5696. kfree(groupmask);
  5697. }
  5698. #else /* !CONFIG_SCHED_DEBUG */
  5699. # define sched_domain_debug(sd, cpu) do { } while (0)
  5700. #endif /* CONFIG_SCHED_DEBUG */
  5701. static int sd_degenerate(struct sched_domain *sd)
  5702. {
  5703. if (cpus_weight(sd->span) == 1)
  5704. return 1;
  5705. /* Following flags need at least 2 groups */
  5706. if (sd->flags & (SD_LOAD_BALANCE |
  5707. SD_BALANCE_NEWIDLE |
  5708. SD_BALANCE_FORK |
  5709. SD_BALANCE_EXEC |
  5710. SD_SHARE_CPUPOWER |
  5711. SD_SHARE_PKG_RESOURCES)) {
  5712. if (sd->groups != sd->groups->next)
  5713. return 0;
  5714. }
  5715. /* Following flags don't use groups */
  5716. if (sd->flags & (SD_WAKE_IDLE |
  5717. SD_WAKE_AFFINE |
  5718. SD_WAKE_BALANCE))
  5719. return 0;
  5720. return 1;
  5721. }
  5722. static int
  5723. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5724. {
  5725. unsigned long cflags = sd->flags, pflags = parent->flags;
  5726. if (sd_degenerate(parent))
  5727. return 1;
  5728. if (!cpus_equal(sd->span, parent->span))
  5729. return 0;
  5730. /* Does parent contain flags not in child? */
  5731. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5732. if (cflags & SD_WAKE_AFFINE)
  5733. pflags &= ~SD_WAKE_BALANCE;
  5734. /* Flags needing groups don't count if only 1 group in parent */
  5735. if (parent->groups == parent->groups->next) {
  5736. pflags &= ~(SD_LOAD_BALANCE |
  5737. SD_BALANCE_NEWIDLE |
  5738. SD_BALANCE_FORK |
  5739. SD_BALANCE_EXEC |
  5740. SD_SHARE_CPUPOWER |
  5741. SD_SHARE_PKG_RESOURCES);
  5742. }
  5743. if (~cflags & pflags)
  5744. return 0;
  5745. return 1;
  5746. }
  5747. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5748. {
  5749. unsigned long flags;
  5750. spin_lock_irqsave(&rq->lock, flags);
  5751. if (rq->rd) {
  5752. struct root_domain *old_rd = rq->rd;
  5753. if (cpu_isset(rq->cpu, old_rd->online))
  5754. set_rq_offline(rq);
  5755. cpu_clear(rq->cpu, old_rd->span);
  5756. if (atomic_dec_and_test(&old_rd->refcount))
  5757. kfree(old_rd);
  5758. }
  5759. atomic_inc(&rd->refcount);
  5760. rq->rd = rd;
  5761. cpu_set(rq->cpu, rd->span);
  5762. if (cpu_isset(rq->cpu, cpu_online_map))
  5763. set_rq_online(rq);
  5764. spin_unlock_irqrestore(&rq->lock, flags);
  5765. }
  5766. static void init_rootdomain(struct root_domain *rd)
  5767. {
  5768. memset(rd, 0, sizeof(*rd));
  5769. cpus_clear(rd->span);
  5770. cpus_clear(rd->online);
  5771. cpupri_init(&rd->cpupri);
  5772. }
  5773. static void init_defrootdomain(void)
  5774. {
  5775. init_rootdomain(&def_root_domain);
  5776. atomic_set(&def_root_domain.refcount, 1);
  5777. }
  5778. static struct root_domain *alloc_rootdomain(void)
  5779. {
  5780. struct root_domain *rd;
  5781. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5782. if (!rd)
  5783. return NULL;
  5784. init_rootdomain(rd);
  5785. return rd;
  5786. }
  5787. /*
  5788. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5789. * hold the hotplug lock.
  5790. */
  5791. static void
  5792. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5793. {
  5794. struct rq *rq = cpu_rq(cpu);
  5795. struct sched_domain *tmp;
  5796. /* Remove the sched domains which do not contribute to scheduling. */
  5797. for (tmp = sd; tmp; tmp = tmp->parent) {
  5798. struct sched_domain *parent = tmp->parent;
  5799. if (!parent)
  5800. break;
  5801. if (sd_parent_degenerate(tmp, parent)) {
  5802. tmp->parent = parent->parent;
  5803. if (parent->parent)
  5804. parent->parent->child = tmp;
  5805. }
  5806. }
  5807. if (sd && sd_degenerate(sd)) {
  5808. sd = sd->parent;
  5809. if (sd)
  5810. sd->child = NULL;
  5811. }
  5812. sched_domain_debug(sd, cpu);
  5813. rq_attach_root(rq, rd);
  5814. rcu_assign_pointer(rq->sd, sd);
  5815. }
  5816. /* cpus with isolated domains */
  5817. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5818. /* Setup the mask of cpus configured for isolated domains */
  5819. static int __init isolated_cpu_setup(char *str)
  5820. {
  5821. static int __initdata ints[NR_CPUS];
  5822. int i;
  5823. str = get_options(str, ARRAY_SIZE(ints), ints);
  5824. cpus_clear(cpu_isolated_map);
  5825. for (i = 1; i <= ints[0]; i++)
  5826. if (ints[i] < NR_CPUS)
  5827. cpu_set(ints[i], cpu_isolated_map);
  5828. return 1;
  5829. }
  5830. __setup("isolcpus=", isolated_cpu_setup);
  5831. /*
  5832. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5833. * to a function which identifies what group(along with sched group) a CPU
  5834. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5835. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5836. *
  5837. * init_sched_build_groups will build a circular linked list of the groups
  5838. * covered by the given span, and will set each group's ->cpumask correctly,
  5839. * and ->cpu_power to 0.
  5840. */
  5841. static void
  5842. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5843. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5844. struct sched_group **sg,
  5845. cpumask_t *tmpmask),
  5846. cpumask_t *covered, cpumask_t *tmpmask)
  5847. {
  5848. struct sched_group *first = NULL, *last = NULL;
  5849. int i;
  5850. cpus_clear(*covered);
  5851. for_each_cpu_mask_nr(i, *span) {
  5852. struct sched_group *sg;
  5853. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5854. int j;
  5855. if (cpu_isset(i, *covered))
  5856. continue;
  5857. cpus_clear(sg->cpumask);
  5858. sg->__cpu_power = 0;
  5859. for_each_cpu_mask_nr(j, *span) {
  5860. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5861. continue;
  5862. cpu_set(j, *covered);
  5863. cpu_set(j, sg->cpumask);
  5864. }
  5865. if (!first)
  5866. first = sg;
  5867. if (last)
  5868. last->next = sg;
  5869. last = sg;
  5870. }
  5871. last->next = first;
  5872. }
  5873. #define SD_NODES_PER_DOMAIN 16
  5874. #ifdef CONFIG_NUMA
  5875. /**
  5876. * find_next_best_node - find the next node to include in a sched_domain
  5877. * @node: node whose sched_domain we're building
  5878. * @used_nodes: nodes already in the sched_domain
  5879. *
  5880. * Find the next node to include in a given scheduling domain. Simply
  5881. * finds the closest node not already in the @used_nodes map.
  5882. *
  5883. * Should use nodemask_t.
  5884. */
  5885. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5886. {
  5887. int i, n, val, min_val, best_node = 0;
  5888. min_val = INT_MAX;
  5889. for (i = 0; i < nr_node_ids; i++) {
  5890. /* Start at @node */
  5891. n = (node + i) % nr_node_ids;
  5892. if (!nr_cpus_node(n))
  5893. continue;
  5894. /* Skip already used nodes */
  5895. if (node_isset(n, *used_nodes))
  5896. continue;
  5897. /* Simple min distance search */
  5898. val = node_distance(node, n);
  5899. if (val < min_val) {
  5900. min_val = val;
  5901. best_node = n;
  5902. }
  5903. }
  5904. node_set(best_node, *used_nodes);
  5905. return best_node;
  5906. }
  5907. /**
  5908. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5909. * @node: node whose cpumask we're constructing
  5910. * @span: resulting cpumask
  5911. *
  5912. * Given a node, construct a good cpumask for its sched_domain to span. It
  5913. * should be one that prevents unnecessary balancing, but also spreads tasks
  5914. * out optimally.
  5915. */
  5916. static void sched_domain_node_span(int node, cpumask_t *span)
  5917. {
  5918. nodemask_t used_nodes;
  5919. node_to_cpumask_ptr(nodemask, node);
  5920. int i;
  5921. cpus_clear(*span);
  5922. nodes_clear(used_nodes);
  5923. cpus_or(*span, *span, *nodemask);
  5924. node_set(node, used_nodes);
  5925. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5926. int next_node = find_next_best_node(node, &used_nodes);
  5927. node_to_cpumask_ptr_next(nodemask, next_node);
  5928. cpus_or(*span, *span, *nodemask);
  5929. }
  5930. }
  5931. #endif /* CONFIG_NUMA */
  5932. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5933. /*
  5934. * SMT sched-domains:
  5935. */
  5936. #ifdef CONFIG_SCHED_SMT
  5937. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5938. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5939. static int
  5940. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5941. cpumask_t *unused)
  5942. {
  5943. if (sg)
  5944. *sg = &per_cpu(sched_group_cpus, cpu);
  5945. return cpu;
  5946. }
  5947. #endif /* CONFIG_SCHED_SMT */
  5948. /*
  5949. * multi-core sched-domains:
  5950. */
  5951. #ifdef CONFIG_SCHED_MC
  5952. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5953. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5954. #endif /* CONFIG_SCHED_MC */
  5955. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5956. static int
  5957. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5958. cpumask_t *mask)
  5959. {
  5960. int group;
  5961. *mask = per_cpu(cpu_sibling_map, cpu);
  5962. cpus_and(*mask, *mask, *cpu_map);
  5963. group = first_cpu(*mask);
  5964. if (sg)
  5965. *sg = &per_cpu(sched_group_core, group);
  5966. return group;
  5967. }
  5968. #elif defined(CONFIG_SCHED_MC)
  5969. static int
  5970. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5971. cpumask_t *unused)
  5972. {
  5973. if (sg)
  5974. *sg = &per_cpu(sched_group_core, cpu);
  5975. return cpu;
  5976. }
  5977. #endif
  5978. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5979. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5980. static int
  5981. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5982. cpumask_t *mask)
  5983. {
  5984. int group;
  5985. #ifdef CONFIG_SCHED_MC
  5986. *mask = cpu_coregroup_map(cpu);
  5987. cpus_and(*mask, *mask, *cpu_map);
  5988. group = first_cpu(*mask);
  5989. #elif defined(CONFIG_SCHED_SMT)
  5990. *mask = per_cpu(cpu_sibling_map, cpu);
  5991. cpus_and(*mask, *mask, *cpu_map);
  5992. group = first_cpu(*mask);
  5993. #else
  5994. group = cpu;
  5995. #endif
  5996. if (sg)
  5997. *sg = &per_cpu(sched_group_phys, group);
  5998. return group;
  5999. }
  6000. #ifdef CONFIG_NUMA
  6001. /*
  6002. * The init_sched_build_groups can't handle what we want to do with node
  6003. * groups, so roll our own. Now each node has its own list of groups which
  6004. * gets dynamically allocated.
  6005. */
  6006. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6007. static struct sched_group ***sched_group_nodes_bycpu;
  6008. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6009. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6010. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6011. struct sched_group **sg, cpumask_t *nodemask)
  6012. {
  6013. int group;
  6014. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6015. cpus_and(*nodemask, *nodemask, *cpu_map);
  6016. group = first_cpu(*nodemask);
  6017. if (sg)
  6018. *sg = &per_cpu(sched_group_allnodes, group);
  6019. return group;
  6020. }
  6021. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6022. {
  6023. struct sched_group *sg = group_head;
  6024. int j;
  6025. if (!sg)
  6026. return;
  6027. do {
  6028. for_each_cpu_mask_nr(j, sg->cpumask) {
  6029. struct sched_domain *sd;
  6030. sd = &per_cpu(phys_domains, j);
  6031. if (j != first_cpu(sd->groups->cpumask)) {
  6032. /*
  6033. * Only add "power" once for each
  6034. * physical package.
  6035. */
  6036. continue;
  6037. }
  6038. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6039. }
  6040. sg = sg->next;
  6041. } while (sg != group_head);
  6042. }
  6043. #endif /* CONFIG_NUMA */
  6044. #ifdef CONFIG_NUMA
  6045. /* Free memory allocated for various sched_group structures */
  6046. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6047. {
  6048. int cpu, i;
  6049. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6050. struct sched_group **sched_group_nodes
  6051. = sched_group_nodes_bycpu[cpu];
  6052. if (!sched_group_nodes)
  6053. continue;
  6054. for (i = 0; i < nr_node_ids; i++) {
  6055. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6056. *nodemask = node_to_cpumask(i);
  6057. cpus_and(*nodemask, *nodemask, *cpu_map);
  6058. if (cpus_empty(*nodemask))
  6059. continue;
  6060. if (sg == NULL)
  6061. continue;
  6062. sg = sg->next;
  6063. next_sg:
  6064. oldsg = sg;
  6065. sg = sg->next;
  6066. kfree(oldsg);
  6067. if (oldsg != sched_group_nodes[i])
  6068. goto next_sg;
  6069. }
  6070. kfree(sched_group_nodes);
  6071. sched_group_nodes_bycpu[cpu] = NULL;
  6072. }
  6073. }
  6074. #else /* !CONFIG_NUMA */
  6075. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6076. {
  6077. }
  6078. #endif /* CONFIG_NUMA */
  6079. /*
  6080. * Initialize sched groups cpu_power.
  6081. *
  6082. * cpu_power indicates the capacity of sched group, which is used while
  6083. * distributing the load between different sched groups in a sched domain.
  6084. * Typically cpu_power for all the groups in a sched domain will be same unless
  6085. * there are asymmetries in the topology. If there are asymmetries, group
  6086. * having more cpu_power will pickup more load compared to the group having
  6087. * less cpu_power.
  6088. *
  6089. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6090. * the maximum number of tasks a group can handle in the presence of other idle
  6091. * or lightly loaded groups in the same sched domain.
  6092. */
  6093. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6094. {
  6095. struct sched_domain *child;
  6096. struct sched_group *group;
  6097. WARN_ON(!sd || !sd->groups);
  6098. if (cpu != first_cpu(sd->groups->cpumask))
  6099. return;
  6100. child = sd->child;
  6101. sd->groups->__cpu_power = 0;
  6102. /*
  6103. * For perf policy, if the groups in child domain share resources
  6104. * (for example cores sharing some portions of the cache hierarchy
  6105. * or SMT), then set this domain groups cpu_power such that each group
  6106. * can handle only one task, when there are other idle groups in the
  6107. * same sched domain.
  6108. */
  6109. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6110. (child->flags &
  6111. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6112. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6113. return;
  6114. }
  6115. /*
  6116. * add cpu_power of each child group to this groups cpu_power
  6117. */
  6118. group = child->groups;
  6119. do {
  6120. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6121. group = group->next;
  6122. } while (group != child->groups);
  6123. }
  6124. /*
  6125. * Initializers for schedule domains
  6126. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6127. */
  6128. #define SD_INIT(sd, type) sd_init_##type(sd)
  6129. #define SD_INIT_FUNC(type) \
  6130. static noinline void sd_init_##type(struct sched_domain *sd) \
  6131. { \
  6132. memset(sd, 0, sizeof(*sd)); \
  6133. *sd = SD_##type##_INIT; \
  6134. sd->level = SD_LV_##type; \
  6135. }
  6136. SD_INIT_FUNC(CPU)
  6137. #ifdef CONFIG_NUMA
  6138. SD_INIT_FUNC(ALLNODES)
  6139. SD_INIT_FUNC(NODE)
  6140. #endif
  6141. #ifdef CONFIG_SCHED_SMT
  6142. SD_INIT_FUNC(SIBLING)
  6143. #endif
  6144. #ifdef CONFIG_SCHED_MC
  6145. SD_INIT_FUNC(MC)
  6146. #endif
  6147. /*
  6148. * To minimize stack usage kmalloc room for cpumasks and share the
  6149. * space as the usage in build_sched_domains() dictates. Used only
  6150. * if the amount of space is significant.
  6151. */
  6152. struct allmasks {
  6153. cpumask_t tmpmask; /* make this one first */
  6154. union {
  6155. cpumask_t nodemask;
  6156. cpumask_t this_sibling_map;
  6157. cpumask_t this_core_map;
  6158. };
  6159. cpumask_t send_covered;
  6160. #ifdef CONFIG_NUMA
  6161. cpumask_t domainspan;
  6162. cpumask_t covered;
  6163. cpumask_t notcovered;
  6164. #endif
  6165. };
  6166. #if NR_CPUS > 128
  6167. #define SCHED_CPUMASK_ALLOC 1
  6168. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6169. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6170. #else
  6171. #define SCHED_CPUMASK_ALLOC 0
  6172. #define SCHED_CPUMASK_FREE(v)
  6173. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6174. #endif
  6175. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6176. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6177. static int default_relax_domain_level = -1;
  6178. static int __init setup_relax_domain_level(char *str)
  6179. {
  6180. unsigned long val;
  6181. val = simple_strtoul(str, NULL, 0);
  6182. if (val < SD_LV_MAX)
  6183. default_relax_domain_level = val;
  6184. return 1;
  6185. }
  6186. __setup("relax_domain_level=", setup_relax_domain_level);
  6187. static void set_domain_attribute(struct sched_domain *sd,
  6188. struct sched_domain_attr *attr)
  6189. {
  6190. int request;
  6191. if (!attr || attr->relax_domain_level < 0) {
  6192. if (default_relax_domain_level < 0)
  6193. return;
  6194. else
  6195. request = default_relax_domain_level;
  6196. } else
  6197. request = attr->relax_domain_level;
  6198. if (request < sd->level) {
  6199. /* turn off idle balance on this domain */
  6200. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6201. } else {
  6202. /* turn on idle balance on this domain */
  6203. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6204. }
  6205. }
  6206. /*
  6207. * Build sched domains for a given set of cpus and attach the sched domains
  6208. * to the individual cpus
  6209. */
  6210. static int __build_sched_domains(const cpumask_t *cpu_map,
  6211. struct sched_domain_attr *attr)
  6212. {
  6213. int i;
  6214. struct root_domain *rd;
  6215. SCHED_CPUMASK_DECLARE(allmasks);
  6216. cpumask_t *tmpmask;
  6217. #ifdef CONFIG_NUMA
  6218. struct sched_group **sched_group_nodes = NULL;
  6219. int sd_allnodes = 0;
  6220. /*
  6221. * Allocate the per-node list of sched groups
  6222. */
  6223. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6224. GFP_KERNEL);
  6225. if (!sched_group_nodes) {
  6226. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6227. return -ENOMEM;
  6228. }
  6229. #endif
  6230. rd = alloc_rootdomain();
  6231. if (!rd) {
  6232. printk(KERN_WARNING "Cannot alloc root domain\n");
  6233. #ifdef CONFIG_NUMA
  6234. kfree(sched_group_nodes);
  6235. #endif
  6236. return -ENOMEM;
  6237. }
  6238. #if SCHED_CPUMASK_ALLOC
  6239. /* get space for all scratch cpumask variables */
  6240. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6241. if (!allmasks) {
  6242. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6243. kfree(rd);
  6244. #ifdef CONFIG_NUMA
  6245. kfree(sched_group_nodes);
  6246. #endif
  6247. return -ENOMEM;
  6248. }
  6249. #endif
  6250. tmpmask = (cpumask_t *)allmasks;
  6251. #ifdef CONFIG_NUMA
  6252. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6253. #endif
  6254. /*
  6255. * Set up domains for cpus specified by the cpu_map.
  6256. */
  6257. for_each_cpu_mask_nr(i, *cpu_map) {
  6258. struct sched_domain *sd = NULL, *p;
  6259. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6260. *nodemask = node_to_cpumask(cpu_to_node(i));
  6261. cpus_and(*nodemask, *nodemask, *cpu_map);
  6262. #ifdef CONFIG_NUMA
  6263. if (cpus_weight(*cpu_map) >
  6264. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6265. sd = &per_cpu(allnodes_domains, i);
  6266. SD_INIT(sd, ALLNODES);
  6267. set_domain_attribute(sd, attr);
  6268. sd->span = *cpu_map;
  6269. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6270. p = sd;
  6271. sd_allnodes = 1;
  6272. } else
  6273. p = NULL;
  6274. sd = &per_cpu(node_domains, i);
  6275. SD_INIT(sd, NODE);
  6276. set_domain_attribute(sd, attr);
  6277. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6278. sd->parent = p;
  6279. if (p)
  6280. p->child = sd;
  6281. cpus_and(sd->span, sd->span, *cpu_map);
  6282. #endif
  6283. p = sd;
  6284. sd = &per_cpu(phys_domains, i);
  6285. SD_INIT(sd, CPU);
  6286. set_domain_attribute(sd, attr);
  6287. sd->span = *nodemask;
  6288. sd->parent = p;
  6289. if (p)
  6290. p->child = sd;
  6291. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6292. #ifdef CONFIG_SCHED_MC
  6293. p = sd;
  6294. sd = &per_cpu(core_domains, i);
  6295. SD_INIT(sd, MC);
  6296. set_domain_attribute(sd, attr);
  6297. sd->span = cpu_coregroup_map(i);
  6298. cpus_and(sd->span, sd->span, *cpu_map);
  6299. sd->parent = p;
  6300. p->child = sd;
  6301. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6302. #endif
  6303. #ifdef CONFIG_SCHED_SMT
  6304. p = sd;
  6305. sd = &per_cpu(cpu_domains, i);
  6306. SD_INIT(sd, SIBLING);
  6307. set_domain_attribute(sd, attr);
  6308. sd->span = per_cpu(cpu_sibling_map, i);
  6309. cpus_and(sd->span, sd->span, *cpu_map);
  6310. sd->parent = p;
  6311. p->child = sd;
  6312. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6313. #endif
  6314. }
  6315. #ifdef CONFIG_SCHED_SMT
  6316. /* Set up CPU (sibling) groups */
  6317. for_each_cpu_mask_nr(i, *cpu_map) {
  6318. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6319. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6320. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6321. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6322. if (i != first_cpu(*this_sibling_map))
  6323. continue;
  6324. init_sched_build_groups(this_sibling_map, cpu_map,
  6325. &cpu_to_cpu_group,
  6326. send_covered, tmpmask);
  6327. }
  6328. #endif
  6329. #ifdef CONFIG_SCHED_MC
  6330. /* Set up multi-core groups */
  6331. for_each_cpu_mask_nr(i, *cpu_map) {
  6332. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6333. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6334. *this_core_map = cpu_coregroup_map(i);
  6335. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6336. if (i != first_cpu(*this_core_map))
  6337. continue;
  6338. init_sched_build_groups(this_core_map, cpu_map,
  6339. &cpu_to_core_group,
  6340. send_covered, tmpmask);
  6341. }
  6342. #endif
  6343. /* Set up physical groups */
  6344. for (i = 0; i < nr_node_ids; i++) {
  6345. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6346. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6347. *nodemask = node_to_cpumask(i);
  6348. cpus_and(*nodemask, *nodemask, *cpu_map);
  6349. if (cpus_empty(*nodemask))
  6350. continue;
  6351. init_sched_build_groups(nodemask, cpu_map,
  6352. &cpu_to_phys_group,
  6353. send_covered, tmpmask);
  6354. }
  6355. #ifdef CONFIG_NUMA
  6356. /* Set up node groups */
  6357. if (sd_allnodes) {
  6358. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6359. init_sched_build_groups(cpu_map, cpu_map,
  6360. &cpu_to_allnodes_group,
  6361. send_covered, tmpmask);
  6362. }
  6363. for (i = 0; i < nr_node_ids; i++) {
  6364. /* Set up node groups */
  6365. struct sched_group *sg, *prev;
  6366. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6367. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6368. SCHED_CPUMASK_VAR(covered, allmasks);
  6369. int j;
  6370. *nodemask = node_to_cpumask(i);
  6371. cpus_clear(*covered);
  6372. cpus_and(*nodemask, *nodemask, *cpu_map);
  6373. if (cpus_empty(*nodemask)) {
  6374. sched_group_nodes[i] = NULL;
  6375. continue;
  6376. }
  6377. sched_domain_node_span(i, domainspan);
  6378. cpus_and(*domainspan, *domainspan, *cpu_map);
  6379. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6380. if (!sg) {
  6381. printk(KERN_WARNING "Can not alloc domain group for "
  6382. "node %d\n", i);
  6383. goto error;
  6384. }
  6385. sched_group_nodes[i] = sg;
  6386. for_each_cpu_mask_nr(j, *nodemask) {
  6387. struct sched_domain *sd;
  6388. sd = &per_cpu(node_domains, j);
  6389. sd->groups = sg;
  6390. }
  6391. sg->__cpu_power = 0;
  6392. sg->cpumask = *nodemask;
  6393. sg->next = sg;
  6394. cpus_or(*covered, *covered, *nodemask);
  6395. prev = sg;
  6396. for (j = 0; j < nr_node_ids; j++) {
  6397. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6398. int n = (i + j) % nr_node_ids;
  6399. node_to_cpumask_ptr(pnodemask, n);
  6400. cpus_complement(*notcovered, *covered);
  6401. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6402. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6403. if (cpus_empty(*tmpmask))
  6404. break;
  6405. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6406. if (cpus_empty(*tmpmask))
  6407. continue;
  6408. sg = kmalloc_node(sizeof(struct sched_group),
  6409. GFP_KERNEL, i);
  6410. if (!sg) {
  6411. printk(KERN_WARNING
  6412. "Can not alloc domain group for node %d\n", j);
  6413. goto error;
  6414. }
  6415. sg->__cpu_power = 0;
  6416. sg->cpumask = *tmpmask;
  6417. sg->next = prev->next;
  6418. cpus_or(*covered, *covered, *tmpmask);
  6419. prev->next = sg;
  6420. prev = sg;
  6421. }
  6422. }
  6423. #endif
  6424. /* Calculate CPU power for physical packages and nodes */
  6425. #ifdef CONFIG_SCHED_SMT
  6426. for_each_cpu_mask_nr(i, *cpu_map) {
  6427. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6428. init_sched_groups_power(i, sd);
  6429. }
  6430. #endif
  6431. #ifdef CONFIG_SCHED_MC
  6432. for_each_cpu_mask_nr(i, *cpu_map) {
  6433. struct sched_domain *sd = &per_cpu(core_domains, i);
  6434. init_sched_groups_power(i, sd);
  6435. }
  6436. #endif
  6437. for_each_cpu_mask_nr(i, *cpu_map) {
  6438. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6439. init_sched_groups_power(i, sd);
  6440. }
  6441. #ifdef CONFIG_NUMA
  6442. for (i = 0; i < nr_node_ids; i++)
  6443. init_numa_sched_groups_power(sched_group_nodes[i]);
  6444. if (sd_allnodes) {
  6445. struct sched_group *sg;
  6446. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6447. tmpmask);
  6448. init_numa_sched_groups_power(sg);
  6449. }
  6450. #endif
  6451. /* Attach the domains */
  6452. for_each_cpu_mask_nr(i, *cpu_map) {
  6453. struct sched_domain *sd;
  6454. #ifdef CONFIG_SCHED_SMT
  6455. sd = &per_cpu(cpu_domains, i);
  6456. #elif defined(CONFIG_SCHED_MC)
  6457. sd = &per_cpu(core_domains, i);
  6458. #else
  6459. sd = &per_cpu(phys_domains, i);
  6460. #endif
  6461. cpu_attach_domain(sd, rd, i);
  6462. }
  6463. SCHED_CPUMASK_FREE((void *)allmasks);
  6464. return 0;
  6465. #ifdef CONFIG_NUMA
  6466. error:
  6467. free_sched_groups(cpu_map, tmpmask);
  6468. SCHED_CPUMASK_FREE((void *)allmasks);
  6469. return -ENOMEM;
  6470. #endif
  6471. }
  6472. static int build_sched_domains(const cpumask_t *cpu_map)
  6473. {
  6474. return __build_sched_domains(cpu_map, NULL);
  6475. }
  6476. static cpumask_t *doms_cur; /* current sched domains */
  6477. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6478. static struct sched_domain_attr *dattr_cur;
  6479. /* attribues of custom domains in 'doms_cur' */
  6480. /*
  6481. * Special case: If a kmalloc of a doms_cur partition (array of
  6482. * cpumask_t) fails, then fallback to a single sched domain,
  6483. * as determined by the single cpumask_t fallback_doms.
  6484. */
  6485. static cpumask_t fallback_doms;
  6486. void __attribute__((weak)) arch_update_cpu_topology(void)
  6487. {
  6488. }
  6489. /*
  6490. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6491. * For now this just excludes isolated cpus, but could be used to
  6492. * exclude other special cases in the future.
  6493. */
  6494. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6495. {
  6496. int err;
  6497. arch_update_cpu_topology();
  6498. ndoms_cur = 1;
  6499. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6500. if (!doms_cur)
  6501. doms_cur = &fallback_doms;
  6502. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6503. dattr_cur = NULL;
  6504. err = build_sched_domains(doms_cur);
  6505. register_sched_domain_sysctl();
  6506. return err;
  6507. }
  6508. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6509. cpumask_t *tmpmask)
  6510. {
  6511. free_sched_groups(cpu_map, tmpmask);
  6512. }
  6513. /*
  6514. * Detach sched domains from a group of cpus specified in cpu_map
  6515. * These cpus will now be attached to the NULL domain
  6516. */
  6517. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6518. {
  6519. cpumask_t tmpmask;
  6520. int i;
  6521. unregister_sched_domain_sysctl();
  6522. for_each_cpu_mask_nr(i, *cpu_map)
  6523. cpu_attach_domain(NULL, &def_root_domain, i);
  6524. synchronize_sched();
  6525. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6526. }
  6527. /* handle null as "default" */
  6528. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6529. struct sched_domain_attr *new, int idx_new)
  6530. {
  6531. struct sched_domain_attr tmp;
  6532. /* fast path */
  6533. if (!new && !cur)
  6534. return 1;
  6535. tmp = SD_ATTR_INIT;
  6536. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6537. new ? (new + idx_new) : &tmp,
  6538. sizeof(struct sched_domain_attr));
  6539. }
  6540. /*
  6541. * Partition sched domains as specified by the 'ndoms_new'
  6542. * cpumasks in the array doms_new[] of cpumasks. This compares
  6543. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6544. * It destroys each deleted domain and builds each new domain.
  6545. *
  6546. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6547. * The masks don't intersect (don't overlap.) We should setup one
  6548. * sched domain for each mask. CPUs not in any of the cpumasks will
  6549. * not be load balanced. If the same cpumask appears both in the
  6550. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6551. * it as it is.
  6552. *
  6553. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6554. * ownership of it and will kfree it when done with it. If the caller
  6555. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6556. * and partition_sched_domains() will fallback to the single partition
  6557. * 'fallback_doms', it also forces the domains to be rebuilt.
  6558. *
  6559. * Call with hotplug lock held
  6560. */
  6561. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6562. struct sched_domain_attr *dattr_new)
  6563. {
  6564. int i, j;
  6565. mutex_lock(&sched_domains_mutex);
  6566. /* always unregister in case we don't destroy any domains */
  6567. unregister_sched_domain_sysctl();
  6568. if (doms_new == NULL)
  6569. ndoms_new = 0;
  6570. /* Destroy deleted domains */
  6571. for (i = 0; i < ndoms_cur; i++) {
  6572. for (j = 0; j < ndoms_new; j++) {
  6573. if (cpus_equal(doms_cur[i], doms_new[j])
  6574. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6575. goto match1;
  6576. }
  6577. /* no match - a current sched domain not in new doms_new[] */
  6578. detach_destroy_domains(doms_cur + i);
  6579. match1:
  6580. ;
  6581. }
  6582. if (doms_new == NULL) {
  6583. ndoms_cur = 0;
  6584. ndoms_new = 1;
  6585. doms_new = &fallback_doms;
  6586. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6587. dattr_new = NULL;
  6588. }
  6589. /* Build new domains */
  6590. for (i = 0; i < ndoms_new; i++) {
  6591. for (j = 0; j < ndoms_cur; j++) {
  6592. if (cpus_equal(doms_new[i], doms_cur[j])
  6593. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6594. goto match2;
  6595. }
  6596. /* no match - add a new doms_new */
  6597. __build_sched_domains(doms_new + i,
  6598. dattr_new ? dattr_new + i : NULL);
  6599. match2:
  6600. ;
  6601. }
  6602. /* Remember the new sched domains */
  6603. if (doms_cur != &fallback_doms)
  6604. kfree(doms_cur);
  6605. kfree(dattr_cur); /* kfree(NULL) is safe */
  6606. doms_cur = doms_new;
  6607. dattr_cur = dattr_new;
  6608. ndoms_cur = ndoms_new;
  6609. register_sched_domain_sysctl();
  6610. mutex_unlock(&sched_domains_mutex);
  6611. }
  6612. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6613. int arch_reinit_sched_domains(void)
  6614. {
  6615. get_online_cpus();
  6616. rebuild_sched_domains();
  6617. put_online_cpus();
  6618. return 0;
  6619. }
  6620. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6621. {
  6622. int ret;
  6623. if (buf[0] != '0' && buf[0] != '1')
  6624. return -EINVAL;
  6625. if (smt)
  6626. sched_smt_power_savings = (buf[0] == '1');
  6627. else
  6628. sched_mc_power_savings = (buf[0] == '1');
  6629. ret = arch_reinit_sched_domains();
  6630. return ret ? ret : count;
  6631. }
  6632. #ifdef CONFIG_SCHED_MC
  6633. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6634. char *page)
  6635. {
  6636. return sprintf(page, "%u\n", sched_mc_power_savings);
  6637. }
  6638. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6639. const char *buf, size_t count)
  6640. {
  6641. return sched_power_savings_store(buf, count, 0);
  6642. }
  6643. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6644. sched_mc_power_savings_show,
  6645. sched_mc_power_savings_store);
  6646. #endif
  6647. #ifdef CONFIG_SCHED_SMT
  6648. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6649. char *page)
  6650. {
  6651. return sprintf(page, "%u\n", sched_smt_power_savings);
  6652. }
  6653. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6654. const char *buf, size_t count)
  6655. {
  6656. return sched_power_savings_store(buf, count, 1);
  6657. }
  6658. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6659. sched_smt_power_savings_show,
  6660. sched_smt_power_savings_store);
  6661. #endif
  6662. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6663. {
  6664. int err = 0;
  6665. #ifdef CONFIG_SCHED_SMT
  6666. if (smt_capable())
  6667. err = sysfs_create_file(&cls->kset.kobj,
  6668. &attr_sched_smt_power_savings.attr);
  6669. #endif
  6670. #ifdef CONFIG_SCHED_MC
  6671. if (!err && mc_capable())
  6672. err = sysfs_create_file(&cls->kset.kobj,
  6673. &attr_sched_mc_power_savings.attr);
  6674. #endif
  6675. return err;
  6676. }
  6677. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6678. #ifndef CONFIG_CPUSETS
  6679. /*
  6680. * Add online and remove offline CPUs from the scheduler domains.
  6681. * When cpusets are enabled they take over this function.
  6682. */
  6683. static int update_sched_domains(struct notifier_block *nfb,
  6684. unsigned long action, void *hcpu)
  6685. {
  6686. switch (action) {
  6687. case CPU_ONLINE:
  6688. case CPU_ONLINE_FROZEN:
  6689. case CPU_DEAD:
  6690. case CPU_DEAD_FROZEN:
  6691. partition_sched_domains(0, NULL, NULL);
  6692. return NOTIFY_OK;
  6693. default:
  6694. return NOTIFY_DONE;
  6695. }
  6696. }
  6697. #endif
  6698. static int update_runtime(struct notifier_block *nfb,
  6699. unsigned long action, void *hcpu)
  6700. {
  6701. int cpu = (int)(long)hcpu;
  6702. switch (action) {
  6703. case CPU_DOWN_PREPARE:
  6704. case CPU_DOWN_PREPARE_FROZEN:
  6705. disable_runtime(cpu_rq(cpu));
  6706. return NOTIFY_OK;
  6707. case CPU_DOWN_FAILED:
  6708. case CPU_DOWN_FAILED_FROZEN:
  6709. case CPU_ONLINE:
  6710. case CPU_ONLINE_FROZEN:
  6711. enable_runtime(cpu_rq(cpu));
  6712. return NOTIFY_OK;
  6713. default:
  6714. return NOTIFY_DONE;
  6715. }
  6716. }
  6717. void __init sched_init_smp(void)
  6718. {
  6719. cpumask_t non_isolated_cpus;
  6720. #if defined(CONFIG_NUMA)
  6721. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6722. GFP_KERNEL);
  6723. BUG_ON(sched_group_nodes_bycpu == NULL);
  6724. #endif
  6725. get_online_cpus();
  6726. mutex_lock(&sched_domains_mutex);
  6727. arch_init_sched_domains(&cpu_online_map);
  6728. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6729. if (cpus_empty(non_isolated_cpus))
  6730. cpu_set(smp_processor_id(), non_isolated_cpus);
  6731. mutex_unlock(&sched_domains_mutex);
  6732. put_online_cpus();
  6733. #ifndef CONFIG_CPUSETS
  6734. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6735. hotcpu_notifier(update_sched_domains, 0);
  6736. #endif
  6737. /* RT runtime code needs to handle some hotplug events */
  6738. hotcpu_notifier(update_runtime, 0);
  6739. init_hrtick();
  6740. /* Move init over to a non-isolated CPU */
  6741. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6742. BUG();
  6743. sched_init_granularity();
  6744. }
  6745. #else
  6746. void __init sched_init_smp(void)
  6747. {
  6748. sched_init_granularity();
  6749. }
  6750. #endif /* CONFIG_SMP */
  6751. int in_sched_functions(unsigned long addr)
  6752. {
  6753. return in_lock_functions(addr) ||
  6754. (addr >= (unsigned long)__sched_text_start
  6755. && addr < (unsigned long)__sched_text_end);
  6756. }
  6757. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6758. {
  6759. cfs_rq->tasks_timeline = RB_ROOT;
  6760. INIT_LIST_HEAD(&cfs_rq->tasks);
  6761. #ifdef CONFIG_FAIR_GROUP_SCHED
  6762. cfs_rq->rq = rq;
  6763. #endif
  6764. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6765. }
  6766. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6767. {
  6768. struct rt_prio_array *array;
  6769. int i;
  6770. array = &rt_rq->active;
  6771. for (i = 0; i < MAX_RT_PRIO; i++) {
  6772. INIT_LIST_HEAD(array->queue + i);
  6773. __clear_bit(i, array->bitmap);
  6774. }
  6775. /* delimiter for bitsearch: */
  6776. __set_bit(MAX_RT_PRIO, array->bitmap);
  6777. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6778. rt_rq->highest_prio = MAX_RT_PRIO;
  6779. #endif
  6780. #ifdef CONFIG_SMP
  6781. rt_rq->rt_nr_migratory = 0;
  6782. rt_rq->overloaded = 0;
  6783. #endif
  6784. rt_rq->rt_time = 0;
  6785. rt_rq->rt_throttled = 0;
  6786. rt_rq->rt_runtime = 0;
  6787. spin_lock_init(&rt_rq->rt_runtime_lock);
  6788. #ifdef CONFIG_RT_GROUP_SCHED
  6789. rt_rq->rt_nr_boosted = 0;
  6790. rt_rq->rq = rq;
  6791. #endif
  6792. }
  6793. #ifdef CONFIG_FAIR_GROUP_SCHED
  6794. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6795. struct sched_entity *se, int cpu, int add,
  6796. struct sched_entity *parent)
  6797. {
  6798. struct rq *rq = cpu_rq(cpu);
  6799. tg->cfs_rq[cpu] = cfs_rq;
  6800. init_cfs_rq(cfs_rq, rq);
  6801. cfs_rq->tg = tg;
  6802. if (add)
  6803. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6804. tg->se[cpu] = se;
  6805. /* se could be NULL for init_task_group */
  6806. if (!se)
  6807. return;
  6808. if (!parent)
  6809. se->cfs_rq = &rq->cfs;
  6810. else
  6811. se->cfs_rq = parent->my_q;
  6812. se->my_q = cfs_rq;
  6813. se->load.weight = tg->shares;
  6814. se->load.inv_weight = 0;
  6815. se->parent = parent;
  6816. }
  6817. #endif
  6818. #ifdef CONFIG_RT_GROUP_SCHED
  6819. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6820. struct sched_rt_entity *rt_se, int cpu, int add,
  6821. struct sched_rt_entity *parent)
  6822. {
  6823. struct rq *rq = cpu_rq(cpu);
  6824. tg->rt_rq[cpu] = rt_rq;
  6825. init_rt_rq(rt_rq, rq);
  6826. rt_rq->tg = tg;
  6827. rt_rq->rt_se = rt_se;
  6828. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6829. if (add)
  6830. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6831. tg->rt_se[cpu] = rt_se;
  6832. if (!rt_se)
  6833. return;
  6834. if (!parent)
  6835. rt_se->rt_rq = &rq->rt;
  6836. else
  6837. rt_se->rt_rq = parent->my_q;
  6838. rt_se->my_q = rt_rq;
  6839. rt_se->parent = parent;
  6840. INIT_LIST_HEAD(&rt_se->run_list);
  6841. }
  6842. #endif
  6843. void __init sched_init(void)
  6844. {
  6845. int i, j;
  6846. unsigned long alloc_size = 0, ptr;
  6847. #ifdef CONFIG_FAIR_GROUP_SCHED
  6848. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6849. #endif
  6850. #ifdef CONFIG_RT_GROUP_SCHED
  6851. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6852. #endif
  6853. #ifdef CONFIG_USER_SCHED
  6854. alloc_size *= 2;
  6855. #endif
  6856. /*
  6857. * As sched_init() is called before page_alloc is setup,
  6858. * we use alloc_bootmem().
  6859. */
  6860. if (alloc_size) {
  6861. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6862. #ifdef CONFIG_FAIR_GROUP_SCHED
  6863. init_task_group.se = (struct sched_entity **)ptr;
  6864. ptr += nr_cpu_ids * sizeof(void **);
  6865. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6866. ptr += nr_cpu_ids * sizeof(void **);
  6867. #ifdef CONFIG_USER_SCHED
  6868. root_task_group.se = (struct sched_entity **)ptr;
  6869. ptr += nr_cpu_ids * sizeof(void **);
  6870. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6871. ptr += nr_cpu_ids * sizeof(void **);
  6872. #endif /* CONFIG_USER_SCHED */
  6873. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6874. #ifdef CONFIG_RT_GROUP_SCHED
  6875. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6876. ptr += nr_cpu_ids * sizeof(void **);
  6877. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6878. ptr += nr_cpu_ids * sizeof(void **);
  6879. #ifdef CONFIG_USER_SCHED
  6880. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6881. ptr += nr_cpu_ids * sizeof(void **);
  6882. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6883. ptr += nr_cpu_ids * sizeof(void **);
  6884. #endif /* CONFIG_USER_SCHED */
  6885. #endif /* CONFIG_RT_GROUP_SCHED */
  6886. }
  6887. #ifdef CONFIG_SMP
  6888. init_defrootdomain();
  6889. #endif
  6890. init_rt_bandwidth(&def_rt_bandwidth,
  6891. global_rt_period(), global_rt_runtime());
  6892. #ifdef CONFIG_RT_GROUP_SCHED
  6893. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6894. global_rt_period(), global_rt_runtime());
  6895. #ifdef CONFIG_USER_SCHED
  6896. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6897. global_rt_period(), RUNTIME_INF);
  6898. #endif /* CONFIG_USER_SCHED */
  6899. #endif /* CONFIG_RT_GROUP_SCHED */
  6900. #ifdef CONFIG_GROUP_SCHED
  6901. list_add(&init_task_group.list, &task_groups);
  6902. INIT_LIST_HEAD(&init_task_group.children);
  6903. #ifdef CONFIG_USER_SCHED
  6904. INIT_LIST_HEAD(&root_task_group.children);
  6905. init_task_group.parent = &root_task_group;
  6906. list_add(&init_task_group.siblings, &root_task_group.children);
  6907. #endif /* CONFIG_USER_SCHED */
  6908. #endif /* CONFIG_GROUP_SCHED */
  6909. for_each_possible_cpu(i) {
  6910. struct rq *rq;
  6911. rq = cpu_rq(i);
  6912. spin_lock_init(&rq->lock);
  6913. rq->nr_running = 0;
  6914. init_cfs_rq(&rq->cfs, rq);
  6915. init_rt_rq(&rq->rt, rq);
  6916. #ifdef CONFIG_FAIR_GROUP_SCHED
  6917. init_task_group.shares = init_task_group_load;
  6918. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6919. #ifdef CONFIG_CGROUP_SCHED
  6920. /*
  6921. * How much cpu bandwidth does init_task_group get?
  6922. *
  6923. * In case of task-groups formed thr' the cgroup filesystem, it
  6924. * gets 100% of the cpu resources in the system. This overall
  6925. * system cpu resource is divided among the tasks of
  6926. * init_task_group and its child task-groups in a fair manner,
  6927. * based on each entity's (task or task-group's) weight
  6928. * (se->load.weight).
  6929. *
  6930. * In other words, if init_task_group has 10 tasks of weight
  6931. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6932. * then A0's share of the cpu resource is:
  6933. *
  6934. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6935. *
  6936. * We achieve this by letting init_task_group's tasks sit
  6937. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6938. */
  6939. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6940. #elif defined CONFIG_USER_SCHED
  6941. root_task_group.shares = NICE_0_LOAD;
  6942. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6943. /*
  6944. * In case of task-groups formed thr' the user id of tasks,
  6945. * init_task_group represents tasks belonging to root user.
  6946. * Hence it forms a sibling of all subsequent groups formed.
  6947. * In this case, init_task_group gets only a fraction of overall
  6948. * system cpu resource, based on the weight assigned to root
  6949. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6950. * by letting tasks of init_task_group sit in a separate cfs_rq
  6951. * (init_cfs_rq) and having one entity represent this group of
  6952. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6953. */
  6954. init_tg_cfs_entry(&init_task_group,
  6955. &per_cpu(init_cfs_rq, i),
  6956. &per_cpu(init_sched_entity, i), i, 1,
  6957. root_task_group.se[i]);
  6958. #endif
  6959. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6960. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6961. #ifdef CONFIG_RT_GROUP_SCHED
  6962. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6963. #ifdef CONFIG_CGROUP_SCHED
  6964. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6965. #elif defined CONFIG_USER_SCHED
  6966. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6967. init_tg_rt_entry(&init_task_group,
  6968. &per_cpu(init_rt_rq, i),
  6969. &per_cpu(init_sched_rt_entity, i), i, 1,
  6970. root_task_group.rt_se[i]);
  6971. #endif
  6972. #endif
  6973. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6974. rq->cpu_load[j] = 0;
  6975. #ifdef CONFIG_SMP
  6976. rq->sd = NULL;
  6977. rq->rd = NULL;
  6978. rq->active_balance = 0;
  6979. rq->next_balance = jiffies;
  6980. rq->push_cpu = 0;
  6981. rq->cpu = i;
  6982. rq->online = 0;
  6983. rq->migration_thread = NULL;
  6984. INIT_LIST_HEAD(&rq->migration_queue);
  6985. rq_attach_root(rq, &def_root_domain);
  6986. #endif
  6987. init_rq_hrtick(rq);
  6988. atomic_set(&rq->nr_iowait, 0);
  6989. }
  6990. set_load_weight(&init_task);
  6991. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6992. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6993. #endif
  6994. #ifdef CONFIG_SMP
  6995. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6996. #endif
  6997. #ifdef CONFIG_RT_MUTEXES
  6998. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6999. #endif
  7000. /*
  7001. * The boot idle thread does lazy MMU switching as well:
  7002. */
  7003. atomic_inc(&init_mm.mm_count);
  7004. enter_lazy_tlb(&init_mm, current);
  7005. /*
  7006. * Make us the idle thread. Technically, schedule() should not be
  7007. * called from this thread, however somewhere below it might be,
  7008. * but because we are the idle thread, we just pick up running again
  7009. * when this runqueue becomes "idle".
  7010. */
  7011. init_idle(current, smp_processor_id());
  7012. /*
  7013. * During early bootup we pretend to be a normal task:
  7014. */
  7015. current->sched_class = &fair_sched_class;
  7016. scheduler_running = 1;
  7017. }
  7018. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7019. void __might_sleep(char *file, int line)
  7020. {
  7021. #ifdef in_atomic
  7022. static unsigned long prev_jiffy; /* ratelimiting */
  7023. if ((!in_atomic() && !irqs_disabled()) ||
  7024. system_state != SYSTEM_RUNNING || oops_in_progress)
  7025. return;
  7026. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7027. return;
  7028. prev_jiffy = jiffies;
  7029. printk(KERN_ERR
  7030. "BUG: sleeping function called from invalid context at %s:%d\n",
  7031. file, line);
  7032. printk(KERN_ERR
  7033. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7034. in_atomic(), irqs_disabled(),
  7035. current->pid, current->comm);
  7036. debug_show_held_locks(current);
  7037. if (irqs_disabled())
  7038. print_irqtrace_events(current);
  7039. dump_stack();
  7040. #endif
  7041. }
  7042. EXPORT_SYMBOL(__might_sleep);
  7043. #endif
  7044. #ifdef CONFIG_MAGIC_SYSRQ
  7045. static void normalize_task(struct rq *rq, struct task_struct *p)
  7046. {
  7047. int on_rq;
  7048. update_rq_clock(rq);
  7049. on_rq = p->se.on_rq;
  7050. if (on_rq)
  7051. deactivate_task(rq, p, 0);
  7052. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7053. if (on_rq) {
  7054. activate_task(rq, p, 0);
  7055. resched_task(rq->curr);
  7056. }
  7057. }
  7058. void normalize_rt_tasks(void)
  7059. {
  7060. struct task_struct *g, *p;
  7061. unsigned long flags;
  7062. struct rq *rq;
  7063. read_lock_irqsave(&tasklist_lock, flags);
  7064. do_each_thread(g, p) {
  7065. /*
  7066. * Only normalize user tasks:
  7067. */
  7068. if (!p->mm)
  7069. continue;
  7070. p->se.exec_start = 0;
  7071. #ifdef CONFIG_SCHEDSTATS
  7072. p->se.wait_start = 0;
  7073. p->se.sleep_start = 0;
  7074. p->se.block_start = 0;
  7075. #endif
  7076. if (!rt_task(p)) {
  7077. /*
  7078. * Renice negative nice level userspace
  7079. * tasks back to 0:
  7080. */
  7081. if (TASK_NICE(p) < 0 && p->mm)
  7082. set_user_nice(p, 0);
  7083. continue;
  7084. }
  7085. spin_lock(&p->pi_lock);
  7086. rq = __task_rq_lock(p);
  7087. normalize_task(rq, p);
  7088. __task_rq_unlock(rq);
  7089. spin_unlock(&p->pi_lock);
  7090. } while_each_thread(g, p);
  7091. read_unlock_irqrestore(&tasklist_lock, flags);
  7092. }
  7093. #endif /* CONFIG_MAGIC_SYSRQ */
  7094. #ifdef CONFIG_IA64
  7095. /*
  7096. * These functions are only useful for the IA64 MCA handling.
  7097. *
  7098. * They can only be called when the whole system has been
  7099. * stopped - every CPU needs to be quiescent, and no scheduling
  7100. * activity can take place. Using them for anything else would
  7101. * be a serious bug, and as a result, they aren't even visible
  7102. * under any other configuration.
  7103. */
  7104. /**
  7105. * curr_task - return the current task for a given cpu.
  7106. * @cpu: the processor in question.
  7107. *
  7108. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7109. */
  7110. struct task_struct *curr_task(int cpu)
  7111. {
  7112. return cpu_curr(cpu);
  7113. }
  7114. /**
  7115. * set_curr_task - set the current task for a given cpu.
  7116. * @cpu: the processor in question.
  7117. * @p: the task pointer to set.
  7118. *
  7119. * Description: This function must only be used when non-maskable interrupts
  7120. * are serviced on a separate stack. It allows the architecture to switch the
  7121. * notion of the current task on a cpu in a non-blocking manner. This function
  7122. * must be called with all CPU's synchronized, and interrupts disabled, the
  7123. * and caller must save the original value of the current task (see
  7124. * curr_task() above) and restore that value before reenabling interrupts and
  7125. * re-starting the system.
  7126. *
  7127. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7128. */
  7129. void set_curr_task(int cpu, struct task_struct *p)
  7130. {
  7131. cpu_curr(cpu) = p;
  7132. }
  7133. #endif
  7134. #ifdef CONFIG_FAIR_GROUP_SCHED
  7135. static void free_fair_sched_group(struct task_group *tg)
  7136. {
  7137. int i;
  7138. for_each_possible_cpu(i) {
  7139. if (tg->cfs_rq)
  7140. kfree(tg->cfs_rq[i]);
  7141. if (tg->se)
  7142. kfree(tg->se[i]);
  7143. }
  7144. kfree(tg->cfs_rq);
  7145. kfree(tg->se);
  7146. }
  7147. static
  7148. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7149. {
  7150. struct cfs_rq *cfs_rq;
  7151. struct sched_entity *se, *parent_se;
  7152. struct rq *rq;
  7153. int i;
  7154. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7155. if (!tg->cfs_rq)
  7156. goto err;
  7157. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7158. if (!tg->se)
  7159. goto err;
  7160. tg->shares = NICE_0_LOAD;
  7161. for_each_possible_cpu(i) {
  7162. rq = cpu_rq(i);
  7163. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7164. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7165. if (!cfs_rq)
  7166. goto err;
  7167. se = kmalloc_node(sizeof(struct sched_entity),
  7168. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7169. if (!se)
  7170. goto err;
  7171. parent_se = parent ? parent->se[i] : NULL;
  7172. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7173. }
  7174. return 1;
  7175. err:
  7176. return 0;
  7177. }
  7178. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7179. {
  7180. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7181. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7182. }
  7183. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7184. {
  7185. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7186. }
  7187. #else /* !CONFG_FAIR_GROUP_SCHED */
  7188. static inline void free_fair_sched_group(struct task_group *tg)
  7189. {
  7190. }
  7191. static inline
  7192. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7193. {
  7194. return 1;
  7195. }
  7196. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7197. {
  7198. }
  7199. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7200. {
  7201. }
  7202. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7203. #ifdef CONFIG_RT_GROUP_SCHED
  7204. static void free_rt_sched_group(struct task_group *tg)
  7205. {
  7206. int i;
  7207. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7208. for_each_possible_cpu(i) {
  7209. if (tg->rt_rq)
  7210. kfree(tg->rt_rq[i]);
  7211. if (tg->rt_se)
  7212. kfree(tg->rt_se[i]);
  7213. }
  7214. kfree(tg->rt_rq);
  7215. kfree(tg->rt_se);
  7216. }
  7217. static
  7218. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7219. {
  7220. struct rt_rq *rt_rq;
  7221. struct sched_rt_entity *rt_se, *parent_se;
  7222. struct rq *rq;
  7223. int i;
  7224. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7225. if (!tg->rt_rq)
  7226. goto err;
  7227. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7228. if (!tg->rt_se)
  7229. goto err;
  7230. init_rt_bandwidth(&tg->rt_bandwidth,
  7231. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7232. for_each_possible_cpu(i) {
  7233. rq = cpu_rq(i);
  7234. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7235. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7236. if (!rt_rq)
  7237. goto err;
  7238. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7239. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7240. if (!rt_se)
  7241. goto err;
  7242. parent_se = parent ? parent->rt_se[i] : NULL;
  7243. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7244. }
  7245. return 1;
  7246. err:
  7247. return 0;
  7248. }
  7249. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7250. {
  7251. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7252. &cpu_rq(cpu)->leaf_rt_rq_list);
  7253. }
  7254. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7255. {
  7256. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7257. }
  7258. #else /* !CONFIG_RT_GROUP_SCHED */
  7259. static inline void free_rt_sched_group(struct task_group *tg)
  7260. {
  7261. }
  7262. static inline
  7263. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7264. {
  7265. return 1;
  7266. }
  7267. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7268. {
  7269. }
  7270. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7271. {
  7272. }
  7273. #endif /* CONFIG_RT_GROUP_SCHED */
  7274. #ifdef CONFIG_GROUP_SCHED
  7275. static void free_sched_group(struct task_group *tg)
  7276. {
  7277. free_fair_sched_group(tg);
  7278. free_rt_sched_group(tg);
  7279. kfree(tg);
  7280. }
  7281. /* allocate runqueue etc for a new task group */
  7282. struct task_group *sched_create_group(struct task_group *parent)
  7283. {
  7284. struct task_group *tg;
  7285. unsigned long flags;
  7286. int i;
  7287. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7288. if (!tg)
  7289. return ERR_PTR(-ENOMEM);
  7290. if (!alloc_fair_sched_group(tg, parent))
  7291. goto err;
  7292. if (!alloc_rt_sched_group(tg, parent))
  7293. goto err;
  7294. spin_lock_irqsave(&task_group_lock, flags);
  7295. for_each_possible_cpu(i) {
  7296. register_fair_sched_group(tg, i);
  7297. register_rt_sched_group(tg, i);
  7298. }
  7299. list_add_rcu(&tg->list, &task_groups);
  7300. WARN_ON(!parent); /* root should already exist */
  7301. tg->parent = parent;
  7302. INIT_LIST_HEAD(&tg->children);
  7303. list_add_rcu(&tg->siblings, &parent->children);
  7304. spin_unlock_irqrestore(&task_group_lock, flags);
  7305. return tg;
  7306. err:
  7307. free_sched_group(tg);
  7308. return ERR_PTR(-ENOMEM);
  7309. }
  7310. /* rcu callback to free various structures associated with a task group */
  7311. static void free_sched_group_rcu(struct rcu_head *rhp)
  7312. {
  7313. /* now it should be safe to free those cfs_rqs */
  7314. free_sched_group(container_of(rhp, struct task_group, rcu));
  7315. }
  7316. /* Destroy runqueue etc associated with a task group */
  7317. void sched_destroy_group(struct task_group *tg)
  7318. {
  7319. unsigned long flags;
  7320. int i;
  7321. spin_lock_irqsave(&task_group_lock, flags);
  7322. for_each_possible_cpu(i) {
  7323. unregister_fair_sched_group(tg, i);
  7324. unregister_rt_sched_group(tg, i);
  7325. }
  7326. list_del_rcu(&tg->list);
  7327. list_del_rcu(&tg->siblings);
  7328. spin_unlock_irqrestore(&task_group_lock, flags);
  7329. /* wait for possible concurrent references to cfs_rqs complete */
  7330. call_rcu(&tg->rcu, free_sched_group_rcu);
  7331. }
  7332. /* change task's runqueue when it moves between groups.
  7333. * The caller of this function should have put the task in its new group
  7334. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7335. * reflect its new group.
  7336. */
  7337. void sched_move_task(struct task_struct *tsk)
  7338. {
  7339. int on_rq, running;
  7340. unsigned long flags;
  7341. struct rq *rq;
  7342. rq = task_rq_lock(tsk, &flags);
  7343. update_rq_clock(rq);
  7344. running = task_current(rq, tsk);
  7345. on_rq = tsk->se.on_rq;
  7346. if (on_rq)
  7347. dequeue_task(rq, tsk, 0);
  7348. if (unlikely(running))
  7349. tsk->sched_class->put_prev_task(rq, tsk);
  7350. set_task_rq(tsk, task_cpu(tsk));
  7351. #ifdef CONFIG_FAIR_GROUP_SCHED
  7352. if (tsk->sched_class->moved_group)
  7353. tsk->sched_class->moved_group(tsk);
  7354. #endif
  7355. if (unlikely(running))
  7356. tsk->sched_class->set_curr_task(rq);
  7357. if (on_rq)
  7358. enqueue_task(rq, tsk, 0);
  7359. task_rq_unlock(rq, &flags);
  7360. }
  7361. #endif /* CONFIG_GROUP_SCHED */
  7362. #ifdef CONFIG_FAIR_GROUP_SCHED
  7363. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7364. {
  7365. struct cfs_rq *cfs_rq = se->cfs_rq;
  7366. int on_rq;
  7367. on_rq = se->on_rq;
  7368. if (on_rq)
  7369. dequeue_entity(cfs_rq, se, 0);
  7370. se->load.weight = shares;
  7371. se->load.inv_weight = 0;
  7372. if (on_rq)
  7373. enqueue_entity(cfs_rq, se, 0);
  7374. }
  7375. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7376. {
  7377. struct cfs_rq *cfs_rq = se->cfs_rq;
  7378. struct rq *rq = cfs_rq->rq;
  7379. unsigned long flags;
  7380. spin_lock_irqsave(&rq->lock, flags);
  7381. __set_se_shares(se, shares);
  7382. spin_unlock_irqrestore(&rq->lock, flags);
  7383. }
  7384. static DEFINE_MUTEX(shares_mutex);
  7385. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7386. {
  7387. int i;
  7388. unsigned long flags;
  7389. /*
  7390. * We can't change the weight of the root cgroup.
  7391. */
  7392. if (!tg->se[0])
  7393. return -EINVAL;
  7394. if (shares < MIN_SHARES)
  7395. shares = MIN_SHARES;
  7396. else if (shares > MAX_SHARES)
  7397. shares = MAX_SHARES;
  7398. mutex_lock(&shares_mutex);
  7399. if (tg->shares == shares)
  7400. goto done;
  7401. spin_lock_irqsave(&task_group_lock, flags);
  7402. for_each_possible_cpu(i)
  7403. unregister_fair_sched_group(tg, i);
  7404. list_del_rcu(&tg->siblings);
  7405. spin_unlock_irqrestore(&task_group_lock, flags);
  7406. /* wait for any ongoing reference to this group to finish */
  7407. synchronize_sched();
  7408. /*
  7409. * Now we are free to modify the group's share on each cpu
  7410. * w/o tripping rebalance_share or load_balance_fair.
  7411. */
  7412. tg->shares = shares;
  7413. for_each_possible_cpu(i) {
  7414. /*
  7415. * force a rebalance
  7416. */
  7417. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7418. set_se_shares(tg->se[i], shares);
  7419. }
  7420. /*
  7421. * Enable load balance activity on this group, by inserting it back on
  7422. * each cpu's rq->leaf_cfs_rq_list.
  7423. */
  7424. spin_lock_irqsave(&task_group_lock, flags);
  7425. for_each_possible_cpu(i)
  7426. register_fair_sched_group(tg, i);
  7427. list_add_rcu(&tg->siblings, &tg->parent->children);
  7428. spin_unlock_irqrestore(&task_group_lock, flags);
  7429. done:
  7430. mutex_unlock(&shares_mutex);
  7431. return 0;
  7432. }
  7433. unsigned long sched_group_shares(struct task_group *tg)
  7434. {
  7435. return tg->shares;
  7436. }
  7437. #endif
  7438. #ifdef CONFIG_RT_GROUP_SCHED
  7439. /*
  7440. * Ensure that the real time constraints are schedulable.
  7441. */
  7442. static DEFINE_MUTEX(rt_constraints_mutex);
  7443. static unsigned long to_ratio(u64 period, u64 runtime)
  7444. {
  7445. if (runtime == RUNTIME_INF)
  7446. return 1ULL << 16;
  7447. return div64_u64(runtime << 16, period);
  7448. }
  7449. #ifdef CONFIG_CGROUP_SCHED
  7450. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7451. {
  7452. struct task_group *tgi, *parent = tg->parent;
  7453. unsigned long total = 0;
  7454. if (!parent) {
  7455. if (global_rt_period() < period)
  7456. return 0;
  7457. return to_ratio(period, runtime) <
  7458. to_ratio(global_rt_period(), global_rt_runtime());
  7459. }
  7460. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7461. return 0;
  7462. rcu_read_lock();
  7463. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7464. if (tgi == tg)
  7465. continue;
  7466. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7467. tgi->rt_bandwidth.rt_runtime);
  7468. }
  7469. rcu_read_unlock();
  7470. return total + to_ratio(period, runtime) <=
  7471. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7472. parent->rt_bandwidth.rt_runtime);
  7473. }
  7474. #elif defined CONFIG_USER_SCHED
  7475. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7476. {
  7477. struct task_group *tgi;
  7478. unsigned long total = 0;
  7479. unsigned long global_ratio =
  7480. to_ratio(global_rt_period(), global_rt_runtime());
  7481. rcu_read_lock();
  7482. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7483. if (tgi == tg)
  7484. continue;
  7485. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7486. tgi->rt_bandwidth.rt_runtime);
  7487. }
  7488. rcu_read_unlock();
  7489. return total + to_ratio(period, runtime) < global_ratio;
  7490. }
  7491. #endif
  7492. /* Must be called with tasklist_lock held */
  7493. static inline int tg_has_rt_tasks(struct task_group *tg)
  7494. {
  7495. struct task_struct *g, *p;
  7496. do_each_thread(g, p) {
  7497. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7498. return 1;
  7499. } while_each_thread(g, p);
  7500. return 0;
  7501. }
  7502. static int tg_set_bandwidth(struct task_group *tg,
  7503. u64 rt_period, u64 rt_runtime)
  7504. {
  7505. int i, err = 0;
  7506. mutex_lock(&rt_constraints_mutex);
  7507. read_lock(&tasklist_lock);
  7508. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7509. err = -EBUSY;
  7510. goto unlock;
  7511. }
  7512. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7513. err = -EINVAL;
  7514. goto unlock;
  7515. }
  7516. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7517. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7518. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7519. for_each_possible_cpu(i) {
  7520. struct rt_rq *rt_rq = tg->rt_rq[i];
  7521. spin_lock(&rt_rq->rt_runtime_lock);
  7522. rt_rq->rt_runtime = rt_runtime;
  7523. spin_unlock(&rt_rq->rt_runtime_lock);
  7524. }
  7525. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7526. unlock:
  7527. read_unlock(&tasklist_lock);
  7528. mutex_unlock(&rt_constraints_mutex);
  7529. return err;
  7530. }
  7531. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7532. {
  7533. u64 rt_runtime, rt_period;
  7534. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7535. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7536. if (rt_runtime_us < 0)
  7537. rt_runtime = RUNTIME_INF;
  7538. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7539. }
  7540. long sched_group_rt_runtime(struct task_group *tg)
  7541. {
  7542. u64 rt_runtime_us;
  7543. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7544. return -1;
  7545. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7546. do_div(rt_runtime_us, NSEC_PER_USEC);
  7547. return rt_runtime_us;
  7548. }
  7549. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7550. {
  7551. u64 rt_runtime, rt_period;
  7552. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7553. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7554. if (rt_period == 0)
  7555. return -EINVAL;
  7556. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7557. }
  7558. long sched_group_rt_period(struct task_group *tg)
  7559. {
  7560. u64 rt_period_us;
  7561. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7562. do_div(rt_period_us, NSEC_PER_USEC);
  7563. return rt_period_us;
  7564. }
  7565. static int sched_rt_global_constraints(void)
  7566. {
  7567. struct task_group *tg = &root_task_group;
  7568. u64 rt_runtime, rt_period;
  7569. int ret = 0;
  7570. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7571. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7572. mutex_lock(&rt_constraints_mutex);
  7573. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7574. ret = -EINVAL;
  7575. mutex_unlock(&rt_constraints_mutex);
  7576. return ret;
  7577. }
  7578. #else /* !CONFIG_RT_GROUP_SCHED */
  7579. static int sched_rt_global_constraints(void)
  7580. {
  7581. unsigned long flags;
  7582. int i;
  7583. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7584. for_each_possible_cpu(i) {
  7585. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7586. spin_lock(&rt_rq->rt_runtime_lock);
  7587. rt_rq->rt_runtime = global_rt_runtime();
  7588. spin_unlock(&rt_rq->rt_runtime_lock);
  7589. }
  7590. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7591. return 0;
  7592. }
  7593. #endif /* CONFIG_RT_GROUP_SCHED */
  7594. int sched_rt_handler(struct ctl_table *table, int write,
  7595. struct file *filp, void __user *buffer, size_t *lenp,
  7596. loff_t *ppos)
  7597. {
  7598. int ret;
  7599. int old_period, old_runtime;
  7600. static DEFINE_MUTEX(mutex);
  7601. mutex_lock(&mutex);
  7602. old_period = sysctl_sched_rt_period;
  7603. old_runtime = sysctl_sched_rt_runtime;
  7604. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7605. if (!ret && write) {
  7606. ret = sched_rt_global_constraints();
  7607. if (ret) {
  7608. sysctl_sched_rt_period = old_period;
  7609. sysctl_sched_rt_runtime = old_runtime;
  7610. } else {
  7611. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7612. def_rt_bandwidth.rt_period =
  7613. ns_to_ktime(global_rt_period());
  7614. }
  7615. }
  7616. mutex_unlock(&mutex);
  7617. return ret;
  7618. }
  7619. #ifdef CONFIG_CGROUP_SCHED
  7620. /* return corresponding task_group object of a cgroup */
  7621. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7622. {
  7623. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7624. struct task_group, css);
  7625. }
  7626. static struct cgroup_subsys_state *
  7627. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7628. {
  7629. struct task_group *tg, *parent;
  7630. if (!cgrp->parent) {
  7631. /* This is early initialization for the top cgroup */
  7632. init_task_group.css.cgroup = cgrp;
  7633. return &init_task_group.css;
  7634. }
  7635. parent = cgroup_tg(cgrp->parent);
  7636. tg = sched_create_group(parent);
  7637. if (IS_ERR(tg))
  7638. return ERR_PTR(-ENOMEM);
  7639. /* Bind the cgroup to task_group object we just created */
  7640. tg->css.cgroup = cgrp;
  7641. return &tg->css;
  7642. }
  7643. static void
  7644. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7645. {
  7646. struct task_group *tg = cgroup_tg(cgrp);
  7647. sched_destroy_group(tg);
  7648. }
  7649. static int
  7650. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7651. struct task_struct *tsk)
  7652. {
  7653. #ifdef CONFIG_RT_GROUP_SCHED
  7654. /* Don't accept realtime tasks when there is no way for them to run */
  7655. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7656. return -EINVAL;
  7657. #else
  7658. /* We don't support RT-tasks being in separate groups */
  7659. if (tsk->sched_class != &fair_sched_class)
  7660. return -EINVAL;
  7661. #endif
  7662. return 0;
  7663. }
  7664. static void
  7665. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7666. struct cgroup *old_cont, struct task_struct *tsk)
  7667. {
  7668. sched_move_task(tsk);
  7669. }
  7670. #ifdef CONFIG_FAIR_GROUP_SCHED
  7671. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7672. u64 shareval)
  7673. {
  7674. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7675. }
  7676. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7677. {
  7678. struct task_group *tg = cgroup_tg(cgrp);
  7679. return (u64) tg->shares;
  7680. }
  7681. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7682. #ifdef CONFIG_RT_GROUP_SCHED
  7683. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7684. s64 val)
  7685. {
  7686. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7687. }
  7688. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7689. {
  7690. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7691. }
  7692. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7693. u64 rt_period_us)
  7694. {
  7695. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7696. }
  7697. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7698. {
  7699. return sched_group_rt_period(cgroup_tg(cgrp));
  7700. }
  7701. #endif /* CONFIG_RT_GROUP_SCHED */
  7702. static struct cftype cpu_files[] = {
  7703. #ifdef CONFIG_FAIR_GROUP_SCHED
  7704. {
  7705. .name = "shares",
  7706. .read_u64 = cpu_shares_read_u64,
  7707. .write_u64 = cpu_shares_write_u64,
  7708. },
  7709. #endif
  7710. #ifdef CONFIG_RT_GROUP_SCHED
  7711. {
  7712. .name = "rt_runtime_us",
  7713. .read_s64 = cpu_rt_runtime_read,
  7714. .write_s64 = cpu_rt_runtime_write,
  7715. },
  7716. {
  7717. .name = "rt_period_us",
  7718. .read_u64 = cpu_rt_period_read_uint,
  7719. .write_u64 = cpu_rt_period_write_uint,
  7720. },
  7721. #endif
  7722. };
  7723. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7724. {
  7725. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7726. }
  7727. struct cgroup_subsys cpu_cgroup_subsys = {
  7728. .name = "cpu",
  7729. .create = cpu_cgroup_create,
  7730. .destroy = cpu_cgroup_destroy,
  7731. .can_attach = cpu_cgroup_can_attach,
  7732. .attach = cpu_cgroup_attach,
  7733. .populate = cpu_cgroup_populate,
  7734. .subsys_id = cpu_cgroup_subsys_id,
  7735. .early_init = 1,
  7736. };
  7737. #endif /* CONFIG_CGROUP_SCHED */
  7738. #ifdef CONFIG_CGROUP_CPUACCT
  7739. /*
  7740. * CPU accounting code for task groups.
  7741. *
  7742. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7743. * (balbir@in.ibm.com).
  7744. */
  7745. /* track cpu usage of a group of tasks */
  7746. struct cpuacct {
  7747. struct cgroup_subsys_state css;
  7748. /* cpuusage holds pointer to a u64-type object on every cpu */
  7749. u64 *cpuusage;
  7750. };
  7751. struct cgroup_subsys cpuacct_subsys;
  7752. /* return cpu accounting group corresponding to this container */
  7753. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7754. {
  7755. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7756. struct cpuacct, css);
  7757. }
  7758. /* return cpu accounting group to which this task belongs */
  7759. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7760. {
  7761. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7762. struct cpuacct, css);
  7763. }
  7764. /* create a new cpu accounting group */
  7765. static struct cgroup_subsys_state *cpuacct_create(
  7766. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7767. {
  7768. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7769. if (!ca)
  7770. return ERR_PTR(-ENOMEM);
  7771. ca->cpuusage = alloc_percpu(u64);
  7772. if (!ca->cpuusage) {
  7773. kfree(ca);
  7774. return ERR_PTR(-ENOMEM);
  7775. }
  7776. return &ca->css;
  7777. }
  7778. /* destroy an existing cpu accounting group */
  7779. static void
  7780. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7781. {
  7782. struct cpuacct *ca = cgroup_ca(cgrp);
  7783. free_percpu(ca->cpuusage);
  7784. kfree(ca);
  7785. }
  7786. /* return total cpu usage (in nanoseconds) of a group */
  7787. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7788. {
  7789. struct cpuacct *ca = cgroup_ca(cgrp);
  7790. u64 totalcpuusage = 0;
  7791. int i;
  7792. for_each_possible_cpu(i) {
  7793. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7794. /*
  7795. * Take rq->lock to make 64-bit addition safe on 32-bit
  7796. * platforms.
  7797. */
  7798. spin_lock_irq(&cpu_rq(i)->lock);
  7799. totalcpuusage += *cpuusage;
  7800. spin_unlock_irq(&cpu_rq(i)->lock);
  7801. }
  7802. return totalcpuusage;
  7803. }
  7804. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7805. u64 reset)
  7806. {
  7807. struct cpuacct *ca = cgroup_ca(cgrp);
  7808. int err = 0;
  7809. int i;
  7810. if (reset) {
  7811. err = -EINVAL;
  7812. goto out;
  7813. }
  7814. for_each_possible_cpu(i) {
  7815. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7816. spin_lock_irq(&cpu_rq(i)->lock);
  7817. *cpuusage = 0;
  7818. spin_unlock_irq(&cpu_rq(i)->lock);
  7819. }
  7820. out:
  7821. return err;
  7822. }
  7823. static struct cftype files[] = {
  7824. {
  7825. .name = "usage",
  7826. .read_u64 = cpuusage_read,
  7827. .write_u64 = cpuusage_write,
  7828. },
  7829. };
  7830. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7831. {
  7832. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7833. }
  7834. /*
  7835. * charge this task's execution time to its accounting group.
  7836. *
  7837. * called with rq->lock held.
  7838. */
  7839. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7840. {
  7841. struct cpuacct *ca;
  7842. if (!cpuacct_subsys.active)
  7843. return;
  7844. ca = task_ca(tsk);
  7845. if (ca) {
  7846. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7847. *cpuusage += cputime;
  7848. }
  7849. }
  7850. struct cgroup_subsys cpuacct_subsys = {
  7851. .name = "cpuacct",
  7852. .create = cpuacct_create,
  7853. .destroy = cpuacct_destroy,
  7854. .populate = cpuacct_populate,
  7855. .subsys_id = cpuacct_subsys_id,
  7856. };
  7857. #endif /* CONFIG_CGROUP_CPUACCT */